

RICE UNIVERSITY

Evolution of Altruism and Eusociality: Toward a Cost/Benefit

Analysis of Fitness and Genetic Relatedness

By

Xiaoyun Liao

A THESIS SUBMITTED

IN PARTIAL FULFILLMENT OF THE

REQUIREMENTS FOR THE DEGREE

Doctor of Philosophy

APPROVED, THESIS COMMITTEE

Michael H. Kohn, Chair, Associate Professor

of Ecology & Evolutionary Biology

Luay K. Nakhleh, Associate Professor of

Computer Science, Ecology & Evolutionary

Biology

Marek Kimmel, Professor of Statistics

Nicholas H. Putnam, Assistant Professor of

Ecology & Evolutionary Biology

HOUSTON, TEXAS

December, 2013

ABSTRACT

Evolution of Altruism and Eusociality:

Toward a Cost/Benefit Analysis of Fitness and Genetic Relatedness

By

Xiaoyun Liao

Altruism is a behavior that benefits others at a cost to one’s own ability of

survival and/or reproduction; that is, individual fitness. Thus, altruism poses great

challenges to Darwin’s theory of evolution by natural selection on individual fitness.

Altruistic behaviors are commonly performed in eusocial animals, such as nearly all

hymenoptera (including bees, wasps, and ants), termites, ambrosia beetles, and so

on. Inclusive fitness theory predicts that altruistic behavior can evolve when

sufficient fitness benefits are given to relatives even though individual fitness is

reduced. A different modeling approach has led to a challenge to this theory. The

modelers claim that relatedness is not causal, that eusocial behavior is very hard to

evolve requiring more workers before the queen increased fitness, and that there is

no conflict involved. Here I showed that, even within the terms of this modeling

framework, inclusive fitness thinking leads to insights that completely change these

conclusions. I showed that relatedness and inclusive fitness indeed are causal and

that eusociality does evolve more readily. With regard to the latter this means

eusociality can be favored under a lower benefits threshold. I concluded that

multiple modeling approaches are useful and that efforts to synthesize them are

better than asserting that one is universally better than the other. Moreover, either

greenbeard effects or genetic kin recognition requires genetic polymorphisms as

cues on which recognition is based. Previous models showed that selection

eliminates rare cue alleles and a common allele gets fixed, i.e. altruism cannot

persist. So it is unclear how genetic recognition for altruism persists under a

Darwinian selection framework. Here, I designed a novel model with three types of

genetic components (production, perception, and action). I analyzed my recognition

model theoretically toward a cost/benefit analysis of fitness and genetic

relatedness. I predicted the stability of recognition for altruism based on my model.

Furthermore I tested my recognition model through various computational and

biological simulations. My simulation results consistently showed altruism could

maintain multiple recognition cues and be evolutionarily stable; given the

assumptions of my model. I concluded that cost/benefit of fitness and genetic

relatedness both play critical roles in the evolution of altruism and eusociality, and

therefore can maintain the stability of recognition for altruism.

Acknowledgments

I would like to express my sincere gratitude to my advisors, Dr. Michael H. Kohn, Dr.

David C. Queller and Dr. Joan E. Strassmann, for the continuous support of my Ph.D.

study and research, for their patience, motivation, enthusiasm, and immense

knowledge. I really appreciate all of them.

I would like to appreciate my committee members, Dr. Marek Kimmel, Dr. Luay K.

Nakhleh, and Dr. Nicholas H. Putnam, who provided encouraging and constructive

feedback. I am grateful for their thoughtful and detailed comments.

I would also like to thank the Department of Ecology and Evolutionary Biology at

Rice University for helping me through some special times.

I would also like to thank my family and all the friends who have helped and

supported me along this long but fulfilling road.

Contents

Acknowledgments ... iv

Contents .. v

List of Figures ... viii

List of Tables .. x

List of Equations .. xi

Nomenclature .. 12

Introduction to Altruism and Eusociality ... 14

1.1. Hamilton’s Rule and Kin Selection ... 14

1.2. Crozier’s Paradox .. 18

1.3. Nowak et al.’s Model of the Evolution of Eusociality .. 19

1.4. Conclusions ... 19

1.5. References .. 21

The Evolution of Eusociality and Kin Selection Redux .. 25

2.1. Abstract .. 25

2.2. Introduction .. 27

2.3. Results .. 30

2.4. Discussion ... 35

2.5. Methods ... 41

2.6. References .. 47

2.7. Figure legends .. 52

2.8. Supplemental Materials ... 56

2.8.1. Altruism is Easy to Evolve under High Relatedness ... 56

2.8.2. Altruism cannot Evolve without Relatedness .. 63

2.8.3. The Higher the Relatedness, the Easier Altruism to Evolve 67

2.8.4. Eusociality is Easy to Evolve under Flexible Strategies of Workers 71

2.8.5. Conclusions .. 77

Evolutionary Dynamics of Genetic Kin Recognition: a General Model 78

3.1. Abstract .. 78

vi

3.2. Introduction .. 79

3.3. Negative Feedbacks from Judge to Cue ... 80

3.4. Genetic Relatedness at Each of Three Loci .. 82

3.5. Mathematical Analysis of the Model ... 83

3.6. Prediction of Stability of Evolution of Altruism and Eusociality............................. 88

3.7. Conclusions ... 90

3.8. References .. 91

3.9. Table legends .. 98

3.10. Figure legends .. 101

Exploring Fitness Cost/Benefit to Solve the Crozier’s Paradox 110

4.1. Abstract .. 110

4.2. Introduction .. 110

4.3. Recognition Bases on Multiple Cues .. 115

4.4. Simulation of Pure Greenbeard ... 117

4.5. Negative Feedbacks can Maintain Multiple Cue with Intermediate Frequencies 117

4.6. Stable Recognition Model under High Fitness Cost/Benefit and High Cost 118

4.7. The Recognition is Unstable When Cue Alleles Start Rare 119

4.8. Conclusions ... 120

4.9. References .. 122

4.10. Figure legends .. 129

Applications of New Perspective of Hamilton’s rule: r > C/B 140

5.1. Abstract .. 140

5.2. Introduction .. 141

5.3. The genetic relatedness and evolution of eusociality .. 142

5.4. The general model for genetic kin recognition .. 142

5.5. The fitness cost/benefit and the Crozier’s Paradox ... 143

5.6. Conclusions ... 143

5.7. References .. 144

Appendix A .. 148

A.1 Scripts for Altruism to Evolve with Genetic Relatedness 148

A.2 Scripts for Evolutionary Dynamics of Genetic Kin Recognition: a General Model 171

vii

A.3 Scripts for Exploring Fitness Cost/Benefit to Solve the Crozier’s Paradox 186

List of Figures

Figure 2.1 Eusocial evolution when the offspring decision rules is “stay if

colony size is below w”. .. 52

Figure 2.2 Eusocial evolution under threshold fitness functions with no

benefits to working below colony size 3 (two workers) (2) (solid circles)

versus stepped functions where the one worker contributes half the benefit of

two workers (open and solid circles). .. 53

Figure 2.3 Eusocial evolution in the Nowak et al. (2) haploid model, but adding

variable relatedness r (equations 3). .. 54

Figure 2.4 Eusocial evolution under offspring versus maternal control. 55

Figure 3.1 Genetic Relatedness at Each of Three loci .. 101

Figure 3.2 Genetic Relatedness for all alleles at three loci 102

Figure 3.3 Prediction of Stability of Evolution of Altruism and Eusociality .. 103

Figure 3.4 Genetic Relatedness with Two Cue Alleles .. 104

Figure 3.5 Genetic Relatedness with Ten Cue Alleles .. 105

Figure 3.6 Plots of Shannon’s diversity index for two cue and judge alleles

(c/b=0.82). ... 106

Figure 3.7 Plots of Shannon’s diversity index for two cue and judge alleles

(c/b=0.9). ... 107

Figure 3.8 Plots of Shannon’s diversity index for three cue and judge alleles

(c/b = 0.65). ... 108

Figure 3.9 Plots of Shannon’s diversity index for three cue and judge alleles

(c/b = 0.9). ... 109

Figure 4.1 Evolutionary dynamics of Genotype Frequencies in Unstable Kin

Recognition ... 129

Figure 4.2 Evolutionary dynamics of Allele Frequencies in Unstable Kin

Recognition ... 130

ix

Figure 4.3 Evolutionary dynamics of Genotype Frequencies in Stable Kin

Recognition ... 131

Figure 4.4 Evolutionary dynamics of Allele Frequencies in Stable Kin

Recognition ... 132

Figure 4.5 The stability of recognition. ... 133

Figure 4.6 The stability of recognition in space of frequencies. 134

Figure 4.7 Limited regions of stability: low p. ... 137

Figure 4.8 The space of frequency spaces under various recombination rates

and cost-to-benefit ratios. .. 138

Figure 4.9 The space of frequency spaces under various initialized allele with

highly linked loci. .. 139

List of Tables

Table 3.1 Alleles Indexes at Three Loci ... 98

Table 3.2 Payoff matrix of altruism .. 99

Table 3.3 Genetic Relatedness at Each of Three loci .. 100

List of Equations

Equation 1.1 Hamilton’s Rule .. 16

Equation 2.8.1 Evolutionary Dynamics under High Relatedness 58

Equation 2.8.2 Average Birth Rate Among Colonies Without Genetic

Relatedness .. 64

Equation 2.8.3 Evolutionary Dynamics without Genetic Relatedness 64

Equation 2.8.4 Average Birth Rate Among Colonies With Various Genetic

Relatedness .. 67

Equation 2.8.5 Evolutionary Dynamics under Various Genetic Relatedness .. 68

Equation 2.8.6 Average Birth Rate Among Colonies With Flexible Strategies of

Workers ... 73

Equation 2.8.7 Evolutionary Dynamics With Flexible Strategies of Workers .. 75

Equation 3.1 Frequency of Altruism in the Population ... 84

Equation 3.2 The Frequency of Altruism by Descent .. 85

Equation 3.3 The Mean Fitness of the Population after Altruism 85

Equation 3.4 The Mean Fitness of Individuals .. 85

Equation 3.5 The Frequencies of Genotypes ... 87

Equation 3.6 The Frequencies of Cue Alleles... 87

Equation 3.7 The Frequencies of Judge Alleles ... 88

Equation 3.8 The Frequencies of Genotypes ... 88

Equation 3.9 Shannon’s diversity index for cue and judge alleles 90

12

Nomenclature

B: fitness benefit

C: fitness cost

r: genetic relatedness

q: a fraction that the offspring of the eusocial queen stay with the nest

i: the number of individuals at the colony including the queen

m: a critical colony size

b0: general birth rates

bi: colony-size specific birth rates

d0: general death rates

di: colony-size specific death rates

α: worker mortality rates

η: population density dependence

ei: the number of colonies of size i headed by a eusocial queen

si: the number of colonies of size i headed by a solitary queen

X: the total population size including workers

: a parameter that scales the size of the system

pr: a fraction that partner is clonemate

C1, C2, K1, K2: cue alleles

J1, J2: judge alleles

13

A1, A2: action alleles

p1, p2: frequencies of cue allele C1, C2

q1, q2: frequencies of judge allele J1, J2

T: units of simulation time

h: recombination rate

14

Chapter 1

Introduction to Altruism and

Eusociality

1.1. Hamilton’s Rule and Kin Selection

Altruism is a behavior that lowers the Darwinian fitness (number of offspring

produced in one’s lifetime) of the actor and increases that of the recipient. The most

extreme forms of altruism are observed in eusocial insects such as ants, bees, wasps

and termites (Fletcher and Michener 1987; Frank 1998; Liebert et al. 2004). In such

eusocial insect workers have little or no reproductive ability with undeveloped or

reduced ovaries. They generally stay within nests to help others raise offspring and

only one or a small number of individuals reproduce. Darwin recognized in 1859

that paradox of sterile workers is “... one special difficulty, which at first appeared to

me insuperable, and actually fatal to my theory” (Darwin 1859). The evolution of

the altruistic behaviors remained without any satisfactory explanation for a

hundred years.

15

Darwin also indicated that “... [the problem] disappears when it is

remembered that selection may be applied to the family, as well as the individual

and may thus gain the desired end” (Darwin 1859). So what is the unit of selection,

a group or a single individual? In 1962 Wynne-Edwards argued that natural

selection acts only at the level of groups (Wynne-Edwards 1962). This idea was

once popular in 1960’s and was rejected in 1970’s, but now there are reasonable

versions (Koeslag 1997; Koeslag and Terblanche 2003).

In 1964 W. D. Hamilton produced an elegant formal theory that provided a

potential solution to this problem of reconciling the apparent sacrifice made by

individuals at their own fitness expense and Darwin’s evolution by natural selection

(Hamilton 1964). Specifically, Hamilton argued that altruistic acts to relatives could

be favored by natural selection, because relatives share the same gene as helpers.

Thus, Hamilton expanded the definition of individual fitness to include inclusive

fitness, which is the sum of a direct benefit through producing offspring and an

indirect benefit through aiding genetic relatives. Hamilton made these two

components additive by devaluing each offspring or relative by the genetic

relatedness to them.

From this Hamilton predicted that altruism will be favored by natural

selection when the inequality

16

0CrB

Equation 1.1 Hamilton’s Rule

is satisfied, where B is the benefit of the act of altruism to the recipient, C the cost of

the act to the actor and r the genetic relatedness between the actor and the recipient

(Hamilton 1964). Inclusive fitness is applicable not only to helping but also to any

behavior (West et al. 2007b). This inequality has now come to be known as

‘Hamilton’s Rule’. Hamilton’s theory is also frequently referred to as the inclusive

fitness theory or kin selection theory.

In the past half century Hamilton’s work attracted high attention in the social

evolution study field, in that the theory promted extensive empirical and theoretical

explorations; notably tests of the prediction that altruism should be correlated with

relatedness (West et al. 2007).

Relatedness measures genetic similarity between any two individuals of a

given species in a population. Historically, the definition of relatedness has received

several refinements. Hamilton initially defined relatedness as the coefficient of

relationship (Hamilton 1964; Wright 1922). In most situations (e.g. no inbreeding),

it is the probability that a random allele the actor has at a focal locus is shared by the

recipient via a common ancestor. These genes are called identical by descent. There

are two reasons for why two alleles can be identical: identity by descent and non-

identity by descent or identity by state. What really matters is identity above

17

random population frequencies. Coefficient of relationship is calculated from a

pedigree. Thus in a diploid, the relatedness between full siblings is 1/2, cousins is

1/8 as J.B.S. Haldane says, “I would jump into a river to save two brothers or eight

cousins.”

Later in 1970 Hamilton revised the definition of relatedness as the

regression coefficient of recipients’ genotypes on actors’ genotypes, which is the

slope of the regression line in the least squares method (Hamilton 1970). Therefore,

the regression relatedness measures similarity of two individuals’ genotypic values

which are the frequency of the focal allele in individuals. One of the merits of

regression relatedness is that one does not necessarily need a pedigree to calculate

the regression relatedness and can estimate it from genetic markers, which is a

wider scope than the 1964-version (Goodnight and Queller 1999). And regression

relatedness is highly compatible with the Price equation (Grafen 1985; Price 1970;

Queller 1992).

However, testing Hamilton’s rule without measuring the cost and benefit of

eusociality is an inadequate test. Focusing only on relatedness and neglecting the

cost and benefit terms usually takes the form of assuming implicitly that B = C. In

my thesis I designed a novel model of genetic kin recognition and explained how

eusociality could evolve and persist.

18

1.2. Crozier’s Paradox

One problem with inclusive fitness theory is the recognition of relatedness by

individuals acting in an altruistic fashion. Ideas to resolve this issue involve

recognition genes and traits; i.e. cues. Altruism based on genetic cues requires

multiple recognition cues, yet altruism is predicted to erode this genetic variation.

Common cues get favored and eventually dominate the population while rare cues

are disfavored and go extinct. The genetic cues of the production component are

shown to be greenbeard genes recognizing copies of themselves in others,

regardless of relatedness at other loci. The greenbeard nature of these alleles is

responsible for what is known as Crozier's paradox, the observation that selection

favors common cue alleles and thereby removes the variation that is required for

discrimination (Crozier RH 1986, Crozier RH 1987, Crozier RH & Pamilo P 1996).

Altruistic greenbeard alleles are outlaw genes because, by causing altruism towards

others who are not relatives, they act against the interest of other genes in the

genome. This can lead to intragenomic conflict, with other genes being selected to

eliminate the extra altruism, if they can do so without also eliminating themselves as

targets of altruism. Therefore, the origin and maintenance of multiple genetic

recognition cues remains incompletely understood. Here in my thesis I explored the

range of fitness costs and benefits with the model to explain how eusociality could

evolve and persist.

19

1.3. Nowak et al.’s Model of the Evolution of Eusociality

Inclusive fitness theory and Hamilton’s Rule have found broad support.

However, recently Nowak et al. challenged this theory with a different modeling

approach, claiming that relatedness is not causal, that eusocial behavior is very hard

to evolve, and that there is no conflict between queens and workers (Nowak et al.

2010,). This publication prompted a hot debate in the field. There were strong

critiques against Nowak et al.’s conclusions, but none of them looked at the models

of Nowak et al. and provided solid evidences to support their verbal arguments.

(Abbot P, et al. 2011, Ferriere R & Michod RE, 2011, Nowak MA, Tarnita CE, &

Wilson EO, 2011, Strassmann JE, Page RE, Robinson GE, & Seeley TD, 2011). So I

examined Nowak et al.’s model in greater depth, and showed that relatedness is

causal, that eusociality is not so difficult to evolve, and explored conflicts between

queens and workers.

1.4. Conclusions

In chapter 2 of my thesis I examined Nowak et al.’s model in greater depth. I

showed that all of its novel conclusions are overgeneralized from narrow and often

inappropriate assumptions and that the insights of kin selection theory stand. I

showed that, even within the terms of their modeling framework, that inclusive

fitness theory and Hamolton’s Rule is supported as I showed that relatedness, once

incoportaed in the model as a variable, alters the probability of eucocial behaviors. I

20

also showed that relatedness is causal, that eusociality is not so difficult to evolve;

that is, eusociality can be favored under a lower benefits threshold. Lastly, I explore

the effects conflicts between queens and workers have on the theory.

 In chapter 3 I designed a novel model of genetic kin recognition. I analyzed

my recognition model theoretically toward a cost/benefit analysis of fitness and

genetic relatedness. I predicted the stability of recognition for altruism according to

relatednesses at three kinds of loci and Hamilton’s rule.

In chapter 4 I explored the range of fitness costs and benefits with the model

to explain how eusociality could evolve and persist. I tested my recognition model

through various computational and biological simulations. My simulation results

consistently showed altruism can maintain multiple recognition cues and be

evolutionarily stable. Thus, I found a model and parameter space that could resolve

Croxier’s paradox that stands in great conflict with inclusive fitness theory and the

need for recognition mechanisms among kin.

In chapter 5 I discussed the applications of new perspective of Hamilton’s

rule, not only focusing on genetic relatedness, but also emphasizing the importance

of fitness cost and benefit.

21

1.5. References

Abbot P, et al. (2011) Inclusive fitness theory and eusociality. Nature

471(7339):E1-E4.

Boomsma JJ, et al. (2011) Only full-sibling families evolved eusociality.

Nature 471(7339):E4-E5.

Crozier, R. H. (1986). Genetic clonal recognition abilities in marine

invertebrates must be maintained by selection for something else. Evolution 40,

1100-1101.

Crozier, R. H. (1987). Genetic aspects of kin recognition: concepts, models,

and synthesis (New York: Wiley).

Crozier RH & Pamilo P (1996) Evolution of Social Insect Colonies: Sex

Allocation and Kin Selection (Oxford University Press, Oxford).

Darwin CD (1859) On the Origin of Species (Harvard Univ. Press, Cambridge).

Ferriere R & Michod RE (2011) Inclusive fitness in evolution. Nature

471(7339):E6-E8.

Fletcher, D. J. C., and Michener, C. D. (1987). Kin Recognition in Animals: John

Wiley & Sons).

22

Foster KF (2011) Social behavior in microorganisms. Social behaviour: genes,

ecology and evolution, eds Szekely T, Moore A, & Komdeur J (Cambridge University

Press, Cambridge), pp 331-356.

Frank, S. A. (1998). Foundations of Social Evolution (Princeton, New Jersey:

Princeton University Press).

Frank SA (1995) Mutual policing and repression of competition in the

evolution of cooperative groups. Nature 377:520-522.

Goodnight, K. F., and Queller, D. C. (1999). Computer software for performing

likelihood tests of pedigree relationship using genetic markers. Molecular Ecology 8,

1231-1234.

Grafen, A. (1985). A geometric view of relatedness, In Oxford Surveys in

Evolutionary Biology, R. Darwins, and M. Ridley, eds. (Oxford University Press).

Grafen, A. (1990). Do animals really recognize kin? Anim Behav 39, 42–54.

Hamilton WD (1964) The genetical evolution of social behaviour. I-II. J.

Theor. Biol. 7:1-52.

Hamilton, W. D. (1970). Selfish and Spiteful Behaviour in an Evolutionary

Model. Nature 228, 1218-&.

Hamilton, W. D. (1987). Discriminating nepotism: expectable, common,

overlooked (New York: Wiley).

23

Herre EA & Wcislo WT (2011) In defence of inclusive fitness theory. Nature

471(7339):E8-E9.

Nowak MA, Tarnita CE, & Wilson EO (2010) The evolution of eusociality.

Nature 466:1057-1062.

Nowak MA, Tarnita CE, & Wilson EO (2011) Nowak et. al reply. Nature

471(7339):E9-E10.

Price, G. R. (1970). Selection and Covariance. Nature 227, 520-&.

Queller DC (1992) Quantitative genetics, inclusive fitness, and group

selection. Am. Nat. 139(3):540-558.

Strassmann JE, Page RE, Robinson GE, & Seeley TD (2011) Kin selection and

eusociality. Nature 471:E5-E6.

Taylor PD & Frank SA (1996) How to make a kin selection model. Journal of

Theoretical Biology 180(1):27-37.

Trivers RL & Hare H (1976) Haplodiploidy and the evolution of the social

insects. Science 191:249-263.

West, S. A., Griffin, A. S., and Gardner, A. (2007a). Evolutionary explanations

for cooperation. Curr Biol 17, R661-672.

24

West, S. A., Griffin, A. S., and Gardner, A. (2007b). Social semantics: altruism,

cooperation, mutualism, strong reciprocity and group selection. Journal of

Evolutionary Biology 20, 415-432.

Wright, S. (1922). Coefficients of inbreeding and relationship. American

Naturalist 56, 330-338.

Wynne-Edwards, V. C. (1962). Animal Dispersion in Relation to Social

Behavior (London: Oliver & Boyd).

25

Chapter 2

The Evolution of Eusociality and Kin

Selection Redux

The chapter is based on a manuscript co-authored with David C. Queller and

Stephen Rong (from Biology Department, Washington University in St. Louis, One

Brookings Drive, St. Louis, MO 63130 USA). David Queller and Xiaoyun Liao

designed study; Xiaoyun Liao and Stephen Rong conducted simulations; David

Queller wrote text.

2.1. Abstract

The evolution of sterile worker castes in the eusocial insects was a major

problem until Hamilton (1) developed a method called inclusive fitness. He used it

to show that sterile castes could evolve via kin selection, in which a gene for

altruistic sterility is favored when the altruism sufficiently benefits relatives

carrying the gene. A recent paper (2) argued that the general method of inclusive

fitness was wrong and advocated an alternative method using differential equations.

26

It also used these alternative methods to model the evolution of eusociality and

purported to overturn much of what was previously understood about the topic.

Specifically, it claimed that eusociality was difficult to evolve, that genetic

relatedness was unimportant, and that workers were not independent agents but

instead are mere extensions of the queen. Here we report a more thorough

examination of such differential equation models for the evolution of eusociality and

show that all three of these conclusions derive from over-generalizing from narrow

assumptions or parameter values. For example, all of their models implicitly

assumed high relatedness but modifying the model to allow lower relatedness

shows that relatedness is essential and causal. Contrary to their claims, their

modeling strategy, properly applied, generally confirms the insights of inclusive

fitness studies of kin selection.

Eusocial insects have sterile castes that are thought to have evolved by kin

selection. A gene for giving up reproduction by workers can spread when the

workers help to rear relatives who share that gene. This solution to a crucial

evolutionary problem was challenged in a recent paper. The paper generated much

controversy, but no one has contested its new model of the evolution of eusociality,

which purported to overturn much of what was previously thought to be true from

kin selection theory. Here we examine this model in greater depth. We show that

all of its novel conclusions are overgeneralized from narrow and often

inappropriate assumptions and that the insights of kin selection theory stand.

27

2.2. Introduction

The eusocial insects have occupied an important place in biology because of

their extraordinary levels of cooperation (1, 3-5). In ants, termites, some bees, some

wasps, and a few other taxa, some individuals, called workers, give up their own

reproduction in order to help others reproduce. Darwin was vexed over the

question of how such reproductive altruism evolves or indeed how any traits of

sterile workers evolve, but he believed the answer lay in some form of selection at

the family level or at the group level (6). Hamilton provided the first rigorous

treatment of this idea, with a key insight being the importance of genetic

relatedness. A conditional gene causing a worker to give up reproduction could be

favored if it provided sufficient help to a relative who would share that gene at

above-random levels (1). He showed that this process, which became known as kin

selection, could be analyzed by summing up an actor’s fitness effects, each

multiplied by the actor’s relatedness to the individual receiving the fitness effect.

When this sum, called inclusive fitness, is positive, the trait should be favored by

selection. For giving up one’s reproduction (fitness cost c) to benefit another

(fitness gain b) related by r, the inclusive fitness condition is –c + rb > 0.

Kin selection and inclusive fitness became the dominant modes of thinking

about the evolution of eusocial insects (5, 7, 8) and the success in this area has led to

them being applied to many other problems in social evolution (9-13). Recently,

this paradigm was criticized by Nowak et al. (2) who argued that inclusive fitness

28

was an inaccurate and unnecessary method and that kin selection was not a very

useful way to think about social evolution. Both of these conclusions have in turn

been extensively criticized as depending on multiple misconceptions (14-20). We

concur with many of these criticisms, but here we offer a different kind of critique of

the Nowak et al. paper. Nowak et al. (2) also developed their own mathematical

model of the evolution of eusociality, presenting it as a superior alternative to

inclusive fitness modeling. However, as has been recently pointed out (21), this

eusociality model has scarcely been addressed.

Although this approach to modeling could be useful, we show here that its

implementation in Nowak et al. (2) led to serious errors of interpretation. We

demonstrate this by using the exact modeling approach recommended by Nowak et

al. (2) to see if it generally supports their conclusions. In particular, we examine

their three conclusions that seem at greatest variance with the conventional kin

selection view of the evolution of eusociality. In each case, we will show that the

kin selection view is essentially restored (hence the word “redux” in our title).

First, Nowak et al. (2) claim that eusociality is harder to evolve than has been

appreciated. They write that “a key observation of our model is that it is difficult to

evolve eusociality, because we need very favorable parameters” and “despite the

obvious and intuitive advantages of eusociality, it is very hard for a solitary species

to achieve it” (2). If there is any novelty in this conclusion, it must be that

eusociality is harder to evolve than has been thought previously, that is, it is harder

29

to evolve than predicted from inclusive fitness (–c + rb > 0). In our first models, we

explore how this conclusion changes with reasonable alterations in the fitness

functions and the worker decision rules.

Second, Nowak et al. (2), following earlier work by Wilson (22, 23), claimed

that relatedness was not an essential element in the evolution of eusociality. They

wrote that “relatedness is better explained as a consequence rather than as the

cause of sociality”, that “grouping by family hastens the spread of eusocial alleles but

it is not a causative agent” and that “relatedness does not drive the evolution of

eusociality” (2). This claim has already been criticized by pointing out that the

Nowak et al. model was based on groups of relatives, with no comparable model of

unrelated individuals being presented (15). Nowak et al. appear to have partially

accepted this point: “One, we do not argue that relatedness is unimportant.

Relatedness is an aspect of population structure, which affects evolution” (24). But

this response leaves unanswered exactly how it affects evolution. Wilson

(25)continues to assert that relatedness only hastens the spread of alleles and that it

is not causal. Here we will use their own style of modeling to investigate these

points.

Finally, where inclusive fitness theory has emphasized that cooperation

occurs in the face of potential and actual conflicts among colony members (5, 8, 26,

27), Nowak et al. (2) assert that the colony as a whole is all that matters. They argue

“that the workers are not independent agents”, that “their properties are

30

determined by the alleles that are present in the queen (both in her own genome

and in that of the sperm she has stored), that “the workers can be seen as ‘robots’

that are built by the queen” and that they “are part of the queen’s strategy for

reproduction” (2). Nor, contrary to earlier work by Wilson (22, 23), do they brook

any conflicts between levels of selection: “there is only one level of selection, the

hymenopteran colony, which is treated as an extension of the queen, whose genes

are the units of selection” (2). Yet curiously, their eusociality model is what would

normally be considered a worker control model, because it assumes expression of

decision genes in workers. To test whether there might be worker-queen conflict,

we construct the necessary parallel models where genes expressed in mothers

determine whether their offspring stay and help.

2.3. Results

We modify the Nowak et al. (2) haploid model, which is simpler than the

haplodiploid one, but sufficient to demonstrate the important points. This model

includes solitary and eusocial genotypes expressed in offspring, where solitaries

always leave to reproduce, while eusocials stay and help their mother with

probability q and leave to reproduce with probability 1-q. Mothers and offspring are

genetically identical. Differential equations describe the numbers of solitary

individuals and eusocial colonies based on colony-size specific birth rates (bi) and

death rates (di), as well as worker mortality rates () and density dependence ()

31

(see Methods, eqn. set [1]). If larger colony size (added workers) increases the

queen’s birthrate sufficiently, the eusocial type will be favored over solitary

reproduction under some probabilities of staying q. Using these equations, we

recovered results indistinguishable from those of Nowak et al. (2) (e.g. their Fig. 4).

We then explored the effects of various assumptions by changing them one by one.

The first claim that we examine, that eusociality is hard to evolve (2), is

difficult to compare to inclusive fitness because the models are not expressed in the

same terms. But the claim appears to be based on particular and arguably odd

choices for fitness functions and worker decision rules. The fitness function that

they generally explored was a threshold function where workers add no fitness

gains to the queen below a colony of size m, and add a fixed gain (increasing queen b

or decreasing d) in colonies at or above size m, regardless of how many workers are

added. This means that workers in colonies below that threshold contribute

nothing until enough further workers join and workers above the threshold also add

nothing extra unless other workers die, returning the colony to the threshold. If

most workers are contributing nothing, then it is not surprising that eusociality

would be hard to evolve. In the example most explored (e.g. their Fig. 4), the

threshold colony size m was set at 3, such that two workers were needed to raise

the queen’s birthrate from b0=0.5 to b=4 and to lower her death rate from d0=0.1 to

d=0.01 (they also let = 0.1 and = 0.01). This eight-fold increase in the queen’s

birthrate allowed eusociality to evolve for some values of q but lower values of b did

32

not. Not surprisingly, requiring more workers before the queen increased fitness

(higher m thresholds) made eusociality even more difficult to evolve.

However, as noted above, the assumption that workers must stay with

probability q, regardless of the state of the colony, means they may be maladaptively

staying in colonies that are too large to gain further benefits. It should be easy for

workers to avoid this problem. For example, they might instead implement the rule

to stay when the colony is below some threshold size w and leave when it is at or

above that size. We implemented differential equations to model this change in

assumption (see Methods, eqn. set [2]) and show that eusociality does evolve more

readily (Fig. 1). For example, for the same parameter values as in Fig. 4 of Nowak et

al., eusociality can now be favored under a lower benefits threshold (b=3), that is,

when helped queens get a six-fold advantage.

In addition, the threshold fitness function assumed by Nowak et al. (2)

prevents the earliest workers from contributing anything. But it is easy to envision

advantages that would come from having only a single worker can contribute

something to the colony (23, 28). To view this effect in isolation, we return to the

Nowak et al (2) decision rule (stay with probability q) and to their parameter values

given above, but allow a single worker to add half the contribution to the queen that

two workers add (for both birth rate and death rate) (m=3, b0 = 0.5, d0 = 0.1, d = 0.01,

= 0.1, = 0.01). This simple change (see Methods) makes it much easier to evolve

33

eusociality, with b=1.5 or only a three-fold increase required (Fig. 2) versus

eightfold with the threshold model.

The models of Nowak et al. (2) also assumed eusocial offspring stay with

their mother so that there was always genetic relatedness among participants. In

the haploid model, this meant that offspring were genetically identical to their

mother and to the siblings they raised (r=1). To vary genetic relatedness in the

haploid model, we allowed some offspring to move between mothers before

implementing their genetic helping rules. Each offspring has a probability r of

staying with her own mother before deciding whether to help her or leave to

reproduce, and a probability 1-r of moving. r is equivalent to relatedness to the

new mother (after movement) because it represents identity to that mother above

chance levels; a fraction r is identical to the head of their colony and her offspring

(r=1), while the remainder are randomly associated with colonies (r=0). After this

temporary mixing, offspring execute the original Nowak et al. strategies: the solitary

genotype always leaves to reproduce alone and offspring with the eusocial genotype

stay and help their colony with probability q. Differential equations implementing

this model are given in the Methods (eqn. sets [3] and [4]).

Fig. 3 shows when eusociality is favored under varying relatedness r,

worker-assisted queen birthrate b, and probability of staying q (other parameters

continue to match the standard Nowak et al. Fig. 4 parameter values: m=3, b0 = 0.5,

d0 = 0.1, d = 0.01, = 0.1, = 0.01). At a given value of b, eusociality if favored over a

34

wider range of q values at high relatedness than at lower relatedness until, below

some critical value of relatedness, eusociality is never favored. When all offspring

move to random colonies so that relatedness is zero, even b=500 (a 1000-fold

increase in the queen’s birthrate due to helpers) is insufficient to favor eusociality.

As expected from inclusive fitness theory, relatedness is causal in the sense that

some relatedness appears necessary for eusociality and increasing r allows

eusociality to evolve under more conditions.

To address the issue of whether worker offspring are independent agents or

simply robots carrying out the queen’s interests, we need to compare models of

control by different agents. This means comparing models where the decision is

made by genes in worker bodies to those where it is made by genes in queen bodies.

Though Nowak et al. (2) seem to argue for queen control, their models are really all

for offspring control because they assume that genes expressed in worker bodies

determine the decision to stay or leave. Our models, including the variable

relatedness model above (eqn. set [4]) retain that assumption.

However, inclusive fitness theory predicts that queen control will generally

be more favorable for evolving eusociality (8) unless relatedness is one, in which

case no conflict is expected. To model queen control under varying relatedness in

the haploid model, we allowed offspring to mix exactly as in the offspring control

model above, but then allowed maternal genotypes to determine if their mixed

offspring pool helps or not. If the mother has the solitary genotype, all of her mixed

35

pool disperses to become reproductives; if the mother has the eusocial genotype,

she causes a fraction q of her offspring pool to stay and help her, independent of

offspring genotype. Differential equations governing this system are given in the

methods (eqn. set [5]). As predicted by inclusive fitness theory, eusociality evolves

much more easily under queen control (Fig. 4). In fact, there is an opposite

relationship with relatedness; the less related the queen’s offspring are to her

(lower r) the more the queen is selected to cause them to be workers. The only

exception, as expected under inclusive fitness theory, is when there is no mixing

between nests so r =1. Only then are the two decision rules selected identically.

2.4. Discussion

The controversy over the Nowak et al paper has mostly been conducted at

rather abstract levels; different researchers favor different modeling strategies and

interpret the evidence differently (2, 14-20, 24). We take a different and more

concrete approach by investigating their model for the evolution of eusociality more

deeply. If their methods are superior and raise novel insights, we should welcome

them. If instead their methods lead to errors, it tends to undermine the grander

claims that the model is used to buttress.

We have therefore followed the recommendation of Nowak et al. (2) for

modeling social evolution, and in particular eusociality, using deterministic

evolutionary dynamics described by ordinary differential equations. However,

36

stimulated by inclusive fitness thinking, we have sought to understand apparent

differences between their results compared to previous models. In every case, we

find that their rejection of accepted results is premature, and that in fact the insights

known from inclusive fitness theory also emerge using their method.

First, the claim that eusociality is difficult to evolve (2) hinges on

assumptions that are heavily biased towards that conclusion, but little justification

was given for why we should accept these narrow assumptions. In particular,

assumptions are made that imply that many workers waste their efforts. First, their

model allowed offspring to stay with probability q, independent of any information

that might be available about the need for workers. One advantage of inclusive

fitness thinking is that it induces researchers to think of workers as agents being

selected to get their better outcomes (higher inclusive fitness) using whatever

information is available to them. One such piece of information is the number of

workers already present on the nest. In the threshold fitness model, there is no

inclusive fitness gain to be had from staying above that threshold, unless some

workers die, so we asked if there was some obvious better decision rule than stay

with probability q. We therefore tested decision rules that have workers staying

when the colony is below a threshold size (not necessarily the fitness threshold),

and leaving when the colony is above that size. Not surprisingly, we find that this

class of decision rules makes it easier to evolve eusociality, because fewer workers

are making wasteful decisions to stay in large. Such a rule seems well within the

capabilities of workers. They need not count adults. They simply need to be able to

37

assess some reasonable correlate of the count, something that even microbes do

when using quorum sensing to change their behavior. For social insects, the

mechanism might be the frequency with which they contact other adults or the

hunger demands of offspring. Thus part of the assertion that eusociality is difficult

to evolve stems from an assumption that workers are rather stupid.

Similarly, the threshold fitness model assumed by Nowak et al. greatly

devalues worker behavior at the other, low, end of colony sizes. In most of the

model implementations, it was assumed that it was necessary to have two workers

to provide any benefit at all to the queen (m=3). That means that a first worker to

join a colony provides nothing. However is easy to imagine situations where the

first worker to join would provide real benefits (28). The simplest is that at this

point one individual can guard the nest while the other forages (23). Empirical

evidence suggests that first helpers do provide benefits (29-34). If we modify the

Nowak et al threshold model to a step model where each worker below the

threshold adds a fixed benefit, so that the effects of unjoined first workers are not

wasted, eusociality evolves much more easily. We have not jointly modeled both of

modifications – the stepped fitness function and the altered worker decision rule –

but it seems certain that this would lead to even easier evolution of eusociality. But

note that the stepped function by itself gets quite close to the inclusive fitness

prediction which, given that relatedness is one, is that each worker needs to

contribute to the queen more than what she herself loses. The stepped-model

eusociality threshold of b=1.5 from having two workers matches that requirement,

38

because each worker adds 0.5 units, and gives up 0.5 of her own by not reproducing.

The comparison is not perfect both because the inclusive fitness comparison does

not figure in the workers’ reduction of queen death rate in the model (which would

decrease the b required for eusociality) and because some workers still join larger

colonies and waste their effort (which would increase it). But it does show that,

with reasonable assumptions, eusociality evolves in the model about as easily as

inclusive fitness theory predicts.

The claims that relatedness only hastens the spread of eusocial alleles and

that relatedness is not causal (2, 25) are also shown by our models to be false. The

proposition could not be tested in the Nowak et al. (2) models because they did not

examine any low-relatedness case (15). We have modeled variable relatedness and

shown that high relatedness broadens the range of conditions (b, q) allowing

eusociality to evolve. Relatedness affects not just speed of selection but whether it is

favored at all. Furthermore, when relatedness is zero, eusociality does not evolve

even with very high benefits (increasing queen birthrate 1000-fold). This shows

that relatedness plays an essential and causal role. Of course these are not

surprising findings because the importance of relatedness was previously well

understood from many kinds of models using inclusive fitness (1, 8), population

genetics (35-37), quantitative genetics (38-40) and game theory (41, 42) as well as

supported by much empirical evidence (8, 10, 43, 44). What is surprising is that a

contrary view would be advanced on the slim evidence of a model (2) that did not

even investigate variable relatedness.

39

Finally, the assertion that workers are robots and simply part of the queen’s

reproductive success (2) cannot be made without testing and contrasting queen and

worker decision rules. Nowak et al. (2) tested only offspring control models. It is a

longstanding result of inclusive fitness theory that there are can be parent-offspring

conflict (26, 45). In particular, for the eusociality context, inclusive fitness predicts

that offspring will be selected to help their mothers under a narrower range of

conditions than the mothers would favor (eusociality evolves more readily if

mothers control the helping of their offspring) (8 pp. 58-63). This is because of

differences in relatedness. For example, for singly mated diploids, a worker gains

siblings (r=1/2) at the cost of offspring (r=1/2) while the mother gains offspring

(r=1/2) but loses only grand offspring (r=1/4). To examine this question, one must

compare selection of offspring agency (genes expressed in the offspring determine

whether she becomes a worker) versus maternal agency (genes expressed in

mothers determine whether her offspring become workers). We constructed and

compared haploid models for both offspring and maternal control. As predicted by

inclusive fitness theory, they evolve differently and can be in conflict; mothers favor

helping by their offspring under a broader range of conditions than the offspring

themselves favor, except when mothers and offspring are genetically identical. In

fact, when relatedness is low and eusociality is very difficult to evolve under worker

control, it is very easy to evolve under queen control, because the queen is unrelated

to most of the workers who pay the fitness cost. This also shows that if queens

really were in control from the beginning, their best option would be to force

40

unrelated offspring to help, which is contradicted by phylogenetic studies showing

that relatedness was always high at the various origins of eusociality (43). In

contrast, the standard kin selection model of worker control predicts this

observation.

The method advocated by Nowak et al. (2) offers the advantage of specifying

parameters like birth and death rates explicitly and following their effects over time

while allowing the some features, like colony size, to change. We expect that these

methods can be used to generate interesting results. However, they are more

complex and less intuitive than inclusive fitness thinking so considerable care is

needed to fully understand them. The common thread in the three errors pointed

out in this paper is overgeneralization from narrow assumptions and particular

parameter values. Eusociality was said to be difficult to evolve based on specific and

questionable assumptions about the fitness function and offspring decision rules.

Relatedness was said to be unimportant even though the models did not vary

relatedness. The assertion that workers are not independent agents was made in

the absence of models that compared decision rules of different agents. The more

complex the model, the easier it is to be misled by particular results that are not

general. Besides being sure to explore multiple assumptions and parameter values,

another way to avoid such problems is to understand prior work and relate it

carefully to ostensibly new results. In this case, the new model missed not just

minor details, but some of the most important generalizations known from the last

five decades of theory and empirical study. Lack of agreement with prior inclusive

41

fitness results should have triggered more than a quick rejection of inclusive fitness

and kin selection; it should have led to a questioning of why the results were, or

seemed to be, different. When examined more closely, models of the type

advocated by Nowak et al. (2) do not overturn, but instead reaffirm, principles of

social evolution discovered through inclusive fitness.

2.5. Methods

Our models are all based on the haploid model of Nowak et al. (2). They

modeled the evolution of eusociality with systems of differential equations tracking

the number of solitary queens (x0) and eusocial colonies of size i (xi). We use a

modified notation because our low relatedness models require us to keep also track

colonies headed by solitary-genotype queens. We therefore let ei be the number of

colonies of size i headed by a eusocial queen (that is with i-1workers) and si be the

number of colonies of size i headed by a solitary queen. With this modified notation,

equation set [58] of Nowak et al. (2) can be written as:

1111)(sdbs  

21111

1

1)1(eedqebeqbe
i

ii  




 [1]

111)1(  iiiiiiiii ieeiedqebqebe  2for i

where bi and di are the birth and death rates of colonies of size i, q is the

42

probability that an offspring of a eusocial colony stays as a worker (offspring of

solitary colonies never stay),  is the worker mortality rate, and  is a density-

dependent correction factor equal to 1/ (1+X), with X being the total population

size including workers and is a parameter that scales the size of the system.

For specific examples, Nowak et al. (2) usually used assumed birth rates and

death rates were governed by a simple threshold function: below some threshold

colony size m, bi = b0 and di = d0 ; at or above colony size m, bi = b and di = d. Using

Euler's method for numerical simulation in R, we reproduced the results of Fig. 4 in

Nowak et al. (2)

 We then tested an alternative worker decision rule. Instead of staying

with probability q, eusocial offspring always stay when colony size i < w and always

leave when i >= w. The equations are:

1111)(sdbs  

211111 eedebebe
wi

ii  






111)1(  iiiiiiiii ieeiedebebe  wi 2for [2]

1111)1(  iiiiii ieeiedebe  wi for

43

11)1( iiii ieeiede  wi for

We also altered the fitness function from a single threshold to a step function

in which each added worker adds the same amount, up to the maximum b attained

at colony size m. The maximum gain in both models is the same, but now each

worker up to size m adds something. We can model this with equations [1]; if b0 is

the birthrate of a solitary queen and b is the birthrate of a eusocial queen in colony

size m, then let the birthrate of queens in smaller colony sizes i < m be b0 + (b - b0)/(i

-1).

The Nowak et al. models all assumed high relatedness. We modify their haploid

model to incorporate a parameterized mixing step, which allows us to vary the

degree of relatedness between queens and workers. The mixing occurs before

offspring decide to be workers or reproductive queens. We implemented lower

relatedness in two (similar) ways. First, in our initial model, we allowed offspring

from eusocial colonies to move to other mothers, eusocial or solitary, with

probability r. 1) The offspring of the eusocial queens leave the colony to build their

own eusocial ones with probability 1- q. 2) Of the rest probability q, the offspring of

the eusocial queens stay with the nest with probability rq (r is relatedness to the

mother they help because r of the time she is identical). 3) They migrate randomly

among all nests (including eusocial and solitary ones) with probability (1-r)q. Thus

each mother receives)()1(
111















i

i

i

i

i

ii seqebr migrating eusocial offspring,

44

(the total number of migrating eusocial workers divided by the number of eusocial

and solitary mothers). After movement, eusocial offspring, on both eusocial and

solitary nests, execute their staying rule (stay with probability q). r is relatedness to

the mother they help because r of the time she is identical, and 1-r of the time she is

genetically random or unrelated. The differential equations describing this system

are then:

211111

1

1)1(eedeqxrbxqbe
i

ii  






1111)1(  iiiiiiiiiii ieeiedeqerbeqerbe  2for i [3]

2111

1

1 ssdssbs
i

ii  






11)1(  iiiiiii issisdsss  2for i

Here ei and si still represent numbers after decision rules are executed, and

do not reflect the numbers in the transient mixing stage. These equations are used

in Fig. 3. To solve the ordinary differential equations above for the equilibrium

status of the dynamic populations a first-order numerical procedure with the step

size 0.1 were implemented in MATLAB. The procedure were started with equal

initial number (n=100) of solitary females and eusocial queens, and were

terminated when 1) the solitary populations were extinct (defined as less than 0.05)

and thus eusociality evolved; 2) the eusocial populations were extinct (defined as

45

less than 0.05) and thus eusociality didn't evolve; 3) both the solitary and eusocial

populations did not change any more and thus solitary and eusociality co-exist; or 4)

after a maximum of 200,000 time steps.

In the model above movement of solitary offspring was not included but

doing so would not change the outcome because either way they would ultimately

to become reproductive. But for comparing maternal and offspring control (Fig. 4),

we needed a second implementation of variable relatedness. We let all offspring,

eusocial and solitary move to a new mother with probability r. In this second model,

an offspring that initially mixes by moving to another colony is replaced by a

eusocial or a solitary offspring with probabilities fe and fs, which are simply the

proportions of such offspring produced in the population:

𝑓𝑒 =
∑ 𝑏𝑖𝑒𝑖𝑖

∑ 𝑏𝑖∅(𝑠𝑖 + 𝑒𝑖)𝑖

𝑓𝑠 =
∑ 𝑏𝑖𝑠𝑖𝑖

∑ 𝑏𝑖∅(𝑠𝑖 + 𝑒𝑖)𝑖

Thus, a minor difference with the previous model is that here each colony

receives not a fixed number of migrants but the same number that it donates. But

the main difference is that it can allow maternal control over offspring groups

consisting of partly her own offspring and partly random offspring (including

solitary). We therefore can compare offspring control and mother control. First, for

offspring control, offspring genotype determines whether it stays with probability q

46

(eusocial offspring) or always leaves (solitary offspring). The equations describing

changes in colony types are then:

These equations are used in Fig. 4 for comparison with the maternal control

model. For both models Euler's method was used in R to numerically determine the

equilibrium population* of the system, using a time step of h=0.1 a maximum colony

size of n=50**, terminating when either E or S population/number of individuals

was less than =0.1 or after a maximum of 50000 time steps.

For maternal control therefore modified the variable-relatedness model in

the previous section so that the mother’s genotype determines whether the

offspring in her colony (some of them resulting from mixing from other colonies)

stay and help.

Mixing occurs as above, with a fraction 1-r of offspring initially moving to

another mother. After the mixing step, the differentiation of offspring into workers

and queens depends not on the genotype of the offspring, but by the genotype of the

queen in the same colony. Thus, if the queen is eusocial, her (mixed) offspring will

become new workers with probability q or new queens with probability 1-q. If the

queen is solitary, then all offspring will become reproductive.

47

Note that, unlike the worker model, there are no solitary colonies larger than

one (after transient mixing stage) because a solitary queen always causes her

offspring pool to disperse and become reproductive.

2.6. References

1. Hamilton WD (1964) The genetical evolution of social behaviour. I-II. J.

Theor. Biol. 7:1-52.

2. Nowak MA, Tarnita CE, & Wilson EO (2010) The evolution of eusociality.

Nature 466:1057-1062.

3. Hamilton WD (1972) Altruism and related phenomena, mainly in the social

insects. Annu. Rev. Ecol. Syst. 3:193-232.

4. Wilson EO (1971) The Insect Societies (Harvard, Boston, Mass.).

5. Queller DC & Strassmann JE (1998) Kin selection and social insects.

Bioscience 48(3):165-175.

6. Darwin CD (1859) On the Origin of Species (Harvard Univ. Press, Cambridge).

7. Bourke AFG & Franks NR (1995) Social Evolution in Ants (Princeton

University Press, Princeton, USA).

48

8. Crozier RH & Pamilo P (1996) Evolution of Social Insect Colonies: Sex

Allocation and Kin Selection (Oxford University Press, Oxford).

9. Wilson EO (1975) Sociobiology: The new synthesis. (Cambridge MA).

10. Bourke AFG (2011) Principles of social evolution (Oxford University Press,

Oxford) p 288.

11. Haig D (2002) Genomic imprinting and kinship (Rutgers University Press,

New Brunswick) p 240.

12. Alexander RD (1987) The biology of moral systems (Aldine de Gruyter,

Hawthorne NY) p 301.

13. Foster KF (2011) Social behavior in microorganisms. Social behaviour: genes,

ecology and evolution, eds Szekely T, Moore A, & Komdeur J (Cambridge

University Press, Cambridge), pp 331-356.

14. Rousset F & Lion S (2011) Much ado about nothing: Nowak et al.’s charge

against inclusive fitness theory. J. Evol. Biol. 24:1386-1392.

15. Herre EA & Wcislo WT (2011) In defence of inclusive fitness theory. Nature

471(7339):E8-E9.

16. Ferriere R & Michod RE (2011) Inclusive fitness in evolution. Nature

471(7339):E6-E8.

17. Bourke AFG (2011) The validity and value of inclusive fitness theory.

Proceedings of the Royal Society B: Biological Sciences 278:3313-3320.

18. Abbot P, et al. (2011) Inclusive fitness theory and eusociality. Nature

471(7339):E1-E4.

49

19. Strassmann JE, Page RE, Robinson GE, & Seeley TD (2011) Kin selection and

eusociality. Nature 471:E5-E6.

20. Boomsma JJ, et al. (2011) Only full-sibling families evolved eusociality.

Nature 471(7339):E4-E5.

21. Owen RE (in press) RA Fisher and Social Insects: The Fisher-Darwin Model of

the Evolution of Eusociality. Biological Theory published online before print.

22. Wilson E & Hölldobler B (2005) Eusociality: origin and consequences.

Proceedings of the National Academy of Sciences USA (102).

23. Wilson EO (2008) One giant leap: how insects acheived altruism and colonial

life. Bioscience 58:17-25.

24. Nowak MA, Tarnita CE, & Wilson EO (2011) Nowak et. al reply. Nature

471(7339):E9-E10.

25. Wilson E (2012) The Social Conquest of the Earth (W. W. Norton, London).

26. Trivers RL & Hare H (1976) Haplodiploidy and the evolution of the social

insects. Science 191:249-263.

27. Ratnieks FLW, Foster KR, & Wenseleers T (2006) Conflict resolution in insect

societies. Annu. Rev. Entomol. 51:581-608.

28. Queller DC (1994) Extended parental care and the origin of eusociality.

Proceedings of the Royal Society of London, Series B 256:105-111.

29. Noonan KM (1981) Individual strategies of inclusive-fitness-maximizing in

Polistes fuscatus foundresses. Natural Selection and Social Behavior, eds

Alexander RD & Tinkle DW (Chiron, New York), pp 18-44.

50

30. Brand N & Chapuisat M (2014) Impact of helpers on colony productivity in a

primitively eusocial bee. Behav. Ecol. Sociobiol. 68(2):291-298.

31. Shakarad M & Gadagkar R (1995) Colony founding in the primitively eusocial

wasp, Ropalidia marginata (Hymenoptera: Vespidae). Ecological Entomology

20(3):273-282.

32. Shreeves G & Field J (2002) Group size and direct fitness in social queues.

The American Naturalist 159(1):81-95.

33. Stevens MI, Hogendoorn K, & Schwarz MP (2007) Evolution of sociality by

natural selection on variances in reproductive fitness: evidence from a social

bee. BMC Evol. Biol. 7(1):153.

34. Yagi N & Hasegawa E (2012) A halictid bee with sympatric solitary and

eusocial nests offers evidence for Hamilton's rule. Nature communications

3:939.

35. Michod RE (1982) The theory of kin selection. Ann. Rev. Ecol. Syst. 13:23-55.

36. Charnov EL (1977) An elementary treatment of the genetical theory of kin-

selection. J. Theor. Biol. 66:541-550.

37. Harpending (1979) The population genetics of interactions. Am. Nat.

113:622-630.

38. Queller DC (1992) Quantitative genetics, inclusive fitness, and group

selection. Am. Nat. 139(3):540-558.

51

39. McGlothlin JW, Moore AJ, Wolf JB, & Brodie ED (2010) interacting

phenotypes and the evolutionary process. III. Social evolution. Evolution

64(9):2558-2574.

40. Bleakley BH, Wolf JB, & Moore AJ (2010) The quantitative genetics of social

behavior. Social Behaviour: Genes, Ecology and Evolution, eds Székely T,

Moore AJ, & Komdeur J (Cambridge University Press, Cambridge), pp 29-54.

41. Taylor PD & Frank SA (1996) How to make a kin selection model. Journal of

Theoretical Biology 180(1):27-37.

42. Frank SA (1995) Mutual policing and repression of competition in the

evolution of cooperative groups. Nature 377:520-522.

43. Hughes W, Oldroyd B, Beekman M, & Ratnieks F (2008) Ancestral monogamy

shows kin selection is key to the evolution of eusociality. Science 320:1213-

1216.

44. Kuzdzal-Fick JJ, Fox SA, Strassmann JE, & Queller DC (2011) High relatedness

is necessary and sufficient to maintain multicellularity in Dictyostelium.

Science 334:1548-1551.

45. Trivers RL (1974) Parent-offspring conflict. Am. Zool. 14:249-264.

52

2.7. Figure legends

Figure 2.1 Eusocial evolution when the offspring decision rules is “stay if

colony size is below w”.

The solitary birthrate b0=0.5 gets raised to b in colonies of size m or larger. Other

parameters are as in Nowak et al. Fig. 4 (d0 = 0.1, d = 0.01, = 0.1, = 0.01).

Eusociality evolves (filled circles) more easily (lower b) than under the decision rule

(2) “stay with probability q”, for example at b=3 instead of b=4 when m=3.

53

Figure 2.2 Eusocial evolution under threshold fitness functions with no

benefits to working below colony size 3 (two workers) (2) (solid circles)

versus stepped functions where the one worker contributes half the benefit of

two workers (open and solid circles).

Eusociality evolves under a much broader range of maximum queen birthrates with

the step function. Other parameters are as in Fig. 4 of Nowak et al. (2) (m=3, b0 = 0.5,

d0 = 0.1, d = 0.01, = 0.1, = 0.01).

0

1

2

3

4

5

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Q
u
e

e
n
 b

ir
th

ra
te

 b

Probability of staying q

Eusociality is favored under:

Step model only Threshold and step model

54

Figure 2.3 Eusocial evolution in the Nowak et al. (2) haploid model, but adding

variable relatedness r (equations 3).

Other parameters are as in Fig. 4 of Nowak et al. (2) (m=3, b0 = 0.5, d0 = 0.1, d

= 0.01, = 0.1, = 0.01). For any worker-assisted queen birthrate b, reducing

relatedness decreases the range of q (offspring probability of staying) supporting

eusocial evolution (filled circles). As relatedness declines further, no eusociality

does not evolve for any value of q.

55

Figure 2.4 Eusocial evolution under offspring versus maternal control.

Filled circles show values of relatedness r and worker assisted queen birthrate b

that select for eusociality if the decision in made by offspring (equations 4). When

the decision is made by genes acting in mothers (equations 5), eusociality evolves

under much broader conditions (open and filled circles). The open circles represent

the zone of conflict, when mothers but not offspring favor eusociality. Other

parameters are as in Fig. 4 of Nowak et al. (2) (m=3, b0 = 0.5, d0 = 0.1, d = 0.01, =

0.1, = 0.01).

0

1

2

3

4

5

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Q
u
e

e
n
 b

ir
th

ra
te

 b

Relatedness r

Eusociality is favored under the control of:

Queen only Queen and worker

56

2.8. Supplemental Materials

Inclusive fitness theory predicts that altruistic behavior, such as that shown

by workers in eusocial insects, can evolve when sufficient fitness benefits are given

to relatives. A different modeling approach has led to a challenge to this theory.

The modelers claim that relatedness is not causal, that eusocial behavior is very

hard to evolve, and that there is no conflict involved.

2.8.1. Altruism is Easy to Evolve under High Relatedness

Where Nowak et al. claim that relatedness is not causal but merely a

consequence of eusociality, inclusive fitness theory predicts that relatedness is

essential to evolve true altruism. However, Nowak et al. did not test the role of

relatedness r, as they kept it constant and high in their simulations. Here we revise

their asexual model, keeping everything the same except that with probability q

helpers join a reproductive at random (r = 0) instead of staying with their mother (r

= 1). If we choose the same parameters that favor eusociality in Nowak et al.’s

supplemental Figure 4, the unrelated model fails to favor eusociality for any value of

q (supplement Figure s1). Even if we increase the work contribution to queen

fertility to 50, giving a 100-fold advantage eusociality does not evolve. The reason is

obvious: helping of random reproductive gives no benefit to helper genes to

compensate for the fitness cost of helping. When r is intermediate with a fraction r

57

of helpers staying with their own mother, and 1-r joining at random, eusociality can

be favored, with the minimum queen fertility decreasing as r increases, exactly as

predicted from inclusive fitness.

Two strategies: being solitary female or eusocial queen (Figure 2.8.1). The

strategy with the faster growth rate wins eventually. Evolutionary dynamics of the

two strategies are described by the system of linear differential equations.

Figure 2.8.1.1 Solitary and Eusocial Strategies

58

The change in the abundance of solitary females, 0x and eusocial colonies, ix

with size ,...4,3,2,1, ii

0000)(xdbx  

21111

1

1)1(xxdxbqxbqx
i

ii  






111)1(  iiiiiiiii ixxixdxbqxbqx  ,...3,2i

Equation 2.8.1 Evolutionary Dynamics under High Relatedness

q Is the probability that the offspring of the eusocial queen stay with the nest; 00 ,db

is reproductive rate and death rate of solitary females; ii db , is reproductive rate and

death rate of a eusocial queen in a nest of size i ; and  is worker’s death rate.

We can also write these equations as following.


























4

3

2

1

x

x

x

x

X e
,



















































300

320

02

)1()1()1()1(

443

332

221

432111

dqbqb

dqbqb

dqbqb

bqbqbqdqbbq

M e
;

59

eee XMX  .

Multiply each birth term with a factor of density limitation
X





1

1
, and

the population size 
i

iixxX 0 .


























4

3

2

1

b

b

b

b

B ;


























4

3

2

1

d

d

d

d

D .

Whether or not eusociality is selected depends on how the demographic

parameters of the queen change with colony size. One possibility is to consider a

simple step function with a critical colony size, m. For small colonies, i < m, the key

parameters of the eusocial queen are the same as those of solitary females:

00, ddbb ii  . For large colonies, i ≥ m, the eusocial queen has an increased

fecundity and a reduced death rate: 00, dddbbb ii  .

Note that intermediate q values (0.36 < q < 0.9) are needed for eusociality to

evolve (Figures 2.8.1.2 and 2.8.1.3). The intuitive explanation is as follows.

For low q there are too few colonies reach the critical colony size, m, where

the advantage of eusociality begins, and too many workers sacrifice for nothing.

Since a eusocial queen in colony of size m-1 has the same birth rate and death rate

as a solitary female, the first m-2 workers don’t contribute to the advantage of

60

eusociality until the (m-1)th worker joins in and the queen has increased fecundity

and reduced mortality.

On the other hand, if the value of q is too large then the colonies produce too

few new queens and too many extra workers. Extra workers than the first m-1 ones

joining in colonies do not contribute to the advantage of eusociality because queens’

fecundity and mortality don’t change any more.

Of course, the disadvantage of eusociality is that some of the offspring

(workers) do not reproduce; they are subject to worker mortality and they die when

the queen dies. Therefore, intermediate values of q allow the evolution of

eusociality. There exists relatedness between eusocial queens and workers, and the

relatedness is one.

61

Figure 2.8.1.2 Eusociality Evolves for Intermediate Values of q

.01.0,1.0,01.0,4,3,1.0,5.0 00  dbmdb

Red, 0x ; blue, 
i

iix ; colonies,  
i

i ix ,...4,3,2,

62

Figure 2.8.1.3 Eusociality Evolves under High Genetic Relatedness

.01.0,1.0,01.0,4,3,1.0,5.0 00  dbmdb

Red, 0x ; blue, 
i

iix ; colonies,  
i

i ix ,...4,3,2,

63

2.8.2. Altruism cannot Evolve without Relatedness

The offspring of the eusocial queens migrate randomly among all nests

(including eusocial and solitary ones) with probability q; they leave the colony to

build their own eusocial ones with probability 1- q.

Solitary females can and only can acquire workers from eusocial colonies,

and thus they have increased fecundity and reduced mortality in the presence of

workers, just the same as eusocial queens. We assume a solitary female has the

same reproductive rate and death rate as a eusocial queen in a colony of the same

size. Since they can’t acquire workers from solitary nests, eusocial queens pay all

the cost of producing workers, but every one reaps the gains of the workers

randomly. Therefore, since there is no longer any correlation between mother and

helper genes, the relatedness in average is zero between queens and workers

(Figure 2.8.2).

Just like the definition of ix , let is denote the abundance of solitary nest with

size i. Here i = 1, 2 ... represents the number of individuals in the colony including

the solitary female. Thus, 1s denotes nests with single solitary females, while 2s

denotes nests where a solitary female has one worker, and so on. A solitary female

in a nest of size i has the same reproductive rate ib and death rate id as a eusocial

queen in a colony of the same size. Denote

64




















11

1

i

i

i

i

i

ii

xs

xqb

b

Equation 2.8.2 Average Birth Rate Among Colonies Without Genetic

Relatedness

The numerator is the total number of migrating workers, and the

denominator is the total number of nests. So b is the proportion of migrating

workers that each nest acquires. Those workers which join in the eusocial and

solitary nests of size i are ixb , isb , respectively. Those offspring who leave the

eusocial and solitary nests of size i to build their own are iixbq)1( , iisb .

The equations (58) change to

2111

1

1)1(xxdxbxbqx
i

ii  






11)1(  iiiiiii ixxixdxbxbx  ,...3,2i

2111

1

1 ssdsbsbs
i

ii  






11)1(  iiiiiii issisdsbsbs  ,...3,2i

Equation 2.8.3 Evolutionary Dynamics without Genetic Relatedness

65

We can also write these equations as following.


























4

3

2

1

x

x

x

x

X e
;


























4

3

2

1

s

s

s

s

X s
;



















































300

320

02

)1()1()1()1(

4

3

2

43211

dbb

dbb

dbb

bqbqbqdbbq

M e .



















































300

320

02

4

3

2

43211

dbb

dbb

dbb

bbbdbb

M s ;

eee XMX  ; sss XMX  . Multiply each birth term with a factor of density

limitation
X





1

1
, and the population size  

i

ii isixX)(.


























4

3

2

1

b

b

b

b

B ;


























4

3

2

1

d

d

d

d

D ;



























b

b

b

b

B .

66

Figure 2.8.2 Eusociality can’t evolve without genetic relatedness

67

2.8.3. The Higher the Relatedness, the Easier Altruism to Evolve

The offspring of the eusocial queens stay with the nest with probability pq;

they migrate randomly among all nests (including eusocial and solitary ones) with

probability (1-p)q; they leave the colony to build their own eusocial ones with

probability 1- q. Therefore, the relatedness in average is in range of zero and one

between queens and workers, r = p. Denote






















11

1

)1(

i

i

i

i

i

ii

sx

xqbp

b

Equation 2.8.4 Average Birth Rate Among Colonies With Various Genetic

Relatedness

The numerator is the total number of migrating workers, and the

denominator is the total number of nests. So b is the proportion of migrating

workers that each nest acquires randomly.

Those workers which stay in the eusocial nests of size i are iixpqb . Those

workers which join randomly in the eusocial queen nests of size i are ixb . Those

workers from eusocial colonies which join randomly in the solitary nests of size i are

isb . Those offspring who leave the eusocial colonies and solitary nests of size i to

build their own ones are iixbq)1( , iisb , respectively.

68

The equations (58) change to

211111

1

1)1(xxdxbxbpqxbqx
i

ii  






1111)1(  iiiiiiiiiii ixxixdxbxbpqxbxbpqx  ,...3,2i

2111

1

1 ssdsbsbs
i

ii  






11)1(  iiiiiii issisdsbsbs  ,...3,2i

Equation 2.8.5 Evolutionary Dynamics under Various Genetic Relatedness

We can also write these equations as following.


























4

3

2

1

x

x

x

x

X e
;


























4

3

2

1

s

s

s

s

X s
;


























4

3

2

1

b

b

b

b

B ;


























4

3

2

1

d

d

d

d

D ;



























b

b

b

b

B .

eM

       

















































300

320

02

1111

443

332

221

432111

dbpqbbpqb

dbpqbbpqb

dbpqbbpqb

bqbqbqdbpqbbq

69



















































300

320

02

4

3

2

43211

dbb

dbb

dbb

bbbdbb

M s ;

eee XMX  ; sss XMX  .

Multiply each birth term with a factor of density limitation
X





1

1
, and

the population size  
i

ii isixX)(.

The Figure 2.8.3 shows that the higher the relatedness, the easier altruism to

evolve.

70

Figure 2.8.3 The Higher the Relatedness, the Easier Altruism to Evolve

b = 4

b = 5 b = 6

71

2.8.4. Eusociality is Easy to Evolve under Flexible Strategies of Workers

Another surprising claim of Nowak et al. was how difficult eusociality was to

evolve; it required a very high increase in queen birth rate, and no decrease in

queen death rate was sufficient in itself. However, these results are due largely to

assumptions of the particular models that are neither biologically realistic nor

necessary to the modeling approach. The particular assumptions responsible are

that queen fitness is a step function with a single upward step at a critical colony

size m (usually m = 3 in their examples) and that worker behavior is inflexible – a

fraction q of them stay, independent of circumstance. One solution is to remove the

threshold from the model – there is little empirical evidence that benefits kick in

only after surpassing a critical worker number – but even if thresholds reflect

reality, the worker behavior does not. If we use inclusive fitness think that about

worker options under a step function, we see two problems associated with the

inflexible strategy. First, when a worker joins below the threshold, it contributes

nothing until enough other workers join, and it may have to wait some time as a

fraction 1-q of its sibling leave. Second, after the threshold has been surpassed, the

fraction of workers who later join contributes nothing further (except for staying

above the threshold when previous workers die). A simple strategy that would

minimize these problems is for workers to always join when the colony is below the

cap colony size m’ and always leave when the colony has reached that size, where

the optimum m’ will likely be near the critical colony size m. We have implemented

this strategy for the asexual model with a new derived transition matrix. Running

72

the model shows that it does indeed make eusociality pay at much lower queen

fecundities (b values) than inflexible strategy (Figure 2.8.4). It also becomes

possible to select for eusociality purely by decreasing the queen’s death rate.

With the same death rate d we expect lower birth rate b for eusociality to

evolve in the modified model than that in Nowak et al.

Offspring of colony size, i, stay with iiqp , migrate with ii qp)1( , and leave

with iq1 .

Assume low and upper threshold of colony size, ls mm , ,...4,3,2,1 , ls mm  .

When smi  , then offspring always stay (1ip , 1iq); when lmi  , then offspring

always leave (0ip , 0iq); when ls mim  , ppi  , qqi  . If mmm ls  , then

offspring always stay when mi  and leave when mi  .

So the first ms-1 workers always stay, and the extra workers over ml-1 always

leave; the intermediate workers either stay or migrate. This will make eusociality

easier because (1) they will reach the critical colony size sm quicker, and (2) they

won’t have useless additional workers above the upper threshold of colony size. We

could also combine it with the step-forward birth and death rates for the first ms-1

workers. Denote

73






















11

1

)1(

i

i

i

i

i

iiii

m

sx

xbqp

b

Equation 2.8.6 Average Birth Rate Among Colonies With Flexible Strategies of

Workers

The equations (58) change to

21111111

1

1)1(xxdxbxbqpxbqx
i

iii  






1111)1(  iiiiiiiiiiiiiii ixxixdxbxbqpxbxbqpx  ,...3,2i

2111

1

1 ssdsbsbs
i

ii  






11)1(  iiiiiii issisdsbsbs  ,...3,2i

We can also write these equations as following.


























4

3

2

1

x

x

x

x

X e
;


























4

3

2

1

s

s

s

s

X s
;

74

eM

       

















































300

320

02

1111

4444333

3333222

2222111

443322111111

dbbqpbbqp

dbbqpbbqp

dbbqpbbqp

bqbqbqdbbqpbq



















































300

320

02

4

3

2

43211

dbb

dbb

dbb

bbbdbb

M s ;

eee XMX  ;

sss XMX  .

Multiply each birth term with a factor of density limitation,
X





1

1
, and

the population size  
i

ii isixX)(.


























4

3

2

1

b

b

b

b

B ;


























4

3

2

1

d

d

d

d

D ;


























4

3

2

1

p

p

p

p

P ;


























4

3

2

1

q

q

q

q

Q

Assume threshold of work number w-1, w = 1, 2, 3... When colony size i < w,

then offspring always stay; when i >= w, then offspring always leave.

75

Denote the abundance of solitary females, 0x , and eusocial colonies, ix , with

size ,...4,3,2,1, ii And 00 ,db is reproductive rate and death rate of solitary females;

ii db , is reproductive rate and death rate of a eusocial queen in a nest of size i ; and

 is worker’s death rate. Multiply each birth term with a factor of density

limitation
X





1

1
, and the population size 

i

iixxX 0 .

 0000)(xdbx  

 211111 xxdxbxbx
wi

ii  






 111)1(  iiiiiiiii ixxixdxbxbx  1,...,3,2  wi

 111)1(  iiiiiii ixxixdxbx  wi 

 1)1( iiiii ixxixdx  ,...2,1  wwi

Equation 2.8.7 Evolutionary Dynamics With Flexible Strategies of Workers

76

Figure 2.8.4 Flexible Strategies with Threshold of Workers Number

77

2.8.5. Conclusions

Here I showed that, even within the terms of this modeling framework,

inclusive fitness thinking leads to insights that completely change these conclusions.

I showed that relatedness is causal, that eusociality is not so difficult to evolve, and

that there can be conflict between queens and workers. I concluded that multiple

modeling approaches are useful and that efforts to synthesize them are better than

asserting that one is universally better than the other.

78

Chapter 3

Evolutionary Dynamics of Genetic Kin

Recognition: a General Model

3.1. Abstract

Altruism is a behavior that benefits others at a cost to one’s own ability of

survival and/or reproduction. Either greenbeard effects or genetic kin recognition

requires genetic polymorphisms as cues on which recognition is based. Previous

models show that rare cue alleles get eliminated by selection and a common allele

gets fixed, which ruins the altruism system. So it is unclear how genetic recognition

for altruism persists. Here, I designed a novel model with three types of genetic

components, production, perception, and action. Our recognition model suggested

the stability of recognition for altruism that altruism can maintain multiple

recognition cues and be evolutionarily stable.

79

3.2. Introduction

In 1964 W. D. Hamilton produced an elegant formal theory that provided a

potential solution to this problem (Hamilton 1964). Hamilton argues that altruistic

acts to relatives can be favored by natural selection, because relatives share the

same gene as helpers. Hamilton expanded the definition of fitness in terms of

inclusive fitness which is the sum of a direct benefit through producing offspring

and an indirect benefit through aiding genetic relatives. Hamilton made these two

components additive by devaluing each offspring or relative by the genetic

relatedness to them.

From this Hamilton predicted that altruism will be favored by natural

selection when the inequality 0CrB is satisfied, where B is the benefit of the act

of altruism to the recipient, C the cost of the act to the actor and r the genetic

relatedness between the actor and the recipient (Hamilton 1964). Inclusive fitness

is applicable not only to helping but also to any behavior (West et al. 2007b). This

inequality has now come to be known as Hamilton’s rule. Hamilton’s theory is also

frequently referred to as the inclusive fitness theory or kin selection.

However, testing Hamilton’s rule without measuring the cost and benefit of

eusociality is an inadequate test. Focusing only on relatedness and neglecting the

cost and benefit terms usually takes the form of assuming implicitly that B = C. In

my thesis I plan to design a novel model of genetic kin recognition and to explore

80

the range of fitness costs and benefits with the model to explain how eusociality

could evolve and persist.

Kin selection depends on the identification of relatives. Recognition is often

accomplished through genetic systems that use variable genetic cues (the

production component), detection and evaluation of those cues (the perception

component), and the social behavior (the action component) (Table 3.1).

In the models below, I consider selection on a haploid organism, with cue loci

and perception loci that are unlinked. For simplicity disequilibria generated by

selection are ignored (though they will not be ignored in the computer models).

Each individual is faced with the choice of helping a partner. The partner will be a

relative related by r a fraction p of the time; the remaining 1-p of the time the

partner will be unrelated. Altruism is determined by matching at the cue locus and

evaluation at the perception locus. When a match at the cue locus occurs, and when

the perception locus perceives and passes on the match, the individual loses –c units

of fitness but gives its partner b units of fitness (Table 3.2).

3.3. Negative Feedbacks from Judge to Cue

 In our model, actor recognizes and helps partner if the following two

requirements of recognition are fulfilled (Table 3.1 and 3.2). The first requirement is

that Cue alleles of actor and partner match each other. So the Cue locus is a

greenbeard locus. (The effect of matches at the Cue locus is to help others who

81

actually have the allele.) . When c < b, Cue alleles can be favored by altruism, and

common Cue alleles are more likely to get benefits than rare Cue alleles. The second

requirement is that actor’s Judge allele accepts the matches of Cue alleles. It doesn’t

matter what partner’s Judge allele is. In our model, actor’s J1 accepts the matches of

C1 and rejects all other Cue allele matches. J2 rejects all Cue allele matches except C2.

So C1 is favored by J1 and disfavored by J2. C2 is favored by J2 and disfavored by J1.

Where there are no relatives being aided, the Judge locus does not benefit easily

from altruism since it’s unlinked to the greenbeard Cue locus. It benefits only when

altruism helps copies of the Judge allele in partner. So the best thing for Judge alleles

is not to do any altruism at all. When altruism has a chance to be performed to

relatives, and c < rb, both Cue and Judge alleles can be favored since relatives are

likely to share the same allele at each locus. We expect that when a common Cue

allele, let’s say C1, causes too much altruism from the view of Judge alleles, J1 that

accept the matches of C1 will be disfavored much more than other Judge alleles. This

in turn will cause the frequency of common C1 to come down. In contrast, when rare

C1 causes too little altruism, J1 will be disfavored much less than other Judge alleles.

This in turn will cause the frequency of rare C1 to go up. Clearly, Cue alleles have

negative feedbacks from Judge alleles, which could lead allele frequencies oscillate

over time, and thereby maintain all alleles.

82

3.4. Genetic Relatedness at Each of Three Loci

The genetic relatedness for each of three kinds of loci takes into account the

helping of partners with the same allele, above random levels of that allele (Table

3.3). To the extent that they help individuals with random levels of the allele, that

benefit won’t change gene frequencies and therefore don’t contribute to relatedness.

In each case the denominator is all matches at the cue locus, and the numerator is

the proportion of those matches that are identical-above-random at the locus in

question (Cue, Judge, or Act).

For the cue allele, the genetic relatedness is 1 because the numerator is the

same as the denominator, which consists of two proportions: 1) the proportion of

clonemate partners, p; and 2) the proportion of non-relative partners bearing the

matched cue allele,
jKfp)1( (Table 3.3, Figure 3.1). For all matches at the cue

locus, the beneficiary will share the altruist’s cue allele above random levels. Even

though some of the partners are random non-relatives, the ones who get aided are

the non-random set that carries the matched cue allele. Usually it is relatedness that

causes non-random identities, but here it is the matching process.

For genetic relatedness of the judge allele, when there are matches at the cue

locus (denominator), the fraction which gives matches at the judge locus above

random level is only the proportion of clonemates, p (Table 3.3, Figure 3.1). There

will be some additional matches at the judge locus for non-relatives, but there are

83

random matches and will be exactly canceled out by non-matches among the non-

relatives. Among the non-relatives, judge alleles are being helped at their

population frequencies, so they don’t contribute to selection and therefore don’t

contribute to the relatedness.

For the action allele, when there are matches at the cue locus, the fraction

which gives matches at the judge locus above random level is only the proportion of

clonemates, p (Table 3.3, Figure 3.1).

The relatedness of the cue takes into account all matches but relatedness of

the judge and the action only counts some of them because none of the matches are

random for the cue locus but some of them are random for the judge locus and the

action locus.

The genetic relatedness for each of three kinds of loci is the same as the

maximum c/b value that will favor altruism for that locus (Figure 3.1).

3.5. Mathematical Analysis of the Model

Mathematical Analysis of the Model for one production locus with multiple cue

alleles, one perception locus with multiple judge alleles, and one action locus with

one act allele (Table 3.2)

Actor’s recognition of its partner is based on their genetic loci: actor’s cue

allele xk and judge allele xj , and partner’s cue allele
yk and judge allele yj . Actor

84

performs altruistic behavior to its partner only when both of two following

requirements are fulfilled: 1) their cue alleles match each other, denoted by yx kk  ;

and then 2) actor’s judge allele accepts matches of their cues, denoted by xyx jkk 

. Partner’s judge allele doesn’t involve in the recognition process. We assume each

judge allele only accepts matches of the certain cue. Let cue alleles in the population

be ..., 21 kk , judge alleles be ..., 21 jj , and 1j accept matches of 1k , 2j accept matches

of 2k ..., and so on.

 Let
xx jkg , is actor’s genotype with cue allele xk and judge allele xj , and

yy jkg , is partner’s genotype with cue allele yk and judge allele yj . Assume each

individual has a fraction, p, that partner is its clonemate. Then frequency of altruism

in the population af is





yxyx

yyxx

xx

xx

jjkk

jkjk

jk

jka ggpgpf
,

,,,)1(

Equation 3.1 Frequency of Altruism in the Population

where ...;,, 21 kkkk yx  ...,, 21 jjjj yx  . The former fraction, 
 xx

xx

jk

jkgp , , is frequency

of altruisms performed between clonemates. Since each individual has a clonemate

and they share the same alleles, altruistic behavior will be performed when judge

allele accepts matches of cues. The latter fraction, 



yxyx

yyxx

jjkk

jkjk ggp
,

,,)1(, is

85

frequency of altruisms performed between nonrelatives. It not only requires

matches of their cues, but also those matches must be accepted by actor’s judge

allele.

The frequency of altruism by descent is





kj

kjd gpf ,

Equation 3.2 The Frequency of Altruism by Descent

Let the cost of altruistic behavior be c, the benefit be b, and initialized fitness

of each individual be w0. Then, the mean fitness of the population after altruism is

afcbww)(0 

Equation 3.3 The Mean Fitness of the Population after Altruism

The mean fitness of individuals bearing the cue allele k, ..., 21 kkk  , and the

judge allele j, ..., 21 jjj  , is























jkgbpw

jkgbpgcpcbpw

w

xx

xx

xx

xx

yy

yy

jkk

jk

jkk

jk

jjkk

jk

jk

,)1(

,)1()1()(

,0

,

,

,0

,

Equation 3.4 The Mean Fitness of Individuals

86

where ...,, 21 kkkk yx  ; ...,, 21 jjjj yx  . This is because when its judge allele could

accept matches of cues (jk ), the fitness of the individual having cue k and judge j

allele will be influenced in three situations. 1) With a fraction p the individual

encounters its clonemate. Since the clonemates share the same cue allele and its

judge allele accepts the matches of these cues, the actor helps the clonemate. The

actor pays the cost of c and its clonemate receives the benefit of b. Thus, it increases

their mean fitness by)(cbp  . 2) With a fraction 1-p the individual encounters

nonrelatives. It helps those who share the same cue allele with it and pays the cost

of c each time. Thus, it decreases its fitness by 



yy

yy

jjkk

jkgcp
,

,)1(. 3) In reverse it

may obtain benefits from nonrelatives who provide help to it and thus increase its

fitness by 



xx

xx

jkk

jkgbp ,)1(. When its judge allele can never accept matches of cues (

jk ), the individual will never help others but can receive help from nonrelatives

and get benefits of 



xx

xx

jkk

jkgbp ,)1(.

Let frequencies of cue and judge alleles be ...,
21 kk ff (or ..., 21 pp) and ...,

21 jj ff

(or ..., 21 qq), respectively. Offspring of the next non-overlapping generation are

sexually reproduced by random parents chosen proportionally to their fitness. Let

the recombination rate between the cue and judge loci be h. We assume no

mutation. Frequencies of genotypes become

87

w

w
f

w

w
hf

w

w
ghg

j

j
k

k

jk

jkjk 
,

,,)1('

Equation 3.5 The Frequencies of Genotypes

where kw and jw are the mean fitness of cue allele k and judge allele j, respectively.

This follows because a fraction (1 − h) of the haplotypes in the offspring have not

recombined, and are thus copies of a random haplotype in their parents. A fraction

w

w
g

kj

kj

,

, of those are the probability of the haplotypes chosen as parents, which is

the production of the haplotype frequency and its proportional fitness. A fraction h

of the haplotypes have recombined the cue and judge loci. Since the parents result

from random mating, the probability of the copy at cue locus having allele k is
w

w
f k
k

and the probability of the copy at judge locus having allele j is
w

w
f

j

j , and as these

copies are initially on different haplotypes, these are independent events so that the

probabilities can be multiplied.

The frequencies of cue and judge alleles become

w

w
ff k

kk ' 
j

jkjk wg
w

,,

1
, ..., 21 kkk 

Equation 3.6 The Frequencies of Cue Alleles

88

w

w
ff

j

jj ' 
k

jkjk wg
w

,,

1
, ..., 21 jjj 

Equation 3.7 The Frequencies of Judge Alleles

So frequencies of genotypes also become

))((
1

)1(' ,,,,2

,

,, 
k

jkjk

j

jkjk

jk

jkjk wgwg
w

h
w

w
ghg , ..., 21 kkk  , ..., 21 jjj 

Equation 3.8 The Frequencies of Genotypes

3.6. Prediction of Stability of Evolution of Altruism and Eusociality

What it takes into account is the helping of partners with the same allele,

above random levels of that allele. To the extent that they help individuals with

random levels of the allele, that benefit won't change gene frequencies). In each case

the denominator is all matches at the cue locus, and the numerator is the proportion

of those matches that are also identical-above-random at the locus in question (cue,

judge, or act) (Figures 3.1, 3.2, and 3.3).

So for the cue allele, r=1 because the numerator is the same as the

denominator (same denominator as for judge r) (Figures 3.1, 3.2, and 3.3). For all

matches at the cue locus, the beneficiary will share the altruists cue allele above

random levels. Even though some of the partners are random non relatives, the

89

ones who get aided are the non-random set that carry the matched cue allele.

Usually it is relatedness that causes non-random identities, but here it is the

matching process.

For the judge r, when there are matches at the cue locus (denominator), the

fraction give matches at the judge locus above random levels is p, the proportion of

clonemates (Figures 3.1, 3.2, and 3.3). There will be some additional matches at the

judge allele for non-relatives, but these are random matches and will be exactly

canceled out by non-matches among the non-relatives. Among the non-relatives,

judge alleles are being helped at their population frequencies, so they do not

contribute to selection (and therefore don't contribute to r). So what is confusing is

that counts all matches for the cue r, but only some of them for the judge r. It's

because none of the matches are random for the cue locus but some of them are

random for the judge locus.

When partners are more likely to be your clonemates, that is high p, it is

easier to reach the stability of altruism since your partners share the same genes

(Figures 3.4).

When there are more cues in the population, it is more accurate to

distinguish kins from non-kins. So high diversity of recognition cues favors the

evolutionary dynamics of altruism (Figures 3.5).

Plots of Shannon’s diversity index for cue and judge alleles. The main

advantage of that is that you will be able to quickly screen results of many

90

simulations to see if there are some conditions that maintain diversity (Figures 3.6,

3.7, 3.8 and 3.9).

]ln,0[,ln
1

nHffH i

n

i

i  


Equation 3.9 Shannon’s diversity index for cue and judge alleles

Some of the assumptions in the theoretical model of genetic kin recognition

are: genetically unlinked cue and judge loci (recombination rate = 0.5); no selection

except kin recognition; non-random mating (sexually reproduction proportionally

to fitness); non-structure population (encounter each other randomly); no

mutation; no genetic drift.

3.7. Conclusions

Our recognition model suggests the stability of recognition for altruism that

altruism can maintain multiple recognition cues and be evolutionarily stable. I

found that all the frequencies of alleles can oscillate synchronously over time and

eventually converge to stable equilibrium states in the model for one production

locus with multiple cue alleles, one perception locus with multiple judge alleles,

(and one action locus with one act allele). The altruistic acts still happen at the

equilibrium states since none of the genotypes gets fixed.

91

3.8. References

Axelrod, R. (1997). The complexity of cooperation (Princeton, New Jersey:

Princeton University Press).

Axelrod, R., and Hamilton, W. D. (1981). The Evolution of Cooperation.

Science 211, 1390-1396.

Axelrod, R., Hammond, R. A., and Grafen, A. (2004). Altruism via kin-selection

strategies that rely on arbitrary tags with which they coevolve. Evolution 58, 1833-

1838.

Barton, N. H., and Turelli, M. (1991). Natural and sexual selection on many

loci. Genetics 127, 229-255.

Bshary, R., and Bergmueller, R. (2008). Distinguishing four fundamental

approaches to the evolution of helping. Journal of Evolutionary Biology 21, 405-420.

Crozier, R. H. (1986). Genetic clonal recognition abilities in marine

invertebrates must be maintained by selection for something else. Evolution 40,

1100-1101.

Crozier, R. H. (1987). Genetic aspects of kin recognition: concepts, models,

and synthesis (New York: Wiley).

Darwin, C. (1859). On the Origin of Species (Cambridge, Massachusetts:

Harvard University Press).

92

Dawkins, R. (1976). The Selfish Gene (Oxford: Oxford Univ. Press).

Dreber, A., Rand, D. G., Fudenberg, D., and Nowak, M. A. (2008). Winners

don't punish. Nature 452, 348-351.

Fletcher, D. J. C., and Michener, C. D. (1987). Kin Recognition in Animals: John

Wiley & Sons).

Frank, S. A. (1998). Foundations of Social Evolution (Princeton, New Jersey:

Princeton University Press).

Fudenberg, D., Nowak, M. A., Taylor, C., and Imhof, L. A. (2006). Evolutionary

game dynamics in finite populations with strong selection and weak mutation.

Theoretical Population Biology 70, 352-363.

Gardner, A., and West, S. A. (2010). Greenbeards. Evolution 64, 25-38.

Gardner, A., West, S. A., and Barton, N. H. (2007). The relation between

multilocus population genetics and social evolution theory. Am Nat 169, 207-226.

Gigord, L. D. B., Macnair, M. R., and Smithson, A. (2001). Negative frequency-

dependent selection maintains a dramatic flower color polymorphism in the

rewardless orchid Dactylorhiza sambucina (L.) Soo. Proceedings of the National

Academy of Sciences of the United States of America 98, 6253-6255.

Grafen, A. (1985). A geometric view of relatedness, In Oxford Surveys in

Evolutionary Biology, R. Darwins, and M. Ridley, eds. (Oxford University Press).

93

Grafen, A. (1990). Do animals really recognize kin? Anim Behav 39, 42–54.

Griffin, A. S., West, S. A., and Buckling, A. (2004). Cooperation and

competition in pathogenic bacteria. Nature 430, 1024-1027.

Grosberg, R. K., and Quinn, J. F. (1989). The evolution of selective aggression

conditioned on allorecognition specificity. Evolution 43, 504–515.

Hamilton, W. D. (1964). The genetic evolution of social behaviour, I & II. J

Theor Biol 7, 1-52.

Hamilton, W. D. (1970). Selfish and Spiteful Behaviour in an Evolutionary

Model. Nature 228, 1218-&.

Hamilton, W. D. (1987). Discriminating nepotism: expectable, common,

overlooked (New York: Wiley).

Hauert, C., Michor, F., Nowak, M. A., and Doebeli, M. (2006). Synergy and

discounting of cooperation in social dilemmas. Journal of Theoretical Biology 239,

195-202.

Jansen, V. A., and van Baalen, M. (2006). Altruism through beard

chromodynamics. Nature 440, 663-666.

Keller, L., and Ross, K. G. (1998). Selfish genes: a green beard in the red fire

ant. Nature 394, 573–575.

94

Kirkpatrick, M., Johnson, T., and Barton, N. (2002). General models of

multilocus evolution. Genetics 161, 1727-1750.

Koeslag, J. H. (1997). Sex, the prisoner's dilemma game, and the evolutionary

inevitability of cooperation. Journal of Theoretical Biology 189, 53-61.

Koeslag, J. H., and Terblanche, E. (2003). Evolution of cooperation:

cooperation defeats defection in the cornfield model. Journal of Theoretical Biology

224, 399-410.

Langer, P., Nowak, M. A., and Hauert, C. (2008). Spatial invasion of

cooperation. Journal of Theoretical Biology 250, 636-643.

Lehmann, L., and Keller, L. (2006). The evolution of cooperation and altruism

- a general framework and a classification of models. Journal of Evolutionary Biology

19, 1365-1376.

Lieberman, E., Hauert, C., and Nowak, M. A. (2005). Evolutionary dynamics on

graphs. Nature 433, 312-316.

Mateo, J. M. (2004). Recognition systems and biological organization: The

perception component of social recognition. Annales Zoologici Fennici 41, 729-745.

McElreath, R., and Boyd, R. (2007). Mathematical Models of Social Evolution

(Chicago, Illinois: University Of Chicago Press).

95

Nowak, M. A. (2006). Evolutionary Dynamics: Exploring the Equations of Life

(Cambridge, Massachusetts: Belknap Press).

Nowak, M. A. (2006). Five rules for the evolution of cooperation. Science 314,

1560-1563.

Nowak, M. A., and Sigmund, K. (2005). Evolution of indirect reciprocity.

Nature 437, 1291-1298.

Nowak, M. A., Tarnita, C. E., and Wilson, E. O. (2010). The evolution of

eusociality. Nature 466, 1057-1062.

Pacheco, J. M., Traulsen, A., and Nowak, M. A. (2006). Active linking in

evolutionary games. Journal of Theoretical Biology 243, 437-443.

Price, G. R. (1970). Selection and Covariance. Nature 227, 520-&.

Queller, D. C. (1985). Kinship, Reciprocity and Synergism in the Evolution of

Social-Behavior. Nature 318, 366-367.

Queller, D. C., Ponte, E., Bozzaro, S., and Strassmann, J. E. (2003). Single-gene

greenbeard effects in the social amoeba Dictyostelium discoideum. Science 299,

105-106.

Ratnieks, F. L. W. (1991). The evolution of genetic odor-cue diversity in social

Hymenoptera. Am Nat 137, 202–226.

96

Ross, K. G., and Keller, L. (1998). Genetic control of social organization in an

ant. Proc Natl Acad Sci U S A 95, 14232-14237.

Rousset, F., and Roze, D. (2007). Constraints on the origin and maintenance

of genetic kin recognition. Evolution 61, 2320-2330.

Roze, D., and Rousset, F. (2005). Inbreeding depression and the evolution of

dispersal rates: a multilocus model. Am Nat 166, 708-721.

Sachs, J. L., Mueller, U. G., Wilcox, T. P., and Bull, J. J. (2004). The evolution of

cooperation. Quarterly Review of Biology 79, 135-160.

Summers, K., and Crespi, B. (2005). Cadherins in maternal-foetal interactions:

red queen with a green beard? Proc Biol Sci 272, 643-649.

Taylor, C., Iwasa, Y., and Nowak, M. A. (2006). A symmetry of fixation times in

evoultionary dynamics. Journal of Theoretical Biology 243, 245-251.

Taylor, C., and Nowak, M. A. (2006). Evolutionary game dynamics with non-

uniform interaction rates. Theoretical Population Biology 69, 243-252.

Traulsen, A., Nowak, M. A., and Pacheco, J. M. (2006). Stochastic dynamics of

invasion and fixation. Physical Review E 74, -.

Trivers, R. L. (1971). Evolution of Reciprocal Altruism. Quarterly Review of

Biology 46, 35-&.

97

West, S. A., Griffin, A. S., and Gardner, A. (2007). Evolutionary explanations

for cooperation. Curr Biol 17, R661-672.

West, S. A., Griffin, A. S., and Gardner, A. (2007). Social semantics: altruism,

cooperation, mutualism, strong reciprocity and group selection. Journal of

Evolutionary Biology 20, 415-432.

Wright, S. (1922). Coefficients of inbreeding and relationship. American

Naturalist 56, 330-338.

Wynne-Edwards, V. C. (1962). Animal Dispersion in Relation to Social

Behavior (London: Oliver & Boyd).

98

3.9. Table legends

Table 3.1 Alleles Indexes at Three Loci

99

Table 3.2 Payoff matrix of altruism

100

Locus Genetic relatedness, r
Actor’s

cost, C

Recipient’s

benefit, B

Cue 1)(Cuer c b

Judge
iCfpp

p
Judger

)1(
)(


 c b

Action



r(Act) 
p

p (1 p)(fC1
2
fJ1  fC2

2
fJ2) /(fC1 fJ1  fC2 fJ2)

 c b

Table 3.3 Genetic Relatedness at Each of Three loci

101

3.10. Figure legends

Figure 3.1 Genetic Relatedness at Each of Three loci

102

Figure 3.2 Genetic Relatedness for all alleles at three loci

103

Figure 3.3 Prediction of Stability of Evolution of Altruism and Eusociality

104

Figure 3.4 Genetic Relatedness with Two Cue Alleles

105

Figure 3.5 Genetic Relatedness with Ten Cue Alleles

106

Figure 3.6 Plots of Shannon’s diversity index for two cue and judge alleles

(c/b=0.82).

107

Figure 3.7 Plots of Shannon’s diversity index for two cue and judge alleles

(c/b=0.9).

108

Figure 3.8 Plots of Shannon’s diversity index for three cue and judge alleles

(c/b = 0.65).

109

Figure 3.9 Plots of Shannon’s diversity index for three cue and judge alleles

(c/b = 0.9).

110

Chapter 4

Exploring Fitness Cost/Benefit to

Solve the Crozier’s Paradox

4.1. Abstract

Previous models show that rare cue alleles get eliminated by selection and a

common allele gets fixed, which ruins the altruism system. So it is unclear how

genetic recognition for altruism persists. Here, I designed a novel model with three

types of genetic components, production, perception and action. I tested whether

interactions between perception and production loci could evolve to reject common

cue alleles, allowing multiple cue alleles persist. I found that all the frequencies of

the genotypes, alleles and altruistic acts can oscillate over time and eventually

converge to stable equilibrium states.

4.2. Introduction

In 1964 W. D. Hamilton produced an elegant formal theory that provided a

potential solution to this problem (Hamilton 1964). Hamilton argues that altruistic

111

acts to relatives can be favored by natural selection, because relatives share the

same gene as helpers. Hamilton expanded the definition of fitness in terms of

inclusive fitness which is the sum of a direct benefit through producing offspring

and an indirect benefit through aiding genetic relatives. Hamilton made these two

components additive by devaluing each offspring or relative by the genetic

relatedness to them.

From this Hamilton predicted that altruism will be favored by natural

selection when the inequality 0CrB is satisfied, where B is the benefit of the act

of altruism to the recipient, C the cost of the act to the actor and r the genetic

relatedness between the actor and the recipient (Hamilton 1964). Inclusive fitness

is applicable not only to helping but also to any behavior (West et al. 2007b). This

inequality has now come to be known as Hamilton’s rule. Hamilton’s theory is also

frequently referred to as the inclusive fitness theory or kin selection.

However, testing Hamilton’s rule without measuring the cost and benefit of

eusociality is an inadequate test. Focusing only on relatedness and neglecting the

cost and benefit terms usually takes the form of assuming implicitly that B = C. In

my thesis I plan to design a novel model of genetic kin recognition and to explore

the range of fitness costs and benefits with the model to explain how eusociality

could evolve and persist.

The genetic cues of the production component are shown to be greenbeard

genes. There are alleles that, in effect, recognize copies of themselves in others,

112

regardless of relatedness at other loci. The greenbeard nature of these alleles is

responsible for what is known as Crozier's paradox, the observation that selection

favors common cue alleles and thereby removes the variation that is required for

discrimination (Crozier RH 1986, Crozier RH 1987, Crozier RH & Pamilo P 1996).

Altruistic greenbeard alleles are outlaw genes because, by causing altruism towards

others who are not relatives, they act against the interest of other genes in the

genome. This can lead to intragenomic conflict, with other genes being selected to

eliminate the extra altruism, if they can do so without also eliminating themselves as

targets of altruism.

We reconceptualize the components of kin recognition in terms intragenomic

conflict. The genetic cues of the production component are shown to be greenbeard

genes. There are alleles that, in effect, recognize copies of themselves in others,

regardless of relatedness at other loci. The greenbeard nature of these alleles is

responsible for what is known as Crozier's paradox, the observation that selection

favors common cue alleles and thereby removes the variation that is required for

discrimination. Altruistic greenbeard alleles are outlaw genes because, by causing

altruism towards others who are not relatives, they act against the interest of other

genes in the genome. This can lead to intragenomic conflict, with other genes being

selected to eliminate the extra altruism, if they can do so without also eliminating

themselves as targets of altruism.

113

In recognition systems this is easily accomplished by genes in the perception

component; they will be selected to ignore high-frequency cue alleles in their

decisions to give altruism. This in turn can decrease or reverse selection for

common alleles, solving Crozier's paradox. In this view, greenbeard genes are far

from rare, but are at the foundation of all genetic cue mechanisms. Their

inappropriate levels of altruism need to be tamed by loci in the perception or action

components before such recognition systems can be effective in implementing

inclusive fitness.

In the models below, I consider selection on a haploid organism, with cue loci

and perception loci that are unlinked. For simplicity disequilibria generated by

selection are ignored (though they will not be ignored in the computer models).

Each individual is faced with the choice of helping a partner. The partner will be a

relative related by r a fraction p of the time; the remaining 1-p of the time the

partner will be unrelated. Altruism is determined by matching at the cue locus and

evaluation at the perception locus. When a match at the cue locus occurs, and when

the perception locus perceives and passes on the match, the individual loses –c units

of fitness but gives its partner b units of fitness.

Imagine a recognition system that causes altruism whenever the actor and its

partner have the same alleles at the matching locus. In the background of the

perception and action genes generating altruism by this kind of rule, the effect at the

matching locus is a simple greenbeard effect: it causes altruism to occur regardless

114

of whether the partner is a relative who shares the allele identical by descent or a

random individual who shares the allele identical by state. The objection might be

raised that the matching allele does not mechanistically cause the altruism, because

other genes are also required for that. But this objection would apply to all genes

for complex traits. A gene for long tails does not create a long tail by itself; many

other genes are required. But we say it is a gene for long tails because (on average)

it makes the difference between a longer and a shorter tail. Our matching locus in a

greenbeard gene in this sense –it makes the difference between altruism and no

altruism and it does so in a way that pays no attention to kinship.

Here, I design a novel model with three types of genetic components,

production, perception and action. I test whether interactions between perception

and production loci could evolve to reject common cue alleles, allowing multiple cue

alleles persist. I found that all the frequencies of the genotypes, alleles and altruistic

acts can oscillate over time and eventually converge to stable equilibrium states.

Our recognition model suggests the stability of recognition for altruism that

altruism can maintain multiple recognition cues and be evolutionarily stable. I

found that all the frequencies of alleles can oscillate synchronously over time and

eventually converge to stable equilibrium states in the model for one production

locus with multiple cue alleles, one perception locus with multiple judge alleles, and

one action locus with one act allele. The altruistic acts still happen at the

115

equilibrium states since none of the genotypes gets fixed. And the frequency of

altruistic acts remains constant since the genotype frequencies remain constant.

Furthermore, both rare Cue and Judge alleles can invade into the system

though they can’t be stabilized. Since the invasion of rare Cue alleles and the

stabilization of recognition are not under the same conditions, it is still unclear how

rare cues could be maintained by altruism.

4.3. Recognition Bases on Multiple Cues

Altruism is a common behavior in nature which benefits others at a cost to

one own fitness. Hamilton’s rule tells us if genetic relatedness r in a population

equals to 1, such as in clonemates, altruism can evolve when fitness benefit b is

larger than cost c. The kin recognition mechanism argues that according to a

complex system, which in general consists of three genetic components. Production,

perception, and action, individuals can recognize their relatives based on their

production cues, and favor each other. Since relatives are likely to share same genes,

genes of those who perform altruism could be inherited through copies in their

relatives’ offspring. That’s how altruism can evolve. The recognition for greenbeard

mechanism is simple. It’s only based on a single gene. Those who share a same

greenbeard gene can discriminate and help each other. In both mechanisms,

recognition is based on multiple cues. If multiple cues persist in a population,

recognition could be stable.

116

Recognition is unstable. However, previous models eventually lead to a fixed

cue. In greenbeard, those who have common greenbeard alleles, such as the red one

in this diagram, are more likely to favor each other than those of rare ones, such as

the blue one. And thereby common greenbeard alleles spread. If there are no other

forces to check this spread, a common allele will eventually fix in a population. In

the diagram, the red fixes and the blue goes extinct. In kin recognition, it leads to

the same consequence. A common production cue fixes. When there is only one cue

left, all individuals are same and can‘t be discriminated. So recognition in previous

models is unstable. Recognition could be stable only when multiple cues, rather than

a fixed cue, are maintained in populations by altruism. So, how could multiple cues

be maintained?

Stable recognition model. To answer this important question, I designed a

novel model in which recognition for altruism is based on two genetic components.

production and perception. The Cue locus in the production component has two

alleles. C1 and C2. The Judge locus in the perception component also has two alleles.

J1 and J2. The two loci are unlinked. Our hypothesis is that common Cue alleles

could be disfavored and rare ones favored by negative feedbacks from Judge alleles,

and thereby multiple cues could be maintained. How do negative feedbacks occur in

the model?

117

4.4. Simulation of Pure Greenbeard

To test whether our model is stable or not, we do computational simulations

in two steps. We first simulate in a pure greenbeard system without kin recognition;

and then simulate in a combined system of greenbeard and kin recognition. In

simulation of pure greenbeard, the population consists of haploid adults. A

genetically random partner is present to each individual. Offspring’s population is

sexually reproduced, proportionally to parents’ fitness after altruism. In the

ancestor, the four allele frequencies are initialized by these four parameters.

4.5. Negative Feedbacks can Maintain Multiple Cue with

Intermediate Frequencies

We test our model with a constant population size 3,000. In the figures 4.3,

4.4 and 4.5, the X axis is generation, and the Y axis are frequencies of genotype and

allele. As we see, when all alleles start intermediate frequencies and the cost and

cost-to-benefit ratio are high, all allele frequencies oscillate cross generations. Let

us plot Judge allele frequencies versus Cue allele frequencies. For example, in the

figures at the bottom, J1 against C1. If frequency curve reaches the X axis, that

means, C1 goes extinct and C2 gets fixed. If curve reaches the top border, C1 fixes. If

curve reaches the Y axis, that means, J1 goes extinct and J2 gets fixed. If curve reaches

the right border, J1 fixes. If curve doesn’t reach any axis or border, that means,

multiple Cue and Judge alleles persist. These three figures show that after starting

118

at the black point, allele frequency curves cycle in a certain central space cross

generations. It implies that multiple alleles can persist, and none of alleles goes

extinct or gets fixed. These simulations suggest that negative feedbacks can

maintain multiple alleles with intermediate frequencies, and therefore our

recognition model can be stable.

But negative feedbacks can’t always maintain intermediate frequencies.

Simulations at low cost and cost-to-benefit ratio show that one of Cue and Judge

alleles eventually gets fixed and the other goes extinct (Figures 4.1 and 4.2).

4.6. Stable Recognition Model under High Fitness Cost/Benefit and

High Cost

Now, an interesting question is in which space of cost and benefit negative

feedbacks can maintain multiple alleles. I did simulations with different costs and

cost-to-benefit ratios. In these plots, from left to right, c goes higher; from bottom to

up, c/b becomes higher (Figures 4.6 and 4.7). These plots clearly show that multiple

intermediate alleles can persist under high c/b and high c. It suggests that our

recognition system is stable with intermediate allele frequencies under high c/b and

high c. The greenbeard Cue alleles are favored when c < b, that is c/b < 1. When c/b

is low, they are favored too strongly, so a Cue allele fixes before negative feedback

can control it. When c/b is high, negative feedback has a chance to bring common

119

Cue allele frequencies down and raise rare Cue allele frequencies up. When c = b,

Cue alleles are not favored.

The Judge alleles are disfavored when c > 0 (Figure 4.7). When c is high, they

are disfavored strongly to oppose the greenbeard Cue alleles. When c is low, they

are disfavored weakly to provide enough feedbacks. So there is strong selection on

the Judge locus and weak selection on the Cue locus.

4.7. The Recognition is Unstable When Cue Alleles Start Rare

When Cue alleles start rare, for example, C0 starts at twenty percent,

simulations show that rare cue alleles sometimes can invade into the system, but the

recognition system is unstable (Figure 4.8). Our model is sometimes stable with

rare Judge alleles. When Judge alleles starts rare, for example, J0 starts at one

percent, simulations show that our recognition model is sometimes stable.

Combined greenbeard and kin recognition. Now we test our model in a

recombined system of greenbeard and kin recognition. The population changes into

pairs of clonemates. In the previous pure greenbeard, Judge alleles can’t be favored.

Now, they can be favored in kin recognition by helping clonemate because they

share same Judge alleles. Cue alleles can still be favored by greenbeard effects. The

probability that partner is clonemate is Pr, and the probability that partner is

random is 1 – Pr. When Pr = 0, that is, all partners are random, the system stays as a

pure greenbeard system.

120

Combined system of greenbeard and kin recognition. As Pr goes higher, such

as 0.5, that means, the probabilities of clonemate partner and random partner are

equal (Figure 4.9). In such combined system of greenbeard and kin recognition, the

recognition is sometimes stable. The recognition is unstable in pure kin recognition

system. When all partners are clonemates, that is Pr = 1, the system switches to a

pure kin recognition system. The recognition in such system is always unstable.

We found the recognition can be stable under low h, that is when the cue and

judge loci tend to link together (Figure 4.10 and 4.11).

4.8. Conclusions

The data also show that the altruism is still performed during the equilibrium

status. The time to reach equilibrium status is critical for the evolution of genetic

kin recognition. It evolves quickly to reach the equilibrium status if there is strong

selection, and evolves slowly if there exists week selection.

 According to Crozier’s paradox, common alleles will eventually get fixed in

the population since they get much more benefits from help of relatives compared

to rare alleles. Rare alleles will eventually go extinct in the population since they

receive much fewer benefits. To maintain multiple alleles, there must be some kinds

of negative feedbacks to bring down common alleles and raise up rare alleles. Most

of previous models only focus on the cue alleles and try to figure out the mechanism

of kin recognition system which is incomprehensive. It is impossible that a single

121

gene perform the complex duties both recognizing relatives and exercising altruistic

behaviors toward them. Adding another gene responsible for acting is still not

enough which leads to Crozier’s paradox.

Here we show that models with three components (recognition, detection,

and action) show highlight on the mechanism of evolution of kin recognition.

We analyzed the results from simulations and tracked down to the

conditions which require the altruistic behavior to evolve. So the kin recognition

can be favored by the dynamics among three components. Even though the rare cue

alleles invade into the system, intermediate cues always can be maintained by the

system. This is the first time that a model show equilibrium status of evolution of

genetic kin recognition. The model is useful to the field which highlights the

possibility of mechanism of evolution of altruism. It is unclear how the diversity of

cues is maintained in the system, how common cues are brought down and rare

cues invade. Here our model shows that it is the negative feedback from other

genetic components to balance the evolution of cues. There are strong selections on

detective components and week selections. It is suggested that the models are

showing the conditions under which genetic kin recognition system can evolve over

time.

So far, simulation results suggest that our recognition model for altruism can

maintain two cues with intermediate frequencies in a population, and thereby the

122

recognition can be stable. The model is unstable in some conditions, especially with

relatives. It’s not clear how rare cues invade.

4.9. References

Axelrod, R. (1997). The complexity of cooperation (Princeton, New Jersey:

Princeton University Press).

Axelrod, R., and Hamilton, W. D. (1981). The Evolution of Cooperation.

Science 211, 1390-1396.

Axelrod, R., Hammond, R. A., and Grafen, A. (2004). Altruism via kin-selection

strategies that rely on arbitrary tags with which they coevolve. Evolution 58, 1833-

1838.

Barton, N. H., and Turelli, M. (1991). Natural and sexual selection on many

loci. Genetics 127, 229-255.

Bshary, R., and Bergmueller, R. (2008). Distinguishing four fundamental

approaches to the evolution of helping. Journal of Evolutionary Biology 21, 405-420.

Crozier, R. H. (1986). Genetic clonal recognition abilities in marine

invertebrates must be maintained by selection for something else. Evolution 40,

1100-1101.

123

Crozier, R. H. (1987). Genetic aspects of kin recognition: concepts, models,

and synthesis (New York: Wiley).

Darwin, C. (1859). On the Origin of Species (Cambridge, Massachusetts:

Harvard University Press).

Dawkins, R. (1976). The Selfish Gene (Oxford: Oxford Univ. Press).

Dreber, A., Rand, D. G., Fudenberg, D., and Nowak, M. A. (2008). Winners

don't punish. Nature 452, 348-351.

Fletcher, D. J. C., and Michener, C. D. (1987). Kin Recognition in Animals: John

Wiley & Sons).

Frank, S. A. (1998). Foundations of Social Evolution (Princeton, New Jersey:

Princeton University Press).

Fudenberg, D., Nowak, M. A., Taylor, C., and Imhof, L. A. (2006). Evolutionary

game dynamics in finite populations with strong selection and weak mutation.

Theoretical Population Biology 70, 352-363.

Gardner, A., and West, S. A. (2010). Greenbeards. Evolution 64, 25-38.

Gardner, A., West, S. A., and Barton, N. H. (2007). The relation between

multilocus population genetics and social evolution theory. Am Nat 169, 207-226.

Gigord, L. D. B., Macnair, M. R., and Smithson, A. (2001). Negative frequency-

dependent selection maintains a dramatic flower color polymorphism in the

124

rewardless orchid Dactylorhiza sambucina (L.) Soo. Proceedings of the National

Academy of Sciences of the United States of America 98, 6253-6255.

Grafen, A. (1985). A geometric view of relatedness, In Oxford Surveys in

Evolutionary Biology, R. Darwins, and M. Ridley, eds. (Oxford University Press).

Grafen, A. (1990). Do animals really recognize kin? Anim Behav 39, 42–54.

Griffin, A. S., West, S. A., and Buckling, A. (2004). Cooperation and

competition in pathogenic bacteria. Nature 430, 1024-1027.

Grosberg, R. K., and Quinn, J. F. (1989). The evolution of selective aggression

conditioned on allorecognition specificity. Evolution 43, 504–515.

Hamilton, W. D. (1964). The genetic evolution of social behaviour, I & II. J

Theor Biol 7, 1-52.

Hamilton, W. D. (1970). Selfish and Spiteful Behaviour in an Evolutionary

Model. Nature 228, 1218-&.

Hamilton, W. D. (1987). Discriminating nepotism: expectable, common,

overlooked (New York: Wiley).

Hauert, C., Michor, F., Nowak, M. A., and Doebeli, M. (2006). Synergy and

discounting of cooperation in social dilemmas. Journal of Theoretical Biology 239,

195-202.

125

Jansen, V. A., and van Baalen, M. (2006). Altruism through beard

chromodynamics. Nature 440, 663-666.

Keller, L., and Ross, K. G. (1998). Selfish genes: a green beard in the red fire

ant. Nature 394, 573–575.

Kirkpatrick, M., Johnson, T., and Barton, N. (2002). General models of

multilocus evolution. Genetics 161, 1727-1750.

Koeslag, J. H. (1997). Sex, the prisoner's dilemma game, and the evolutionary

inevitability of cooperation. Journal of Theoretical Biology 189, 53-61.

Koeslag, J. H., and Terblanche, E. (2003). Evolution of cooperation:

cooperation defeats defection in the cornfield model. Journal of Theoretical Biology

224, 399-410.

Langer, P., Nowak, M. A., and Hauert, C. (2008). Spatial invasion of

cooperation. Journal of Theoretical Biology 250, 636-643.

Lehmann, L., and Keller, L. (2006). The evolution of cooperation and altruism

- a general framework and a classification of models. Journal of Evolutionary Biology

19, 1365-1376.

Lieberman, E., Hauert, C., and Nowak, M. A. (2005). Evolutionary dynamics on

graphs. Nature 433, 312-316.

126

Mateo, J. M. (2004). Recognition systems and biological organization: The

perception component of social recognition. Annales Zoologici Fennici 41, 729-745.

McElreath, R., and Boyd, R. (2007). Mathematical Models of Social Evolution

(Chicago, Illinois: University Of Chicago Press).

Nowak, M. A. (2006). Evolutionary Dynamics: Exploring the Equations of Life

(Cambridge, Massachusetts: Belknap Press).

Nowak, M. A. (2006). Five rules for the evolution of cooperation. Science 314,

1560-1563.

Nowak, M. A., and Sigmund, K. (2005). Evolution of indirect reciprocity.

Nature 437, 1291-1298.

Nowak, M. A., Tarnita, C. E., and Wilson, E. O. (2010). The evolution of

eusociality. Nature 466, 1057-1062.

Pacheco, J. M., Traulsen, A., and Nowak, M. A. (2006). Active linking in

evolutionary games. Journal of Theoretical Biology 243, 437-443.

Price, G. R. (1970). Selection and Covariance. Nature 227, 520-&.

Queller, D. C. (1985). Kinship, Reciprocity and Synergism in the Evolution of

Social-Behavior. Nature 318, 366-367.

127

Queller, D. C., Ponte, E., Bozzaro, S., and Strassmann, J. E. (2003). Single-gene

greenbeard effects in the social amoeba Dictyostelium discoideum. Science 299,

105-106.

Ratnieks, F. L. W. (1991). The evolution of genetic odor-cue diversity in social

Hymenoptera. Am Nat 137, 202–226.

Ross, K. G., and Keller, L. (1998). Genetic control of social organization in an

ant. Proc Natl Acad Sci U S A 95, 14232-14237.

Rousset, F., and Roze, D. (2007). Constraints on the origin and maintenance

of genetic kin recognition. Evolution 61, 2320-2330.

Roze, D., and Rousset, F. (2005). Inbreeding depression and the evolution of

dispersal rates: a multilocus model. Am Nat 166, 708-721.

Sachs, J. L., Mueller, U. G., Wilcox, T. P., and Bull, J. J. (2004). The evolution of

cooperation. Quarterly Review of Biology 79, 135-160.

Summers, K., and Crespi, B. (2005). Cadherins in maternal-foetal interactions:

red queen with a green beard? Proc Biol Sci 272, 643-649.

Taylor, C., Iwasa, Y., and Nowak, M. A. (2006). A symmetry of fixation times in

evoultionary dynamics. Journal of Theoretical Biology 243, 245-251.

Taylor, C., and Nowak, M. A. (2006). Evolutionary game dynamics with non-

uniform interaction rates. Theoretical Population Biology 69, 243-252.

128

Traulsen, A., Nowak, M. A., and Pacheco, J. M. (2006). Stochastic dynamics of

invasion and fixation. Physical Review E 74, -.

Trivers, R. L. (1971). Evolution of Reciprocal Altruism. Quarterly Review of

Biology 46, 35-&.

West, S. A., Griffin, A. S., and Gardner, A. (2007). Evolutionary explanations

for cooperation. Curr Biol 17, R661-672.

West, S. A., Griffin, A. S., and Gardner, A. (2007). Social semantics: altruism,

cooperation, mutualism, strong reciprocity and group selection. Journal of

Evolutionary Biology 20, 415-432.

Wright, S. (1922). Coefficients of inbreeding and relationship. American

Naturalist 56, 330-338.

Wynne-Edwards, V. C. (1962). Animal Dispersion in Relation to Social

Behavior (London: Oliver & Boyd).

129

4.10. Figure legends

Figure 4.1 Evolutionary dynamics of Genotype Frequencies in Unstable Kin

Recognition

130

Figure 4.2 Evolutionary dynamics of Allele Frequencies in Unstable Kin

Recognition

131

Figure 4.3 Evolutionary dynamics of Genotype Frequencies in Stable Kin

Recognition

132

Figure 4.4 Evolutionary dynamics of Allele Frequencies in Stable Kin

Recognition

133

Figure 4.5 The stability of recognition.

(A) Change of frequencies of cue alleles. (B) Change of frequencies of judge

alleles. (C) Change of frequencies of altruistic behavior. per individual. c =

0.8, c/b = 0.9, p = 0.1, h = 0.5, p1 = 0.29, p2 = 0.71, q1 = q2 = 0.5, T= 500. Blank

dot, start of simulation; solid dot, end of simulation.

134

Figure 4.6 The stability of recognition in space of frequencies.

Blank dot, start of simulation; solid dot, end of simulation. c = 0.8, c/b = 0.9, p

= 0.1, h = 0.5, p1 = 0.29, p2 = 0.71, q1 = q2 = 0.5, T= 500.

135

Figure 4.7 Limited regions of stability: high c/b and high c.

The space of frequency spaces under various initialized allele. h = 0.5, p = 0.1,

p1 = 0.29, p2 = 0.71, q1 = q2 = 0.5, T= 10,000. Blank dot, start of simulation;

solid dot, end of simulation.

136

Figure 4.8 Limited regions of stability: intermediate frequencies.

The space of frequency spaces under various costs and cost-to-benefit ratios.

h = 0.5, p = 0.1, p1 = 0.29, p2 = 0.71, q1 = q2 = 0.5, T= 10,000. Blank dot, start of

simulation; solid dot, end of simulation.

137

Figure 4.7 Limited regions of stability: low p.

The space of frequency spaces under various probabilities of clonemate

partner and cost-to-benefit ratios. c = 0.8, h = 0.5, p1 = 0.29, p2 = 0.71, q1 = q2 =

0.5, T= 10,000. Blank dot, start of simulation; solid dot, end of simulation.

138

Figure 4.8 The space of frequency spaces under various recombination rates

and cost-to-benefit ratios.

c = 0.8, p = 0.1, p1 = 0.29, p2 = 0.71, q1 = q2 = 0.5, T= 10,000. Blank dot, start of

simulation; solid dot, end of simulation.

139

Figure 4.9 The space of frequency spaces under various initialized allele with

highly linked loci.

c = 0.8, c/b = 0.9, p = 0.1, h = 0.1, T= 10,000. Blank dot, start of simulation;

solid dot, end of simulation.

140

Chapter 5

Applications of New Perspective of

Hamilton’s rule: r > C/B

5.1. Abstract

Altruism is a behavior that benefits others at a cost to one’s own ability of

survival and/or reproduction, which is one of the paradoxes in Darwin’s theory of

evolution. Altruistic behaviors are commonly performed in eusocial animals, such

as nearly all hymenoptera (including bees, wasps, and ants), termites, ambrosia

beetles, and so on. Inclusive fitness theory predicts that altruistic behavior can

evolve when sufficient fitness benefits are given to relatives. A different modeling

approach has led to a challenge to this theory. The modelers claim that relatedness

is not causal, that eusocial behavior is very hard to evolve requiring more workers

before the queen increased fitness, and that there is no conflict involved. I showed

that, even within the terms of this modeling framework, inclusive fitness thinking

leads to insights that completely change these conclusions. I showed that

relatedness is causal, that eusociality does evolve more readily being favored under

141

a lower benefits threshold. I concluded that multiple modeling approaches are

useful and that efforts to synthesize them are better than asserting that one is

universally better than the other. Moreover, either greenbeard effects or genetic

kin recognition requires genetic polymorphisms as cues on which recognition is

based. Previous models show that rare cue alleles get eliminated by selection and a

common allele gets fixed, which ruins the altruism system. So it is unclear how

genetic recognition for altruism persists. I designed a novel model with two types of

genetic components, production and perception. I analyzed my recognition model

theoretically toward a cost/benefit analysis of fitness and genetic relatedness. I

predicted the stability of recognition for altruism based on my model. Furthermore

I tested my recognition model through various computational and biological

simulations. My simulation results consistently show altruism can maintain

multiple recognition cues and be evolutionarily stable. I concluded that cost/benefit

of fitness and genetic relatedness play a critical role in the evolution of altruism and

eusociality, and therefore can maintain the stability of recognition for altruism.

5.2. Introduction

Altruistic behaviors benefit others at a cost to one’s own ability of survival

and/or reproduction, which is one of the paradoxes in Darwin’s theory of evolution.

Altruistic behaviors are commonly performed in eusocial animals, such as nearly all

hymenoptera (including bees, wasps, and ants), termites, ambrosia beetles, and so

on.

142

5.3. The genetic relatedness and evolution of eusociality

The controversy over the Nowak et al paper has mostly been conducted at

rather abstract levels; different researchers favor different modeling strategies and

interpret the evidence differently. I take a different and more concrete approach by

investigating their model for the evolution of eusociality more deeply. I have

therefore followed the recommendation of Nowak et al. for modeling social

evolution, and in particular eusociality, using deterministic evolutionary dynamics

described by ordinary differential equations. However, stimulated by inclusive

fitness thinking, I have sought to understand apparent differences between their

results compared to previous models. In every case, I find that their rejection of

accepted results is premature, and that in fact the insights known from inclusive

fitness theory also emerge using their method.

5.4. The general model for genetic kin recognition

Inclusive fitness theory predicts that altruistic behavior can evolve when

sufficient fitness benefits are given to relatives. Moreover, either greenbeard

effects or genetic kin recognition requires genetic polymorphisms as cues on which

recognition is based. Previous models show that rare cue alleles get eliminated by

selection and a common allele gets fixed, which ruins the altruism system. I

designed a novel model with two types of genetic components, production and

perception. I analyzed my recognition model theoretically toward a cost/benefit

143

analysis of fitness and genetic relatedness. I predicted the stability of recognition

for altruism based on my model. Furthermore I tested my recognition model

through various computational and biological simulations.

5.5. The fitness cost/benefit and the Crozier’s Paradox

My simulation results consistently show altruism can maintain multiple

recognition cues and be evolutionarily stable. I concluded that cost/benefit of

fitness and genetic relatedness play a critical role in the evolution of altruism and

eusociality, and therefore can maintain the stability of recognition for altruism.

5.6. Conclusions

I showed that relatedness is causal, that eusociality does evolve more readily

being favored under a lower benefits threshold. I concluded that multiple modeling

approaches are useful and that efforts to synthesize them are better than asserting

that one is universally better than the other. I designed a novel model with two

types of genetic components, production and perception. I analyzed my recognition

model theoretically toward a cost/benefit analysis of fitness and genetic

relatedness. I predicted the stability of recognition for altruism based on my model.

Furthermore I tested my recognition model through various computational and

biological simulations. My simulation results consistently show altruism can

maintain multiple recognition cues and be evolutionarily stable. I concluded that

144

cost/benefit of fitness and genetic relatedness play a critical role in the evolution of

altruism and eusociality, and therefore can maintain the stability of recognition for

altruism.

5.7. References

Abbot, P. et al. Inclusive fitness theory and eusociality. Nature 471, E1-E4,

doi:10.1038/nature09831 (2011).

Alexander, R. D. The biology of moral systems. (Aldine de Gruyter, 1987).

Boomsma, J. J. et al. Only full-sibling families evolved eusociality. Nature 471,

E4-E5 (2011).

Bourke, A. F. G. & Franks, N. R. Social Evolution in Ants. (Princeton University

Press, 1995).

Bourke, A. F. G. Principles of social evolution. (Oxford University Press,

2011).

Bourke, A. F. G. The validity and value of inclusive fitness theory. Proceedings

of the Royal Society B: Biological Sciences 278, 3313-3320 (2011).

Brand, N. & Chapuisat, M. Impact of helpers on colony productivity in a

primitively eusocial bee. Behav. Ecol. Sociobiol. 68, 291-298 (2014).

145

Crozier, R. H. & Pamilo, P. Evolution of Social Insect Colonies: Sex Allocation

and Kin Selection. (Oxford University Press, 1996).

Ferriere, R. & Michod, R. E. Inclusive fitness in evolution. Nature 471, E6-E8

(2011).

Foster, K. F. in Social behaviour: genes, ecology and evolution (eds T

Szekely, AJ Moore, & J Komdeur) 331-356 (Cambridge University Press, 2011).

Haig, D. Genomic imprinting and kinship. (Rutgers University Press, 2002).

Hamilton, W. D. Altruism and related phenomena, mainly in the social insects.

Annu. Rev. Ecol. Syst. 3, 193-232 (1972).

Hamilton, W. D. The genetical evolution of social behaviour. I-II. J. Theor. Biol.

7, 1-52 (1964).

Herre, E. A. & Wcislo, W. T. In defence of inclusive fitness theory. Nature 471,

E8-E9 (2011).

Hughes, W., Oldroyd, B., Beekman, M. & Ratnieks, F. Ancestral monogamy

shows kin selection is key to the evolution of eusociality. Science 320, 1213-1216

(2008).

Kuzdzal-Fick, J. J., Fox, S. A., Strassmann, J. E. & Queller, D. C. High relatedness

is necessary and sufficient to maintain multicellularity in Dictyostelium. Science

334, 1548-1551 (2011).

146

McGlothlin, J. W., Moore, A. J., Wolf, J. B. & Brodie, E. D. interacting phenotypes

and the evolutionary process. III. Social evolution. Evolution 64, 2558-2574,

doi:10.1111/j.1558-5646.2010.01012.x (2010).

Michod, R. E. The theory of kin selection. Ann. Rev. Ecol. Syst. 13, 23-55

(1982).

Noonan, K. M. in Natural Selection and Social Behavior (eds R. D. Alexander

& D. W. Tinkle) 18-44 (Chiron, 1981).

Nowak, M. A., Tarnita, C. E. & Wilson, E. O. Nowak et. al reply. Nature 471, E9-

E10 (2011).

Nowak, M. A., Tarnita, C. E. & Wilson, E. O. The evolution of eusociality.

Nature 466, 1057-1062 (2010).

Queller, D. C. & Strassmann, J. E. Kin selection and social insects. Bioscience

48, 165-175 (1998).

Queller, D. C. Extended parental care and the origin of eusociality.

Proceedings of the Royal Society of London, Series B 256, 105-111 (1994).

Queller, D. C. Quantitative genetics, inclusive fitness, and group selection. Am.

Nat. 139, 540-558 (1992).

Rousset, F. & Lion, S. Much ado about nothing: Nowak et al.’s charge against

inclusive fitness theory. J. Evol. Biol. 24, 1386-1392 (2011).

147

Shakarad, M. & Gadagkar, R. Colony founding in the primitively eusocial

wasp, Ropalidia marginata (Hymenoptera: Vespidae). Ecological Entomology 20,

273-282 (1995).

Shreeves, G. & Field, J. Group size and direct fitness in social queues. The

American Naturalist 159, 81-95 (2002).

Stevens, M. I., Hogendoorn, K. & Schwarz, M. P. Evolution of sociality by

natural selection on variances in reproductive fitness: evidence from a social bee.

BMC Evol. Biol. 7, 153 (2007).

Strassmann, J. E., Page, R. E., Robinson, G. E. & Seeley, T. D. Kin selection and

eusociality. Nature 471, E5-E6, doi:10.1038/nature09833 (2011).

Taylor, P. D. & Frank, S. A. How to make a kin selection model. Journal of

Theoretical Biology 180, 27-37 (1996).

Trivers, R. L. & Hare, H. Haplodiploidy and the evolution of the social insects.

Science 191, 249-263 (1976).

148

Appendix A

A.1 Scripts for Altruism to Evolve with Genetic Relatedness

%--%

function nowak_figure_4(T, S, diff)
 qs = 0.01;
 qss = 0.001;
 q = [qss:qss:0.005, 0.01:qs:0.35, 0.355:qss:0.365, 0.37:qs:0.89, 0.895:qss:0.905,
0.91:qs:1]';
 %q = [0.2, 0.6, 0.95, 1];
 %q = [0.6];
 L = length(q);

 [X01, Xs1, b0, d0, m, b, d, alpha, eta] = init(S);

 X0q = zeros(L, 1);
 Xq = zeros(L, 1);
 Cq = zeros(L, 1);

 Tq = zeros(L, 1);
 X0t = zeros(T, L);
 Xt = zeros(T, L);
 Ct = zeros(T, L);

 for i = 1:L;
 q0 = q(i);
 [X0q(i), Xq(i), Cq(i), Tq(i), X0t(1:T, i), Xt(1:T, i), Ct(1:T, i)] = nowak(q0, S, T, X01,
Xs1, b0, d0, m, b, d, alpha, eta, diff);
 end

 plotq10(X0q, Xq, Cq, q);

end

%--%

function [X01, Xs1, b0, d0, m, b, d, alpha, eta] = init(S)
 n = 1;

149

 X01 = n;
 Xs1 = zeros(1, S);
 Xs1(1, 1) = n;
 b0 = 0.5;
 d0 = 0.1;
 m = 3;
 b = 4;
 d = 0.01;
 alpha = 0.1;
 eta = 0.01;
end

%--%

function [X0q, Xq, Cq, T0, X0, X, C] = nowak(q, S, T, X01, Xs1, b0, d0, m, b, d, alpha,
eta, diff)

 zerodef = 0.05;

 X0q = 0;
 Xq = 0;
 Cq = 0;
 T0 = T;

 X0 = zeros(T, 1);
 Xs = zeros(T, S);
 X = zeros(T, 1);
 C = zeros(T, 1);

 B = bd(S, m, b0, b);
 D = bd(S, m, d0, d);

 X0(1) = X01;
 Xs(1, :) = Xs1;

 X(1, :) = population(Xs(1, 1:S));
 C(1) = sum(Xs(1, 2:S));

 for t = 1:T-1
 % phi = 1 / (X0(t) + eta * X(t));
 phi = 1 / (1 + eta * (X0(t) + X(t)));

150

 X0(t+1) = X0(t) + (b0 * phi - d0) * X0(t);
 X0(t+1) = checknegative(X0(t+1));

 Mt = matrix(S, q, B, D, phi, alpha);
 Mtdi = Mt / diff;
 for di = 1:diff
 Xs(t, :) = (Xs(t, :)' + Mtdi * Xs(t, :)')';
 end

 %Xs(t+1, :) = (Xs(t, :)' + Mt * Xs(t, :)')';
 Xs(t+1, :) = Xs(t, :);
 Xs(t+1, :) = checknegative(Xs(t+1, :));

 X(t+1) = population(Xs(t+1, :));
 %X(t+1) = checknegative(X(t+1));

 C(t+1) = sum(Xs(t+1, 2:S));
 %C(t+1) = checknegative(C(t+1));

 if (X(t+1) < zerodef || X0(t+1) < zerodef)
 T0 = t;
 X0q = X0(t+1);
 Xq = X(t+1);
 Cq = C(t+1);
 break;
 end
 end
 % T0 = T;
 % plotPopulation(X0, X, C, q, T0);

 plotgroup(Xs, T0, q);

end

%--%

function X = population(Xs)
 [m, S] = size(Xs);
 X = 0;
 for i = 1:S
 X = X + i * Xs(1, i);
 end

151

 if (m ~= 1)
 error('wrong!');
 end
end

%--%

function BD = bd(S, m, bd0, bd)
 % One possibility is to consider a simple step function with a critical colony size, m.
% For small colonies, i < m, the key parameters of the eusocial queen are the same
as those of solitary females: bi = b0 and di = d0.
% For large colonies, i >= m, the eusocial queen has an increased fecundity and a
reduced death rate: bi = b > b0 and di = d < d0.
 BD = ones(S, 1) * bd;
 for i = 1:m-1
 BD(i) = bd0;
 end
end

%--%

function Mt = matrix(S, q, B0, D, phi, alpha)
 B = B0 * phi;
 Mt = zeros(S, S);
 for i = 2:S
 Mt(1, i) = B(i) * (1 - q);
 Mt(i, i-1) = B(i-1) * q;
 end
 for i = 2:S
 if ((i-1) * alpha <= 1)
 Mt(i, i) = - (B(i) * q + D(i) + (i-1) * alpha);
 Mt(i-1, i) = (i-1) * alpha;
 else
 Mt(i, i) = - (B(i) * q + D(i) + 1);
 Mt(i-1, i) = 1;
 end
 end
 Mt(1,1) = B(1) * (1 - q) - (B(1) * q + D(1));
 Mt(1,2) = B(2) * (1 - q) + alpha;

 for i = 1:S

152

 for j = 1:S
 if Mt(i, j) < -1
 %Mt(i, j) = -1;
 end
 end
 end
end

%--%

function A = checknegative(A)
 [m, n] = size(A);
 for i = 1:m
 for j = 1:n
 if A(i, j) < 0
 A(i, j) = 0;
 end
 end
 end
end

%--%

function plotq10(X0q, Xq, Cq, q)
 figh = figure('Position', [0 0 800 600], 'Color', 'w', 'Resize', 'off');

 subplot(2, 1, 1);
 plot(q, X0q, 'r', q, Xq, 'b');
 %annotation(1, 'q', 'Individuals');
 box off;
 xlabel('Probability to stay, q');
 xlim([0, 1]);
 set(gca, 'XTick', 0:0.1:1, 'XTickLabel', {'0','','0.2','','0.4','','0.6','','0.8','','1'});
 ylabel('Individuals');
 ylim([0, 600]);
 set(gca, 'YTick', 0:100:600);

 subplot(2, 1, 2);
 plot(q, Cq, 'b');
 %annotation(1, 'q', 'Colonies');

153

 box off;
 xlabel('Probability to stay, q');
 xlim([0, 1]);
 set(gca, 'XTick', 0:0.1:1, 'XTickLabel', {'0','','0.2','','0.4','','0.6','','0.8','','1'});
 ylabel('Colonies');
 ylim([0, 100]);
 set(gca, 'YTick', 0:20:100);

 filename = 'nowak_figure_4';
 saveas(figh, filename, 'fig');
end

%--%

 function annotation(T, xl, yl)
 box off;
 xlabel(xl);
 set(gca, 'XTick', 0:T/5:T);
 ylabel(yl);
 % ylim([0, 600]);
 % set(gca, 'YTick', 0:100:600);
 end

%--%

 function plotPopulation(X0, X, C, q, T0)
 figh = figure('Position', [0 0 800 600], 'Color', 'w', 'Resize', 'off');
 [m,n] = size(X0);
 t = 1:T0;
 % [T0, X0(m), X(m)]

 subplot(3, 1, 1);
 plot(t, X0(1:T0), 'r');
 annotation(m, 't', 'Solitary');
 title(['q = ', num2str(q)]);
 ylim([0, 600]);
 set(gca, 'YTick', 0:100:600); set(gca, 'XTick', 0:2*T0:T0);

 subplot(3, 1, 2);
 plot(t, X(1:T0), 'b');

154

 annotation(m, 't', 'Eusocial');
 ylim([0, 600]);
 set(gca, 'YTick', 0:100:600);set(gca, 'XTick', 0:2*T0:T0);

 subplot(3, 1, 3);
 plot(t, C(1:T0), 'b');
 annotation(m, 't', 'Colonies');
 ylim([0, 100]);
 set(gca, 'YTick', 0:20:100);set(gca, 'XTick', 0:2*T0:T0);

 filename = num2str(100*q);
 saveas(figh, filename, 'fig');

 end

%--%

function plotgroup(Xs, T0, q)

 fighg = figure('Position', [0 0 800 700], 'Color', 'w', 'Resize', 'off');
 semilogy(Xs(1:T0, 1:7));
 % legend('1','2', '3','4');
 legend('Size 1','Size 2','Size 3','Size 4','Size 5','Size 6','Size 7');
 ylim([1, 1000]);
 box off;
 xlabel('t');
 set(gca, 'XTick', 0:T0/5:T0);
 ylabel('Colonies');

 filename = strcat('nowak_figure_4_p', num2str(100*q));
 saveas(fighg, filename, 'jpg');
 saveas(fighg, filename, 'fig');
 T0
end

%--%

function bmw = nowak_liao_asexual(b, m, w, T, Td)

155

 [b0, d0, d, alpha, eta, n] = nowak_liao_asexual_init_constant();
 D = nowak_liao_asexual_init_BD(m, d0, d, w);
 B = nowak_liao_asexual_init_BD(m, b0, b, w);
 [em, Xe, Xs]= nowak_liao_asexual_eusociality(b0, d0, B, D, alpha, eta, n, w, T, Td);

 if (Xe > Xs)
 bmw = 1;
 else
 bmw = 0;
 end

end

%--%

function nowak_liao_asexual_bmw(bmin, bstep, bmax, mmin, mstep, mmax, wmin,
wstep, wmax, T, Td)

 bset = [bmin:bstep:bmax];
 mset = [mmin:mstep:mmax];
 wset = [wmin:wstep:wmax];
 [bi, bn] = size(bset);
 [mi, mn] = size(mset);
 [wi, wn] = size(wset);

 bmw = zeros(bn, mn, wn);

 for i = 1:mn
 b = mset(i);
 for j = 1:mn
 m = mset(j);
 for k = 1:mn
 w = mset(k);
 bmw(i, j, k) = nowak_liao_asexual(b, m, w, T, Td);
 end
 end
 end

 nowak_liao_asexual_plot_bmw(bset, mset, wset, bmw);

 dlmwrite('bmw.data', bmw, 'delimiter', '\t');

156

end

%--%

function [eqpb, Xetd, Xstd] = nowak_liao_asexual_eusociality(b0, d0, B, D, alpha, eta,
n, w, T, Td)
 eqpb = 0;
 zerodef = 0.05;

 Etd = zeros(1, w);
 Etd(1, 1) = n;
 Std = n;

 for t = 1:T-1
 for tdi = 1:Td
 Xetd = population_ES(Etd, w);
 Xstd = Std;
 if Xstd < zerodef
 eqpb = 1;
 return;
 elseif Xetd < zerodef
 eqpb = 0;
 return;
 end

 phi = 1 / (1 + eta * (Xetd + Xstd));

 Me = matrix_E(B, D, alpha, phi, w);
 Etd(1, :) = (Etd(1, :)' + Me * Etd(1, :)' / Td)';

 Std = Std + (phi * b0 - d0) * Std / Td;
 end
 end
end

% --- %

function X = population_ES(ESmm, w)

157

 X = 0;
 for i = 1:w
 X = X + i * ESmm(i);
 end
end

%--%

function Me = matrix_E(B0, D, alpha, phi, w)
 B = B0 * phi;
 Me = zeros(w, w);
 for i = 2:w-1
 Me(i, i-1) = B(i-1) ;
 Me(i, i) = -B(i) - D(i) - (i-1) * alpha;
 Me(i, i+1) = i * alpha;
 end
 Me(1,1) = -B(1) - D(1);
 Me(1,2) = alpha;
 Me(1,w) = B(w);

 Me(w,w-1) = B(w-1);
 Me(w,w) = -D(w) - (w-1) * alpha;

end

%--%

function B = nowak_liao_asexual_init_BD(m, b0, b, mm)
 % One possibility is to consider a simple step function with a critical colony size, m.
% For small colonies, i < m, the key parameters of the eusocial queen are the same
as those of solitary females: bi = b0 and di = d0.
% For large colonies, i >= m, the eusocial queen has an increased fecundity
% and a reduced death rate: bi = b > b0 and di = d < d0.

 B = ones(mm, 1) * b;
 for i = 1:m-1
 B(i) = b0;
 end
end

158

%--%

function [b0, d0, d, alpha, eta, n] = nowak_liao_asexual_init_constant()

 b0 = 0.5;
 d0 = 0.1;
 d = 0.01;

 alpha = 0.1;
 eta = 0.01;

 n = 100;

 end

%--%

function P = nowak_liao_asexual_init_PQ(ms, ml, p, mm)
 if (1 <= ms && ms <= ml && ms <= mm) % 1 <= ms <= ml, mm, and should be
integer.
 else
 error('Invalid values of ms, ml or mm.\n ');
 end

 P = ones(mm, 1) * p;

 if (ms > 1)
 P(1:ms-1) = 1;
 % else % ms == 1
 end
 if (ml <= mm)
 P(ml:mm) = 0;
 % else % ml > mm
 end
end

159

%--%

function nowak_liao_asexual_bmw(bmin, bstep, bmax, mmin, mstep, mmax, wmax,
wstep, wmin, T, Td)
 bset = [bmin:bstep:bmax];
 mset = [mmin:mstep:mmax];
 wset = [wmin:wstep:wmax];
 [bi, bn] = size(bset);
 [mi, mn] = size(mset);
 [wi, wn] = size(wset);

 bmw = zeros(bn, mn, wn);

 for i = 1:mn
 b = mset(i);
 for j = 1:mn
 m = mset(j);
 for k = 1:mn
 w = mset(k);
 nowak_liao_asexual(b, m, w, T, Td);
 end
 end
 end

 plot_bmw(bset, mset, wset, bmw);

end

%--%

function nowak_liao_asexual_plot_bmw(bs, ms, ws, bmw)

 [bn, mn, wn] = size(bmw);

 figh = figure('Position', [0 0 600 600], 'Color', 'w', 'Resize', 'off');

 for k = 1:wn
 for j = 1:mn
 for i = 1:bn
 if (bmw(i, j, k) == 1)

160

 plot3(bs(i), ms(j), ws(k), '*'); hold on;
 end
 end
 end
 end

 xlabel('b'); ylabel('m'); zlabel('w');

 axis([bs(1), bs(bn), ms(1), ms(mn), ws(1), ws(wn)]);
 %set(gca, 'XTick', 0:0.2:1);
 set(gca, 'YTick', ms(1):1: ms(mn));
 set(gca, 'YTick', ws(1):1: ws(wn));
 box off;

 saveas(figh, 'bmw', 'fig');

 end

%--%

function nowak_liao_asexual_plot_m(filename_m_plot, ms, Xe, Xs)

 figh = figure('Position', [0 0 600 600], 'Color', 'w', 'Resize', 'off');

 plot(ms, Xe,'-b*', ms, Xs, '-ro'); hold on;
 xlabel('w'); ylabel('Individuals'); title('m = 3');
 set(gca, 'XTick', ms(1):1:ms(length(ms))); %set(gca, 'YTick', 0:100:600);
 box off;

 saveas(figh, filename_m_plot, 'fig');

 end

%--%

function nowak_liao_asexual_plot_bmw(bs, ms, ws, bmw)

 [bn, mn, wn] = size(bmw);

161

 figh = figure('Position', [0 0 600 600], 'Color', 'w', 'Resize', 'off');

 for k = 1:wn
 for j = 1:mn
 for i = 1:bn
 if (bmw(i, j, k) == 1)
 plot3(bs(i), ms(j), ws(k), '*'); hold on;
 end
 end
 end
 end

 xlabel('b'); ylabel('m'); zlabel('w');

 %axis([0, 1, 0, 1, bs(1), bs(bn)]);
 %set(gca, 'XTick', 0:0.2:1); set(gca, 'YTick', 0:0.2:1);
 %set(gca, 'ZTick', bs(1):1:bs(bn));
 box off;

 saveas(figh, 'bmw', 'fig');

 end

%--%

function mw = nowak_liao_asexual_w(wmin, wstep, wmax, m, b, T, Td)

 filename_m_plot = strcat('w', num2str(wmin), '_', num2str(wstep), '_',
num2str(wmax), '_T', num2str(T), '_Td', num2str(Td), '.fig');

 [b0, d0, d, alpha, eta, n] = nowak_liao_asexual_init_constant();
 %b = 4;

 wset = [wmin:wstep:wmax];
 [wi, wn] = size(wset);

 em = zeros(1, wn);
 Xe = zeros(1, wn);

162

 Xs = zeros(1, wn);

 for i = 1:wn
 w = wset(i);

 D = nowak_liao_asexual_init_BD(m, d0, d, w);
 B = nowak_liao_asexual_init_BD(m, b0, b, w);

 [em(i), Xe(i), Xs(i)]= nowak_liao_asexual_eusociality(b0, d0, B, D, alpha, eta, n, w,
T, Td);

 dlmwrite('b.data', B', 'delimiter', '\t', '-append');
 dlmwrite('d.data', D', 'delimiter', '\t', '-append');

 end
 nowak_liao_asexual_plot_m(filename_m_plot, wset, Xe, Xs);

 dlmwrite('w.data', wset, 'delimiter', '\t');
 dlmwrite('xe.data', Xe, 'delimiter', '\t');
 dlmwrite('xs.data', Xs, 'delimiter', '\t');
 dlmwrite('em.data', em, 'delimiter', '\t');

 mw = zeros(1, wn);
 for i = 1:wn
 if (Xe(i) > Xs(i))
 mw(i) = 1;
 end
 end
end

%--%

#PBS -N xl3
#PBS -V
#PBS -q commons
#PBS -l nodes=1:ppn=1,pmem=10m,walltime=2:00:00

163

cd /users/xl3/nowak_liao/nowak_liao_asexual_m/nowak_liao_asexual_m_/
matlab -nosplash -nodesktop -r "nowak_liao_asexual_m(2, 1, 10, 20, 5000, 10)"
exit

%--%

function eqpb = nowak_liao_asexual_eusociality(Q, P, B, D, alpha, eta, n, mm, T, Td)
 eqpb = 0;
 zerodef = 0.05;

 Etd = zeros(1, mm);
 Std = zeros(1, mm);
 Etd(1, 1) = n;
 Std(1, 1) = n;

 for t = 1:T-1
 for tdi = 1:Td
 Xetd = population_ES(Etd, mm);
 Xstd = population_ES(Std, mm);
 if Xstd < zerodef
 eqpb = 1;
 return;
 elseif Xetd < zerodef
 eqpb = 0;
 return;
 end

 phi = 1 / (1 + eta * (Xetd + Xstd));
 bma = birth_migrate_average(P, Q, B, Etd, Std, mm);
 Me = matrix_E(P, Q, B, D, alpha, phi, bma, mm);
 Ms = matrix_S(P, Q, B, D, alpha, phi, bma, mm);
 Etd(1, :) = (Etd(1, :)' + Me * Etd(1, :)' / Td)';
 Std(1, :) = (Std(1, :)' + Ms * Std(1, :)' / Td)';
 end
 end
end

% -- %

164

function X = population_ES(ESmm, mm)
 X = 0;
 for i = 1:mm
 X = X + i * ESmm(i);
 end
end

%--%

function bm = birth_migrate_average(P, Q, B, Smm, Xmm, mm)
 os = 0;
 for i = 1:mm
 os = os + (1 - P(i)) * Q(i) * B(i) * Xmm(i);
 end
 bm = os / (sum(Smm) + sum(Xmm));
end

%--%

function Me = matrix_E(P, Q, B0, D, alpha, phi, bma0, mm)
 B = B0 * phi;
 bma = bma0 * phi;
 Me = zeros(mm, mm);
 for i = 2:mm
 Me(1, i) = (1 - Q(i)) * B(i);
 Me(i, i-1) = P(i-1) * Q(i-1) * B(i-1) + bma ;
 Me(i, i) = - P(i) * Q(i) * B(i) - bma - D(i) - (i-1) * alpha;
 Me(i-1, i) = (i-1) * alpha;
 end
 Me(1,1) = (1 - Q(1)) * B(1) - P(1) * Q(1) * B(1) - bma - D(1);
 Me(1,2) = (1 - Q(2)) * B(2) + alpha;
end

%--%

function Ms = matrix_S(P, Q, B0, D, alpha, phi, bma0, mm)
 B = B0 * phi;

165

 bma = bma0 * phi;
 Ms = zeros(mm, mm);
 for i = 2:mm
 Ms(1, i) = B(i);
 Ms(i, i-1) = bma ;
 Ms(i, i) = - bma - D(i) - (i-1) * alpha;
 Ms(i-1, i) = (i-1) * alpha;
 end
 Ms(1,1) = B(1) - bma - D(1);
 Ms(1,2) = B(2) + alpha;
end

%--%

function B = nowak_liao_asexual_init_BD(m, b0, b, mm)
 % One possibility is to consider a simple step function with a critical colony size, m.
% For small colonies, i < m, the key parameters of the eusocial queen are the same
as those of solitary females: bi = b0 and di = d0.
% For large colonies, i >= m, the eusocial queen has an increased fecundity
% and a reduced death rate: bi = b > b0 and di = d < d0.

 B = ones(mm, 1) * b;
 for i = 1:m-1
 B(i) = b0;
 end
end

%--%

function [b0, d0, d, alpha, eta, n] = nowak_liao_asexual_init_constant()

 b0 = 0.5;
 d0 = 0.1;
 d = 0.01;

 alpha = 0.1;
 eta = 0.01;

 n = 1;

166

 end

%--%

function P = nowak_liao_asexual_init_PQ(ms, ml, p, mm)
 if (1 <= ms && ms <= ml && ms <= mm) % 1 <= ms <= ml, mm, and should be
integer.
 else
 error('Invalid values of ms, ml or mm.\n ');
 end

 P = ones(mm, 1) * p;

 if (ms > 1)
 P(1:ms-1) = 1;
 % else % ms == 1
 end
 if (ml <= mm)
 P(ml:mm) = 0;
 % else % ml > mm
 end
end

%--%

function nowak_liao_asexual_plot_qp(filename, qs, ps, eqp)

 figh = figure('Position', [0 0 600 600], 'Color', 'w', 'Resize', 'off');

 [qn, pn] = size(eqp);

 for j = 1:pn
 for i = 1:qn
 if (eqp(i, j) == 1)
 plot(qs(i), ps(j), '*'); hold on;
 end
 end
 end

 xlabel('q'); ylabel('r');

167

 axis([0, 1, 0, 1]);
 set(gca, 'XTick', 0:0.1:1); set(gca, 'YTick', 0:0.1:1);
 box off;

 saveas(figh, filename, 'fig');

end

%--%

function nowak_liao_asexual_plot_qpb(filename, qs, ps, bs, eqpb)

 figh = figure('Position', [0 0 600 600], 'Color', 'w', 'Resize', 'off');

 [qn, pn, bn] = size(eqpb);

 for k = 1:bn

 for j = 1:pn

 for i = 1:qn

 if (eqpb(i, j, k) == 1)

 plot3(qs(i), ps(j), bs(k), '*'); hold on;

168

 end

 end

 end

 end

 xlabel('q'); ylabel('r'); zlabel('b');

 axis([0, 1, 0, 1, bs(1), bs(bn)]);

 set(gca, 'XTick', 0:0.2:1); set(gca, 'YTick', 0:0.2:1);

 set(gca, 'ZTick', bs(1):1:bs(bn));

 box off;

 saveas(figh, filename, 'fig');

end

%Xiaoyun Liao
%2010-12-31

function nowak_liao_asexual_qpb(qmin, qstep, qmax, pmin, pstep, pmax, bmin,
bstep, bmax, m, ms, ml, mm, T, Td)

 filename = strcat('_m', num2str(m), '_ms', num2str(ms), '_ml', num2str(ml), '_mm',
num2str(mm), '_T', num2str(T), '_Td', num2str(Td));

169

 filename_qp = strcat('q', num2str(qmin), '_', num2str(qstep), '_', num2str(qmax),
'_p', num2str(pmin), '_', num2str(pstep), '_', num2str(pmax), filename);

 [b0, d0, d, alpha, eta, n] = nowak_liao_asexual_init_constant();

 qs = [qmin:qstep:qmax];
 ps = [pmin:pstep:pmax];
 bs = [bmin:bstep:bmax];
 dlmwrite('q.data', qs, 'delimiter', '\t');
 dlmwrite('p.data', ps, 'delimiter', '\t');
 dlmwrite('b.data', bs, 'delimiter', '\t');

 [qi, qn] = size(qs);
 [pj, pn] = size(ps);
 [bk, bn] = size(bs);
 eqpb = zeros(qn, pn, bn);
 D = nowak_liao_asexual_init_BD(m, d0, d, mm);
 for k = 1:bn
 b = bs(k);
 B = nowak_liao_asexual_init_BD(m, b0, b, mm);
 for j = 1:pn
 p = ps(j);
 P = nowak_liao_asexual_init_PQ(ms, ml, p, mm);
 for i = 1:qn
 q = qs(i);
 Q = nowak_liao_asexual_init_PQ(ms, ml, q, mm);
 eqpb(i, j, k) = nowak_liao_asexual_eusociality(Q, P, B, D, alpha, eta, n, mm, T,
Td);
 end

 end

 filename_b_eqp_plot = strcat('b', num2str(b), '_', filename_qp, '.fig');
 nowak_liao_asexual_plot_qp(filename_b_eqp_plot, qs, ps, eqpb(:,:,k));

 filename_b_eqp_data = strcat('b', num2str(b), '_eqp.data');
 dlmwrite(filename_b_eqp_data, eqpb(:,:,k), 'delimiter', '\t');
 end

 filename_qpb = strcat('b', num2str(bmin), '_', num2str(bstep), '_', num2str(bmax),
'_', filename_qp, '.fig');
 nowak_liao_asexual_plot_qpb(filename_qpb, qs, ps, bs, eqpb);

170

end

#PBS -N xl3

#PBS -V

#PBS -q commons

#PBS -l nodes=1:ppn=1,pmem=10m,walltime=2:00:00

cd

/users/xl3/nowak_liao/nowak_liao_asexual_qpb/nowak_liao_asexual_qpb_2010123

1/nowak_liao_asexual_qpb_201012314/

matlab -nosplash -nodesktop -r "nowak_liao_asexual_qpb(0.05, 0.05, 1, 0.05,

0.05, 1, 2, 2, 10, 3, 1, 21, 20, 20000, 10)"

exit

171

A.2 Scripts for Evolutionary Dynamics of Genetic Kin Recognition: a

General Model

function analysisCL(p, r, c, fJ0, G)
% Xiaoyun Liao xliao@rice.edu 2009-1-11
% Simulate the recognition model for altruism.

 W0 = 1.0;
 b = c / r;

 fC0 = [0.01, 0.05, 0.1, 0.15, 0.2, 0.25, 0.5];
 nfC0 = length(fC0);
 L0 = [1, 0.9, 0.8, 0.7, 0.6, 0.5, 0.4, 0.3, 0.2, 0.1, 0];
 nL0 = length(L0);

 fig = figure('Position', [0 0 700 1000], 'Color', 'w', 'Resize', 'off'); hold
 iPlot = 0;

 for iL0 = 1:nL0;
 L = L0(iL0);
 for ifC0 = 1:nfC0
 fC0t = fC0(ifC0);
 fJ0t = fJ0;
 fG0 = [fC0t * fJ0t, fC0t * (1 - fJ0t), (1 - fC0t) * fJ0t, (1 - fC0t) * (1 - fJ0t)]; %
Genotypes: C0J0, C0J1, C1J0, C1J1

 FG = zeros(4); % genotype frequencies: C0J0, C0J1, C1J0, C1J1
 WG = zeros(4); % genotype fitness
 for ifG0 = 1:4
 FG(ifG0) = fG0(ifG0);
 end

 FA = zeros(1 + G, 2); % allele frequencies: C0, J0
 FA(1, 1) = fC0t;
 FA(1, 2) = fJ0t;

 for t = 1 : G
 FAA = p * (FG(2) + FG(3)) + (1 - p) * (FG(2) * (FG(1) + FG(2))+ FG(3) *
(FG(3) + FG(4)));
 W = W0 + (b - c) * FAA;

172

 WG(1) = W0 + (1 - p) * b * FG(2);
 WG(2) = W0 + p * (b - c) + (1 - p) * ((b - c) * FG(2) - c * FG(1));
 WG(3) = W0 + p * (b - c) + (1 - p) * ((b - c) * FG(3) - c * FG(4));
 WG(4) = W0 + (1 - p) * b * FG(3);

 FGW1 = FG(1) * WG(1) / W;
 FGW2 = FG(2) * WG(2) / W;
 FGW3 = FG(3) * WG(3) / W;
 FGW4 = FG(4) * WG(4) / W;
 FGWD = (FGW1 * FGW4 - FGW2 * FGW3) / 2;

 % from time t to t + 1
 FG(1) = (2 * (1 - L) - (1 - 2 * L) * FGW1) * FGW1 - (1 - L) * FGWD; % C0J0
 FG(2) = (2 * L + (1 - 2 * L) * FGW2) * FGW2 + L * FGWD; % C0J1
 FG(3) = (2 * L + (1 - 2 * L) * FGW3) * FGW3 + L * FGWD; % C1J0
 FG(4) = (2 * (1 - L) - (1 - 2 * L) * FGW4) * FGW4 - (1 - L) * FGWD; % C1J1

 FA(t + 1, 1) = FG(1) + FG(2); % C0 = C0J0 + C0J1
 FA(t + 1, 2) = FG(1) + FG(3); % J0 = C0J0 + C1J0

 end

 % plot the simulation results
 iPlot = iPlot + 1;
 subplot(nL0, nfC0, iPlot); hold;
 plot(FA(:, 1), FA(:, 2));
 plot(FA(1, 1), FA(1, 2), 'ok', 'MarkerSize', 4);
 plot(FA(G, 1), FA(G, 2), '.k', 'MarkerSize', 16);
 xlim([-0.01 1.01]); ylim([-0.01 1.01]); box on; set(gca, 'DataAspectRatio', [1
1 1]);
 set(gca, 'XTick', 0:1:1); set(gca, 'YTick', 0:1:1);
 if iL0 == nL0 && ifC0 >= nfC0 / 2 && ifC0 < nfC0 / 2 + 1
 %xlabel({'f(C_0)'; '\itp = 0, f(C_0) = 0.25, f(J_0) = 0.2, f(C_0J_0) = 0.05. G =
10^5.'; '\itBlank dot: begin; black dot: end.'});
 xlabel('\itf(C_0)');
 end
 if ifC0 == 1 && iL0 >= nL0 / 2 && iL0 < nL0 / 2 + 1
 ylabel('\itf(J_0)');
 end
 if iL0 < nL0
 set(gca, 'XTickLabel', {'', ''});
 end

173

 if ifC0 > 1
 set(gca, 'YTickLabel', {'', ''});
 end
 if iL0 == 1
 switch ifC0
 case 1
 title('f_C_0=0.01');
 case 2
 title('f_C_0=0.05');
 case 3
 title('f_C_0=0.1');
 case 4
 title('f_C_0=0.15')
 case 5
 title('f_C_0=0.2');
 case 6
 title('f_C_0=0.25');
 case 7
 title('f_C_0=0.5');
 otherwise
 end
 end

 if ifC0 == nfC0
 switch iL0
 case 1
 text(1, 0.5, ' l=1', 'LineStyle', 'none', 'HorizontalAlignment', 'Left');
 case 2
 text(1, 0.5, ' l=0.9', 'LineStyle', 'none', 'HorizontalAlignment', 'Left');
 case 3
 text(1, 0.5, ' l=0.8', 'LineStyle', 'none', 'HorizontalAlignment', 'Left');
 case 4
 text(1, 0.5, ' l=0.7', 'LineStyle', 'none', 'HorizontalAlignment', 'Left');
 case 5
 text(1, 0.5, ' l=0.6', 'LineStyle', 'none', 'HorizontalAlignment', 'Left');
 case 6
 text(1, 0.5, ' l=0.5', 'LineStyle', 'none', 'HorizontalAlignment', 'Left');
 case 7
 text(1, 0.5, ' l=0.4', 'LineStyle', 'none', 'HorizontalAlignment', 'Left');
 case 8
 text(1, 0.5, ' l=0.3', 'LineStyle', 'none', 'HorizontalAlignment', 'Left');
 case 9
 text(1, 0.5, ' l=0.2', 'LineStyle', 'none', 'HorizontalAlignment', 'Left');

174

 case 10
 text(1, 0.5, ' l=0.1', 'LineStyle', 'none', 'HorizontalAlignment', 'Left');
 case 11
 text(1, 0.5, ' l=0', 'LineStyle', 'none', 'HorizontalAlignment', 'Left');
 otherwise
 end
 end
 end
 end

function analysisPL(r, c, fC0J0, fC0J1, fC1J0, TG)
% Xiaoyun Liao xliao@rice.edu 2009-1-11
% Analysis of the recognition model for altruism.

 fC1J1 = 1 - fC0J0 - fC0J1 - fC1J0;
 if (fC1J1 < 0)
 error('f != 1.0');
 end

 W0 = 1.0;
 fG0 = [fC0J0, fC0J1, fC1J0, fC1J1]; % Genotypes: C0J0, C0J1, C1J0, C1J1
 %fA0 = [fC0J0 + fC0J1, fC1J0 + fC1J1, fC0J0 + fC1J0, fC0J1 + fC1J1]; % Alleles: C0, C1,
J0, J1

 L0 = [1, 0.65, 0.6, 0.58, 0.56, 0.55, 0.54, 0.52, 0.5, 0.48, 0.45, 0.2, 0];
 nL = length(L0);

 p0 = [0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1];
 np = length(p0);

 fig = figure('Position', [0 0 700 700], 'Color', 'w', 'Resize', 'off'); hold
 iPlot = 0;

175

 for iL = 1:nL
 L = L0(iL);

 for ip = 1:np
 p = p0(ip);

 b = c / r;

 FA = zeros(TG, 2); % frequencies of alleles: C0, J0

 FG = zeros(4); % frequencies of genotype: C0J0, C0J1, C1J0, C1J1
 WG = zeros(4); % mean fitness of genotype: C0J0, C0J1, C1J0, C1J1

 for ifG0 = 1:4
 FG(ifG0) = fG0(ifG0);
 end

 for t = 1 : TG
 FA(t, 1) = FG(1) + FG(2); % C0 = C0J0 + C0J1
 FA(t, 2) = FG(1) + FG(3); % J0 = C0J0 + C1J0

 FAA = p * (FG(2) + FG(3)) + (1 - p) * (FG(2) * (FG(1) + FG(2))+ FG(3) *
(FG(3) + FG(4)));

 W = W0 + (b - c) * FAA;

 WG(1) = W0 + (1 - p) * b * FG(2);
 WG(2) = W0 + p * (b - c) + (1 - p) * ((b - c) * FG(2) - c * FG(1));
 WG(3) = W0 + p * (b - c) + (1 - p) * ((b - c) * FG(3) - c * FG(4));
 WG(4) = W0 + (1 - p) * b * FG(3);

 FGW1 = FG(1) * WG(1) / W;
 FGW2 = FG(2) * WG(2) / W;
 FGW3 = FG(3) * WG(3) / W;
 FGW4 = FG(4) * WG(4) / W;
 FGWD = (FGW1 * FGW4 - FGW2 * FGW3) / 2;

 % from time t to t + 1
 FG(1) = (2 * (1 - L) - (1 - 2 * L) * FGW1) * FGW1 - (1 - L) * FGWD; % C0J0
 FG(2) = (2 * L + (1 - 2 * L) * FGW2) * FGW2 + L * FGWD; % C0J1
 FG(3) = (2 * L + (1 - 2 * L) * FGW3) * FGW3 + L * FGWD; % C1J0
 FG(4) = (2 * (1 - L) - (1 - 2 * L) * FGW4) * FGW4 - (1 - L) * FGWD; % C1J1

176

 end

 % plot the simulation results
 iPlot = iPlot + 1;
 subplot(nL, np, iPlot); hold;
 plot(FA(:, 1), FA(:, 2));
 plot(FA(1, 1), FA(1, 2), 'ok', 'MarkerSize', 4);
 plot(FA(TG, 1), FA(TG, 2), '.k', 'MarkerSize', 16);
 xlim([-0.01 1.01]); ylim([-0.01 1.01]); box on; set(gca, 'DataAspectRatio', [1
1 1]);
 set(gca, 'XTick', 0:1:1); set(gca, 'YTick', 0:1:1);
 if iL == nL && ip >= np / 2 && ip < np / 2 + 1
 xlabel('\itf(C_0)');
 end
 if ip == 1 && iL >= nL / 2 && iL < nL / 2 + 1
 ylabel('\itf(J_0)');
 end
 if iL < nL
 set(gca, 'XTickLabel', {'', ''});
 end
 if ip > 1
 set(gca, 'YTickLabel', {'', ''});
 end
 if iL == 1
 switch ip
 case 1
 title('p=0');
 case 2
 title('p=0.1');
 case 3
 title('p=0.2');
 case 4
 title('p=0.3');
 case 5
 title('p=0.4');
 case 6
 title('p=0.5');
 case 7
 title('p=0.6');
 case 8
 title('p=0.7');
 case 9
 title('p=0.8');

177

 case 10
 title('p=0.9');
 case 11
 title('p=1');
 otherwise
 end
 end

 if ip == np
 switch iL
 case 1
 text(1, 0.5, ' l=1', 'LineStyle', 'none', 'HorizontalAlignment', 'Left');
 case 2
 text(1, 0.5, ' l=0.65', 'LineStyle', 'none', 'HorizontalAlignment', 'Left');
 case 3
 text(1, 0.5, ' l=0.6', 'LineStyle', 'none', 'HorizontalAlignment', 'Left');
 case 4
 text(1, 0.5, ' l=0.58', 'LineStyle', 'none', 'HorizontalAlignment', 'Left');
 case 5
 text(1, 0.5, ' l=0.56', 'LineStyle', 'none', 'HorizontalAlignment', 'Left');
 case 6
 text(1, 0.5, ' l=0.55', 'LineStyle', 'none', 'HorizontalAlignment', 'Left');
 case 7
 text(1, 0.5, ' l=0.54', 'LineStyle', 'none', 'HorizontalAlignment', 'Left');
 case 8
 text(1, 0.5, ' l=0.52', 'LineStyle', 'none', 'HorizontalAlignment', 'Left');
 case 9
 text(1, 0.5, ' l=0.5', 'LineStyle', 'none', 'HorizontalAlignment', 'Left');
 case 10
 text(1, 0.5, ' l=0.48', 'LineStyle', 'none', 'HorizontalAlignment', 'Left');
 case 11
 text(1, 0.5, ' l=0.45', 'LineStyle', 'none', 'HorizontalAlignment', 'Left');
 case 12
 text(1, 0.5, ' l=0.2', 'LineStyle', 'none', 'HorizontalAlignment', 'Left');
 case 13
 text(1, 0.5, ' l=0', 'LineStyle', 'none', 'HorizontalAlignment', 'Left');
 otherwise
 end
 end
 end
 end

178

function analysisPR(c, fC0J0, fC0J1, fC1J0, fC1J1, TG)
% Xiaoyun Liao xliao@rice.edu 2009-1-11
% Analysis of the recognition model for altruism.

 if (abs(fC0J0 + fC0J1 + fC1J0 + fC1J1 - 1) > 0.00001)
 error('f != 1.0');
 end

 W0 = 1.0;
 fG0 = [fC0J0, fC0J1, fC1J0, fC1J1]; % Genotypes: C0J0, C0J1, C1J0, C1J1
 %fA0 = [fC0J0 + fC0J1, fC1J0 + fC1J1, fC0J0 + fC1J0, fC0J1 + fC1J1]; % Alleles: C0, C1,
J0, J1

 r0 = [1, 0.95, 0.9, 0.85, 0.8, 0.5, 0.1];
 nr = length(r0);

 p0 = [0, 0.1, 0.3, 0.5, 0.7, 0.9, 1];
 np = length(p0);

 fig = figure('Position', [0 0 700 700], 'Color', 'w', 'Resize', 'off'); hold
 iPlot = 0;

 for ir = 1:nr
 r = r0(ir);

 for ip = 1:np
 p = p0(ip);

 b = c / r;

 FA = zeros(TG, 2); % frequencies of alleles: C0, J0

179

 FG = zeros(4); % frequencies of genotype: C0J0, C0J1, C1J0, C1J1
 WG = zeros(4); % mean fitness of genotype: C0J0, C0J1, C1J0, C1J1

 for ifG0 = 1:4
 FG(ifG0) = fG0(ifG0);
 end

 for t = 1 : TG
 FA(t, 1) = FG(1) + FG(2); % C0 = C0J0 + C0J1
 FA(t, 2) = FG(1) + FG(3); % J0 = C0J0 + C1J0

 FAA = p * (FG(2) + FG(3)) + (1 - p) * (FG(2) * (FG(1) + FG(2))+ FG(3) *
(FG(3) + FG(4)));

 W = W0 + (b - c) * FAA;

 WG(1) = W0 + (1 - p) * b * FG(2);
 WG(2) = W0 + p * (b - c) + (1 - p) * ((b - c) * FG(2) - c * FG(1));
 WG(3) = W0 + p * (b - c) + (1 - p) * ((b - c) * FG(3) - c * FG(4));
 WG(4) = W0 + (1 - p) * b * FG(3);

 FGW1 = FG(1) * WG(1) / W;
 FGW2 = FG(2) * WG(2) / W;
 FGW3 = FG(3) * WG(3) / W;
 FGW4 = FG(4) * WG(4) / W;
 FGWD = (FGW1 * FGW4 - FGW2 * FGW3) / 2;

 % from time t to t + 1
 FG(1) = FGW1 - FGWD; % C0J0
 FG(2) = FGW2 + FGWD; % C0J1
 FG(3) = FGW3 + FGWD; % C1J0
 FG(4) = FGW4 - FGWD; % C1J1

 end

 % plot the simulation results
 iPlot = iPlot + 1;
 subplot(nr, np, iPlot); hold;
 plot(FA(:, 1), FA(:, 2));
 plot(FA(1, 1), FA(1, 2), 'ok', 'MarkerSize', 4);
 plot(FA(TG, 1), FA(TG, 2), '.k', 'MarkerSize', 16);
 xlim([-0.01 1.01]); ylim([-0.01 1.01]); box on; set(gca, 'DataAspectRatio', [1
1 1]);

180

 set(gca, 'XTick', 0:1:1); set(gca, 'YTick', 0:1:1);
 if ir == nr && ip >= np / 2 && ip < np / 2 + 1
 xlabel('\itf(C_0)');
 end
 if ip == 1 && ir >= nr / 2 && ir < nr / 2 + 1
 ylabel('\itf(J_0)');
 end
 if ir < nr
 set(gca, 'XTickLabel', {'', ''});
 end
 if ip > 1
 set(gca, 'YTickLabel', {'', ''});
 end
 if ir == 1
 switch ip
 case 1
 title('p=0');
 case 2
 title('p=0.1');
 case 3
 title('p=0.3');
 case 4
 title('p=0.5');
 case 5
 title('p=0.7');
 case 6
 title('p=0.9');
 case 7
 title('p=1');
 otherwise
 end
 end

 if ip == np
 switch ir
 case 1
 text(1, 0.5, ' c/b=1', 'LineStyle', 'none', 'HorizontalAlignment', 'Left');
 case 2
 text(1, 0.5, ' c/b=0.95', 'LineStyle', 'none', 'HorizontalAlignment',
'Left');
 case 3
 text(1, 0.5, ' c/b=0.9', 'LineStyle', 'none', 'HorizontalAlignment',
'Left');

181

 case 4
 text(1, 0.5, ' c/b=0.85', 'LineStyle', 'none', 'HorizontalAlignment',
'Left');
 case 5
 text(1, 0.5, ' c/b=0.8', 'LineStyle', 'none', 'HorizontalAlignment',
'Left');
 case 6
 text(1, 0.5, ' c/b=0.5', 'LineStyle', 'none', 'HorizontalAlignment',
'Left');
 case 7
 text(1, 0.5, ' c/b=0.1', 'LineStyle', 'none', 'HorizontalAlignment',
'Left');
 otherwise
 end
 end
 end
 end

function analysisRL(p, c, fC0J0, fC0J1, fC1J0, TG)
% Xiaoyun Liao xliao@rice.edu 2009-1-11
% Analysis of the recognition model for altruism.

 fC1J1 = 1 - fC0J0 - fC0J1 - fC1J0;
 if (fC1J1 < 0)
 error('f != 1.0');
 end

 W0 = 1.0;
 fG0 = [fC0J0, fC0J1, fC1J0, fC1J1]; % Genotypes: C0J0, C0J1, C1J0, C1J1
 %fA0 = [fC0J0 + fC0J1, fC1J0 + fC1J1, fC0J0 + fC1J0, fC0J1 + fC1J1]; % Alleles: C0, C1,
J0, J1

182

 L0 = [1, 0.65, 0.6, 0.58, 0.56, 0.55, 0.54, 0.52, 0.5, 0.48, 0.45, 0.2, 0];
 nL = length(L0);

 r0 = [0.1, 0.5, 0.6, 0.65, 0.7, 0.75, 0.8, 0.85, 0.9, 0.95, 1];
 nr = length(r0);

 fig = figure('Position', [0 0 700 700], 'Color', 'w', 'Resize', 'off'); hold
 iPlot = 0;

 for iL = 1:nL
 L = L0(iL);

 for ir = 1:nr
 r = r0(ir);

 b = c / r;

 FA = zeros(TG, 2); % frequencies of alleles: C0, J0

 FG = zeros(4); % frequencies of genotype: C0J0, C0J1, C1J0, C1J1
 WG = zeros(4); % mean fitness of genotype: C0J0, C0J1, C1J0, C1J1

 for ifG0 = 1:4
 FG(ifG0) = fG0(ifG0);
 end

 for t = 1 : TG
 FA(t, 1) = FG(1) + FG(2); % C0 = C0J0 + C0J1
 FA(t, 2) = FG(1) + FG(3); % J0 = C0J0 + C1J0

 FAA = p * (FG(2) + FG(3)) + (1 - p) * (FG(2) * (FG(1) + FG(2))+ FG(3) *
(FG(3) + FG(4)));

 W = W0 + (b - c) * FAA;

 WG(1) = W0 + (1 - p) * b * FG(2);
 WG(2) = W0 + p * (b - c) + (1 - p) * ((b - c) * FG(2) - c * FG(1));
 WG(3) = W0 + p * (b - c) + (1 - p) * ((b - c) * FG(3) - c * FG(4));
 WG(4) = W0 + (1 - p) * b * FG(3);

 FGW1 = FG(1) * WG(1) / W;
 FGW2 = FG(2) * WG(2) / W;

183

 FGW3 = FG(3) * WG(3) / W;
 FGW4 = FG(4) * WG(4) / W;
 FGWD = (FGW1 * FGW4 - FGW2 * FGW3) / 2;

 % from time t to t + 1
 FG(1) = (2 * (1 - L) - (1 - 2 * L) * FGW1) * FGW1 - (1 - L) * FGWD; % C0J0
 FG(2) = (2 * L + (1 - 2 * L) * FGW2) * FGW2 + L * FGWD; % C0J1
 FG(3) = (2 * L + (1 - 2 * L) * FGW3) * FGW3 + L * FGWD; % C1J0
 FG(4) = (2 * (1 - L) - (1 - 2 * L) * FGW4) * FGW4 - (1 - L) * FGWD; % C1J1

 end

 % plot the simulation results
 iPlot = iPlot + 1;
 subplot(nL, nr, iPlot); hold;
 plot(FA(:, 1), FA(:, 2));
 plot(FA(1, 1), FA(1, 2), 'ok', 'MarkerSize', 4);
 plot(FA(TG, 1), FA(TG, 2), '.k', 'MarkerSize', 16);
 xlim([-0.01 1.01]); ylim([-0.01 1.01]); box on; set(gca, 'DataAspectRatio', [1
1 1]);
 set(gca, 'XTick', 0:1:1); set(gca, 'YTick', 0:1:1);
 if iL == nL && ir >= nr / 2 && ir < nr / 2 + 1
 xlabel('\itf(C_0)');
 end
 if ir == 1 && iL >= nL / 2 && iL < nL / 2 + 1
 ylabel('\itf(J_0)');
 end
 if iL < nL
 set(gca, 'XTickLabel', {'', ''});
 end
 if ir > 1
 set(gca, 'YTickLabel', {'', ''});
 end
 if iL == 1
 switch ir
 case 1
 title('r=0.1');
 case 2
 title('r=0.5');
 case 3
 title('r=0.6');
 case 4
 title('r=0.65');

184

 case 5
 title('r=0.7');
 case 6
 title('r=0.75');
 case 7
 title('r=0.8');
 case 8
 title('r=0.85');
 case 9
 title('r=0.9');
 case 10
 title('r=0.95');
 case 11
 title('r=1');
 otherwise
 end
 end

 if ir == nr
 switch iL
 case 1
 text(1, 0.5, ' l=1', 'LineStyle', 'none', 'HorizontalAlignment', 'Left');
 case 2
 text(1, 0.5, ' l=0.65', 'LineStyle', 'none', 'HorizontalAlignment', 'Left');
 case 3
 text(1, 0.5, ' l=0.6', 'LineStyle', 'none', 'HorizontalAlignment', 'Left');
 case 4
 text(1, 0.5, ' l=0.58', 'LineStyle', 'none', 'HorizontalAlignment', 'Left');
 case 5
 text(1, 0.5, ' l=0.56', 'LineStyle', 'none', 'HorizontalAlignment', 'Left');
 case 6
 text(1, 0.5, ' l=0.55', 'LineStyle', 'none', 'HorizontalAlignment', 'Left');
 case 7
 text(1, 0.5, ' l=0.54', 'LineStyle', 'none', 'HorizontalAlignment', 'Left');
 case 8
 text(1, 0.5, ' l=0.52', 'LineStyle', 'none', 'HorizontalAlignment', 'Left');
 case 9
 text(1, 0.5, ' l=0.5', 'LineStyle', 'none', 'HorizontalAlignment', 'Left');
 case 10
 text(1, 0.5, ' l=0.48', 'LineStyle', 'none', 'HorizontalAlignment', 'Left');
 case 11
 text(1, 0.5, ' l=0.45', 'LineStyle', 'none', 'HorizontalAlignment', 'Left');
 case 12

185

 text(1, 0.5, ' l=0.2', 'LineStyle', 'none', 'HorizontalAlignment', 'Left');
 case 13
 text(1, 0.5, ' l=0', 'LineStyle', 'none', 'HorizontalAlignment', 'Left');
 otherwise
 end
 end
 end
 end

186

A.3 Scripts for Exploring Fitness Cost/Benefit to Solve the Crozier’s

Paradox

function kinRecognition(cue, N, G)
% Simulate the model of kin recognition

% Author: Xiaoyun Liao
% Date: July 16, 2009
% Email: xliao@rice.edu

%
##
############# %
% The MODEL OF KIN RECOGNITION
% Three genetic components: Action, Production, Perception
% ACTION: single action locus.
% PRODUCTION: single production locus
% PERCEPTION: multiple perception loci
% Matches of each production allele are accepted or rejected by certain perception
locus

%
##
############# %
% Alleles in three components
% The set of action component alleles
 numberActionAllele = 5;
 setActionAllele = [1:numberActionAllele];
 %setActionAllele = ['Help' 'Recognized Help' 'Neutral' 'Recognized Exploit'
'Exploit'];
 %setActionAllele = [1 2 3 4 5];

% The set of production component alleles
 numberProductionAllele = cue;
 setProductionAllele = [1:numberProductionAllele];
 %setProductionAllele = ['A1' ; 'A2' ; 'A3'];

187

 %setProductionAllele = [1 2 3];

% The set of perception component alleles
 numberPerceptionLocus = numberProductionAllele;
 numberPerceptionAllele = 3;
 setPerceptionAllele = [1:numberPerceptionAllele];
 %setPerceptionAllele = [1 2 3];

%
##
############# %
% RECOGNITION
% Match of production alleles
% Match only when they are the same allele
 match_tmp = ones(1, numberProductionAllele);
 matrixProductionAlleleMatch = diag(match_tmp);

% Accept of production alleles by perception alleles
% Accepted only by the first allele
 matrixPerceptionAlleleAccept = [1 0 0.5];

%
##
############# %
% FREQUENCY
 freqActionAlleleSet = dlmread('actionallelefrequency.txt', '\t');
 freqProductionAlleleSet = dlmread('productionallelefrequency.txt', '\t');
 freqPerceptionAlleleSet = dlmread('perceptionallelefrequency.txt', '\t');

%
##
############# %
% FITNESS
 costBenefit = dlmread('costbenefit.txt', '\t');
 costSet = costBenefit(1,:);
 benefitSet = costBenefit(2, :);
 cbratioSet = costBenefit(3, :);

188

%
##
############# %
% CLONEMATE
 probabilitySet = dlmread('probability.txt', '\t');

%
##
#############%
% Simulation
 oneSimulation;
 %matrixCostCBRatio;

%
##
#############%
 function oneSimulation
 productionAlleleFrequency = multiplePerceptionLocus(freqActionAlleleSet(1, :),
freqProductionAlleleSet(1, :), freqPerceptionAlleleSet(1, :), probabilitySet(1),
costSet(1), benefitSet(3));
 figure('Position', [0 0 600 300], 'Color', 'w', 'Resize', 'off');
 plot(productionAlleleFrequency, '-o');
 ylim([0,1]);
 legend('A1', 'A2', 'A3');

 end

%
##
#############%
 function matrixCostCBRatio
 [mCost, nCost] = size(costSet);
 [mCBRatio, nCBRatio] = size(cbratioSet);
 iplot = 0;
 mstep = 1;
 nstep = 1;

189

 mplot = ceil(nCBRatio / mstep);
 nplot = ceil(nCost / nstep);
 for iCBRatio = 1:mstep:nCBRatio
 for iCost = 1:nstep:nCost
 benefit = cost(iCost) / cbratio(iCBRatio);
 productionAlleleFrequency =
multiplePerceptionLocus(freqActionAlleleSet(1, :), freqProductionAlleleSet(1, :),
freqPerceptionAlleleSet(1, :), probabilitySet(1), costSet(iCost), benefit);

 iplot = iplot + 1;
 subplot(mplot, nplot, iplot);
 plot(productionAlleleFrequency(:, 1), productionAlleleFrequency(:, 2));
 axis([0, 1, 0, 1]);
 end
 end
 end

%
##
#############%
 function matrixCostBenefit()
 end

%
##
#############%
 function matrixCostClonemate()
 end

%
##
#############%
 function matrixProductionAlleleFrequency()
 end

%
##
#############%

 function SingleLocus ()
 end

190

%
##
#############%
%
 function productionAlleleFrequency = multiplePerceptionLocus(freqActionAllele,
freqProductionAllele, freqPerceptionAllele, probability, cost, benefit)

 %rand('twister', sum(100*clock));
 rand('twister', 1000);

 productionAlleleFrequency = zeros(G, numberProductionAllele);
 perceptionAlleleFrequency = zeros(numberPerceptionLocus,
numberPerceptionAllele, G);
 %actionAlleleFrequency = zeros(G, numberActionAllele);

 offspringPopulation = createAncestor(freqActionAllele, freqProductionAllele,
freqPerceptionAllele);

 parentPopulation = offspringPopulation;
 for iG = 1:G
 productionAlleleFrequency(iG, 1:numberProductionAllele) =
calculateProductionAlleleFrequency(parentPopulation);
 perceptionAlleleFrequency(1:numberPerceptionLocus,
1:numberPerceptionAllele, iG) =
calculatePerceptionAlleleFrequency(parentPopulation);
 % actionAlleleFrequency(iG, 1:numberActionAllele) =
calculateActionAlleleFrequency(parentPopulation);

 parentPopulation = performAltruism(parentPopulation, probability, cost,
benefit);

 offspringPopulation = reproduce(parentPopulation);

 parentPopulation = offspringPopulation;
 end

 for iG = 1:G
 for iP = 1:numberPerceptionLocus
 freqtmp(iG, iP) = perceptionAlleleFrequency(iP, 1, iG);
 end
 end
 figure('Position', [0 0 600 300], 'Color', 'w', 'Resize', 'off');

191

 plot(freqtmp, '-o');
 ylim([0,1]);
 legend('A1 Accept', 'A2 Accept', 'A3 Accept');
 end

%
##
############# %
% Create ancestor population
 function ancestor = createAncestor(freqActionAllele, freqProductionAllele,
freqPerceptionAllele)
 freqActionAlleleCumulativeSum = cumsum(freqActionAllele);
 freqProductionAlleleCumulativeSum = cumsum(freqProductionAllele);
 freqPerceptionAlleleCumulativeSum = cumsum(freqPerceptionAllele);

 if ((freqActionAlleleCumulativeSum(numberActionAllele) - 1.0) > 0.001)
 error('Action allele frequency initialized.');
 end
 if ((freqProductionAlleleCumulativeSum(numberProductionAllele) - 1.0) >
0.001)
 error('Production allele frequency initialized.');
 end
 if ((freqProductionAlleleCumulativeSum(numberPerceptionAllele) - 1.0) >
0.001)
 error('Perception allele frequency initialized.');
 end

 for iN = 1:2:N
 ancestor(iN) = createIndividual;
 ancestor(iN + 1) = ancestor(iN);
 end

 function indi = createIndividual
 indi.action = createActionAllele;
 indi.production = createProductionAllele;
 indi.perception = createPerceptionAllele;
 indi.fitness = 1.0;
 end

192

 function actionAllele = createActionAllele
 randomProbability = rand;
 iA = 1;
 while(randomProbability >= freqActionAlleleCumulativeSum(iA))
 iA = iA + 1;
 end
 actionAllele = setActionAllele(iA);
 end

 function productionAllele = createProductionAllele
 randomProbability = rand;
 iP = 1;
 while(randomProbability >= freqProductionAlleleCumulativeSum(iP))
 iP = iP + 1;
 end
 productionAllele = setProductionAllele(iP);
 end

 function perceptionAllele = createPerceptionAllele
 perceptionAllele = zeros(1, numberPerceptionLocus);
 randomProbability = rand;
 for iPerLocus = 1:numberPerceptionLocus
 iPer = 1;
 while(randomProbability >= freqPerceptionAlleleCumulativeSum(iPer))
 iPer = iPer + 1;
 end
 perceptionAllele(iPerLocus) = setPerceptionAllele(iPer);
 end
 end

 end

%
##
############# %

 function productionAlleleFreq =
calculateProductionAlleleFrequency(population)
 productionAlleleFreq = zeros(1, numberProductionAllele);
 countProduction = zeros(1, numberProductionAllele);
 for iN = 1:N

193

 iProduction = population(iN).production;
 countProduction(1, iProduction) = countProduction(1, iProduction) + 1;
 end
 for iProduction = 1:numberProductionAllele
 productionAlleleFreq(1, iProduction) = 1.0 * countProduction(1,
iProduction) / N;
 end
 end

 function perceptionAlleleFreq =
calculatePerceptionAlleleFrequency(population)
 perceptionAlleleFreq = zeros(numberPerceptionLocus,
numberPerceptionAllele);
 countPerception = zeros(numberPerceptionLocus, numberPerceptionAllele);
 for iN = 1:N
 for iPerLocus = 1:numberPerceptionLocus
 iPerception = population(iN).perception(iPerLocus);
 countPerception(iPerLocus, iPerception) = countPerception(iPerLocus,
iPerception) + 1;
 end
 end
 for iPerLocus = 1:numberPerceptionLocus
 for iPerception = 1:numberPerceptionAllele
 perceptionAlleleFreq(iPerLocus, iPerception) = 1.0 *
countPerception(iPerLocus, iPerception) / N;
 end
 end
 end

 function actionAlleleFreq = calculateActionAlleleFrequency(population)
 actionAlleleFreq = zeros(1, numberActionAllele);
 countAction = zeros(1, numberActionAllele);
 for iN = 1:N
 iAction = population(iN).action;
 countAction(1, iAction) = countAction(1, iAction) + 1;
 end
 for iAction = 1:numberActionAllele
 actionAlleleFreq(1, iAction) = 1.0 * countAction(1, iAction) / N;
 end
 end

194

%
##
############# %
% Perform altruistic behaviors among parent population
 function populationAfter = performAltruism(populationBefore, probability, cost,
benefit)

 for iN = 1:N
 iActor = ceil(N * rand);

 if (rand < probability) % clonemate as partner
 if (mod(iActor, 2) == 0)
 iRecipient = iActor - 1;
 else
 iRecipient = iActor + 1;
 end
 else % genetically random partner
 iRecipient = ceil(N * rand);
 end

 if (help(iActor, iRecipient))
 if (populationBefore(iActor).fitness >= cost)
 populationBefore(iActor).fitness = populationBefore(iActor).fitness - cost;
 populationBefore(iRecipient).fitness =
populationBefore(iRecipient).fitness + benefit;
 else
 %???
 end
 end
 end
 populationAfter = populationBefore;

 function hel = help(iActor, iRecipient)
 hel = false;
 switch populationBefore(iActor).action
 case 1
 hel = true;
 case 2
 if (recognition(iActor, iRecipient))
 hel = true;
 end
 case 3

195

 hel = false;
 otherwise
 hel = false;
 end
 end

 function rec = recognition(iActor, iRecipient)
 rec = false;
 if (match(populationBefore(iActor).production,
populationBefore(iRecipient).production))
 if (accept(populationBefore(iActor).production,
populationBefore(iActor).perception))
 rec = true;
 end
 end
 end

 function mat = match(actorProduction, recipientProduction)
 if (rand < matrixProductionAlleleMatch(actorProduction, recipientProduction))
 mat = true;
 else
 mat = false;
 end
 end

 function acc = accept(actorProduction, actorPerception)
 if (rand < matrixPerceptionAlleleAccept(actorPerception(actorProduction)))
 acc = true;
 else
 acc = false;
 end
 end

 end

%
##
############# %
% Create offspring population from parent population

196

 function offspringPopulation = reproduce(parentPopulation)

 for iN = 1:N
 fit(iN) = parentPopulation(iN).fitness;
 end
 fitCumulativeSum = cumsum(fit);
 fitnessSum = fitCumulativeSum(N);

 for iN = 1:2:N
 offspringPopulation(iN) = reproduceIndividual();
 offspringPopulation(iN + 1) = offspringPopulation(iN);
 end

 function indi = reproduceIndividual()
 iFather = randParent();
 iMother = randParent();

 indi = reproduceChild(iFather, iMother);
 end

 function iParent = randParent()
 randFitness = fitnessSum * rand();
 iParent = binarySearch(fitCumulativeSum, randFitness);
 end

 function index = binarySearch(dataSet, key)
 [m, n] = size(dataSet);
 left = 1;
 right = n;
 while (left <= right)
 middle = floor((left + right) / 2);
 if (key < dataSet(1, middle))
 right = middle - 1;
 else
 left = middle + 1;
 end
 end
 if (key < dataSet(1, middle))
 index = middle;
 else
 index = middle + 1;
 end
 end

197

 function child = reproduceChild(iFather, iMother)
 child.action = alternativeAction(parentPopulation(iFather).action,
parentPopulation(iMother).action);
 child.production =
alternativeProduction(parentPopulation(iFather).production,
parentPopulation(iMother).production);
 child.perception = alternativePerception(parentPopulation(iFather).perception,
parentPopulation(iMother).perception);
 child.fitness = 1.0;
 end

 function action = alternativeAction(fatherAction, motherAction)
 if (rand < 0.5)
 action = fatherAction;
 else
 action = motherAction;
 end
 end

 function production = alternativeProduction(fatherProduction,
motherProduction)
 if (rand < 0.5)
 production = fatherProduction;
 else
 production = motherProduction;
 end
 end

 function perception = alternativePerception(fatherPerception, motherPerception)
 for iPerLocus = 1:numberPerceptionLocus
 if (rand < 0.5)
 perception(iPerLocus) = fatherPerception(iPerLocus);
 else
 perception(iPerLocus) = motherPerception(iPerLocus);
 end
 end
 end

 end

198

%
##
############# %
% Plot
 function plotAlleleFrequency(actionAlleleFreq, productionAlleleFreq,
perceptionAlleleFreq)
 subplot(3,1,1);
 plot(actionAlleleFreq(1:G,1:3), '-o');
 legend('Alawys help','Recognized help','Never help');
 ylim([0 1]);
 subplot(3,1,2);
 plot(productionAlleleFreq(1:G,1:3), '-o');
 legend('A1','A2','A3');
 ylim([0 1]);
 subplot(3,1,3);
 % plot(perceptionAlleleFreq(1:G,1:3), '-o');
 % legend('a1','a2','a3');
 % ylim([0 1]);
 end

 function plotFrequency(productionAlleleFreq)
 plot(productionAlleleFreq(:,1:numberProductionAllele), '-o');
 %legend('A1','A2','A3');
 ylim([0 1]);
 end

 function plotFrequencySpace(productionAlleleFreq)
 plot(productionAlleleFreq(:,1), productionAlleleFreq(:,2), '-o');
 xlim([0 1]); ylim([0 1]);
 end
end

199

function kinRecognitionSingleLocus(cue, N, G, iAction, iProduction, iPerception,
iProbability, iCost, iBenefit)
% Simulate the model of kin recognition

% Author: Xiaoyun Liao
% Date: 9/3/2009
% Email: xliao@rice.edu

%
##
############# %
% The MODEL OF KIN RECOGNITION
% Three genetic components: Action, Production, Perception
% ACTION: single action locus.
% PRODUCTION: single production locus
% PERCEPTION: multiple perception loci
% Matches of each production allele are accepted or rejected by certain perception
locus

%
##
############# %
% Alleles in three components
% The set of action component alleles
 numberActionAllele = 2;
 setActionAllele = [1:numberActionAllele];
 %setActionAllele = [1 2];
 %setActionAllele = ['Recognized Help' 'Always Help'];

% The set of production component alleles
 %numberProductinLocus = 1;
 numberProductionAllele = cue;
 setProductionAllele = [1:numberProductionAllele];
 %setProductionAllele = [1 2 3];
 %setProductionAllele = ['C1' 'C2' 'C3'];

% The set of perception component alleles
 %numberPerceptionLocus = numberProductionAllele;
 %numberPerceptionLocus = numberProductinLocus;
 numberPerceptionAllele = numberProductionAllele;
 setPerceptionAllele = [1:numberPerceptionAllele];

200

 %setPerceptionAllele = [1 2 3];
 %setPerceptionAllele = ['R1' 'R2' 'R3'];

%
##
############# %
% RECOGNITION
% Match of production alleles
% Match only when they are the same allele
 match_tmp = ones(1, numberProductionAllele);
 matrixProductionAlleleMatch = diag(match_tmp);

% Accept of production alleles by perception alleles
% Accepted only by the first allele
 accept_tmp = ones(1, numberProductionAllele);
 matrixPerceptionAlleleAccept = diag(accept_tmp);
 %accept_random = 0.5 * ones(numberProductionAllele, 1);
 %matrixPerceptionAlleleAccept = cat(2, diag(accept_tmp), accept_random);

%
##
############# %
% FREQUENCY
 freqActionAlleleSet = dlmread('actionallelefrequency.txt', '\t');
 freqProductionAlleleSet = dlmread('productionallelefrequency.txt', '\t');
 freqPerceptionAlleleSet = dlmread('perceptionallelefrequency.txt', '\t');

%
##
############# %
% FITNESS
 costBenefit = dlmread('costbenefit.txt', '\t');
 costSet = costBenefit(:,1);
 benefitSet = costBenefit(:, 2);
 cbratioSet = costBenefit(:, 3);

 altruismFrequency = zeros(G, 1);
 iAltruism = 1;
%
##
############# %
% CLONEMATE

201

 probabilitySet = dlmread('probability.txt', '\t');

%
##
#############%
% Simulation
 oneSimulation;
 %matrixCostCBRatio;

%
##
#############%
 function oneSimulation
 singleLocus(freqActionAlleleSet(iAction, :), freqProductionAlleleSet(iProduction,
:), freqPerceptionAlleleSet(iPerception, :), probabilitySet(iProbability),
costSet(iCost), benefitSet(iBenefit));

 end

%
##
#############%
 function matrixCostCBRatio
 [mCost, nCost] = size(costSet);
 [mCBRatio, nCBRatio] = size(cbratioSet);
 iplot = 0;
 mstep = 1;
 nstep = 1;
 mplot = ceil(nCBRatio / mstep);
 nplot = ceil(nCost / nstep);
 for iCBRatio = 1:mstep:nCBRatio
 for iCost = 1:nstep:nCost
 benefit = cost(iCost) / cbratio(iCBRatio);
 productionAlleleFrequency =
multiplePerceptionLocus(freqActionAlleleSet(1, :), freqProductionAlleleSet(1, :),
freqPerceptionAlleleSet(1, :), probabilitySet(1), costSet(iCost), benefit);

202

 iplot = iplot + 1;
 subplot(mplot, nplot, iplot);
 plot(productionAlleleFrequency(:, 1), productionAlleleFrequency(:, 2));
 axis([0, 1, 0, 1]);
 end
 end
 end

%
##
#############%
 function matrixCostBenefit()
 end

%
##
#############%
 function matrixCostClonemate()
 end

%
##
#############%
 function matrixProductionAlleleFrequency()
 end

%
##
#############%

%
##
#############%
%
 function singleLocus(freqActionAllele, freqProductionAllele, freqPerceptionAllele,
probability, cost, benefit)

 rand('twister', sum(100*clock));
 %rand('twister', 500000);

203

 productionAlleleFrequency = zeros(G, numberProductionAllele);
 perceptionAlleleFrequency = zeros(G, numberPerceptionAllele);
 actionAlleleFrequency = zeros(G, numberActionAllele);

 productionAlleleFrequency(1, 1:numberProductionAllele) =
freqProductionAllele;
 perceptionAlleleFrequency(1, 1:numberPerceptionAllele) =
freqPerceptionAllele;
 actionAlleleFrequency(1, 1:numberActionAllele) = freqActionAllele;

 offspringPopulation = createAncestor(freqActionAllele, freqProductionAllele,
freqPerceptionAllele);

 parentPopulation = offspringPopulation;
 for iG = 2:G
 productionAlleleFrequency(iG, 1:numberProductionAllele) =
calculateProductionAlleleFrequency(parentPopulation);
 perceptionAlleleFrequency(iG, 1:numberPerceptionAllele) =
calculatePerceptionAlleleFrequency(parentPopulation);
 actionAlleleFrequency(iG, 1:numberActionAllele) =
calculateActionAlleleFrequency(parentPopulation);

 parentPopulation = performAltruism(parentPopulation, probability, cost,
benefit);

 offspringPopulation = reproduce(parentPopulation);

 parentPopulation = offspringPopulation;
 end
 %plotAlleleFrequency(productionAlleleFrequency,
perceptionAlleleFrequency);
 plotAlleleFrequency(actionAlleleFrequency, productionAlleleFrequency,
perceptionAlleleFrequency, altruismFrequency);

 end

%
##
############# %

204

% Create ancestor population
 function ancestor = createAncestor(freqActionAllele, freqProductionAllele,
freqPerceptionAllele)

 freqActionAlleleCumulativeSum = cumsum(freqActionAllele);
 freqProductionAlleleCumulativeSum = cumsum(freqProductionAllele);
 freqPerceptionAlleleCumulativeSum = cumsum(freqPerceptionAllele);

 if ((freqActionAlleleCumulativeSum(numberActionAllele) - 1.0) > 0.001)
 error('Action allele frequency initialized.');
 end
 if ((freqProductionAlleleCumulativeSum(numberProductionAllele) - 1.0) >
0.001)
 error('Production allele frequency initialized.');
 end
 if ((freqPerceptionAlleleCumulativeSum(numberPerceptionAllele) - 1.0) >
0.001)
 error('Perception allele frequency initialized.');
 end

 for iN = 1:2:N
 ancestor(iN) = createIndividual;
 ancestor(iN + 1) = ancestor(iN); %clonemate
 end

 function indi = createIndividual
 indi.action = createActionAllele;
 indi.production = createProductionAllele;
 indi.perception = createPerceptionAllele;
 indi.fitness = 1.0;
 end

 function actionAllele = createActionAllele
 iA = 1;
 while(rand >= freqActionAlleleCumulativeSum(iA))
 iA = iA + 1;
 end
 actionAllele = setActionAllele(iA);
 end

 function productionAllele = createProductionAllele
 iP = 1;

205

 while(rand >= freqProductionAlleleCumulativeSum(iP))
 iP = iP + 1;
 end
 productionAllele = setProductionAllele(iP);
 end

 function perceptionAllele = createPerceptionAllele
 iPer = 1;
 while(rand >= freqPerceptionAlleleCumulativeSum(iPer))
 iPer = iPer + 1;
 end
 perceptionAllele = setPerceptionAllele(iPer);
 end

 end

%
##
############# %

 function productionAlleleFreq =
calculateProductionAlleleFrequency(population)
 productionAlleleFreq = zeros(1, numberProductionAllele);
 countProduction = zeros(1, numberProductionAllele);
 for iN = 1:N
 iProduction = population(iN).production;
 countProduction(iProduction) = countProduction(iProduction) + 1;
 end
 for iProduction = 1:numberProductionAllele
 productionAlleleFreq(iProduction) = 1.0 * countProduction(iProduction) /
N;
 end
 end

 function perceptionAlleleFreq =
calculatePerceptionAlleleFrequency(population)
 perceptionAlleleFreq = zeros(1, numberPerceptionAllele);
 countPerception = zeros(1, numberPerceptionAllele);
 for iN = 1:N
 iPerception = population(iN).perception;
 countPerception(iPerception) = countPerception(iPerception) + 1;
 end

206

 for iPerception = 1:numberPerceptionAllele
 perceptionAlleleFreq(iPerception) = 1.0 * countPerception(iPerception) /
N;
 end
 end

 function actionAlleleFreq = calculateActionAlleleFrequency(population)
 actionAlleleFreq = zeros(1, numberActionAllele);
 countAction = zeros(1, numberActionAllele);
 for iN = 1:N
 iAction = population(iN).action;
 countAction(iAction) = countAction(iAction) + 1;
 end
 for iAction = 1:numberActionAllele
 actionAlleleFreq(iAction) = 1.0 * countAction(iAction) / N;
 end
 end

%
##
############# %
% Perform altruistic behaviors among parent population
 function populationAfter = performAltruism(populationBefore, probability, cost,
benefit)

 countAltruism = 0;
 for iN = 1:N
 iActor = ceil(N * rand);

 if (rand < probability) % clonemate as partner
 if (mod(iActor, 2) == 0)
 iRecipient = iActor - 1;
 else
 iRecipient = iActor + 1;
 end
 else % genetically random partner
 iRecipient = ceil(N * rand);
 end

 if (help(iActor, iRecipient))
 if (populationBefore(iActor).fitness >= cost)
 populationBefore(iActor).fitness = populationBefore(iActor).fitness - cost;

207

 populationBefore(iRecipient).fitness =
populationBefore(iRecipient).fitness + benefit;
 countAltruism = countAltruism + 1;
 else
 %???
 end
 end
 end
 altruismFrequency(iAltruism) = 1.0 * countAltruism / N;
 iAltruism = iAltruism + 1;

 populationAfter = populationBefore;

 function hel = help(iActor, iRecipient)
 hel = false;
 switch populationBefore(iActor).action
 case 1
 if (recognition(iActor, iRecipient))
 hel = true;
 end
 case 2
 hel = true;
 case 3
 hel = false;
 otherwise
 hel = false;
 end
 end

 function rec = recognition(iActor, iRecipient)
 rec = false;
 if (match(populationBefore(iActor).production,
populationBefore(iRecipient).production))
 if (accept(populationBefore(iActor).production,
populationBefore(iActor).perception))
 rec = true;
 end
 end
 end

 function mat = match(actorProduction, recipientProduction)

208

 if (rand < matrixProductionAlleleMatch(actorProduction, recipientProduction))
 mat = true;
 else
 mat = false;
 end
 end

 function acc = accept(actorProduction, actorPerception)
 if (rand < matrixPerceptionAlleleAccept(actorProduction, actorPerception))
 acc = true;
 else
 acc = false;
 end
 end

 end

%
##
############# %
% Create offspring population from parent population

 function offspringPopulation = reproduce(parentPopulation)

 for iN = 1:N
 fit(iN) = parentPopulation(iN).fitness;
 end
 fitCumulativeSum = cumsum(fit);
 fitnessSum = fitCumulativeSum(N);

 for iN = 1:2:N
 offspringPopulation(iN) = reproduceIndividual();
 offspringPopulation(iN + 1) = offspringPopulation(iN);
 end

 function indi = reproduceIndividual()
 iFather = randParent();
 iMother = randParent();

 indi = reproduceChild(iFather, iMother);
 end

209

 function iParent = randParent()
 randFitness = fitnessSum * rand();
 iParent = binarySearch(fitCumulativeSum, randFitness);
 end

 function index = binarySearch(dataSet, key)
 [m, n] = size(dataSet);
 left = 1;
 right = n;
 while (left <= right)
 middle = floor((left + right) / 2);
 if (key < dataSet(1, middle))
 right = middle - 1;
 else
 left = middle + 1;
 end
 end
 if (key < dataSet(1, middle))
 index = middle;
 else
 index = middle + 1;
 end
 end

 function child = reproduceChild(iFather, iMother)
 child.action = alternativeAction(parentPopulation(iFather).action,
parentPopulation(iMother).action);
 child.production =
alternativeProduction(parentPopulation(iFather).production,
parentPopulation(iMother).production);
 child.perception = alternativePerception(parentPopulation(iFather).perception,
parentPopulation(iMother).perception);
 child.fitness = 1.0;
 end

 function action = alternativeAction(fatherAction, motherAction)
 if (rand < 0.5)
 action = fatherAction;
 else
 action = motherAction;
 end
 end

210

 function production = alternativeProduction(fatherProduction,
motherProduction)
 if (rand < 0.5)
 production = fatherProduction;
 else
 production = motherProduction;
 end
 end

 function perception = alternativePerception(fatherPerception, motherPerception)
 if (rand < 0.5)
 perception = fatherPerception;
 else
 perception = motherPerception;
 end
 end

 end

%
##
############# %
% Plot
 function plotAlleleFrequency(actionAlleleFreq, productionAlleleFreq,
perceptionAlleleFreq, altruismFreq)
 subplot(4,1,1);
 plot(actionAlleleFreq(1:G,1:numberActionAllele), '-o');
 legend('Recognized help','Alawys help');
 ylim([0 1]);
 subplot(4,1,2);
 plot(productionAlleleFreq(1:G, 1:numberProductionAllele), '-o');
 legend('Cue1', 'Cue2');
 ylim([0 1]);
 subplot(4,1,3);
 plot(perceptionAlleleFreq(1:G, 1:numberPerceptionAllele), '-o');
 legend('Rec1', 'Rec2');
 ylim([0 1]);
 subplot(4,1,4);
 plot(altruismFreq(1:G), '-o');
 %legend('R1', 'R2');

211

 ylim([0 1]);

 end

 function plotFrequency(productionAlleleFreq)
 plot(productionAlleleFreq(:,1:numberProductionAllele), '-o');
 %legend('A1','A2','A3');
 ylim([0 1]);
 end

 function plotFrequencySpace(productionAlleleFreq)
 plot(productionAlleleFreq(:,1), productionAlleleFreq(:,2), '-o');
 xlim([0 1]); ylim([0 1]);

 end

end

function kinRecognitionMultiplePerceptionLoci(cue, N, G)
% Simulate the model of kin recognition

% Author: Xiaoyun Liao
% Date: August 3, 2009
% Email: xliao@rice.edu

%
##
############# %
% The MODEL OF KIN RECOGNITION
% Three genetic components: Action, Production, Perception
% ACTION: single action locus.
% PRODUCTION: single production locus
% PERCEPTION: multiple perception loci
% Matches of each production allele are accepted or rejected by certain perception
locus

212

%
##
############# %
% Alleles in three components
% The set of action component alleles
 numberActionAllele = 5;
 setActionAllele = [1:numberActionAllele];
 %setActionAllele = [1 2 3 4 5];
 %setActionAllele = ['Help' 'Recognized Help' 'Neutral' 'Recognized Exploit'
'Exploit'];

% The set of production component alleles
 %numberProductinLocus = 1;
 numberProductionAllele = cue;
 setProductionAllele = [1:numberProductionAllele];
 %setProductionAllele = [1 2 3];
 %setProductionAllele = ['A1' 'A2' 'A3'];

% The set of perception component alleles
 numberPerceptionLocus = numberProductionAllele;
 %numberPerceptionLocus = numberProductinLocus;
 %numberPerceptionAllele = numberProductionAllele + 1;
 numberPerceptionAllele = 3;
 setPerceptionAllele = [1:numberPerceptionAllele];
 %setPerceptionAllele = [1 2 3 4];
 %setPerceptionAllele = ['a1' 'a2' 'a3' 'a0'];

%
##
############# %
% RECOGNITION
% Match of production alleles
% Match only when they are the same allele
 match_tmp = ones(1, numberProductionAllele);
 matrixProductionAlleleMatch = diag(match_tmp);

% Accept of production alleles by perception alleles
% Accepted only by the first allele
 accept_tmp = ones(1, numberProductionAllele);
 accept_random = 0.5 * ones(numberProductionAllele, 1);

213

 matrixPerceptionAlleleAccept = cat(2, diag(accept_tmp), accept_random);

%
##
############# %
% FREQUENCY
 freqActionAlleleSet = dlmread('actionallelefrequency.txt', '\t');
 freqProductionAlleleSet = dlmread('productionallelefrequency.txt', '\t');
 freqPerceptionAlleleSet = dlmread('perceptionallelefrequency.txt', '\t');

%
##
############# %
% FITNESS
 costBenefit = dlmread('costbenefit.txt', '\t');
 costSet = costBenefit(1,:);
 benefitSet = costBenefit(2, :);
 cbratioSet = costBenefit(3, :);

%
##
############# %
% CLONEMATE
 probabilitySet = dlmread('probability.txt', '\t');

%
##
#############%
% Simulation
 oneSimulation;
 %matrixCostCBRatio;

%
##
#############%
 function oneSimulation

214

 singleLocus(freqActionAlleleSet(1, :), freqProductionAlleleSet(6, :),
freqPerceptionAlleleSet(5, :), probabilitySet(2), costSet(9), benefitSet(10));

 end

%
##
#############%
 function matrixCostCBRatio
 [mCost, nCost] = size(costSet);
 [mCBRatio, nCBRatio] = size(cbratioSet);
 iplot = 0;
 mstep = 1;
 nstep = 1;
 mplot = ceil(nCBRatio / mstep);
 nplot = ceil(nCost / nstep);
 for iCBRatio = 1:mstep:nCBRatio
 for iCost = 1:nstep:nCost
 benefit = cost(iCost) / cbratio(iCBRatio);
 productionAlleleFrequency =
multiplePerceptionLocus(freqActionAlleleSet(1, :), freqProductionAlleleSet(1, :),
freqPerceptionAlleleSet(1, :), probabilitySet(1), costSet(iCost), benefit);

 iplot = iplot + 1;
 subplot(mplot, nplot, iplot);
 plot(productionAlleleFrequency(:, 1), productionAlleleFrequency(:, 2));
 axis([0, 1, 0, 1]);
 end
 end
 end

%
##
#############%
 function matrixCostBenefit()
 end

%
##
#############%
 function matrixCostClonemate()

215

 end

%
##
#############%
 function matrixProductionAlleleFrequency()
 end

%
##
#############%

%
##
#############%
%
 function singleLocus(freqActionAllele, freqProductionAllele, freqPerceptionAllele,
probability, cost, benefit)

 rand('twister', sum(100*clock));
 %rand('twister', 500000);

 productionAlleleFrequency = zeros(G, numberProductionAllele);
 perceptionAlleleFrequency = zeros(G, numberPerceptionAllele);
 % actionAlleleFrequency = zeros(G, numberActionAllele);

 offspringPopulation = createAncestor(freqActionAllele, freqProductionAllele,
freqPerceptionAllele);

 parentPopulation = offspringPopulation;
 for iG = 1:G
 productionAlleleFrequency(iG, 1:numberProductionAllele) =
calculateProductionAlleleFrequency(parentPopulation);
 perceptionAlleleFrequency(iG, 1:numberPerceptionAllele) =
calculatePerceptionAlleleFrequency(parentPopulation);
 % actionAlleleFrequency(iG, 1:numberActionAllele) =
calculateActionAlleleFrequency(parentPopulation);

 parentPopulation = performAltruism(parentPopulation, probability, cost,
benefit);

216

 offspringPopulation = reproduce(parentPopulation);

 parentPopulation = offspringPopulation;
 end

 plotAlleleFrequency(productionAlleleFrequency, perceptionAlleleFrequency);
 %plotFrequencySpace(freqActionAllele, freqProductionAllele,
freqPerceptionAllele);

 end

%
##
############# %
% Create ancestor population
 function ancestor = createAncestor(freqActionAllele, freqProductionAllele,
freqPerceptionAllele)

 freqActionAlleleCumulativeSum = cumsum(freqActionAllele);
 freqProductionAlleleCumulativeSum = cumsum(freqProductionAllele);
 freqPerceptionAlleleCumulativeSum = cumsum(freqPerceptionAllele);

 if ((freqActionAlleleCumulativeSum(numberActionAllele) - 1.0) > 0.001)
 error('Action allele frequency initialized.');
 end
 if ((freqProductionAlleleCumulativeSum(numberProductionAllele) - 1.0) >
0.001)
 error('Production allele frequency initialized.');
 end
 if ((freqPerceptionAlleleCumulativeSum(numberPerceptionAllele) - 1.0) >
0.001)
 error('Perception allele frequency initialized.');
 end

 for iN = 1:2:N
 ancestor(iN) = createIndividual;
 ancestor(iN + 1) = ancestor(iN); %clonemate
 end

217

 function indi = createIndividual
 indi.action = createActionAllele;
 indi.production = createProductionAllele;
 indi.perception = createPerceptionAllele;
 indi.fitness = 1.0;
 end

 function actionAllele = createActionAllele
 iA = 1;
 while(rand >= freqActionAlleleCumulativeSum(iA))
 iA = iA + 1;
 end
 actionAllele = setActionAllele(iA);
 end

 function productionAllele = createProductionAllele
 iP = 1;
 while(rand >= freqProductionAlleleCumulativeSum(iP))
 iP = iP + 1;
 end
 productionAllele = setProductionAllele(iP);
 end

 function perceptionAllele = createPerceptionAllele
 iPer = 1;
 while(rand >= freqPerceptionAlleleCumulativeSum(iPer))
 iPer = iPer + 1;
 end
 perceptionAllele = setPerceptionAllele(iPer);
 end

 end

%
##
############# %

 function productionAlleleFreq =
calculateProductionAlleleFrequency(population)
 productionAlleleFreq = zeros(1, numberProductionAllele);
 countProduction = zeros(1, numberProductionAllele);

218

 for iN = 1:N
 iProduction = population(iN).production;
 countProduction(iProduction) = countProduction(iProduction) + 1;
 end
 for iProduction = 1:numberProductionAllele
 productionAlleleFreq(iProduction) = 1.0 * countProduction(iProduction) /
N;
 end
 end

 function perceptionAlleleFreq =
calculatePerceptionAlleleFrequency(population)
 perceptionAlleleFreq = zeros(1, numberPerceptionAllele);
 countPerception = zeros(1, numberPerceptionAllele);
 for iN = 1:N
 iPerception = population(iN).perception;
 countPerception(iPerception) = countPerception(iPerception) + 1;
 end
 for iPerception = 1:numberPerceptionAllele
 perceptionAlleleFreq(iPerception) = 1.0 * countPerception(iPerception) /
N;
 end
 end

 function actionAlleleFreq = calculateActionAlleleFrequency(population)
 actionAlleleFreq = zeros(1, numberActionAllele);
 countAction = zeros(1, numberActionAllele);
 for iN = 1:N
 iAction = population(iN).action;
 countAction(iAction) = countAction(iAction) + 1;
 end
 for iAction = 1:numberActionAllele
 actionAlleleFreq(iAction) = 1.0 * countAction(iAction) / N;
 end
 end

%
##
############# %
% Perform altruistic behaviors among parent population
 function populationAfter = performAltruism(populationBefore, probability, cost,
benefit)

219

 for iN = 1:N
 iActor = ceil(N * rand);

 if (rand < probability) % clonemate as partner
 if (mod(iActor, 2) == 0)
 iRecipient = iActor - 1;
 else
 iRecipient = iActor + 1;
 end
 else % genetically random partner
 iRecipient = ceil(N * rand);
 end

 if (help(iActor, iRecipient))
 if (populationBefore(iActor).fitness >= cost)
 populationBefore(iActor).fitness = populationBefore(iActor).fitness - cost;
 populationBefore(iRecipient).fitness =
populationBefore(iRecipient).fitness + benefit;
 else
 %???
 end
 end
 end
 populationAfter = populationBefore;

 function hel = help(iActor, iRecipient)
 hel = false;
 switch populationBefore(iActor).action
 case 1
 hel = true;
 case 2
 if (recognition(iActor, iRecipient))
 hel = true;
 end
 case 3
 hel = false;
 otherwise
 hel = false;
 end
 end

220

 function rec = recognition(iActor, iRecipient)
 rec = false;
 if (match(populationBefore(iActor).production,
populationBefore(iRecipient).production))
 if (accept(populationBefore(iActor).production,
populationBefore(iActor).perception))
 rec = true;
 end
 end
 end

 function mat = match(actorProduction, recipientProduction)
 if (rand < matrixProductionAlleleMatch(actorProduction, recipientProduction))
 mat = true;
 else
 mat = false;
 end
 end

 function acc = accept(actorProduction, actorPerception)
 if (rand < matrixPerceptionAlleleAccept(actorProduction, actorPerception + 1))
 acc = true;
 else
 acc = false;
 end
 end

 end

%
##
############# %
% Create offspring population from parent population

 function offspringPopulation = reproduce(parentPopulation)

 for iN = 1:N
 fit(iN) = parentPopulation(iN).fitness;
 end
 fitCumulativeSum = cumsum(fit);

221

 fitnessSum = fitCumulativeSum(N);

 for iN = 1:2:N
 offspringPopulation(iN) = reproduceIndividual();
 offspringPopulation(iN + 1) = offspringPopulation(iN);
 end

 function indi = reproduceIndividual()
 iFather = randParent();
 iMother = randParent();

 indi = reproduceChild(iFather, iMother);
 end

 function iParent = randParent()
 randFitness = fitnessSum * rand();
 iParent = binarySearch(fitCumulativeSum, randFitness);
 end

 function index = binarySearch(dataSet, key)
 [m, n] = size(dataSet);
 left = 1;
 right = n;
 while (left <= right)
 middle = floor((left + right) / 2);
 if (key < dataSet(1, middle))
 right = middle - 1;
 else
 left = middle + 1;
 end
 end
 if (key < dataSet(1, middle))
 index = middle;
 else
 index = middle + 1;
 end
 end

 function child = reproduceChild(iFather, iMother)
 child.action = alternativeAction(parentPopulation(iFather).action,
parentPopulation(iMother).action);

222

 child.production =
alternativeProduction(parentPopulation(iFather).production,
parentPopulation(iMother).production);
 child.perception = alternativePerception(parentPopulation(iFather).perception,
parentPopulation(iMother).perception);
 child.fitness = 1.0;
 end

 function action = alternativeAction(fatherAction, motherAction)
 if (rand < 0.5)
 action = fatherAction;
 else
 action = motherAction;
 end
 end

 function production = alternativeProduction(fatherProduction,
motherProduction)
 if (rand < 0.5)
 production = fatherProduction;
 else
 production = motherProduction;
 end
 end

 function perception = alternativePerception(fatherPerception, motherPerception)
 if (rand < 0.5)
 perception = fatherPerception;
 else
 perception = motherPerception;
 end
 end

 end

%
##
############# %
% Plot
 function plotAlleleFrequency(productionAlleleFreq, perceptionAlleleFreq)
 %subplot(3,1,1);

223

 %plot(actionAlleleFreq(1:G,1:3), '-o');
 % legend('Alawys help','Recognized help','Never help');
 % ylim([0 1]);
 subplot(2,1,1);
 plot(productionAlleleFreq(1:G, 1:numberProductionAllele), '-o');
 legend('A1', 'A2');
 ylim([0 1]);
 subplot(2,1,2);
 plot(perceptionAlleleFreq(1:G, 1:numberPerceptionAllele), '-o');
 legend('a1', 'a2', 'a0');
 ylim([0 1]);
 end

 function plotFrequency(productionAlleleFreq)
 plot(productionAlleleFreq(:,1:numberProductionAllele), '-o');
 %legend('A1','A2','A3');
 ylim([0 1]);
 end

 function plotFrequencySpace(productionAlleleFreq)
 plot(productionAlleleFreq(:,1), productionAlleleFreq(:,2), '-o');
 xlim([0 1]); ylim([0 1]);

 end

end

