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ABSTRACT 

Evolution of Altruism and Eusociality: 

Toward a Cost/Benefit Analysis of Fitness and Genetic Relatedness 

By  

Xiaoyun Liao 

Altruism is a behavior that benefits others at a cost to one’s own ability of 

survival and/or reproduction; that is, individual fitness. Thus, altruism poses great 

challenges to Darwin’s theory of evolution by natural selection on individual fitness.  

Altruistic behaviors are commonly performed in eusocial animals, such as nearly all 

hymenoptera (including bees, wasps, and ants), termites, ambrosia beetles, and so 

on.  Inclusive fitness theory predicts that altruistic behavior can evolve when 

sufficient fitness benefits are given to relatives even though individual fitness is 

reduced.  A different modeling approach has led to a challenge to this theory.   The 

modelers claim that relatedness is not causal, that eusocial behavior is very hard to 

evolve requiring more workers before the queen increased fitness, and that there is 

no conflict involved.  Here I showed that, even within the terms of this modeling 

framework, inclusive fitness thinking leads to insights that completely change these 

conclusions.  I showed that relatedness and inclusive fitness indeed are causal and 

that eusociality does evolve more readily. With regard to the latter this means 

eusociality can be favored under a lower benefits threshold.  I concluded that 

multiple modeling approaches are useful and that efforts to synthesize them are 



 
 

better than asserting that one is universally better than the other.   Moreover, either 

greenbeard effects or genetic kin recognition requires genetic polymorphisms as 

cues on which recognition is based.  Previous models showed that selection 

eliminates rare cue alleles and a common allele gets fixed, i.e. altruism cannot 

persist.  So it is unclear how genetic recognition for altruism persists under a 

Darwinian selection framework. Here, I designed a novel model with three types of 

genetic components (production, perception, and action).  I analyzed my recognition 

model theoretically toward a cost/benefit analysis of fitness and genetic 

relatedness.  I predicted the stability of recognition for altruism based on my model.  

Furthermore I tested my recognition model through various computational and 

biological simulations.   My simulation results consistently showed altruism could 

maintain multiple recognition cues and be evolutionarily stable; given the 

assumptions of my model.  I concluded that cost/benefit of fitness and genetic 

relatedness both play critical roles in the evolution of altruism and eusociality, and 

therefore can maintain the stability of recognition for altruism.     
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Chapter 1 

Introduction to Altruism and 

Eusociality 

1.1. Hamilton’s Rule and Kin Selection 

Altruism is a behavior that lowers the Darwinian fitness (number of offspring 

produced in one’s lifetime) of the actor and increases that of the recipient.  The most 

extreme forms of altruism are observed in eusocial insects such as ants, bees, wasps 

and termites (Fletcher and Michener 1987; Frank 1998; Liebert et al. 2004).  In such 

eusocial insect workers have little or no reproductive ability with undeveloped or 

reduced ovaries. They generally stay within nests to help others raise offspring and 

only one or a small number of individuals reproduce.  Darwin recognized in 1859 

that paradox of sterile workers is “... one special difficulty, which at first appeared to 

me insuperable, and actually fatal to my theory” (Darwin 1859).  The evolution of 

the altruistic behaviors remained without any satisfactory explanation for a 

hundred years. 
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Darwin also indicated that “... [the problem] disappears when it is 

remembered that selection may be applied to the family, as well as the individual 

and may thus gain the desired end” (Darwin 1859).  So what is the unit of selection, 

a group or a single individual?  In 1962 Wynne-Edwards argued that natural 

selection acts only at the level of groups (Wynne-Edwards 1962).  This idea was 

once popular in 1960’s and was rejected in 1970’s, but now there are reasonable 

versions (Koeslag 1997; Koeslag and Terblanche 2003). 

In 1964 W. D. Hamilton produced an elegant formal theory that provided a 

potential solution to this problem of reconciling the apparent sacrifice made by 

individuals at their own fitness expense and Darwin’s evolution by natural selection 

(Hamilton 1964).  Specifically, Hamilton argued that altruistic acts to relatives could 

be favored by natural selection, because relatives share the same gene as helpers.  

Thus, Hamilton expanded the definition of individual fitness to include inclusive 

fitness, which is the sum of a direct benefit through producing offspring and an 

indirect benefit through aiding genetic relatives.  Hamilton made these two 

components additive by devaluing each offspring or relative by the genetic 

relatedness to them.  

From this Hamilton predicted that altruism will be favored by natural 

selection when the inequality  
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0CrB  

Equation 1.1 Hamilton’s Rule 

is satisfied, where B is the benefit of the act of altruism to the recipient, C the cost of 

the act to the actor and r the genetic relatedness between the actor and the recipient 

(Hamilton 1964).  Inclusive fitness is applicable not only to helping but also to any 

behavior (West et al. 2007b).  This inequality has now come to be known as 

‘Hamilton’s Rule’. Hamilton’s theory is also frequently referred to as the inclusive 

fitness theory or kin selection theory.  

In the past half century Hamilton’s work attracted high attention in the social 

evolution study field, in that the theory promted extensive empirical and theoretical 

explorations; notably tests of the prediction that altruism should be correlated with 

relatedness (West et al. 2007).  

Relatedness measures genetic similarity between any two individuals of a 

given species in a population. Historically, the definition of relatedness has received 

several refinements.  Hamilton initially defined relatedness as the coefficient of 

relationship (Hamilton 1964; Wright 1922).  In most situations (e.g. no inbreeding), 

it is the probability that a random allele the actor has at a focal locus is shared by the 

recipient via a common ancestor.  These genes are called identical by descent. There 

are two reasons for why two alleles can be identical: identity by descent and non-

identity by descent or identity by state. What really matters is identity above 
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random population frequencies.  Coefficient of relationship is calculated from a 

pedigree. Thus in a diploid, the relatedness between full siblings is 1/2, cousins is 

1/8 as J.B.S. Haldane says, “I would jump into a river to save two brothers or eight 

cousins.”   

Later in 1970 Hamilton revised the definition of relatedness as the 

regression coefficient of recipients’ genotypes on actors’ genotypes, which is the 

slope of the regression line in the least squares method (Hamilton 1970).  Therefore, 

the regression relatedness measures similarity of two individuals’ genotypic values 

which are the frequency of the focal allele in individuals.  One of the merits of 

regression relatedness is that one does not necessarily need a pedigree to calculate 

the regression relatedness and can estimate it from genetic markers, which is a 

wider scope than the 1964-version (Goodnight and Queller 1999).  And regression 

relatedness is highly compatible with the Price equation (Grafen 1985; Price 1970; 

Queller 1992). 

However, testing Hamilton’s rule without measuring the cost and benefit of 

eusociality is an inadequate test.  Focusing only on relatedness and neglecting the 

cost and benefit terms usually takes the form of assuming implicitly that B = C.  In 

my thesis I designed a novel model of genetic kin recognition and explained how 

eusociality could evolve and persist.   
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1.2. Crozier’s Paradox 

One problem with inclusive fitness theory is the recognition of relatedness by 

individuals acting in an altruistic fashion. Ideas to resolve this issue involve 

recognition genes and traits; i.e. cues. Altruism based on genetic cues requires 

multiple recognition cues, yet altruism is predicted to erode this genetic variation.  

Common cues get favored and eventually dominate the population while rare cues 

are disfavored and go extinct.  The genetic cues of the production component are 

shown to be greenbeard genes recognizing copies of themselves in others, 

regardless of relatedness at other loci.  The greenbeard nature of these alleles is 

responsible for what is known as Crozier's paradox, the observation that selection 

favors common cue alleles and thereby removes the variation that is required for 

discrimination (Crozier RH 1986, Crozier RH 1987, Crozier RH & Pamilo P 1996).  

Altruistic greenbeard alleles are outlaw genes because, by causing altruism towards 

others who are not relatives, they act against the interest of other genes in the 

genome.  This can lead to intragenomic conflict, with other genes being selected to 

eliminate the extra altruism, if they can do so without also eliminating themselves as 

targets of altruism.  Therefore, the origin and maintenance of multiple genetic 

recognition cues remains incompletely understood.  Here in my thesis I explored the 

range of fitness costs and benefits with the model to explain how eusociality could 

evolve and persist.   
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1.3. Nowak et al.’s Model of the Evolution of Eusociality 

Inclusive fitness theory and Hamilton’s Rule have found broad support. 

However, recently Nowak et al. challenged this theory with a different modeling 

approach, claiming that relatedness is not causal, that eusocial behavior is very hard 

to evolve, and that there is no conflict between queens and workers (Nowak et al. 

2010, ).  This publication prompted a hot debate in the field.  There were strong 

critiques against Nowak et al.’s conclusions, but none of them looked at the models 

of Nowak et al. and provided solid evidences to support their verbal arguments. 

(Abbot P, et al. 2011, Ferriere R & Michod RE, 2011, Nowak MA, Tarnita CE, & 

Wilson EO, 2011, Strassmann JE, Page RE, Robinson GE, & Seeley TD, 2011).  So I 

examined Nowak et al.’s model in greater depth, and showed that relatedness is 

causal, that eusociality is not so difficult to evolve, and explored conflicts between 

queens and workers. 

1.4. Conclusions 

In chapter 2 of my thesis I examined Nowak et al.’s model in greater depth.  I 

showed that all of its novel conclusions are overgeneralized from narrow and often 

inappropriate assumptions and that the insights of kin selection theory stand.  I 

showed that, even within the terms of their modeling framework, that inclusive 

fitness theory and Hamolton’s Rule is supported as I showed that relatedness, once 

incoportaed in the model as a variable, alters the probability of eucocial behaviors.  I 
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also showed that relatedness is causal, that eusociality is not so difficult to evolve; 

that is, eusociality can be favored under a lower benefits threshold. Lastly, I explore 

the effects conflicts between queens and workers have on the theory.  

 In chapter 3 I designed a novel model of genetic kin recognition. I analyzed 

my recognition model theoretically toward a cost/benefit analysis of fitness and 

genetic relatedness.  I predicted the stability of recognition for altruism according to 

relatednesses at three kinds of loci and Hamilton’s rule. 

In chapter 4 I explored the range of fitness costs and benefits with the model 

to explain how eusociality could evolve and persist.  I tested my recognition model 

through various computational and biological simulations.   My simulation results 

consistently showed altruism can maintain multiple recognition cues and be 

evolutionarily stable.  Thus, I found a model and parameter space that could resolve 

Croxier’s paradox that stands in great conflict with inclusive fitness theory and the 

need for recognition mechanisms among kin. 

In chapter 5 I discussed the applications of new perspective of Hamilton’s 

rule, not only focusing on genetic relatedness, but also emphasizing the importance 

of fitness cost and benefit. 
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Chapter 2 

The Evolution of Eusociality and Kin 

Selection Redux 

The chapter is based on a manuscript co-authored with David C. Queller and 

Stephen Rong (from Biology Department, Washington University in St. Louis, One 

Brookings Drive, St. Louis, MO 63130 USA).  David Queller and Xiaoyun Liao 

designed study; Xiaoyun Liao and Stephen Rong conducted simulations; David 

Queller wrote text. 

2.1. Abstract 

The evolution of sterile worker castes in the eusocial insects was a major 

problem until Hamilton (1) developed a method called inclusive fitness.  He used it 

to show that sterile castes could evolve via kin selection, in which a gene for 

altruistic sterility is favored when the altruism sufficiently benefits relatives 

carrying the gene.  A recent paper (2) argued that the general method of inclusive 

fitness was wrong and advocated an alternative method using differential equations.  
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It also used these alternative methods to model the evolution of eusociality and 

purported to overturn much of what was previously understood about the topic.  

Specifically, it claimed that eusociality was difficult to evolve, that genetic 

relatedness was unimportant, and that workers were not independent agents but 

instead are mere extensions of the queen.  Here we report a more thorough 

examination of such differential equation models for the evolution of eusociality and 

show that all three of these conclusions derive from over-generalizing from narrow 

assumptions or parameter values. For example, all of their models implicitly 

assumed high relatedness but modifying the model to allow lower relatedness 

shows that relatedness is essential and causal.  Contrary to their claims, their 

modeling strategy, properly applied, generally confirms the insights of inclusive 

fitness studies of kin selection. 

Eusocial insects have sterile castes that are thought to have evolved by kin 

selection. A gene for giving up reproduction by workers can spread when the 

workers help to rear relatives who share that gene.   This solution to a crucial 

evolutionary problem was challenged in a recent paper.  The paper generated much 

controversy, but no one has contested its new model of the evolution of eusociality, 

which purported to overturn much of what was previously thought to be true from 

kin selection theory.  Here we examine this model in greater depth.  We show that 

all of its novel conclusions are overgeneralized from narrow and often 

inappropriate assumptions and that the insights of kin selection theory stand.  
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2.2. Introduction 

The eusocial insects have occupied an important place in biology because of 

their extraordinary levels of cooperation (1, 3-5).  In ants, termites, some bees, some 

wasps, and a few other taxa, some individuals, called workers, give up their own 

reproduction in order to help others reproduce.  Darwin was vexed over the 

question of how such reproductive altruism evolves or indeed how any traits of 

sterile workers evolve, but he believed the answer lay in some form of selection at 

the family level or at the group level (6).  Hamilton provided the first rigorous 

treatment of this idea, with a key insight being the importance of genetic 

relatedness.  A conditional gene causing a worker to give up reproduction could be 

favored if it provided sufficient help to a relative who would share that gene at 

above-random levels (1).  He showed that this process, which became known as kin 

selection, could be analyzed by summing up an actor’s fitness effects, each 

multiplied by the actor’s relatedness to the individual receiving the fitness effect.  

When this sum, called inclusive fitness, is positive, the trait should be favored by 

selection.  For giving up one’s reproduction (fitness cost c) to benefit another 

(fitness gain b) related by r, the inclusive fitness condition is –c + rb > 0.   

Kin selection and inclusive fitness became the dominant modes of thinking 

about the evolution of eusocial insects (5, 7, 8) and the success in this area has led to 

them being applied to many other problems in social evolution (9-13).  Recently, 

this paradigm was criticized by Nowak et al. (2) who argued that inclusive fitness 
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was an inaccurate and unnecessary method and that kin selection was not a very 

useful way to think about social evolution.  Both of these conclusions have in turn 

been extensively criticized as depending on multiple misconceptions (14-20).   We 

concur with many of these criticisms, but here we offer a different kind of critique of 

the Nowak et al. paper.   Nowak et al. (2) also developed their own mathematical 

model of the evolution of eusociality, presenting it as a superior alternative to 

inclusive fitness modeling.  However, as has been recently pointed out (21), this 

eusociality model has scarcely been addressed.   

Although this approach to modeling could be useful, we show here that its 

implementation in Nowak et al. (2) led to serious errors of interpretation.  We 

demonstrate this by using the exact modeling approach recommended by Nowak et 

al. (2) to see if it generally supports their conclusions.  In particular, we examine 

their three conclusions that seem at greatest variance with the conventional kin 

selection view of the evolution of eusociality.   In each case, we will show that the 

kin selection view is essentially restored (hence the word “redux” in our title).   

First, Nowak et al. (2) claim that eusociality is harder to evolve than has been 

appreciated.  They write that “a key observation of our model is that it is difficult to 

evolve eusociality, because we need very favorable parameters” and “despite the 

obvious and intuitive advantages of eusociality, it is very hard for a solitary species 

to achieve it” (2).  If there is any novelty in this conclusion, it must be that 

eusociality is harder to evolve than has been thought previously, that is, it is harder 
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to evolve than predicted from inclusive fitness (–c + rb  > 0).  In our first models, we 

explore how this conclusion changes with reasonable alterations in the fitness 

functions and the worker decision rules. 

Second, Nowak et al. (2), following earlier work by Wilson (22, 23),  claimed 

that relatedness was not an essential element in the evolution of eusociality.  They 

wrote that “relatedness is better explained as a consequence rather than as the 

cause of sociality”, that “grouping by family hastens the spread of eusocial alleles but 

it is not a causative agent” and that “relatedness does not drive the evolution of 

eusociality” (2).  This claim has already been criticized by pointing out that the 

Nowak et al. model was based on groups of relatives, with no comparable model of 

unrelated individuals being presented (15). Nowak et al. appear to have partially 

accepted this point: “One, we do not argue that relatedness is unimportant. 

Relatedness is an aspect of population structure, which affects evolution” (24). But 

this response leaves unanswered exactly how it affects evolution. Wilson 

(25)continues to assert that relatedness only hastens the spread of alleles and that it 

is not causal.  Here we will use their own style of modeling to investigate these 

points. 

Finally, where inclusive fitness theory has emphasized that cooperation 

occurs in the face of potential and actual conflicts among colony members (5, 8, 26, 

27), Nowak et al. (2) assert that the colony as a whole is all that matters.  They argue 

“that the workers are not independent agents”, that “their properties are 
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determined by the alleles that are present in the queen (both in her own genome 

and in that of the sperm she has stored), that “the workers can be seen as ‘robots’ 

that are built by the queen” and that they “are part of the queen’s strategy for 

reproduction” (2).  Nor, contrary to earlier work by Wilson (22, 23), do they brook 

any conflicts between levels of selection: “there is only one level of selection, the 

hymenopteran colony, which is treated as an extension of the queen, whose genes 

are the units of selection” (2).   Yet curiously, their eusociality model is what would 

normally be considered a worker control model, because it assumes expression of 

decision genes in workers.  To test whether there might be worker-queen conflict, 

we construct the necessary parallel models where genes expressed in mothers 

determine whether their offspring stay and help. 

2.3. Results 

We modify the Nowak et al. (2) haploid model, which is simpler than the 

haplodiploid one, but sufficient to demonstrate the important points.  This model 

includes solitary and eusocial genotypes expressed in offspring, where solitaries 

always leave to reproduce, while eusocials stay and help their mother with 

probability q and leave to reproduce with probability 1-q. Mothers and offspring are 

genetically identical. Differential equations describe the numbers of solitary 

individuals and eusocial colonies based on colony-size specific birth rates (bi) and 

death rates (di), as well as worker mortality rates () and density dependence () 
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(see Methods, eqn. set [1]).  If larger colony size (added workers) increases the 

queen’s birthrate sufficiently, the eusocial type will be favored over solitary 

reproduction under some probabilities of staying q.  Using these equations, we 

recovered results indistinguishable from those of Nowak et al. (2) (e.g. their Fig. 4).  

We then explored the effects of various assumptions by changing them one by one.  

The first claim that we examine, that eusociality is hard to evolve (2), is 

difficult to compare to inclusive fitness because the models are not expressed in the 

same terms.  But the claim appears to be based on particular and arguably odd 

choices for fitness functions and worker decision rules.  The fitness function that 

they generally explored was a threshold function where workers add no fitness 

gains to the queen below a colony of size m, and add a fixed gain (increasing queen b 

or decreasing d) in colonies at or above size m, regardless of how many workers are 

added.  This means that workers in colonies below that threshold contribute 

nothing until enough further workers join and workers above the threshold also add 

nothing extra unless other workers die, returning the colony to the threshold.  If 

most workers are contributing nothing, then it is not surprising that eusociality 

would be hard to evolve.  In the example most explored (e.g. their Fig. 4), the 

threshold colony size m was set at 3, such that two workers were needed to raise 

the queen’s birthrate from b0=0.5 to b=4 and to lower her death rate from d0=0.1 to 

d=0.01 (they also let = 0.1 and = 0.01).  This eight-fold increase in the queen’s 

birthrate allowed eusociality to evolve for some values of q but lower values of b did 
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not.  Not surprisingly, requiring more workers before the queen increased fitness 

(higher m thresholds) made eusociality even more difficult to evolve. 

However, as noted above, the assumption that workers must stay with 

probability q, regardless of the state of the colony, means they may be maladaptively 

staying in colonies that are too large to gain further benefits.  It should be easy for 

workers to avoid this problem.  For example, they might instead implement the rule 

to stay when the colony is below some threshold size w and leave when it is at or 

above that size. We implemented differential equations to model this change in 

assumption (see Methods, eqn. set [2]) and show that eusociality does evolve more 

readily (Fig. 1).  For example, for the same parameter values as in Fig. 4 of Nowak et 

al., eusociality can now be favored under a lower benefits threshold (b=3), that is, 

when helped queens get a six-fold advantage.  

In addition, the threshold fitness function assumed by Nowak et al. (2) 

prevents the earliest workers from contributing anything.  But it is easy to envision 

advantages that would come from having only a single worker can contribute 

something to the colony (23, 28).  To view this effect in isolation, we return to the 

Nowak et al (2) decision rule (stay with probability q) and to their parameter values 

given above, but allow a single worker to add half the contribution to the queen that 

two workers add (for both birth rate and death rate) (m=3, b0 = 0.5, d0 = 0.1, d = 0.01, 

= 0.1, = 0.01). This simple change (see Methods) makes it much easier to evolve 
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eusociality, with b=1.5 or only a three-fold increase required (Fig. 2) versus 

eightfold with the threshold model.  

The models of Nowak et al. (2) also assumed eusocial offspring stay with 

their mother so that there was always genetic relatedness among participants. In 

the haploid model, this meant that offspring were genetically identical to their 

mother and to the siblings they raised (r=1). To vary genetic relatedness in the 

haploid model, we allowed some offspring to move between mothers before 

implementing their genetic helping rules.  Each offspring has a probability r of 

staying with her own mother before deciding whether to help her or leave to 

reproduce, and a probability 1-r of moving.   r is equivalent to relatedness to the 

new mother (after movement) because it represents identity to that mother above 

chance levels; a fraction r is identical to the head of their colony and her offspring 

(r=1), while the remainder are randomly associated with colonies (r=0).  After this 

temporary mixing, offspring execute the original Nowak et al. strategies: the solitary 

genotype always leaves to reproduce alone and offspring with the eusocial genotype 

stay and help their colony with probability q.  Differential equations implementing 

this model are given in the Methods (eqn. sets [3] and [4]). 

Fig. 3 shows when eusociality is favored under varying relatedness r, 

worker-assisted queen birthrate b, and probability of staying q (other parameters 

continue to match the standard Nowak et al. Fig. 4 parameter values: m=3, b0 = 0.5, 

d0 = 0.1, d = 0.01, = 0.1, = 0.01).  At a given value of b, eusociality if favored over a 
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wider range of q values at high relatedness than at lower relatedness until, below 

some critical value of relatedness, eusociality is never favored.  When all offspring 

move to random colonies so that relatedness is zero, even b=500 (a 1000-fold 

increase in the queen’s birthrate due to helpers) is insufficient to favor eusociality.  

As expected from inclusive fitness theory, relatedness is causal in the sense that 

some relatedness appears necessary for eusociality and increasing r allows 

eusociality to evolve under more conditions. 

To address the issue of whether worker offspring are independent agents or 

simply robots carrying out the queen’s interests, we need to compare models of 

control by different agents.  This means comparing models where the decision is 

made by genes in worker bodies to those where it is made by genes in queen bodies.  

Though Nowak et al. (2) seem to argue for queen control, their models are really all 

for offspring control because they assume that genes expressed in worker bodies 

determine the decision to stay or leave.  Our models, including the variable 

relatedness model above (eqn. set [4]) retain that assumption.   

However, inclusive fitness theory predicts that queen control will generally 

be more favorable for evolving eusociality (8) unless relatedness is one, in which 

case no conflict is expected.  To model queen control under varying relatedness in 

the haploid model, we allowed offspring to mix exactly as in the offspring control 

model above, but then allowed maternal genotypes to determine if their mixed 

offspring pool helps or not.  If the mother has the solitary genotype, all of her mixed 
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pool disperses to become reproductives; if the mother has the eusocial genotype, 

she causes a fraction q of her offspring pool to stay and help her, independent of 

offspring genotype.  Differential equations governing this system are given in the 

methods (eqn. set [5]).  As predicted by inclusive fitness theory, eusociality evolves 

much more easily under queen control (Fig. 4).  In fact, there is an opposite 

relationship with relatedness; the less related the queen’s offspring are to her 

(lower r) the more the queen is selected to cause them to be workers.  The only 

exception, as expected under inclusive fitness theory, is when there is no mixing 

between nests so r =1. Only then are the two decision rules selected identically. 

2.4. Discussion 

The controversy over the Nowak et al paper has mostly been conducted at 

rather abstract levels; different researchers favor different modeling strategies and 

interpret the evidence differently (2, 14-20, 24).   We take a different and more 

concrete approach by investigating their model for the evolution of eusociality more 

deeply.  If their methods are superior and raise novel insights, we should welcome 

them.  If instead their methods lead to errors, it tends to undermine the grander 

claims that the model is used to buttress.  

We have therefore followed the recommendation of Nowak et al. (2) for 

modeling social evolution, and in particular eusociality, using deterministic 

evolutionary dynamics described by ordinary differential equations. However, 
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stimulated by inclusive fitness thinking, we have sought to understand apparent 

differences between their results compared to previous models.  In every case, we 

find that their rejection of accepted results is premature, and that in fact the insights 

known from inclusive fitness theory also emerge using their method. 

First, the claim that eusociality is difficult to evolve (2)  hinges on 

assumptions that are heavily biased towards that conclusion, but little justification 

was given for why we should accept these narrow assumptions.  In particular, 

assumptions are made that imply that many workers waste their efforts.  First, their 

model allowed offspring to stay with probability q, independent of any information 

that might be available about the need for workers.  One advantage of inclusive 

fitness thinking is that it induces researchers to think of workers as agents being 

selected to get their better outcomes (higher inclusive fitness) using whatever 

information is available to them.  One such piece of information is the number of 

workers already present on the nest.  In the threshold fitness model, there is no 

inclusive fitness gain to be had from staying above that threshold, unless some 

workers die, so we asked if there was some obvious better decision rule than stay 

with probability q.  We therefore tested decision rules that have workers staying 

when the colony is below a threshold size (not necessarily the fitness threshold), 

and leaving when the colony is above that size.   Not surprisingly, we find that this 

class of decision rules makes it easier to evolve eusociality, because fewer workers 

are making wasteful decisions to stay in large. Such a rule seems well within the 

capabilities of workers.  They need not count adults.  They simply need to be able to 
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assess some reasonable correlate of the count, something that even microbes do 

when using quorum sensing to change their behavior.  For social insects, the 

mechanism might be the frequency with which they contact other adults or the 

hunger demands of offspring.  Thus part of the assertion that eusociality is difficult 

to evolve stems from an assumption that workers are rather stupid. 

Similarly, the threshold fitness model assumed by Nowak et al. greatly 

devalues worker behavior at the other, low, end of colony sizes.  In most of the 

model implementations, it was assumed that it was necessary to have two workers 

to provide any benefit at all to the queen (m=3).  That means that a first worker to 

join a colony provides nothing.   However is easy to imagine situations where the 

first worker to join would provide real benefits (28).  The simplest is that at this 

point one individual can guard the nest while the other forages (23).  Empirical 

evidence suggests that first helpers do provide benefits (29-34).  If we modify the 

Nowak et al threshold model to a step model where each worker below the 

threshold adds a fixed benefit, so that the effects of unjoined first workers are not 

wasted, eusociality evolves much more easily.  We have not jointly modeled both of 

modifications – the stepped fitness function and the altered worker decision rule – 

but it seems certain that this would lead to even easier evolution of eusociality.  But 

note that the stepped function by itself gets quite close to the inclusive fitness 

prediction which, given that relatedness is one, is that each worker needs to 

contribute to the queen more than what she herself loses.  The stepped-model 

eusociality threshold of b=1.5 from having two workers matches that requirement, 
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because each worker adds 0.5 units, and gives up 0.5 of her own by not reproducing.  

The comparison is not perfect both because the inclusive fitness comparison does 

not figure in the workers’ reduction of queen death rate in the model (which would 

decrease the b required for eusociality) and because some workers still join larger 

colonies and waste their effort (which would increase it).  But it does show that, 

with reasonable assumptions, eusociality evolves in the model about as easily as 

inclusive fitness theory predicts.   

The claims that relatedness only hastens the spread of eusocial alleles and 

that relatedness is not causal (2, 25) are also shown by our models to be false.  The 

proposition could not be tested in the Nowak et al. (2) models because they did not 

examine any low-relatedness case (15).   We have modeled variable relatedness and 

shown that high relatedness broadens the range of conditions (b, q) allowing 

eusociality to evolve. Relatedness affects not just speed of selection but whether it is 

favored at all.  Furthermore, when relatedness is zero, eusociality does not evolve 

even with very high benefits (increasing queen birthrate 1000-fold).  This shows 

that relatedness plays an essential and causal role.  Of course these are not 

surprising findings because the importance of relatedness was previously well 

understood from many kinds of models using inclusive fitness (1, 8), population 

genetics (35-37), quantitative genetics (38-40) and game theory (41, 42) as well as 

supported by much empirical evidence (8, 10, 43, 44).  What is surprising is that a 

contrary view would be advanced on the slim evidence of a model (2) that did not 

even investigate variable relatedness. 
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Finally, the assertion that workers are robots and simply part of the queen’s 

reproductive success (2) cannot be made without testing and contrasting queen and 

worker decision rules.  Nowak et al. (2) tested only offspring control models.  It is a 

longstanding result of inclusive fitness theory that there are can be parent-offspring 

conflict (26, 45).  In particular, for the eusociality context, inclusive fitness predicts 

that offspring will be selected to help their mothers under a narrower range of 

conditions than the mothers would favor (eusociality evolves more readily if 

mothers control the helping of their offspring) (8 pp. 58-63).  This is because of 

differences in relatedness.  For example, for singly mated diploids, a worker gains 

siblings (r=1/2) at the cost of offspring (r=1/2) while the mother gains offspring 

(r=1/2) but loses only grand offspring (r=1/4).  To examine this question, one must 

compare selection of offspring agency (genes expressed in the offspring determine 

whether she becomes a worker) versus maternal agency (genes expressed in 

mothers determine whether her offspring become workers). We constructed and 

compared haploid models for both offspring and maternal control.  As predicted by 

inclusive fitness theory, they evolve differently and can be in conflict; mothers favor 

helping by their offspring under a broader range of conditions than the offspring 

themselves favor, except when mothers and offspring are genetically identical.  In 

fact, when relatedness is low and eusociality is very difficult to evolve under worker 

control, it is very easy to evolve under queen control, because the queen is unrelated 

to most of the workers who pay the fitness cost.  This also shows that if queens 

really were in control from the beginning, their best option would be to force 
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unrelated offspring to help, which is contradicted by phylogenetic studies showing 

that relatedness was always high at the various origins of eusociality (43). In 

contrast, the standard kin selection model of worker control predicts this 

observation.  

The method advocated by Nowak et al. (2) offers the advantage of specifying 

parameters like birth and death rates explicitly and following their effects over time 

while allowing the some features, like colony size, to change.  We expect that these 

methods can be used to generate interesting results.  However, they are more 

complex and less intuitive than inclusive fitness thinking so considerable care is 

needed to fully understand them.  The common thread in the three errors pointed 

out in this paper is overgeneralization from narrow assumptions and particular 

parameter values. Eusociality was said to be difficult to evolve based on specific and 

questionable assumptions about the fitness function and offspring decision rules. 

Relatedness was said to be unimportant even though the models did not vary 

relatedness.  The assertion that workers are not independent agents was made in 

the absence of models that compared decision rules of different agents.   The more 

complex the model, the easier it is to be misled by particular results that are not 

general.   Besides being sure to explore multiple assumptions and parameter values, 

another way to avoid such problems is to understand prior work and relate it 

carefully to ostensibly new results.  In this case, the new model missed not just 

minor details, but some of the most important generalizations known from the last 

five decades of theory and empirical study.  Lack of agreement with prior inclusive 
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fitness results should have triggered more than a quick rejection of inclusive fitness 

and kin selection; it should have led to a questioning of why the results were, or 

seemed to be, different.   When examined more closely, models of the type 

advocated by Nowak et al. (2) do not overturn, but instead reaffirm, principles of 

social evolution discovered through inclusive fitness.  

2.5. Methods 

Our models are all based on the haploid model of Nowak et al. (2).  They 

modeled the evolution of eusociality with systems of differential equations tracking 

the number of solitary queens (x0) and eusocial colonies of size i (xi).  We use a 

modified notation because our low relatedness models require us to keep also track 

colonies headed by solitary-genotype queens. We therefore let ei be the number of 

colonies of size i headed by a eusocial queen (that is with i-1workers) and si be the 

number of colonies of size i headed by a solitary queen.  With this modified notation, 

equation set [58] of Nowak et al. (2) can be written as: 
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where bi and di are the birth and death rates of colonies of size i, q is the 
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probability that an offspring of a eusocial colony stays as a worker (offspring of 

solitary colonies never stay),  is the worker mortality rate, and  is a density-

dependent correction factor equal to 1/ (1+X), with X being the total population 

size including workers and is a parameter that scales the size of the system. 

For specific examples, Nowak et al. (2) usually used assumed birth rates and 

death rates were governed by a simple threshold function: below some threshold 

colony size m, bi = b0 and di = d0 ; at or above colony size m, bi = b and di = d.  Using 

Euler's method for numerical simulation in R, we reproduced the results of Fig. 4 in 

Nowak et al. (2)  

 We then tested an alternative worker decision rule.  Instead of staying 

with probability q, eusocial offspring always stay when colony size i < w and always 

leave when i >= w.   The equations are: 
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We also altered the fitness function from a single threshold to a step function 

in which each added worker adds the same amount, up to the maximum b attained 

at colony size m. The maximum gain in both models is the same, but now each 

worker up to size m adds something.  We can model this with equations [1]; if b0 is 

the birthrate of a solitary queen and b is the birthrate of a eusocial queen in colony 

size m, then let the birthrate of queens in smaller colony sizes i < m be b0 + (b - b0)/(i 

-1).   

The Nowak et al. models all assumed high relatedness. We modify their haploid 

model to incorporate a parameterized mixing step, which allows us to vary the 

degree of relatedness between queens and workers.  The mixing occurs before 

offspring decide to be workers or reproductive queens.  We implemented lower 

relatedness in two (similar) ways.  First, in our initial model, we allowed offspring 

from eusocial colonies to move to other mothers, eusocial or solitary, with 

probability r.  1) The offspring of the eusocial queens leave the colony to build their 

own eusocial ones with probability 1- q. 2) Of the rest probability q, the offspring of 

the eusocial queens stay with the nest with probability rq (r is relatedness to the 

mother they help because r of the time she is identical). 3) They migrate randomly 

among all nests (including eusocial and solitary ones) with probability (1-r)q.  Thus 
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(the total number of migrating eusocial workers divided by the number of eusocial 

and solitary mothers). After movement, eusocial offspring, on both eusocial and 

solitary nests, execute their staying rule (stay with probability q).  r is relatedness to 

the mother they help because r of the time she is identical, and 1-r of the time she is 

genetically random or unrelated.   The differential equations describing this system 

are then: 
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Here ei and si still represent numbers after decision rules are executed, and 

do not reflect the numbers in the transient mixing stage. These equations are used 

in Fig. 3.  To solve the ordinary differential equations above for the equilibrium 

status of the dynamic populations a first-order numerical procedure with the step 

size 0.1 were implemented in MATLAB.  The procedure were started with equal 

initial number (n=100) of solitary females and eusocial queens, and were 

terminated when 1) the solitary populations were extinct (defined as less than 0.05) 

and thus eusociality evolved; 2) the eusocial populations were extinct (defined as 
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less than 0.05) and thus eusociality didn't evolve; 3) both the solitary and eusocial 

populations did not change any more and thus solitary and eusociality co-exist; or 4) 

after a maximum of 200,000 time steps. 

In the model above movement of solitary offspring was not included but 

doing so would not change the outcome because either way they would ultimately 

to become reproductive.  But for comparing maternal and offspring control (Fig. 4), 

we needed a second implementation of variable relatedness. We let all offspring, 

eusocial and solitary move to a new mother with probability r.  In this second model, 

an offspring that initially mixes by moving to another colony is replaced by a 

eusocial or a solitary offspring with probabilities fe and fs, which are simply the 

proportions of such offspring produced in the population: 

𝑓𝑒 =
∑ 𝑏𝑖𝑒𝑖𝑖

∑ 𝑏𝑖∅(𝑠𝑖 + 𝑒𝑖)𝑖
 

𝑓𝑠 =
∑ 𝑏𝑖𝑠𝑖𝑖

∑ 𝑏𝑖∅(𝑠𝑖 + 𝑒𝑖)𝑖
 

Thus, a minor difference with the previous model is that here each colony 

receives not a fixed number of migrants but the same number that it donates.  But 

the main difference is that it can allow maternal control over offspring groups 

consisting of partly her own offspring and partly random offspring (including 

solitary).  We therefore can compare offspring control and mother control.  First, for 

offspring control, offspring genotype determines whether it stays with probability q 
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(eusocial offspring) or always leaves (solitary offspring). The equations describing 

changes in colony types are then: 

 

These equations are used in Fig. 4 for comparison with the maternal control 

model.  For both models Euler's method was used in R to numerically determine the 

equilibrium population* of the system, using a time step of h=0.1 a maximum colony 

size of n=50**, terminating when either E or S population/number of individuals 

was less than =0.1 or after a maximum of 50000 time steps. 

For maternal control therefore modified the variable-relatedness model in 

the previous section so that the mother’s genotype determines whether the 

offspring in her colony (some of them resulting from mixing from other colonies) 

stay and help.   

Mixing occurs as above, with a fraction 1-r of offspring initially moving to 

another mother.  After the mixing step, the differentiation of offspring into workers 

and queens depends not on the genotype of the offspring, but by the genotype of the 

queen in the same colony.  Thus, if the queen is eusocial, her (mixed) offspring will 

become new workers with probability q or new queens with probability 1-q.  If the 

queen is solitary, then all offspring will become reproductive. 
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Note that, unlike the worker model, there are no solitary colonies larger than 

one (after transient mixing stage) because a solitary queen always causes her 

offspring pool to disperse and become reproductive. 
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2.7.  Figure legends 

Figure 2.1 Eusocial evolution when the offspring decision rules is “stay if 

colony size is below w”. 

The solitary birthrate b0=0.5 gets raised to b in colonies of size m or larger.  Other 

parameters are as in Nowak et al. Fig. 4 (d0 = 0.1, d = 0.01, = 0.1, = 0.01). 

Eusociality evolves (filled circles) more easily (lower b) than under the decision rule 

(2) “stay with probability q”, for example at b=3 instead of b=4 when m=3. 
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Figure 2.2 Eusocial evolution under threshold fitness functions with no 

benefits to working below colony size 3 (two workers) (2) (solid circles) 

versus stepped functions where the one worker contributes half the benefit of 

two workers (open and solid circles).   

Eusociality evolves under a much broader range of maximum queen birthrates with 

the step function. Other parameters are as in Fig. 4 of Nowak et al. (2) (m=3, b0 = 0.5, 

d0 = 0.1, d = 0.01, = 0.1, = 0.01). 
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Figure 2.3 Eusocial evolution in the Nowak et al. (2) haploid model, but adding 

variable relatedness r (equations 3).   

Other parameters are as in Fig. 4 of Nowak et al. (2) (m=3, b0 = 0.5, d0 = 0.1, d 

= 0.01, = 0.1, = 0.01).  For any worker-assisted queen birthrate b, reducing 

relatedness decreases the range of q (offspring probability of staying) supporting 

eusocial evolution (filled circles).  As relatedness declines further, no eusociality 

does not evolve for any value of q.   
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Figure 2.4 Eusocial evolution under offspring versus maternal control.   

Filled circles show values of relatedness r and worker assisted queen birthrate b 

that select for eusociality if the decision in made by offspring (equations 4).  When 

the decision is made by genes acting in mothers (equations 5), eusociality evolves 

under much broader conditions (open and filled circles).  The open circles represent 

the zone of conflict, when mothers but not offspring favor eusociality.  Other 

parameters are as in Fig. 4 of Nowak et al. (2) (m=3, b0 = 0.5, d0 = 0.1, d = 0.01, = 

0.1, = 0.01). 
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2.8. Supplemental Materials 

Inclusive fitness theory predicts that altruistic behavior, such as that shown 

by workers in eusocial insects, can evolve when sufficient fitness benefits are given 

to relatives.  A different modeling approach has led to a challenge to this theory.   

The modelers claim that relatedness is not causal, that eusocial behavior is very 

hard to evolve, and that there is no conflict involved.   

 

2.8.1. Altruism is Easy to Evolve under High Relatedness 

Where Nowak et al. claim that relatedness is not causal but merely a 

consequence of eusociality, inclusive fitness theory predicts that relatedness is 

essential to evolve true altruism.  However, Nowak et al. did not test the role of 

relatedness r, as they kept it constant and high in their simulations.  Here we revise 

their asexual model, keeping everything the same except that with probability q 

helpers join a reproductive at random (r = 0) instead of staying with their mother (r 

= 1).  If we choose the same parameters that favor eusociality in Nowak et al.’s 

supplemental Figure 4, the unrelated model fails to favor eusociality for any value of 

q (supplement Figure s1).  Even if we increase the work contribution to queen 

fertility to 50, giving a 100-fold advantage eusociality does not evolve.  The reason is 

obvious:  helping of random reproductive gives no benefit to helper genes to 

compensate for the fitness cost of helping.  When r is intermediate with a fraction r 
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of helpers staying with their own mother, and 1-r joining at random, eusociality can 

be favored, with the minimum queen fertility decreasing as r increases, exactly as 

predicted from inclusive fitness.   

Two strategies: being solitary female or eusocial queen (Figure 2.8.1).  The 

strategy with the faster growth rate wins eventually.  Evolutionary dynamics of the 

two strategies are described by the system of linear differential equations.   

 

Figure 2.8.1.1 Solitary and Eusocial Strategies 
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The change in the abundance of solitary females, 0x  and eusocial colonies, ix  

with size ,...4,3,2,1, ii  
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Equation 2.8.1  Evolutionary Dynamics under High Relatedness 

q  Is the probability that the offspring of the eusocial queen stay with the nest; 00 ,db  

is reproductive rate and death rate of solitary females; ii db ,  is reproductive rate and 

death rate of a eusocial queen in a nest of size i ; and   is worker’s death rate.  

We can also write these equations as following. 
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eee XMX  . 
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Whether or not eusociality is selected depends on how the demographic 

parameters of the queen change with colony size. One possibility is to consider a 

simple step function with a critical colony size, m. For small colonies, i < m, the key 

parameters of the eusocial queen are the same as those of solitary females:

00, ddbb ii  . For large colonies, i ≥ m, the eusocial queen has an increased 

fecundity and a reduced death rate: 00, dddbbb ii  . 

Note that intermediate q values (0.36 < q < 0.9) are needed for eusociality to 

evolve (Figures 2.8.1.2 and 2.8.1.3). The intuitive explanation is as follows.  

For low q there are too few colonies reach the critical colony size, m, where 

the advantage of eusociality begins, and too many workers sacrifice for nothing.  

Since a eusocial queen in colony of size m-1 has the same birth rate and death rate 

as a solitary female, the first m-2 workers don’t contribute to the advantage of 
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eusociality until the (m-1)th worker joins in and the queen has increased fecundity 

and reduced mortality. 

On the other hand, if the value of q is too large then the colonies produce too 

few new queens and too many extra workers.  Extra workers than the first m-1 ones 

joining in colonies do not contribute to the advantage of eusociality because queens’ 

fecundity and mortality don’t change any more. 

Of course, the disadvantage of eusociality is that some of the offspring 

(workers) do not reproduce; they are subject to worker mortality and they die when 

the queen dies. Therefore, intermediate values of q allow the evolution of 

eusociality.  There exists relatedness between eusocial queens and workers, and the 

relatedness is one. 
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Figure 2.8.1.2  Eusociality Evolves for Intermediate Values of q 
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Figure 2.8.1.3 Eusociality Evolves under High Genetic Relatedness 
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2.8.2. Altruism cannot Evolve without Relatedness 

The offspring of the eusocial queens migrate randomly among all nests 

(including eusocial and solitary ones) with probability q; they leave the colony to 

build their own eusocial ones with probability 1- q.   

Solitary females can and only can acquire workers from eusocial colonies, 

and thus they have increased fecundity and reduced mortality in the presence of 

workers, just the same as eusocial queens.  We assume a solitary female has the 

same reproductive rate and death rate as a eusocial queen in a colony of the same 

size.  Since they can’t acquire workers from solitary nests, eusocial queens pay all 

the cost of producing workers, but every one reaps the gains of the workers 

randomly.  Therefore, since there is no longer any correlation between mother and 

helper genes, the relatedness in average is zero between queens and workers 

(Figure 2.8.2).  

Just like the definition of ix , let is  denote the abundance of solitary nest with 

size i.  Here i = 1, 2 ... represents the number of individuals in the colony including 

the solitary female.  Thus, 1s  denotes nests with single solitary females, while 2s  

denotes nests where a solitary female has one worker, and so on.  A solitary female 

in a nest of size i has the same reproductive rate ib  and death rate id  as a eusocial 

queen in a colony of the same size.  Denote   
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Equation 2.8.2  Average Birth Rate Among Colonies Without Genetic 

Relatedness 

The numerator is the total number of migrating workers, and the 

denominator is the total number of nests.  So b  is the proportion of migrating 

workers that each nest acquires. Those workers which join in the eusocial and 

solitary nests of size i  are ixb , isb , respectively.  Those offspring who leave the 

eusocial and solitary nests of size i  to build their own are iixbq)1(  , iisb .  

The equations (58) change to 
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Equation 2.8.3 Evolutionary Dynamics without Genetic Relatedness 
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We can also write these equations as following. 
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Figure 2.8.2 Eusociality can’t evolve without genetic relatedness 
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2.8.3. The Higher the Relatedness, the Easier Altruism to Evolve 

The offspring of the eusocial queens stay with the nest with probability pq; 

they migrate randomly among all nests (including eusocial and solitary ones) with 

probability (1-p)q; they leave the colony to build their own eusocial ones with 

probability 1- q.  Therefore, the relatedness in average is in range of zero and one 

between queens and workers, r = p.   Denote  






















11

1

)1(

i

i

i

i

i

ii

sx

xqbp

b  

Equation 2.8.4  Average Birth Rate Among Colonies With Various Genetic 

Relatedness 

The numerator is the total number of migrating workers, and the 

denominator is the total number of nests.  So b  is the proportion of migrating 

workers that each nest acquires randomly. 

Those workers which stay in the eusocial nests of size i are iixpqb .  Those 

workers which join randomly in the eusocial queen nests of size i are ixb .  Those 

workers from eusocial colonies which join randomly in the solitary nests of size i are 

isb .  Those offspring who leave the eusocial colonies and solitary nests of size i to 

build their own ones are iixbq)1(  , iisb , respectively. 
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The equations (58) change to 
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Equation 2.8.5  Evolutionary Dynamics under Various Genetic Relatedness 

We can also write these equations as following. 
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Multiply each birth term with a factor of density limitation 
X





1

1
,  and 

the population size  
i

ii isixX )( . 

The Figure 2.8.3 shows that the higher the relatedness, the easier altruism to 

evolve. 
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Figure 2.8.3 The Higher the Relatedness, the Easier Altruism to Evolve 
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b = 5 b = 6 
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2.8.4. Eusociality is Easy to Evolve under Flexible Strategies of Workers 

Another surprising claim of Nowak et al. was how difficult eusociality was to 

evolve; it required a very high increase in queen birth rate, and no decrease in 

queen death rate was sufficient in itself.  However, these results are due largely to 

assumptions of the particular models that are neither biologically realistic nor 

necessary to the modeling approach.  The particular assumptions responsible are 

that queen fitness is a step function with a single upward step at a critical colony 

size m (usually m = 3 in their examples) and that worker behavior is inflexible – a 

fraction q of them stay, independent of circumstance.  One solution is to remove the 

threshold from the model – there is little empirical evidence that benefits kick in 

only after surpassing a critical worker number – but even if thresholds reflect 

reality, the worker behavior does not.  If we use inclusive fitness think that about 

worker options under a step function, we see two problems associated with the 

inflexible strategy.  First, when a worker joins below the threshold, it contributes 

nothing until enough other workers join, and it may have to wait some time as a 

fraction 1-q of its sibling leave.  Second, after the threshold has been surpassed, the 

fraction of workers who later join contributes nothing further (except for staying 

above the threshold when previous workers die).  A simple strategy that would 

minimize these problems is for workers to always join when the colony is below the 

cap colony size m’ and always leave when the colony has reached that size, where 

the optimum m’ will likely be near the critical colony size m.  We have implemented 

this strategy for the asexual model with a new derived transition matrix.  Running 
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the model shows that it does indeed make eusociality pay at much lower queen 

fecundities (b values) than inflexible strategy (Figure 2.8.4).  It also becomes 

possible to select for eusociality purely by decreasing the queen’s death rate. 

With the same death rate d we expect lower birth rate b for eusociality to 

evolve in the modified model than that in Nowak et al.   

Offspring of colony size, i, stay with iiqp , migrate with ii qp )1(  , and leave 

with iq1 .  

Assume low and upper threshold of colony size, ls mm , ,...4,3,2,1 , ls mm  .  

When smi  , then offspring always stay ( 1ip , 1iq ); when lmi  , then offspring 

always leave ( 0ip , 0iq ); when ls mim  , ppi  , qqi  .  If mmm ls  , then 

offspring always stay when mi   and leave when mi  . 

So the first ms-1 workers always stay, and the extra workers over ml-1 always 

leave; the intermediate workers either stay or migrate.  This will make eusociality 

easier because (1) they will reach the critical colony size sm  quicker, and (2) they 

won’t have useless additional workers above the upper threshold of colony size.  We 

could also combine it with the step-forward birth and death rates for the first ms-1 

workers.  Denote  
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Equation 2.8.6   Average Birth Rate Among Colonies With Flexible Strategies of 

Workers 

The equations (58) change to 
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Multiply each birth term with a factor of density limitation, 
X
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1
,  and 

the population size  
i

ii isixX )( . 
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Assume threshold of work number w-1, w = 1, 2, 3...  When colony size i < w, 

then offspring always stay; when i >= w, then offspring always leave. 
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Denote the abundance of solitary females, 0x , and eusocial colonies, ix , with 

size ,...4,3,2,1, ii And 00 ,db  is reproductive rate and death rate of solitary females; 

ii db ,  is reproductive rate and death rate of a eusocial queen in a nest of size i ; and 

  is worker’s death rate.  Multiply each birth term with a factor of density 

limitation 
X





1

1
,  and the population size 

i

iixxX 0 . 

 0000 )( xdbx    

 211111 xxdxbxbx
wi

ii  




  

 111 )1(   iiiiiiiii ixxixdxbxbx   1,...,3,2  wi  

 111 )1(   iiiiiii ixxixdxbx    wi   

 1)1(  iiiii ixxixdx   ,...2,1  wwi  

Equation 2.8.7 Evolutionary Dynamics With Flexible Strategies of Workers 
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Figure 2.8.4  Flexible Strategies with Threshold of Workers Number 
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2.8.5. Conclusions 

Here I showed that, even within the terms of this modeling framework, 

inclusive fitness thinking leads to insights that completely change these conclusions.  

I showed that relatedness is causal, that eusociality is not so difficult to evolve, and 

that there can be conflict between queens and workers.  I concluded that multiple 

modeling approaches are useful and that efforts to synthesize them are better than 

asserting that one is universally better than the other.    
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Chapter 3 

Evolutionary Dynamics of Genetic Kin 

Recognition: a General Model 

3.1. Abstract 

Altruism is a behavior that benefits others at a cost to one’s own ability of 

survival and/or reproduction. Either greenbeard effects or genetic kin recognition 

requires genetic polymorphisms as cues on which recognition is based. Previous 

models show that rare cue alleles get eliminated by selection and a common allele 

gets fixed, which ruins the altruism system. So it is unclear how genetic recognition 

for altruism persists. Here, I designed a novel model with three types of genetic 

components, production, perception, and action. Our recognition model suggested 

the stability of recognition for altruism that altruism can maintain multiple 

recognition cues and be evolutionarily stable.      
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3.2. Introduction  

In 1964 W. D. Hamilton produced an elegant formal theory that provided a 

potential solution to this problem (Hamilton 1964).  Hamilton argues that altruistic 

acts to relatives can be favored by natural selection, because relatives share the 

same gene as helpers.  Hamilton expanded the definition of fitness in terms of 

inclusive fitness which is the sum of a direct benefit through producing offspring 

and an indirect benefit through aiding genetic relatives.  Hamilton made these two 

components additive by devaluing each offspring or relative by the genetic 

relatedness to them.  

From this Hamilton predicted that altruism will be favored by natural 

selection when the inequality 0CrB  is satisfied, where B is the benefit of the act 

of altruism to the recipient, C the cost of the act to the actor and r the genetic 

relatedness between the actor and the recipient (Hamilton 1964).  Inclusive fitness 

is applicable not only to helping but also to any behavior (West et al. 2007b).  This 

inequality has now come to be known as Hamilton’s rule. Hamilton’s theory is also 

frequently referred to as the inclusive fitness theory or kin selection.  

However, testing Hamilton’s rule without measuring the cost and benefit of 

eusociality is an inadequate test.  Focusing only on relatedness and neglecting the 

cost and benefit terms usually takes the form of assuming implicitly that B = C.  In 

my thesis I plan to design a novel model of genetic kin recognition and to explore 
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the range of fitness costs and benefits with the model to explain how eusociality 

could evolve and persist.   

Kin selection depends on the identification of relatives.  Recognition is often 

accomplished through genetic systems that use variable genetic cues (the 

production component), detection and evaluation of those cues (the perception 

component), and the social behavior (the action component) (Table 3.1).  

In the models below, I consider selection on a haploid organism, with cue loci 

and perception loci that are unlinked.  For simplicity disequilibria generated by 

selection are ignored (though they will not be ignored in the computer models).  

Each individual is faced with the choice of helping a partner.  The partner will be a 

relative related by r a fraction p of the time; the remaining 1-p of the time the 

partner will be unrelated.  Altruism is determined by matching at the cue locus and 

evaluation at the perception locus.  When a match at the cue locus occurs, and when 

the perception locus perceives and passes on the match, the individual loses –c units 

of fitness but gives its partner b units of fitness (Table 3.2). 

3.3. Negative Feedbacks from Judge to Cue 

  In our model, actor recognizes and helps partner if the following two 

requirements of recognition are fulfilled (Table 3.1 and 3.2). The first requirement is 

that Cue alleles of actor and partner match each other. So the Cue locus is a 

greenbeard locus. (The effect of matches at the Cue locus is to help others who 
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actually have the allele.) .  When c < b, Cue alleles can be favored by altruism, and 

common Cue alleles are more likely to get benefits than rare Cue alleles.  The second 

requirement is that actor’s Judge allele accepts the matches of Cue alleles. It doesn’t 

matter what partner’s Judge allele is. In our model, actor’s J1 accepts the matches of 

C1 and rejects all other Cue allele matches.  J2 rejects all Cue allele matches except C2.   

So C1 is favored by J1 and disfavored by J2. C2 is favored by J2 and disfavored by J1. 

Where there are no relatives being aided, the Judge locus does not benefit easily 

from altruism since it’s unlinked to the greenbeard Cue locus. It benefits only when 

altruism helps copies of the Judge allele in partner. So the best thing for Judge alleles 

is not to do any altruism at all.   When altruism has a chance to be performed to 

relatives, and c < rb, both Cue and Judge alleles can be favored since relatives are 

likely to share the same allele at each locus.  We expect that when a common Cue 

allele, let’s say C1, causes too much altruism from the view of Judge alleles, J1 that 

accept the matches of C1 will be disfavored much more than other Judge alleles. This 

in turn will cause the frequency of common C1 to come down.  In contrast, when rare 

C1 causes too little altruism, J1 will be disfavored much less than other Judge alleles. 

This in turn will cause the frequency of rare C1 to go up.  Clearly, Cue alleles have 

negative feedbacks from Judge alleles, which could lead allele frequencies oscillate 

over time, and thereby maintain all alleles.  
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3.4. Genetic Relatedness at Each of Three Loci 

The genetic relatedness for each of three kinds of loci takes into account the 

helping of partners with the same allele, above random levels of that allele (Table 

3.3).  To the extent that they help individuals with random levels of the allele, that 

benefit won’t change gene frequencies and therefore don’t contribute to relatedness.  

In each case the denominator is all matches at the cue locus, and the numerator is 

the proportion of those matches that are identical-above-random at the locus in 

question (Cue, Judge, or Act).   

For the cue allele, the genetic relatedness is 1 because the numerator is the 

same as the denominator, which consists of two proportions: 1) the proportion of 

clonemate partners, p; and 2) the proportion of non-relative partners bearing the 

matched cue allele, 
jKfp)1(   (Table 3.3, Figure 3.1).  For all matches at the cue 

locus, the beneficiary will share the altruist’s cue allele above random levels.  Even 

though some of the partners are random non-relatives, the ones who get aided are 

the non-random set that carries the matched cue allele.  Usually it is relatedness that 

causes non-random identities, but here it is the matching process.   

For genetic relatedness of  the judge allele, when there are matches at the cue 

locus (denominator), the fraction which gives matches at the judge locus above 

random level is only the proportion of clonemates, p  (Table 3.3, Figure 3.1).  There 

will be some additional matches at the judge locus for non-relatives, but there are 



 
83 

 

random matches and will be exactly canceled out by non-matches among the non-

relatives.  Among the non-relatives, judge alleles are being helped at their 

population frequencies, so they don’t contribute to selection and therefore don’t 

contribute to the relatedness.  

For the action allele, when there are matches at the cue locus, the fraction 

which gives matches at the judge locus above random level is only the proportion of 

clonemates, p (Table 3.3, Figure 3.1).   

The relatedness of the cue takes into account all matches but relatedness of 

the judge and the action only counts some of them because none of the matches are 

random for the cue locus but some of them are random for the judge locus and the 

action locus.  

The genetic relatedness for each of three kinds of loci is the same as the 

maximum c/b value that will favor altruism for that locus (Figure 3.1). 

3.5. Mathematical Analysis of the Model 

Mathematical Analysis of the Model for one production locus with multiple cue 

alleles, one perception locus with multiple judge alleles, and one action locus with 

one act allele (Table 3.2) 

Actor’s recognition of its partner is based on their genetic loci: actor’s cue 

allele xk  and judge allele xj , and partner’s cue allele 
yk  and judge allele yj .  Actor 
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performs altruistic behavior to its partner only when both of two following 

requirements are fulfilled: 1) their cue alleles match each other, denoted by yx kk  ; 

and then 2) actor’s judge allele accepts matches of their cues, denoted by xyx jkk 

.  Partner’s judge allele doesn’t involve in the recognition process.  We assume each 

judge allele only accepts matches of the certain cue.  Let cue alleles in the population 

be ..., 21 kk , judge alleles be ..., 21 jj , and 1j  accept matches of 1k , 2j  accept matches 

of 2k  ..., and so on.  

 Let  
xx jkg ,  is actor’s genotype with cue allele xk  and judge allele xj , and

yy jkg ,  is partner’s genotype with cue allele yk  and judge allele yj .  Assume each 

individual has a fraction, p, that partner is its clonemate.  Then frequency of altruism 

in the population af  is 





yxyx

yyxx

xx

xx

jjkk

jkjk

jk

jka ggpgpf
,

,,, )1(  

Equation 3.1  Frequency of Altruism in the Population 

where ...;,, 21 kkkk yx   ...,, 21 jjjj yx  .  The former fraction, 
 xx

xx

jk

jkgp , , is frequency 

of altruisms performed between clonemates. Since each individual has a clonemate 

and they share the same alleles, altruistic behavior will be performed when judge 

allele accepts matches of cues.  The latter fraction, 



yxyx

yyxx

jjkk

jkjk ggp
,

,,)1( , is 
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frequency of altruisms performed between nonrelatives.  It not only requires 

matches of their cues, but also those matches must be accepted by actor’s judge 

allele. 

The frequency of altruism by descent is 





kj

kjd gpf ,  

Equation 3.2 The Frequency of Altruism by Descent 

Let the cost of altruistic behavior be c, the benefit be b, and initialized fitness 

of each individual be w0.  Then, the mean fitness of the population after altruism is  

afcbww )(0   

Equation 3.3 The Mean Fitness of the Population after Altruism 

The mean fitness of individuals bearing the cue allele k, ..., 21 kkk  , and the 

judge allele j, ..., 21 jjj  , is  
















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


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jkgbpgcpcbpw
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,)1(

,)1()1()(

,0

,

,

,0

,  

Equation 3.4  The Mean Fitness of Individuals 
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where ...,, 21 kkkk yx  ; ...,, 21 jjjj yx  .  This is because when its judge allele could 

accept matches of cues ( jk  ), the fitness of the individual having cue k and judge j 

allele will be influenced in three situations. 1) With a fraction p the individual 

encounters its clonemate.  Since the clonemates share the same cue allele and its 

judge allele accepts the matches of these cues, the actor helps the clonemate.  The 

actor pays the cost of c and its clonemate receives the benefit of b.  Thus, it increases 

their mean fitness by )( cbp  .  2) With a fraction 1-p the individual encounters 

nonrelatives. It helps those who share the same cue allele with it and pays the cost 

of c each time.  Thus, it decreases its fitness by 



yy

yy

jjkk

jkgcp
,

,)1( .  3) In reverse it 

may obtain benefits from nonrelatives who provide help to it and thus increase its 

fitness by 



xx

xx

jkk

jkgbp ,)1( .  When its judge allele can never accept matches of cues (

jk  ), the individual will never help others but can receive help from nonrelatives 

and get benefits of 



xx

xx

jkk

jkgbp ,)1( . 

Let frequencies of cue and judge alleles be ...,
21 kk ff  (or ..., 21 pp ) and ...,

21 jj ff  

(or ..., 21 qq ), respectively.  Offspring of the next non-overlapping generation are 

sexually reproduced by random parents chosen proportionally to their fitness.  Let 

the recombination rate between the cue and judge loci be h.  We assume no 

mutation.  Frequencies of genotypes become 
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w
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w
ghg
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j
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jk
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,

,, )1('  

Equation 3.5  The Frequencies of Genotypes 

where kw  and jw  are the mean fitness of cue allele k and judge allele j, respectively.  

This follows because a fraction (1 − h) of the haplotypes in the offspring have not 

recombined, and are thus copies of a random haplotype in their parents. A fraction 

w

w
g

kj

kj

,

,  of those are the probability of the haplotypes chosen as parents, which is 

the production of the haplotype frequency and its proportional fitness.  A fraction h 

of the haplotypes have recombined the cue and judge loci.  Since the parents result 

from random mating, the probability of the copy at cue locus having allele k is 
w

w
f k
k  

and the probability of the copy at judge locus having allele j is 
w

w
f

j

j , and as these 

copies are initially on different haplotypes, these are independent events so that the 

probabilities can be multiplied.   

The frequencies of cue and judge alleles become 

w

w
ff k

kk ' 
j

jkjk wg
w

,,

1
, ..., 21 kkk   

Equation 3.6  The Frequencies of Cue Alleles 
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Equation 3.7  The Frequencies of Judge Alleles 

So frequencies of genotypes also become 

))((
1
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,
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k
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j

jkjk

jk

jkjk wgwg
w

h
w

w
ghg , ..., 21 kkk  , ..., 21 jjj   

Equation 3.8  The Frequencies of Genotypes 

3.6. Prediction of Stability of Evolution of Altruism and Eusociality 

What it takes into account is the helping of partners with the same allele, 

above random levels of that allele.  To the extent that they help individuals with 

random levels of the allele, that benefit won't change gene frequencies). In each case 

the denominator is all matches at the cue locus, and the numerator is the proportion 

of those matches that are also identical-above-random at the locus in question (cue, 

judge, or act) (Figures 3.1, 3.2, and 3.3). 

So for the cue allele, r=1 because the numerator is the same as the 

denominator (same denominator as for judge r) (Figures 3.1, 3.2, and 3.3). For all 

matches at the cue locus, the beneficiary will share the altruists cue allele above 

random levels.  Even though some of the partners are random non relatives, the 
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ones who get aided are the non-random set that carry the matched cue allele.  

Usually it is relatedness that causes non-random identities, but here it is the 

matching process. 

For the judge r, when there are matches at the cue locus (denominator), the 

fraction give matches at the judge locus above random levels is p, the proportion of 

clonemates (Figures 3.1, 3.2, and 3.3).  There will be some additional matches at the 

judge allele for non-relatives, but these are random matches and will be exactly 

canceled out by non-matches among the non-relatives.  Among the non-relatives, 

judge alleles are being helped at their population frequencies, so they do not 

contribute to selection (and therefore don't contribute to r).  So what is confusing is 

that counts all matches for the cue r, but only some of them for the judge r.  It's 

because none of the matches are random for the cue locus but some of them are 

random for the judge locus. 

When partners are more likely to be your clonemates, that is high p, it is 

easier to reach the stability of altruism since your partners share the same genes 

(Figures 3.4). 

When there are more cues in the population, it is more accurate to 

distinguish kins from non-kins.  So high diversity of recognition cues favors the 

evolutionary dynamics of altruism (Figures 3.5). 

Plots of Shannon’s diversity index for cue and judge alleles.  The main 

advantage of that is that you will be able to quickly screen results of many 
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simulations to see if there are some conditions that maintain diversity (Figures 3.6, 

3.7, 3.8 and 3.9). 

]ln,0[,ln
1

nHffH i

n

i

i  


 

Equation 3.9 Shannon’s diversity index for cue and judge alleles 

Some of the assumptions in the theoretical model of genetic kin recognition 

are: genetically unlinked cue and judge loci (recombination rate = 0.5); no selection 

except kin recognition; non-random mating (sexually reproduction proportionally 

to fitness); non-structure population (encounter each other randomly); no 

mutation; no genetic drift. 

3.7. Conclusions 

Our recognition model suggests the stability of recognition for altruism that 

altruism can maintain multiple recognition cues and be evolutionarily stable.  I 

found that all the frequencies of alleles can oscillate synchronously over time and 

eventually converge to stable equilibrium states in the model for one production 

locus with multiple cue alleles, one perception locus with multiple judge alleles, 

(and one action locus with one act allele).  The altruistic acts still happen at the 

equilibrium states since none of the genotypes gets fixed. 
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3.9. Table legends 

 

Table 3.1  Alleles Indexes at Three Loci 
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Table 3.2  Payoff matrix of altruism 
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Locus Genetic relatedness, r 
Actor’s 

cost, C 

Recipient’s 

benefit, B 

Cue 1 )(  Cuer  c b 

Judge 
iCfpp

p
Judger

)1(
 )(  


  c b 

Action 



r(Act) 
p

p (1 p)( fC1
2
fJ1  fC2

2
fJ2 ) /( fC1 fJ1  fC2 fJ2 )

 c b 

Table 3.3 Genetic Relatedness at Each of Three loci 
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3.10. Figure legends 

 

Figure 3.1  Genetic Relatedness at Each of Three loci 

 



 
102 

 

 

Figure 3.2 Genetic Relatedness for all alleles at three loci
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Figure 3.3  Prediction of Stability of Evolution of Altruism and Eusociality
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Figure 3.4 Genetic Relatedness with Two Cue Alleles
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Figure 3.5  Genetic Relatedness with Ten Cue Alleles
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Figure 3.6  Plots of Shannon’s diversity index for two cue and judge alleles 

(c/b=0.82). 
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Figure 3.7 Plots of Shannon’s diversity index for two cue and judge alleles 

(c/b=0.9).
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Figure 3.8 Plots of Shannon’s diversity index for three cue and judge alleles 

(c/b = 0.65). 
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Figure 3.9 Plots of Shannon’s diversity index for three cue and judge alleles 

(c/b = 0.9). 
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Chapter 4 

Exploring Fitness Cost/Benefit to 

Solve the Crozier’s Paradox 

4.1. Abstract 

Previous models show that rare cue alleles get eliminated by selection and a 

common allele gets fixed, which ruins the altruism system.  So it is unclear how 

genetic recognition for altruism persists.  Here, I designed a novel model with three 

types of genetic components, production, perception and action. I tested whether 

interactions between perception and production loci could evolve to reject common 

cue alleles, allowing multiple cue alleles persist.  I found that all the frequencies of 

the genotypes, alleles and altruistic acts can oscillate over time and eventually 

converge to stable equilibrium states. 

4.2. Introduction 

In 1964 W. D. Hamilton produced an elegant formal theory that provided a 

potential solution to this problem (Hamilton 1964).  Hamilton argues that altruistic 
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acts to relatives can be favored by natural selection, because relatives share the 

same gene as helpers.  Hamilton expanded the definition of fitness in terms of 

inclusive fitness which is the sum of a direct benefit through producing offspring 

and an indirect benefit through aiding genetic relatives.  Hamilton made these two 

components additive by devaluing each offspring or relative by the genetic 

relatedness to them.  

From this Hamilton predicted that altruism will be favored by natural 

selection when the inequality 0CrB  is satisfied, where B is the benefit of the act 

of altruism to the recipient, C the cost of the act to the actor and r the genetic 

relatedness between the actor and the recipient (Hamilton 1964).  Inclusive fitness 

is applicable not only to helping but also to any behavior (West et al. 2007b).  This 

inequality has now come to be known as Hamilton’s rule. Hamilton’s theory is also 

frequently referred to as the inclusive fitness theory or kin selection.  

However, testing Hamilton’s rule without measuring the cost and benefit of 

eusociality is an inadequate test.  Focusing only on relatedness and neglecting the 

cost and benefit terms usually takes the form of assuming implicitly that B = C.  In 

my thesis I plan to design a novel model of genetic kin recognition and to explore 

the range of fitness costs and benefits with the model to explain how eusociality 

could evolve and persist.   

The genetic cues of the production component are shown to be greenbeard 

genes.  There are alleles that, in effect, recognize copies of themselves in others, 



 
112 

 

regardless of relatedness at other loci.  The greenbeard nature of these alleles is 

responsible for what is known as Crozier's paradox, the observation that selection 

favors common cue alleles and thereby removes the variation that is required for 

discrimination (Crozier RH 1986, Crozier RH 1987, Crozier RH & Pamilo P 1996).  

Altruistic greenbeard alleles are outlaw genes because, by causing altruism towards 

others who are not relatives, they act against the interest of other genes in the 

genome.  This can lead to intragenomic conflict, with other genes being selected to 

eliminate the extra altruism, if they can do so without also eliminating themselves as 

targets of altruism.   

We reconceptualize the components of kin recognition in terms intragenomic 

conflict.  The genetic cues of the production component are shown to be greenbeard 

genes.  There are alleles that, in effect, recognize copies of themselves in others, 

regardless of relatedness at other loci.  The greenbeard nature of these alleles is 

responsible for what is known as Crozier's paradox, the observation that selection 

favors common cue alleles and thereby removes the variation that is required for 

discrimination.  Altruistic greenbeard alleles are outlaw genes because, by causing 

altruism towards others who are not relatives, they act against the interest of other 

genes in the genome.  This can lead to intragenomic conflict, with other genes being 

selected to eliminate the extra altruism, if they can do so without also eliminating 

themselves as targets of altruism.   
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In recognition systems this is easily accomplished by genes in the perception 

component; they will be selected to ignore high-frequency cue alleles in their 

decisions to give altruism.  This in turn can decrease or reverse selection for 

common alleles, solving Crozier's paradox.  In this view, greenbeard genes are far 

from rare, but are at the foundation of all genetic cue mechanisms.   Their 

inappropriate levels of altruism need to be tamed by loci in the perception or action 

components before such recognition systems can be effective in implementing 

inclusive fitness.   

In the models below, I consider selection on a haploid organism, with cue loci 

and perception loci that are unlinked.  For simplicity disequilibria generated by 

selection are ignored (though they will not be ignored in the computer models).  

Each individual is faced with the choice of helping a partner.  The partner will be a 

relative related by r a fraction p of the time; the remaining 1-p of the time the 

partner will be unrelated.  Altruism is determined by matching at the cue locus and 

evaluation at the perception locus.  When a match at the cue locus occurs, and when 

the perception locus perceives and passes on the match, the individual loses –c units 

of fitness but gives its partner b units of fitness.  

Imagine a recognition system that causes altruism whenever the actor and its 

partner have the same alleles at the matching locus.  In the background of the 

perception and action genes generating altruism by this kind of rule, the effect at the 

matching locus is a simple greenbeard effect: it causes altruism to occur regardless 
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of whether the partner is a relative who shares the allele identical by descent or a 

random individual who shares the allele identical by state.  The objection might be 

raised that the matching allele does not mechanistically cause the altruism, because 

other genes are also required for that.  But this objection would apply to all genes 

for complex traits.  A gene for long tails does not create a long tail by itself; many 

other genes are required.  But we say it is a gene for long tails because (on average) 

it makes the difference between a longer and a shorter tail.  Our matching locus in a 

greenbeard gene in this sense –it makes the difference between altruism and no 

altruism and it does so in a way that pays no attention to kinship. 

Here, I design a novel model with three types of genetic components, 

production, perception and action. I test whether interactions between perception 

and production loci could evolve to reject common cue alleles, allowing multiple cue 

alleles persist.  I found that all the frequencies of the genotypes, alleles and altruistic 

acts can oscillate over time and eventually converge to stable equilibrium states. 

Our recognition model suggests the stability of recognition for altruism that 

altruism can maintain multiple recognition cues and be evolutionarily stable.  I 

found that all the frequencies of alleles can oscillate synchronously over time and 

eventually converge to stable equilibrium states in the model for one production 

locus with multiple cue alleles, one perception locus with multiple judge alleles, and 

one action locus with one act allele.  The altruistic acts still happen at the 
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equilibrium states since none of the genotypes gets fixed. And the frequency of 

altruistic acts remains constant since the genotype frequencies remain constant.  

Furthermore, both rare Cue and Judge alleles can invade into the system 

though they can’t be stabilized. Since the invasion of rare Cue alleles and the 

stabilization of recognition are not under the same conditions, it is still unclear how 

rare cues could be maintained by altruism.   

4.3. Recognition Bases on Multiple Cues 

Altruism is a common behavior in nature which benefits others at a cost to 

one own fitness.  Hamilton’s rule tells us if genetic relatedness r in a population 

equals to 1, such as in clonemates, altruism can evolve when fitness benefit b is 

larger than cost c.  The kin recognition mechanism argues that according to a 

complex system, which in general consists of three genetic components.  Production, 

perception, and action, individuals can recognize their relatives based on their 

production cues, and favor each other. Since relatives are likely to share same genes, 

genes of those who perform altruism could be inherited through copies in their 

relatives’ offspring. That’s how altruism can evolve.  The recognition for greenbeard 

mechanism is simple. It’s only based on a single gene. Those who share a same 

greenbeard gene can discriminate and help each other.  In both mechanisms, 

recognition is based on multiple cues. If multiple cues persist in a population, 

recognition could be stable.  



 
116 

 

Recognition is unstable.  However, previous models eventually lead to a fixed 

cue. In greenbeard, those who have common greenbeard alleles, such as the red one 

in this diagram, are more likely to favor each other than those of rare ones, such as 

the blue one. And thereby common greenbeard alleles spread. If there are no other 

forces to check this spread, a common allele will eventually fix in a population. In 

the diagram, the red fixes and the blue goes extinct.  In kin recognition, it leads to 

the same consequence. A common production cue fixes. When there is only one cue 

left, all individuals are same and can‘t be discriminated. So recognition in previous 

models is unstable. Recognition could be stable only when multiple cues, rather than 

a fixed cue, are maintained in populations by altruism.  So, how could multiple cues 

be maintained? 

Stable recognition model. To answer this important question, I designed a 

novel model in which recognition for altruism is based on two genetic components. 

production and perception. The Cue locus in the production component has two 

alleles. C1 and C2. The Judge locus in the perception component also has two alleles. 

J1 and J2.  The two loci are unlinked.  Our hypothesis is that common Cue alleles 

could be disfavored and rare ones favored by negative feedbacks from Judge alleles, 

and thereby multiple cues could be maintained.  How do negative feedbacks occur in 

the model? 
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4.4. Simulation of Pure Greenbeard 

To test whether our model is stable or not, we do computational simulations 

in two steps. We first simulate in a pure greenbeard system without kin recognition; 

and then simulate in a combined system of greenbeard and kin recognition. In 

simulation of pure greenbeard, the population consists of haploid adults.  A 

genetically random partner is present to each individual. Offspring’s population is 

sexually reproduced, proportionally to parents’ fitness after altruism. In the 

ancestor, the four allele frequencies are initialized by these four parameters. 

4.5. Negative Feedbacks can Maintain Multiple Cue with 

Intermediate Frequencies 

We test our model with a constant population size 3,000. In the figures 4.3, 

4.4 and 4.5, the X axis is generation, and the Y axis are frequencies of genotype and 

allele. As we see, when all alleles start intermediate frequencies and the cost and 

cost-to-benefit ratio are high, all allele frequencies oscillate cross generations.  Let 

us plot Judge allele frequencies versus Cue allele frequencies. For example, in the 

figures at the bottom, J1 against C1.  If frequency curve reaches the X axis, that 

means, C1 goes extinct and C2 gets fixed. If curve reaches the top border, C1 fixes.  If 

curve reaches the Y axis, that means, J1 goes extinct and J2 gets fixed. If curve reaches 

the right border, J1 fixes. If curve doesn’t reach any axis or border, that means, 

multiple Cue and Judge alleles persist.  These three figures show that after starting 
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at the black point, allele frequency curves cycle in a certain central space cross 

generations. It implies that multiple alleles can persist, and none of alleles goes 

extinct or gets fixed.  These simulations suggest that negative feedbacks can 

maintain multiple alleles with intermediate frequencies, and therefore our 

recognition model can be stable. 

But negative feedbacks can’t always maintain intermediate frequencies.   

Simulations at low cost and cost-to-benefit ratio show that one of Cue and Judge 

alleles eventually gets fixed and the other goes extinct (Figures 4.1 and 4.2). 

4.6. Stable Recognition Model under High Fitness Cost/Benefit and 

High Cost 

Now, an interesting question is in which space of cost and benefit negative 

feedbacks can maintain multiple alleles.  I did simulations with different costs and 

cost-to-benefit ratios. In these plots, from left to right, c goes higher; from bottom to 

up, c/b becomes higher (Figures 4.6 and 4.7). These plots clearly show that multiple 

intermediate alleles can persist under high c/b and high c. It suggests that our 

recognition system is stable with intermediate allele frequencies under high c/b and 

high c.  The greenbeard Cue alleles are favored when c < b, that is c/b < 1.  When c/b 

is low, they are favored too strongly, so a Cue allele fixes before negative feedback 

can control it. When c/b is high, negative feedback has a chance to bring common 
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Cue allele frequencies down and raise rare Cue allele frequencies up. When c = b, 

Cue alleles are not favored.   

The Judge alleles are disfavored when c > 0 (Figure 4.7).  When c is high, they 

are disfavored strongly to oppose the greenbeard Cue alleles. When c is low, they 

are disfavored weakly to provide enough feedbacks.  So there is strong selection on 

the Judge locus and weak selection on the Cue locus. 

4.7. The Recognition is Unstable When Cue Alleles Start Rare 

When Cue alleles start rare, for example, C0 starts at twenty percent, 

simulations show that rare cue alleles sometimes can invade into the system, but the 

recognition system is unstable (Figure 4.8).  Our model is sometimes stable with 

rare Judge alleles.  When Judge alleles starts rare, for example, J0 starts at one 

percent, simulations show that our recognition model is sometimes stable. 

Combined greenbeard and kin recognition.  Now we test our model in a 

recombined system of greenbeard and kin recognition.  The population changes into 

pairs of clonemates. In the previous pure greenbeard, Judge alleles can’t be favored. 

Now, they can be favored in kin recognition by helping clonemate because they 

share same Judge alleles. Cue alleles can still be favored by greenbeard effects. The 

probability that partner is clonemate is Pr, and the probability that partner is 

random is 1 – Pr. When Pr = 0, that is, all partners are random, the system stays as a 

pure greenbeard system. 
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Combined system of greenbeard and kin recognition.  As Pr goes higher, such 

as 0.5, that means, the probabilities of clonemate partner and random partner are 

equal (Figure 4.9).  In such combined system of greenbeard and kin recognition, the 

recognition is sometimes stable.  The recognition is unstable in pure kin recognition 

system.  When all partners are clonemates, that is Pr = 1, the system switches to a 

pure kin recognition system.  The recognition in such system is always unstable. 

We found the recognition can be stable under low h, that is when the cue and 

judge loci tend to link together (Figure 4.10 and 4.11).  

4.8. Conclusions 

The data also show that the altruism is still performed during the equilibrium 

status.  The time to reach equilibrium status is critical for the evolution of genetic 

kin recognition.   It evolves quickly to reach the equilibrium status if there is strong 

selection, and evolves slowly if there exists week selection.  

 According to Crozier’s paradox, common alleles will eventually get fixed in 

the population since they get much more benefits from help of relatives compared 

to rare alleles.  Rare alleles will eventually go extinct in the population since they 

receive much fewer benefits.  To maintain multiple alleles, there must be some kinds 

of negative feedbacks to bring down common alleles and raise up rare alleles.  Most 

of previous models only focus on the cue alleles and try to figure out the mechanism 

of kin recognition system which is incomprehensive.  It is impossible that a single 
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gene perform the complex duties both recognizing relatives and exercising altruistic 

behaviors toward them.  Adding another gene responsible for acting is still not 

enough which leads to Crozier’s paradox.    

Here we show that models with three components (recognition, detection, 

and action) show highlight on the mechanism of evolution of kin recognition.   

We analyzed the results from simulations and tracked down to the 

conditions which require the altruistic behavior to evolve.   So the kin recognition 

can be favored by the dynamics among three components.  Even though the rare cue 

alleles invade into the system, intermediate cues always can be maintained by the 

system.  This is the first time that a model show equilibrium status of evolution of 

genetic kin recognition.  The model is useful to the field which highlights the 

possibility of mechanism of evolution of altruism.  It is unclear how the diversity of 

cues is maintained in the system, how common cues are brought down and rare 

cues invade.  Here our model shows that it is the negative feedback from other 

genetic components to balance the evolution of cues.   There are strong selections on 

detective components and week selections.  It is suggested that the models are 

showing the conditions under which genetic kin recognition system can evolve over 

time.  

So far, simulation results suggest that our recognition model for altruism can 

maintain two cues with intermediate frequencies in a population, and thereby the 
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recognition can be stable.  The model is unstable in some conditions, especially with 

relatives. It’s not clear how rare cues invade.  
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4.10. Figure legends 

 

Figure 4.1 Evolutionary dynamics of Genotype Frequencies in Unstable Kin 

Recognition
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Figure 4.2  Evolutionary dynamics of Allele Frequencies in Unstable Kin 

Recognition
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Figure 4.3  Evolutionary dynamics of Genotype Frequencies in Stable Kin 

Recognition
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Figure 4.4  Evolutionary dynamics of Allele Frequencies in Stable Kin 

Recognition
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Figure 4.5 The stability of recognition.   

(A) Change of frequencies of cue alleles.  (B) Change of frequencies of judge 

alleles.   (C) Change of frequencies of altruistic behavior. per individual.  c = 

0.8, c/b = 0.9, p = 0.1, h = 0.5, p1 = 0.29, p2 = 0.71, q1 = q2 = 0.5, T= 500.  Blank 

dot, start of simulation; solid dot, end of simulation. 
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Figure 4.6 The stability of recognition in space of frequencies. 

Blank dot, start of simulation; solid dot, end of simulation. c = 0.8, c/b = 0.9, p 

= 0.1, h = 0.5, p1 = 0.29, p2 = 0.71, q1 = q2 = 0.5, T= 500. 
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Figure 4.7   Limited regions of stability: high c/b and high c.  

The space of frequency spaces under various initialized allele.  h = 0.5, p = 0.1, 

p1 = 0.29, p2 = 0.71, q1 = q2 = 0.5, T= 10,000. Blank dot, start of simulation; 

solid dot, end of simulation. 
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Figure 4.8 Limited regions of stability: intermediate frequencies. 

The space of frequency spaces under various costs and cost-to-benefit ratios.  

h = 0.5, p = 0.1, p1 = 0.29, p2 = 0.71, q1 = q2 = 0.5, T= 10,000. Blank dot, start of 

simulation; solid dot, end of simulation.
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Figure 4.7 Limited regions of stability: low p. 

The space of frequency spaces under various probabilities of clonemate 

partner and cost-to-benefit ratios.  c = 0.8, h = 0.5, p1 = 0.29, p2 = 0.71, q1 = q2 = 

0.5, T= 10,000. Blank dot, start of simulation; solid dot, end of simulation.
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Figure 4.8 The space of frequency spaces under various recombination rates 

and cost-to-benefit ratios. 

c = 0.8, p = 0.1, p1 = 0.29, p2 = 0.71, q1 = q2 = 0.5, T= 10,000.  Blank dot, start of 

simulation; solid dot, end of simulation.
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Figure 4.9 The space of frequency spaces under various initialized allele with 

highly linked loci. 

c = 0.8, c/b = 0.9, p = 0.1, h = 0.1, T= 10,000. Blank dot, start of simulation; 

solid dot, end of simulation. 
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Chapter 5 

Applications of New Perspective of 

Hamilton’s rule: r > C/B 

5.1. Abstract 

Altruism is a behavior that benefits others at a cost to one’s own ability of 

survival and/or reproduction, which is one of the paradoxes in Darwin’s theory of 

evolution.  Altruistic behaviors are commonly performed in eusocial animals, such 

as nearly all hymenoptera (including bees, wasps, and ants), termites, ambrosia 

beetles, and so on.  Inclusive fitness theory predicts that altruistic behavior can 

evolve when sufficient fitness benefits are given to relatives.  A different modeling 

approach has led to a challenge to this theory.   The modelers claim that relatedness 

is not causal, that eusocial behavior is very hard to evolve requiring more workers 

before the queen increased fitness, and that there is no conflict involved.  I showed 

that, even within the terms of this modeling framework, inclusive fitness thinking 

leads to insights that completely change these conclusions.  I showed that 

relatedness is causal, that eusociality does evolve more readily being favored under 
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a lower benefits threshold.  I concluded that multiple modeling approaches are 

useful and that efforts to synthesize them are better than asserting that one is 

universally better than the other.   Moreover, either greenbeard effects or genetic 

kin recognition requires genetic polymorphisms as cues on which recognition is 

based.  Previous models show that rare cue alleles get eliminated by selection and a 

common allele gets fixed, which ruins the altruism system.  So it is unclear how 

genetic recognition for altruism persists.  I designed a novel model with two types of 

genetic components, production and perception.  I analyzed my recognition model 

theoretically toward a cost/benefit analysis of fitness and genetic relatedness.  I 

predicted the stability of recognition for altruism based on my model.  Furthermore 

I tested my recognition model through various computational and biological 

simulations.   My simulation results consistently show altruism can maintain 

multiple recognition cues and be evolutionarily stable.  I concluded that cost/benefit 

of fitness and genetic relatedness play a critical role in the evolution of altruism and 

eusociality, and therefore can maintain the stability of recognition for altruism.           

5.2. Introduction 

Altruistic behaviors benefit others at a cost to one’s own ability of survival 

and/or reproduction, which is one of the paradoxes in Darwin’s theory of evolution.  

Altruistic behaviors are commonly performed in eusocial animals, such as nearly all 

hymenoptera (including bees, wasps, and ants), termites, ambrosia beetles, and so 

on.   
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5.3. The genetic relatedness and evolution of eusociality 

The controversy over the Nowak et al paper has mostly been conducted at 

rather abstract levels; different researchers favor different modeling strategies and 

interpret the evidence differently.   I take a different and more concrete approach by 

investigating their model for the evolution of eusociality more deeply.  I have 

therefore followed the recommendation of Nowak et al. for modeling social 

evolution, and in particular eusociality, using deterministic evolutionary dynamics 

described by ordinary differential equations. However, stimulated by inclusive 

fitness thinking, I have sought to understand apparent differences between their 

results compared to previous models.  In every case, I find that their rejection of 

accepted results is premature, and that in fact the insights known from inclusive 

fitness theory also emerge using their method.    

5.4.  The general model for genetic kin recognition  

Inclusive fitness theory predicts that altruistic behavior can evolve when 

sufficient fitness benefits are given to relatives.   Moreover, either greenbeard 

effects or genetic kin recognition requires genetic polymorphisms as cues on which 

recognition is based.  Previous models show that rare cue alleles get eliminated by 

selection and a common allele gets fixed, which ruins the altruism system.  I 

designed a novel model with two types of genetic components, production and 

perception.  I analyzed my recognition model theoretically toward a cost/benefit 
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analysis of fitness and genetic relatedness.  I predicted the stability of recognition 

for altruism based on my model.  Furthermore I tested my recognition model 

through various computational and biological simulations.    

5.5. The fitness cost/benefit and the Crozier’s Paradox 

My simulation results consistently show altruism can maintain multiple 

recognition cues and be evolutionarily stable.  I concluded that cost/benefit of 

fitness and genetic relatedness play a critical role in the evolution of altruism and 

eusociality, and therefore can maintain the stability of recognition for altruism. 

5.6. Conclusions 

I showed that relatedness is causal, that eusociality does evolve more readily 

being favored under a lower benefits threshold.  I concluded that multiple modeling 

approaches are useful and that efforts to synthesize them are better than asserting 

that one is universally better than the other.   I designed a novel model with two 

types of genetic components, production and perception.  I analyzed my recognition 

model theoretically toward a cost/benefit analysis of fitness and genetic 

relatedness.  I predicted the stability of recognition for altruism based on my model.  

Furthermore I tested my recognition model through various computational and 

biological simulations.   My simulation results consistently show altruism can 

maintain multiple recognition cues and be evolutionarily stable.  I concluded that 



 
144 

 

cost/benefit of fitness and genetic relatedness play a critical role in the evolution of 

altruism and eusociality, and therefore can maintain the stability of recognition for 

altruism.      
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Appendix A 

A.1 Scripts for Altruism to Evolve with Genetic Relatedness 

%--------------------------------------------------------------% 
 
function nowak_figure_4(T, S, diff) 
    qs = 0.01; 
    qss = 0.001; 
    q = [qss:qss:0.005, 0.01:qs:0.35, 0.355:qss:0.365, 0.37:qs:0.89, 0.895:qss:0.905, 
0.91:qs:1]'; 
    %q = [0.2, 0.6, 0.95, 1]; 
    %q = [0.6]; 
    L = length(q); 
     
    [ X01, Xs1, b0,  d0,  m, b, d, alpha, eta ] = init(S); 
     
    X0q = zeros(L, 1); 
    Xq = zeros(L, 1); 
    Cq = zeros(L, 1); 
     
    Tq = zeros(L, 1); 
    X0t = zeros(T, L); 
    Xt = zeros(T, L);     
    Ct = zeros(T, L); 
 
    for i = 1:L; 
        q0 = q(i); 
       [X0q(i), Xq(i), Cq(i), Tq(i), X0t(1:T, i), Xt(1:T, i), Ct(1:T, i) ] =  nowak(q0, S, T, X01, 
Xs1, b0,  d0,  m, b, d, alpha, eta, diff); 
    end 
     
    plotq10( X0q, Xq, Cq, q); 
         
end 
 
 
%--------------------------------------------------------------% 
 
function [X01, Xs1, b0,  d0,  m, b, d, alpha, eta] = init(S) 
    n = 1; 
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    X01 = n;     
    Xs1 = zeros(1, S); 
    Xs1(1, 1) = n; 
    b0 = 0.5; 
    d0 = 0.1; 
    m = 3; 
    b = 4; 
    d = 0.01; 
    alpha = 0.1; 
    eta = 0.01; 
end 
 
 
%--------------------------------------------------------------% 
 
function [X0q, Xq, Cq, T0, X0, X, C] = nowak(q, S, T, X01, Xs1, b0,  d0,  m, b, d, alpha, 
eta, diff) 
     
    zerodef = 0.05; 
     
    X0q = 0; 
    Xq = 0; 
    Cq = 0; 
    T0 = T; 
             
    X0 = zeros(T, 1);     
    Xs = zeros(T, S); 
    X = zeros(T, 1); 
    C = zeros(T, 1); 
 
    B = bd(S, m, b0, b); 
    D = bd(S, m, d0, d);      
    
    X0(1) = X01;  
    Xs(1, :) = Xs1; 
     
    X(1, :) = population( Xs(1, 1:S) ); 
    C(1) = sum( Xs(1, 2:S) ); 
      
    for t = 1:T-1   
      %  phi = 1 / ( X0(t) + eta * X(t) ); 
        phi = 1 / ( 1 +   eta * (X0(t) + X(t)) ); 
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        X0(t+1) = X0(t) + (b0 * phi - d0) * X0(t); 
        X0(t+1) = checknegative( X0(t+1) ); 
         
        Mt = matrix( S, q, B, D, phi, alpha );  
        Mtdi = Mt / diff; 
        for di = 1:diff 
            Xs(t, :) = ( Xs(t, :)' + Mtdi * Xs(t, :)' )'; 
        end 
         
        %Xs(t+1, :) = ( Xs(t, :)' + Mt * Xs(t, :)' )'; 
        Xs(t+1, :) = Xs(t, :); 
        Xs(t+1, :) = checknegative( Xs(t+1, :) ); 
         
        X(t+1) = population( Xs(t+1, :) );   
        %X(t+1)  = checknegative( X(t+1)  ); 
 
        C(t+1) = sum( Xs(t+1, 2:S) ); 
        %C(t+1)  = checknegative( C(t+1)  ); 
         
        if ( X(t+1) < zerodef || X0(t+1) < zerodef ) 
            T0 = t; 
            X0q = X0(t+1); 
            Xq = X(t+1); 
            Cq = C(t+1); 
            break; 
        end 
    end 
   % T0 = T; 
   % plotPopulation(X0, X, C, q, T0); 
     
    plotgroup(Xs, T0, q); 
 
end 
 
 
%--------------------------------------------------------------% 
 
function X = population( Xs ) 
    [m, S] = size( Xs ); 
    X = 0; 
    for i = 1:S 
        X = X + i * Xs(1, i); 
    end 
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    if (m ~= 1) 
        error('wrong!'); 
    end 
end 
 
 
%--------------------------------------------------------------% 
 
function BD = bd(S, m, bd0, bd) 
 % One possibility is to consider a simple step function with a critical colony size, m.  
% For small colonies, i < m, the key parameters of the eusocial queen are the same 
as those of solitary females: bi = b0 and di = d0.  
% For large colonies, i >= m, the eusocial queen has an increased fecundity and a 
reduced death rate: bi = b > b0 and di = d < d0. 
   BD = ones(S, 1) * bd; 
    for i = 1:m-1 
        BD(i) = bd0; 
    end 
end 
 
 
%--------------------------------------------------------------% 
 
function Mt = matrix(S, q, B0, D, phi, alpha) 
    B = B0 * phi; 
    Mt = zeros(S, S);         
    for i = 2:S     
        Mt(1, i) = B(i) * (1 - q); 
        Mt(i, i-1) = B(i-1) *  q; 
    end 
    for i = 2:S 
        if ((i-1) * alpha <= 1) 
            Mt(i, i) = - ( B(i) * q + D(i) + (i-1) * alpha );  
            Mt(i-1, i) = (i-1) * alpha; 
        else 
            Mt(i, i) = - ( B(i) * q + D(i) + 1 );                     
            Mt(i-1, i) = 1; 
        end 
    end     
    Mt(1,1) = B(1) * (1 - q) - (B(1) * q + D(1)); 
    Mt(1,2) = B(2) * (1 - q) + alpha; 
     
    for i = 1:S 
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        for j = 1:S 
            if Mt(i, j) < -1 
               %Mt(i, j) = -1; 
            end 
        end 
    end 
end 
 
 
%--------------------------------------------------------------% 
 
function A = checknegative(A) 
    [m, n] = size(A); 
    for i = 1:m 
        for j = 1:n 
            if A(i, j) < 0 
                A(i, j) = 0; 
            end 
        end 
    end 
end 
 
 
 
%--------------------------------------------------------------% 
 
function plotq10( X0q, Xq, Cq, q ) 
    figh = figure('Position', [0 0 800 600], 'Color', 'w', 'Resize', 'off'); 
     
    subplot(2, 1, 1); 
    plot(q, X0q, 'r', q, Xq, 'b');    
    %annotation(1, 'q', 'Individuals'); 
    box off; 
    xlabel('Probability to stay, q');  
    xlim([0, 1]); 
    set(gca, 'XTick', 0:0.1:1, 'XTickLabel', {'0','','0.2','','0.4','','0.6','','0.8','','1'}); 
    ylabel('Individuals'); 
    ylim([0, 600]); 
    set(gca, 'YTick', 0:100:600); 
    
    subplot(2, 1, 2);     
    plot(q, Cq, 'b');   
    %annotation(1, 'q', 'Colonies');    
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    box off; 
    xlabel('Probability to stay, q');  
    xlim([0, 1]); 
    set(gca, 'XTick', 0:0.1:1, 'XTickLabel', {'0','','0.2','','0.4','','0.6','','0.8','','1'}); 
    ylabel('Colonies'); 
    ylim([0, 100]); 
    set(gca, 'YTick', 0:20:100); 
     
    filename = 'nowak_figure_4'; 
    saveas( figh, filename, 'fig'); 
end 
 
 
%--------------------------------------------------------------% 
 
 function annotation(T, xl, yl) 
    box off; 
    xlabel(xl);  
    set(gca, 'XTick', 0:T/5:T); 
    ylabel(yl); 
   % ylim([0, 600]); 
   % set(gca, 'YTick', 0:100:600); 
 end 
 
 
%--------------------------------------------------------------% 
 
  
 function  plotPopulation(X0, X, C, q, T0) 
    figh = figure('Position', [0 0 800 600], 'Color', 'w', 'Resize', 'off'); 
    [m,n] = size(X0);     
    t = 1:T0; 
   % [T0, X0(m), X(m)] 
     
    subplot(3, 1, 1); 
    plot(t, X0(1:T0), 'r');    
    annotation(m, 't', 'Solitary'); 
    title([ 'q = ', num2str(q) ]); 
    ylim([0, 600]);   
    set(gca, 'YTick', 0:100:600);  set(gca, 'XTick', 0:2*T0:T0); 
     
    subplot(3, 1, 2);     
    plot(t, X(1:T0), 'b');    
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    annotation(m, 't', 'Eusocial');    
    ylim([0, 600]);   
    set(gca, 'YTick', 0:100:600);set(gca, 'XTick', 0:2*T0:T0); 
    
    subplot(3, 1, 3); 
    plot(t, C(1:T0), 'b');    
    annotation(m, 't', 'Colonies');  
    ylim([0, 100]);   
    set(gca, 'YTick', 0:20:100);set(gca, 'XTick', 0:2*T0:T0); 
     
    filename = num2str(100*q); 
    saveas( figh, filename, 'fig'); 
 
 end 
  
 
 
%--------------------------------------------------------------% 
    
function plotgroup(Xs, T0, q) 
     
    fighg = figure('Position', [0 0 800 700], 'Color', 'w', 'Resize', 'off'); 
    semilogy(Xs(1:T0, 1:7)); 
   % legend('1','2', '3','4'); 
    legend('Size 1','Size 2','Size 3','Size 4','Size 5','Size 6','Size 7'); 
    ylim([1, 1000]);  
     box off; 
    xlabel('t');  
    set(gca, 'XTick', 0:T0/5:T0); 
    ylabel('Colonies'); 
 
  filename = strcat('nowak_figure_4_p', num2str(100*q)); 
    saveas( fighg, filename, 'jpg'); 
    saveas( fighg, filename, 'fig'); 
    T0 
end 
 
 
 
%--------------------------------------------------------------% 
 
function bmw = nowak_liao_asexual(b, m, w, T, Td) 
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    [b0, d0, d, alpha, eta, n] = nowak_liao_asexual_init_constant(); 
    D = nowak_liao_asexual_init_BD(m, d0, d, w);     
    B = nowak_liao_asexual_init_BD(m, b0, b, w); 
    [em, Xe, Xs]= nowak_liao_asexual_eusociality(b0, d0, B, D, alpha, eta, n, w, T, Td); 
 
    if (Xe > Xs) 
        bmw = 1; 
    else 
        bmw = 0; 
    end 
 
end 
 
 
 
%--------------------------------------------------------------% 
 
function nowak_liao_asexual_bmw(bmin, bstep, bmax, mmin, mstep, mmax, wmin, 
wstep, wmax, T, Td) 
    
    bset = [bmin:bstep:bmax];  
    mset = [mmin:mstep:mmax];  
    wset = [wmin:wstep:wmax];  
    [bi, bn] = size(bset); 
    [mi, mn] = size(mset); 
 [wi, wn] = size(wset); 
     
    bmw = zeros(bn, mn, wn); 
     
    for i = 1:mn 
        b = mset(i); 
        for j = 1:mn 
            m = mset(j); 
            for k = 1:mn 
                w = mset(k); 
                bmw(i, j, k) = nowak_liao_asexual(b, m, w, T, Td); 
            end 
        end 
    end 
     
    nowak_liao_asexual_plot_bmw(bset, mset, wset, bmw); 
     
     dlmwrite('bmw.data', bmw, 'delimiter', '\t'); 
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end 
 

%--------------------------------------------------------------% 
 
 
function [eqpb, Xetd, Xstd] = nowak_liao_asexual_eusociality(b0, d0, B, D, alpha, eta, 
n, w, T, Td) 
 eqpb = 0;  
 zerodef = 0.05;     
 
    Etd = zeros(1, w); 
    Etd(1, 1) = n; 
    Std = n;      
     
    for t = 1:T-1   
        for tdi = 1:Td 
         Xetd = population_ES(Etd, w); 
            Xstd = Std; 
            if Xstd < zerodef 
          eqpb = 1; 
             return; 
         elseif Xetd < zerodef 
                eqpb = 0; 
          return; 
         end  
          
         phi = 1 / (1 + eta * (Xetd + Xstd)); 
          
            Me = matrix_E(B, D, alpha, phi, w);                
            Etd(1, :) = (Etd(1, :)' + Me * Etd(1, :)' / Td)'; 
             
            Std = Std + (phi * b0 - d0) * Std / Td; 
        end 
    end  
end 
 
 
% ----------------------------------------------------------- % 
 
 
 
function X = population_ES( ESmm, w) 
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    X = 0; 
    for i = 1:w 
        X = X + i * ESmm(i); 
    end 
end 
 
 
%--------------------------------------------------------------% 
 
function Me = matrix_E(B0, D, alpha, phi, w) 
    B = B0 * phi; 
    Me = zeros(w, w);         
    for i = 2:w-1 
        Me(i, i-1) = B(i-1) ; 
        Me(i, i) = -B(i) - D(i) - (i-1) * alpha;  
        Me(i, i+1) = i * alpha; 
    end 
    Me(1,1) = -B(1) - D(1); 
    Me(1,2) = alpha; 
    Me(1,w) = B(w); 
      
    Me(w,w-1) = B(w-1); 
    Me(w,w) = -D(w) - (w-1) * alpha; 
  
end 
 
 
 
%--------------------------------------------------------------% 
 
function B = nowak_liao_asexual_init_BD(m, b0, b, mm) 
 % One possibility is to consider a simple step function with a critical colony size, m.  
% For small colonies, i < m, the key parameters of the eusocial queen are the same 
as those of solitary females: bi = b0 and di = d0.  
% For large colonies, i >= m, the eusocial queen has an increased fecundity 
% and a reduced death rate: bi = b > b0 and di = d < d0. 
 
 B = ones(mm, 1) * b; 
    for i = 1:m-1 
        B(i) = b0; 
    end 
end 
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%--------------------------------------------------------------% 
 
function [b0, d0, d, alpha, eta, n] = nowak_liao_asexual_init_constant() 
     
    b0 = 0.5; 
    d0 = 0.1; 
    d  = 0.01;      
     
    alpha = 0.1;    
    eta   = 0.01;  
     
   n = 100;   
     
  end 
 
 
 
%--------------------------------------------------------------% 
 
function P = nowak_liao_asexual_init_PQ(ms, ml, p, mm) 
 if (1 <= ms && ms <= ml && ms <= mm)  % 1 <= ms <= ml, mm, and should be 
integer. 
 else 
  error('Invalid values of ms, ml or mm.\n '); 
 end 
  
 P = ones(mm, 1) * p; 
  
 if (ms > 1) 
  P(1:ms-1) = 1;  
 % else % ms == 1 
 end 
 if (ml <= mm) 
  P(ml:mm) = 0;   
 % else % ml > mm 
    end 
end 
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%--------------------------------------------------------------% 
 
function nowak_liao_asexual_bmw(bmin, bstep, bmax, mmin, mstep, mmax, wmax, 
wstep, wmin, T, Td) 
    bset = [bmin:bstep:bmax];  
    mset = [mmin:mstep:mmax];  
    wset = [wmin:wstep:wmax];  
    [bi, bn] = size(bset); 
    [mi, mn] = size(mset); 
 [wi, wn] = size(wset); 
     
    bmw = zeros(bn, mn, wn); 
     
    for i = 1:mn 
        b = mset(i); 
        for j = 1:mn 
            m = mset(j); 
            for k = 1:mn 
                w = mset(k); 
                nowak_liao_asexual(b, m, w, T, Td); 
            end 
        end 
    end 
     
    plot_bmw(bset, mset, wset, bmw); 
     
end 
 
 
 
%--------------------------------------------------------------% 
 
 
function nowak_liao_asexual_plot_bmw(bs, ms, ws, bmw) 
  
    [bn, mn, wn] =  size(bmw); 
     
   figh = figure('Position', [0 0 600 600], 'Color', 'w', 'Resize', 'off'); 
     
    for k = 1:wn 
         for j = 1:mn 
            for i = 1:bn 
                if (bmw(i, j, k) == 1) 
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                    plot3(bs(i), ms(j), ws(k), '*'); hold on; 
                end 
            end 
        end 
    end 
     
    xlabel('b'); ylabel('m'); zlabel('w'); 
     
    axis([bs(1), bs(bn), ms(1), ms(mn), ws(1), ws(wn)]);  
    %set(gca, 'XTick', 0:0.2:1);   
    set(gca, 'YTick', ms(1):1: ms(mn));  
    set(gca, 'YTick', ws(1):1: ws(wn)); 
    box off; 
     
    saveas( figh, 'bmw', 'fig');  
    
 end 
  
 
%--------------------------------------------------------------% 
 
 
function nowak_liao_asexual_plot_m(filename_m_plot, ms, Xe, Xs) 
  
  
    figh = figure('Position', [0 0 600 600], 'Color', 'w', 'Resize', 'off'); 
     
    plot(ms, Xe,'-b*', ms, Xs, '-ro');   hold on; 
    xlabel('w'); ylabel('Individuals'); title('m = 3'); 
    set(gca, 'XTick', ms(1):1:ms(length(ms))); %set(gca, 'YTick', 0:100:600);  
    box off; 
     
    saveas( figh, filename_m_plot, 'fig'); 
 
 end 
  
 
 
%--------------------------------------------------------------% 
 
function nowak_liao_asexual_plot_bmw(bs, ms, ws, bmw) 
  
    [bn, mn, wn] =  size(bmw); 
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    figh = figure('Position', [0 0 600 600], 'Color', 'w', 'Resize', 'off'); 
     
         
    for k = 1:wn 
         for j = 1:mn 
            for i = 1:bn 
                if (bmw(i, j, k) == 1) 
                    plot3(bs(i), ms(j), ws(k), '*'); hold on; 
                end 
            end 
        end 
    end 
     
    xlabel('b'); ylabel('m'); zlabel('w'); 
     
    %axis([0, 1, 0, 1, bs(1), bs(bn)]);  
    %set(gca, 'XTick', 0:0.2:1);  set(gca, 'YTick', 0:0.2:1);  
    %set(gca, 'ZTick', bs(1):1:bs(bn));  
    box off; 
   
    saveas( figh, 'bmw', 'fig');  
    
 end 
  
 
 
%--------------------------------------------------------------% 
 
 
function mw = nowak_liao_asexual_w(wmin, wstep, wmax, m, b, T, Td) 
     
    filename_m_plot = strcat('w', num2str(wmin), '_', num2str(wstep), '_', 
num2str(wmax), '_T', num2str(T), '_Td', num2str(Td), '.fig'); 
     
    [b0, d0, d, alpha, eta, n] = nowak_liao_asexual_init_constant(); 
    %b = 4; 
     
    wset = [wmin:wstep:wmax];  
    [wi, wn] = size(wset); 
  
    em = zeros(1, wn);  
    Xe = zeros(1, wn);  
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    Xs = zeros(1, wn);   
     
    for i = 1:wn 
        w = wset(i); 
         
        D = nowak_liao_asexual_init_BD(m, d0, d, w);     
        B = nowak_liao_asexual_init_BD(m, b0, b, w); 
         
         
        [em(i), Xe(i), Xs(i)]= nowak_liao_asexual_eusociality(b0, d0, B, D, alpha, eta, n, w, 
T, Td); 
         
        dlmwrite('b.data', B', 'delimiter', '\t', '-append'); 
        dlmwrite('d.data', D', 'delimiter', '\t', '-append'); 
 
    end 
    nowak_liao_asexual_plot_m(filename_m_plot, wset, Xe, Xs); 
     
    dlmwrite('w.data', wset, 'delimiter', '\t'); 
    dlmwrite('xe.data', Xe, 'delimiter', '\t'); 
    dlmwrite('xs.data', Xs, 'delimiter', '\t'); 
    dlmwrite('em.data', em, 'delimiter', '\t'); 
     
     
    mw = zeros(1, wn); 
    for i = 1:wn 
        if (Xe(i) > Xs(i)) 
            mw(i) = 1; 
        end 
    end 
end 
 
 
 
 
%--------------------------------------------------------------% 
 
 
#PBS -N xl3 
#PBS -V 
#PBS -q commons 
#PBS -l nodes=1:ppn=1,pmem=10m,walltime=2:00:00 
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cd /users/xl3/nowak_liao/nowak_liao_asexual_m/nowak_liao_asexual_m_/ 
matlab -nosplash -nodesktop -r "nowak_liao_asexual_m(2, 1, 10,  20, 5000, 10)" 
exit 
 
 
 
%--------------------------------------------------------------% 
 
function eqpb = nowak_liao_asexual_eusociality(Q, P, B, D, alpha, eta, n, mm, T, Td) 
 eqpb = 0;  
 zerodef = 0.05;     
 
    Etd = zeros(1, mm); 
    Std = zeros(1, mm);     
    Etd(1, 1) = n; 
    Std(1, 1) = n;      
     
    for t = 1:T-1   
        for tdi = 1:Td 
         Xetd = population_ES(Etd, mm); 
         Xstd = population_ES(Std, mm); 
            if Xstd < zerodef 
          eqpb = 1; 
             return; 
         elseif Xetd < zerodef 
                eqpb = 0; 
          return; 
         end  
          
         phi = 1 / (1 + eta * (Xetd + Xstd)); 
         bma = birth_migrate_average(P, Q, B, Etd, Std, mm); 
         Me = matrix_E(P, Q, B, D, alpha, phi, bma, mm);  
         Ms = matrix_S(P, Q, B, D, alpha, phi, bma, mm);         
            Etd(1, :) = (Etd(1, :)' + Me * Etd(1, :)' / Td)'; 
            Std(1, :) = (Std(1, :)' + Ms * Std(1, :)' / Td)'; 
        end 
    end  
end 
 
 
% ---------------------------------------------------------- % 
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function X = population_ES( ESmm, mm) 
    X = 0; 
    for i = 1:mm 
        X = X + i * ESmm(i); 
    end 
end 
 
 
%--------------------------------------------------------------% 
 
function bm = birth_migrate_average(P, Q, B, Smm, Xmm, mm) 
    os = 0; 
    for i = 1:mm 
        os = os +  (1 - P(i)) * Q(i) * B(i) * Xmm(i); 
    end 
    bm = os / (sum(Smm) + sum(Xmm)); 
end 
   
 
%--------------------------------------------------------------% 
 
function Me = matrix_E(P, Q, B0, D, alpha, phi, bma0, mm) 
    B = B0 * phi; 
    bma = bma0 * phi; 
    Me = zeros(mm, mm);         
    for i = 2:mm     
        Me(1, i) = (1 - Q(i)) * B(i); 
        Me(i, i-1) = P(i-1) * Q(i-1) * B(i-1) + bma ; 
        Me(i, i) = - P(i) * Q(i) * B(i) - bma - D(i) - (i-1) * alpha;  
        Me(i-1, i) = (i-1) * alpha; 
    end 
    Me(1,1) = (1 - Q(1)) * B(1)  - P(1) * Q(1) * B(1) - bma - D(1); 
    Me(1,2) = (1 - Q(2)) * B(2) + alpha; 
end 
 
 
 
%--------------------------------------------------------------% 
 
 
function Ms = matrix_S(P, Q, B0, D, alpha, phi, bma0, mm) 
    B = B0 * phi; 
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    bma = bma0 * phi; 
    Ms = zeros(mm, mm);         
    for i = 2:mm     
        Ms(1, i) = B(i); 
        Ms(i, i-1) = bma ; 
        Ms(i, i) = - bma - D(i) - (i-1) * alpha;  
        Ms(i-1, i) = (i-1) * alpha; 
    end 
    Ms(1,1) = B(1) - bma - D(1); 
    Ms(1,2) = B(2) + alpha; 
end 
 
 
 
%--------------------------------------------------------------% 
 
function B = nowak_liao_asexual_init_BD(m, b0, b, mm) 
 % One possibility is to consider a simple step function with a critical colony size, m.  
% For small colonies, i < m, the key parameters of the eusocial queen are the same 
as those of solitary females: bi = b0 and di = d0.  
% For large colonies, i >= m, the eusocial queen has an increased fecundity 
% and a reduced death rate: bi = b > b0 and di = d < d0. 
 
 B = ones(mm, 1) * b; 
    for i = 1:m-1 
        B(i) = b0; 
    end 
end 
 

%--------------------------------------------------------------% 
 
function [b0, d0, d, alpha, eta, n] = nowak_liao_asexual_init_constant() 
     
    b0 = 0.5; 
    d0 = 0.1; 
    d  = 0.01;      
     
    alpha = 0.1;    
    eta   = 0.01;  
     
   n = 1;   
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  end 
 
 
%--------------------------------------------------------------% 
 
function P = nowak_liao_asexual_init_PQ(ms, ml, p, mm) 
 if (1 <= ms && ms <= ml && ms <= mm)  % 1 <= ms <= ml, mm, and should be 
integer. 
 else 
  error('Invalid values of ms, ml or mm.\n '); 
 end 
  
 P = ones(mm, 1) * p; 
  
 if (ms > 1) 
  P(1:ms-1) = 1;  
 % else % ms == 1 
 end 
 if (ml <= mm) 
  P(ml:mm) = 0;   
 % else % ml > mm 
    end 
end 
 
 
%--------------------------------------------------------------% 
 
function nowak_liao_asexual_plot_qp(filename, qs, ps, eqp) 
 
    figh = figure('Position', [0 0 600 600], 'Color', 'w', 'Resize', 'off');  
     
    [qn, pn] = size(eqp); 
     
 
         for j = 1:pn 
            for i = 1:qn 
                if (eqp(i, j) == 1) 
                    plot(qs(i), ps(j), '*'); hold on; 
                end 
            end 
        end 
 
    xlabel('q'); ylabel('r');  
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    axis([0, 1, 0, 1]);  
    set(gca, 'XTick', 0:0.1:1);  set(gca, 'YTick', 0:0.1:1);  
    box off; 
     
    saveas( figh, filename, 'fig');  
     
end 
 
 
 
%--------------------------------------------------------------% 

 

function nowak_liao_asexual_plot_qpb(filename, qs, ps, bs, eqpb) 

 

    figh = figure('Position', [0 0 600 600], 'Color', 'w', 'Resize', 'off');  

     

    [qn, pn, bn] = size(eqpb); 

     

    for k = 1:bn 

         for j = 1:pn 

            for i = 1:qn 

                if (eqpb(i, j, k) == 1) 

                    plot3(qs(i), ps(j), bs(k), '*'); hold on; 
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                end 

            end 

        end 

    end 

    xlabel('q'); ylabel('r'); zlabel('b'); 

    axis([0, 1, 0, 1, bs(1), bs(bn)]);  

    set(gca, 'XTick', 0:0.2:1);  set(gca, 'YTick', 0:0.2:1);  

    set(gca, 'ZTick', bs(1):1:bs(bn));  

    box off; 

   

    saveas( figh, filename, 'fig');  

     

end 

%Xiaoyun Liao 
%2010-12-31 
 
function nowak_liao_asexual_qpb(qmin, qstep, qmax,  pmin, pstep, pmax,  bmin, 
bstep, bmax,  m, ms, ml, mm, T, Td) 
     
    filename = strcat('_m', num2str(m), '_ms', num2str(ms), '_ml', num2str(ml), '_mm', 
num2str(mm), '_T', num2str(T), '_Td', num2str(Td)); 
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    filename_qp = strcat('q', num2str(qmin), '_', num2str(qstep), '_', num2str(qmax), 
'_p', num2str(pmin), '_', num2str(pstep), '_', num2str(pmax), filename); 
     
    [b0, d0, d, alpha, eta, n] = nowak_liao_asexual_init_constant(); 
     
    qs = [qmin:qstep:qmax]; 
    ps = [pmin:pstep:pmax];    
    bs = [bmin:bstep:bmax]; 
    dlmwrite('q.data', qs, 'delimiter', '\t'); 
    dlmwrite('p.data', ps, 'delimiter', '\t'); 
 dlmwrite('b.data', bs, 'delimiter', '\t'); 
     
    [qi, qn] = size(qs); 
 [pj, pn] = size(ps); 
    [bk, bn] = size(bs); 
    eqpb = zeros(qn, pn, bn);  
    D = nowak_liao_asexual_init_BD(m, d0, d, mm);     
    for k = 1:bn 
        b = bs(k); 
        B = nowak_liao_asexual_init_BD(m, b0, b, mm); 
        for j = 1:pn 
            p = ps(j); 
            P = nowak_liao_asexual_init_PQ(ms, ml, p, mm); 
            for i = 1:qn 
       q = qs(i); 
                Q = nowak_liao_asexual_init_PQ(ms, ml, q, mm); 
                eqpb(i, j, k) = nowak_liao_asexual_eusociality(Q, P, B, D, alpha, eta, n, mm, T, 
Td); 
            end 
             
        end 
 
        filename_b_eqp_plot = strcat('b', num2str(b), '_', filename_qp, '.fig' ); 
        nowak_liao_asexual_plot_qp(filename_b_eqp_plot, qs, ps, eqpb(:,:,k)); 
         
        filename_b_eqp_data = strcat('b', num2str(b), '_eqp.data'); 
        dlmwrite(filename_b_eqp_data, eqpb(:,:,k), 'delimiter', '\t'); 
    end 
     
    filename_qpb = strcat('b', num2str(bmin), '_', num2str(bstep), '_', num2str(bmax), 
'_', filename_qp, '.fig' ); 
    nowak_liao_asexual_plot_qpb(filename_qpb, qs, ps, bs, eqpb); 
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end 
 
 
 
 

#PBS -N xl3 

#PBS -V 

#PBS -q commons 

#PBS -l nodes=1:ppn=1,pmem=10m,walltime=2:00:00 

 

cd 

/users/xl3/nowak_liao/nowak_liao_asexual_qpb/nowak_liao_asexual_qpb_2010123

1/nowak_liao_asexual_qpb_201012314/ 

matlab -nosplash -nodesktop -r "nowak_liao_asexual_qpb(0.05, 0.05, 1,  0.05, 

0.05, 1,  2, 2, 10,   3, 1, 21, 20, 20000, 10)" 

exit 
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A.2 Scripts for Evolutionary Dynamics of Genetic Kin Recognition: a 

General Model 

function analysisCL(p, r, c, fJ0, G) 
% Xiaoyun Liao  xliao@rice.edu  2009-1-11 
% Simulate the recognition model for altruism. 
   
  W0 = 1.0;   
  b = c / r;   
   
  fC0 = [0.01, 0.05, 0.1, 0.15, 0.2, 0.25, 0.5]; 
  nfC0 = length(fC0);    
  L0 = [1, 0.9, 0.8, 0.7, 0.6, 0.5, 0.4, 0.3, 0.2, 0.1, 0];    
  nL0 = length(L0);  
   
  fig = figure('Position', [0 0 700 1000], 'Color', 'w', 'Resize', 'off'); hold 
  iPlot = 0; 
   
      for iL0 = 1:nL0;   
          L = L0(iL0); 
          for ifC0 = 1:nfC0 
                fC0t = fC0(ifC0); 
                fJ0t = fJ0; 
                fG0 = [fC0t * fJ0t, fC0t * (1 - fJ0t), (1 - fC0t) * fJ0t, (1 - fC0t) * (1 - fJ0t)]; % 
Genotypes: C0J0, C0J1, C1J0, C1J1 
   
                FG = zeros(4);  % genotype frequencies: C0J0, C0J1, C1J0, C1J1 
                WG = zeros(4);   % genotype fitness              
                for ifG0 = 1:4 
                    FG(ifG0) = fG0(ifG0); 
                end 
                 
                FA = zeros(1 + G, 2);  % allele frequencies: C0, J0 
                FA(1, 1) = fC0t; 
                FA(1, 2) = fJ0t; 
                 
                for t = 1 : G                                     
                    FAA = p * (FG(2) + FG(3)) + (1 - p) * (FG(2) * (FG(1) + FG(2))+ FG(3) * 
(FG(3) + FG(4))); 
                    W  = W0 + (b - c) * FAA;    
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                    WG(1) = W0 + (1 - p) * b * FG(2); 
                    WG(2) = W0 + p * (b - c) + (1 - p) * ((b - c) * FG(2) - c * FG(1)); 
                    WG(3) = W0 + p * (b - c) + (1 - p) * ((b - c) * FG(3) - c * FG(4)); 
                    WG(4) = W0 + (1 - p) * b * FG(3); 
 
                    FGW1 = FG(1) * WG(1) / W;  
                    FGW2 = FG(2) * WG(2) / W; 
                    FGW3 = FG(3) * WG(3) / W; 
                    FGW4 = FG(4) * WG(4) / W; 
                    FGWD = (FGW1 * FGW4 - FGW2 * FGW3) / 2; 
                     
                    % from time t to  t + 1   
                    FG(1) = (2 * (1 - L) - (1 - 2 * L) * FGW1) * FGW1 - (1 - L) * FGWD; % C0J0 
                    FG(2) = (2 * L + (1 - 2 * L) * FGW2) * FGW2 + L * FGWD; % C0J1 
                    FG(3) = (2 * L + (1 - 2 * L) * FGW3) * FGW3 + L * FGWD; % C1J0 
                    FG(4) = (2 * (1 - L) - (1 - 2 * L) * FGW4) * FGW4 - (1 - L) * FGWD; % C1J1     
                        
                    FA(t + 1, 1) = FG(1) + FG(2);  % C0 = C0J0 + C0J1 
                    FA(t + 1, 2) = FG(1) + FG(3);  % J0 = C0J0 + C1J0 
                     
                  end  
                 
                 % plot the simulation results  
                iPlot = iPlot + 1; 
                subplot(nL0, nfC0, iPlot); hold; 
                plot(FA(:, 1), FA(:, 2));  
                plot(FA(1, 1), FA(1, 2), 'ok', 'MarkerSize', 4); 
                plot(FA(G, 1), FA(G, 2), '.k', 'MarkerSize', 16); 
                xlim([-0.01 1.01]); ylim([-0.01 1.01]);  box on; set(gca, 'DataAspectRatio', [1 
1 1]); 
                set(gca, 'XTick', 0:1:1); set(gca, 'YTick', 0:1:1); 
                if iL0 == nL0 && ifC0 >= nfC0 / 2 && ifC0 < nfC0 / 2 + 1 
                    %xlabel({'f(C_0)'; '\itp = 0, f(C_0) = 0.25, f(J_0) = 0.2, f(C_0J_0) = 0.05. G = 
10^5.'; '\itBlank dot: begin; black dot: end.'}); 
                    xlabel('\itf(C_0)'); 
                end 
                if ifC0 == 1 && iL0 >= nL0 / 2 && iL0 < nL0 / 2 + 1  
                    ylabel('\itf(J_0)'); 
                end 
                if iL0 < nL0 
                    set(gca, 'XTickLabel', {'', ''});  
                end 
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                if ifC0 > 1 
                    set(gca, 'YTickLabel', {'', ''}); 
                end 
                if iL0 == 1 
                    switch ifC0  
                        case 1 
                            title('f_C_0=0.01'); 
                        case 2 
                            title('f_C_0=0.05'); 
                        case 3 
                            title('f_C_0=0.1'); 
                        case 4 
                            title('f_C_0=0.15') 
                        case 5 
                            title('f_C_0=0.2'); 
                        case 6 
                            title('f_C_0=0.25'); 
                        case 7 
                            title('f_C_0=0.5');  
                        otherwise 
                    end                    
                end 
     
                if ifC0 == nfC0 
                     switch iL0  
                        case 1 
                            text(1, 0.5, '  l=1', 'LineStyle', 'none', 'HorizontalAlignment', 'Left'); 
                        case 2 
                            text(1, 0.5, '  l=0.9', 'LineStyle', 'none', 'HorizontalAlignment', 'Left'); 
                        case 3 
                            text(1, 0.5, '  l=0.8', 'LineStyle', 'none', 'HorizontalAlignment', 'Left');  
                        case 4 
                            text(1, 0.5, '  l=0.7', 'LineStyle', 'none', 'HorizontalAlignment', 'Left'); 
                        case 5 
                            text(1, 0.5, '  l=0.6', 'LineStyle', 'none', 'HorizontalAlignment', 'Left'); 
                        case 6 
                            text(1, 0.5, '  l=0.5', 'LineStyle', 'none', 'HorizontalAlignment', 'Left'); 
                        case 7 
                            text(1, 0.5, '  l=0.4', 'LineStyle', 'none', 'HorizontalAlignment', 'Left'); 
                        case 8 
                            text(1, 0.5, '  l=0.3', 'LineStyle', 'none', 'HorizontalAlignment', 'Left'); 
                        case 9 
                            text(1, 0.5, '  l=0.2', 'LineStyle', 'none', 'HorizontalAlignment', 'Left'); 
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                        case 10 
                            text(1, 0.5, '  l=0.1', 'LineStyle', 'none', 'HorizontalAlignment', 'Left');  
                        case 11 
                            text(1, 0.5, '  l=0', 'LineStyle', 'none', 'HorizontalAlignment', 'Left'); 
                        otherwise 
                     end                  
                end 
            end 
        end 
                 
                 
                
                  
                 
                 
                 
                 
                     
                 
    
function analysisPL(r, c, fC0J0, fC0J1, fC1J0, TG) 
% Xiaoyun Liao  xliao@rice.edu  2009-1-11 
% Analysis of the recognition model for altruism. 
   
    fC1J1 = 1 - fC0J0 - fC0J1 - fC1J0; 
  if (fC1J1 < 0) 
      error('f != 1.0'); 
  end  
 
  W0 = 1.0;   
  fG0 = [fC0J0, fC0J1, fC1J0, fC1J1]; % Genotypes: C0J0, C0J1, C1J0, C1J1 
  %fA0 = [fC0J0 + fC0J1, fC1J0 + fC1J1, fC0J0 + fC1J0, fC0J1 + fC1J1];  % Alleles: C0, C1, 
J0, J1 
   
  L0 = [1, 0.65, 0.6, 0.58, 0.56, 0.55, 0.54, 0.52, 0.5, 0.48, 0.45, 0.2, 0];    
  nL = length(L0);  
   
  p0 = [0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1]; 
  np = length(p0);  
   
  fig = figure('Position', [0 0 700 700], 'Color', 'w', 'Resize', 'off'); hold 
  iPlot = 0; 
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        for iL = 1:nL 
           L = L0(iL); 
            
           for ip = 1:np 
                p = p0(ip); 
   
                b = c / r;                                      
                 
                FA = zeros(TG, 2);  % frequencies of alleles: C0, J0 
                 
                FG = zeros(4); % frequencies of genotype: C0J0, C0J1, C1J0, C1J1 
                WG = zeros(4);  % mean fitness of genotype: C0J0, C0J1, C1J0, C1J1 
                    
                for ifG0 = 1:4 
                    FG(ifG0) = fG0(ifG0); 
                end 
 
                for t = 1 : TG 
                    FA(t, 1) = FG(1) + FG(2);  % C0 = C0J0 + C0J1 
                    FA(t, 2) = FG(1) + FG(3);  % J0 = C0J0 + C1J0 
                     
                    FAA = p * (FG(2) + FG(3)) + (1 - p) * (FG(2) * (FG(1) + FG(2))+ FG(3) * 
(FG(3) + FG(4))); 
                     
                    W  = W0 + (b - c) * FAA;    
                     
                    WG(1) = W0 + (1 - p) * b * FG(2); 
                    WG(2) = W0 + p * (b - c) + (1 - p) * ((b - c) * FG(2) - c * FG(1)); 
                    WG(3) = W0 + p * (b - c) + (1 - p) * ((b - c) * FG(3) - c * FG(4)); 
                    WG(4) = W0 + (1 - p) * b * FG(3); 
 
                    FGW1 = FG(1) * WG(1) / W;  
                    FGW2 = FG(2) * WG(2) / W; 
                    FGW3 = FG(3) * WG(3) / W; 
                    FGW4 = FG(4) * WG(4) / W; 
                    FGWD = (FGW1 * FGW4 - FGW2 * FGW3) / 2; 
                     
                    % from time t to  t + 1   
                    FG(1) = (2 * (1 - L) - (1 - 2 * L) * FGW1) * FGW1 - (1 - L) * FGWD; % C0J0 
                    FG(2) = (2 * L + (1 - 2 * L) * FGW2) * FGW2 + L * FGWD; % C0J1 
                    FG(3) = (2 * L + (1 - 2 * L) * FGW3) * FGW3 + L * FGWD; % C1J0 
                    FG(4) = (2 * (1 - L) - (1 - 2 * L) * FGW4) * FGW4 - (1 - L) * FGWD; % C1J1     
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                end  
                 
                 % plot the simulation results  
                iPlot = iPlot + 1; 
                subplot(nL, np, iPlot); hold; 
                plot(FA(:, 1), FA(:, 2));  
                plot(FA(1, 1), FA(1, 2), 'ok', 'MarkerSize', 4); 
                plot(FA(TG, 1), FA(TG, 2), '.k', 'MarkerSize', 16); 
                xlim([-0.01 1.01]); ylim([-0.01 1.01]);  box on; set(gca, 'DataAspectRatio', [1 
1 1]); 
                set(gca, 'XTick', 0:1:1); set(gca, 'YTick', 0:1:1); 
                if iL == nL && ip >= np / 2 && ip < np / 2 + 1 
                   xlabel('\itf(C_0)'); 
                end 
                if ip == 1 && iL >= nL / 2 && iL < nL / 2 + 1  
                    ylabel('\itf(J_0)'); 
                end 
                if iL < nL 
                    set(gca, 'XTickLabel', {'', ''});  
                end 
                if ip > 1 
                    set(gca, 'YTickLabel', {'', ''}); 
                end 
                if iL == 1 
                    switch ip  
                        case 1 
                            title('p=0'); 
                        case 2 
                            title('p=0.1'); 
                        case 3 
                            title('p=0.2'); 
                        case 4 
                            title('p=0.3'); 
                        case 5 
                            title('p=0.4'); 
                        case 6 
                            title('p=0.5'); 
                        case 7 
                            title('p=0.6');  
                        case 8 
                            title('p=0.7'); 
                        case 9 
                            title('p=0.8'); 
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                        case 10 
                            title('p=0.9'); 
                        case 11 
                            title('p=1'); 
                        otherwise 
                    end 
                end 
     
                if ip == np 
                    switch iL 
                        case 1 
                            text(1, 0.5, '  l=1', 'LineStyle', 'none', 'HorizontalAlignment', 'Left'); 
                        case 2 
                            text(1, 0.5, '  l=0.65', 'LineStyle', 'none', 'HorizontalAlignment', 'Left'); 
                        case 3 
                            text(1, 0.5, '  l=0.6', 'LineStyle', 'none', 'HorizontalAlignment', 'Left'); 
                        case 4 
                            text(1, 0.5, '  l=0.58', 'LineStyle', 'none', 'HorizontalAlignment', 'Left'); 
                        case 5 
                            text(1, 0.5, '  l=0.56', 'LineStyle', 'none', 'HorizontalAlignment', 'Left'); 
                        case 6 
                            text(1, 0.5, '  l=0.55', 'LineStyle', 'none', 'HorizontalAlignment', 'Left'); 
                        case 7 
                            text(1, 0.5, '  l=0.54', 'LineStyle', 'none', 'HorizontalAlignment', 'Left'); 
                        case 8 
                            text(1, 0.5, '  l=0.52', 'LineStyle', 'none', 'HorizontalAlignment', 'Left'); 
                        case 9 
                            text(1, 0.5, '  l=0.5', 'LineStyle', 'none', 'HorizontalAlignment', 'Left'); 
                        case 10 
                            text(1, 0.5, '  l=0.48', 'LineStyle', 'none', 'HorizontalAlignment', 'Left'); 
                        case 11 
                            text(1, 0.5, '  l=0.45', 'LineStyle', 'none', 'HorizontalAlignment', 'Left'); 
                        case 12 
                            text(1, 0.5, '  l=0.2', 'LineStyle', 'none', 'HorizontalAlignment', 'Left'); 
                        case 13 
                            text(1, 0.5, '  l=0', 'LineStyle', 'none', 'HorizontalAlignment', 'Left'); 
                        otherwise 
                    end 
                end 
           end 
        end 
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function analysisPR(c, fC0J0, fC0J1, fC1J0, fC1J1, TG) 
% Xiaoyun Liao  xliao@rice.edu  2009-1-11 
% Analysis of the recognition model for altruism. 
   
  if (abs(fC0J0 + fC0J1 + fC1J0 + fC1J1 - 1) > 0.00001) 
      error('f != 1.0'); 
  end  
 
  W0 = 1.0;   
  fG0 = [fC0J0, fC0J1, fC1J0, fC1J1]; % Genotypes: C0J0, C0J1, C1J0, C1J1 
  %fA0 = [fC0J0 + fC0J1, fC1J0 + fC1J1, fC0J0 + fC1J0, fC0J1 + fC1J1];  % Alleles: C0, C1, 
J0, J1 
   
  r0 = [1, 0.95, 0.9, 0.85, 0.8, 0.5, 0.1]; 
  nr = length(r0);    
   
  p0 = [0, 0.1, 0.3, 0.5, 0.7, 0.9, 1]; 
  np = length(p0);  
   
  fig = figure('Position', [0 0 700 700], 'Color', 'w', 'Resize', 'off'); hold 
  iPlot = 0; 
  
        for ir = 1:nr 
           r = r0(ir); 
            
           for ip = 1:np 
                p = p0(ip); 
   
                b = c / r;                                      
                 
                FA = zeros(TG, 2);  % frequencies of alleles: C0, J0 
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                FG = zeros(4); % frequencies of genotype: C0J0, C0J1, C1J0, C1J1 
                WG = zeros(4);  % mean fitness of genotype: C0J0, C0J1, C1J0, C1J1 
                    
                for ifG0 = 1:4 
                    FG(ifG0) = fG0(ifG0); 
                end 
 
                for t = 1 : TG 
                    FA(t, 1) = FG(1) + FG(2);  % C0 = C0J0 + C0J1 
                    FA(t, 2) = FG(1) + FG(3);  % J0 = C0J0 + C1J0 
                     
                    FAA = p * (FG(2) + FG(3)) + (1 - p) * (FG(2) * (FG(1) + FG(2))+ FG(3) * 
(FG(3) + FG(4))); 
                     
                    W  = W0 + (b - c) * FAA;    
                     
                    WG(1) = W0 + (1 - p) * b * FG(2); 
                    WG(2) = W0 + p * (b - c) + (1 - p) * ((b - c) * FG(2) - c * FG(1)); 
                    WG(3) = W0 + p * (b - c) + (1 - p) * ((b - c) * FG(3) - c * FG(4)); 
                    WG(4) = W0 + (1 - p) * b * FG(3); 
 
                    FGW1 = FG(1) * WG(1) / W;  
                    FGW2 = FG(2) * WG(2) / W; 
                    FGW3 = FG(3) * WG(3) / W; 
                    FGW4 = FG(4) * WG(4) / W; 
                    FGWD = (FGW1 * FGW4 - FGW2 * FGW3) / 2; 
                     
                    % from time t to  t + 1   
                    FG(1) = FGW1 - FGWD; % C0J0 
                    FG(2) = FGW2 + FGWD; % C0J1 
                    FG(3) = FGW3 + FGWD; % C1J0 
                    FG(4) = FGW4 - FGWD; % C1J1     
                        
                end  
                 
                 % plot the simulation results  
                iPlot = iPlot + 1; 
                subplot(nr, np, iPlot); hold; 
                plot(FA(:, 1), FA(:, 2));  
                plot(FA(1, 1), FA(1, 2), 'ok', 'MarkerSize', 4); 
                plot(FA(TG, 1), FA(TG, 2), '.k', 'MarkerSize', 16); 
                xlim([-0.01 1.01]); ylim([-0.01 1.01]);  box on; set(gca, 'DataAspectRatio', [1 
1 1]); 
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                set(gca, 'XTick', 0:1:1); set(gca, 'YTick', 0:1:1); 
                if ir == nr && ip >= np / 2 && ip < np / 2 + 1 
                   xlabel('\itf(C_0)'); 
                end 
                if ip == 1 && ir >= nr / 2 && ir < nr / 2 + 1  
                    ylabel('\itf(J_0)'); 
                end 
                if ir < nr 
                    set(gca, 'XTickLabel', {'', ''});  
                end 
                if ip > 1 
                    set(gca, 'YTickLabel', {'', ''}); 
                end 
                if ir == 1 
                    switch ip  
                        case 1 
                            title('p=0'); 
                        case 2 
                            title('p=0.1'); 
                        case 3 
                            title('p=0.3'); 
                        case 4 
                            title('p=0.5'); 
                        case 5 
                            title('p=0.7'); 
                        case 6 
                            title('p=0.9'); 
                        case 7 
                            title('p=1');  
                        otherwise 
                    end 
                end 
     
                if ip == np 
                    switch ir 
                        case 1 
                            text(1, 0.5, '  c/b=1', 'LineStyle', 'none', 'HorizontalAlignment', 'Left'); 
                        case 2 
                            text(1, 0.5, '  c/b=0.95', 'LineStyle', 'none', 'HorizontalAlignment', 
'Left'); 
                        case 3 
                            text(1, 0.5, '  c/b=0.9', 'LineStyle', 'none', 'HorizontalAlignment', 
'Left'); 
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                        case 4 
                            text(1, 0.5, '  c/b=0.85', 'LineStyle', 'none', 'HorizontalAlignment', 
'Left'); 
                        case 5 
                            text(1, 0.5, '  c/b=0.8', 'LineStyle', 'none', 'HorizontalAlignment', 
'Left'); 
                        case 6 
                            text(1, 0.5, '  c/b=0.5', 'LineStyle', 'none', 'HorizontalAlignment', 
'Left'); 
                        case 7 
                            text(1, 0.5, '  c/b=0.1', 'LineStyle', 'none', 'HorizontalAlignment', 
'Left'); 
                        otherwise 
                    end 
                end 
           end 
        end 
 
 
                 
                 
                
                  
                 
                 
                 
                 
                     
                 
    
function analysisRL(p, c, fC0J0, fC0J1, fC1J0, TG) 
% Xiaoyun Liao  xliao@rice.edu  2009-1-11 
% Analysis of the recognition model for altruism. 
   
    fC1J1 = 1 - fC0J0 - fC0J1 - fC1J0; 
  if (fC1J1 < 0) 
      error('f != 1.0'); 
  end  
 
  W0 = 1.0;   
  fG0 = [fC0J0, fC0J1, fC1J0, fC1J1]; % Genotypes: C0J0, C0J1, C1J0, C1J1 
  %fA0 = [fC0J0 + fC0J1, fC1J0 + fC1J1, fC0J0 + fC1J0, fC0J1 + fC1J1];  % Alleles: C0, C1, 
J0, J1 
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  L0 = [1, 0.65, 0.6, 0.58, 0.56, 0.55, 0.54, 0.52, 0.5, 0.48, 0.45, 0.2, 0];    
  nL = length(L0);  
   
  r0 = [0.1, 0.5, 0.6, 0.65, 0.7, 0.75, 0.8, 0.85, 0.9, 0.95, 1]; 
  nr = length(r0);  
   
  fig = figure('Position', [0 0 700 700], 'Color', 'w', 'Resize', 'off'); hold 
  iPlot = 0; 
  
        for iL = 1:nL 
           L = L0(iL); 
            
           for ir = 1:nr 
                r = r0(ir); 
   
                b = c / r;                                      
                 
                FA = zeros(TG, 2);  % frequencies of alleles: C0, J0 
                 
                FG = zeros(4); % frequencies of genotype: C0J0, C0J1, C1J0, C1J1 
                WG = zeros(4);  % mean fitness of genotype: C0J0, C0J1, C1J0, C1J1 
                    
                for ifG0 = 1:4 
                    FG(ifG0) = fG0(ifG0); 
                end 
 
                for t = 1 : TG 
                    FA(t, 1) = FG(1) + FG(2);  % C0 = C0J0 + C0J1 
                    FA(t, 2) = FG(1) + FG(3);  % J0 = C0J0 + C1J0 
                     
                    FAA = p * (FG(2) + FG(3)) + (1 - p) * (FG(2) * (FG(1) + FG(2))+ FG(3) * 
(FG(3) + FG(4))); 
                     
                    W  = W0 + (b - c) * FAA;    
                     
                    WG(1) = W0 + (1 - p) * b * FG(2); 
                    WG(2) = W0 + p * (b - c) + (1 - p) * ((b - c) * FG(2) - c * FG(1)); 
                    WG(3) = W0 + p * (b - c) + (1 - p) * ((b - c) * FG(3) - c * FG(4)); 
                    WG(4) = W0 + (1 - p) * b * FG(3); 
 
                    FGW1 = FG(1) * WG(1) / W;  
                    FGW2 = FG(2) * WG(2) / W; 
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                    FGW3 = FG(3) * WG(3) / W; 
                    FGW4 = FG(4) * WG(4) / W; 
                    FGWD = (FGW1 * FGW4 - FGW2 * FGW3) / 2; 
                     
                    % from time t to  t + 1   
                    FG(1) = (2 * (1 - L) - (1 - 2 * L) * FGW1) * FGW1 - (1 - L) * FGWD; % C0J0 
                    FG(2) = (2 * L + (1 - 2 * L) * FGW2) * FGW2 + L * FGWD; % C0J1 
                    FG(3) = (2 * L + (1 - 2 * L) * FGW3) * FGW3 + L * FGWD; % C1J0 
                    FG(4) = (2 * (1 - L) - (1 - 2 * L) * FGW4) * FGW4 - (1 - L) * FGWD; % C1J1     
                        
                end  
                 
                 % plot the simulation results  
                iPlot = iPlot + 1; 
                subplot(nL, nr, iPlot); hold; 
                plot(FA(:, 1), FA(:, 2));  
                plot(FA(1, 1), FA(1, 2), 'ok', 'MarkerSize', 4); 
                plot(FA(TG, 1), FA(TG, 2), '.k', 'MarkerSize', 16); 
                xlim([-0.01 1.01]); ylim([-0.01 1.01]);  box on; set(gca, 'DataAspectRatio', [1 
1 1]); 
                set(gca, 'XTick', 0:1:1); set(gca, 'YTick', 0:1:1); 
                if iL == nL && ir >= nr / 2 && ir < nr / 2 + 1 
                   xlabel('\itf(C_0)'); 
                end 
                if ir == 1 && iL >= nL / 2 && iL < nL / 2 + 1  
                    ylabel('\itf(J_0)'); 
                end 
                if iL < nL 
                    set(gca, 'XTickLabel', {'', ''});  
                end 
                if ir > 1 
                    set(gca, 'YTickLabel', {'', ''}); 
                end 
                if iL == 1 
                    switch ir  
                        case 1 
                            title('r=0.1'); 
                        case 2 
                            title('r=0.5'); 
                        case 3 
                            title('r=0.6'); 
                        case 4 
                            title('r=0.65'); 



 
184 

 

                        case 5 
                            title('r=0.7'); 
                        case 6 
                            title('r=0.75'); 
                        case 7 
                            title('r=0.8');  
                        case 8 
                            title('r=0.85'); 
                        case 9 
                            title('r=0.9'); 
                        case 10 
                            title('r=0.95'); 
                        case 11 
                            title('r=1'); 
                        otherwise 
                    end 
                end 
     
                if ir == nr 
                    switch iL 
                        case 1 
                            text(1, 0.5, '  l=1', 'LineStyle', 'none', 'HorizontalAlignment', 'Left'); 
                        case 2 
                            text(1, 0.5, '  l=0.65', 'LineStyle', 'none', 'HorizontalAlignment', 'Left'); 
                        case 3 
                            text(1, 0.5, '  l=0.6', 'LineStyle', 'none', 'HorizontalAlignment', 'Left'); 
                        case 4 
                            text(1, 0.5, '  l=0.58', 'LineStyle', 'none', 'HorizontalAlignment', 'Left'); 
                        case 5 
                            text(1, 0.5, '  l=0.56', 'LineStyle', 'none', 'HorizontalAlignment', 'Left'); 
                        case 6 
                            text(1, 0.5, '  l=0.55', 'LineStyle', 'none', 'HorizontalAlignment', 'Left'); 
                        case 7 
                            text(1, 0.5, '  l=0.54', 'LineStyle', 'none', 'HorizontalAlignment', 'Left'); 
                        case 8 
                            text(1, 0.5, '  l=0.52', 'LineStyle', 'none', 'HorizontalAlignment', 'Left'); 
                        case 9 
                            text(1, 0.5, '  l=0.5', 'LineStyle', 'none', 'HorizontalAlignment', 'Left'); 
                        case 10 
                            text(1, 0.5, '  l=0.48', 'LineStyle', 'none', 'HorizontalAlignment', 'Left'); 
                        case 11 
                            text(1, 0.5, '  l=0.45', 'LineStyle', 'none', 'HorizontalAlignment', 'Left'); 
                        case 12 
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                            text(1, 0.5, '  l=0.2', 'LineStyle', 'none', 'HorizontalAlignment', 'Left'); 
                        case 13 
                            text(1, 0.5, '  l=0', 'LineStyle', 'none', 'HorizontalAlignment', 'Left'); 
                        otherwise 
                    end 
                end 
           end 
        end 
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A.3 Scripts for Exploring Fitness Cost/Benefit to Solve the Crozier’s 

Paradox 

 

function kinRecognition(cue, N, G) 
% Simulate the model of kin recognition 
 
% Author: Xiaoyun Liao 
% Date: July 16, 2009 
% Email: xliao@rice.edu 
 
% 
##########################################################
############# % 
% The MODEL OF KIN RECOGNITION 
% Three genetic components: Action, Production, Perception 
% ACTION: single action locus. 
% PRODUCTION: single production locus 
% PERCEPTION: multiple perception loci 
% Matches of each production allele are accepted or rejected by certain perception 
locus   
 
% 
##########################################################
############# % 
% Alleles in three components 
% The set of action component alleles 
   numberActionAllele = 5; 
   setActionAllele = [1:numberActionAllele]; 
    %setActionAllele = ['Help' 'Recognized Help' 'Neutral' 'Recognized Exploit' 
'Exploit']; 
    %setActionAllele = [ 1      2                 3         4       5   ]; 
     
% The set of production component alleles 
   numberProductionAllele = cue;    
   setProductionAllele = [1:numberProductionAllele]; 
    %setProductionAllele = ['A1' ; 'A2' ; 'A3' ]; 
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    %setProductionAllele = [ 1      2      3   ]; 
     
% The set of perception component alleles 
   numberPerceptionLocus = numberProductionAllele; 
   numberPerceptionAllele = 3; 
   setPerceptionAllele = [1:numberPerceptionAllele]; 
    %setPerceptionAllele = [ 1      2      3   ]; 
     
     
% 
##########################################################
############# % 
% RECOGNITION 
% Match of production alleles 
% Match only when they are the same allele 
   match_tmp = ones(1, numberProductionAllele);     
   matrixProductionAlleleMatch = diag(match_tmp);  
    
% Accept of production alleles by perception alleles 
% Accepted only by the first allele  
   matrixPerceptionAlleleAccept = [ 1   0   0.5];  
 
    
    
% 
##########################################################
############# % 
% FREQUENCY 
  freqActionAlleleSet = dlmread('actionallelefrequency.txt', '\t'); 
  freqProductionAlleleSet = dlmread('productionallelefrequency.txt', '\t'); 
  freqPerceptionAlleleSet = dlmread('perceptionallelefrequency.txt', '\t'); 
 
% 
##########################################################
############# % 
% FITNESS 
  costBenefit = dlmread('costbenefit.txt', '\t'); 
  costSet = costBenefit(1,:); 
  benefitSet = costBenefit(2, :); 
  cbratioSet = costBenefit(3, :); 
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% 
##########################################################
############# % 
% CLONEMATE 
  probabilitySet = dlmread('probability.txt', '\t'); 
   
   
   
% 
##########################################################
#############%  
% Simulation 
  oneSimulation;   
  %matrixCostCBRatio; 
 
 
   
   
% 
##########################################################
#############% 
    function oneSimulation 
       productionAlleleFrequency = multiplePerceptionLocus(freqActionAlleleSet(1, :), 
freqProductionAlleleSet(1, :), freqPerceptionAlleleSet(1, :), probabilitySet(1), 
costSet(1), benefitSet(3)); 
       figure('Position', [0 0 600 300], 'Color', 'w', 'Resize', 'off');  
       plot(productionAlleleFrequency, '-o');  
       ylim([0,1]); 
       legend('A1', 'A2', 'A3'); 
        
    end 
 
 
 
% 
##########################################################
#############% 
    function matrixCostCBRatio     
        [mCost, nCost] = size(costSet); 
        [mCBRatio, nCBRatio] = size(cbratioSet); 
        iplot = 0; 
        mstep = 1; 
        nstep = 1; 
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        mplot = ceil(nCBRatio / mstep); 
        nplot = ceil(nCost / nstep); 
        for iCBRatio = 1:mstep:nCBRatio 
            for iCost = 1:nstep:nCost 
                benefit = cost(iCost) / cbratio(iCBRatio); 
                productionAlleleFrequency = 
multiplePerceptionLocus(freqActionAlleleSet(1, :), freqProductionAlleleSet(1, :), 
freqPerceptionAlleleSet(1, :), probabilitySet(1), costSet(iCost), benefit); 
                 
                iplot = iplot + 1; 
                subplot(mplot, nplot, iplot); 
                plot(productionAlleleFrequency(:, 1), productionAlleleFrequency(:, 2)); 
                axis([0, 1, 0, 1]); 
            end 
        end 
    end 
 
% 
##########################################################
#############% 
    function matrixCostBenefit() 
    end 
 
% 
##########################################################
#############% 
    function matrixCostClonemate() 
    end 
 
% 
##########################################################
#############% 
    function matrixProductionAlleleFrequency() 
    end 
     
% 
##########################################################
#############% 
 
    function SingleLocus ()       
    end 
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% 
##########################################################
#############% 
% 
    function productionAlleleFrequency = multiplePerceptionLocus(freqActionAllele, 
freqProductionAllele, freqPerceptionAllele, probability, cost, benefit) 
     
        %rand('twister', sum(100*clock)); 
        rand('twister', 1000); 
     
 
        productionAlleleFrequency = zeros(G, numberProductionAllele); 
        perceptionAlleleFrequency = zeros(numberPerceptionLocus, 
numberPerceptionAllele, G); 
        %actionAlleleFrequency = zeros(G, numberActionAllele); 
     
        offspringPopulation = createAncestor(freqActionAllele, freqProductionAllele, 
freqPerceptionAllele); 
 
        parentPopulation = offspringPopulation; 
        for iG = 1:G 
            productionAlleleFrequency(iG, 1:numberProductionAllele) = 
calculateProductionAlleleFrequency(parentPopulation); 
            perceptionAlleleFrequency(1:numberPerceptionLocus, 
1:numberPerceptionAllele, iG) = 
calculatePerceptionAlleleFrequency(parentPopulation); 
          % actionAlleleFrequency(iG, 1:numberActionAllele) = 
calculateActionAlleleFrequency(parentPopulation); 
      
            parentPopulation = performAltruism(parentPopulation, probability, cost, 
benefit); 
     
            offspringPopulation = reproduce(parentPopulation); 
     
            parentPopulation = offspringPopulation;     
        end 
 
        for iG = 1:G 
            for iP = 1:numberPerceptionLocus 
                freqtmp(iG, iP) = perceptionAlleleFrequency(iP, 1, iG); 
            end 
        end 
        figure('Position', [0 0 600 300], 'Color', 'w', 'Resize', 'off');  



 
191 

 

        plot(freqtmp, '-o'); 
        ylim([0,1]); 
        legend('A1 Accept', 'A2 Accept', 'A3 Accept'); 
    end 
 
     
 
 
 
% 
##########################################################
############# % 
% Create ancestor population 
    function ancestor = createAncestor(freqActionAllele, freqProductionAllele, 
freqPerceptionAllele) 
        freqActionAlleleCumulativeSum  = cumsum(freqActionAllele); 
        freqProductionAlleleCumulativeSum  = cumsum(freqProductionAllele); 
        freqPerceptionAlleleCumulativeSum  = cumsum(freqPerceptionAllele); 
     
        if ((freqActionAlleleCumulativeSum(numberActionAllele) - 1.0) > 0.001) 
            error('Action allele frequency initialized.'); 
        end 
        if ((freqProductionAlleleCumulativeSum(numberProductionAllele) - 1.0) > 
0.001) 
            error('Production allele frequency initialized.'); 
        end 
        if ((freqProductionAlleleCumulativeSum(numberPerceptionAllele) - 1.0) > 
0.001) 
            error('Perception allele frequency initialized.'); 
        end 
 
        for iN = 1:2:N 
            ancestor(iN) = createIndividual;   
            ancestor(iN + 1) = ancestor(iN);   
        end 
 
     
        function indi = createIndividual 
            indi.action = createActionAllele; 
            indi.production = createProductionAllele; 
            indi.perception = createPerceptionAllele; 
            indi.fitness = 1.0; 
        end 
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        function actionAllele = createActionAllele 
            randomProbability = rand; 
            iA = 1; 
            while(randomProbability >= freqActionAlleleCumulativeSum(iA)) 
                iA = iA + 1;         
            end 
            actionAllele = setActionAllele(iA); 
        end 
 
        function productionAllele = createProductionAllele 
            randomProbability = rand; 
            iP = 1; 
            while(randomProbability >= freqProductionAlleleCumulativeSum(iP)) 
                iP = iP + 1;         
            end 
            productionAllele = setProductionAllele(iP); 
        end 
 
        function perceptionAllele = createPerceptionAllele 
            perceptionAllele = zeros(1, numberPerceptionLocus); 
            randomProbability = rand; 
            for iPerLocus = 1:numberPerceptionLocus 
                iPer = 1; 
                while(randomProbability >= freqPerceptionAlleleCumulativeSum(iPer)) 
                    iPer = iPer + 1;         
                end 
                perceptionAllele(iPerLocus) = setPerceptionAllele(iPer); 
            end 
        end 
 
    end 
 
 
% 
##########################################################
############# % 
 
        function productionAlleleFreq = 
calculateProductionAlleleFrequency(population) 
            productionAlleleFreq = zeros(1, numberProductionAllele); 
            countProduction = zeros(1, numberProductionAllele); 
            for iN = 1:N 
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                iProduction = population(iN).production; 
                countProduction(1, iProduction) = countProduction(1, iProduction) + 1;     
            end 
            for iProduction = 1:numberProductionAllele 
                productionAlleleFreq(1, iProduction) = 1.0 * countProduction(1, 
iProduction) / N; 
            end 
         end 
         
        function perceptionAlleleFreq = 
calculatePerceptionAlleleFrequency(population) 
            perceptionAlleleFreq = zeros(numberPerceptionLocus, 
numberPerceptionAllele); 
            countPerception = zeros(numberPerceptionLocus, numberPerceptionAllele); 
            for iN = 1:N 
                for iPerLocus = 1:numberPerceptionLocus 
                    iPerception = population(iN).perception(iPerLocus); 
                    countPerception(iPerLocus, iPerception) = countPerception(iPerLocus, 
iPerception) + 1;     
                end 
            end 
            for iPerLocus = 1:numberPerceptionLocus 
                for iPerception = 1:numberPerceptionAllele 
                    perceptionAlleleFreq(iPerLocus, iPerception) = 1.0 * 
countPerception(iPerLocus, iPerception) / N; 
                end 
            end 
        end 
         
        function actionAlleleFreq = calculateActionAlleleFrequency(population) 
            actionAlleleFreq = zeros(1, numberActionAllele); 
            countAction = zeros(1, numberActionAllele); 
            for iN = 1:N 
                iAction = population(iN).action; 
                countAction(1, iAction) = countAction(1, iAction) + 1;     
            end 
            for iAction = 1:numberActionAllele 
                actionAlleleFreq(1, iAction) = 1.0 * countAction(1, iAction) / N; 
            end 
        end 
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% 
##########################################################
############# % 
%   Perform altruistic behaviors among parent population 
    function populationAfter = performAltruism(populationBefore, probability, cost, 
benefit) 
     
        for iN = 1:N 
            iActor = ceil(N * rand); 
         
            if (rand < probability) % clonemate as partner 
                if (mod(iActor, 2) == 0) 
                    iRecipient = iActor - 1; 
                else 
                    iRecipient = iActor + 1;   
                end 
            else  % genetically random partner             
                iRecipient = ceil(N * rand); 
            end 
         
            if (help(iActor, iRecipient)) 
                if (populationBefore(iActor).fitness >= cost) 
                    populationBefore(iActor).fitness = populationBefore(iActor).fitness - cost; 
                    populationBefore(iRecipient).fitness = 
populationBefore(iRecipient).fitness + benefit;      
                else 
                    %??? 
                end 
            end 
        end 
        populationAfter = populationBefore; 
     
         
    function hel = help(iActor, iRecipient)  
        hel = false; 
        switch populationBefore(iActor).action 
            case 1 
                hel = true; 
            case 2 
                if (recognition(iActor, iRecipient)) 
                    hel = true; 
                end 
            case 3 
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                hel = false; 
           otherwise 
                hel = false; 
        end 
    end 
     
     
    function rec = recognition(iActor, iRecipient) 
        rec = false; 
        if (match(populationBefore(iActor).production, 
populationBefore(iRecipient).production)) 
            if (accept(populationBefore(iActor).production, 
populationBefore(iActor).perception)) 
                rec = true; 
            end 
        end 
    end 
     
    function mat = match(actorProduction, recipientProduction) 
        if (rand < matrixProductionAlleleMatch(actorProduction, recipientProduction)) 
            mat = true; 
        else 
            mat = false; 
        end         
    end 
     
    function acc = accept(actorProduction, actorPerception) 
        if (rand < matrixPerceptionAlleleAccept(actorPerception(actorProduction))) 
            acc = true; 
        else  
            acc = false; 
        end         
    end     
     
    end 
 
 
 
% 
##########################################################
############# % 
%   Create offspring population from parent population 
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    function offspringPopulation = reproduce(parentPopulation) 
     
        for iN = 1:N 
            fit(iN) = parentPopulation(iN).fitness; 
        end 
        fitCumulativeSum = cumsum(fit); 
        fitnessSum = fitCumulativeSum(N); 
     
        for iN = 1:2:N 
            offspringPopulation(iN) = reproduceIndividual(); 
            offspringPopulation(iN + 1) = offspringPopulation(iN); 
        end 
     
    function indi = reproduceIndividual() 
        iFather = randParent(); 
        iMother = randParent(); 
         
        indi = reproduceChild(iFather, iMother); 
    end 
     
    function iParent = randParent() 
        randFitness = fitnessSum * rand(); 
        iParent = binarySearch(fitCumulativeSum, randFitness); 
    end 
     
    function index = binarySearch(dataSet, key) 
        [m, n] = size(dataSet); 
        left = 1; 
        right = n; 
        while (left <= right) 
            middle = floor((left + right) / 2); 
            if (key < dataSet(1, middle))  
                right = middle - 1; 
            else 
                left = middle + 1; 
            end      
        end       
        if (key < dataSet(1, middle)) 
            index = middle; 
        else 
            index = middle + 1; 
        end 
    end 
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    function child = reproduceChild(iFather, iMother) 
        child.action = alternativeAction(parentPopulation(iFather).action, 
parentPopulation(iMother).action); 
        child.production = 
alternativeProduction(parentPopulation(iFather).production, 
parentPopulation(iMother).production); 
        child.perception = alternativePerception(parentPopulation(iFather).perception, 
parentPopulation(iMother).perception); 
        child.fitness = 1.0;         
    end 
     
    function action = alternativeAction(fatherAction, motherAction) 
        if (rand < 0.5) 
            action = fatherAction; 
        else 
            action = motherAction; 
        end 
    end 
     
    function production = alternativeProduction(fatherProduction, 
motherProduction) 
        if (rand < 0.5) 
            production = fatherProduction; 
        else 
            production = motherProduction; 
        end 
    end 
     
    function perception = alternativePerception(fatherPerception, motherPerception) 
        for iPerLocus = 1:numberPerceptionLocus 
            if (rand < 0.5) 
                perception(iPerLocus) = fatherPerception(iPerLocus); 
            else 
                perception(iPerLocus) = motherPerception(iPerLocus); 
            end 
        end 
    end 
 
    end 
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% 
##########################################################
############# % 
% Plot    
    function plotAlleleFrequency(actionAlleleFreq, productionAlleleFreq, 
perceptionAlleleFreq) 
        subplot(3,1,1); 
        plot(actionAlleleFreq(1:G,1:3), '-o'); 
        legend('Alawys help','Recognized help','Never help'); 
        ylim([0 1]); 
        subplot(3,1,2); 
        plot(productionAlleleFreq(1:G,1:3), '-o'); 
        legend('A1','A2','A3'); 
        ylim([0 1]); 
        subplot(3,1,3); 
       % plot(perceptionAlleleFreq(1:G,1:3), '-o'); 
       % legend('a1','a2','a3'); 
       % ylim([0 1]); 
    end 
 
    function plotFrequency(productionAlleleFreq) 
        plot(productionAlleleFreq(:,1:numberProductionAllele), '-o'); 
        %legend('A1','A2','A3'); 
        ylim([0 1]); 
    end 
 
    function plotFrequencySpace(productionAlleleFreq) 
        plot(productionAlleleFreq(:,1), productionAlleleFreq(:,2), '-o'); 
        xlim([0 1]); ylim([0 1]); 
    end 
end 
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function kinRecognitionSingleLocus(cue, N, G, iAction, iProduction, iPerception, 
iProbability, iCost, iBenefit) 
% Simulate the model of kin recognition 
 
% Author: Xiaoyun Liao 
% Date: 9/3/2009 
% Email: xliao@rice.edu 
 
% 
##########################################################
############# % 
% The MODEL OF KIN RECOGNITION 
% Three genetic components: Action, Production, Perception 
% ACTION: single action locus. 
% PRODUCTION: single production locus 
% PERCEPTION: multiple perception loci 
% Matches of each production allele are accepted or rejected by certain perception 
locus   
 
% 
##########################################################
############# % 
% Alleles in three components 
% The set of action component alleles 
   numberActionAllele = 2; 
   setActionAllele = [1:numberActionAllele]; 
   %setActionAllele = [ 1                 2]; 
   %setActionAllele = ['Recognized Help' 'Always Help']; 
 
     
% The set of production component alleles 
   %numberProductinLocus = 1; 
   numberProductionAllele = cue;    
   setProductionAllele = [1:numberProductionAllele]; 
   %setProductionAllele = [ 1      2      3   ]; 
   %setProductionAllele = ['C1'  'C2'  'C3' ]; 
 
     
% The set of perception component alleles 
   %numberPerceptionLocus = numberProductionAllele; 
   %numberPerceptionLocus = numberProductinLocus; 
   numberPerceptionAllele = numberProductionAllele; 
   setPerceptionAllele = [1:numberPerceptionAllele]; 
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   %setPerceptionAllele = [ 1    2    3]; 
   %setPerceptionAllele = ['R1' 'R2' 'R3']; 
     
% 
##########################################################
############# % 
% RECOGNITION 
% Match of production alleles 
% Match only when they are the same allele 
   match_tmp = ones(1, numberProductionAllele);     
   matrixProductionAlleleMatch = diag(match_tmp);  
    
% Accept of production alleles by perception alleles 
% Accepted only by the first allele  
  accept_tmp = ones(1, numberProductionAllele); 
  matrixPerceptionAlleleAccept = diag(accept_tmp);  
  %accept_random = 0.5 * ones(numberProductionAllele, 1); 
  %matrixPerceptionAlleleAccept = cat(2, diag(accept_tmp), accept_random);  
    
    
% 
##########################################################
############# % 
% FREQUENCY 
  freqActionAlleleSet = dlmread('actionallelefrequency.txt', '\t'); 
  freqProductionAlleleSet = dlmread('productionallelefrequency.txt', '\t'); 
  freqPerceptionAlleleSet = dlmread('perceptionallelefrequency.txt', '\t'); 
 
% 
##########################################################
############# % 
% FITNESS 
  costBenefit = dlmread('costbenefit.txt', '\t'); 
  costSet = costBenefit(:,1); 
  benefitSet = costBenefit(:, 2); 
  cbratioSet = costBenefit(:, 3); 
   
  altruismFrequency = zeros(G, 1); 
  iAltruism = 1; 
% 
##########################################################
############# % 
% CLONEMATE 
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  probabilitySet = dlmread('probability.txt', '\t'); 
   
   
   
% 
##########################################################
#############%  
% Simulation 
  oneSimulation;   
  %matrixCostCBRatio; 
 
 
   
   
% 
##########################################################
#############% 
    function oneSimulation 
       singleLocus(freqActionAlleleSet(iAction, :), freqProductionAlleleSet(iProduction, 
:), freqPerceptionAlleleSet(iPerception, :), probabilitySet(iProbability), 
costSet(iCost), benefitSet(iBenefit)); 
 
    end 
 
 
 
% 
##########################################################
#############% 
    function matrixCostCBRatio     
        [mCost, nCost] = size(costSet); 
        [mCBRatio, nCBRatio] = size(cbratioSet); 
        iplot = 0; 
        mstep = 1; 
        nstep = 1; 
        mplot = ceil(nCBRatio / mstep); 
        nplot = ceil(nCost / nstep); 
        for iCBRatio = 1:mstep:nCBRatio 
            for iCost = 1:nstep:nCost 
                benefit = cost(iCost) / cbratio(iCBRatio); 
                productionAlleleFrequency = 
multiplePerceptionLocus(freqActionAlleleSet(1, :), freqProductionAlleleSet(1, :), 
freqPerceptionAlleleSet(1, :), probabilitySet(1), costSet(iCost), benefit); 
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                iplot = iplot + 1; 
                subplot(mplot, nplot, iplot); 
                plot(productionAlleleFrequency(:, 1), productionAlleleFrequency(:, 2)); 
                axis([0, 1, 0, 1]); 
            end 
        end 
    end 
 
% 
##########################################################
#############% 
    function matrixCostBenefit() 
    end 
 
% 
##########################################################
#############% 
    function matrixCostClonemate() 
    end 
 
% 
##########################################################
#############% 
    function matrixProductionAlleleFrequency() 
    end 
     
% 
##########################################################
#############% 
 
 
% 
##########################################################
#############% 
% 
    function singleLocus(freqActionAllele, freqProductionAllele, freqPerceptionAllele, 
probability, cost, benefit) 
         
        rand('twister', sum(100*clock)); 
        %rand('twister', 500000); 
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        productionAlleleFrequency = zeros(G, numberProductionAllele); 
        perceptionAlleleFrequency = zeros(G, numberPerceptionAllele); 
        actionAlleleFrequency = zeros(G, numberActionAllele); 
         
        productionAlleleFrequency(1, 1:numberProductionAllele) = 
freqProductionAllele; 
        perceptionAlleleFrequency(1, 1:numberPerceptionAllele) = 
freqPerceptionAllele; 
        actionAlleleFrequency(1, 1:numberActionAllele) = freqActionAllele; 
      
        offspringPopulation = createAncestor(freqActionAllele, freqProductionAllele, 
freqPerceptionAllele); 
 
        parentPopulation = offspringPopulation; 
        for iG = 2:G 
            productionAlleleFrequency(iG, 1:numberProductionAllele) = 
calculateProductionAlleleFrequency(parentPopulation); 
            perceptionAlleleFrequency(iG, 1:numberPerceptionAllele) = 
calculatePerceptionAlleleFrequency(parentPopulation); 
            actionAlleleFrequency(iG, 1:numberActionAllele) = 
calculateActionAlleleFrequency(parentPopulation); 
      
            parentPopulation = performAltruism(parentPopulation, probability, cost, 
benefit); 
     
            offspringPopulation = reproduce(parentPopulation); 
     
            parentPopulation = offspringPopulation;     
        end    
        %plotAlleleFrequency(productionAlleleFrequency, 
perceptionAlleleFrequency); 
        plotAlleleFrequency(actionAlleleFrequency, productionAlleleFrequency, 
perceptionAlleleFrequency, altruismFrequency); 
 
    end 
 
     
 
 
 
% 
##########################################################
############# % 
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% Create ancestor population 
    function ancestor = createAncestor(freqActionAllele, freqProductionAllele, 
freqPerceptionAllele) 
         
        freqActionAlleleCumulativeSum  = cumsum(freqActionAllele); 
        freqProductionAlleleCumulativeSum  = cumsum(freqProductionAllele); 
        freqPerceptionAlleleCumulativeSum  = cumsum(freqPerceptionAllele); 
     
        if ((freqActionAlleleCumulativeSum(numberActionAllele) - 1.0) > 0.001) 
            error('Action allele frequency initialized.'); 
        end 
        if ((freqProductionAlleleCumulativeSum(numberProductionAllele) - 1.0) > 
0.001) 
            error('Production allele frequency initialized.'); 
        end 
        if ((freqPerceptionAlleleCumulativeSum(numberPerceptionAllele) - 1.0) > 
0.001) 
            error('Perception allele frequency initialized.'); 
        end 
 
        for iN = 1:2:N 
            ancestor(iN) = createIndividual;   
            ancestor(iN + 1) = ancestor(iN);  %clonemate 
        end 
 
     
        function indi = createIndividual 
            indi.action = createActionAllele; 
            indi.production = createProductionAllele; 
            indi.perception = createPerceptionAllele; 
            indi.fitness = 1.0; 
        end 
 
        function actionAllele = createActionAllele 
            iA = 1; 
            while(rand >= freqActionAlleleCumulativeSum(iA)) 
                iA = iA + 1;         
            end 
            actionAllele = setActionAllele(iA); 
        end 
 
        function productionAllele = createProductionAllele 
            iP = 1; 
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            while(rand >= freqProductionAlleleCumulativeSum(iP)) 
                iP = iP + 1;         
            end 
            productionAllele = setProductionAllele(iP); 
        end 
 
        function perceptionAllele = createPerceptionAllele 
            iPer = 1; 
            while(rand >= freqPerceptionAlleleCumulativeSum(iPer)) 
                iPer = iPer + 1;         
            end 
            perceptionAllele = setPerceptionAllele(iPer); 
        end 
 
    end 
 
 
% 
##########################################################
############# % 
 
        function productionAlleleFreq = 
calculateProductionAlleleFrequency(population) 
            productionAlleleFreq = zeros(1, numberProductionAllele); 
            countProduction = zeros(1, numberProductionAllele); 
            for iN = 1:N 
                iProduction = population(iN).production; 
                countProduction(iProduction) = countProduction(iProduction) + 1;     
            end 
            for iProduction = 1:numberProductionAllele 
                productionAlleleFreq(iProduction) = 1.0 * countProduction(iProduction) / 
N; 
            end 
         end 
         
        function perceptionAlleleFreq = 
calculatePerceptionAlleleFrequency(population) 
            perceptionAlleleFreq = zeros(1, numberPerceptionAllele); 
            countPerception = zeros(1, numberPerceptionAllele); 
            for iN = 1:N 
                iPerception = population(iN).perception; 
                countPerception(iPerception) = countPerception(iPerception) + 1;     
            end 
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            for iPerception = 1:numberPerceptionAllele 
                perceptionAlleleFreq(iPerception) = 1.0 * countPerception(iPerception) / 
N; 
            end 
        end 
         
        function actionAlleleFreq = calculateActionAlleleFrequency(population) 
            actionAlleleFreq = zeros(1, numberActionAllele); 
            countAction = zeros(1, numberActionAllele); 
            for iN = 1:N 
                iAction = population(iN).action; 
                countAction(iAction) = countAction(iAction) + 1;     
            end 
            for iAction = 1:numberActionAllele 
                actionAlleleFreq(iAction) = 1.0 * countAction(iAction) / N; 
            end 
        end 
         
 
% 
##########################################################
############# % 
%   Perform altruistic behaviors among parent population 
    function populationAfter = performAltruism(populationBefore, probability, cost, 
benefit) 
         
        countAltruism = 0; 
        for iN = 1:N 
            iActor = ceil(N * rand); 
         
            if (rand < probability) % clonemate as partner 
                if (mod(iActor, 2) == 0) 
                    iRecipient = iActor - 1; 
                else 
                    iRecipient = iActor + 1;   
                end 
            else  % genetically random partner             
                iRecipient = ceil(N * rand); 
            end 
         
            if (help(iActor, iRecipient)) 
                if (populationBefore(iActor).fitness >= cost) 
                    populationBefore(iActor).fitness = populationBefore(iActor).fitness - cost; 
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                    populationBefore(iRecipient).fitness = 
populationBefore(iRecipient).fitness + benefit;      
                    countAltruism = countAltruism + 1; 
                else 
                    %??? 
                end 
            end 
        end 
        altruismFrequency(iAltruism) = 1.0 * countAltruism / N; 
        iAltruism = iAltruism + 1; 
         
        populationAfter = populationBefore; 
     
         
    function hel = help(iActor, iRecipient)  
        hel = false; 
        switch populationBefore(iActor).action 
            case 1 
                if (recognition(iActor, iRecipient)) 
                    hel = true; 
                end 
            case 2 
                hel = true; 
            case 3 
                hel = false; 
           otherwise 
                hel = false; 
        end 
    end 
     
     
    function rec = recognition(iActor, iRecipient) 
        rec = false; 
        if (match(populationBefore(iActor).production, 
populationBefore(iRecipient).production)) 
            if (accept(populationBefore(iActor).production, 
populationBefore(iActor).perception)) 
                rec = true; 
            end 
        end 
    end 
     
    function mat = match(actorProduction, recipientProduction) 
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        if (rand < matrixProductionAlleleMatch(actorProduction, recipientProduction)) 
            mat = true; 
        else 
            mat = false; 
        end         
    end 
     
    function acc = accept(actorProduction, actorPerception) 
        if (rand < matrixPerceptionAlleleAccept(actorProduction, actorPerception)) 
            acc = true; 
        else  
            acc = false; 
        end         
    end     
     
    end 
 
 
 
% 
##########################################################
############# % 
%   Create offspring population from parent population 
 
    function offspringPopulation = reproduce(parentPopulation) 
     
        for iN = 1:N 
            fit(iN) = parentPopulation(iN).fitness; 
        end 
        fitCumulativeSum = cumsum(fit); 
        fitnessSum = fitCumulativeSum(N); 
     
        for iN = 1:2:N 
            offspringPopulation(iN) = reproduceIndividual(); 
            offspringPopulation(iN + 1) = offspringPopulation(iN); 
        end 
     
    function indi = reproduceIndividual() 
        iFather = randParent(); 
        iMother = randParent(); 
         
        indi = reproduceChild(iFather, iMother); 
    end 
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    function iParent = randParent() 
        randFitness = fitnessSum * rand(); 
        iParent = binarySearch(fitCumulativeSum, randFitness); 
    end 
     
    function index = binarySearch(dataSet, key) 
        [m, n] = size(dataSet); 
        left = 1; 
        right = n; 
        while (left <= right) 
            middle = floor((left + right) / 2); 
            if (key < dataSet(1, middle))  
                right = middle - 1; 
            else 
                left = middle + 1; 
            end      
        end       
        if (key < dataSet(1, middle)) 
            index = middle; 
        else 
            index = middle + 1; 
        end 
    end 
     
    function child = reproduceChild(iFather, iMother) 
        child.action = alternativeAction(parentPopulation(iFather).action, 
parentPopulation(iMother).action); 
        child.production = 
alternativeProduction(parentPopulation(iFather).production, 
parentPopulation(iMother).production); 
        child.perception = alternativePerception(parentPopulation(iFather).perception, 
parentPopulation(iMother).perception); 
        child.fitness = 1.0;         
    end 
     
    function action = alternativeAction(fatherAction, motherAction) 
        if (rand < 0.5) 
            action = fatherAction; 
        else 
            action = motherAction; 
        end 
    end 
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    function production = alternativeProduction(fatherProduction, 
motherProduction) 
        if (rand < 0.5) 
            production = fatherProduction; 
        else 
            production = motherProduction; 
        end 
    end 
     
    function perception = alternativePerception(fatherPerception, motherPerception) 
        if (rand < 0.5) 
            perception = fatherPerception; 
        else 
            perception = motherPerception; 
        end 
    end 
 
    end 
 
 
 
% 
##########################################################
############# % 
% Plot    
    function plotAlleleFrequency(actionAlleleFreq, productionAlleleFreq, 
perceptionAlleleFreq, altruismFreq) 
        subplot(4,1,1); 
        plot(actionAlleleFreq(1:G,1:numberActionAllele), '-o'); 
        legend('Recognized help','Alawys help'); 
        ylim([0 1]); 
        subplot(4,1,2); 
        plot(productionAlleleFreq(1:G, 1:numberProductionAllele), '-o'); 
        legend('Cue1', 'Cue2'); 
        ylim([0 1]); 
        subplot(4,1,3); 
        plot(perceptionAlleleFreq(1:G, 1:numberPerceptionAllele), '-o'); 
        legend('Rec1', 'Rec2'); 
        ylim([0 1]); 
        subplot(4,1,4); 
        plot(altruismFreq(1:G), '-o'); 
        %legend('R1', 'R2'); 
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        ylim([0 1]); 
         
         
    end 
 
    function plotFrequency(productionAlleleFreq) 
        plot(productionAlleleFreq(:,1:numberProductionAllele), '-o'); 
        %legend('A1','A2','A3'); 
        ylim([0 1]); 
    end 
 
    function plotFrequencySpace(productionAlleleFreq) 
        plot(productionAlleleFreq(:,1), productionAlleleFreq(:,2), '-o'); 
        xlim([0 1]); ylim([0 1]); 
         
    end 
 
end 
 

 

 

function kinRecognitionMultiplePerceptionLoci(cue, N, G) 
% Simulate the model of kin recognition 
 
% Author: Xiaoyun Liao 
% Date: August 3, 2009 
% Email: xliao@rice.edu 
 
% 
##########################################################
############# % 
% The MODEL OF KIN RECOGNITION 
% Three genetic components: Action, Production, Perception 
% ACTION: single action locus. 
% PRODUCTION: single production locus 
% PERCEPTION: multiple perception loci 
% Matches of each production allele are accepted or rejected by certain perception 
locus   
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% 
##########################################################
############# % 
% Alleles in three components 
% The set of action component alleles 
   numberActionAllele = 5; 
   setActionAllele = [1:numberActionAllele]; 
   %setActionAllele = [ 1      2                 3         4       5 ]; 
   %setActionAllele = ['Help' 'Recognized Help' 'Neutral' 'Recognized Exploit' 
'Exploit']; 
 
     
% The set of production component alleles 
   %numberProductinLocus = 1; 
   numberProductionAllele = cue;    
   setProductionAllele = [1:numberProductionAllele]; 
   %setProductionAllele = [ 1      2      3   ]; 
   %setProductionAllele = ['A1'  'A2'  'A3' ]; 
 
     
% The set of perception component alleles 
   numberPerceptionLocus = numberProductionAllele; 
   %numberPerceptionLocus = numberProductinLocus; 
   %numberPerceptionAllele = numberProductionAllele + 1; 
   numberPerceptionAllele = 3; 
   setPerceptionAllele = [1:numberPerceptionAllele]; 
    %setPerceptionAllele = [ 1    2    3    4   ]; 
    %setPerceptionAllele = ['a1' 'a2' 'a3' 'a0' ]; 
     
% 
##########################################################
############# % 
% RECOGNITION 
% Match of production alleles 
% Match only when they are the same allele 
   match_tmp = ones(1, numberProductionAllele);     
   matrixProductionAlleleMatch = diag(match_tmp);  
    
% Accept of production alleles by perception alleles 
% Accepted only by the first allele  
  accept_tmp = ones(1, numberProductionAllele); 
  accept_random = 0.5 * ones(numberProductionAllele, 1); 



 
213 

 

  matrixPerceptionAlleleAccept = cat(2, diag(accept_tmp), accept_random);  
    
    
% 
##########################################################
############# % 
% FREQUENCY 
  freqActionAlleleSet = dlmread('actionallelefrequency.txt', '\t'); 
  freqProductionAlleleSet = dlmread('productionallelefrequency.txt', '\t'); 
  freqPerceptionAlleleSet = dlmread('perceptionallelefrequency.txt', '\t'); 
 
% 
##########################################################
############# % 
% FITNESS 
  costBenefit = dlmread('costbenefit.txt', '\t'); 
  costSet = costBenefit(1,:); 
  benefitSet = costBenefit(2, :); 
  cbratioSet = costBenefit(3, :); 
   
% 
##########################################################
############# % 
% CLONEMATE 
  probabilitySet = dlmread('probability.txt', '\t'); 
   
   
   
% 
##########################################################
#############%  
% Simulation 
  oneSimulation;   
  %matrixCostCBRatio; 
 
 
   
   
% 
##########################################################
#############% 
    function oneSimulation 
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       singleLocus(freqActionAlleleSet(1, :), freqProductionAlleleSet(6, :), 
freqPerceptionAlleleSet(5, :), probabilitySet(2), costSet(9), benefitSet(10)); 
 
    end 
 
 
 
% 
##########################################################
#############% 
    function matrixCostCBRatio     
        [mCost, nCost] = size(costSet); 
        [mCBRatio, nCBRatio] = size(cbratioSet); 
        iplot = 0; 
        mstep = 1; 
        nstep = 1; 
        mplot = ceil(nCBRatio / mstep); 
        nplot = ceil(nCost / nstep); 
        for iCBRatio = 1:mstep:nCBRatio 
            for iCost = 1:nstep:nCost 
                benefit = cost(iCost) / cbratio(iCBRatio); 
                productionAlleleFrequency = 
multiplePerceptionLocus(freqActionAlleleSet(1, :), freqProductionAlleleSet(1, :), 
freqPerceptionAlleleSet(1, :), probabilitySet(1), costSet(iCost), benefit); 
                 
                iplot = iplot + 1; 
                subplot(mplot, nplot, iplot); 
                plot(productionAlleleFrequency(:, 1), productionAlleleFrequency(:, 2)); 
                axis([0, 1, 0, 1]); 
            end 
        end 
    end 
 
% 
##########################################################
#############% 
    function matrixCostBenefit() 
    end 
 
% 
##########################################################
#############% 
    function matrixCostClonemate() 
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    end 
 
% 
##########################################################
#############% 
    function matrixProductionAlleleFrequency() 
    end 
     
% 
##########################################################
#############% 
 
 
% 
##########################################################
#############% 
% 
    function singleLocus(freqActionAllele, freqProductionAllele, freqPerceptionAllele, 
probability, cost, benefit) 
     
        rand('twister', sum(100*clock)); 
        %rand('twister', 500000); 
     
 
        productionAlleleFrequency = zeros(G, numberProductionAllele); 
        perceptionAlleleFrequency = zeros(G, numberPerceptionAllele); 
       % actionAlleleFrequency = zeros(G, numberActionAllele); 
     
        offspringPopulation = createAncestor(freqActionAllele, freqProductionAllele, 
freqPerceptionAllele); 
 
        parentPopulation = offspringPopulation; 
        for iG = 1:G 
            productionAlleleFrequency(iG, 1:numberProductionAllele) = 
calculateProductionAlleleFrequency(parentPopulation); 
            perceptionAlleleFrequency(iG, 1:numberPerceptionAllele) = 
calculatePerceptionAlleleFrequency(parentPopulation); 
          %  actionAlleleFrequency(iG, 1:numberActionAllele) = 
calculateActionAlleleFrequency(parentPopulation); 
      
            parentPopulation = performAltruism(parentPopulation, probability, cost, 
benefit); 
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            offspringPopulation = reproduce(parentPopulation); 
     
            parentPopulation = offspringPopulation;     
        end 
             
        plotAlleleFrequency(productionAlleleFrequency, perceptionAlleleFrequency); 
        %plotFrequencySpace(freqActionAllele, freqProductionAllele, 
freqPerceptionAllele); 
 
    end 
 
     
 
 
 
% 
##########################################################
############# % 
% Create ancestor population 
    function ancestor = createAncestor(freqActionAllele, freqProductionAllele, 
freqPerceptionAllele) 
         
        freqActionAlleleCumulativeSum  = cumsum(freqActionAllele); 
        freqProductionAlleleCumulativeSum  = cumsum(freqProductionAllele); 
        freqPerceptionAlleleCumulativeSum  = cumsum(freqPerceptionAllele); 
     
        if ((freqActionAlleleCumulativeSum(numberActionAllele) - 1.0) > 0.001) 
            error('Action allele frequency initialized.'); 
        end 
        if ((freqProductionAlleleCumulativeSum(numberProductionAllele) - 1.0) > 
0.001) 
            error('Production allele frequency initialized.'); 
        end 
        if ((freqPerceptionAlleleCumulativeSum(numberPerceptionAllele) - 1.0) > 
0.001) 
            error('Perception allele frequency initialized.'); 
        end 
 
        for iN = 1:2:N 
            ancestor(iN) = createIndividual;   
            ancestor(iN + 1) = ancestor(iN);  %clonemate 
        end 
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        function indi = createIndividual 
            indi.action = createActionAllele; 
            indi.production = createProductionAllele; 
            indi.perception = createPerceptionAllele; 
            indi.fitness = 1.0; 
        end 
 
        function actionAllele = createActionAllele 
            iA = 1; 
            while(rand >= freqActionAlleleCumulativeSum(iA)) 
                iA = iA + 1;         
            end 
            actionAllele = setActionAllele(iA); 
        end 
 
        function productionAllele = createProductionAllele 
            iP = 1; 
            while(rand >= freqProductionAlleleCumulativeSum(iP)) 
                iP = iP + 1;         
            end 
            productionAllele = setProductionAllele(iP); 
        end 
 
        function perceptionAllele = createPerceptionAllele 
            iPer = 1; 
            while(rand >= freqPerceptionAlleleCumulativeSum(iPer)) 
                iPer = iPer + 1;         
            end 
            perceptionAllele = setPerceptionAllele(iPer); 
        end 
 
    end 
 
 
% 
##########################################################
############# % 
 
        function productionAlleleFreq = 
calculateProductionAlleleFrequency(population) 
            productionAlleleFreq = zeros(1, numberProductionAllele); 
            countProduction = zeros(1, numberProductionAllele); 
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            for iN = 1:N 
                iProduction = population(iN).production; 
                countProduction(iProduction) = countProduction(iProduction) + 1;     
            end 
            for iProduction = 1:numberProductionAllele 
                productionAlleleFreq(iProduction) = 1.0 * countProduction(iProduction) / 
N; 
            end 
         end 
         
        function perceptionAlleleFreq = 
calculatePerceptionAlleleFrequency(population) 
            perceptionAlleleFreq = zeros(1, numberPerceptionAllele); 
            countPerception = zeros(1, numberPerceptionAllele); 
            for iN = 1:N 
                iPerception = population(iN).perception; 
                countPerception(iPerception) = countPerception(iPerception) + 1;     
            end 
            for iPerception = 1:numberPerceptionAllele 
                perceptionAlleleFreq(iPerception) = 1.0 * countPerception(iPerception) / 
N; 
            end 
        end 
         
        function actionAlleleFreq = calculateActionAlleleFrequency(population) 
            actionAlleleFreq = zeros(1, numberActionAllele); 
            countAction = zeros(1, numberActionAllele); 
            for iN = 1:N 
                iAction = population(iN).action; 
                countAction(iAction) = countAction(iAction) + 1;     
            end 
            for iAction = 1:numberActionAllele 
                actionAlleleFreq(iAction) = 1.0 * countAction(iAction) / N; 
            end 
        end 
         
 
% 
##########################################################
############# % 
%   Perform altruistic behaviors among parent population 
    function populationAfter = performAltruism(populationBefore, probability, cost, 
benefit) 
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        for iN = 1:N 
            iActor = ceil(N * rand); 
         
            if (rand < probability) % clonemate as partner 
                if (mod(iActor, 2) == 0) 
                    iRecipient = iActor - 1; 
                else 
                    iRecipient = iActor + 1;   
                end 
            else  % genetically random partner             
                iRecipient = ceil(N * rand); 
            end 
         
            if (help(iActor, iRecipient)) 
                if (populationBefore(iActor).fitness >= cost) 
                    populationBefore(iActor).fitness = populationBefore(iActor).fitness - cost; 
                    populationBefore(iRecipient).fitness = 
populationBefore(iRecipient).fitness + benefit;      
                else 
                    %??? 
                end 
            end 
        end 
        populationAfter = populationBefore; 
     
         
    function hel = help(iActor, iRecipient)  
        hel = false; 
        switch populationBefore(iActor).action 
            case 1 
                hel = true; 
            case 2 
                if (recognition(iActor, iRecipient)) 
                    hel = true; 
                end 
            case 3 
                hel = false; 
           otherwise 
                hel = false; 
        end 
    end 
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    function rec = recognition(iActor, iRecipient) 
        rec = false; 
        if (match(populationBefore(iActor).production, 
populationBefore(iRecipient).production)) 
            if (accept(populationBefore(iActor).production, 
populationBefore(iActor).perception)) 
                rec = true; 
            end 
        end 
    end 
     
    function mat = match(actorProduction, recipientProduction) 
        if (rand < matrixProductionAlleleMatch(actorProduction, recipientProduction)) 
            mat = true; 
        else 
            mat = false; 
        end         
    end 
     
    function acc = accept(actorProduction, actorPerception) 
        if (rand < matrixPerceptionAlleleAccept(actorProduction, actorPerception + 1)) 
            acc = true; 
        else  
            acc = false; 
        end         
    end     
     
    end 
 
 
 
% 
##########################################################
############# % 
%   Create offspring population from parent population 
 
    function offspringPopulation = reproduce(parentPopulation) 
     
        for iN = 1:N 
            fit(iN) = parentPopulation(iN).fitness; 
        end 
        fitCumulativeSum = cumsum(fit); 
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        fitnessSum = fitCumulativeSum(N); 
     
        for iN = 1:2:N 
            offspringPopulation(iN) = reproduceIndividual(); 
            offspringPopulation(iN + 1) = offspringPopulation(iN); 
        end 
     
    function indi = reproduceIndividual() 
        iFather = randParent(); 
        iMother = randParent(); 
         
        indi = reproduceChild(iFather, iMother); 
    end 
     
    function iParent = randParent() 
        randFitness = fitnessSum * rand(); 
        iParent = binarySearch(fitCumulativeSum, randFitness); 
    end 
     
    function index = binarySearch(dataSet, key) 
        [m, n] = size(dataSet); 
        left = 1; 
        right = n; 
        while (left <= right) 
            middle = floor((left + right) / 2); 
            if (key < dataSet(1, middle))  
                right = middle - 1; 
            else 
                left = middle + 1; 
            end      
        end       
        if (key < dataSet(1, middle)) 
            index = middle; 
        else 
            index = middle + 1; 
        end 
    end 
     
    function child = reproduceChild(iFather, iMother) 
        child.action = alternativeAction(parentPopulation(iFather).action, 
parentPopulation(iMother).action); 
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        child.production = 
alternativeProduction(parentPopulation(iFather).production, 
parentPopulation(iMother).production); 
        child.perception = alternativePerception(parentPopulation(iFather).perception, 
parentPopulation(iMother).perception); 
        child.fitness = 1.0;         
    end 
     
    function action = alternativeAction(fatherAction, motherAction) 
        if (rand < 0.5) 
            action = fatherAction; 
        else 
            action = motherAction; 
        end 
    end 
     
    function production = alternativeProduction(fatherProduction, 
motherProduction) 
        if (rand < 0.5) 
            production = fatherProduction; 
        else 
            production = motherProduction; 
        end 
    end 
     
    function perception = alternativePerception(fatherPerception, motherPerception) 
        if (rand < 0.5) 
            perception = fatherPerception; 
        else 
            perception = motherPerception; 
        end 
    end 
 
    end 
 
 
 
% 
##########################################################
############# % 
% Plot    
    function plotAlleleFrequency(productionAlleleFreq, perceptionAlleleFreq) 
        %subplot(3,1,1); 
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        %plot(actionAlleleFreq(1:G,1:3), '-o'); 
       % legend('Alawys help','Recognized help','Never help'); 
       % ylim([0 1]); 
        subplot(2,1,1); 
        plot(productionAlleleFreq(1:G, 1:numberProductionAllele), '-o'); 
        legend('A1', 'A2'); 
        ylim([0 1]); 
        subplot(2,1,2); 
        plot(perceptionAlleleFreq(1:G, 1:numberPerceptionAllele), '-o'); 
        legend('a1', 'a2', 'a0'); 
        ylim([0 1]); 
    end 
 
    function plotFrequency(productionAlleleFreq) 
        plot(productionAlleleFreq(:,1:numberProductionAllele), '-o'); 
        %legend('A1','A2','A3'); 
        ylim([0 1]); 
    end 
 
    function plotFrequencySpace(productionAlleleFreq) 
        plot(productionAlleleFreq(:,1), productionAlleleFreq(:,2), '-o'); 
        xlim([0 1]); ylim([0 1]); 
         
    end 
 
end 
 

 


