TRUNCATED @QZ METHODS FOR LARGE SCALE GENERALIZED
EIGENVALUE PROBLEMS*
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Abstract. This paper presents three methods for the large scale generalized eigenvalue problem
Ax = Bx\.

These methods are developed within a subspace projection framework as a truncation and modifica-
tion of the @Z-algorithm for dense problems that is suitable for computing partial generalized Schur
decompositions of the pair (A,B). A generalized partial reduction to condensed form is developed
by analogy with the Arnoldi process. Then truncated forward and backward QZ iterations are in-
troduced to derive generalizations of the Implicitly Restarted Arnoldi Method and the Truncated
RQ method for the large scale generalized problem. These two methods require accurate solutions
of linear systems at each step of the iteration. Relaxing these accuracy requirements forces us to
introduce non-Krylov projection spaces that lead most naturally to block variants of the QZ itera-
tions. A two-block method is developed that incorporates k approximate Newton corrections at each
iteration. An important feature is the potential to utilize k£ matrix vector products for each access
of the matrix pair (A, B). Preliminary computational experience is presented to compare the three
new methods.
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1. Introduction. This paper presents three methods for the large scale gener-
alized eigenvalue problem

(1.1) Ax = BxA\.

The methods are developed within a Krylov subspace projection framework as trunca-
tions of the @Z-algorithm [13] for dense problems. These techniques provide natural
extensions of the Implicitly Restarted Arnoldi Method [20] and the Truncated R
Method [21] to the generalized problem. Relaxing the accuracy level for the solutions
of required linear systems leads naturally to a non-Krylov block projection method.
This block method does not require accurate solution of shift-invert equations and
it makes efficient use of each matrix access by performing k& matrix-vector products
instead of one.

The first two methods require accurate solutions of linear systems at each step of
the iteration. However, these methods are developed within a projection a framework
that can accommodate inexact solves of the shift invert equations if the standard
Krylov relations are relaxed. Introducing inexact solves forces us to introduce non-
Krylov projection spaces. Once the Krylov property has been given up, it is natural
to consider block variants of the ()7 iterations. Therefore, we have developed a two-
block method that incorporates k approximate Newton corrections at each iteration.
An important feature is the potential to utilize k matrix vector products for each
access of the matrix pair (A, B).
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ASC-9408795 and by ARPA contract number DAAL03-91-C-0047 (administered by the U.S. Army
Research Office).

TDepartment of Computational and Applied Mathematics, Rice University, Houston, TX 77005-
1892, (sorensenQcaam.rice.edu).
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For some time, there has been considerable interest in improving eigenvalue meth-
ods either by making better use of spectral transformation through multi-shift Ratio-
nal Krylov methods [16] or by utilizing some sort of pre-conditioned iterative solution
of these shift-invert equations at a relaxed accuracy level [11, 10, 14, 2, 19]. The
ultimate goal is to achieve the enhanced convergence properties of the spectral trans-
formation without the cost of an accurate direct or iterative solution of the shift-invert
equations. Generalization of the Davidson method [4] to a wider class of problems has
received a lot of attention and the Jacobi-Davidson method of Sleijpen and Van der
Vorst [18] has emerged as an effective variant. The methods developed here (particu-
larly the backward form of truncated QZ) have a great deal in common with Ruhe’s
RKS method. This truncated backward form also appears to be closely related to the
work of De Samblanx, Meerbergen and Bultheel on implicit applications of a rational
filter in RKS [17].

The paper begins in Sections 2 and 3 with the development of simultaneous pro-
jections of the matrices A and B onto two subspaces to achieve a partial reduction
to condensed form

AV, =W H, +F,, with W{F; =0,
BV, = W;Ry,

through a generalized Arnoldi process. Here, Vi, and Wy, are both n x k orthogonal
matrices, Hy is a k x k upper Hessenberg matrix and Ry, is upper triangular. With
this reduction, approximate generalized eigenvalues of the pair (A, B) are obtained
from the projected pair (Hy, Ryg).

As with the standard Arnoldi process, storage and arithmetic costs are prohibitive
for large k. Thus, restarting schemes are essential and two possibilities are developed.
In Section 4, forward and backward variants of the implicitly shifted @QZ iteration
are developed for dense generalized problems. These are analogous to the QR and
RQ iterations for the standard problem. Truncated forms of these forward and back-
ward QZ -iterations are developed in Section 5. The forward form is analogous to
implicit restarting [20] while the backward form generalizes the truncated RQ itera-
tion [21]. These developments result in methods that are effective in computing a few
(k) selected eigenvalues and corresponding eigenvectors within a fixed pre-determined
storage requirement proportional to n - k and work proportional to n - k? + O(k?).

The generalized Arnoldi process requires the solution of a linear system at each
step regardless of how it is organized. Depending on certain choices, this amounts to
applying a mathematically equivalent standard Arnoldi process to one of the following
matrix operators:

B'A, AB™!, or (A-0¢B)"'B.

The backward variant of the truncated (7 iteration makes the most economical use
of storage but tends to require more LU-factorizations than the forward variant. Very
limited computational experience with all three methods shall be presented in Section
7. No reliable conclusions on comparative performance can be drawn from these
limited tests.

Throughout this paper, capital and lower case Latin letters denote matrices and
vectors respectively, while lower case Greek letters denote scalars. The j-th canonical
basis vector is denoted by e;. The Euclidean norm is used exclusively and is denoted
by || - || . The transpose of a matrix A is denoted by A” and conjugate transpose
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by AH. Upper Hessenberg matrices will appear frequently and are usually denoted
by the letter H. The notation M(:,1 : k) and M(1 : k,1 : k) denote the leading k
columns and the leading k x k principal submatrix of M.

2. Subspace Projection. Certainly, projection methods are prominent for the
iterative solution of linear systems and for computing a few eigenvalues of a large
matrix or matrix pencil. In the case of the standard problem Ax = x\, Krylov
subspace projection results in the Lanczos/Arnoldi class of methods. These may be
viewed as systematic ways to extract additional eigen-information from the sequence
of vectors produced by a power iteration. If one hopes to obtain additional information
through various linear combinations of the power sequence, it is natural to formally
consider the Krylov subspace

Kr(A,vi) = Span {vi,Avy,A%v,..., A" v}

and to attempt to formulate the best possible approximations to eigenvectors from
this subspace.

Approximate eigenpairs are constructed by imposing a Galerkin condition: A
vector x € Kr(A,vy) is called a Ritz vector with corresponding Ritz value 6 if the
Galerkin condition

(w,Ax —x0) =0, forall we K(A,vy)

is satisfied. It is well known that the Lanczos/Arnoldi iteration computes an or-
thonormal basis Vj, for this Krylov subspace along with a small projected matrix
H; = VI AV}, of order k from which Ritz values and vectors may be obtained: (x, )
is a Ritz pair if and only if Hyy = yf and x = V,y.

Several schemes have been developed to extend the Krylov subspace idea to the
generalized problem (1.1). These extensions are generally based upon a conversion of
the generalized problem to a standard one. Perhaps the most successful variant [5] is
to use the spectral transformation

(A —0oB)"'Bx = xv.

An eigenvector x of this transformed problem is also an eigenvector of the original
problem (1.1) with the corresponding eigenvalue given by A = o + % In applications,
B is often symmetric and positive (semi-)definite and then it is helpful to work with
the B (semi-)inner product in the Lanczos/Arnoldi process [5, 8, 12]. With this trans-
formation, convergence of the Lanczos/Arnoldi iteration is very rapid to eigenvalues
near the shift o because they are transformed to extremal well-separated eigenvalues
and also since eigenvalues far from o are damped (mapped near zero).

To utilize this transformation in a Lanczos/Arnoldi process, the repeated opera-
tion w < Awv is replaced by repeated solutions of a shift invert equation (A —oB)w =
Bv at each step of the iteration. If a sparse-direct factorization of the shifted matrix
(A — 0B) is possible then this single factorization may be re-used at each step of the
iteration. This approach is certainly the method of choice but may not be practical
or even possible in many important applications.

In some cases, it may be effective to use a pre-conditioned iterative method to
solve the shift-invert equations but there are a number of pitfalls to this approach.
Typically, the shifted matrix is very ill-conditioned because o will be chosen to be
near an interesting eigenvalue. Moreover, this shifted matrix will usually be indefinite
(or have indefinite symmetric part). These are the conditions that are most difficult
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for iterative solution of linear systems. Finally, these difficulties are exacerbated by
the fact that each linear system must be solved to a considerably greater accuracy
than the desired accuracy of the eigenvalue calculation. Otherwise, each step of the
Lanczos/Arnoldi process will essentially involve a different matrix operator.

The underlying Krylov subspace projections associated with the Lanczos/Arnoldi
process provide a number of important approximation properties related to conver-
gence and accuracy. Unfortunately, if it is not possible to solve the shift-invert equa-
tions accurately then these desirable properties are generally lost. However, it is
possible to retain the projection idea in a way that generalizes the Arnoldi process
when the shift invert equations can be solved accurately and yet can accommodate
inaccurate solution of the shift-invert equations. To do this, we must consider more
general subspaces and relax the Krylov requirement. The development of this projec-
tion framework is the primary topic of this paper. It is influenced by the following
well known result.

LEMMA 2.1. If A and B are complex matrices of order n then there are unitary
matrices V,W an upper Hessenberg matriz H and an upper triangular matriz R all
of order n such that

(2.1) AV = WH,
BV = WR.

This factorization can be computed in a finite number (O(n?)) of rational arithmetic
and square root opertions.

Proof. See [7]. O

For the standard problem (B = I) this lemma reduces to the statment that A
may be put in condensed form by unitary similarity transformations. The Arnoldi
process produces a partial reduction of A to condensed (Hessenberg) form

AV, =V H; + Fy,

with VI'V;, = I, and VI F;, = 0. This may be interpreted simply as a truncation of
the full reduction. It turns out that Fy = fkekT is a rank one matrix and this property
is intrinsically tied to the fact that {V; :j =1,2,...,k} is a sequence of orthonormal
bases for the nested sequence of Krylov subspaces Cj(A, vi). The Hessenberg matrix
H;, = VI'AV, is the orthogonal projection of A onto the subspace Kj(A,v1) as
represented in the basis Vj and

Fr = (I -V, VI)AV,.

If £ = n then F; = 0 and this provides a complete reduction of A to condensed
(Hessenberg) form.
The generalization suggested by Lemma, (2.1) is

(2.2) Fr = (I- W, W/])AVy,
BV, = W;R;.

where WkTWk = VkTVk = I,. This projection makes the residual Fj orthogonal to
Range(BV},), since the columns of W, form an orthonormal basis for that space.
The Arnoldi process for the standard problem systematically produces the columns of
Vi, k=1,2,....n at the cost of a matrix vector product y < Av and an orthogonal
decompostion of this vector into a component in the existing Krylov space and one
that is orthogonal to it.



TRUNCATED QZ-ITERATIONS b}

The precise extension of this process to the generalized problem still requires the
solution of a linear system at each step. Nevertheless, it is interesting to develop this
analogous generalized Arnoldi process along with two restarting variants. These will
be developed in Sections 3,4,5. These algorithms are significant in themselves, but
they may also be viewed as laying the groundwork developing schemes that can relax
the accuracy requirement on the shift-invert equations and yet retain the projection
propertes in the framework of a truncated reduction to condensed form.

3. Generalizing the Arnoldi reduction. The projection in equations (2.2)
are well defined for any specification of the matrix Vy, but it is not clear which spec-
ifications will provide good approximations to eigenvalues. The success of the implic-
itly restarted Lanczos/Arnoldi processes viewed as truncated QR iterations provides
considerable motivation to develop a truncation of the Q7 iteration in this projection
framework.

The factorization expressed in (2.1) provides an initial reduction of the pair (A, B)
to an equivalent pair (H,R) in condensed form. This reduction precedes the QZ
iteration just as reduction to Hessenberg form precedes the QR iteration. In fact, the
two reductions are identical when B = I. The Arnoldi process may be derived (for
B =1I) simply by equating the leading k& columns on both sides of (2.1). Therefore,
this Arnoldi idea is easily generalized by doing the same thing when B is not the
identity matrix. This is fairly straightforward, but a little manipulation must be done
to place this truncation within the projection framework of the previous section.

Truncating the relations (2.1) after k-steps provides

(3.1) AV, = W H;, + frel

BV, = W Ry,
with Vi, Wy, representing the leading k£ columns of V, W | Hj, Ry, representing the
leading k x k principal submatrices of H, R and f;, = Wj17Yg+1,, where wy4 is the

k + 1-st column of W and <41, is the k-th subdiagonal element of H.
To advance this k-step factorization one step, the relations

H;, h
(3.2) A[Vk,v]:[Wk,w][ve% a}+f,€+1e{+1
R; r]
BV , V| = W , W )
Vi) = Wew [

must be obtained to give the new columns vi;; = v, w41 = w and to update the
matrices Hy 11 and Ry41.

Equating the leading &k columns on both sides implies v = ||f|| and w = £ /7.
The direction v must satisfy

(3.3) Bv =W;r+wp and Viv=0.

This implies that
0=[VIB™'W,, VIB 'w] [ ; ] )

Now, VkTVk =1I; and BV, = W, Ry, gives VkTB’lwk = R,;l and thus

(3.4) R;'r = —-V{B lwp.
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GENARN: Generalized Arnoldi Reduction

Input: [A, B, v, k] with ||v]| = 1.

Output: [Vk,Wk,Hk,Rk, fk] such that AV, = W H; + fkeZ:; V{Vk = I,
BV) = WiRy, WIW, =T, W/, =0,
H,, upper Hessenberg and Ry upper triangular.

1. Vi« [v]; w =Bv; p=|lw|; Ry = [p]; W1 = [w/p];
2. z+ Av; H) « [WTz); fi < 2z—- W, Hy;
3. for j=1,2,3,....k

8.1. v « [If5ll; w  £/7;

3.2. Wi, « [W;,w]; H; « HJT ;

ve;

3.3. Solve BV = w;

3.4. z + V]T{f; Ve v—V;z; p« 1/||v|;

3.5. v+ vp; r +— —R;zp;

3.6. V]'+1 — [Vj,V]; Rj+1 — |: Roj ; j|;

3.7.z+ Av; h<+ WJ-THZ;

3.8. fii1 < z—W; 1hy Hj < [Hj,h];
4. end

Fic. 3.1. Generalized Arnoldi Reduction

Combining (3.2), (3.3) and (3.4) gives

(3.5) v=B"'Wir+B 'wp
=-V,R;'r+ B 'wp
= —VkV%ﬂB*lwp +B twp
= (I-VV{)B lwp,

with p = 1/(||(I - Vi, VI )B~'w]||) so that VI v = 0 and ||v|| = 1. Now that the new
v has been determined, it follows that

- [t

fir1 = Av — (Wih+wa).

and

This completes the update and leads to the the generalized Arnoldi process GENARN
shown in Fig. 3.1.

Remark 1: The substitution V, = B"'W,Ry, gives
(AB~Y )W), = W H;, + frel
and

(BilA)Vk = VkI:Ik + fkeg
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where I:Ik = Hlezl, I:Ik = Rllek) and fk = fk/l)kka f‘k = B_lfk, are both Arnoldi
processes that are mathematically equivalent to Algorithm 3.1.
Remark 2: Replacing A with B and replacing B with A — ¢B in this algorithm is

mathematically equivalent to shift-invert Arnoldi method applied to (A — ocB) !B.
With this substitution, the second relation in the previous remark would be

(A —oB) !BV} = V,H; + fre}.

This generalized Arnoldi iteration does nothing more than produce a partial re-
duction of the pair (A,B) to condensed form (Hjy,Ry). Just as with the standard
Arnoldi process, there is no active mechanism to search for desired eigenvalues. How-
ever, methods that are analogous to implicit restarting [20] and truncated RQ [21]
are possible and these shall be developed in the following section.

4. Implicitly Shifted QZ-Iterations. Forward and backward versions of im-
plicitly shifted @QZ iterations are developed here as simple extensions of the of the QR
and R(Q iterations. This leads naturally to truncated @QZ iterations that generalize
the truncated QR and RQ) iterations developed in ([20, 21]).

In the following discussion, assume that there is a complete reduction of (A, B)
to condensed form

AV = WH,
BV = WR.
Forward QZ Iteration:

A forward @QZ iteration may be developed from the following observations:
For a given shift u, factor

(4.1) H-uR=ZT
where Z is unitary and T is upper triangular. Now, factor
(4.2) ZHR =RTQ,

where R™ is upper triangular and Q is unitary. As with the QR iteration, it is
straightforward to show that Z is upper Hessenberg in (4.1). Since both R and R*
are upper triangular, the relation (4.2) implies that Q¥ is also upper Hessenberg. It
follows that

(4.3) (A — uB)V = WZT,
BV = WZ(Z"R) = WZR"Q.

Multiplying both sides of (4.3) on the right by Qf and rearranging terms gives

AVt = WHH*,
BV' = WHR*,

where Vt = VQY | Wt = WZ and H* = ZFHQY = TQY + uR" is upper
Hessenberg. This sequence of operations comprises a forward Z step. It may be
accomplished implicitly when Q and Z are represented as products of Givens’ trans-
formations.
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FQZ: Forward Implicitly Shifted ()Z-iteration

Input: [V,W,H,R] with AV = WH, BV = WR,
H upper Hessenberg, R upper triangular,
VEV = WHEW =1.
Output: [V, W, H, R] such that AV = WH, BV = WR,
H and R both upper triangular,
VAV = WHW =1.

1. for j = 1,2,3, ... until convergence,
1.1. Select a shift p + p;;
1.2. Factor [Z, T] = qgr(H — uR);
1.3. Factor [RT, Q] = rq(ZR);
1.4. H+ Z7HQY : R + R™*;
1.5. V< VQY : W + WZ;

2. end;

Fic. 4.1. Forward Implicitly Shifted QZ-iteration.

From (4.3) it follows that
(A — uB)v; = WZTe; = BVH(RT)™'Te; = Bv/r
so that
B A - pl)v, =vir

where 7 is the (1,1) element of the upper triangular matrix (R*) !T. Thus, the
new starting vector vf is the result of the application of a linear polynomial factor
(B~'A — ul) to the old starting vector vy .

Backward @QZ Iteration:
A similar development leads to a backward QZ iteration:
For a given shift u, factor

H-uR=TZ
where Z is unitary and T is upper triangular. Now, factor
RZ" = QRT,

where R is upper triangular and Q is unitary. As before, Z and Q are upper
Hessenberg. It follows that

(A —uB)VZ7 = WT,
BVZ? = WQR™.

Thus

AVt = WTHT,
BVt =WTR",
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BQZ: Backward Implicitly Shifted QZ-iteration

Input: [V,W,H,R] with AV = WH, BV = WR,
H upper Hessenberg, R upper triangular,
VEV = WHW =1.
Output: [V, W, H, R] such that AV = WH, BV = WR,
H and R both upper triangular,
VAV = WHW =1.

1. for j = 1,2, 3, ... until convergence,
1.1. Select a shift p < p;;
1.2. Factor [T, Z] = rq(H — uR);
1.3. Factor [Q,R*] = ¢r(RZH);
1.4. H+ QYHZY; R + R™T;
1.5. V+ VZH . W « WQ;

2. end;

F1a. 4.2. Backward Implicitly Shifted QZ-iteration.

where Vt = VZH W+ = WQ are unitary and H* = QPHZY = TZ" + uR7 is
upper Hessenberg to complete the backwards QZ step.
This time, observe that

(A — uB)vi = WTe;, = BVR™'Te, = Bv;7
so that

vi=(A - uB)"'Bvit
= (B_IA — ,uI)_lvlr

where 7 is the (1,1) element of R™'T. Hence, the leading column of two successive
V matrices are in an inverse iteration relationship.

5. Truncated Forward and Backward @QZ-Iterations. With these versions
of the )7 iteration, one can develop generalizations of truncated QR and R() iterations
for the generalized Arnoldi process. The truncated forward iteration will correspond
to implicit restarting (truncated QR) developed in [20] while the truncated backward
iteration will correspond to the truncated R() iteration developed in [21]. These are
recovered from the methods developed here when B = 1.

Assume now that there is a partial k-step reduction to condensed form

(5.1) AV = W Hj, + fref
BV, = W;Ry,

as in (3.1).
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Truncated FQZ:

Select a shift u and apply one forward QZ step to the projected pair (Hy, Rg) to
obtain k X k unitary upper Hessenberg matrices Q}:I and Zj; and an upper triangular
T}, such that Hy — uRy, = Z;Ty. Completion of the FQZ step will give

H.Q\ =ZH]
R:Q; = Zi R},

where Hj and R,j are order k upper Hessenberg and triangular matrices respectively.
Then

(A —uB)Vy = W Z, Ty + fre]
and just as in the full iteration, equating the first column of both sides implies that
(A —uB)vy = W Z;Tre; = BVZ(R:)*lTkel = BVIFT.
Thus,
(B 'A — pl)v, = v,
where 7 is the (1,1) element of (R;)~'Tj. Now,

(5.2) AV} = W/ H] + fre] QF
BV} =W/R/

and since QI is upper Hessenberg, it follows that the last row of QX has the form
e} QHf =[oel_,,~] . Hence, the leading k — 1 columns on both sides of (5.3) remain
in a generalized Arnoldi relation

AV =W, Hf  +f e,
BVk+—1 = Wk+—1R;:—1

where fi,_; = W,jek B + fr,o. Now, one additional generalized Arnoldi step may be
performed to return this to an implicitly restarted k-step reduction.

Just as with the IRA iteration, this idea may be cast in the form of repeating the
following steps: (1) Extend to a k + p step factorization, (2) Apply p shifts with FQZ
sweeps, (3) Truncate the last p-colums to return to a k step factorization. This will
define a generalized implicitly restarted Arnoldi method.

Truncated BQZ:

To truncate the backwards ()Z iteration, it will be necessary to derive relationships
existing in column k + 1 on both sides of (2.2). The required theory for the standard
problem has been derived in [21] and this will generalize in a straightforward way to
obtain a corresponding truncated backwards (Z equation. However, the details for
completing a backward @QZ sweep once this equation has been solved are a bit more
intricate than in the TR(Q) iteration.

Following the develpment of the TR(Q iteration, given a shift y and the partial
k-step reduction, the truncated BQZ is initiated by constructing vectors v and w
of unit length that are orthogonal to the columns of V; and Wy, respectively, with
(A — uB)v € Range([Wy,w]). Then, a relation of the form

Hk —p,Rk h

(5.3) (A — uB)[Vy,v] = [Wg, W] Bel N
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is obtained to intitiate a truncated BQZ step. To develop this further, assume for
purposes of the following discussion that v, w, h and a have been constructed to
satisfy these relations. Let us postpone the construction of these quantities and
first show how to complete the truncated BQZ step assuming that (A — uB)v =
Wih + wa. At this point, it is important to realize that the bordered Hessenberg
matrix in (5.3) is precisely the leading principal submatrix that would appear if the
full matrix H — uR were partially factored into an R@) factorization from right to left
using Givens’ transformations up to the k+1 st column. The subsequent computations
amount to arranging the remaining relations in the W and R matrices that would be
in place had the first n — k steps of a BQZ sweep been done. The idea is to anticipate
this configuration and then complete the sweep in the leading k& columns without ever
computing the remaining n — k columns of the BQZ relations.

At this point, the relationships for B must be brought up to date. Equations
must be derived that will keep B in a triangular relation with the two basis sets. We
first construct a vector w* such that

Bv =W,r+w'p with WHw™ =0

using classical Gram-Schmidt with the orthogonality correction scheme proposed in [3]
Once this is done, we have

(5.4) BIVy,v] = [Wy,w'] | fe ] .

From Equations (5.3) and (5.4) we may derive

AV, v] = [Wg, W] [ Hy, —pRy ] + W, wt] [ pRy T }

Bef a | 0 pp
H h+r
= Wiow'] | e | alsef

where w has been written as w = w16 + z with zFwt = 0.
At this point, in the full factorization, the leading principal (k + 1) x (k + 1)
submatrices of the H — uR and R matrices are of the form

(55) I:Ik+1 B ,LLR]C+1 _ |: Hy —uR; h :|

ﬂ@ez af
and
e
To complete the BQZ step, factor
(5.6) Hyy — pRigr = Tig1 Zppr
where T} is upper triangular and Zj1 is unitary. Now, factor
Qk+1RX+1 = ﬁkHZfﬂv

where Q41 is unitary and R;:_H is upper triangular . As before, Zy; and Q,{flﬂ are
both upper Hessenberg.
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From Equations (5.5) and (5.6), we observe that (8ef ,®)Z}, = (0,&) where &
is the (k+1,k+1) element of T1.
It follows that
(A — uB) [V, V]ZH = Wi, wH Ty +2(0,d)
B[V, VIZi = Wi, w']Qri Ry,

and then

(5.7) (A = uB)[Vi,VIZi\ = Wi, wH Q1 Qi Trps +2(0,d)
B[V, v]Z{, = Wi, wi Qe RY, .

As in the full case, the relations
QgHTk—H + ,uR,jH = Q{:I+1Hk+1Z£I+1

hold and imply that H;_l = Q£1+1ﬂk+1 ZkH+1 is upper Hessenberg. Therefore, deleting
the k + 1-st column on both sides of (5.7) will give

AV =W/ H} +fef,
BV, = W/R/,

where Vk+ is the matrix consisting of the leading k columns of [V, v]Z,{fI+1 and Wk+
is the matrix consisting of the leading k columns of [Wj, w]Qy+1. The matrices R;
and Hz are the leading principal order k submatrices of RZ‘H and Hzﬂ, and f,j' is

the last column of [Wy, wt]|Q41 scaled by the (k + 1,k) element of H:—H'
This time, observe that Equation (5.7 ) implies that

(A — uB)v] = W; Tre; = BV,R, 'Trey
so that

vi = (A - uB) 'Bvi1
=B'A —pu)tvyiT

where 7 is the (1,1) element of R; 'T). Hence, just as in the full case, the leading
columns of two succesive V matrices are in an inverse iteration relationship.

Now that the truncated BQZ step is understood, it is time to develop the trun-
cated BQZ equation needed to construct v, h and « in equation (5.3) so that

(A —uB)v = W;h + wa

with w = fi,/[|fi||, vV, = 0 and ||v|| = 1. Existence and uniqueness for the case
B = T was developed in [21] and easily generalizes to this setting. Of the various
possibilites developed there, the following seems most appropriated in this setting:
First, compute a solution v to the equation

(5.8) (A — uB)V = Wit + fin

where (t7,7)H is an essentially arbitrary k + 1 vector. Then set

(5.9) v=>1-V,VE)yr



TRUNCATED QZ-ITERATIONS 13
where 7 = 1/||(I - V,,VH)¥||. Now put
(5.10) h=W(A - uB)v and a=w"(A - puB)v.

The following lemma indicates why this will work.
LEMMA 5.1. Assume A — uB is nonsingular and that there is a partial reduction
of (A,B) to condensed form as in (5.1). If Hy — uRy, is nonsingular, put

t = (H, — uRy)s and choose n # el’s,
where s is any k-vector. Otherwise, let t # 0 be a left null vector so that
0=tY(Hy — uRy) and choosen to be arbitrary.

Let v be the unique solution to (5.8). Then 0 # (I— Vi VIV, so0 the vector v can be
constructed by projection and normalized as in (5.9). Moreover,

(A — uB)v = Wih + wa,

i.e. (A —puB)v e Range([Wy,w]).

Proof. Suppose t, n, and v are constructed as prescribed in the hypothesis. If
0= (I-VyVH)¥, then v = Vi y must hold for some nonzero k-vector y. Now, this
would imply

(A 1B)Y = (A — uB)Vyy
= Wi (Hi — uRy)y + frefy.

Substituting this on the left side of (5.8) and using orthogonality gives
(5.11) (H, — pRp)y =t and ely =17.

If H;, — uRy is nonsingular, then y = s and (5.11) would contradict the choice of n.
Otherwise, the choice of t as a null vector would lead to the following contradiction:

0=tI(H, — uRy)y = t7t #0.

This shows 0 # (I — VkaH){/, so that v can be constructed by projection and nor-
malized as in (5.9). It remains to show (A — uB)v € Range([Wy, w]). However, this
follows easily from the relations

(5.12) (A — uB)v = (A — uB)v — (A — uB)V, V%
= W,t + fkn — [Wk (Hk — ,uRk) + fke,{]Vf\?

This completes the proof. a

Since (A — uB) is nonsingular and [Wy, w] is unitary, v,h and a are uniquely
determined once t and 1 have been specified. This justifies using (5.8) and (5.9) to
compute them. However, it is remarkable that v,h and « are unique, regardless of the
choice for t and 7 so long as 0 # (I -V, VI)v. This result is a fairly straightforward
modification of the results in Section 2 of [21].

Typically, t = e, is chosen because this corresponds to the standard Arnoldi
process for B = I, but many other interesting choices are possible.
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Remark: We may choose to cast (5.8) in the form
(5.13) (I - XXH)(A - uB)(I - ZZ%)v = Wit + £,

where X = WY and Z = VS with Y?Y = S#S = I;. Here Y and S may be
of dimension k x j for any j = 1,2,--- k. Once v is determined, (5.13) may be
rearranged to obtain a relation of the form

(A — uB)v = Wit + fi73,
since
(XX (A-uB)(I1-ZZ")¥v € Range(Wy) and (A—uB)(ZZ")v € Range([Wy, w)).

Observe that there is no need to actually compute t and 7. One may simply project
and normalize as in (5.9) to get v and then obtain h and « as in (5.10).

This remark may have computational significance in case we choose to compute
v with an iterative method. In particular, if u is a nearly converged Ritz value, then
it may be a good idea to take X = Wy where y? (Hy — uRy) = 0 and Z = Vs
where (Hy — pRy)s = 0. This choice would tend to project out the near singularity
of (A — uB) as suggested in [18] along the directions of the converging eigenvectors.
Another possibility is to take X = W}, and Z = V}, as suggested in [21] to project
out all of the current subspace. The latter choice is computationally more expensive
(per iteration in the linear solve) but may have other advantages in the presence of
clustered eigenvalues.

6. Inexact Arnoldi Processes. In the previous two sections, algorithms have
been developed to generalize the Arnoldi process and to derive truncated forms of
the forward and backward @7 iterations. Unfortunately, these algorithms require the
accurate solution of linear systems. However, the accuracy requirement for computing
the direction v through Steps (3.3)-(3.4) may be relaxed. A projection algorithm is
still obtained but the Krylov property will be lost.

To relax the exact solution requirement indicated at Step(3.3), simply replace
the computation of y from By = w with y = itsol(B,M,w) where M represents
a preconditioner for B and itsol represents a few steps of a pre-conditioned iterative
method for the solution of the linear system By = w. Formally, there is no accuracy
requirement here and as little as one step of the iterative method may be specified.
However, the rank-one nature of the residual Fy, will be lost along with the Hessenberg
form for Hy, when this accuracy is relaxed.

Of course, there are algorithmic consequences of relaxing the accuracy require-
ments. The relations (3.5) are no longer valid. Therefore, the relationship Bv =
W,r + wp must be forced explicitly once the direction v has been determined. The
resulting algorithm INXARN is described in Fig. 6.1.

Generating Directions and the Newton Step:

Once the decision has been made to relax the Krylov property, a more general
point of view may be taken. The sequence of vectors {v;} may just as well be
generated by some arbitrary process unrelated to the projections. Certainly, some
relation to the shift-invert equations is desirable and the remainder of this discussion
will focus on properties of the generated sequence {v;} required for rapid convergence.
With this end in mind, let us consider an arbitrary sequence of generated vectors
{v1,v2,...,Vj,...} and assume that these vectors are orthonormal in some convenient
norm.
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TBQZ: Truncated Backward ()Z-iteration

Input: [A,B, v, k] with A, B matrices of order n
v an n-vector with ||v]| =1
k << n the desired number of eigenvalues.

Output: [V, W, H, R] such that AV = WH, BV = WR,
H and R both k£ x k upper triangular,
VEV = WHW =1,.

1. [V,W,H R, {] = genarn( A,B, v, k);
2. 3= |, w="£/B;
3. for j =1,2,3, ... until convergence,
3.1. p = select_shift(H, R); t = select_vector(H, R);
3.2. Solve (A —uB)v = Wt for v;
3.3. h=VHy: v+ v—-Vh; v=v/]¥|;
34. f=Av; g=Bv; f+f—gu;
3.5. h=WFHAf; a=wlf;, §=wlg;
3.6. r=Wig, w=g_— Wr;
3.7. p=|lwl; 8 0/p; w=w/p;

H h+rpy | R r |,
3.8. H« 6el 9a+pu}’ R<—{0 p]’

3.9. [T,Z] =rq(H - uR);
3.10. [Q,R*] = qr(RZH);
3.11. H « QPHZ"Y;

3.12. V « [V, v]Q(;,1 : k) ; [W,w] « [W,wW]Z;
3.13. S=H(k+1,k); H+« H(1:k1:k); R+ R(1:k,1:k);

4. end;

Fic. 5.1. Truncated Backward QZ-iteration

Given this sequence, it is straightforward to obtain a derived sequence of orthogo-
nal vectors {w;} along with a sequence of projections that provide a partial reduction
of the pair (A, B) to condensed form at each step:

Vi« [Vj-1,v];
BV]' = WjRj;
AVj = WjHj +Fj;

with WIW; = VI'V; =1;, WTF; =0 as before through classical Gram Schmidt
othogonalization.

How should the sequence {v;} be generated to achieve or to accelerate convergence
of the Ritz values (eigenvalues of (H;,R;) ) to selected eigenvalues of the pair (A, B)?
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INXARN: Inexact Arnoldi Process

Input: (A,B,v,k) such that ||Jv|| = 1.

Output: (Vk,Hk,Rk,Fk ) such that AV, = W H, + Fy , V{Vk =1,
BV, =W.Ry, WiW, =I;,, W/F, =0
with Hy, upper Hessenberg and Ry upper triangular.

1L Vi« (v); w=Bv; p=|[w|; Ri = (p); W1 = (W/p);
2. y+ Av; Hy « (WTw); fi <y - W, H; Fy = (f));
3. forj=1,23,.... k-1

8.1. v « [If5l; w « £/v;

3.2. v =itsol(B,M, w);

33. 2 V¥, vev— Vz;

3.4. v« v/||V||;

3.5. W<+ Bv;r« WJT‘?V; W w—W,r; p« [|[W];

3.6. w W/p; W]’+1 — (Wj,W); ].:A{j_H — ( Iéj ; >;

3.7.y+ Av; h«+ W};ly; ! = WTFj;

H.

3.8. H; « ( 672 >5 Vi1 < (Vj,v);

3.9. fj+1 «—y-— Wj+1h; Hj+1 «— (H],h), Fj+1 — [Fj — WCT,fj+1];
4. end

Fi1G. 6.1. An Inexact Arnoldi Process.

Certainly, it would be helpful to develop a connection with Newton’s method and then
perhaps modify those choices to reduce computional cost while retaining reasonable
convergence properties. To this end, suppose Hy = Ry#f and x = Vy with ||x|| =
lly]| = 1. Let A € o(A, B) be the closest eigenvalue to 6 and let q be the corresponding
eigenvector normalized so that xq =1 (hence ||q|| > 1).

With these assumptions, let us represent

q=x+12z, A=0+9,

with x#z = 0 and derive the standard second order approximation from the relation
Aq = Bqg). Substituting, combining and rearranging terms gives

(6.1) (A — 6B)z = —(A — 6B)x + BxJ + Bzd

At this point, several alternatives are available to approximate the correction vector
z. Two possibilities shall be examined here. The first of these gives the correction
developed in [18, 6]. Since x = VY, it follows that
—(A -6B)x + Bxd = —-W(H - fR)y — Fy + WRyd
= —Fy + WRy/.

Now, if both sides of equation (6.1) are multiplied on the left by I — WW? the
resulting equation is

(6.2) (I-WWH)(A - 6B)I - xx)z = —Fy + (I - WWH)Bz4,
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since 0 = WHF and 0 = xz. From this, it also follows that equation (6.2) is
consistent and there is a unique minimum norm solution z. Hence the direction v
obtained by finding the minimum norm solution to

(I-WWH)(A - 6B)(I - xx)v = —Fy

will assure that the second order correction is a member of the updated spaces Sy =
Range(V) and Sw = Range(W) when v is adjoined and the corresponding w i
obtained.

An alternative to the solution just developed is to treat equation (6.1) in a
straightforward way assuming that the matrix A — #B is nonsingular. Then

wn

(6.3) z=—-x+ (A —-60B) 'Bxé + (A —0B) 'Bzd.
Now, using the facts 0 = xz and 0 = (I — xx)x gives
z = (I—xx")(A - 6B) 'Bxd + (I - xx)(A — 6B) !Bz,

when both sides of equation (6.3) are multiplied on the left by the projection (I—xx).
Now, the second order correction will be included in the updated spaces if the new
direction v obtained by finding the solution z to

(A — 6B)z = Bx,
and then projecting and normalizing to get
z=(I1-xxM)z and v =2z/|z]|.

Note the advantage here of adjoining the direction z to the existing space. We do
not need to explicitly compute § in (6.3) as would be needed in an explicit Newton
method. This projection process assures that the Newton correction is in the updated
subspace so that the new Ritz vector and Ritz value will be at least as good as those
obtained through an explicit Newton step.

The methods of Davidson [4], Olsen et. al, [15], Sleijpen and Van der Vorst [18]
and those introduced and discussed by Knyazev [10] can all be placed within this
Newton-like framework.

Blocked Formulation: Futher consideration of the previous development would
suggest that a block formulation is more appropriate than a single vector approach
when the Krylov property is no longer enforced. To develop this, we assume a partial
decomposition of the form

(6.4) AV, =W, H,, + F,, with WIF, =0,
BV, = W;Ry,,

where Vi, W,F; are n x k matrices and H;;,Ry; are & x k matrices. We then
construct the n x k matrix Vs as follows:

V =(1-VV{)p(A,B)F,
[V2, T] = qr(V),



18 D. C. SORENSEN

(i.e.,VoT =V with V5 orthogonal and T upper triangular). Obtain additional basis
vectors Wy via

BV, = W R> + WyRy, with WHW, =0, WIwW, =1,.

Then compute Hio, Hay, Hoo, Fii_ and F5 such that

AV, = W H;; + WoHy; + F,
AV, = W H;; + WyH,;, + F».

Finally, apply the @Z method (say) to the pair (H, R) to obtain unitary matrices Q,
Z, an upper-triangular Ht and an upper triangular Rt such that

HQ = ZH',
RQ =ZR",

where H = (H;;) and R = (Ry;) , ¢ = 1,2;j = 1,2, with the best approximations to
the desired eigenvalues appearing as eigenvalues of (1,1) block of the pair (HT,R™T).
Now, update

V1 — [Vl,Vg]Q(:,l : k‘), W1 — [Wl,Wg]Z(:, 1: k),
H;; « H+(]. : k?,]. : k‘), Ry « R+(1 : k?,]. : k?),
F, « [FT,FZ]Q(:, 1: k)

In this development, p(A, B) represents a matrix polynomial in A and B generated
by a (preconditioned) iterative method designed to solve

(A —6B)V =F,.

In fact, G = p(A,B)F; could easily represent a much more general object with each
column of G representing a separate iterative solution of the form

g] ~ (A _ejB)_1F1Yj7 .]: 1727"'7k'

This could be made very efficient in terms of data movement per matrix-vector prod-
uct. Each separate column would need two operations of the form Ag; and Bg;. For
example, a Richardson’s iteration could take the form

G = FlY,

forj=1,2,---

G + GI' - AG - BGO;

end
where I' = diag(y1, 72, ..., %) with reciprocal Richardson parameters 7; and ® =
diag(61,02,...,60;) and Y = [y1,¥y2, ..., y&] the current Ritz approximations to desired
eigenvalues and vectors, i.e. HY = RY®.

We may express the above discussion formally as the algorithm BLKQZ shown in

Figure 6.2.



TRUNCATED QZ-ITERATIONS 19

BLKQZ: Block Inexact QQZ Process

Input: (A,B,Vy,k) such that VIV, =1,

Output: (Vl,HH,Ru) such that AV1 = W1H11 y V{Vl = Ik.
BV, = W Ry, WIW, =1,
with Hj; upper upper triangular and R;; upper triangular.

1. Wy = BVy; [Wi,Ri1] = gr(Wh);
2. F1 «— 1&‘[17 H11 «— (WTFl), F1 — F1 — W1H1;
3. for j=1,2,3,....k—1
3.1. V, =itsol(A,B,M,Fy,Y);
3.2. S« V{IVQ, VQ — Vz — Vls,
3.3. [VZ; S] = qT‘(Vz),
3.4. Wz — BVZ, Rz « W?Wz, .
3.5. Wy «— W, —W;Rys; [WQ, RQQ] = QT(WQ);
3.6. H21 — WfFl, F1 — F1 — W2H21;
3.7. Fo < AVy, Hi» « W{{FQ;
3.8. Fy <« F> — W1H12; H,, = WgFZ, Fy «— F, — W2H22;

H11 H12 Rll R12
3.9. H<«+ ;7 R+ ;
< Hy Ho > ’ ( 0  Ra >’

3.10. [Q,Z,H, R] = gziter(H,R, sort');
3.11. V; « [Vl,VQ]Q[Z, 1: k], Wi [Wl,WQ]Z[:,l : k‘],
3.12.F1 «— [Fl,FQ]Q[:,l : k‘],
3.13. H11 «— H(l : k, 1: k‘), R11 — R(l : k‘,l : k‘),
4. end

Fic. 6.2. A Block Inexact QZ Process

7. Computational Results and Conclusions. We shall present some very
preliminary computational results to give some indication of the relative performance
of three methods: TFQZ, TB(QZ, BLKQZ. The purpose of these results is mainly
to indicate that the methods have been programmed and will solve a difficult prob-
lem. There are many implementation details to consider and a number of parameter
choices to be made. A thorough computational study including comparison with other
methods is certainly called for.

Our results will consist of a comparison of the three methods on a single problem.
The problem we consider is a symmetric generalized problem from the Harwell-Boeing
collection. The matrices are stiffness and mass matrices were obtained through the
Matrix Market from

http://math.nist.gov/MatrixMarket/data/Harwell-Boeing/bcsstrucl/

to form a generalized eigenvalue problem Ax = BxA\. The is matrix A is BC-
SSTK12 and the matrix B is BCSSTM12 from the BCSSTRUC1 set. BCSSTK12
and BCSSTM12 represent the consistent mass formulation for an ore car model. The
consistent mass formulation leads to a non-diagonal mass matrix. All computations
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TABLE 7.1
Figenvalues calculated by TBQZ.

Eigenvalues Error/M\pnin  Error/Anax
3.469305448324274e+03 2.8e-11 4.3¢-16
3.670875661790737e+03  2.27e-11 3.4e-16
5.538220406841684e+03 3.7e-10 5.5e-15
6.410197672779293e+03 1.0e-09 1.5e-14

were done in Matlab Version 5.1.0.421 on a Sun SparcStation 20 Model 61 with 64
megabytes of RAM.

For these matrices,n = 1473 and A has 17857 nonzero entries. The smallest four
generalized eigenvalues are

3.469305448042201e+03
3.670875662014555e+03
5.538220410502827e+03
6.410197662646212e+03

and the largest generalized eigenvalue is on the order of 6.55e+08.

Here, we list estimates of the computational and storage costs of the three routines
and indicate the performance of each of them on this test problem. The term “matvec”
stands for a matrix-vector product and the term “LU-solve” stands for solving the
two successive triangular linear systems first with L and then with U as coefficient
matrices.

TBQZ:
For a k-step factorization, the work and storage required for TBQZ is

e Storage: 2n(k + 1) plus storage for A,B,L, U

e Initial work:
1 sparse LU-factorization,
k + 1 LU-solves,
4n(k + 1) flops for orthogonalization.

e Work per iteration:
1 LU-solve,
1 matvec with (A, B),
4n(k + 1)? flops for orthogonalization,
sparse LU-factorization if there is a shift change.

For our run, &k =9 and the iteration was halted after four Ritz values had converged.
The code took 14 iterations and 7 matrix factorizations. The eigenvalues computed
by TBQZ are shown in Table (7.1).

TFQZ:
For an m step factorization that retains a k step factorization after each implicit
restart, the work and storage required is
e Storage: 2nm plus storage for A,B,L, U
e Initial work:
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TABLE 7.2
Eigenvalues calculated by TFQZ.

Eigenvalues Error/Apmin  Error/Amaz
3.469305447658971e+03 3.8e-11 5.8e-16
3.670875661610020e+03 4.1e-11 6.1e-16
5.538220410338460e+03 1.6e-11 2.5e-16
6.410197662356884e+03 2.9¢-11 4.4e-16

TABLE 7.3

Eigenvalues calculated by BLKQZ.

Eigenvalues Error/Apmin  Error/Amaz
3.469305447907588e+03 1.4e-11 2.0e-16
3.670875661903084e+03 1.1e-11 1.7e-16
5.538220410459639¢+03 4.4e-12 6.6e-17
6.410197662585929¢+03 6.1e-12 9.2e-17

1 sparse LU-factorization,

m LU-solves,

4nm? flops for orthogonalization.
o Work per iteration:

m — k LU-solves,

m — k matvecs with (4, B),

4nm? flops for orthogonalization,

For our run, £ = 4 and m = 12 with tol = 1.0e — 09. The code took two iterations
and 20 LU-solves. The eigenvalues computed by TFQZ are shown in Table (7.2).

BLKQZ:
The work and storage required with blocksize k is
e Storage: 4n(2k) plus storage for A,B,L, U
e Initial work:
1 incomplete sparse LU-factorization,
1 block ILU-solve,
4n(2k)? flops.
o Work per iteration:
1 block ILU-solve,
1 block matvec with (4, B),
30n(2k)? flops,

For our run, k = 4. The code took 43 matrix accesses, 43 block matvecs (A,B) and
443 individual matrix-vector products. The eigenvalues computed by BLKQZ are
shown in Table (7.3).

In each routine, we used a reference shift of ¢ = 3.4e+3 and in the call to tfqz
we passed A — 0B in place of B and B in place of A in the calling sequence. This is
mathematically equivalent to using implicit restarting with the shift-invert operator
(A — B) !B and the convergence results confirm that. For the BLKQZ method
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we used a block variant of BICGSTAB that we constructed from the single vector
code in the templates collection [1] and with an incomplete LU preconditioner from
Matlab. We were able to arrange the code so that each column of the right hand side
represented a residual of the form

rj = (A — pu;B)x;

but used the same pre-conditioner for the whole block. Typically, not all of the column
equations converged and our cut off was 10 iterations. As the results show, this was
sufficient for convergence.

With these results, it is difficult to choose between the methods. Here, TFQZ
seems to be the winner but that is in absence of any architecture considerations and
without specific comparison between ILU and complete LU costs. We did not report
flop counts or timings because the implementations are fairly crude at this point in
time. These results only indicate that the three methods are indeed implementable
and that they work on a challenging problem.

The real value of the TBQZ may lie in its applicability to rational interpolation
with respect to constructing reduced order models of state space control systems as
explored in [9]. More investigation and testing needs to be done with respect to shift
selection and selecting the right hand side of the BQZ equations. The pre-conditioned
BLKQZ is very promising with respect to parallel performance but is far from robust
at this time.
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