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Fluctuations of conserved quantities such as baryon number, charge, and strangeness are sensitive to 
the correlation length of the hot and dense matter created in relativistic heavy-ion collisions and can 
be used to search for the QCD critical point. We report the first measurements of the moments of 
net-kaon multiplicity distributions in Au+Au collisions at √sNN = 7.7, 11.5, 14.5, 19.6, 27, 39, 62.4, and 
200 GeV. The collision centrality and energy dependence of the mean (M), variance (σ 2), skewness (S), 
and kurtosis (κ) for net-kaon multiplicity distributions as well as the ratio σ 2/M and the products Sσ
and κσ 2 are presented. Comparisons are made with Poisson and negative binomial baseline calculations 
as well as with UrQMD, a transport model (UrQMD) that does not include effects from the QCD critical 
point. Within current uncertainties, the net-kaon cumulant ratios appear to be monotonic as a function 
of collision energy.

© 2018 The Author. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
1. Introduction

One primary goal of high energy heavy-ion collisions is to ex-
plore the phase structure of strongly interacting hot, dense nuclear 
matter. It can be displayed in the quantum chromodynamics (QCD) 
phase diagram, which is characterized by the temperature (T ) and 
the baryon chemical potential (μB ). Lattice QCD calculations sug-
gest that the phase transition between the hadronic phase and the 
quark–gluon plasma (QGP) phase at large μB and low T is of the 
first order [1,2], while in the low μB and high T region, the phase 
transition is a smooth crossover [3]. The end point of the first or-
der phase boundary towards the crossover region is the so-called 
critical point [4,5]. Experimental search for the critical point is 
one of the central goals of the beam energy scan (BES) program 
at the Relativistic Heavy-Ion Collider (RHIC) facility at Brookhaven 
National Laboratory.

Fluctuations of conserved quantities, such as baryon number 
(B), charge (Q ), and strangeness (S) are sensitive to the QCD 
phase transition and QCD critical point [6–8]. Experimentally, 
one can measure the moments (mean (M), variance (σ 2), skew-
ness (S), and kurtosis (κ )) of the event-by-event net-particle distri-
butions (particle multiplicity minus antiparticle multiplicity), such 
as net-proton, net-kaon and net-charge multiplicity distributions in 
heavy-ion collisions. These moments are connected to the thermo-
dynamic susceptibilities that can be computed in lattice QCD [5,
9–15] and in the hadron resonance gas model (HRG) [16–19]. They 
are expected to be sensitive to the correlation length (ξ ) of the hot 
and dense medium created in the heavy-ion collisions [6]. Non-
monotonic variation of fluctuations in conserved quantities with 
the colliding beam energy is considered to be one of the charac-
teristic signature of the QCD critical point.

The moments σ 2, S , and κ have been shown to be related to 
powers of the correlation length as ξ2, ξ4.5 and ξ7 [6], respec-
tively. The nth order susceptibilities χ(n) are related to cumulant 
as χ(n) = Cn/V T 3 [8], where V , T are the volume and tempera-
ture of the system, Cn is the nth order cumulant of multiplicity 
distributions. The moment products Sσ and κσ 2 and the ratio 
σ 2/M are constructed to cancel the volume term. The moment 
products are related to the ratios of various orders of susceptibil-
ities according to κσ 2 = χ

(4)
i /χ

(2)
i and Sσ = χ

(3)
i /χ

(2)
i , where i

indicates the conserved quantity. Due to the sensitivity to the cor-
relation length and the connection with the susceptibilities, one 
can use the moments of conserved-quantity distributions to aid in 
the search for the QCD critical point and the QCD phase transition 
[6–8,16,20–31]. In addition, the moments of net-particle fluctua-
tions can be used to determine freeze-out points on the QCD phase 
diagram by comparing directly to first-principle lattice QCD calcu-
lations [12]. Specifically, by comparing the lattice QCD results to 
the measured σ 2/M for net kaons, one can infer the hadroniza-
tion temperature of strange quarks [32].

As a part of the BES, Au+Au collisions were run by RHIC with 
energies ranging from 

√
sNN = 200 GeV down to 7.7 GeV [33–35]

corresponding to μB from 20 to 420 MeV. In this paper, we re-
port the first measurements for the moments of net-kaon multi-
plicity distributions in Au+Au collisions at 

√
sNN = 7.7, 11.5, 14.5, 

19.6, 27, 39, 62.4, and 200 GeV. These results are compared with 
baseline calculations (Poisson and negative binomial) and the Ul-
trarelativistic Quantum Molecular Dynamics (UrQMD, version 2.3) 
model calculations [36].

The manuscript is organized as follows. In section 2, we de-
fine the observables used in the analysis. In section 3, we describe 
the STAR (Solenoidal Tracker At RHIC) experiment at BNL and the 
analysis techniques. In section 4, we present the experimental re-
sults for the moments of the net-kaon multiplicity distributions in 
Au+Au collisions at RHIC BES energies. A summary is given in sec-
tion 5.

2. Observables

Distributions can be characterized by the moments M , σ 2, S , 
and κ as well as in terms of cumulants C1, C2, C3, and C4 [37].

In the present analysis, we use N to represent particle multi-
plicity in one event and �NK (NK + − NK − ) the net-kaon num-
ber. The average value over the entire event ensemble is denoted 
by 〈N〉. Then the deviation of N from its mean value can be writ-

http://creativecommons.org/licenses/by/4.0/
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Fig. 1. (Color online.) Raw �NK distributions in Au+Au collisions from √sNN = 7.7 to 200 GeV for 0–5%, 30–40%, and 70–80% collision centralities at midrapidity. The 
distributions are not corrected for the finite centrality bin width effect nor the reconstruction efficiency.
ten as δN = N − 〈N〉. The various order cumulants of event-by-
event distributions of N are defined as:

C1 = 〈N〉 (1)

C2 = 〈(δN)2〉 (2)

C3 = 〈(δN)3〉 (3)

C4 = 〈(δN)4〉 − 3〈(δN)2〉2 (4)

The moments can be written in terms of the cumulants as:

M = C1,σ
2 = C2, S = C3

(C2)
3
2

, κ = C4

(C2)2
(5)

In addition, the products of moments κσ 2 and Sσ can be ex-
pressed in terms of cumulant ratios:

κσ 2 = C4

C2
, Sσ = C3

C2
(6)

3. Data analysis

The results presented in this paper are based on the data taken 
at STAR [38] for Au+Au collisions at 

√
sNN = 7.7, 11.5, 14.5, 19.6, 

27, 39, 62.4 and 200 GeV. The 7.7, 11.5, 39, 62.4, and 200 GeV data 
were collected in the year 2010, the 19.6 and 27 GeV data were 
collected in the year 2011, and the 14.5 GeV data were collected 
in the year 2014.

The STAR detector has a large uniform acceptance at midra-
pidity (|η| < 1) with excellent particle identification capabilities, 
i.e., allowing to identify kaons from other charged particles for 
0.2 < pT < 1.6 GeV/c. Energy loss (dE/dx) in the time projection 
chamber (TPC) [39] and mass-squared (m2) from the time-of-flight 
detector (TOF) [40] are used to identify K + and K − . To utilize the 
energy loss measured in the TPC, a quantity nσX is defined as:

nσX = ln[(dE/dx)measured/(dE/dx)theory]
σX

(7)

where (dE/dx)measured is the ionization energy loss from TPC, and 
(dE/dx)theory is the Bethe–Bloch [41] expectation for the given par-
ticle type (e.g. π, K , p). σX is the dE/dx resolution of TPC. We 
select K + and K − particles by using a cut |nσKaon| < 2 within 
transverse momentum range 0.2 < pT < 1.6 GeV/c and rapidity 
|y| < 0.5. The TOF detector measures the time of flight (t) of a 
particle from the primary vertex of the collision. Combined with 
the path length (L) measured in the TPC, one can directly calculate 
the velocity (v) of the particles and their rest mass (m) using:

β = v

c
= L

ct
(8)

m2c2 = p2
(

1

β2
− 1

)
= p2

(
c2t2

L2
− 1

)
(9)

In this analysis, we use mass-squared cut 0.15 < m2 <

0.4 GeV2/c4 to select K + and K − within the pT range 0.4 < pT <

1.6 GeV/c to get high purity of kaon sample (better than 99%). For 
the pT range 0.2 < pT < 0.4 GeV/c, we use only the TPC to iden-
tify K + and K − . The kaon purity between 0.2 and 0.4 GeV/c is 
about 95%, where only TPC is used.

The collision centrality is determined using the efficiency-
uncorrected charged particle multiplicity excluding identified kaons 
within pseudorapidity |η| < 1.0 measured with the TPC. This def-
inition maximizes the number of particles used to determine the 
collision centrality and avoids self-correlations between the kaons 
used to calculate the moments and kaons in the reference mul-
tiplicity [42]. Using the distribution of this reference multiplicity 
along with the Glauber model [43] simulations, the collision cen-
trality is determined. This reference multiplicity is similar in con-
cept to the reference multiplicity used by STAR to study moments 
of net-proton distributions [29], where the reference multiplicity 
was calculated using all charged particles within |η| < 1.0 ex-
cluding identified protons and antiprotons. Using this definition, 
collision centrality bins of 0–5%, 5–10%, 10–20%, 20–30%, 30–40%, 
40–50%, 50–60%, 60–70%, and 70–80% of the multiplicity distribu-
tions were used with 0–5% representing the most central collisions.

Fig. 1 shows the raw event-by-event net-kaon multiplicity 
(�NK = NK + − NK − ) distributions in Au+Au collisions at 

√
sNN =

7.7 to 200 GeV for three collision centralities, i.e. 0–5%, 30–40%, 
and 70–80%. For the 0–5% central collision, the peaks of the dis-
tributions are close to zero at high energies, and shift towards the 
positive direction as the energy decreases. This is because the pair 
production of K + and K − dominates at high energies while the 
production of K + is dominated by the associated production via 
reaction channel N N → N�K + at lower energy [44]. Collision vol-
ume fluctuations within one finite centrality bin will lead to bin 
width effects, which can be corrected by applying the so-called 
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Fig. 2. (Color online.) Collision centrality dependence of the pT -averaged efficiencies in Au+Au collisions. For the lower pT range (0.2 < pT < 0.4 GeV/c), only the TPC is used. 
For the higher pT range (0.4 < pT < 1.6 GeV/c), both the TPC and TOF are used for particle identification (PID).
centrality bin width correction [42]. Those distributions are not 
corrected for the finite centrality bin width effect and also track 
reconstruction efficiency. However, all the cumulants and their ra-
tios presented in this paper are corrected for the finite centrality 
bin width effect and efficiency of K + and K − .

The moments and cumulants can be expressed in terms of fac-
torial moments, which can be easily corrected for efficiency [45,
46]. The efficiency correction is done by assuming the response 
function of the efficiency is a binomial probability distribution. 
Fig. 2 shows the collision centrality dependence of the pT -averaged 
efficiencies of tracking and PID combined for two pT ranges. 
One can see that at the lower pT range (0.2 < pT < 0.4 GeV/c), 
kaons have a lower efficiency compared with the higher pT range 
(0.4 < pT < 1.6 GeV/c). The efficiencies increase monotonically 
with the centrality changing from most central (0 ∼ 5%) to pe-
ripheral (70 ∼ 80%). K + and K − have similar efficiencies.

By calculating the covariance between the various order fac-
torial moments, one can obtain the statistical uncertainties for 
the efficiency corrected moments based on the error propagation 
derived from the Delta theorem [42,46,47]. The statistical uncer-
tainties of various order cumulants and cumulant ratios strongly 
depend on the width (σ ) of the measured multiplicity distribu-
tions as well as the efficiencies (ε). One can roughly estimate the 
statistical uncertainties of Sσ and κσ 2 as error(Sσ) ∝ σ

ε3/2 and 

error(κσ 2) ∝ σ 2

ε2 . That explains why we observe larger statistical 
uncertainties for central than peripheral collisions, as on the width 
of the net-kaon distributions grows from peripheral to central. Fur-
thermore, due to the smaller detection efficiency of kaons than the 
protons, we observe larger statistical uncertainties of cumulants 
and cumulant ratios than those of the net-proton fluctuations [29]. 
Systematic uncertainties are estimated by varying the following 
track quality cuts: distance of closest approach, the number of fit 
points used in track reconstruction, the dE/dx selection criteria for 
identification, and additional 5% uncertainties in the reconstruction 
efficiency. The typical systematic uncertainties are of the order of 
15% for C1 and C2, 21% for C3, and 65% for C4. The statistical and 
systematic (caps) errors are presented separately in the figures.

4. HIJING+GEANT simulations

To evaluate our methods of data analysis, we have done a stan-
dard STAR GEANT simulation with realistic detector environment 
Fig. 3. (Color online.) Transverse momentum dependence of the efficiency (tracking+
acceptance) for K + and K − in Au+Au collisions at 19.6 GeV from HIJING+GEANT 
simulation.

and input from HIJING model. We generated 4.8 million mini-bias 
HIJING events for Au+Au collisions at 

√
sNN = 19.6 GeV and passed 

the particles from HIJING events through STAR detector simulated 
by using GEANT framework. The track reconstruction in the sim-
ulation is done with the same tracking algorithm as used in the 
STAR experiment. We also applied the same track selection crite-
ria, kinematic cuts (0.2 < pT < 1.6 GeV, |y| < 0.5) for the recon-
structed kaons (K + and K −) as we used in the real data analysis. 
To avoid auto-correlation, the multiplicities of charged protons and 
pions within pseudo-rapidity range |η| < 1 are used to define the 
collision centralities. The centrality bin width correction is also ap-
plied to suppress the volume fluctuations within wide centrality 
bins. As the charged particle ionization energy loss dE/dx in the 
TPC gas is not simulated with sufficient details in the current STAR 
simulations and the time-of-flight (TOF) detectors are not imple-
mented in the STAR Geant, we thus didn’t include dE/dx and TOF 
identification efficiencies in the simulations. The matching of re-
constructed and simulated tracks is determined by requiring at 
least 10 shared common hit points. By doing the simulation, we 
can test the analysis methods as well as the detector response in 
terms of the tracking performance with the realistic tracking envi-
ronment and algorithm.

Fig. 3 shows the transverse momentum (pT ) dependence of 
the efficiency (track reconstruction+acceptance) for K + and K −
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Fig. 4. (Color online.) Event-by-event net-kaon multiplicity distributions for 0–5% 
Au+Au collisions at √sNN = 19.6 GeV from HIJING input and HIJING+GEANT, respec-
tively.

in HIJING+GEANT simulation for Au+Au collisions at 
√

sNN =
19.6 GeV. These efficiencies are obtained by taking the ratio be-
tween the kaon pT spectra from HIJING+GEANT and HIJING input, 
via the formula:

〈ε〉 =
∫ (

dN
dpT

)
RC

dpT

∫ (
dN
dpT

)
MC

dpT

(10)

where the RC and MC represent the tracks reconstructed from 
HIJING+GEANT and from HIJING input, respectively. Those aver-
age efficiencies for K + and K − are calculated within 0.2 < pT <
1.6 GeV/c, |y| < 0.5 at nine centralities in Au+Au collisions at √
sNN = 19.6 GeV and are with the similar (∼ 50%–55%) values as 

the TPC tracking efficiencies obtained from STAR embedding simu-
lation.

Fig. 4 shows the event-by-event net-kaon multiplicity distribu-
tions for 0–5% Au+Au collisions at 

√
sNN = 19.6 GeV from HIJING 

input and HIJING+GEANT, respectively. Due to the reconstruction 
efficiency loss of the kaons, the mean values and the width of 
net-kaon distributions become smaller than that of HIJING input. 
Based on the simulations, we have done a binomial test for the re-
sponse function of kaon efficiencies. By fixing the input number of 
K + , we fitted the event-by-event number of reconstructed K + dis-
tributions with binomial distribution function (red dashed lines). 
The fitting results are shown in Fig. 5 and results in different pan-
els represent different input number of K + , which is varied from 
30 to 22 and corresponds to the 0–10% collision centrality. Fig. 6
shows the centrality dependence of the cumulants and cumulant 
ratios of net-kaon multiplicity distributions in Au+Au collisions at √

sNN = 19.6 GeV from the HIJING+GEANT simulations. The red cir-
cles represent the results from HIJING input. The blue crosses and 
black stars represent the efficiency corrected and uncorrected re-
sults, respectively. The efficiency correction is done by using the 
analytical formula derived from factorial moment assuming bi-
nomial response function of the kaon efficiencies [45,46]. With 
this simplified simulation approach, the efficiency corrected cu-
mulant and cumulant ratios are consistent with the results from 
the original HIJING INPUT for net-kaons. The efficiency correction 
procedure tends to significantly increase the statistical errors. The 
STAR collaboration is currently exploring other functions including 
a beta-binomial distribution to describe the efficiencies. Unfolding 
Fig. 5. (Color online.) Event-by-event reconstructed K + multiplicity distributions for Au+Au collisions at √sNN = 19.6 GeV with various fixed input number of K + (22–30) 
from HIJING, respectively.
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Fig. 6. (Color online.) Cumulants (1–4th order) of net-kaon distributions in Au+Au collisions at √sNN = 19.6 GeV from HIJING+Geant simulations. The red circle represents 
the results from HIJING INPUT. The blue crosses and black stars are the results of efficiency corrected and uncorrected results after HIJING events passing through the GEANT 
simulation with realistic STAR detector environment.

Fig. 7. (Color online.) Collision centrality dependence of cumulants (C1, C2, C3, and C4) of �NK distributions for Au+Au collisions at √sNN = 7.7–200 GeV. The error bars are 
statistical uncertainties and the caps represent systematic uncertainties. The Poisson and NBD expectations are shown as dashed and blue solid lines, respectively.
methods are being evaluated as correction method for efficiencies 
including those from PID cuts and tracking [48]. The PID effects 
from the TPC and the TOF are not currently simulated through 
GEANT. These improvements will be necessary for the beam en-
ergy scan phase II program where an order of magnitude increase 
in the data sample is expected.
5. Results

Fig. 7 shows the centrality dependence of cumulants (C1–C4) 
of net-kaon (�NK ) multiplicity distributions in Au+Au collisions 
at 

√
sNN = 7.7–200 GeV. The collisions centralities are represented 

by the average number of participating nucleons (〈Npart〉), which 
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Fig. 8. Collision centrality dependence of M/σ 2 for �NK distributions in Au+Au collisions at
√

sNN = 7.7–200 GeV. The Poisson expectations are shown as dashed lines.

Fig. 9. (Color online.) Collision centrality dependence of the Sσ for �NK distributions from Au+Au collisions at √sNN = 7.7–200 GeV. The error bars are statistical uncertain-
ties and the caps represent systematic uncertainties. The Poisson (dashed line) and NBD (blue solid line) expectations are also shown.
are obtained by Glauber model simulation. The efficiency correc-
tions have been done using the values shown in Fig. 2. In general, 
the various order cumulants show a nearly linear variation with 
〈Npart〉, which can be understood as the additivity property of the 
cumulants by increasing the volume of the system. This reflects the 
fact that the cumulants are extensive quantities that are propor-
tional to the system volume. The decrease of the C1 and C3 values 
with increasing collision energy indicates that the ratio K +/K −
approaches unity for the higher collision energies. Fig. 7 also shows 
the Poisson and negative binomial distribution (NBD) [49,50] ex-
pectations. The Poisson baseline is constructed using the measured 
mean values of the multiplicity distributions of K + and K − , while 
the NBD baseline is constructed using both means and variances. 
Assuming that the event-by-event multiplicities of K + and K − are 
independent random variables, the Poisson and NBD assumptions 
provide references for the moments of the net-kaon multiplicity 
distributions. Within uncertainties, the measured cumulants val-
ues of C3 and C4 are consistent with both the Poisson and NBD 
baselines for most centralities.

The ratios between different order cumulants are taken to can-
cel the volume dependence. Figs. 8, 9, and 10 show the 〈Npart〉
dependence of �NK distributions for cumulant ratios C1/C2

(= M/σ 2), C3/C2 (= Sσ ), and C4/C2 (= κσ 2), respectively. The 
values of C1/C2, shown in Fig. 8, systematically decrease with in-
creasing collision energy for all centralities. The Poisson baseline 
for C1/C2 slightly underestimates the data, indicating possible cor-
relations between K + and K − production. For C3/C2 (= Sσ ) in 
Fig. 9, the Poisson and NBD expectations are observed to be lower 
than the measured Sσ values at low collision energies. The mea-
sured values for C4/C2 (= κσ 2) in Fig. 10 are consistent with both 
the Poisson and NBD baselines within uncertainties.

The collision energy dependence of the cumulant ratios for 
�NK distributions in Au+Au collisions are presented in Fig. 11. 
The results are shown in two collision centrality bins, one cor-
responding to most central (0–5%) and the other to peripheral 
(70–80%) collisions. Expectations from the Poisson and NBD base-
lines are derived for central (0–5%) collisions. The values of M/σ 2

decrease as the collision energy increases, and are larger for cen-
tral collisions compared with the peripheral collisions. For most 
central collisions, the Poisson baseline for C1/C2 slightly underes-
timates the data. Within uncertainties, the values of Sσ and κσ 2

are consistent with both the Poisson and NBD baselines in central 
collisions. The blue bands give the results from the UrQMD model 
calculations for central (0–5%) Au+Au collisions. The width of the 
bands represents the statistical uncertainties. The UrQMD calcula-
tions for Sσ , and κσ 2 are consistent with the measured values 
within uncertainties [51,52]. A QCD based model calculation sug-
gests that, due to heavy mass of the strange-quark, the sensitivity 
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Fig. 10. (Color online.) Collision centrality dependence of the κσ 2 for �NK distributions from Au+Au collisions at √sNN = 7.7–200 GeV. The error bars are statistical 
uncertainties and the caps represent systematic uncertainties. The Poisson (dashed-line) and NBD (blue-solid-line) expectations are also shown.
Fig. 11. (Color online.) Collision energy dependence of the values of M/σ 2, Sσ , 
κσ 2 for �NK multiplicity distributions from 0–5% most central and 70–80% pe-
ripheral collisions in Au+Au collisions at √sNN = 7.7, 11.5, 14.5, 19.6, 27, 39, 62.4 
and 200 GeV. The error bars are statistical uncertainties and the caps represent sys-
tematic uncertainties. The expectations from Poisson and NBD and the results of the 
UrQMD model calculations are all from the 0–5% centrality.

of the net-kaon (�NK ) fluctuations is less than that of the net-
proton (�Np) [53]. A much high statistics dataset is needed for 
the search of the QCD critical point with strangeness.

6. Summary

In heavy-ion collisions, fluctuations of conserved quantities, 
such as net-baryon, net-charge and net-strangeness numbers, are 
sensitive observables to search for the QCD critical point. Near the 
QCD critical point, those fluctuations are expected to have similar 
energy dependence behavior. Experimentally, the STAR experiment 
has published the energy dependence of the net-proton (proxy for 
net-baryon) [29] and net-charge [30] fluctuations in Au+Au colli-
sions from the first phase of the beam energy scan at RHIC. In 
this paper, we present the first measurements of the moments 
of net-kaon (proxy for net-strangeness) multiplicity distributions 
in Au+Au collisions from 

√
sNN = 7.7 to 200 GeV. The measured 

M/σ 2 values decrease monotonically with increasing collision en-
ergy. The Poisson baseline for C1/C2 slightly underestimates the 
data. No significant collision centrality dependence is observed for 
both Sσ and κσ 2 at all energies. For C3/C2 (= Sσ ), the Poisson 
and NBD expectations are lower than the measured Sσ values at 
low collision energies. The measured values for C4/C2 (= κσ 2) are 
consistent with both the Poisson and NBD baselines within uncer-
tainties. UrQMD calculations for Sσ and κσ 2 are consistent with 
data for the most central 0–5% Au+Au collisions. Within current 
uncertainties, the net-kaon cumulant ratios appear to be mono-
tonic as a function of collision energy. The moments of net-kaon 
multiplicity distributions presented here can be used to extract 
freeze-out conditions in heavy-ion collisions by comparing to Lat-
tice QCD calculations. Future high statistics measurements with 
improved efficiency correction method will be made for fluctua-
tion studies in the second phase of the RHIC Beam Energy Scan 
during 2019–2020.
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