
RICE UNIVERSITY 

FLUID TEMPERATURE DYNAMICS IN INCOMPRESSIBLE 
FLUID HEAT EXCHANGER SYSTEMS 

Johnnie W. Colburn, Jr. 

A THESIS SUBMITTED 
IN PARTIAL FULFILLMENT OF THE 

REQUIREMENTS FOR THE DEGREE OF 

Master of Science 

Thesis Director's Signature 

by 

Houston, Texas 

May, 1971 



ACKNOWLEDGEMENTS 

The writer wishes to express his appreciation to 

Dr. A. J. Chapman who has followed the nins and outs11 of the 

writer's graduate academic career and has provided guidance in 

the development of this thesis. 

The writer also wishes to recognize the assistance of the 

National Aeronautics and Space Administration under its graduate 

study program and the Southwest Research Institute for its support 

of the research for this thesis and for the use of its computer 

facilities in solutipn of the problems formulated. 

Finally, the writer wishes to make special acknowledgement 

of the assistance of his wife Virginia in typing the text and of her 

encouragement throughout his .graduate studies. 



ABSTRACT 

FLUID TEMPERATURE DYNAMICS IN INCOMPRESSIBLE 
FLUID HEAT EXCHANGER SYSTEMS 

by Johnnie W. Colburn, Jr. 

Linearized partial differential equations for incompressible 

fluid temperature dynamics in pipes and single-pass heat exchang¬ 

ers are derived. Laplace transform methods are employed to 

obtain temperature transfer functions (for pipes) and transfer matrices 

(for heat exchangers) . Using a power series approximation for the 

individual transfer functions of a heat exchanger transfer matrix, 

Fourier transforms (in Euler form) are obtained for evaluation of 

frequency response. 

Using these models, analysis of multiple heat exchanger 

systems is described in terms of multiplication of a sequence of 

suitable transfer matrices (either geometric or causal). The 

effect of piping on temperatures in heat exchanger systems is 

shown to be negligible in the steady state and dependent on the static 

effectiveness of the individual heat exchangers of the system in the 

transient state. 

For analysis of load changes in process design, it is suggested 

that dynamics of heat exchanger systems be characterized by the 

overall steady state gain and a single time constant (for each 

transfer function) determined by evaluation of the phase frequency 

response of the heat exchanger system. 
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FLUID TEMPERATURE DYNAMICS IN INCOMPRESSIBLE 
FLUID HEAT EXCHANGER SYSTEMS 

by Johnnie W. Colburn, Jr. 

I. Introduction 

The demands of greater output and efficiency in the process 

industries have resulted in plant designs with high process flow- 

rates and small permissable changes in process fluid tempera¬ 

tures at specific plant locations. In nuclear power plants, fluid 

temperature control is critical and a high degree of reliability is 

necessary at the design stage of heat exchanger systems for plant 

load control. Both of these fields have been popular for studies 

of the dynamics of individual heat exchange components, i. e. , 

either heat exchangers or piping. A comprehensive review of 

literature applicable to the dynamics of these components is 

available in References 1 and 2. In virtually all of the articles 

cited in these references, lumped parameter models of the heat 

exchange component are developed from the partial differential 

equations describing the process; subsequently, analog models 

are suggested and verified for these simplified models. Invari¬ 

ably the values of analog circuit elements (resistances, capaci¬ 

tances, etc.) are set to match the experimental data for a speci¬ 

fic heat exchange element and the mathematical model derived 

merely to lend insight into the required analog circuit structure. 

This type of representation is desirable from a control engineer's 
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viewpoint as the heat exchange component is easily simulated 

and various controlling elements can be integrated with the com¬ 

ponent for evaluation of temperature control. 

The process designer, however, cannot afford the luxury of 

analog representation since he must deal with familiar terms such 

as heat capacity rates, overall heat transfer coefficients, effective¬ 

ness, etc. Futhermore, the system elements which are to be con¬ 

nected have specified physical sizes and cannot be broken into 

small "lumps" for accurate analog representation. Analytical 

approximations, then, of the dynamics of heat exchange components 

are required to facilitate investigation of these components or of 

fluid systems containing them. 

This work investigates the dynamics of heat exchanger 

systems in'which several parallel or counter-flow heat exchangers 

are coupled to provide an overall steady state heat exchange 

effectiveness. Approximations to the partial differential equa¬ 

tions describing the system components are made, then consider¬ 

ation is given to the ideal dynamics of heat exchange systems (i. e. , 

without connecting piping) and of the modification of these dynamics 

when piping effects are included. 

Overall, this work is directed toward an intermediate 

ground for system representations, providing the process engi¬ 

neer with an evaluation procedure for the dynamics as well as 

the steady state performance of heat exchange components. 
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Equipment selection, comparisons, and preliminary control 

system evaluations can be made on a rational basis with system 

dynamics interpreted in terms of component physical character¬ 

istics. 
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II. Analysis of Heat Exchange Components 

Two basic heat exchange components are considered in this 

work, heat exchangers (specifically, single-pass heat exchangers) 

and piping. The most general consideration of these elements 

would include variable flowrates and the coupling of thermal 

transients with the fluid dynamic processes of mass and momen¬ 

tum storage. Various authors have demonstrated (References 3 

and 4) that the fluid transient (outlet temperature response to a 

flowrate change) is at least an order of magnitude faster than the 

thermal load transient. Since neglect of flowrate variations 

reduces the complexity of equations describing heat exchanger 

and pipe temperature dynamics, this restriction is readily justi¬ 

fied. Consideration of small pertubations in flowrate about an 

equilibrium point can be made (Reference 3), where the technique 

employed is essentially that presented here for temperature 

forced transients. 

The'following additional assumptions, which have proven 

adequate (References 4, 5, and 6) for analysis of thermal exchange 

in incompressible fluid heat exchangers, are employed: 

1. The liquids are incompressible and have constant speci¬ 

fic heat and density. 

2. Longitudinal heat flow is negligible and radial conduc¬ 

tion is infinite in the heat exchanger walls. 

3. The velocity and temperature are uniform at a cross 
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section normal to the flow, i. e. , a one dimensional 

representation is adequate. 

4. The outside surface of the shell wall is perfectly insu¬ 

lated. 

5. There are no energy sources in the fluids or heat ex¬ 

changer materials. 

6. Steady state heat transfer coefficients can be employed 

which are uniform throughout the heat exchanger and 

are constant for a given flowrate. 

These assumptions are sufficient to linearize the partial 

differential equations for energy exchange. For analysis of 

dynamics of a linear system, several approaches are available. 

The differential equations describing a process can be solved in 

the time domain for specific forcing temperature inputs to obtain 

the transient response. Under the restriction of vanishing initial 

conditions, transfer functions may be written for the process 

which are independent of the nature of these forcing tempera¬ 

tures. This second approach will be employed in this work since 

it incompasses time domain responses by an appropriate trans,- 

form inversion. A system characterized by means of transfer 

functions provides generality which a time domain solution does 

not. Control engineers have developed both system analysis and 

synthesis techniques by investigation of the dynamics of a system 

through its transfer functions only (References 7 and 8). By con- 
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fining analysis to the transform domain, this work will provide 

both the potential for a specific solution inversion to the time 

domain and the generality of system data for control engineers. 

From this viewpoint, the method of representation of sys¬ 

tem or component dynamic performance is obvious, i. e., phase 

and amplitude frequency response of the transfer functions. 

Conversion of a Laplace transform to a Fourier transform (by 

the substitution S^jtO) produces a transform which yields the 

variation of steady state phase and amplitude of a linear system 

when excited by a sinusoidal input. Frequency response diagrams 

(Bode plots) can be used to synthesize steady state solutions for 

periodic forcing functions (decomposable into a Fourier series) 

or can be used for evaluation of transient response by procedures 

as given in References 7 and 9. 

In the following sections, the governing equations of the 

dynamics of both heat exchangers and connecting piping are derived. 

Further simplifying techniques are employed and transfer matrices 

(for heat exchangers) and transfer functions (for pipes) are ob¬ 

tained through application of the Laplace transformation. 
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III, Single-Pass Heat Exchanger Dynamics 

This type of heat exchanger consists of one tube path and 

one shell path and is commonly known as a double-pipe heat ex¬ 

changer, although the governing equations are applicable to a 

heat exchanger with several parallel tube passes within the shell. 

Consider a length <L% of the parallel or counter-flow heat ex¬ 

changer of Figure 1. A heat balance on the tube fluid yields: 

+Atht (6-Ti)d»(= o 
(i) 

A similar balance for the shell fluid yields: 

^(mscFs ^.^)±wscPs^|.do(+AsKs Op-Ts) d* 

-hAujhuj O 
(2) 

where the plus sign is for parallel-flow and the minus sign is 

for counter-flow. Heat balances for the metallic regions of the 

heat exchanger give: 

For the tube, 

AUJMUJ flp-T* )+At Ht (&-1i) = c/ (3) 

for the shell, 

AsHs (ty-Ts)~ Cz (4) 
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Introduce time constants: 
A. — 

s As Hs 
(5) 

c*“ AtH-t (6) 

The ratio of convective heat transfer terms for both sides of 

the tube wall is: 

AUJ Hcu 

A* H-b 
(7) 

and 

07= A-feM-fc 
* “itCp-fc 

(8); 
„ AsW 
r “>sc?s (9); 

^ AUJ HU) 

(10) 

With these definitions, equations (1) through (4) reduce to: 

(BDH + LH? +<nfc(e-Tfc) =. O mi 

(—) tji ~ ^ 7x = 0 (i2) 

fr-(UJ-T-t) + (&-Tti - (w) 

(tf-Ts) =. 'ts A&- (i4) 

The steady state solution to these equations is obtained when 
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Equation (11) becomes, 

L?f ^(6~Tt)- ° 

Since (14) yields, vp -Ts - O 

equation (12) becomes, 

± L QL -4-CTOJ (tp-Tb) ®O 
dx 

and equation (13) becomes, 

IT (tp-T-fc) = “(0-Tt:) 

Solving this last equation for T* and substituting into the 
» 

above equations, we obtain, 

(15) 

(16) 

From the definition of the parameters in the above equations, 

CTQJ __ Au> . A-fc H-fc  
l "V\r Cps A-tK-fc^AojHco 

Now, 



10 

(Am Bm) (At, Hj) __ I I __ I 
A-t +Acu H to AUJHUJ Ai yA 

(17) 

where (JA- the overall heat transfer coefficient of the heat 

exchanger. 

fl~to __ U A 
l+f W!scPs 

Similarly, 

trCPb = U A 
I Hr lr ~ CJUtcp*fc 

Define the following additional parameters: 

fl- UA./-J  '— 'j p- 2, v w-kcpt ous Cp5 / 

C- tM, / !   _ _J  
u 2. ^scFs 

(18) 

(19) 

where ^ is a measure of the size of the heat exchanger and 

r- £/f (20) (-t<r« i) is a measure of the static im¬ 

balance of the flow streams. Then, 

Ocu 
l-Hr 

= f-£ (21) 

and 
V* CTb 

l-vv* 
— ^-*-£ (22) 

With the above definitions, equations (15) and (16) can be written 

in matrix notation as: 
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QT | f-(p+£) &' 

i./6] = 
L |i(p-e) +(p-£) 

(23) 

where again the top sign in the second row is for parallel-flow 

and the lower sign is for counter-flow. 

The matrix equation(23)is a set of ordinary differential 

equations of first order and first degree with constant coeffi¬ 

cients. The simplest solution is obtained by noting, 

where is the temperature vector and., 

[M]-- 
|-(p+£) -*(p+£) 

±(p-£) +(P"£) 
(24) 

Laplace transforming this equation, % 

M=tLKl 
fptXUHl]"^ liL + M +   
L J P pz p3 

+ Mx + [M]V4.. . = e
MX 

21 

/V 
(25) 
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Thus, the relation between the temperatures on both ends of the 

heat exchange 

The solution of the equations for statics of these heat exchangers 

relates fluid temperatures on a "geometric" basis, i. e., the 

physical geometry of the fluid flow directions in the coordinates 

describing the problem dictates the specific temperature elements 

in the temperature vectors. The formulation for the parallel- 

flow heat exchanger can be used directly for investigation of 

statics, but the counter-flow heat exchanger formulation must • 

be modified so that, respectively, temperature vectors related 

by a transformation matrix contain outlet temperatures or inlet 

temperatures only. To do this, the "causal" form (References 

3 and 4) or "partial inversion" (Reference 10) described in Ap¬ 

pendix A is applied to the transformation matrix. Further appli- 

Note that in equation (25), for the parallel-flow heat exchanger, 

For the counter-flow heat exchanger, however, 



cations of the causal form will be employed in system integration 

of the counter-flow heat exchanger (Section X). 
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For simplicity of the Laplace transform solution to the 

dynamic equations (11) through (14), variations about the steady 

state defined by equation (25) are considered. Laplace trans¬ 

forming equations (11) through (14) by the methods of Reference 

(11), and changing variables so that the temperatures now denote 

only the time varying component, we obtain: 

^g)s3+l.|| +(r*(e-T±) = O (26) 

/H£)s£?±L^ +<rs(^7s)+Mi?-Tt)= % 

-Tfc) + (e -7t) = 'tts (28) 

($ -Ts) = ?s s Ts (29) 

Solving (28) and (29) respectively for i-t and we have, 

ys= “d Tfc = (©+^t?)/i+ir+'Cts) 

With these, equations (26) and (27) become, 



.{(g) *j*5s—-15»Si_5 +L& 
(H.V.+'CtSjJ (,+f+TtS) °X 

(Is+fir. 
)J (l+V+ 

— MR: U) — O 

(i+r+'Btsj Mr u (so) 

frws\-L 
rs'Cs lT(i 4—W 

sflu>5r t+Trss (l+v+'6tS)J * (l+f'+'ttS)” 
+ l <5 ip q~uj 

3x "Vw*'*®) = O 
(31) 

As shown by Fux (Reference 3), the wall temperature transients 

or resulting "wall charging" time in a liquid to liquid heat 

exchanger is significantly faster than the transport process of 

the fluid through the exchanger. Thus, it is allowable to consi- 

A A. yrtc Yrtf 
der Gfc y *»$ as considerably smaller than or (jj^ 

With this, a first order approximation of the process becomes: 

^sS+LH+Tif5“-T5F<r-o <33. 

'fc.stp + + na-Tp -£ii5-.0 
ax l-vr (33) 

where, 

*^2. ~ + <*0* ^-fc* 

(34) 

(35) 

*2f| and L^are termed 11 compensated*1 transport times, since 
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they represent an effective lengthening of the fluid transport 

times in the heat exchanger. This approximation has been shown 

to be good for the low frequency behavior of liquid to liquid heat 

exchangers by Fux (Reference 3) and Hansen (Reference 4). 

Rearranging the terms of equations (32) and (33), we have: 

Employing the relations for the statics of the heat exchanger, 

i. e. , 

Q"u> . _ 

and 

tr<r-t 
l + »~ 

Equations .(36) and (37) can be written in matrix notation for 

comparison with equation (25) as: 

_d_ 

d% 

~(p+£)-Z,S (?+£■) ||© 

±(p~£) +((S-£)+tz$Jl'l 

(38) 

The same solution method is valid for (38) as for (25), thus, 

el LK\fe7 

Vr-,~- ® IVx.o 
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(40) 

where, f-(p-f E)-^, S 

[M> 

CM3 
0 can be evaluated by means of Sylvester's Theorem (Reference 

(P+e) 

+(p-£)+ras 

12), % 

M.feK 

k (»< -A*) 

(41) 

Expanding this, 

CM]_ _J— 
G ~ A|~A2. 

(eA,-e2)M (Aie
AU,eA2)Ci]J 

(42) 

where ^||2. are eigenvalues of LK1 . For the parallel- 

flow heat exchanger, the characteristic equation of tM] i.: 

^+£)-X|S-^ (P+£) 

({!-£) -(&-Z)-tzS-A 

= O 

yielding, - t,’ 

-£V^)S+2^_ ±\ J?Vtz) s*+4£^,-'ti)S->-#jr| 
A 

(43) 
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for the counter-flow heat exchanger, the characteristic equation is: 

_(p+e)^,s - A p+£ 

(p-£)+*2S-A 
= O 

A=RtL--c,)s-2£3 ± £ [(WV+4jj twds-f4£2J 
& 

(44) 

The desired transfer matrix is obtained by substitution of the 

appropriate M and ^ into equation (19). Note that we have 

obtained geometric relations for the dynamic temperature varia¬ 

tions of the fluid streams, as in the case for statics of these 

heat exchangers. Again, the geometric form is adequate for the 

parallel-flow heat exchanger, but the causal transformation is 

required for investigation of the dynamics of counter-flow heat 

exchangers-. 

Resulting transfer matrix relations for these heat exchangers 

have the form: .. 

whe r e, 
(46) 
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G| and G^.are termed "self" transfer functions (terms) as 

they represent the influence of the stream inlet temperature 

on its own outlet. O^and "cross" transfer functions 

(terms) since they represent the influence of the adjacent stream's 

inlet temperature on the outlet temperature of the first stream. 

At this pointj it is worthy to note that by conversion of the 

individual transfer functions to Fourier transforms, these trans¬ 

fer functions can, in principle, be separated into real and ima¬ 

ginary components. Once these components are available, con¬ 

version to the Euler form of a complex number will yield ampli¬ 

tude and phase relations for the transform. 

The form of the matrix (42) with either set of substitutions 

forQ^Qand ^ is very complex when fully expanded (References 

13, 14, 15, and 16 without the restriction of compensated trans¬ 

port times)’ and contains several hyperbolic functions. For 

even a simple choice of parameters, the algebraic reduction 

of the transfer functions to Euler form is tedious, if not, in ■ 

many cases, impossible. A method for further simplifications 

of these equations is required and is developed in Section V. 

The following section treats the dynamics of a single adia¬ 

batic pipe. The resulting transfer function of this component 

lends further insight into workable forms for heat exchanger 

transfer functions. 
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IV. Pipe Dynamics 

The geometry used for analysis of a pipe with an adiabatic 

exterior wall is shown in Figure 1. The equations describing the 

dynamics of this pipe with an inlet temperature variation are a 

special case of the equations for the tube fluid temperature response 

for the single-pass heat exchanger. 

Equation (11) applies as does equation (13) with f'*- O. 

thus steady state associations of heat exchange components can 

ignore the presence of piping. 

Considering transient variations about the steady state 

operating point, and denoting the time varying component of the 

temperature by the original variable, we have 

(11) 

(47) 

The steady state solution of equations (11) and (47) is 0 =Constant, 

(26) 

(48) 

By equation (48), 



(49) 

Equation (26) becomes, 

Compensation, as done for heat exchangers, is employed for a 

first order approximation of the process, yielding: 

where, 

Solving the compensated equation, we obtain: 

— .^Ps VL 
SM- e r 0(0) 

For X = l— 

ftut ~ © 

(50) 

(51) 

From this final form of the transfer function it is readily seen 

that the pipe produces only a phase lag in the fluid temperature 

response with no attenuation. In addition, the phase lag for any 

2*p is a linear function of frequency. 
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V. Approximation of Heat Exchanger Transfer Functions 

The simplicity of having a transfer function already in Euler 

form, as is available for fluid conveying pipes, prompts the desire 

for a similar conversion for the heat exchanger transfer functions. 

The following method was evolved by Professor H. M, Paynter 

(Reference 17) and was utilized for the analysis of heat exchange 

in subsequent work under his direction (References 3 and 4). This 

method is utilized to obtain more manageable forms for the heat 

exchanger transfer functions. 

This method apparently has wide applications in applied 

control theory since application of many control processes can be 

interpreted in terms of relations and functions derived from 

probability theory. 

The more important aspects of Paynter’s method to this work 

are the realization of two power series for any transfer function of 

a heat exchanger. These series are: 

(52) 

A=o Kf 

where, = (“ I ) K (FJj (53) 

the k£i- "moment" of F(s) 



22 

and JtyuF(S) - £ G<c (-S) 
K=o K! 

K 

(54) 

where, is the "cummulant" of 

CL^and C/^are related.by: 

aK = CK + ) cm aK-yn. 
W-l 

The following useful relations are derivable from equation (55) 

Cummulants from moments 

— $/YL Q+o 

Cl- °7 • 

c2= ~ 
C3= a3~'3Q,2 O-/+20.,3 

etc. 

(55) 

Moments from cummulants 

«.*= ec° 
o.,= c, ^ 
a2 = c2 + c, 
Ct^ s ©3 + 3czct + c, 

etc. 

For an individual heat exchanger, the cummulants provide the 

desired transfer function form. Each transfer function of the 

transfer matrix is given by: 

. Co-c,s+£asa 

F(s) - e T? 

C.3 -a 

3F 
s +... 

(56) 
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The first four cummulants have been found to adequately 

represent the low frequency behavior of heat exchangers for control 

system studies. (References 3, 4, and 13). This exponential 

relationship is valuable in evaluation of the frequency response of 

heat exchanger transfer functions, since by conversion to a 

Fourier transform, the phase and amplitude variations are 

readily seen from the Euler form. - 

fco-CV2? U>j(-C,GO+C3^fto
3-. ) 

F(jw>= e e 
c0 - c2/z<t toa+. . Aw»p F= e 

Phase. F = -<=,«> +c3/ew  

(57) 

Consider the special case of zero frequency. This amounts to 

a consideration of stable inlet temperatures. This zero frequency 

case then, reduces to the solution for statics of these heat 

exchangers. 

fl-mp F = e°° and Phase F=0. 

The "zeroth" cummulant matrix completely characterizes • 

the statics of heat exchangers. The zero frequency "gain" 

applies whether we are considering a steady state solution (using 

absolute temperatures) or dynamic pertubations from this steady 

state. 
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VI. Evaluation of Power Series for Heat Exchanger Transfer 
Functions 

Applying the results of the previous section, we can obtain the 

moments of the transfer functions in matrix form. 

Recall, 1 

ecKL -(A1e
A'-A.eA2)Ex]J 

where the ^ are defined by equation (43) or (44) and Ml is 

defined by equation-(40) with the appropriate choice of sign. 

CM3 
The expansion of 0 for the parallel-flow heat exchanger 

CM3 
or of the causal form of 6 for the counter-flow heat exchang¬ 

er produces a transformation matrix £GQ (Equation (46)). 

The moment matrix can now be noted as: 

(42) 

aK«> 

a*® a-K4' 
tc. 

(58) 

where the superscript refers to the appropriate transfer function. 

For the parallel-flow heat exchanger, define: 

-f/<*= eA'-eAz- (59) and £(s^ VsA|-A,eAz ,6m 

Since, at most, only the first four moments of the transfer 

function power series are required, only three derivatives of 

these “P require evaluation. The evaluation of these derivatives 
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is laborious and is included in Appendix B. 

Note that, [VfJ — £.SQ + SD^I (61) 

where, 

r -i _ f f**®) 7 
LBj=l(p-£) -({$-£>/ 

(62) 

and _ 

M -1'? 41 (63) 

Also noteJVQ -, where the prime denotes the derivative 

with respect to the transform variable S . 

© eCH3= -FtM +-P/LK) -C DO (64) 

®CKJ -HylXHe" M (65) 

£-3 e
CK]= 34," W +*,"1X2 --CM (66) 

Applying equation (58) and changing notation so that the "f 

and their derivatives are now interpreted in terms of their 

limiting values as S"®* O , we obtain: 

(67) 

(68) 
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[A21= 2f/&3 +-F,"CB3 - Vtd <69> 

[As> -3<tc] --f, '"[EQ+VDO <7°> 

(71) 

4(3 l p 
+e^| 

-(i+p) 0+n) 

0-n) -6-P) 

(72) 

Due to the complexity of algebraic reduction of the equations 

for higher order moments, computation of these moments was 

left for digital computer reduction. 
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For the counter-flow heat exchanger, Fux (Reference 3) has 

derived, obviously with much perserverence, expressions for the 

first cummulant (or moment) for the transfer functions contained 

in the causal form of equation (42). 

Since the (Equations (43) or (44)) have the form: 

*£ * d(s) ± b(s) 

a form valid for parallel-flow or counter-flow heat exchangers. 

1 Mizsimhlb) 

_CK1 
The causal form of C is: 

* d|j[(Mi- +boshe(b) 

(Mj£-<L)s^Yl(b) -vbc®^5*\(b) (M22,-d)S*kH(b)+bcsah(b; 

-Mzi St/yih(b) 

fM2£-d)sun.h(b)+bcsahfb) ^M22-dL)swvh(b)*lrbOa5Lh (b) 

0) U) 

(74) 

Now 

\ , K 

W=L» fe,Kl 
C*> 

Fortunately, Fux has completed the algebra for C| 

In terms of the formulation used in this work, 
• * a A  — 

(58) 

rj%.%) 1 L J +j3 t<toih£ J Z Z 
(75) 
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<f>= 
(i+p) “ 0 

/+/3 't(wih £ 
a 

&) 
(76) 

c '3)- c a} 
c

/ / 
(77) 

°/ - 

/ + |S a (m 

The "zeroth" moment can also be found by application of equation 

fl+r)0-e'2S) 
2r+0-r)(i-e-*e) 

zv*(i-r)(t~e~2£) 
- 

Fux and Hansen have shown that the phase frequency response 

of the counterflow heat exchanger transfer functions is largely 

determined by the cummulant Cy . Hansen also indicates that 

since a fluid system in which a counter-flow heat exchanger will be 

(58). -2£ 
r 2re 
2r+0-r)0-e‘2e) 

Cl-r)0-e’z£) 
2r-s<i-p)(i-e‘2£ 
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employed will contain additional thermal lags due to connecting 

piping, approximation by means of C| alone is an adequate 

representation for the phase frequency response of these transfer 

functions. 

Since these considerations have not been made for the 

parallel-flow heat exchangers, the effect of higher order cum- 

mulants was considered. The following section treats this 

evaluation. Computation of the moments and cummulants was 

facilitated by the use of a time-sharing computer system. 
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VII. Numerical evaluation of Heat Exchanger Transfer Functions 

The dynamics of the heat exchangers studied in this work are 

governed by four parameters, and *2- Attempts by 

both Hansen and Fux to provide methods of concise representation 

for the first and higher order cummulants were met with only 

limited success. For limited cases such as £ ~0 or^s^> for 

the counter-flow heat exchanger, some data is available for these 

cummulants (Reference 4). No particular emphasis was placed in 

this work on generalized methods for presentation of the cummu¬ 

lants, rather a spectrum of cases of frequency response were 

examined. In general, very good approximations of the phase lag 

of parallel-flow heat exchangers was obtained with the use of the 

first cummulant only. 

Before presenting some typical results of frequency response, 

it is worthwhile to examine a simplified viewpoint for the rela¬ 

tionship of the governing parameters. By the definitions of ^ 

and fi... , ,.we can obtain: 

cus Cps _ 
cut apt f - £. 

This ratio or its inverse is the "heat capacity rate ratio" of Kays 

and London (Reference 18). Knowing the minimum heat capacity 

rate, a choice of either or can be made to obtain the 

number of transfer units (NTU) for the heat exchanger. The statics 

of the heat exchanger are now interpretable in terms of perhaps a 
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more familiar notation. With the graphical information avail¬ 

able in Reference 18, the significance of ^ and £ on statics is 

easily interpreted. 

For dynamics, if we consider the fluids to have approximate¬ 

ly the same specific heats, 

fys ~ 
(S-£ 

(81) 

If we neglect the heat capacity of the shell and tube materials, 

we obtain, 

% = 

% = Ws/cos 
Then, 

5k _ ra-fc . u>s 
Xz ~ Yfts 

and, 

(82) 

(83) 

ms= ^5 
(84) 

Substituting (81) into (84), the relative size of the heat exchanger flow 

passages is seen. The specific time value of or *2^ has no 

particular significance other than for comparative purposes 

between two heat exchangers with the same heat capacity rates 

and static effectiveness. With the same static effectiveness, a 

comparatively "larger" value of or would indicate a physi¬ 

cally "bigger" heat exchanger. 

As an example, the following values of the governing para¬ 

meters were chosen: 
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^ =(2, 3) and £ =1. 

=10 seconds, =15 seconds. 

(Time lags for heat exchangers in the literature (References 

1 and 2) were in general less than one minute.) This heat exchanger 

has a heat capacity rate ratio oft 

^for £=£ and J£for |S“3 

The NTU are given by for both of these heat exchangers. 

The effectiveness is: 

£= . 74 for |3 = 2 

£ = . 67 for j3 =3 

Interpreting the dynamic nature of the heat exchanger by the sim- - 

plified viewpoint proposed, 

for £=2 and V3 for jS=3. 

In either case, a much larger proportion of the total fluid mass in 

the heat exchanger is contained in the shell for this example. 

In figures 2 and 3, the computed phase lag of the self trans¬ 

fer functions are shown. Phase frequency response is plotted as 

a function of the first and third cummulants and as a function of 

the first cummulant only. All transfer functions were examined 

in this fashion and in all cases approximation by means of the 

first cummulant only appears adequate. Should some set of 

parameters be found for which this approximation does not hold, 
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higher order terms should be retained. 

Figures 4 and 5, respectively, show the results of investi¬ 

gation of the amplitude frequency response for the self transfer 

functions of the parallel-flow heat exchanger previously examined 

in Figures 2 and 3. From Figures 4 and 5, it is noted that the 

normalized amplitude is within 20% of the zero frequency ampli¬ 

tude. While this is a fairly significant percentage, it is obtained 

only at the highest frequency. The "worst" case for examination 

of dynamics during process design is to consider the amplitude of 

an inlet disturbance undiminished as a function of frequency. The 

Co 
constant gain for each transfer function, Q , will provide the 

only output attenuation. -This final approximation places the 

dynamics of a heat exchanger on a similar level of complexity to 

the pipe considered in Section IV. The low frequency response is 

modeled as a constant gain plus a single phase lag which is a 

linear function of frequency. 

This'bonclusion, as previously noted, has already been 

qualitatively made for counter-flow heat exchangers. Figures 

6 and 7 are plots of the phase frequency response of the analogdus 

self terms for a counter-flow heat exchanger with the same 

governing parameters (|J| and^g ) as the parallel-flow 

heat exchanger discussed-above. Typically, a counter-flow 

heat exchanger appears to have a lower phase lag for each trans¬ 

fer function then does a comparative par all el-flow heat exchanger. 
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VIII. Heat Exchanger Systems 

The connection of heat exchangers and piping is mathema¬ 

tically equivalent to performing successive transformations (or 

operations)on the fluid temperatures. Mechanically, this is 

performed by multiplication of a sequence of suitable transfer 

matrices, each matrix representing the effects of a heat exchange 

component on the fluid temperatures. In order to visualize the 

manipulations required to obtain an overall system response to 

a given disturbance, the system should first be schematically 

laid out and determinations made of the requisite transforma¬ 

tions required to construct an overall system transfer matrix. 

Once this is completed, the only remaining task is to "grind" 

through the mechanics of matrix multiplication. The frequency 

response of the resulting system transfer functions then allows 

computation of the response to the given disturbance. 

For steady state associations of identical heat exchangers, 

Domingos (Reference 10) has derived matrix relations for systems 

of series interconnected heat exchangers. The analysis he pre¬ 

sents is a logical approach, but the application of Sylvester's " 

Theorem (Reference 12) is more concise for integration of these 

heat exchangers. Sylvester's Theorem in its most general form is: 

P(CA])= L P^K) 2t<(00) 
k-i 

(85) 
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where, , ,,a,,= A. 
HK.(C3) IT , x \ 

HK C ^ ~ ''v'* 
K- J# • * - *» YL 

= eigenvalues of CA] 

(86) 

It is easily shown that for "n" heat exchangers in overall 

series flow, that the system steady state (or dynamic) transfer 

matrix is given by l&l for parallel-flow heat exchangers or 

for counter-flow heat exchangers by the causal form of a matrix 
Yl — 

[Q3 , where tPl-jjpc] , GScJ t»eing the geometric 

steady state solution for a counter-flow heat exchanger. Then, 

  " 

or a counter-flow heat exchanger. Then, 

(87) 

Since the steady state transfer matrix merely contains constants 

and the. matrices are only 2X2, this manipulation is easily per¬ 

formed. Domingos' results were verified by this approach. 

For dynamics, however, each transfer function of each 

transfer matrix has a frequency dependent term. . In addition, 

for dynamics of heat exchanger systems the effects of connecting 

piping (in real systems) cannot be neglected. Also, in real sys¬ 

tems, it is doubtful that connecting piping between any two heat 

exchangers will be the same as the connecting piping between 



any other two heat exchangers. Generalized dynamic relations, 

then, for a system of heat exchangers would be of academic 

interest only. Nevertheless, it is instructive to describe the 
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procedure for accomplishing these manipulations. In principle, 

at each O) , the complex numbers representing the Fourier 

transforms of each element of the transfer matrix can be mani¬ 

pulated to yield, for eigenvalues: eld, lor eigenvalues: 

(88) 

Now, 
N Yi Yl (X&U, “J* 

* e (89) 

With this, substitution can be made into equation (87) and an 

overall transfer matrix determined for the particular frequency. 

With a single heat exchanger, inlet disturbances can be 

ideally considered to be encountered in only one fluid stream. 

Outlet temperature dynamics then, are influenced only by the 

"self" transfer function of the disturbed stream and the "cross" 

transfer function of the adjacent stream. When several heat 

exchangers are connected, however, excitation produces re- .. 

sponses from all characteristic transfer functions, thus produc¬ 

ing a response different (and more complicated to compute) than 

the response of a single heat exchanger. 

Many systems or interconnections of heat exchangers could 

be considered, such as "large" heat exchangers connected to "small" 
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heat exchangers, or various heat exchangers sizes interconnected 

with pipes. Only knowledge of specific process design objec¬ 

tives would prompt investigation of these systems. Usually, 

process heat exchangers are noff-the-shelf" items which are 

employed singly or in multiples to acheive a desired steady state 

heat exchange effectiveness. These heat exchangers must be 

connected with piping for fluid transport. It is to this latter case 

that the balance of'this work is directed. Specifically, the appli¬ 

cation of the previously outlined methodology to various inter¬ 

connections of two identical heat exchangers is treated. Consi¬ 

deration of a larger number of heat exchangers could be made, 

but it is suggested that investigations in this direction add addi¬ 

tional heat exchangers and piping as individual elements or mul¬ 

tiples of the "two coupled heat exchangers" systems described 

here. 

Approaching dynamics on an incremental system basis 

allows flexibility, such as different lengths of pipe between heat 

exchangers and can lend greater insight into the dynamics of the 

chosen system. ■' ■ 

In the following two sections numerical examples of heat 

exchanger systems will be given. For convenience, as well as 

for continuity, the heat exchanger examples discussed in Section 

VII will be utilized for system investigations. 
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IX. Two Identical Parallel-flow Heat Exchangers in Series 

The input-output relationship for the heat exchangers of 

(90) 

The connecting piping couples the heat exchangers by: 

ef=. LT ©o’ 

itf. Ls <’ 

(91) 

(92) 

The overall transfer matrix is: 

KL-* 
■tTG|2+LS&zG3 LT6>S2+LS$Es4 

M I LTSiG3+LSe3G4- tTG2G3+LS GV 
'(93) 

where the subscript denotes the transfer matrix with pipes 

included. 

If there were no connecting pipes, 

^ ^ n - G| G^-s-G^G^. G) + Gz ^3 

Wf«
s 

I (94) 



where the subscript denotes the transfer matrix of the association 

without connecting pipes. 
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Define now, a matrix DQ whose elements are the ratios 

of the corresponding elements of [.D! and DQ(oV 

(95) 

(96) 

(97) 

|f>g= LT + Ls (<SgSa) 

7 -f- g4a- 
GZ(S>3 

(98) 

The phase variation of the transfer functions of this overall 

system can be examined only through numerical evaluation of the 

frequency response. It was hoped at the outset of this work that 
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generalization could be made for the effects of connecting pipes on 

system dynamics. This desire prompted the ratio matrix whose 

elements are given by equations (95) through (98). It is readily 

seen, however, that the real components of complex numbers 

influence the phase angle of a sum of two complex numbers. For 

example, if and are to be summed, 

e*' = e 

+j (e*‘s^ V, + Vz) 

/ \ < -if£ jjtuvVi +G?iSliij)ii 

Thus even the ratio matrix does not afford an aid to generality. 

For some fluid systems piping may dominate the system dynamics, 

i. e. , when the time constants of the pipes are much larger than the 

time constants of the heat exchanger transfer functions. In other 

systems, the inverse of these conditions may hold. It is worthy 

to note, however, that regardless of system configuration, piping 

will produce the same phase lag for the cross transfer terms. / 

Figures 9 through 12 display phase frequency response for 

the system dynamics of two parallel-flow heat exchangers in series. 

All transfer functions of the overall system were examined for 

cases of the system with piping included and without piping. Heat 

exchanger parameters selected for this example were those used 
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in Section VII (For ^ =3 only). The pipe time constants were 

selected as multiples of the heat exchanger time constants ( 

and ). For the tube stream connecting pipe, time constants 

of 5 and 10 seconds were used. For the shell stream connecting 

pipe, time constants of 7. 5 and 15 seconds were used. Also 

shown in figures (9) through (12), for comparison purposes, is 

the phase frequency response for a single heat exchanger. In 

all cases, phase frequency response was found to be linear. 

Amplitude effects of the piping were found to be negligible. 

One item of major importance can be noted from the 

frequency response for one of the heat exchanger systems studied. 

For the system with piping time constants of ^*p_^=10 and^p^=15seconds, 

both the shell stream self term (Figure 12) and the tube stream 

cross term (Figure 10) have 180 degree phase lags at approximately 

. 1 radian/second. If a load control system were to be employed 

which compares (by feedback) the inlet and outlet temperature 

transients of the heat exchanger, then a disturbance at this critical 

frequency would result in instability. The control system design 

must account for the possibility of such an occurrence and provide 

safegaurds. The process designer can evaluate the need for special 

precautions by a knowledge of the system inputs and output responses. 
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X. Two Identical Counter-flow Heat Exchangers in Series 

The input-output relationship of the heat exchangers in 

Figure 13 is: 

{S3 ■ w ffi (99) 

GO must be manipulated to a causal form so that the tempera¬ 

ture vectors related can be physically connected in the heat 

exchanger system. We obtain, 

{<j *163 {<} 
wher e, 

K- ' G+ 

— ^3 
(=>4. 

Now, the piping produces, 

(100) 

(101) 

(102) 

Now, /* (2) 

©O /' ̂ f.Baww($ (103) 

where^P^Jis the causal form for the piping transfer matrix, 
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M - (o i) 

o$a=&a LPIB3C3 

m- 
rC6,64-e2e3ftT-®fi3 

-—- ts. 

Q^Z 

-(G,G^ -G2.G3) L-f ^3-G3/LS 

s? 

(104) 

62LT(G|G<r^2G3) 

V 
-LT^Z

G
3 

+ 

G? 

(106) 

,(105) 

Since K|does not provide the desired connection between input and 

output temperature vectors, a new causal form must be obtained. 

That is, 1 

U° J Wt- J 

Gz^Gz ^ s W (^ lG4 ” ^2^3 ' i <sri-T 

|-LSLTG2 G3 |-LSLT G2 G3 

[H], 
^34^3 Ls L.-J*CG|G4“G£^3) L-s (=>4. 

I rLs^jG 2 £3 l-Ls L-f G3 

(108) 
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where the subscript denotes the transfer matrix with pipes in 

eluded. If there are no connecting pipes, —* 

f 6,2 GJLL(G(G4-G2G3) + \J 

J I — ^2.^3 
l 

G3 [fe|G^-Sz^ )+0 G+ 

I — G2.G 3 \—GZG3 J 

(109) 

Define, as was done for the parallel-flow heat exchangers in 

series, a matrix DQ , where, 

i -G2.G3 

1= LT 1-1.51-76263 
(110) 

^2.1 =* ^\Z 

(ill) 

l -&z g3 

l-LsLTe£G3 

(112) 

(113) 

For this system of heat exchangers, as for parallel-flow, no 

generalization can be made on the effects of piping. It can be 

noted, however, that the cross terms are subjected to an identi¬ 

cal phase lag. Furthermore, since the counter-flow heat exchanger 

has the cross transfer function phase lags identical, the inter- 

coupling of two heat exchangers still produces a system with 
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cross terms of equal phase lag. 

The heat exchanger parameters used for the examples in the 

previous section were also utilized here for example computa- 

tions of phase frequency response for a counter-flow heat ex¬ 

changer system. For the heat exchanger parameters chosen, . 

the system static effectiveness is very high, giving for the asso¬ 

ciation: 

a oocI 

w,,. .50 S.S. 

For this example, the outlet tube temperature is virtually equal 

to the shell input temperature, and the outlet shell temperature 

is the mixed average of the input temperatures. Since the gain 

of the tube self term is so low, phase lags for this transfer 

function are of little importance. This fact also influences the 

terms. Since Armp(Gi)% O , the cross terms cross 

(in addition'to being identical) become: 

^ i-s ^2.^5)J(\ - LSL-T =■ Gz 

The cross term dynamics of this heat exchanger system, then 

are not influenced by piping or by the association itself. The 

dynamics of the cross term of the association are the same as 

the dynamics of a single heat exchanger. The shell self term is 

noticeably affected by the addition of piping to the heat exchanger 

system, although not to as large a degree as was noted for the 
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parallel-flow heat exchanger system of the previous section. 

The frequency response of the shell self transfer function of the 

association is treated in Figure 14. Pipe time constants utilized 

for this example were % =10 seconds for the tube stream and 

% =15 seconds for the shell stream. 

It is apparent from this example, that the efficiency of 

fluid "feedback" heat transfer is effective in the dynamic as well 

as the static case for a counter-flow heat exchanger system. The 

overall system effect of piping is much smaller than for a com¬ 

parable parallel-flow heat exchanger system. 

One final observation can be made from study of this system. 

Control instabilities can be experienced in both the system with 

piping and without (Figure'14) if a control system is not properly 

matched with the heat exchanger at frequencies (. 05-. 07 radians/ 

second) which produce -180° phase lag. 
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XI. Parallel-flow or Counter-flow Heat Exchangers with One 
Stream in Parallel and the Other in Series 

Consider an input—output relation for the heat exchanger 

of the form of equation (96), 

(114) 

Refer now to Figure 15, If the shell sides of the heat exchangers 

are connected, in series, „ . 
(2) , no) 

ifc - Ls 
(115) 

For the tube sides'connected in series, refer to Figure 16. 

_«> , aft) 6- = LT ©O <116> 

In each of the above cases, the other stream is connected in 

parallel so that, 

ef- ef = ©c 

and 
• = iff 

(117) 

(118) 

Referring now to Figure 15, 

(2) 

'&0 
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(119) 

Substituting, 

KV Ur 
fG,+ L SG

Z
g3 L

S fe£c) 

1^63+*-S ^3% L,fii 
(120) 

lO^ Investigating VJ^0 ’ we conclucle that the dynamics of the shell 

fluid are only influenced by the transfer functions peculiar to that 

stream. This is a considerable simplification as the overall 

counter-flow or overall parallel-flow associations incorporate 

U) 
effects of all characteristic transfer functions. 

/ 0 vw \ LsG4
2j J (121) 

If no pipe was present, 

= jGaO + G^ , (122) 

Now a column vector of ratios of transfer functions of the assem¬ 

bly with a pipe and of the assembly without a pipe can be formed: 
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Y =Z IH" Ls &4- 
' i+ 64. 

(123) 

From the value of |fj> , it is readily seen that the only influence 

of the pipe on the outlet shell temperature is to delay the temper¬ 

ature response, i. e., if the tube forcing temperature is steady. 

If the tube forcing temperature is varying, the behavior of V"| 

must be investigated. Referring now to Figure 16, 

e.“ 

0) 

o 

(124) 

L-j-S,2 Tg<) \/®t 

LT e, s3 <s*+ LT G2G3 {?c
ct * 

(125) 

Similar to the conclusions for shell sides in series, the dynamics 

of the tube fluid are only influenced by the transfer functions pecu¬ 

liar to that stream. 

e?* (126) 
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If no pipe was present, 

<’« {e.Ss.C+e.i}^ 
Cl) 

CC) 

Now, R “ C \ 

t 
- I'f" LyGi 

I ■+ 

(127) 

(128) 

The pipe, therefore, only adds a delay time to the transfer 

function of the tube stream to itself. If the shell forcing tem¬ 

perature is varying, the behavior of Y’z must be investigated. 



51 

XII. Transient Response Approximations 

Having reviewed the frequency response of the transfer 

functions for several heat exchangers and heat exchanger systems, 

it would appear logical to address the problem of transient response 

as well. Unfortunately, the linearity of the phase frequency response 

decays badly beyond . 1 radian/second (or approximately 1 cycle/ 

minute) and systems excited by these higher frequencies require 

additional cummulants in the approximations. Obtaining these 

higher cummulants is laborious, and in the author’s opinion, 

unwarranted due to the nature of the systems investigated,!, e., 

single-pass heat exchangers only. 

As a very rough approximation of the transient response of 

a heat exchange system to a load change, it is suggested that the 

low frequency phase linearity be computed and examined to obtain 
r 

an equivalent system time constant. The statics of the system will 

provide an equivalent constant gain. With these, the transient 

response to'-any arbitrary input may be compute by the time-axis 

shifting theorm of the Laplace transformation(Reference 19), i. e. , 

e ° 1 F(s)» tffe**f (3.29) 

where Va.it) is the unit step function. 

With each transfer function of a heat exchanger system modeled 

in the manner noted, rough approximations of system transient 

temperatures may be made. The equation (129) will be adequate 

for arbitrary transient inputs if the frequency content of the input 
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disturbance lies within the low frequency response range or if a 

harmonic analysis indicates that the input disturbance has a low 

amplitude for frequencies outside the low frequency spectrum. 
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XQI. Conclusions 

1. Phase dynamics of parallel and counter-flow heat exchangers 

can be characterized by a linear frequency response term for each 

element of the transfer matrix. In addition, the amplitude of the 

transfer function can be approximated by the steady state gain. 

2. Pipes used as heat exchanger system connecting elements 

can be considered to produce only a linear frequency response 

with no amplitude attenuation. 

3. Due to the form of the transfer functions, investigations of 

the low frequency dynamics of heat exchange systems is reduced 

to "straight-forward" complex number manipulations. 

4. As a consequence of the characterization of the heat exchanger' 

as in (1), the zero frequency transfer matrix of a system of heat 

exchangers produces the steady state solution matrix as well. 

5. Due to the dependence of the frequency response of a system of 

heat exchangers containing piping on the frequency response of the 

individual-'transfer functions of the heat exchanger, no generalized 

conclusions can be drawn for the effects of piping. Specific heat 

exchanger and pipe systems have been examined and observations 

drawn for these systems. 

6. Employing simple methods of matrix manipulation, various 

combinations of heat exchangers can be analyzed. These ana¬ 

lyses can point out the need for more sophisticated control in¬ 

vestigations for the heat exchanger systems, or provide data for 
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approximation of temperature transients delivered to subsequent 

process components. 

7. Overall system time constants can be computed, which when 

employed with the time axis shifting theorem of the Laplace 

transformation, will allow computation of heat exchanger system 

response to arbitrary temperature inputs. 
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XIY. Recommendations for Further Work 

The generalized methods presented in this work produce 

fairly concise means for evaluation of heat exchanger dynamics, 

however, the first cummulant is a function of four parameters. 

A more convenient method of evaluating heat exchanger dynamics 

or a method providing greater physical insight is desired. Hougen 

(Reference 20) has noted that experimentally obtained transfer 

functions of heat exchangers can be expressed by a form: 

F(s}= +<*S,*A.)+0 

is the fluid transport delay time— 322* and ^ is 

a "damping ratio" for a second order system (found to be unity). 

/C is the zero frequency gain of the transfer function. With 

this approach, the need for compensation is eliminated. In 

addition, for all heat exchangers examined by Hougen, My^wa.s 

shown to be closely approximated as a linear function of UA . 

Oldenburger and Goodson (Reference 21) have simplified the 

transfer function for hydraulic dynamics of pipes (forms which 

are very similar to equation (73) by expansion of this transfer 

function in a series of infinite products: 
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where, only ‘the first term was required to provide an adequate 

approximation of hydraulic dynamics. 

The similarity of these transfer function forms and the 

potential that a physical interpretation may be more readily 

obtained, should warrant further investigation into dynamics of 

heat exchangers. 
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Figure 1. Geometry for Mathematical Models 
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Figure 2. Phase Frequency Response for 
Shell Stream Self Term 
Parallel-flow Heat Exchanger 
e=ij %=io, rz-i5 

Frequency (Radians/second) 
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Figure 3. Phase Frequency Response for 
Tube Stream Self Term 
Parallel-flow Heat Exchanger 
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Figure 4. Normalized Amplitude Frequency- 
Response. Tube Stream Self Term 
Parallel-flow Heat Exchanger 
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Figure 5. Normalized Amplitude Frequency- 
Response. Tube Stream Cross Term 
Parallel-flow Heat Exchanger 

€- lt r, = /o, *2= is 

0. 
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Figure 6. Phase Frequency Response 
Shell Stream Self Term 
Counter-flow Heat Exchanger 
8- lj't,~/Oj Zz = l5 
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160. 

Figure 11. Phase Frequency Response of 
Shell Stream Cross Term for 
Two Parallel-flow Heat Exchangers 
In Series 

140. 
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0. 



Figure 15. Two Heat Exchangers with Shell sides in Series 
and the Tube sides in Parallel 
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Figure 16. Two Heat Exchangers with Tube sides in Series and 
Shell sides in Parallel 

Parallel-flow Heat Exchangers 
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Appendix A Partial Inversion 

From the solution of the differential equations for temperature 

dynamics of a counter-flow heat exchanger, we get: 

(39) ©o] f©;"1 

{SI- 
To obtain [Gj in equation (46) we first write 

■ (t t)' M (Al) 

Now, the second equation (second row) is solved for in terms 

of ^|* and ©£ , yielding: 

(A2) 

Substituting this result into the first equation, 

§ - (An &2z- AizAz,)— + Ajz 
&ZZ *2Z 

(A3) 

The required transformation matrix becomes ( in terms of the 

CM3 
elements of Q ): 

(G)= (A4) 
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Appendix B Evaluation of Matrix Coefficients for Parallel- 
flow Heat Exchanger Moments 

This appendix summarizes the first three derivatives of: 
^2. 

and 

±(s) =, ^eA|-A,e^ 
X,-Xz 

and the limiting values of parameters in these equations as the 

laplace transform variable approaches zero. 

Ai * 

(59) 

(60) 

(Bl) 
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_f" {c»fteV,+gV^+*t»«*+*")] 

A/ - Pia 

— ^e^(AjA^+^A/A^-fA/A^ + A* )J 

w^)i:-(•££> (B5) 

-^n= |eA,^/,+^I +3A* A/A/'*£^1*^A/A^+JA* A/ +A^>)J 

%r?iz 

+A/ A2*IK3 A 1 l+3%j >!z +A/12 +^V,+A/^ 

Aj-Slz 

Various derivatives and combinations of the P{ are required in 

the evaluation of the limits of these derivatives. These parameters 

are given by: 

A. = O (B7) 
S-^o 
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Jlorfu ^2. =• -2/3 
S-*0 

V * - [<*.+*») - % ^.-^0 
S-*>0 £ 

A^n, V = -[^1+^2.)+ (**/ -*2.)] 

(B8) 

(B9) 

(BIO) 

@*rrfU (hj -^2.) ZZ 2. S 

s+o 1 

s-* o r 

V*= fa<??)*) 

^6<vYt» si —JLurtu Pif 
S-*. O S-* O 

AvW' -V * = - ^ jpj3 (%-JZz) (l - 

J^Az'^-je^A,"1 

s~*o S** O 

(Bll) 

(B12) 

(B13) 

(B14) 

(B15) 

(B16) 


