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Control of Serial and Parallel Robots: Analysis
and Implementation

Ruvinda V. Gunawardana

Abstract

The research presented in this thesis is categorized into two areas. In the first part
we address the issue of uniform boundedness of the elements of the equations of motion of
serial robots, an important issue for the control of robots in this class. The second part is
dedicated to the dynamic modeling and model based control of parallel robots. The field
of serial robot control experienced tremendous growth over the past few decades resulting
in a rigorous body of control results. An important assumption that is frequently made in
establishing stability properties of these control laws is that the terms associated with the
equations of motion of serial robots such as the inertia matrix, the Coriolis/centrifugal terms,
and the Hessian of potential energy are uniformly bounded. This assumption however, is
not valid for all serial robots. Since the stability conclusions of many controi laws become
local for robots that violate this assumption, it’s important to be able to determine whether
the terms in question are indeed uniformly bounded for a given robot. In the first part of
this research we examine this issue and characterize the class of serial robots for which
each of these terms are uniformly bounded. We also derive explicit uniform bounds for
these terms which become important in control synthesis since the uniform bounds appear
in the expressions of many control laws. The second part of this research is dedicated
to parallel robots. Unlike in the case of serial robots, in parallel robots the independent
generalized coordinates corresponding to the actuated joints do not uniquely determine the
configuration of the robot. Therefore, an important issue that must be resolved in order
to derive the dynamics of parallel robots is the existence of a transformation from the
independent coordinates to a set of dependent coordinates that completely determine the
robot configuration. The existence of such a transformation will enable the extension of
most results in serial robots to parallel robots. In this research we characterize a region
with specified boundaries where such a transformation exists and derive a numerical scheme
for implementing the transformation in real time. Another contribution of this research is
the design and construction of the Rice Planar Delta Robot which will serve as a test bed
for results on parallel robots. This robot was used to experimentally verify the above result
in a trajectory tracking experiment and a fast pick and place experiment.
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Chapter 1

Introduction

In most robots that are popular today, the links are connected sequentially starting
from the base to the end effector or the gripper. Each link is connected to the previous
link in the link chain by a revolute joint (permits relative rotation) or a prismatic
joint (permits relative translation) and all of the joints are actuated. We refer to
this type of robot as a “serial robot” to distinguish them from another class called
“parallel robots”. In a parallel robot the links are connected in series and parallel
combinations and only some of the joints are actuated. Figure 1.1 shows an example
of a parallel robot and a serial robot. Parallel robots offer advantages over traditional
serial robots such as faster acceleration and greater rigidity at the end effector.
Control of serial robots is an area of research that has received much attention
over the past two decades resulting in a comprehensive body of control results. While
initial results were developed assuming ideal conditions such as perfectly rigid links,
ideal actuators. and no friction. as the research in this area became more mature
control strategies that account for these effects were developed. In establishing the
stability of many of these control laws a commonly made assumption is that the terms
arising in the equations of motion of serial robots are uniformly bounded. This as-
sumption however, is not valid for all serial robots. Since the uniform boundedness is
necessary in order to establish global stability, for those robots that don’t satisfy uni-
form boundedness the stability conclusions of many control laws become local. In the
first part of this research we will re-examine the validity of the uniform boundedness

assumption and its consequences in control law synthesis.
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Figure 1.1: A Parallel Robot and a Serial Robot

In the second part of this research we will concentrate on parallel robots. Since
parallel robots are a more recent development. control of parallel robots has received
relatively less attention. Furthermore. due to the complexities involved with kine-
matic and dynamic formulation, designing controllers for parallel robots is more chal-
lenging. Due to these reasons, control of parallel robots is still an open research
problem. An interesting question is whether the wealth of control results that al-

ready exists for serial robots can be extended to parallel robots. Since the structure



and properties of the equations of motion of serial robots have been exploited in con-
trol, in order to extend these results to parallel robots the equations of motion of
parallel robots must be derived such that they retain the same structure as the equa-
tions of motion of serial robots. In the second part of this research we will examine

some important issues related to this problem.

1.1 The Uniform Boundedness Property of Serial Robots

The equations of motion of a serial robot assuming perfectly rigid links, rigid trans-

missions, and zero friction have the following structure [66]:

D(q)q + C(q.9)a +g(q) = u, (L.1)

where the n—vectors q. §. and @ represent the joint variables, velocities and ac-
celerations respectively, D(q) is the n x n inertia matrix, C(q, Q)q. represents the
Coriolis/centrifugal terms, g(q) is the gravity vector, and u is the vector of general-
ized input forces/torques. Even though (1.1) represents a highly coupled nonlinear
system of equations, it possesses some very important properties. These properties
enabled researchers to achieve considerable success in designing control strategies.

The following are some of the properties that are commonly exploited in control:

1.1. The equations of motion can be written in the form of (1.1) where there is an

independent input corresponding to each degree of freedom.
1.2. The matrix D — 2C is skew symmetric.
1.3. The inertia matrix D(q) is symmetric and positive definite.

1.4. We can define a vector 6 representing all of the unknown mass, length and

inertia parameters such that the equations of motion (1.1) is linear in 6. That



is, we can write
D(q)a+C(q,q)a+g(a) =Y(q4.4)f

where Y(q, ¢, q) is a matrix that is dependent only on the joint variables and

their derivatives.

The control strategies that were developed over the past two decades include PD
and PID based control, passivity based control, adaptive control, and robust control
[51]. In establishing the stability properties of these control laws, in addition to
properties 1.1-1.4 it’s also commonly assumed that the matrices D(q), C(4,q), and
9%% (the Hessian of potential energy, which will be referred to as the Hessian in
this thesis) are uniformly bounded. We refer to a matrix A/ (q) as being uniformly
bounded when there exists a constant ¢ independent of q, such that® |[M(q)|| < ¢ for

all @ € R". That is, in the stability analysis of many control laws it’s assumed that

constants gy, 0. 7, and 3 exist such that?

0
D@l >0 D@l <o | G2 <0, vaeR, (12
and
cla @l <ldl. vae R (13)

Note that since the C(q,q) matrix is a function of both q and q, it can be uni-
formly bounded with respect to either of these variables. For control, the uniform

boundedness of interest is that with respect to q.

11n this thesis, we use the following standard notation and terminology: ® denotes the set of real
numbers, and R denotes the usual n-dimensional vector space over endowed with the Euclidean
1

norm ||x| = {Z:;l a:iz}"' . R™*m denotes the set of all n x m matrices with real elements. Unless
otherwise specified. for M € R**™, | M| is the induced-2 matrix norm of M corresponding to the
Euclidean vector norm on R".

2The max-bound of a PSD matrix M is a mapping [|.| : ®**" — R* defined by [[M|lmax =
maXxTx=1 xen X Mx. The min-bound of a PSD matrix M is a mapping [li] : R>*7 — R* defined
by ”]\J”min = minxTX=1'xeg{n XTL\’IX



It’s known that the inertia matrix, the Hessian, and the C(q.q) matrix are all
uniformly bounded for serial robots with joints that are all revolute [51]. They are
not, however, uniformly bounded for any general serial robot. For example, consider

the revolute-prismatic (RP) robot of Figure 1.2 for which the terms in question are

Figure 1.2: A revolute-prismatic (2 d.o.f.) Serial Robot

given by,

gama(lea +q2)  @imalles + g2)
—gima(le + go) 0

D(q) = R },C(q,q)=l

dg(q) —myleagsin(q;) — ma(qe + le2)gsin(q;) magcosq;
dq M2 gCosy; 0|’



where d; = myl% + ma(q: + l2)* + [y + I, It can be seen that d;, can be made
arbitrarily large by selecting g» sufficiently large. Therefore, a constant o> (indepen-
dent of q) satisfying (1.2) does not exist for this robot. Thus the inertia matrix is
not uniformly bounded. It can be seen that the C(q.q) matrix and the Hessian are
also not uniformly bounded for this robot for the same reason.

At this point a reader might question as to why the uniform boundedness is
important since all of the terms in question are bounded within the workspace of
the robot. That is, for anv given robot it’s always possible to find constant bounds,
€1, C2, 3, and ¢4 such that

dg(q)

C)q l S Cy. Vq € VV’,

D@l > 1. [D(@llmes < 20 €@ D) < esllal ]
(1.4)

where W is the workspace of the robot defined as follows:

; - -

q:
a2
. : . . R if joint 7 is revolute
W=<{q= R | T e
qi lg;} <@, if joint ¢ is prismatic
\ L 4n A J

Note that 7 represents the physical extension limits of prismatic joints. The impor-
tance of uniform boundedness in (1.2)-(1.3) versus the boundedness in (1.4) above lie
in the approach that is taken in establishing the stability of many control laws. We
will consider, for example. the adaptive PD controller of Tomei [70] to illustrate this
point.

Let’s first consider the background out of which the work of [70] arose. It was
well established before this work that asymptotic stability and zero steady state error
for the set point tracking problem can be achieved with PD control, provided the

gravity vector can be compensated exactly [66]. In implementation, it was difficult to



compute the gravity vector exactly due to uncertainties in measurements. In the work
of [70], the linearity in the parameters of the robot equations of motion (Property
1.4) is exploited to adaptively improve the estimate of the gravity vector. The control

law is given by
u=-Kp(q-q*) - Kpg+ E(qQ)p.

where q? is the desired position, the matrices Kp and Kp are the PD gains, and
E(q)p = g(q) is the estimate of the gravity vector. The vector p represents the link
parameters and the matrix F(q) is the regressor. The matrix Kp must be selected
positive definite and the matrix Kp must be selected such that [‘—)% + K p] is positive
definite. This can be achieved by selecting Kp to be diagonal with each entry k
satisfying

kpi > ,B, (15)

where Hd—”a%lH < (3. The parameter adaptation law is given by

2(q - q%) } ‘

b= —wE"(q) [&1 T a-a a-99

where w is a positive constant, and § must be selected such that?

i 20 1 Mi(Kp)? | . ,
§ > ma: {m Wi [2/\m(Kp) + 40y + \/E]} (1.6)

The notation A,(A) and Ay, (A) is used to denote respectively, the smallest and largest
eigenvalues of a matrix 4. The stability properties are established using Lyapunov
stability analysis. The global positive definiteness of the Lyapunov function V and
the global negative semidefiniteness of V is established provided (1.5) and (1.6) are

satisfied for all ¢ € R". It can be seen that this can only be achieved if the inertia

Ve have ignored coulomb friction even though it’s included in [70] since it’s not important in our
discussion.



matrix, the C(§, q) matrix, and the Hessian are all uniformly bounded since the
uniform bounds ¢,, s, 8. and 7y of these terms are used in (1.5) and (1.6). If
these terms are not uniformly bounded and if the bounds ¢, ¢s. ¢3. and ¢4 of (1.4)
are used instead of the uniform bounds oy, 02, B, and ~v of (1.2) and (1.3), only
the local positive definiteness of the Lyapunov function V' and the local negative
semidefiniteness of V can be established. Hence, when the uniform boundedness
assumption is not satisfied, the stability conclusions becomes local. In this case, even
though (1.4) is valid throughout the robot workspace I, the stability conclusion will
not. in general, be valid throughout W. Furthermore, it’s very difficult to characterize
the valid domain of a local stability result. Hence, a global stability result is always
more useful than a local stability result.

Therefore. it can be seen that in the implementation of many control laws it’s
necessarv to know the class of robots for which the terms in question are uniformly
bounded. In [31], the class of robots for which the inertia matrix is uniformly bounded
was characterized. This class was named class BD (which stands for Bounded inertia
matrix D). In addition to characterizing class BD. explicit expressions for uniform
bounds o, and o satisfving (1.2) were also presented in [31]. The explicit expressions
of the uniform bounds are important in controller synthesis since the uniform bounds
appear in the control law expression. In Chapter 2 we extend this work and character-
ize the class of robots for which the C(q, q) matrix is uniformly bounded and derive
an expression for the uniform bound 7 satisfving (1.3). The uniform boundedness
of the Hessian is addressed in Chapter 3 where we characterize the class of robots
for which the Hessian is uniformly bounded and derive an expression for the uniform
bound @3 satisfying (1.2). In addition we will also derive a bound ¢ satisfying (1.4)

for robots for which a uniform bound J satisfying (1.2) doesn’t exist.



This work will be important in the implementation of many control laws that
exploit the uniform boundedness property. These include the PD plus simple gravity
compensation controller of [68]. the PD based controller of [44], the learning gravity
compensators of [15], the PI?D regulator of [59], the robust control law of [63]. the
robust adaptive controllers of [8] and [18], the controllers for flexible joint robots
reported in [30], [28], [29]. [27). [1]., [71]. [43]. [57]. and [62], the adaptive control
laws of [67], [70], and [65]. the control laws based on the energy Lyapunov function
approach studied in [78]. and the passivity based controller-observer of [9].

In summary. this work will clarify and extend our current understanding of an
important property of serial robots, namely, the uniform boundedness property which
is essential to establish global stability of many control laws. This work will enable
one to determine simply by inspecting the joint configuration of a given robot whether
the uniform boundedness is satisfied and thereby determine whether a large number
of control laws will retain globality. The explicit expressions for the uniform bounds
~ and 8 will be extremely important in controller synthesis since the explicit values

of the uniform bounds are necessary to compute the control law expression.

1.2 Model Based Control of Parallel Robots

During the past few vears, results on control of parallel robots have begun to appear
in the literature. Many of the methods used in serial robot control have been proposed
for parallel robots also. These include PID control {2], adaptive control [74]. robust
control {12], optimal control 48], learning control [46], hybrid force/position control
[64], and artificial intelligence based methods [5], [20]. Unlike in the case of serial
robots. where the stability properties of most model based control laws have been
rigorously proved, for parallel robots the stability properties of many of these control

laws are not well established.
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A precursor to the development of rigorous stability analyses for serial robots was
the formulation of equations of motion of serial robots (1.1) and the establishment
of properties 1.1-1.4. A major hurdle in establishing stability properties for parallel
robots is the lack of a dynamics model similar to (1.1) that is valid for all parallel
robots. The problem of deriving the equations of motion of parallel robots received
considerable attention over the past decade. Much of this work was directed at
deriving the equations of motion of a particular robot or a restricted class of robots
with a specific structure [50], [39], [61], [21], [32]. [49]. [41]. [19] and [17]. The results
that are of interest for control are those that are more general.

In 1985 Luh and Zeng proposed a procedure for computing the dynamics of par-
allel robots for simulation and real time control [53]. Their objective was to derive an
efficient algorithm to compute the input force/torques corresponding to a particular
motion of the robot. That is, the algorithm should be able to compute the input
joint forces/torques given the position, velocity, and acceleration of the robot. Most
of the research on the dynamics of parallel robots concentrate on this problem, which
is frequently referred to as the“inverse dynamics” problem. In [53] parallel robots
with one loop only are considered and the authors claim that the extension of the
method to general parallel robots is straight forward. The proposed method involves
virtually cutting open the closed loop at a joint that is not actuated and then deriving
the equations of motion of the resulting open loop robot. The Newton-Euler recursive
formulation is proposed for deriving the equations of motion of the open loop robot.
The actual equations of motion of the parallel robot are then computed, in terms
of the joint variables and Lagrange multipliers. by using d’Alembert’s principal. An
expression for the Lagrange multipliers in terms of the joint variables are also pre-
sented. The final equations of motion are in terms of both active and passive joint

variables. While the procedure is useful for the inverse dynamics problem, it’s not
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useful for control law design since we need information on the structure of the final
equations of motion for control law design.

Around the same time Kleinfinger and Khalil proposed a similar procedure for
computing the dynamics of parallel robots [45]. They also virtually cut open the
closed loop and analyzed the resulting open loop robot first. This method became
popular and essentially all of the results on the dynamics of parallel robots involves
virtually cutting open a joint in the closed loop and then analyzing the open loop
robot first. Kleinfinger and Khalil proposed a more efficient notation for describing the
kinematics of the open loop robot and proposed the Newton-Euler recursive scheme
to compute the dynamics of the open loop robot. In their formulation, the Lagrange
multipliers are eliminated and the final equations of motion of the parallel robot are
given in terms of the dynamics of the open loop robot and the partial derivatives of
the constraints corresponding to the virtually cut joints. Their equations are also in
terms of both the active and passive joint variables. Note that in a typical parallel
robot the number of actuated joints equal the number of degrees of freedom of the
robot and hence, the actuated joint variables form an independent set of coordinates.
The joint variables corresponding to both the actuated and passive joints form a
dependent coordinate set.

In [56], the dynamics of parallel robots that are over actuated are also taken in
to account. The result iv similar to that of [53] and is valid for parallel robots with
multiple loops. Their method does not involve the Lagrange multipliers. In this
work it is assumed that explicit expressions for the passive joint variables in terms
of the active joint variables exist. This assumption however, is not valid globally for
all parallel robots. For the case when the parallel robot is over actuated, the extra

actuators are used to optimize some desired criterion such as the joint torques.



12

4

The issue of computing the equations of motion of parallel robots in terms of the
actuated joint variables was addressed in several results. In the work of Murray and
Lovell [55], the system that is obtained by virtually cutting open joints is referred to
as the “reduced system” *. That is, the reduced system together with the constraints
introduced by the loop closure represents the true parallel robot.

The dynamics of the reduced system can be obtained in terms of a coordinate set
that is of greater dimension than the number of degrees of freedom of the parallel
robot using methods that are already known. An explicit expression for the equa-
tions of motion of the parallel robot is then derived in terms of the dynamics of the
reduced system and the Jacobians of the functions relating the different coordinate
systems. In order to derive the equations of motion in terms of the independent co-
ordinate set corresponding to the actuated joints. a coordinate transformation from
the independent set to the dependent coordinate set must exist. The equations of
motion derived in [55] assumes the existence of such a coordinate transformation.
They discuss this issue and state that while it’s possible to derive explicit expressions
for such a transformation for some parallel robots, for more complicated systems the
transformation has to be computed through iterative techniques. The need for de-
riving the equations of motion in terms of the independent generalized coordinates
corresponding to the actuated joint variables arise since they are the variables that
are measured in control. In [55] this point is considered further and the situation
when the measured variables are not the same as the actuated joint variables is also
accounted for. This extra generalization is not important in most applications since
the measured joint variables are almost always the actuated joint variables. A very

similar result to that of [55], which also derives the dynamics of parallel robots in

4The term “Reduced system” is used in {55] to describe the open loop system obtained by virtually
cutting open joints of a parallel robot. In our research, we will use the term “free system” to describe
this open loop system.
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terms of independent coordinates, is presented in [58] where an explicit expression. in
terms of the derivatives of the constraint equations, for the jacobian matrix relating
the independent and dependent coordinate systems is derived.

Several other related results on the dynamics of parallel robots are more suitable
for simulations and fast computation for real time control. Among these, [52] uses the
concept of dynamic equilibrium to solve the inverse dynamics problems for parallel
robots . This work is equivalent to the result of [53]. Another result that is closely
related to the results mentioned above is presented in [42]. This work has led to a
numerical algorithm for the dynamic modeling and simulation of parallel robots. In
[75] the equations of motion are formulated in cartesian space and then transformed
into joint space using transformation Jacobian matrices. The authors propose using
a recursive algorithm they developed in a previous paper [76] to solve the kinematics
problem which can then be used to derive these Jacobian matrices. This work has also
resulted in the development of a computer program that can compute the dynamics
of parallel robots.

The specific problem of deriving a general expression for the equations of motion
of parallel robots in a manner that is conductive to control law design was addressed
in [24]. The final equations of motion derived in [24] have the same structure as the
equations of motion for serial robots (1.1) and in subsequent work it was shown that
they possess some of the important properties. such as the skew symmetry property
(Property 1.2) of (1.1) [22]. Therefore, this work allows for the straight forward
extension of the control results in the serial robot domain to parallel robots.

In the derivation of [24], the parallel robot is considered to be a system which
consists of a free system ¥’ to which constraints C are applied as shown in Figure 1.3
for an illustrative planar mechanism. The free system £’ is an n’ degree-of-freedom

(d.o.f) holonomic system obtained by virtually cutting joints in the parallel robot
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Constrained Systemn £

Free System X @ Constraints € @ Constrained System &

Figure 1.3: Free System, Constraints, and Constrained System

until we obtain a combination of serial robots or rigid bodies. Hence, the free system

can be described by the following differential equation
T D'(Q)g+C(d.4)q +g(q)=0 (1.7)

where ¢ € R is the vector of the generalized coordinates of the free system Y,
D'(q') € R¥*" is the inertia matrix, C'(q, q) ¢ € R represent the centrifugal and
Coriolis terms. and g'(q’) € ®" is the gravity vector. The final equations of motion
of the constrained system (the parallel robot) are given in terms of independent

generalized coordinates q by.
D(d)q+C(d.q)a+gld)=u (1.8)

where the vector u is the vector of generalized input forces/torques corresponding to

the actuated joints and
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Explicit expressions for the matrices p(q') and p(dq’. ) were also presented. The
existence of the parameterization g’ = o(q) of (1.9) is established in the immediate
neighborhood of a non singular configuration of the robot by the Implicit Function
Theorem. Here, a singular configuration is defined as a point in the robot workspace
for which the Jacobian of an augmented set of constraints becomes singular. It can
be seen that the final equations of motion (1.8) have the identical structure as the
equations of motion of serial robots in (1.1).

Before this result can be used to design control laws however, there are two im-
portant issues that must be resolved. Note that the existence of the parameterization
(1.9) is necessary for the equations of motion (1.8) to be valid. Since the Implicit
Function Theorem establishes only the existence of a neighborhood where (1.9) is
valid and it does not characterize the neighborhood, we only know that the equations
of motion are valid in the immediate vicinity of a valid, non singular configuration of
the robot. In order to implement control we must be able to define a useful region
of the robot workspace where the equations of motion (1.8) are valid. Therefore. the
first issue that needs to be resolved is the characterization of a useful region where
(1.9) is valid and thereby control can be successfully implemented. The second issue
that must be addressed is the computation of (1.9) in real time for the implementa-
tion of control laws which compensate for the terms in the equations of motion. In
the implementation of these control laws, the control system must perform several

tasks during each sampling period T', which can be less than 1 milli second. These
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include reading the sensory data, computing q' = o(q), computing the control law
expression, and sending the control to the actuators. Therefore, the time available for
computing q' = o(q) is in the microsecond range. Even though the existence of (1.9)
is established by the Implicit Function Theorem, it does not provide a method for
computing it. Therefore. in order to implement control laws that compensate for the
dynamics (such as computed torque) there is a need for an efficient numerical scheme
with guaranteed convergence to compute q' = ¢(q) in real time. In this research we
address these issues.

Another important contribution of this research is the design and construction of
the Rice Planar Delta Robot (R.P.D.R.). An important aspect of research that is
often neglected is the experimental verification of theoretical results. In the Robotics
group at Rice University, we have paid much attention to this aspect. In order to
experimentally verify the results of this research as well as future results on parallel
robots, there was a need to design and construct a parallel robot. Since this robot
was to be designed for academic research, many special features including ease of
modeling, flexibility in terms of control law implementation, and the ability to vary
model parameters were desired. We designed the R.P.D.R. with special attention to
these issues. It was successfully used to verify the results of this research and will be
used in the future to verify other results on parallel robots. The design process of the
R.P.D.R. is described in Appendix A.

One of the most common applications of parallel robots is in pick-and-place op-
erations where the robot is made to move back and forth between two points in the
workspace. Here it’s not important exactly what trajectory the robot followed in
order to get to the desired end point. For this type of motion, commonly referred to

as set point tracking, it’s possible to use the PD plus simple gravity compensation



control law given by,
u=Kp(q*-q) - Kvq+g(q). (1.10)

originally proposed in [68] for serial robots and later extended in [22] and [23] for
parallel robots with guaranteed asymptotic stability. The main advantage of this
control law is that the compensation term, g(q?), can be computed off-line. Hence,
the issue of computing @ = o(q) in real time does not arise. In Chapter 4 we
implement the PD plus simple gravity compensation control law in a pick-and-place
application. We use the Rice Planar Delta Robot (R.P.D.R.) for this experiment. We
derive the equations of motion of the R.P.D.R. based on the formulation of {24] and
perform simulations of the pick-and-place motion. We present experimental results
along with simulations which show satisfactory agreement.

The two issues associated with the dynamics formulation of [24] mentioned above
are addressed in Chapter 5. We begin by characterizing an explicit set. surrounding
a given valid configuration of the robot, where the parameterization q' = o(q) is
valid. This is useful in determining the domain of attraction for a given control law.
We extended this result and characterize a region of the robot workspace where the
parameterization q' = o(q) is valid along any trajectory contained within it. This
result is important since control design and analysis is meaningful only when the
parameterization @' = o(q) exists. This contribution is useful in control synthesis
also for trajectory planning. Finally we address the second issue mentioned above
and propose a numerical algorithm for computing q' = o(q) in real time and derive
sufficient conditions for convergence. Based on this result we propose a procedure for
implementing control in parallel robots. With this result we were able to implement
trajectory tracking in the R.P.D.R. The trajectory selected makes the end-effector of
the R.P.D.R. follow a circle and the well known inverse dynamics control law [66] was

used. The experimental results are also presented and they confirm the theoretical
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predictions. Finally in Chapter 6 we summarize the contributions of this thesis and

propose extensions to this research.
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Chapter 2

The Uniform Boundedness of the
Coriolis/Centrifugal Terms

In this chapter we study the uniform boundedness of the Coriolis/centrifugal terms in
(1.1). We will first characterize the class of robots for which the Coriolis/centrifugal
terms are uniformly bounded and then propose a method for computing the uniform
bound ~ satisfying (1.3). This chapter is organized as follows: in Section 2.1 we
set up notation and derive an expression for the C(q,q) matrix in terms of link
parameters. In section 2.2 we prove that the C(q, ) matrix is uniformly bounded for
class BD robots. This is followed by Section 2.3 where we prove that the necessary
and sufficient condition for the C(q,q) matrix to be uniformly bounded in a given
robot is that it belong to class BD. In section 2.4 we illustrate the procedure for
computing the uniform bound v satisfying (1.3) with an example. Finally, in Section

2.5 we summarize the findings of this chapter.

2.1 Kinematics Review

In this thesis we use the modified Denavit-Hartenberg (DH) convention of [14] to
describe the kinematics of robots (see Figure 2.1). We summarize in Table 2.1, the
notation used to determine the coordinate transformations.  The transformation

matrix {77 from frame (i — 1) to frame ¢ is given by,

R g G, o ’
::_1T = Oll—: 11—1 : RZ-I = Rx(ai—l)R:(Oi) = SOiCai-l CGiC"i-l ~Saiy
X SO,Sai—l CoiSa,-_l C(Yi-l
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Figure 2.1: The Center of Mass Location+Modified DH Parameters

Qi1
dﬁ—l = | —diSa,_;

diCa,_,
where R!_, is the rotation matrix from frame (i—1) to frame : , and d:_, is the position
vector of the origin of frame 7 in frame (2 — 1). Note that Cinge = cos(angle), and
Sangle 2 sin{angle).

In the results of this chapter, the center of mass locations also plays an important

role. Let ¢; denote the position vector of the center of mass of link 7 expressed in
coordinate frame i as shown in Figure 2.1. Since frame i is attached rigidly to link 1,

c; is constant. Let h; denote the position vector of the center of mass of link ¢ in the



| Symbol | Description |
n Number of joints in the robot
q; i" joint variable
q n—-dimensional vector of joint variables
a; Length parameter of link ¢
Q; Twist parameter of link ¢
d; Offset parameter of link (i — 1)
6; Angle parameter of link (i — 1)
Z; Unit vector along Z axis of frame ¢ in base frame
R.(a) | Rotation matrix representing a rotation of a degrees about the X axis
R.(6) | Rotation matrix representing a rotation of ¢ degrees about the Z axis

Table 2.1: Notation for Kinematics Parameters

base frame (frame 0). From geometry, we see that
b —
hi = Z Oj_le + OiCi,
j=1
where Oj_lO; denotes the vector from O;_; to O; expressed in the base frame, and
O,C; is the vector from O; to the center of mass of link ¢ expressed in the base frame.

In terms of the quantities defined above, Oj_lo_;' = Rﬁ_1d§_1 and OiC'; = Ric;

(where R} = [T}, R}_l is the rotation matrix from the base frame to the i** frame).
Therefore,
i
hy =Y Ry 'dl_, + Rici. (2.1)
i=1

Note that when j =1, R} = RY=1.

Our next objective is to derive an expression for the C(q, ) matrix in terms of
link parameters. In order to retain the skew symmetry property, we will use the
formulation in terms of the Christoffel symbols presented in [66]. The (i, j)"* element

of the C(q, q) matrix is defined as follows:

n
Gy = ch.j,if?k
k=1
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" 11dd;; 0Odiy Odijl| .
=33 [a SRt a“]qk, (2.2)
k=1 < Ak qj q:
where ¢ j;, 1 =1,---,n, j=1---.n k=1,---,n, are Christoffel symbols, and d ;

is the (i,7)" element of the inertia matrix, D(q). Following the derivation in [66],
the inertia matrix is given by
Dla) =3 (me 5 (@) Jula) + Ja(@)" By (@)L RN @) (@) -

where m; and I, are respectively, the mass and inertia about the center of mass of
link /. Note that the inertia J; is measured with respect to a coordinate frame rigidly
attached to link [ and hence, it’s constant. The matrix J;(q) is the Jacobian with
respect to ¢ of the velocity of the center of mass of link /. Similarly Jui(q) is the
Jacobian with respect to q of the angular velocity of link /.

In order to simplify (2.2), we seek an expression for the (i, 7)" element, d;; of
D(q). Let vi;(q) and wy;(q) be the 1" column of Jyu(q) and J.i(q) respectively.
From the expression above for the inertia matrix, we see that

n

dij = (mzvz.i(Q)TVz.j(Q) + Wl.i(Q)TRé)(Q)[lRé(Q)Twl.j(Q)> : (2.3)

=1
Our Next objective is to derive expressions for the terms w;i(q) and v;;(q) in (2.3)
above. Since J.;(q) = %—’- where w;(q) is the angular velocity of link [ expressed in
the base frame,

wii(q) = dc;z;Q) (24)

It was shown in [66] that
I
wi(q) = pidiz
i=1

where

) { 1 . if joint ¢ is revolute,

0 . if joint ¢ is prismatic,
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and z; is the axis of rotation of joint 7 based on our notation. By substituting into

(2.4) we have the following:

Wi (@ =

()
- & (Eune).

04;

ik

jaM)

T
where zg = [ 0 01 } . Consequently, by substituting for p; from (2.5) and simpli-

fying the expression we obtain the following:

Riz, . if joint 7 is revolute and i <1,

Wy 1(Q) = 0 . (26)
0 : otherwise.

Similarly, since Jyu(q) = %v(ii where v, is velocity of the center of mass of link [

expressed in the base frame.
ovi(q)

vii(q) = —F—- (2.7)

94;

Note that v;(q) is the time derivative of the position vector h; of the center of mass

of link [. Therefore,.

vl quz‘

and consequently,

By substituting the above expression into (2.7) and using (2.1) we have the following:

dh
vii(q) = 5(:]_1

= ;; (ZRJ ‘d) 1+Rocz) (2.8)

In order to simplify the expression for v;;(q), we have to take the derivative of di_,

Let’s explore the term di_, next. Since 6; is the joint variable when joint ¢ is revolute



and d; is the joint variable when joint ¢ is prismatic, we can write
-
Qi-1

~d;Sa,_, : if joint i is revolute,
diCﬂi—l

i
i-1 7

-1
—¢iSa;_, : if joint 4 is prismatic.

L QiCa,_ 1

\
It can be seen that d:_; is independent of joint variables and hence, is constant when
joint i is revolute. For the case when joint ¢ is prismatic. we will partition di_l and
separate the part that is dependent on prismatic joint variables from the part that
is constant. By examining the transformation matrix 1T, it can be seen that di_,
is composed of three transformations. The following partitioning of d:_, is based on

these transformations:
| =a;-1Xo + Ra(oi-1)20G:.

T
where xo = [ 1 00 ] . Next we define d; to be a constant vector as follows:

,

ai-1
—d;Sa,_, . if joint ¢ is revolute,
di = dicﬂi_l (29)
a;-1Xo : if joint ¢ is prismatic.

\
Now we can express d;_, in terms of d; as follows:

i_1 = di + Ra(0i-1)20gid:. (2.10)

where,

0 . if joint 7 is revolute,
1 . if joint 7 is prismatic.



By substituting from (2.10) into (2.7) we obtain

dg;

—

.

vii(q) = (Z (R} + RY™ Re(0j-1)2005)] +Rgcz>

—

0 i B
= 3 ( [Rg) ld; + R{)ZOqjéj] + Rf)c,) , (2.12)
qi j=1
since R.(6;)zo = zo and therefore,
RI'R(0j-1)20 = RY'Ru(ej-1)R.(6))20 = R'R)_ 20 = R)zo.

In order to simplify (2.12) we will need to take derivatives of vectors of the form Ric.
where ¢ is a constant vector. with respect to joint variables. Since such terms are
independent of prismatic joint variables, their derivatives with respect to prismatic
joint variables will vanish. For the derivatives with respect to revolute joint variables,

we have the following result:

Lemma 2.1 For any revolute joint j and any constant vector c:

I[Ric] _ ) zix [Ric] : ifj <4, (2.13)
dg; 0 s ifj >, -

where z; = RJz, is the unit vector in the direction of Z;. the Z axis of

coordinate frame j expressed in the base coordinate frame. O

Proof of Lemma 2.1: Before presenting the proof of Lemma 2.1. we will present
some well known properties of rotation matrices. skew symmetric matrices and the
vector cross product that will be used in the proof. The transformation matrix, Ri_,

is given by R:_, = Ry(cu_1)R:(6;), where

1 0 0 Co, —Sp O
Rl‘(al—l) - 0 Ca,-_l —Sal_l * and R:(gl) = S@,‘ CG,‘ O
0 Sa., Ca., 0o 0 1
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are basic rotation matrices about the z axis and the z axis [14]. Since R.(6;) € SO(3).

it follows that for a revolute joint i,

. 0 -1 0
d%g(é") = S(k)R.(6:); S(ky=|1 0 0] €SS,
’ 0 0 0

where SS(3) is the set of all 3 x 3 skew symmetric matrices [66]. For simplicity, we
drop the index in S(k) and we simply refer to it in this thesis by . Therefore,

OR_, _ 0 OR.(6;)

—= = —R,(a;-1)R:(6:) = Re{iy) —7—

091' agl ,(a 1)R~( ) R (a l) 091

Two important properties of rotation matrices and skew symmetric matrices are as

= Rx(ai_l)SR;(Hi). (214)

follows [66]: For any given vector p,
Sp = S(k)p = 2o X p. (2.15)

where zg 2 [0 0 1 ]7. The second property is, for any two vectors a and b and
any rotation matrix R,
R(a x b)= Ra x Rb. (2.16)
Now we are ready to prove Lemma 2.1. When j > ¢, the result follows imme-
diately since the term to be differentiated is independent of ¢;. When j < 4,
Ric = R{;_lRﬁ:_lec and since joint j is revolute. RI_, is dependent on g;, while
all the other matrices and vectors are independent of ¢;. Therefore,
AF Di A I
%%q%c—] = Rg;-‘f)[—%#]zz;c = R} ' R.(ej-1)SR:(6;) Ric.
by using (2.14). Now by applying (2.15) we obtain the following:
I[Ric]
9g;

= R%—lRI(CYj_l) (Zo X R;(QJ)R;C) .

We use (2.16) next and we have

I[Ric]

5 RI'R.(aj-1)z0 X Ry 'Re(aj-1)R:(6;)Ric
J

R Ro(y-1)Z0 X Ric. (2.17)
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It can be seen by direct computation that R,(aj_1)20 = Rz(j-1)R:(0;)z0 = Rﬁ_lzg.
Therefore, R) ™' Ry(cj-1)z0 = R6_1R§_120 = R}z = z;. The result follows by substi-
tuting this into (2.17). O
Now we are ready to simplify (2.12) by completing the differentiation. We will con-
sider the two cases corresponding to joint 7 being prismatic and joint i being revolute

separately. When joint i is prismatic. since the first and third terms are independent

of prismatic joint variables. we have

RE.)ZO cifi <!
Vii = - 2.18
i(a) {0 i L (2:18)
When joint ¢ is revolute, by applying Lemma 2.1 to (2.12), we obtain
) l J—1 3/ Jj K. [ .oiEy
vii(q) = { ;1 * ( j=itl [RO d; + ROZOQJ&]} + ROC[) . li L § j (2.19)
Dl > .

As we will see later. it’s the terms involving prismatic joint variables that de-
termine whether v;;(q) is uniformly bounded. For this reason it is convenient to

partition the above expression for v;;(q) as follows:

vii(@) = vii(a) + vii(a), (2.20)
where
Z; X (Z[j=i+1 [R{)_ld;-] + Récl) : ifjoint 1is R and ¢ <!
viia) = iz . if joint i is P and i <(2.21)
0 . otherwise,

where R and P denotes revolute and prismatic respectively. and

“ () { Z; X (El R%ZO(Ij(Sj) . if joint 7 is revolute and ¢ </
Q) =

v =l (2.22)

0 : otherwise.

2.2 A Uniform Bound for the C(q,q) Matrix

In this section we will use the expressions we derived in the previous section to prove

that the C(q. ¢) matrix is uniformly bounded for class BD robots. Class BD is defined

as follows [31]:
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Robots of Class BD: Robots of this class have any of the following joint configu-

rations:

]

.1. All joints are prismatic (PP ---PP).

)
o

2. All joints are revolute (RR---RR).
2.3. A series of prismatic joints followed by a series of revolute joints (PP --- PR --- RR).

2.4. Configurations where the axis of translation of each prismatic joint j is parallel

to all preceding revolute joints k.

Our first objective will be to prove that the Christoffel Symbols are uniformly
bounded for class BD robots. Consider the following expression for the Christoffel
symbols [66]:

Odyy  Odys _ Odi

1
Cijk = 3 . 2.23
=3B "o Om (223

It can be seen that we need to prove that the derivatives of the elements of the
inertia matrix are uniformly bounded in order to establish the uniform boundedness
of the Christoffel symbols. By inspecting the expression for d; ; in (2.3), we see that
d;; is dependent on wii(q). vi,(q). vi4(q). R4. and the constant inertia and mass
parameters. We will consider the uniform boundedness of each of these terms next.
We see from (2.6) that w;;(q) is dependent only on revolute joint variables. Note
further that revolute joint variables always appear as the arguments of trigonometric
sine and cosine functions and that these trigonometric functions and their derivatives
are always uniformly bounded by 1. Furthermore, due to the nature of the dependence
of wy;(q) on the trigonometric functions, they never become the denominator of any
fraction (If a trigonometric sine or cosine term becomes the denominator of a fraction

within w;;(q), it will not be uniformly bounded as the trigonometric functions can



29

become zero). Hence wy;(q) and its derivative is uniformly bounded. We see from
(2.21) that v!,(q) and its derivative is also uniformly bounded for the same reason.
Similarly, the terms R} are also uniformly bounded. Since the inertia and mass terms
are constant, the only source of non uniform boundedness is v{;(q). In the next

lemma we prove that these terms vanish for class BD robots.
Lemma 2.2 For Class BD robots, vi;(q) = 0. &

Proof of Lemma 2.2: From (2.22) it can be seen that v};(q) is non zero only when
joint 4 is revolute and i < . We will prove next that v{;(q) is zero even in this case.

By interchanging the vector product and the summation in (2.22) we have

1
vii{q) = Z z; X Ry20q;0;
j=i+1
4
= Z (Zi X Zj)qj'éj.

j=i+l

In the summation leﬂ .1(zi X 2;)q;6;, for the terms corresponding to prismatic joints
j. 2; X z; = 0 from the condition for belonging to class BD, since joint ¢ is a revolute
joint preceding a prismatic joint j. Therefore, the terms corresponding to prismatic
joints vanish. The terms corresponding to revolute joints j also vanish since ¢; = 0
when joint 7 is revolute. This completes the proof of this lemma. |

Now we are ready to present the following lemma on the uniform boundedness of
the Christoffel symbols.
Lemma 2.3 For class BD robots, all of the Christoffel symbols are uni-

formly bounded.

Proof of Lemma 2.3: Follows from the discussion above.
Our next objective is to derive a uniform bound + satisfying (1.3) for class BD

robots. From (2.2) we see that

n
Cij = 3 Crjilk
k=1
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= [ Clji C25i " Cnji ]c']
= p}:;q~
T
where we define p;; = [ CLji C2ji " Cnji ] . By applying Schwarz’ inequality
[73].
le: 5| < ”PJz””(l” (2.24)

Since the Christoffel symbols are uniformly bounded for class BD robots, for these

robots there exists constants x ;; such that

Ipall = \IZ( ki) < (2.25)
k=1
Let
(2.20)
Therefore, from (2.24) we have the following:
lei.j| £ P ;l4ll. Va € R, (2.27)

for class BD robots. Thus we have derived uniform bounds for the elements of the
C(q.q) matrix. In order to derive a uniform bound ~ satisfying (1.3), we need to
translate the bounds on the elements to a bound on the matrix. The following lemma

achieves this objective.

Lemma 2.4 Given matrices 4, B € R™", where the (i, )" elements
of the matrices are denoted by a;; and b; ; respectively, if |a; ;| < b;;, for

alli=1,---.,n,j =1,---.n, then [|A]| <|B|| &
Proof of Lemma 2.4: From the definition of the induced norm for matrices,

IAll="sup [|Ax]]
I1x]=1



31

Let % be the unit vector satisfying the above equation. Hence, ||X|| = Viiot (7;)* =1
(Z; is the i** component of X) and ||Af] = ||AX|. Select y € R" such that each com-
ponent, y; = |Z;|. Therefore, |ly| = " ly)? = nz)? = L

2 . - 0~
Consider |By|* = _«?=1( }l=1bi,jyj) . Since b jy; = bi|T;| 2 laiziT),

By = i(i%w) > (im,.,.nfj;)

i=1 \j=1 i=

2

n n

> (Z aiﬁj) = | Ax|)* = | AlI*

i=1 \j=!

Therefore, ||By|| > [|A]l. Since | Bl = supyxy—; 1Bx[| = 1Byl [IBl =2 Byl 2

v

| All. This completes the proof of this lemma. O

At this point we are ready to present the first major result of this chapter.

Theorem 2.1 For class BD robots, the C(q,q) matrix is uniformly
bounded and a constant « satisfying (1.3) exists. This constant is given
by,

v = |IPIl (2.28)

where the (¢, 7)" element of P, P;; is defined in (2.26). &

Proof of Theorem 2.1: Consider the two matrices C(q,q) and P|q||. From
(2.27). we see that for class BD robots, the (i,7)* elements satisfy the condition
of Lemma 2.4. Therefore, from Lemma 2.4, |[C(q, @)l < [I[Pilalllll € P4l from
the properties of the matrix norm since ||g]| is a scalar. This completes the proof of

this theorem. O

9.3 Characterization of the Class of Robots for Which the
C(q,q) Matrix is Uniformly Bounded

In the previous section we proved that the C(q, q) matrix is uniformly bounded in q

for class BD robots. Qur objective in this section is to characterize the class of robots
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for which the C(g, q) matrix is uniformly bounded. We will achieve this objective by
proving that the C(q, q) matrix is uniformly bounded only for class BD robots. We

present the second major result of this chapter next.

Theorem 2.2 The C(q,q) matrix is uniformly bounded for a given

robot if and only if it belongs to class BD. &

Since we have proved in Theorem 2.1 that the C(q, q) matrix is uniformly bounded
for class BD robots, we have left to prove that for robots outside class BD, the
C(4,q) matrix is not uniformly bounded. Our approach will be to prove that for
robots outside class BD, one element of the C(q.q) matrix can be made arbitrarily
large. This will in turn imply that ||C(q, q)|| can be made arbitrarily large. This will
invalidate any uniform bound that is proposed for the C(q, q) matrix.

Consider a robot that is outside class BD. From the condition for belonging to
class BD, the robot has a revolute joint ¢ and a prismatic joint p, such that p > ¢ and

z; X z, # 0. Consider the Christoffel symbol ¢, given by

1 (adi,,- L Oy ad,,_,»>

Cii = 3 %0, % o0
10d;;
= 3%, (2.29)
= O
since the inertia matrix D(q) is symmetric. From (2.3),
odi; < 0 T o . - o\
—0;,,_ = lz::l (mza}; ([Vz.i(Q)] [Vl,i(Q)D + @ <[Rz (Q)wt.i(Q)] Iy [Rl (q)u,[.i(q)D :

From (2.6), we see that w;;(q) is independent of prismatic joint variables. Therefore,

since RP(q) is also independent of prismatic joint variables, RY(q)wi:(q) is indepen-

dent of ¢, and hence,
odi;
og, I=1




33

Substituting the above expression into (2.29),

< (@] ,
cp,z.l = Z my (9(],) [vl.l(Q)] .

=1
It can be seen from (2.19), that v;;(q) is independent of g, when p > [. Hence the
terms corresponding to ! < p in the summation above vanish. Therefore,

n v, ()17
s = z(ml 2uld) [v,_i(qn). (2.30)

l=p r

Let’s concentrate on the term v;;(q) next. From (2.19),

!
vii(q) = 2z X ( Z [RJ ld' +Rozoqj ] + R c,)

j=it1
! | !
= zix | 3[R+ Roe ) + X (2 x 25) 895
J=i+l1 Jj=i+1
Now since [ > p for all of the terms appearing in the summation in (2.30), we can
break up the second summation above to obtain the following:

! ) p-1
vii(q) = zix ( > [Ré'ld}] +Récz> + Y (2 x 25) 85
j

j=i+1

+ D (2 %2) 650+ (2 X 2p)
J=p+1
= ayq)+ (2 X zp) dp-
Here a;(q) is independent of g,. Therefore, ﬂ’% = z; X Z,. By substituting into
(2.30),

n

i = O (mu(z: x 2)" [u(@) + (2 X 25) g))
I=p

= (z: X zp) Zal ymi+ (l|z: % 2,)) qum[
{=p
= Opii -+ bp.me-,

where a,;; and b, ;; are independent of g, and b,;; is non zero (since z; X 2, # 0, and

in order for Z?=p my to be zero, all of m,, mpey, -+, my, will have to be zero, which
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is physically unrealistic). Now consider the element ¢;;. By keeping all other joints
constant, hence ¢; = 0, for all i % p, we have ¢;; = Cyiilp = Up iy + 0p.iiGpdp: where
byii # 0. Therefore, ¢;; can be made arbitrarily large by selecting g, sufficiently large
and ¢, # 0. Therefore, any uniform bound that is proposed for the C(q,q) matrix
can be invalidated. This completes the proof of this theorem. O

Hence, the condition for non uniform boundedness of the C(q,q) matrix is the
existence of a revolute joint i and a prismatic joint j such that ¢ < j and Z; and Z; are
not parallel. Let’s consider the example given in the introduction. Since the C(q,q)
matrix is not uniformly bounded for that example, according to Theorem 2.2. there
should be a revolute joint and a prismatic joint satisfving the above condition. We
see that this is indeed the case since joint 1 is revolute and joint 2 is prismatic and
Z, and Z» are not parallel in that example (See Figure 1.2). Now consider the same
robot with the joint axes oriented such that Z; and Z, are parallel (Figure 2.2). Since
the only revolute joint 4(= 1) and prismatic joint j(= 2) such that i < j, satisfies the
condition Z; is parallel to Z;, this robot belongs to class 5D. Hence, according to
Theorem 2.2 the C(q. q) matrix of this robot should be uniformly bounded. For this
robot. the inertia matrix is given by,

mlA +mea®+ L+, 0
0 1

It can be seen that the inertia matrix is constant and hence, all of the Christoffel

symbols are zero. Therefore, the C(q, q) matrix is zero and unitormly bounded. This

is consistent with Theorem 2.2.

2.4 Computing the Uniform Bound ~: Illustrative Example

In this section we will illustrate the procedure for computing the uniform bound 7 of
(1.3) with an example. We see from (2.28) and (2.26) that we need to compute uniform

bounds for the Christoffel symbols in order to compute +. It was shown in Section 2.2
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Figure 2.2: A 2 d.o.f RP of Class BD

that for class BD robots, the Christoffel symbols are independent of prismatic joints
and that the revolute joint variables only appear as arguments of trigonometric sine
and cosine functions. Therefore, for class BD robots it’s possible to obtain uniform
bounds for the Christoffel symbols by invoking the uniform bound 1 on trigonometric
sine and cosine function. These can be substituted in (2.28) and (2.26) to obtain the
uniform bound « of (1.3). Consider the two d.o.f (RR) robot of Figure 2.3. It can be
seen that this robot belongs to class BD since it has revolute joints only. Therefore,

based on Theorem 2.1. the Coriolis/centrifugal terms are uniformly bounded for this
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robot. The equations of motion of this robot was derived in [66] (see page 145 of

Figure 2.3: A 2 d.o.f RR Robot

[66]). The Christoffel symbols, ¢; j« of this robot are as follows:

111 =0 C1.1.2 = Maalesings €121 = —Maailemsings
crp2=10 Ca1.1 = —Maailesing, co12=10
221 = —2a1lsings Ca22 = 0.

It can be seen by inspection that the following values for ¢; ;x satisfying (2.25):
111 =0 Tri2 = Maaile Tia1 = Maaile C102=0
To11 = Maailey Toz2=0 T2 = Matle Tana = 0.
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Now by substituting in (2.26) we obtain the following:

—_— — -
Dy = Cil,l +C1 = maailes

:P‘l
e
i

=

1 33

-
fl

3

™

[
fl

Therefore, from (2.28)

= 1.84787712(11162.

{"’L‘zallcz \/§m201lc2 }
0

maayles
In order to illustrate that the value of v above satisfies (1.3), we will plot ||C(q, q)ql|
and +||q|| as a function of q next. In order to make this plot meaningful, we must
ensure that the point at which the left hand side of (1.3) becomes maximum is included
in the plot. For this example the C(q, ¢) matrix is given by,

—maailepagesings  —maaile(qdr + g2)sings w

C(qTQ)=[

maaleagrsings 0

It can be seen that the C(q.q) matrix is independent of q;. Therefore, we will be
plotting C(q, ¢)q and ||q| as a function of g,. We can select [|g[| = 1 without loss
of generality. In order to ensure that the maximum point is included in the plot, we
need to find q that maximizes C(q, q)q. For this simple example, we were able to
numerically determine this value to be ¢ ={ 0.5600 0.8285 |7. Figure 2.4 shows the
plot of C(q,d)q and ~||g|| as a function of g, with the optimum value for q. We
used the values a; = 0.7. ma = 0.25, and [ = 3 for this plot. It can be seen from

this plot that the uniform bound ~ derived above satisfies (1.3).

2.5 Summary

The objective of this work was to characterize the class of robots for which the

Coriolis/centrifugal terms are uniformly bounded and derive an explicit expression for
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. uniform bound y
0.9 : 7
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L
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qp (degrees)

Figure 2.4: The Uniform Bound v and ||C(q,q)q|| as a Function of ¢
for the RR Robot of Figure 2.3 with ||¢]| =1

a uniform bound v satisfying (1.3). The uniform boundedness of the Coriolis/centrifugal
terms plays an important role in the stability analysis of several control laws. When
the uniform boundedness property is not satisfied, the stability properties of these con-
trol laws become local. In this Chapter, we fully characterized the class of robots for
which the Coriolis/centrifugal terms are uniformly bounded and found that this class
is the same as the class of robots for which the inertia matrix is uniformly bounded.
This class, named class BD. was characterized in previous research. The character-
ization of the class of robots for which the Coriolis/centrifugal terms are uniformly
bounded, will enable researchers to determine whether global stability conclusions of
several control laws are valid for a given robot by inspection. This result can also

be incorporated at the design stage since the condition for uniform boundedness of
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the Coriolis/centrifugal terms is not hard to satisfy. In addition to characterizing
the class of robots with uniformly bounded Coriolis/centrifugal terms, we derived an
explicit expression for the uniform bound. The explicit value of the uniform bound
is important in controller synthesis since the controller gains are a function of these
uniform bounds. We illustrated the procedure for computing the uniform bound with

an example.
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Chapter 3

The Uniform Boundedness of the Hessian of
Potential Energy

In this chapter we address the issue of the uniform boundedness of the Hessian. We
begin by characterizing the class of robots for which the Hessian is uniformly bounded.
This will allow one to determine by simple inspection of the joint configuration of a
gsiven robot whether the Hessian is uniformly bounded and thereby determine im-
mediately whether control laws that use this property will retain globality. We refer
to the class of robots with uniformly bounded Hessian as Class BGJ robots!. The
second contribution of this chapter is the derivation of an easy to compute explicit
expression for the uniform bound £ in (1.2) in terms of link parameters for Class
BGJ robots.

Denoting the complement of Class BGJ as Class BGJ. it follows that the latter
consists of robots for which a uniform bound satisfying (1.2) does not exist. Thus the
union of Class BGJ and Class BGJ consists of all robots. Even though a uniform
bound satisfving (1.2) does not exist for robots of Class BGJ. we can derive a bound
¢y satisfying (1.4). If one chooses to apply the control laws that require the uniform
bound 4 of (1.2) to a Class BGJ robot, even though the stability properties will not
be valid globally they will still be valid locally. Therefore, if a robot at hand is a
Class BGJ robot, an explicit expression for the bound ¢4 satisfying (1.4) can still be

used to implement control. Hence, for the third contribution of this chapter we derive

1BG 7 is an acrynom for Bounded Gravity Jacobian which is equivalent to the Hessian of potential
energy.
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an expression for the bound ¢; of (1.4) for Class BGJ robots. This bound is given in
terms of the constant link parameters and upper bounds of prismatic joint variables.

In this chapter we use the same notation that was introduced in Chapter 2 to
describe the kinematics of the robot. The remainder of this chapter is organized
as follows: In Section 3.1 we derive an expression for the Hessian. Section 3.2 is
devoted to the characterization of Class BGJ robots. In Section 3.3 we derive an
explicit expression for the uniform bound § that satisfies (1.2) for Class BGJ robots.
In Section 3.4 we derive an explicit expression for the bound ¢, that satisfies (1.4)
for robots of Class BGJ. Finally in Section 3.5 we summarize the findings of this

chapter.

3.1 The Hessian of Potential Energy

In this section we derive an expression for the Hessian. We begin by deriving an
expression for the potential energy. Let v, be a unit vector in the direction of the
gravity field but opposite in sense (pointing vertically upwards), expressed in the base
frame. Note that since the direction of the gravity field is fixed with respect to the base
frame, the direction of the unit vector v, is fixed and since its magnitude is also fixed,
v, is constant. Let m; denote the mass of link i. The total gravitational potential

energy V(q) of a robot described by (1.1) is given by the following expression:

Vig) = imig(vc.hi), (3.1)

where ¢ is the gravitational acceleration constant ~ 9.81 m/ sec®. By substituting

|

= gv.- zn:mi > (R{;_ldj:_l) + imigvc : (Rf,ci) . (3.2)
=1 i=1

Jj=1

from (2.1),

V(q) = ZITTLig <VC. |:2:1 Ré_ld;:_l -+ RéCi
1= J=

.
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We can obtain a more compact expression for V(q) by changing the order of taking
summation in the first term. We begin by expanding a part of this term.

1

Sy (R =
=1

i= j=1
1
mydg
2
+mady  +maRYd}

+mn_1d(1) +mn_1Réd'f +m,,_1Rg"-’d;§:.§
+mad)  Fmu R - +m, RE72AMCY +maRyTAR_
n n
= Y (R'diL) Xmy (3.3)
i=1 j=t
n . .
= S (Ry'diL,)
i=1
where
A n
Tr‘ii=ij. (34)
j=i

Note that (3.3) is obtained by taking summation over each column first. Now by

substituting the above in (3.2), we get

n

Vig) = gve- Z (Rffld::_l) m; + i m;gve - (R(i)ci)

i=1 i=1
= imigvrr' (Ré_l ::—1) +imi9"c' <R(i)cz‘)- (3~5)
i=1 i=1

By substituting from (2.10) into (3.5) we get the following:

Vig) =) _ migve- (Rf)‘ldi) + > MgV (Ré‘lRm((xi_])zgqiéi) + > migve- (Réci) .
i=1 i=1 i=1

Now since R.(#;)zo = 2o, we have R (i-1)2¢ = Re(oi-1)R:(0:)20 = R:_,zo. Therefore,

in the second term of the above equation, Ry ' R.(c;_1)zo = Rg‘lRf_lzo = Riz. By

substituting we get

V(q) = Zn:migvc- (Ré_ldg) + imigvc- (Rézoqi&-) + inz,igvc~ (Rf,ci) . (3.6)
i=1 i=1

i=1
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Now we are ready to derive an expression for m. Since the gravity vector g 1s
the gradient of the potential energy, we can write ﬂ Tvq(g In the expression
for 9%2—11) the revolute joint variables are the arguments of trigonometric sine and
cosine functions and hence are uniformly bounded. Therefore, terms that are inde-
pendent of prismatic joint variables are uniformly bounded. For this reason. we will
derive the expression for Q%(aql such that the terms that are dependent on prismatic
joint variables are isolated from those terms that are independent of prismatic joint
variables. Note that the first and the last terms in the expression for potential energy

in (3.6) are independent of prismatic joint variables. Hence, we define the matrix B

to be independent of prismatic joint variables as follows:

B = 0- (z 7_1ch ld: + Z migve - RBCI)

()q’ 1=1 i=1
02 n L i o
= 0q) ; ( nigve - RO d + migve - Roci> (3{)
We define next matrices U; corresponding to each joint ¢ = 1,---,n, as follows:
N2 .
Ui = %f‘_,éiQimiQVc - Ryzo. (3.8)

Here. each matrix U; will in general depend on the prismatic joint variable g; if joint ¢ is
prismatic. Note that if joint ¢ is revolute, § = 0 according to (2.11) and consequently,

U; = 0. Based on the definitions above, we have the following expression for Q%—é?l

dg(a) _ . .
9q - B+;U,. (3.9)

3.2 Characterization of the Class of Robots with Uniformly
Bounded Hessian ( Class BGJ)

In this section we use the expression derived in the previous section for the Hessian to
characterize Class BGJ. We begin by presenting, in Section 3.2.1, some preliminary

results that are necessary to establish the results to follow. Then in section 3.2.2 we
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examine some properties of the matrices B and U;, i = 1,---,n, appearing in (3.9),
followed by the definition of Class BGJ in Section 3.2.3. In Section 3.2.4 we prove
that for a given robot, the Hessian is uniformly bounded if and only if it belongs to

Class BGJ .

3.2.1 Preliminary Results

In order to obtain expressions for the elements of B and U;, i = 1, -, n, appearing in
(3.9). we will need to take derivatives of vectors of the form Rjc, where c is a constant
vector, with respect to joint variables. Since such terms are independent of prismatic
joint variables, their derivatives with respect to prismatic joint variables will vanish.
For the derivatives with respect to revolute joint variables, we use Lemma 2.1 and

the following result:

Lemma 3.1 For any two revolute joints 7 and & such that j < &k and

any constant vector ¢, the following is true:

(3.10)

P[Ric] | zj x (z x [Rhe]) : ifk <,
9g;0qx 0 itk >

<&

Proof of Lemma 3.1: When k > i, the result is immediate since R}(= [Ij-; Ri_,)

and ¢ are both independent of g.. When & < ¢, since j < A < i, we can use Lemma

PlRIC) _ PrCl _ o [alRCl) _ o
Dq;0q,  — Dqrdy; T~ Iqy dq; = gy

(z; x [Ric]) = 2; X 9%‘—‘9 (since

2.1 to obtain
zZ; = R}z is independent of gx, as k > j). The result follows by applying Lemma 2.1
again. a

In the proofs to follow we will be using the set W;(q*) which is a subspace of the
robot joint space. The use of the set W;(q*) allows us to present these proofs in a

compact manner. We begin by defining W;(q*) as follows:
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Definition 3.1 The set W;(q") is defined as the set of joint vectors q
such that all of the components of q are identical to the corresponding
components of q* except for the j** component, ¢; which is arbitrary.

namely,

Wiq)&{qe®  g=q.i=1-j-Lj+1l-.n}CR. (311)

We can interpret the set W;(q") as follows: Suppose we start the robot at point q*
and then only move joint j while keeping all of the other joints fixed, then W;(q*) is
the set of all possible vectors q (of joint angles) corresponding to this motion. Now

we are ready to present the following lemma:

Lemma 3.2 For any given revolute joint j(< n) in a robot, the following
is true: Suppose we pick a point P*(q*) in the robot workspace such that
z; X z; # 0 for some joint £ > j, then the following two conditions are

equivalent:
3.1. v, -z = constant for all points in W;(q*).
3.2. z; x v, = 0 for all points in W;(q").
<&
Proof of Lemma 3.2: We are given that z; x z; # 0 at point q*. Now since we
don’t move any of the joints [, VI > j in W;(q"), we can imagine that the robot has
one rigid link from joint j to joint k. Now since we start at a point where the z; and

7, axes are non parallel, and the only allowable motion is a pure rotation about the

z; axis, the z; and 2, axes will remain non parallel throughout W;(q*). Hence,

z; X z # 0, Vq € W;(q"). (3.12)
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We have to prove that v, -z, = constant Vq € W;(q") if and only if z; x v, = 0

vq € Wi(q*).
Proof of the “only if” part: Suppose V. - z; = constant, Vq € W;(q*). Therefore,

()—qj (VC 'Zk) = 0.

. 9 o REZo i .
Now since s (Ve-2) = V- (0(:1; ) v, - (z; x z) (by using Lemma 2.1),

A\ (ZJ' X Zk) = 0. (313)

o SN " _ e - o I
Since v, - z; = constant, o (ve-2:) = 0. Now by applying Lemma 3.1, we get the

following:
52 ( ) 0? (R{jzo)
5 Ve 2Zr) = Ve =335
Jq; k oq;

= V- [Z]’ X (ZJ‘ X RSZ())]

= (VC X Z]') . (Zj X Zk) R
by using the properties of the scalar triple product. Hence we have.
(Vc X Zj) . (Zj X Zk) =0. (314)

A property of the vector product is as follows [47]. For any given four vectors, a, b,c

and d,
(axb)x(cxd) = [(axb)-dlc—[(axb)-c]d
Now setting a = v, b = z;,¢ = z; and d = 2, we get,

(Ve X 2j) X (25 X Z¢)
= [(ve x 2j) - 2] 2 — [(Ve X 25) - 25] 24

= 0, (3.15)
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since (Ve X 2;)-2; = Ve'(z; X z;) = 0 and from (3.13), (Ve X 2;)-2k = Ve (z; X ) = 0.
Comparing (3.14) and (3.15) we see that a’ - b’ = 0 and a’ x b’ = 0 simultaneously.
where a’ = v, X z; and b’ = z; x z;. Since for any two vectors a’ and b’ in the
three dimensional Euclidean vector space a’ - b’ = [|a'|| ||b’|jcosf and a’ x b’ = ||a’|]
||b’||sind (where 8 is the angle between the two vectors), a’- b’ =0 and 2’ x b’ =0
implies ||a’]| = 0 or ||b’|| = 0. Since b’ = 2z; x z; # 0 from (3.12), we get v, x z; = 0.
This completes the proof of the “only if ™ part.

Proof of the “if” part: Suppose v, X z; = 0, V¥q € W;(q"). By applying Lemma 2.1 to
the scalar product (v, -z;) and then using the properties of the scalar triple product,
we get

R () Rk—lz
._d_(vc'zk) Ve —(_0'—02
9g;

9q;
= V.- (Zj X Zk)

= (Ve X2Zj)- 2
= 0.

Note that the other variables in (v, - ;) are independent of g; and therefore, ﬁ (Ve zp) =
¥

% (ve-2). Now since g; is the only variable in W;(q"), and since % (Ve 2i) =
a_?,j (Ve-2i) = 0, V. - 2 remains constant throughout W;(q*). This completes the
proof of this lemma. a

This result can be given a physical interpretation as follows: The scalar product
V. - Z; represents the component along the direction of gravity of the vector z.
Suppose we start at a point where the two vectors z; and 2, are not parallel. This
lemma states that the component along the direction of gravity of z; will remain

constant as joint j is moved if and only if z; is always parallel to v.. Using this result

we prove Lemma 3.3, which will be used during the characterization of Class BGJ .
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Lemma 3.3 For any revolute joint j and any other joint k (revolute or
prismatic) such that j < k, if 2, is always parallel to v, then z; is also

always parallel to v,. o

Proof of Lemma 3.3: When j = k, the result is obvious. When j < k, we prove by
contradiction. Suppose there exists a point q* where z; is not parallel to v.. Since zy
is parallel to v, at q*, z; and z; are not parallel and hence, z; x 2z # 0 at q*. Now
since there are points in W;(q*) where z; is not parallel to v, from Lemma 3.2, v, 2z
cannot be constant throughout W;(q*). This is a contradiction since v, and zj are
parallel and v, - z; = 1 is constant throughout the robot workspace. This completes

the proof of Lemma 3.3. O

3.2.2 Properties of the Matrices B and U;,i=1.---,n

We will be exploiting the symmetry and boundedness properties of the matrices B
and U;,i = 1,---,n, when deriving bounds for the Hessian. In this section we prove

these properties.

Lemma 3.4 The matrices B, U; for ¢ = 1,---,n, are symmetric and
hence, % is symmetric. <&

Proof of Lemma 3.4: Consider b, . a general element of B. From (3.7),

O? n . .
bi = — Migve - Ry} + myigv.. - Ryc; }
o2 n . .
= — M;gVe - Rz—ldg + migv. - R5c;
90:04; [Z( g 0 g 0 )}

i=1

= bk,j'
Hence, B is symmetric. It can be seen from (3.8) that the matrices U; are also
symmetric for the same reason. It can be seen from (3.9) that Q%Q is symmetric

since it is the sum of symmetric matrices. This completes the proof of Lemma 3.4. O
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Lemma 3.5 The matrix B is uniformly bounded, that is,
1Bl <b (3.16)

where the uniform bound b is given by

b= |> (1) ( > (Ek)‘-’+(5j)2>. (3.17)
J=1 k=j+1
Here,
0 :1if joint j is prismatic,
p; =< |sin(y;)| ¢ if z; is fixed in the base frame, (3.18)
1 :  otherwise,

where 7, is the angle between z; and v,. and b is defined as follows:

- ksl igdy; + S, miglr; @ if joint k is revolute,
g 0 . if joint & is prismatic,
(3.19)

and

7 { llzi x (RS'))|| : if for all revolute joints I such that k <! <i. z || 2,
ki =

;] . otherwise,
(3.20)
_ lzr x (Ric:)|l : if for all revolute joints I such that k£ <1 < i, 2 Il 2.
Cha = lic:l| . otherwise.
(3.21)
O

Proof of Lemma 3.5: It is well known that,

| B)| < y/Trace(BTB). (3.22)

It can be easily verified by direct computation that the Trace of BT B is the sum of

the squares of all of the terms of B. That is, Trace(BTB) = ¥7_) ¥i_;(bjx)*. Next
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we partition this double summation into three blocks, corresponding to the elements

below the diagonal, the elements above the diagonal, and the elements on the diagonal

as follows:

Trace(BTB) = 3.3 (bjx)?
j=1k=1
n j-1 ) n~1 n \ n ,
= 3+ X (k) + (0
J=2k=1 j=1k=j+1 j=1

Now since B is symmetric, the first two terms in the above equation are equal.

Therefore,

Trace(B"B) = 2 (Bie)* + 2 (bis)

Now consider the j, k" element of B. From (3.7),

[ . .
bip = — migve - RS + migve - Rici) | -
5 9g;0q [2( et et )]

It can be seen immediately that b;x = 0 if either of joints j or k is prismatic since

the term to be differentiated is independent of prismatic joint variables. When both

joints j and k are revolute. we can use Lemma 3.1 to obtain the following expression:

bix = i MgV - [zj X (zk X (Rg'ldg))] + 7zlmigvc- [zj X (zk X (Rf)ci))]
i=k+1 i=k
- Z Mg (Ve x 2) - (2 x (Ry'd})) + }r_l—:m,-g (Ve x 27) - (zi X (Rbes)
i=k+1 i=k
= (Ve X 2zj)- [ i mig (z,C X (Rf)_ldg)) + imig (zk X (Réci))
1=k

i=k+1

Note the change in the limits of the summations due to the derivatives being zero
outside these limits. Now we use Shwarz’s inequality [73] and the triangle inequality

to obtain,

(3.24)

n
+ ZTTL,‘Q ‘Zk X (RBCl)
i=k

Ibis] < Ive x 2] [ S g ||z x (RS

i=k+1
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From the properties of the vector product, we see that [|v, x z;|| = [[vell [|2;]] |sin(v;)];
where «; is the angle between v, and z;. Now since v, and z; are both unit vectors,
Ve x ;]| = |sin(7;)|- When joint j is fixed in the base frame, sin(7y;) is constant
and it can be used as an upper bound for |}v, x z;]|. When joint j is not fixed in the
base frame, since |sin(v;)] < 1. [|ve X ;|| is bounded from above by 1. Hence, we see
that

Ive x 2]l < wy (3.25)

for the case when joint j is revolute, where p; is defined in (3.18). Now since b;x =0
when joint j is prismatic, by defining p; as in (3.18), we can combine the two cases
corresponding to joint j being revolute and joint j being prismatic. Thus (3.25) is
satisfied irrespective of whether joint j is revolute or prismatic.

Our next objective is to obtain a constant bound for the second term in the right

+37 . mig |z x (Ryc;)||. We achieve

hand side of (3.24), Ty g |26 X (B5™'d)
this by deriving bounds for the terms in the summations. That is, we seek constant

bounds dj; and &,; such that,
llze x (Ry™ ) < dia, (3.26)

and

i x (Rocs)|| < T (3.27)
Since z; is a unit vector. it can be seen immediately that [z x (Ry™'dj)l| < [Idil]
and ||z x (Rjci)|| < |leil|. Now since both d and c; are constant vectors, we can sct
dei = ||d}|| and @; = [lcil| which will satisfy (3.26) and (3.27). While these will be
satisfactory most of the time. there is one special case in which this will result in a
conservative bound for B. This case occurs when for all revolute joints [ such that

k <1 <4, 2 | z. In this case, as we will prove next, ||z x (Rjd;)|| and ||zx x (Rfes)||
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are constant and we can select these as the bounds Ek,,- and ¢ ;. Therefore, we define
dy; and G; as in (3.20) and (3.21).

We have left to prove that dy; = ||z x (Ry'd})|| and @ ; = ||z x (Rjci)| are
constant in the first case of (3.20) and (3.21) (when for all revolute joint ! such that
k <1< 2z || z). Based on the requirements for this case, the axes of all revolute
joints { such that & < [ < i are parallel to the axis of joint k. Therefore, we can

express Ry~'d; as follows:

Ry'd, = RER.(¢")R.d., (3.28)

where R.(q") is the basic rotation matrix about the z axis and R. is a constant
rotation matrix (we can regard R.(g*) as the rotation matrix from coordinate frame
j to the frame corresponding to the last revolute joint m such that £ < m < i and
R. as the rotation matrix from frame m to frame i). Note that ¢* is variable. It can

be seen that

7. = Rézo = RER.(¢")2Zo (3.29)

Now by combining (3.28) and (3.29) we have

z x (R{d}) = RoR:(¢")z0 X RyR:(¢")Red;

= RER.(q")[20 % Rod)).

by using the property described in (2.16). Now since ||Rx|| = [[x|| for any rotation
matrix R and any vector X. ||z x (Rid))|| = [|RER.(¢*) [20 x Red}] || = ||20 X Red;]|
is constant. We can see from the same argument that ||z x (Rjc;)|| is also constant
in this case.

Now we are ready to use the bounds defined above to derive an upper bound for

the Hessian. We substitute from (3.25), (3.26) and (3.27) into (3.24) to obtain the
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following:

bix] < ny [ > migak,i'*'znligzk.i}

i=k+1 i=k

< b, (3.30)

where by, is defined in (3.19). Note that we have combined the two cases corresponding
to joint k being revolute and joint k being prismatic by defining b in this manner.

Now by substituting from (3.30) into {3.23)

Trace(B'B) = i(Q i (bj,k)2+(bjj)2)

IA

A0
TN

[
= .
M= 5

F

s

3:

Q“
v

< Zn:(/tj)z (2 i (Ek)2+(—j)2>-
j=1 k=j+1

The result follows by substituting in (3.22). This completes the proof of Lemma 3.5
O

One criticism that might be aimed at the uniform bound b derived above, is the
use of the Trace of BT B as an upper bound for ||B|| in (3.22). Since the Trace is the
sum of all of the eigenvalues of [|BTB|| and ||B]| is the maximum eigenvalue of || B||,
for most matrices (3.22) will be highly conservative. However, in this case due to the
special structure of the matrix B, we found that the maximum eigenvalue dominates
the Trace. In all of the examples we looked at, the maximum eigenvalue was greater
than ninety five percent of the Trace. Even though the use of (3.22) is easily justified.
at one point we searched for a less conservative bound. Since the determinant of B
can be zero, most of the inequalities presented in the literature cannot be used and
we derived a uniform bound (say &') for [|B]| in terms of upper bounds for the row
vectors of B. We proved that the bound ¥ is always less than or equal to the bound

b resulting from (3.22). However, when we applied the less conservative bound b’ to



54

examples we discovered that the difference between the two bounds was usually less
than one percent. For this reason, since the second bound b’ is much more complicated
we decided to abandon it.

In the next lemma, we derive bounds for the elements of the matrices U;,i =

1,---.n. Note that even though we consider elements that are on or above the
diagonal only, there is no loss of generality since the matrices Ui = 1,---.n, are
symmetric.

Lemma 3.6 When joint 7 is prismatic, the elements on or above the

diagonal of the matrix U; satisfy the following inequalities:

. If joint k is prismatic and k # 1, u, = 0.

A
B
C. If joint j is prismatic. u}; = 0.
D. If joint j is revolute and k = 4, uj | < Tigu; ;..
E

. Ifboth joints j and k are revolute, and j < k < i, [} 1] < Tigi;ur i7;.

Here, u;k is the (4. k)" element of U; and j < k since we only considered
elements on or above the diagonal. Out of the terms appearing in D and
E. u; is defined in (3.18). g; is an upper bound for lg;]. that is |¢] < G
and

|sin(y; — )| : if for all revolute joints [ such that k <! <4, z || zx.
L), § =
s 1 : otherwise,

(3.31)
where, as defined before, v, is the angle between z; and v, for all [ such

that 1 <! < n. &
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Proof of Lemma 3.6: In the proof we will consider each of the cases of Lemma 3.6
separately. From (3.8) we have the following expression for the j. k" clement of U;:

Payd a2

'i-.=_'($i iTIL; gV 'RiZ =MigVe  ——
u’],k ()q_yaQL qinigve 040 m;gve dq]d(]k

[RBZOQi] ; (3.32)
since joint 4 is prismatic in this lemma and hence, 6; = 1. It should be noted that the
term to be differentiated, R(i)zoq,- depends only on revolute joint variables [ such that
| < i and the prismatic joint variable ¢. It is independent of all other joint variables.
Proof of A: In this case, uj-yk = (, since the term to be differentiated is independent
of the joint variable gx.

Proof of B: Obvious since the term to be differentiated is independent of the joint
variable gg.

Proof of C: If j # 1, uj-‘k = (), since the term to be differentiated is independent

of the joint variable g;. If j = i, since k > j, k > i. When k = ¢, u}, = 0 since

82 Ri Zoqi 32 Ri Zo(],
[ - = [.02 = 0. When k > i, u}, = 0 as we have Case A.
9g; 9. 9q;

Proof of D: In this case we can apply Lemma 2.1 to (3.32) to obtain the following:

22

u;‘-,k = MigVe  —F— g 0 [Rézoqi] =TM;gv.- % [RSZO}
j
= migvt‘ [ X ROZO] = m,gvc ( X Zi) . (333)

Our next objective is to derive an expression for the triple scalar product in the above
equation in terms of the angles between v, z; and z;. We begin by partitioning v,
into two vectors. based on coordinate frame j. The first component. v, is along the
(z — y) plane of coordinate frame j and the second componentv, is parallel to z;
(See Figure 3.1). Therefore, v, - (2; X 2;) = Vegy - (Zj X 2:) + Vez - (25 X 2;). Now since
(z; x 2;) is perpendicular to z; and since v, is parallel to z;, v is perpendicular to
(z; x z;). Hence v, - (z; x z;) = 0. Therefore, v, - (z; X 2;) = Vegy - (27 X ;). By

Zj

using Schwarz’ inequality we get |ve - (z; X 2;)] = [[Veyllllz; X zi]l. It can be seen
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“

Figure 3.1: Partitioning of v, in Coordinate Frame j

from Figure 3.1, that ||ve,| = |sin(v;)| since ||v || = 1, due to geometry. Now since
Iz, % 2l = 123/l l1sin(s; = )] = [sin(3; — 2], by substituting in (3.33)
]“j‘.k! < aglsin(y;)||sin(y; — ¥)l- (3.34)

Now since |sin(v;)] < 1 and |sin(y; — )| < 1, we define p; and p;; to be constant
upper bounds for |sin(7;)| and |sin(y; —v)| by defining them as in (3.18) and (3.31).
Note that when, for all revolute joints [ such that k£ < [ < 4, z || z, we can use
the same argument that was used in proving, d,.; is constant in (3.20), to prove that
||z X 2| is constant. Note further that the first case of (3.18) is irrelevant here since
joint j is revolute. The result follows immediately for this case by substituting in
(3.34).

Proof of E: In this case we can apply Lemma 3.1 to (3.32) to obtain the following:

Y

uj;k = Tugve- m[ 620%]
= M;gVe- [Zj X (Zk X RBZO)] g

= 719 (VC X ZJ) . (Zk X Zi) qi. (335)
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Now we can use Shwarz’ inequality to obtain the following:
|| < Tglive x z;llllzx x zilllgil-

The result follows immediately since |[v.xz;|| = [|vellllz;ll[siny;] < . |2k x2z: ]| < g

and |g;| < g;. This completes the proof of Lemma 3.0. O

3.2.3 Class BGJ Robots

At this point we present the class of robots for which the gravity Jacobian is uniformly
bounded. In Section 3.2.4, we will prove, in Theorem 3.1, that the necessary and
sufficient condition for a robot to have a uniformly bounded Hessian is that it belong
to Class BGJ. The classification of the class of robots with bounded Hessian is the

first major contribution of this chapter.

Definition 3.2 Class BGJ consists of robots with the following joint

configurations:

3.1. There does not exist a revolute joint j and a prismatic joint i such
that j < 4.

3.2. If there exists a revolute joint j and a prismatic joint ¢ such that
4§ < 4. then at least one of the following conditions must be satisfied.
(a) The axis of rotation of joint j and the axis of translation of joint

1 are always parallel.

(b) The axis of rotation of joint j is always parallel to v..

o

The following interpretation of Class BGJ robots is more practical in order to deter-

mine whether a given robot belongs to Class BGJ .
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Robots of Class BG.J: Robots of this class have any of the following joint configu-

rations:
3.1. All joints are prismatic (PP,---,PP).

3.2. All joints are revolute (RR.---,RR).

3.3. A series of prismatic joints followed by a series of revolute joints (PP, ---, PR, ---

3.4. Configurations such that for all revolute joints j preceding a prismatic joint i.

one of the following is true:

(a) The axis of rotation of joint j and the axis of translation of joint ¢ are

always parallel.

(b) The axis of rotation of joint j is always parallel to v..

An important point to note is that the class of robots for which the inertia matrix

D(q) is bounded, Class BD [31), is a subclass of Class BGJ.

3.2.4 Necessary and Sufficient Conditions For the Hessian to be Uniformly
Bounded

Since ||B|| is uniformly bounded. we see from (3.9) that the gravity Jacobian is uni-

formly bounded for robots for which U; = 0. 4 = 1.---,n. We see from the next

lemma that this is the case for robots of Class BGJ .
Lemma 3.7 For robots of Class BGJ, U; =0, fori=1,---.n. O

Proof of Lemma 3.7: We prove U; = 0 by proving that each of its elements are
zero. If joint 4 is revolute, by the definition of &;, U; = 0. Therefore, for the rest
of this proof we will only consider the case corresponding to joint ¢ being prismatic.

In Lemma 3.6, we considered five cases, which covered all possibilities, and derived

RR).



bounds for each of these cases. In this proof, we will show that uj, = 0 for each of
these cases for Class BGJ robots. Since u}k = 0 for cases A, B, and C, we will only
consider the remaining two cases, D and E.
Case D: When joint j is revolute and k = 4, from (3.33). u?k =gV - (2; X 23)].
Since joint j is a revolute joint preceding a prismatic joint ¢, from the condition for
belonging to Class BGJ, either z; and z; are parallel or z; and v,. are parallel. When
z; and z; are parallel, u;k = 0 since (z; x z;) = 0. When z; and v, are parallel.
uly = Tigve- (2; % 2:)] = Mag[(ve x 25) - 2] = 0 since (v x z;) = 0. This completes
the proof for this case.
Case E: When both joints j and k are revolute and j < &k < i, from (3.35), uj-k =
Mg (Ve X 2;) - (2 X 2;) ;- Since joint k is a revolute joint preceding a prismatic joint
i. from the conditions for belonging to Class BGJ . either z; and z; are always parallel
or z, is always parallel to v.. When z; and z; are parallel, u}, = 0 since (z x z;) = 0.
When z; is always parallel to v, from Lemma 3.3, z; is also always parallel to v..
Hence, (v. X z;) = 0 and consequently u;k = 0. This completes the proof for this
case.

Note that even though we only considered elements that are on or above the

diagonal in this proof, there is no loss of generality since U; is symmetric. This

completes the proof of this lemma.

We are ready now to present our next major result.

Theorem 3.1 For serial link robots described by (1.1). i%%ll is uni-

formly bounded if and only if the robot belongs to class BGJ . <
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Proof of Theorem 3.1: We have to prove that for a given robot, Q%%Q is uniformly
bounded if and only if the robot belongs to Class BGJ. Clearly. the “if’ part follows
immediately from Lemma 3.7, Lemma 3.5 and (3.9).

Proof of the “only if” part: We have to show that if 2%2 is uniformly bounded then
the robot belongs to Class BGJ or equivalently, we have to show that if the robot
does not belong to Class BGJ. then 2%%12 is not uniformly bounded.

Suppose the robot does not belong to Class BGJ. Therefore, there exists a rev-
olute joint j and a prismatic joint ¢ such that z; x v, # 0 and z; x z; # 0 at
some point (say q) in the workspace. Consider the set 1W;(q). Note that since
1 =G> =To. -+ gj—1 = §;_ are constant, z; remains constant throughout W;(q).
Therefore, z; will remain non parallel to v.. Furthermore, since ¢j+1 = ;11 @j42 =
Fjr2: "+ +qn = J, remain constant, R} is also constant in W;(q). Therefore, z; and z;
remain non parallel also. Hence, throughout W;(q) the following two conditions are
satisfied:

z; X Vo # 0, (3.36)
z; X z; # 0. (3.37)

Now consider the j diagonal element u;J of U;. By applying Lemma 3.1 to (3.8)

we get the following:

a9

. o ;
i = bq—?migéiqivc'(RBZo)

= Migbisve- [2; X (2; X 23)],
Now by expanding the triple vector product we get,

Vo [25 % (25 x )]
= v [(z;-2:) 25 — (2 - 25) 2]

= (zj-2:)(Ve-25) — (Ve z4).



61
Substituting the above in the expression for u . we get,
u;'j = m,-gé,-qi [(Zj . Zi) (VC . Zj) bt (V,, . Zi)] . (338)

Claim: There are points in WW;(q) such that (z;.z;) (V.- z;) — (ve-2z:) #0.
Proof of Claim: We Prove this by contradiction. Suppose there are no points in

W;(q) such that (z; - ;) (Ve - 25) — (Ve - 2:) # 0. Then.
Ve Z; = (Zj -2i) (Ve Zj) ; (339)

throughout W;(q). Now since z; is constant throughout W;(q). vc - z; is constant
throughout W;(q). Since R; is constant, z; - z; is also constant throughout Wj (@).
Therefore, since the right hand side of (3.39) is constant. V. - 2; is constant in W;(q).
Since we have (3.37) satisfied in W;(q), from Lemma 3.2, we get that v, x z; = 0
throughout W;(§) which contradicts (3.36). This completes the proof of this claim.

Now consider the j** diagonal element of —0—%%12 denoted by p; ;. Using (3.9),

!
pij = D_Uj;tbij

=1
i—1 . n
= U;J'*—Z“J-J’_{_ Z UJJ+b]J
i=1 [=1+1
= Tﬁig[(zj-zi)(vc LJ VC Zl ](5q1+ZZLJJ+ Z U. +bj.j
I=i+1
= Biq +

where o = bj; + Tioj ul; + Tinip u'; ( by is the j** diagonal element of B) and
B; = mig(z; - 2:) (Ve - 25) — (Ve z;)] (since §;=1). We proved above, that there are
points within the robot workspace such that (z; - 2:) (v~ 2;) — (Ve-2i) # 0. Now
since 7;g is non zero (g can be zero only if all of the links beyond and including
link ¢ have zero mass, which is not physically realistic) there are points within the

workspace where 3; # 0. Now since both a; and §; are independent of ¢;, by keeping
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all other joints fixed except for joint i, we can keep both a; and 8; constant. Now by
selecting ¢; to be sufficiently large, we can make p; ; arbitrarily large. Therefore any
uniform bound that is proposed (a uniform bound has to be valid throughout ") for
||Q%£_192|| can be invalidated by selecting ¢; sufficiently large. Therefore, Z%%ll is not
uniformly bounded for robots outside Class BGJ. This completes the proof of this

theorem. a

3.2.5 Examples

In this section we look at three examples to demonstrate Theorem 3.1. For all three
examples we choose robots consisting of a revolute joint followed by a prismatic joint.
Based on Definition 3.2, we see that such robots will belong to Class BGJ only if at
least one of the two conditions, 3.2a and 3.2b are satisfied. For the first example we
will select a robot that violates both these conditions and derive an explicit expression
for the Hessian. We will see that the Hessian is not uniformly bounded for this robot
as predicted by Theorem 3.1. For the second example we will change the relative
orientations of the joints of this same robot so that it satisfies Condition 3.2a. As
we will see, the Hessian becomes uniformly bounded for this case as expected from
Theorem 3.1. In the third example we consider the same robot that we considered
in the first example and orient it such that Condition 3.2b is satisfied. We will
see that this also causes the Hessian to become uniformly bounded as predicted by

Theorem 3.1.

3.2.5.1 An RP Robot of Class BGT

Consider the revolute-prismatic (RP) robot of Figure 3.2. This robot does not belong
to Class BGJ since there exists a revolute joint j(= 1) and a prismatic joint i(= 2)
such that j < 4, the axes of the two joints are non parallel, and the axis of joint j is

not always parallel to v.. The kinematic link parameters are given in Table 3.1 which
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is organized as follows: Columns three to six contain the standard DH parameters
while column seven contains the masses of each of the links. Finally, the last three
columns contain the z, y and z components of the position vector of the center of

mass ¢;. The potential energy of this robot is given by

a )

Figure 3.2: The RP Robot of Example 3.2.5.1

V = mygeyicosqy + mag(ga + cz2)cosqr.
It follows that the Hessian is given by,

Jg(q) —mygerycos(qr) — mag(ge + ca:)cos(q1) —magsin(qi) (3.40)
dq —magsin{q;) 01l '
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[ Link i | Joint Type | oi_ [6: Taiy [di [mu [ ciz | iy | cic |
1 revolute 0 @l O O0|mpy| 0 |cy| O
2 prismatic 90 | O 0 |g|imy| 0] 0 |co

Table 3.1: Kinematic Link Parameters of RP Robot of Figure 3.2

It can be seen that the element [—migey,cos(qr) — mag(qs + ¢2:)cos(q1)] can be made
arbitrarily large by selecting ¢, sufficiently large. Therefore, “2%%11“ can be made
arbitrarily large when q € R". Hence, the Hessian is not uniformly bounded for this

robot.

3.2.5.2 An RP Robot with Parallel Joint Axes

For this example we consider the same robot that we considered in Section 3.2.5.1
and change the orientation of the axis of Joint 1 with respect to the axis of Joint 2
(See Figure 3.3). The Kinematic parameters for this robot are given in Table 3.2.
Note that the only revolute joint j (= 1) and prismatic joint £ (= 2) such that
§ < k satisfies Condition 3.2a (since the axis of rotation of joint j and the axis of
translation of joint & are parallel). Therefore, this robot belongs to Class BG.J. Next
we derive an explicit expression for the Jacobian of the gravity vector for this robot.

The potential energy is given by

Link i | Joint Tvpe | a;_1 | 6; | aim1 | di | 0 | Ciz | Ciy | Ciz

Yy
1 revolute 0 {q| O O{m {0 {cy| O
2 prismatic 0 0] a; |gaima| O} O |co

Table 3.2: Kinematic Link Parameters of RP Robot of Figure 3.2

V' = mygeiycosq; + mogaicosq;.
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Figure 3.3: The RP Robot of Example 3.2.5.2
Hence. the Jacobian of the gravity vector is given by.
i — (mygcry + magay) cosqy 0
og
dq
0 0
Therefore, H%%H = | (mygcy, + magay) cosqy| is uniformly bounded for this robot as

predicted by Theorem 3.1.
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3.2.5.3 An RP Robot with the Revolute Joint Axis Vertical

For this example we take the same robot as in Figure 3.2 and orient it such that
the axis of rotation of the first joint is always vertical (see Figure 3.4). Since the
only revolute joint j (= 1) and prismatic joint k(= 2) such that j < k satisfies one
of the required conditions. namely, the axis of rotation of joint j is always vertical,
this robot also belongs to class BJG. We consider next the Jacobian of the gravity
vector for this robot. It can be seen that the center of mass locations of both joints
remain on the same horizontal plane as the joints are moved. Hence. for this robot.
the potential energy is constant. Therefore, the Hessian becomes zero. Hence. as
expected, %% is uniformly bounded for this robot. We see from this example that in
addition to the relative orientation of the joint axes, the orientation of the robot in

the gravitational field also plays an important role in the uniform boundedness of the

Jacobian of the gravity vector.

3.3 A Uniform Bound for Class BGJ Robots

In this section we present a uniform bound for the Jacobian of the gravity vector for
Class BGJ robots and propose an algorithm to compute the uniform bound. This

procedure is illustrated with an example.

3.3.1 An Explicit Expression for the Uniform Bound g Satisfying (1.2)
Theorem 3.2 For Class BGJ robots, the uniform bound 8 = b defined

in (3.17) satisfies (1.2). &

Proof of Theorem 3.2: From Lemma 3.7 and (3.9). we see that for Class BGJ

robots 9%%9)— = B. The result follows immediately from Lemma 3.5. ]
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Figure 3.4: The RP Robot of Example 3.2.5.3

3.3.2 Algorithm for Computing the Uniform Bound for the Hessian

We propose the following steps for computing the uniform bound 3 satisfying (1.2)

for a robot once it is established that it is an element of Class BGJ:

3.1. Assign the coordinate frames 0, - - -, n, according to the modified DH convention

of [14].

(a) The vector d; is the position vector of O; (the origin of frame 7) in coordi-

nate frame (¢ — 1) with all prismatic joints in zero position.
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(b) The vector c; is the position vector of the center of mass of link 7 in

coordinate frame i .
3.2. Determine the values of y;, j = 1,---,n, using (3.18).

3.3. Obtain the uniform bound of (3.17) in terms of b, k = 1,- -, n. by substituting

for each ;.

3.4. Calculate the constants Ek,i, i=k+1,---.n,and G, ¢ = k,---,n, correspond-
ing to each by appearing in the expression for the uniform bound using (3.20)

and (3.21) respectively.

3.5. Calculate each by and substitute in the expression for the uniform bound, equa-

tion (3.17).
3.3.3 Example: PUMAS560

In this section we compute the uniform bound 3 for the six d.o.f PUMAS560 robot (see
Figure 3.5). The purpose of this example is to illustrate the computational procedure
proposed in the previous section and to provide a comparison of the uniform bound
with the exact value of Hi%ﬁq)-n for a typical industrial robot. In the literature, there
are several estimates of the dynamic parameters for the PUMAS60. For this example
we use the estimates given in [4]. The kinematic link parameters for the PUMAS560
are given in Table 3.3 which has the same format as Table 3.1. The parameters a;. d;.
Ciz, Ciy. and ¢;; are given in mneters while the parameters «; and 6; are given in degrees.
The masses m; are expressed in kilograms. It can be seen immediately that the PUMA
belongs to Class BGJ since it does not contain any prismatic joints. Therefore we
can use Theorem 3.2 to obtain a uniform bound for the Hessian of the PUMAS560
robot. Next we will follow the procedure outlined in Section 3.3.2 to compute the

uniform bound satisfying (1.2) for the PUMAS60.
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Figure 3.5: The PUMAS560 Robot

3.1. Since the axis of the first joint is always parallel to v.. p; = 0. Since none of

the other joint axes are fixed in the base coordinate frame. p» = piz = g =
ps = pe = 1.

3.2. By substituting the values above into (3.17), we get the following expression:

b = (B +2[B)+ B + Bs) + Bo)] +

3(b3)? + 5(ba)? + 7(b5) + 9(bs)”. (3.41)

3.3. Next we calculate the dj; corresponding to k = 2,---,6, from (3.20) as follows:



[ Link i [ Joint Type | ai_ [6;] aici | di | mi | e [ ey | s |
1 revolute 0 |¢ 0 0 - - - -
2 revolute | —90 | ¢» 0 0.244 | 17.4]0.068 | 0.006 | —0.016
3 revolute 0 |g¢z| 0432 | -0.093| 4.8 0 —0.070 | 0.014
4 revolute 90 | g4 | —0.203| 0433 | 0.8 0 0 -0.019
5 revolute —-90 | g5 0 0 0.3 0 0 0
6 revolute 90 | g6 0 0 0.1 0 0 0.032

Table 3.3: Kinematic Link Parameters of the PUMAS60

(a) doy = ||z x (R))|| = |ao} = 0.432, dog = |[d}[| = \/(as)? + (da)? = 0.433,
835 ”d/ ” 0-, d‘.Z,G = “dGH =0.

(b) a3..4 = “dI4” = 0.433, ‘—13.5 = ”dg“ =0, EB.G = ”dls” = 0.
(¢) das = |5l =0, dss = |||l = O

(d) dse =gl = 0.

We next use (3.21) to calculate ¢; for k= 2.---.0, as follows:
(d) Can = ”22 X (RéCg) 03 = ”Z) x R3 C;” =
(ca3c)? + (c3y)* = 5 = llesl] = 0, T =

llcs|| = 0.032.

(b) 53.3 = ”Zg, X RgCJII = (C3I)2 + (ng)z = OOT —(33_4 = ”C1H = 0019 63.5 =
HC'3H = O, -(-,'2’6 = HCGH = 0.032.

(@) s = 121 x Ricsl = /el + (e)? = 0. s = llesll = 0. T = o]l =
0.032.

(d) 35,5 = ”Zs X R8C3|I = (051)2 —+ (Csy)2 = 0, 55‘5 = ”Cﬁ“ = 0.032.

[V

(e) Tss = ||z5 x Ricsl| = 1/ (coz)? + (coy)* = 0.
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3.4. Now we substitute the above values into (3.19) to obtain the value of each .

From (3.4), we see that M, = 23.4, T3 = 6.0, gy = 1.2, 5 = 0.4 and 7z = 0.1.

(2) by = (Msdas + 74 4+ Tsde 5 + Meds g + MaCas + MyTas + MaTag +M5GCas

Now by substituting in (3.41). we get 3 = b = 47.92.

In order to compare the uniform bound just computed with the exact value of
H || we derived an exact expression for _g_cL &o%&q—) It is independent of
q as expected since the axis of rotation of Jomt 1is always parallel to the gravitational
field. In order to locate the point where || || reaches a maximum. a complete
enumeration of the robot workspace at a relatively low resolution (around 50 points
for each joint resulting in a resolution of around 7 degrees) was done using Matlab

[54]. We found 1289| to be maximum when g» = g5 = 90° and ¢; = g5 = 180°

()q |
degrees. Figure 3.6 shows a plot of ||5§|[ and the uniform bound 3 as ¢, is varied

between 0° and 360° degrees while g3 = 90° and g4 = g5 = 180°.

3.4 A Bound for Class BG7 Robots

In this section. we present a bound for the Hessian. that satisfies (1.4), for robots

that belong to Class BGJ .
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Figure 3.6: Uniform Bound § (dashed line) and H%H (solid curve) for
the PUMAS60
3.4.1 An Explicit Expression for the Bound ¢, satisfying (1.4)

Theorem 3.3 For all robots considered in this thesis, a bound ¢, satis-

fying (1.4) is given by.

cy=b+ Zu,-, (3.42)
i=1

where b is defined in (3.17) and

- ) D I S
w=1{ V 2j=1 (2 Chege1 (@) + (T 5) ) :if joint ¢ is prismatic
0 . if joint 7 is revolute.

(3.43)



Here,
Tigpsii: ¢ if k=1 and joint j is revolute

E;k = { Tigu;i;:q; ¢ if both joints j and k are revolute and j < k<t
0 :  otherwise,

(3.44)
where ; is defined in (3.4), p; is defined in (3.18). p;; is defined in (3.31)

and 7, is an upper bound for |g;| as defined previously. O

Proof of Theorem 3.3: Following the same reasoning that is used to derive (3.23).

we have

Trace(UTU;)

(5

i=

—

(ujk)') + (u}_ﬂ"’) . (3.45)

Il
LN
1 .
—
N
o
o
e
+

since from Lemma 3.6, ui- =0 when & >i. Now by using Lemma 3.6 again. we see

that (u;)* < (@)* where T T is defined in (3.44). Now since ||Us]} < v Trace(UTU;),

by substituting in (3.45). we have the following:

U]l <

\i (2 Z (@p)* + (%)2) = u;, (3.46)

j=1 \ k=j+1

where u; is defined in (3.43). By applying the triangle inequality to (3.9) we get,

lag(Q) H -
——\ = ||B|| + E Uill.
The result follows by substituting from (3.46) and Lemma 3.5. O

3.4.2 Example: The Bound ¢, for the RP Robot of Section 3.2.5.1

In this section we choose a robot that does not belong to Class BGJ to illustrate
the computational procedure of the bound of Theorem 3.3. Consider the 2 d.of RP

robot of Section 3.2.5.1 (see Figure 3.2). As noted previously, this robot belongs to



74

Class BGJ. We compute the bound ¢; of (3.42) for this robot as follows: It can be

seen that in order to compute the bound ¢, we need to calculate b and u;, ¢ = 1, 2.

We will first calculate b following the procedure suggested in Section 3.3.2.
3.1. Since joint 2 is prismatic, g, = 0 and since joint 1 is revolute and v = 90°,
pr =1L

3.2. By substituting the values above into (3.17), we get the following expression:

>

b=1/(51)2 +2(by)? (3.47)

[~

3.3. From (3.20) we get di» = [|di|| = 0. We use (3.21) next to obtain ¢;; =

“Zl X C1H = |(,‘1y| = C1y: Z’lyg = “ZI X Cg” = IC;2| = Cas and Coo = ”Zg X C-_g“ =0.

3.4. Now we substitute the values above into (3.19) to obtain by = Tagdy 2 +m gty +
MagCa = Migcy, +Maycs, and by = Tagtao = 0. Now by substituting in (3.47),

we get

b= /m1 C1y + MagCsz)? = ygCy + MagCas.
Vv Y y

Since joint 1 is revolute u; = 0. We calculate u, next using (3.43). From (3.31)

we see that py» = 1 and uy» = 0. Using (3.44) we obtain the following:
3.1 Wi = Magiif 20 = MayTa
3.2. Wy, =

3.3. T3, = Magpaitns = 0.
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Finally by substituting in (eqdefbet’), we obtain
€y = MGy + MagCo: + TM12GQs. (348)

As in the previous example, in order to compare the bound with the exact value

of HQ%ZH we use the expression for 1%{—191 in (3.40) to generate a plot of Hg%%nH
and the bound ¢4 given in (3.48) as g, is varied from —180° to 180° and ¢y is varied
between 0 and 1.5 meters(See Figure 3.7). We chose my = 5, my = 4, ¢1, = 0.25,
¢ = 0.2 and G, = 1.5. Note that this bound is only valid locally in the region

satisfying || < G-
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Figure 3.7: Uniform Bound § and H%H for the RP Robot



3.5 Summary

Many theoretical results on motion regulation and tracking require a uniform bound
for the Hessian. However. not all joint configurations of robots insure the existence
of such a uniform bound. Therefore, for the implementation of these control laws
it is important to characterize the class of robots for which the Hessian is uniformly
bounded (Class BG.J). The first contribution of this chapter was the full characteriza-
tion of Class BGJ. The resulting requirement for belonging to Class BGJ depended
on both the relative orientations of the joints as well as the orientation of the robot
in the gravity field. Three examples were presented to illustrate this result.

The selection of parameters of those control laws that require a uniform bound
for the Hessian, is based on the value of the uniform bound. Therefore. an explicit
expression for the uniform bound will be useful in the implementation of these con-
trol laws. The second contribution of this chapter was the derivation of an explicit
expression for the uniform bound for Class BGJ robots. This bound is valid globally
and is given in terms of the constant link parameters of the robot. We presented
a simple algorithm for computing this bound and illustrated it by computing the
uniform bound for the PUMAS560 robot.

For robots belonging to Class BG.7, the results that use the uniform bound for the
Hessian will be valid globally. For robots outside Class BGJ . these results will only
be valid locally. Nevertheless, they can still be applied provided the system is kept
within the valid domain for the corresponding result. The third contribution of this
chapter was an explicit expression of a bound for the Hessian for Class BGJ robots
that is valid within any given compact subspace. This bound is given in terms of
constant link parameters and upper bounds for prismatic joint variables. This result

was also illustrated with an example.



Chapter 4

Implementing PD control with Simple Gravity
Compensation in Parallel Robots for Set Point
Tracking Applications

In this chapter we implement PD control with simple gravity compensation in a
parallel robot based on the dynamics formulation of [24]. We begin by reviewing in
Section 4.1 the formulation of the equations of motion and the stability properties
of the PD plus simple gravity control law. This is followed by Section 4.2 where we
introduce the Rice Planar Delta Robot (R.P.D.R.), which was designed and built at
Rice University to perform control experiments, and derive the equations of motion
of the R.P.D.R. In Section 4.3, we implement the PD plus simple gravity control law
(1.10) on the R.P.D.R. We also set up a simulation of the experiment in Section 4.3
using the equations of motion derived in Section 4.2 and present comparisons of the
experimental results with the simulation. Finally in Section 4.4, we summarize the

contributions of this chapter.

4.1 PD Control of Closed-Chain Mechanisms

In this section we first review the dynamics model for closed-chain mechanisms orig-
inally presented in [24], and second summarize the PD plus simple gravity control
result for this class of systems originally developed in [22]. This will be used as the
basis to develop the equations of motion for the R.P.D.R. and implement the control

result experimentally in later sections.
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4.1.1 The Reduced Model for Parallel Robots

The parallel robot referred to here as the constrained system X, can be thought of as
consisting of a free system £’ to which constraints C are applied as shown in Figure 1.3.
The free system X' is an n’ degree-of—freedom (d.o.f) holonomic system which consists
of a collection of rigid bodies described by (1.7). The constraints applied to the free
system are represented by (n’ —n) independent scleronomic holonomic constraints
given by
C: ¢(qd)=0 (4.1)

where ¢(q') is at least twice continuously differentiable, a consequence of which is that
oy (d) = %(q’) is of full (n’ — n) rank. With the introduction of the constraints
(4.1), the generalized coordinates q' are restricted to a subspace of Q' . namely, ' € U’
where

U2{de®: ¢d)=0}cC, (4.2)
It follows from standard results in dynamics [33] that the free system ¥’ (1.7), with
imposed constraints C (4.1). has n-d.o.f, and hence there exists a minimum set of
n-independent generalized coordinates q € 8 C R" such that the system can be
written in terms of q as follows

£: D(@)a+C(a.9q)q+elq)=0 (4.3)
where D(q) € R™" is the inertia matrix, C(q,q)q € R" is the centrifugal and
Coriolis vector, and g(q) € R" is the gravity vector. This formulation is sometimes
referred to as formulation in reduced form [72]. In many situations, such as the case
of the R.P.D.R., we may be able to choose the generalized coordinates to coincide
with the variables of the actuated joints in which case the equations of motion (4.3)

can be written as

Y: D(qQ)g+C(q.9)q+glq)=u (4.4)



where u € R" is the applied generalized force vector.
Using the given information about the free system ¥’ and the constraints C, a

reduced model ¥ was developed in [24] and summarized in the following steps:

e The independent generalized coordinates q with which we would like to de-
scribe the constrained system (4.3) can be chosen to satisfy the following twice
continuously differentiable parameterization

a: U — UCR
q — aq=qa(q)

e Define the following quantities

W) & [ZEE; } , (4.5)
vold) £ 35 (46)

mdwé{¢@]—[0} (4.7
a(q’) q
and

Td) £ 3 (48)

Note that :djq, = Y.

e We now define the set V' £ {q €U : det[vy (q)] # 0} C U'. We say that
the system is in a singular configuration when ¢’ is an element of U’ but is not
an element of V', It follows that V' is the workspace region in the q’ coordinates
where the constrained system satisfies the constraints and in addition is not in

a singular configuration.
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For any given point q. € V, let ¥(q.,q,) = 0. Using the Implicit Function
Theorem [69], we conclude that there exist a neighborhood Ny of q,, and
a neighborhood A, of q,, such that for any q € A, there exists a unique

q € N . such that q' = o(q). Furthermore, q' = p(q') q where

p(q) = ¢5'(q) [ Ot —npxen } . (4.9)
Tnxn

We now let W’ ¢ V' denote the largest subset of V' containing g/, for which
the unique parameterization ¢’ = o(q) holds. An explicit characterization of
W' for the general case is reported in [11]. We now denote the corresponding
domain of ¢ by Q. Hence. we have a diffeomorphism from W' to € as follows:
w-La-Lw' .

Finally, the equations of motion of the constrained system expressed in terms
of independent generalized coordinates q € €2. as given in (4.4) and repeated

here for convenience,
¥: D(q)d+C(a.9)q+glq) =u (4.10)

are obtained by combining

D(d)g+C([d.¢)g+g(qd)=u

q=pd)q (4.11)
q =o0(q)
where Vq' € W'
D) = pd) D'(q)e(d) (4.12)
Cd.q) = old)"Cd. &) p(d) + p(d) D'(d) pld. &) (4.13)
gld) = od) () (4.14)

p(d) is given by equation (4.9)

o(q) its existence is insured by the Implicit Function Theorem.
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The reduced model described above has two special characteristics which make it
different from regular models of open-chain mechanical systems. First, the above
reduced model is valid only (locally) in a compact set €. This means that control
strategies can only insure local stability results at best. Second, since the parame-
terization ¢ = o(q) is implicit, it is an implicit model. It follows that in order to
apply model based control strategies, there is a need to instantaneously compute the
parameterization q' = o(q) which is a difficult task in general even though its exis-
tence is insured by the Implicit Function Theorem. When implementing model based
control laws using digital computers, this means that at each fraction of the control
sampling period, a numerical technique such as Newton-Raphson has to successfully
compute this parameterization which, even with the current advances in digital hard-
ware, could be very difficult to achieve. This difficulty is avoided with a PD plus

simple gravity compensation control as discussed next.

4.1.2 PD Plus Simple Gravity Compensation

The applicability of PD-based control strategies for closed-chain mechanisms was
investigated in [22]. It was proposed that PD with full as well as with simple gravity
compensation were possible thanks to the skew symmetry property of D-2C, a
property that was established for closed-chain mechanisms in [22]. In particular,
PD plus simple gravity compensation is very attractive because it avoids the online
computation of the parameterization q' = o(q).

Consider the following PD plus simple gravity compensation control law (1.10). In
reference to the equations of motion of the closed-chain mechanism, equation (4.11),

note that
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Since the parameterization ¢’ = o(q%) is now a constant value, it could be computed
off-line to any degree of accuracy using any of the many well established numerical
techniques. It follows that the constant term g(q?) in (1.10) could also be accurately
computed off-line.

Suppose now that for a particular closed-chain system, there is a simply connected
set D C § and consider a set-point (regulation) problem in which it is required
that the vector q reach a constant desired value q; € D. Define q & Qq, — q. and
B2 {(d,4) : 9.4, € D}. The PD plus simple gravity compensation control result is

summarized as follows:

Theorem 4.1 [22] Define the set B, & {(q.q) : Va(@,4) < ¢} where
¢ is the largest positive real number such that B, C B. Let the initial
conditions (@g, Q) € B2, and let Hgga%D” < @ in B, where 3 is a positive
constant. Choose k,; > B3, ¢ = 1,2,---,n, where k, are the diagonal
elements of K,. Then the equilibrium q = 0 and g = 0 of the closed-
chain mechanism model (4.11) with the control law (1.10) is (locally)

asymptotically stable and q — §,;, @ — 0, as t — <.

Note that the existence of the constant 3 is insured by the continuity of the gravity

vector g since the set B, is compact.

4.2 The Rice Planar Delta Robot (R.P.D.R.)

In order to experimentally verify the results on control of parallel robots developed
in this project there was a need to have a programmable parallel robot. We designed
and built the Rice Planar Delta Robot (R.P.D.R.) for this purpose. We chose to
construct a planar delta robot since it’s one of the simplest parallel robots and it can
be modeled easily. The R.P.D.R. has four links connected through revolute joints

(see Figure 4.1). Two of the joints (Joint 1 and Joint 2) are actuated while the other
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Figure 4.1: Link and Joint Configuration of the R.P.D.R.
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three joints are passive. It can be seen that the R.P.D.R. has two degrees of freedom.

Thus. the number of inputs are selected to match the number of degrees of freedom.

In the R.P.D.R. joints 1 and 2 are actuated by permanent magnet DC motors.

In order to provide sensory feedback for control, we used optical encoders having a

resolution of 10,000 pulses per revolution. In order to freeze the robot once it reaches

a desired configuration the R.P.D.R. is equipped with electromagnetic brakes. Since

the DC motors provide high speed and low torque, in order to drive the robot there

was a need to include a transmission system that reduce speed (and increase torque).

Typical transmission systems have undesirable properties such as backlash and joint

flexibility. For the R.P.D.R. we chose a special timing chain and sprocket system that

dramatically reduce these effects. For joints 1 and 2 the actuator/sensor assembly

consists of the motor, the encoder, the electromagnetic brake, and the transmission

system (see Figure 4.2) and they are identical. The passive joints were designed to
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Figure 4.2: Rice Planar Delta Robot (R.P.D.R.)

minimize friction using roller bearings. They were made with Aluminum alloys to
reduce weight. The links were made of 0.5 inch square hollow steel tubing which
provide high rigidity and relatively light weight. The link train starts from Joint 1
and ends in Joint 2 (see Figure 4.2). The base of the robot is made of steel and
constructed to be rigid. The actuator/sensor assemblies corresponding to joints 1
and 2 are mounted on the base. For safety reasons the moving parts of the robot is
enclosed by a plexi-glass frame.

The primary objective of the R.P.D.R. is to serve as a test bed to perform exper-
iments on control. For this reason it was designed such that the dynamic parameters
can be adjusted. The two actuator/sensor assemblies corresponding to joints 1 and 2

are designed such that they can be mounted to the base of the robot with varying dis-
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tance between them. If there is a need to vary the link lengths (and weight), this can
also be achieved in the R.P.D.R. by using a new set of tubing (which is inexpensive).
In order to study singularities the RPDR was designed such that all of the joints can
rotate through a full circle (360 degrees). This allows the RPDR to be driven to a
singular configuration if needed for some experiment.

The R.P.D.R. is controlled with an IBM PC to which it is interfaced through a
DSP board made by dSPACE [16]. The DSP board controls the motors by sending a
pulse width modulated signal in which the pulse width is proportional to the desired
torque. This signal is amplified by an H-bridge circuit and fed to the motors. The
DSP board has two encoder channels which is used to interface the optical encoders.
The electromagnetic brakes are controlled by two of the digital I/O lines of the DSP
board. In order to implement most control laws there is a need for velocity feedback
in addition to position feedback. In the R.P.D.R. velocity feedback is provided by
differentiating the position and filtering with a low pass filter implemented in the
DSP. In addition to providing the interface between the robot and the computer
the dSPACE board and software performs the important function of real time data
acquisition. This enables us to monitor the sensory data as well as any other variable
associated with the experiment during the implementation.

In the implementation of control the dSPACE board computes the control law in
real time based on the position/velocity feedback and outputs the desired torque to
the motors. This is done in an interrupt routine which is activated at a fixed sampling
rate. The sampling rate can be programmed and we selected 5 KHz. (a step size of
200 microseconds) for the experiments reported in this chapter and a sampling rate
of 1 KHz for the experiments reported in Chapter 5. In each experiment in addition
to the interrupt routine implemented in the DSP, another program implemented in

windows communicates with the interrupt routine. This program allows the operator
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to control the robot during experiments. For a full description of the design process
of the R.P.D.R. refer to Appendix A. All of these programs were written in C. Please

refer to [34] for a full listing of the programs corresponding to each experiment.

4.2.1 Equations of Motion of the R.P.D.R.

In this section. we will derive the equations of motion for the R.P.D.R. using the
formulation summarized in Section 4.1.1. The first step in deriving the equations
of motion is selecting the “free system”. In our free system, the robot is virtually
cut open at the end-effector, resulting in two serial robots each having two degrees
of freedom (see Figure 4.3). As defined in the figure, m;, ¢;, and a; are respectively
the mass, distance to the center of mass, and length of link i. The inertia of link ¢
about the line through the center of mass parallel to the axis of rotation is denoted
by I;. The parameters corresponding to Link 1 and Link 3 are defined similar to the

parameters of Link 2 and Link 4 even though they are not shown in the figure. Thus

Link 1

DS SR NNN

Figure 4.3: The “free system”
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the constraint equations are due to point E being coincident with point F' and are
given by,

, a;cos + a3c08(q) + gz3) — ¢ — @2¢08(gs) — @4COS{ga +
o(q) = | (1) + ascos(qr + gs) (@) = @acos(@+a1) | _ g (4 15

aysin(qy) + azsin(q; + g3) — assin(gz) — assin(gs + q4)

where @ ={ ¢, ¢ g¢s g4 ] is the generalized coordinate vector of the free system.
Note that since the actuated joints are joints 1 and 2 for the R.P.D.R.. we choose the
generalized coordinate vector of the constrained system to be q = [q1 g2 ]7. Our
next objective will be to derive expressions for each of the terms appearing in (4.11) for
the R.P.D.R. to obtain the equations of motion. We begin with the parameterization
a(q') = q, which is given by,

1000

'=q. 4.16
0100]qq (4.16)

a(q) = {

Now by combining (4.15) and (4.16) and differentiating with respect to q', we obtain

the following expression for ¢¥q/(q'):

Wy ( Vy(1,2) —agsin(qr +¢3)  assin(ga + qi)
U (2.1) ¥(2,2) ascos(q +gs) —ascos(g2 + )
'L/} ’ ! = 9 1 . 417
rqld) = ! : ; Y wm
0 1 0 0

where, ¢y(1,1) = —asin(q) — assin(q + g3), ¥y (1,2) = assin(ge) + assin(ga + q4)-
W2, 1) = arcos(qr) +azcos(qr +¢s). and ¥ (2,2) = —ascos(g2) — ascos(ga+qq). Now

from (4.9) we have the following expression for p(q'):

o(d) = 3 (@) (4.18)

o = O O
= O O O

Since p(q') is in terms of an inverse matrix, it is not easy to take the time derivative.

Therefore, we use the following expression for p(q',q’), which can be easily obtained
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by pre-multiplying (4.18) with wq,(q’) and taking the time derivative:
p(q/ q,) = —¢(—i}(ql)wq’(ql- q/)p(ql)7 (419)

where @/:'qf(q’ .q) can be obtained by differentiating (4.17) with respect to time. Next
we will derive expressions for D'(q'), C'(q’,¢). and g'(q') that appear in (4.12),
(4.13). and (4.14). The following expressions were derived using the Lagrangian

method:

dip 0 diz 0
0 dyp O day
ds; 0 dszz O
0 dis O dug

D'(q)= (4.20)
where. d; ; = my 2 +ma(a?+13+2a1lc0s(qs)) + 11 +13. dis = ma (I3 +arlscos(as)) +
I;;, dg_g = mglé -+ m4(a§ +lg4 +‘2aglc4cos(q4)) + Ig +I4, d2_4 = 7714(134 +agl(,4(ZOS(q.1)) + 14,

d3y =d13, d3z = m3133 + I3, dyp =doy, dyg = m4l‘;’4 + Iy,

h1gs 0 higr+g3) 0
. 0 hags 0 ha(ga + 1)
C'(d,q) = 4.21
(q.9)=| _ i, 0 0 0 (4.21)
0 —}Lg(jg 0 0
where h; = —msa1lssin(qs). and ho = —myaslesin(qs). and

(il + mgay)cos(qr)) + malescos(qr + qa)

¢(q) = (1naley + Tyas)cos(qa)) + muleqcos(qs + qq) . (4.22)
malescos(qr + qs3)
)

maleacos(qa + qQq
where g = 9.81 m/sec® is the gravitational acceleration constant. At this point
we have derived the equations of motion of the R.P.D.R. in terms of q'. The only
remaining issue is the derivation of the parameterization q' = o(q). In general, it is
not possible to derive an analytic expression for o(q), and it must be computed using

numerical methods. For the R.P.D.R. however, it is possible to solve (4.15) to obtain



89

the following:

B(qlv (l..’)

i\/A(Ch:CI‘z)2 + B(a1,@2)? — Cla1.q2)? 3
A(q1.q») o

C(QI: (12)

gy = tan™! [ ] + tan™!
where A(g,q2) = 2aaMq1. @) B(q1:q2) = 2asp(q1, 2). and Clg1.¢2) = aj — ai -
Ma1. g2)* — (g1, ¢2)%. and A(q1, g2) = azcos(qa) —arcos(q) +¢. p(gr. g2) = assin(gz) —
aysin(g;). Finally,

1| elar, q2) + assin(qe + q4) —q (4.24)
AMar, q2) + asgcos(qa + q4)

gz = tan~

Hence, (4.23) and (4.24) combined represent the parameterization q' = o(q). This
completes the derivation of the equations of motion of the R.P.D.R. In summary. the
equations of motion of the R.P.D.R. are given by

D(q)a+C(q.q)a+glq) =u,

q = p(d)q,
q =o0(q),

where

D(d) = p(d)"D'(qd)p(q),
Cd.q) = pd)C(d.q)p(d)+p(d) D'(q)6(d. q),

T

gld) = nlq) g'(d),
D'(q). C'(d.q), g(d). p(q.&). p(q'). and o(q) are defined in (4.20), (4.21) (4.22).
(4.19), (4.18), and (4.23) plus (4.24) respectively.
4.3 Implementation of the PD Control Law

Our next objective is to implement the PD plus simple gravity compensation control
discussed in Section 4.1.2 using the computer controlled R.P.D.R.. First, we need

to characterize a compact domain, a subset of €2, where the parameterization o(q)
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exists. For the R.P.D.R., if we select a simply connected region D C € that is free
of singularities, the parameterization o(q) will exist in that region. Therefore, our
first objective was to characterize the singular points of the R.P.D.R. From (4.17).
we see that det[thg (q')] =sin(q1 + g3 — ¢2 — q4). Consequently, the singular points of
the R.P.D.R. are those for which (q; + ¢s — g2 — q1) = na@, for n =0, £1,£2,---. By
substituting these into the constraint equations (4.15). we were able to solve for all
of the singular points of the R.P.D.R. These are plotted in Figure 4.4 which shows
the entire workspace of the R.P.D.R. (corresponding to the range —180° to 180° for

Joint 1 and Joint 2). We considered two cases corresponding to n being even and n

being odd. The two cases led to two types of singularities. There are infinitely many

Type-2-Singularity

Singularity-Free-Region D

e 7
R
g 62 \1// // Type-1-Singularity
S 74 (|
-120 \E{/
-180+

-180-120 -60 O 60 120 180

ql—(deg‘rees)

Figure 4.4: Singular Configurations of the R.P.D.R. and the Region D

singularities of the first type which occur when 7 is odd. The second type occurs when
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n is even and the robot loses control of Link 3 and Link 4 in these configurations.
There are two singularities of this type for the R.P.D.R. as shown in Figure 4.4. For
our experiments we chose the singularity free region D where —150° < ¢; < —90°
and —160° < ¢, < —100°.

We next present some of the initial experiments that were performed to identify
the system parameters and in particular frictional effects. We then present simulation
as well as experimental results on a simple point to point motion. Finally we present
experimental and simulation results on a repetitive point to point motion. This type

of motion is typical in pick and place applications of parallel robots.
4.3.1 Evaluation of the Parameters in the Equations of Motion

Before implementing control. initial experiments were performed to identify the pa-
rameters in the equations of motion derived in Section 4.2.1. The link parameters

were calculated and verified by measurement. These are presented in Table 4.1. In

[Tink i [ m; (kg) [a; (m) [lo (m) | [ (kgm?) |
1 0.2451 | 0.2794 | 0.1466 | 2.779 x 1073
0.2352 | 0.2794 | 0.141 | 2.607 x 1073
0.2611 | 0.3048 | 0.1581 | 3.476 x 1073
0.2611 | 0.3048 | 0.1467 | 3.476 x 1073

x| QLo o

Table 4.1: Kinematic Link Parameters of the Rice Planar Delta Robot

addition to the inertia represented in D(q), there is a constant inertia due to the
motors and the transmission on Joint 1 and Joint 2. These constant inertias were
estimated to be 3.3263 x 10~® kg m?. The distance between the axes of Joint 1 and
Joint 2 was measured to be ¢ = 0.3048 m.

Our next objective was to identify the friction in the system. We considered

Coulomb friction, viscous friction and static friction at the initiation of motion. Using
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the model of the R.P.D.R. derived in Section 4.1.1 together with the parameters which
we calculated, we were able to setup a simulation. Friction was also included in the
model with an initial guess of the friction parameters. The real values of the friction
parameters were identified by comparing the actual step response of the system with
the predicted response of the simulation for different step inputs. These experiments

showed us that the frictional effects cannot be neglected in the R.P.D.R.

4.3.2 Experimental Results and Simulations: Point to Point Motion

For our experiment, we chose the point to point trajectory shown in Figure 4.5 which
is within the singularity free region D. The initial configuration is given by ¢ = —150°
and ¢» = —160° while the final configuration is given by ¢; = —90° and ¢» = —100°.

Our next objective was to compute the parameters of the PD with simple gravity

4 N
SOONOOUNNNANNNANNNY

Initial Configuration,
q1=-150, qa=-160"
q3=97", q1=51".
Final Configuration,
q1=-90°, g2=-100 ,

Trajectory q3=26", qy=-14"

Figure 4.5: Point-To-Point Trajectory
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compensation control law (1.10), namely,
u=g(q’) + Kpr(q’ — q) - Kva.

Based on the system parameters identified in Section 4.3.1, we computed the gravity
vector at the desired configuration g(q?) off-line. In order to account for the frictional
effects. we estimated the coulomb friction at the desired configuration and added that
to g(q¢). Since the effect of viscous friction is to increase Ky, there is no need to
account for it. We selected K p to be diagonal with each element equal to 11 N-m/rad
which was sufficient to satisfy the requirements of Theorem 4.1 for this experiment.
The matrix Ky was also selected diagonal with the first element 0.65 and the second
element 0.6 N-m-s/rad. The values of the elements of Ky were selected by trial and
error to make the system close to critically dumped.

In order to compare the experimental results with the theoretical predictions,
we performed a simulation. During the simulation we integrated the equations of
motion derived in Section 4.2.1 combined with the control law (1.10), to generate
the solution trajectories. We used the Runge-Kutta algorithm in Matlab [54] to
perform the integration. For the simulation, we had the same initial configuration
and final desired configuration that was used for the experiments. We also included
friction (identified in Section 4.3.1) in our model. The simulation and experimental
results are presented in Figure 4.6. The dashed curves correspond to the simulation
results while the solid curves correspond to the experimental results. It can be seen
that the experimental and simnulation results match well. The slight deviations can
be attributed to inexact modeling of friction and other unmodeled dynamics in the
system. Furthermore, it can be seen that the robot achieved the desired goal within
approximately 0.3 seconds. It can be seen that the experimental results confirmed
the theoretical predictions. A full listing of the C programs corresponding to this

experiment can be found in [34].
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4.3.3 Experimental Results and Simulations: Repetitive Point to Point
Motion

In some industrial applications, parallel robots are used to perform rapid pick and
place routines. In a pick and place routine, a robot moves to one point. picks up an
object, carries it to another point, and places the object at that point. In this section
we present experimental and simulation results of the R.P.D.R. performing rapid pick
and place type motions.

The R.P.D.R. was programmed to move repetitively between the initial config-
uration of Figure 4.5 (say q') and the final configuration (say q/). The algorithm

performs the following routine:
4.1. Implement control law (1.10) with q¢ = /.
4.2. After steady state is achieved wait 2.5 seconds with the control law unchanged.
4.3. Implement control law (1.10) with ¢ = ¢".

4.4. After steady state is achieved wait 2.5 seconds with the control law unchanged.

4.5. Go to Step 4.1.

As in the point to point motion experiment of the previous section, we compensated
for the coulomb friction at the desired configuration. The matrices Kp and Ky
were also selected to be the same as in the previous experiment. A simulation was
also performed using the model developed in previous sections. The experimental
results and the simulation results are presented in Figure 4.7. As in the previous
case, the dashed curves correspond to the simulation results while the solid curves
correspond to the experimental results. The results show that the robot completed the
motion in under 0.3 seconds and achieved the desired configuration within reasonable

tolerances. The simulation and the experimental results seems to agree quite well.
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These results show us that the control law (1.10) can be used successfully for pick
and place routines provided the coulomb friction is exactly compensated. If a system
is developed for a specific routine (where the programming is done for one particular
pick and place routine), even if the friction is not known precisely the compensation
term can be modified until the error reaches acceptable levels. However, if the system
is to be developed for any general pick and place routine, the coulomb friction must
be predictable and known exactly in order to successfully implement the control law

(1.10). A full listing of the C programs corresponding to this experiment can be found

in [34].

4.4 Summary

In this chapter. we first reviewed a new formulation of the equations of motion of
closed chain mechanisms of [24] and the local asymptotic stability of the PD plus
simple gravity compensation control law that was established in [22]. We then ex-
perimentally validated this result using the Rice Planar Delta Robot (R.P.D.R.) and
evaluated the applicability of this control law for pick-and-place applications of par-
allel robots. A detailed derivation of the equations of motion was also presented in
this chapter which enabled setting up a simulation of the motion. Both simulation

and experimental results were presented and showed good agreement.
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Chapter 5

Model Based Control of Parallel Robots for
Trajectory Tracking Applications

In this chapter we address the two issues related to using the dynamics formulation
of [24] to implement control. namely, the issue of characterizing the domain of the
parameterization (1.9) and the issue of computing q' = ¢(q) in real time for model
based control. This chapter is organized as follows: In Section 5.1 and Section 5.2 we
address the issue of characterizing the domain of (1.9). This is followed by Section 5.3
and Section 5.4 where we address the issue of computing q' = o(q) in real time. We
propose a procedure to implement control that ensures convergence in Section 5.5.
In Section 5.7 we illustrate this procedure with an example. namely, the Rice Planar
Delta Robot (R.P.D.R.) and compute all of the parameters associated with this pro-
cedure. Experimental results on the implementation of the procedure are presented
in Section 5.8. In this experiment the R.P.D.R. is made to follow a trajectory which
makes the end-effector travel in a circle. Finally, in Section 5.9 we summarize the

results of this chapter.

5.1 The Domain of the Parameterization q' = o(q)

Given any point ¢, € V'. let q, = a(q,). It was proved in [24] that there exists
neighborhoods N and Nq_ of q, and q, respectively, such that for each q € Nq.
there exists a unique q' € N satisfying (1.9). The equations of motion (1.1) were
proved to be valid in any subset of V' for which the parameterization (1.9) is valid.

Obviously. the establishment of the existence of a neighborhood where (1.9) is valid
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is not sufficient by itself to use this result for control. Our objective will be to
characterize a region of the robot workspace, that is sufficiently large to enable control,
where the parameterization (1.9) is valid and propose an algorithm to compute it.
Is it possible to prove that the parameterization (1.9) is valid globally? We can
show by way of example that this is impossible. Consider the planar delta robot of
Figure 1.1. In this robot joints one and two are actuated and hence, q=[ g1 ¢ 7.
Let  =[q g2 gs qq )7 Clearly, if the parameterization (1.9) is valid globally,
for each value of q there should be a unique q’ satisfying the constraint ¥(q,q) = 0.

In the planar delta robot, for most values of q'. there are two different values of q'

satisfying the constraints ¥(q',q) = 0 (See Figure 5.1). For most parallel robots

4 )

Joint 4 (passive)

/

Joint 3 (passive) Joint 4 (passive)

&l

oint 3 (passive)

1 Joint 2

Joint 2
L (Actuated) 1 (Actuated)
\¥ ) «—Joint 1 ¥

Joint 1 (Actuated)

=] (Actuated) R .
TRET IIEERE AR AV RANAN AANNANANN
Downward Configuration Upward Confliguration
- _

Figure 5.1: Two different configurations of the planar delta correspond-
ing to the same positions of the actuated joints (joints 1 and
2)
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the actuated joints do not uniquely determine the entire configuration of the robot.
Hence the parameterization (1.9) is not valid globally in general. Our objective will
be to characterize a closed set where (1.9) is valid.

One approach that can be taken to solve this problem is to regard it as solving
for the zero of a non linear function. That is, for a given point q = q; of the robot

workspace, the corresponding value of the dependent coordinates q' = qj can be
found by solving (4.7),

Tdq,) = mg; } - [2 } —o, (5.1)

for q;. For a given value of q, (5.1) is a function of the form f(x) = 0, where
f:RY = R”. The issue of solving this problem received much attention in the past
and several algorithms have been proposed. Among these, the Newton algorithm is
well known. Among the results in this area, the Kantorovich theorem characterizes a
set where the Newton algorithm is guaranteed to converge and provides an estimate
for the error after m iterations. Therefore, the Kantorovich theorem can be used to
characterize a region where a solution to (5.1) exists. This is the approach taken in
[10].

An important feature of the problem at hand that is not taken into account in
this approach is the variation in q. A question that is not answered directly in this
approach is, how does the variation in q affect the existence of a solution to (5.1)7 This
aspect is important in our application since the parallel robot will always start from
a known configuration q = q,. where the corresponding solution to (5.1). ' = q; will
be known from the previous computation. At the start of the numerical computation
we will know the new value of q (= q, say) and we will need to find q; such that
¥(q),q;) = 0. The fact that we are starting from a solution to (5.1) is also not
exploited in the above approach. In our approach we will exploit this structure in the

problem at hand and pose the following questions: How much can q be varied from
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the starting configuration, q = q, and q' = q,, where ¥(q.,q,) = 0, while ensuring
the existence of a solution to (5.1)? What is the corresponding maximum variation
in q'? Can a numerical scheme be used to solve for (5.1)7 We will answer these
questions in the following lemma and propose a numerical scheme that is different
from the popular Newton algorithm. The method used to prove this Lemma is very

similar to the approach taken in proving the Implicit Function Theorem [40].

Lemma 5.1 For any given point ¢, € R%, let q, = a(q), suppose
¥(q.,q,) = 0 and the following conditions are satisfied throughout the
closed balls' B, (q,) and B.(q,) for some r,7" > 0:

5.1. There exists a constant bound ¢; such that H[_l,/}q/ ()] < a.

5.2. [|[Ug (@) g (@) = dg (@l £ G < 1.

5.3 [|[Fq (@) [H(d @) = B(d. q Il < G where (7' + G < 7"

Then we have the following conclusions:

5.1. There exists a differentiable function o : B-(q,) — Bx(q}) such that

¥(o(q),q) = 0, and

aa(Q) - 7 1
2 = g (a)]'C
where
C = [ O(n]’—n)xn ] (5 2)

5.2. For each q € B,(q,). the sequence

qL = q;c—-l - [EQ' (q:)]_lz/_’;(cﬁ—l q) k= 1: 2? T (53)

will converge to @' = ¢(q).

IThe notation B(x) is used to denote a closed ball of radius r centered at x.
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5.3. The error after m iterations will satisfy the following:

ld = Ll < 1= Q) Mg (@) (qk.a)l- (54)

<

Proof of Lemma 5.1: Corresponding to each q € B,(q,). consider the mapping

h': B.(q.) — R given by.
h(q) =q - [P ()] 7¥(d. q). (5.5)

Our next objective will be to prove that the mapping (5.5) is a contraction mapping

from B.(q.) into itself. By differentiating (5.5) with respect to q',

hi(d) = I-[q (@) ¥g(q)
= [Pg (@] ' [Wq(d.) = dg(d)]:
From condition 5.2,
Ibg (@) < 1&g (@) g la) —dg (@Il <G < 1, (5.6)

!

for all q € B,(q,) and q' € Br(q.,). If we define p(q.q') = [ (4.)] "% (d',q). we
have
h'(q) = q -pla.q)=4d -p(q,.9)+prQ..q9) - pla.q)
= q -plq,.q)+p(q,.4q.) +plq,.q9)-pla.q).
since p(q,,q.) = 0. Now by subtracting q, from both sides
h(q)-q. = d -p(a.9)—-d. +p(q,q,)+pq,.q9)-pla.q)
= [d -pq,.q)] -4, - plq, q.)] + [pla..4) - p(q.q')]

= [h*(q') - h*(q,)] +[p(a,.q) - p(a.9)]
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Now by applying the properties of the norm,
Ih?(q) - &.]| < [Ib*(q') = h" (gl + llp(a.. q') - p(a. ) (5.7)

Now since ||h‘(’.i,(q’)|| < (4. by applying the generalization of the Mean Value Theorem
[40]. we have |[h*(q') — b (q)[| < Gilla’ — qill < G for all ' € Br(q,). From
condition 5.3 we have ||p(q,.q') — p(q. @)|| < (2. By substituting these into (5.7) we

have,
Ih%(q’) — d.|| < |h”(q) = h* (@))]| + [Ip(q..4) — p(a. )| S (' + G < 7' (5.8)

for all q € B.(q,) and q' € By(q.). Therefore, we see from (5.6) and (5.8) that
the mapping (5.5) is a contraction mapping from By (q,) into itself. Therefore, from
the Contraction Mapping Theorem [40], there exists a fixed point q' € B(q,) corre-

sponding to each q € B,(q,) such that
q =h'(q) =q — g (q.)]7'¥(d. ).

which implies ¥(q’. q) = 0. For each q € B,(q,) we set o(q) to be the fixed point q'
corresponding to the contraction mapping h?(q’). Since the existence and uniqueness
is guaranteed by the Contraction Mapping Theorem, we see that ¢ : B(q,) — B~(q,)
is a function that satisfies ¥(¢(q),q) = 0. We see further that conclusion 5.2 follows
immediately since the sequence (5.3) is the same as the contraction mapping (5.5).

The error estimate of conclusion 3 is derived as follows: from the Contraction Mapping

Theorem., since ¢ is the fixed point of the contraction mapping (5.5),
lg' —a.l < ¢*1-G) " h%q) - a.f
= ((1-G)7Md, — g (@) (d.. @) — q.

(1= ) iR (@)™ (. @)l
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is true for all ¢,,, m = 0,1, - --. We have left to prove the differentiability of q =0o(q).
We begin by proving continuity. Let q,,q, € B-(q,) and ¢} = ¢(q,) and q; = 0(qy).

Since q} and qb are the fixed points of the contractions h" (q') and h**(q’).
q, - gy = h*(q)) — h*(q}) = h*(qy) ~ h"(q3) + h"(q3) — h™(qy).
Therefore,

lai — @bl < " (q}) = h® (@) + [h" (q2) — h*(qy)]]

< Glla = gl + [Ih* (qz) — h*(as)]

A

since |h”(q}) —h* ()|l < Gilld} — qb]| for any two points q; and qj (since h"(q')

is a contraction). By re-organizing the terms,

(1= Cllar = @afl < b (q)) — h™(a)] (5.9)

It can be seen from (5.5), that

g (417" (Pl 1) — Dah @)

L 0
= [dq ()] <_[q1—qu’

by substituting from (4.7). Therefore.

" (q)) - B (q))

1% (qh) — b(@)] < N ()]l - a.ll

By substituting the above into (5.9),

1

(1-G)
B (@] s~ )

fgﬂml-qﬁ, (5.10)

N

lo(ay) —o(a)ll = lldy —qall < " (q3) — h%(q)) ]l

IN

IN

1
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by substituting from Condition 5.1. Thus we have proved that given any € > 0, there
exists 6 (= “—_Cfi)—g) > 0 such that |jq, — q.|| < & = |lo(q;) — o(aqu)ll < € proving the
continuity of ¢ = o(q). Our next objective is to prove differentiability, that is, to

prove that given e > 0, there exists 6 > 0 such that

la; = @ll <6 = lo(a) —olqz) - W’q’ (q3)]'Cla; — @)l < ella; — @ll,
for all q,,q, € B.(q,), where @) = 0(q,), q; = 0(q,). and C is defined in (5.2).
Consider the term on the left hand side of the inequality,
lo(q) — o(q) — [¥g (@5)]7'Cla; — @)l

= |ldi = @)~ [q (q3)]7'Cla; — @)l

= [Pq (@) (Pg (@))d) — ab) - Clay —av)) |

< g (@)l (g (@h)](a; — ab) = Clay — o)) |

< alldg (@))(a; — a5) = Cla; = @)l (5.11)
by invoking Condition 5.1. Note that since ¥(q},q;) = 0 and ¥(qy, q,) = 0,

B(q}. @) + ¥(q) 92) — D(qys @) + P(d2, q0) = 0.
By inserting the above zero quantity into the right hand side of (5.11) we have

lo(ay) = o(an) = [dq (@] 7 Cla; — @)l

S (,'1]

(Vg (@h))(d} — a3) — Cla; — Q)

— B(q).q) + (1 qs) — ¥(d): @) + ¥ (q D).
By reorganizing the terms we have

lo(ay) — o(a,) — g (€))7 Cla; — @)l

< all = 9(ah ay) + B(ah @) + [ (@2)](a) — a3)
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— ¥(qp ) + ¥(d;. @) — Cla; — @)l

< a{ll - (9 @) — P(ah a) — [P (b))l — @) |

+ |- (Plah q) - Bl az) + Clas — @) |1}

= alv(q].q,) — ¥(gh. q2) = [.Eq' (a2)){d) —a)ll

+ allé(dan) = ¥(g1. ) + Clar — all- (5.12)
Since ¥(q', q) is differentiable and dLT)(()%’,ﬂl = 71,/_1q/ (d'), given €; = —(:——Cl— there exists

&y such that
o} = gbll < 61 = [9(a), qu) — ¥(qs. @2) — [P (@)](ay — @)l < erllay — gl (5.13)

Now, due to contimiity of q' = o(q), given e> = §;, there exists é; such that lla; —

@] < 8 = |ld; — db]| < &; and hence, by substituting into (5.13),

la; — Qll < 62 =

— —, —_ C
[%(a), Qo) = (s ) = [ (@)](d) — ad)ll S @rfla; — gl < e q _ICI) la, — qll.

by using (5.10). Now by substituting for €,

la; — qull < 6 =

17 0o) ~ o @) — B (@l(ah — ) < g—llas — el (5:19)

g, . . .
Now since LD — _¢C siven €3 = 5=—. there exists 63 such that
aq o e 3

lq, — @ll < 8 = [[¥(d).q;) — ¢(q) a) + Clay — @)l < eslla; — q.l

€

= ol -l (5.15)

By selecting § =min{6,, 6} we have the conclusions of (5.14) and (5.15) valid when-

ever ||q; — quf| < 8. By substituting these into (5.12), we have

gy — aall <6 = llo(qy) = 0(q2) — [ (@) 7' Clay — @)l < efla; — aul



107

This completes the proof of this lemma. a

Our next objective will be to characterize a region of the robot workspace where
the condition of Lemma 5.1 will be valid. It will be seen later that these conditions are
valid if the quantity || [Eq/ (a%)]7!|| is bounded for all points satisfying the constraints

#(q') = 0. This motivates us to define a set D’ as follows:

Definition 5.1 The set D' is defined to be a closed interval in R
characterized by {1, Ly, -, Ly and hy, b, -, hy where [; < g < hy, i =
1,2,---.n' for all ¢ € D', for which a constant ¢, satisfying the following

condition exists:
Condition: ¢(q') # 0 or H[_U—)q, @) Y < forallq €D

&

In the following lemma we prove that the conditions of Lemma 5.1 are satisfied

at any point within D’ that satisfies the constraints ¢(q’) = 0.

Lemma 5.2 Given ¢, € D', let q, = a(d,). if ¢(q,) = 0, the following
conditions are satisfied throughout B.(q.) and B,(q,) for any given 0 <

G <1

5.1. ||[Eq' (Q’*)]‘I[qu (a) - Eq' (@l <G <1

5.2. [[0q ()] 7' [(d. @) = ¥(d. q)]lll < G, where (' + G <7

where

o= S (5.16)
C1Co

and (; is a constant that should be selected such that 0 < ¢, < 1. The
constant ¢, is given by

¢ = || B, (5.17)
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where B is a matrix composed of elements b; ;. i =1.---.n'. j=1,--- n'

satisfying the following:

< by,

(5.18)

“d[Uq (@)):j
aq’

for all ' € D' and [L_’q( ")]:,; denotes the (4. 7)™ element of Eq,(q’). The

radius r is given by

r= C_l(l)__Cl_)_ (5.19)
C1Cy
&

Proof of Lemma 5.2: Due to the assumed differentiability properties. there exists
bounds b;; on the partial derivatives of each of the elements of Eq/(q’) satisfying
(5.18) for all g € D'. Therefore, by applying the generalization of the Mean Value

Theorem [6].

W () = Y (d)lisl < bislld —aill = by (say), (5.20)

for all q/ e D’. Here the notation [_'lz,:q,(q) ’l/q (q*)]lj is used to denote the (1 J)th

element of ¥ (q') — Ygp(d.). Let B be a matrix whose (i,7)" element is b;; =

bijlla’ — q.|l. Now by applying Lemma 2.4 to (5.20).
[Tq(@) -~ Tal@)l < [BI < 1Bl - gl =ela —dl. 621

where the second inequality is obtained by factoring out the scalar common factor

lia’ — d.||- Therefore.

IN

Bq (@) (Fala) = Ta (@)1 < IFq (@I Ivq )~ Fglal

< aelld =l

by substituting from (5.21) since ||[Uq @) € ¢4 as q, € D' and ¢(q,) = 0.

Therefore, by selecting r’ as in (5.16), Conclusion 5.1 of this lemma is satisfied
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throughout B’(q.). Before deriving Conclusion 5.2, we select ¢» to be,
G=(1-q)r, (5.22)

which will cause the automatic satisfaction of ;7 +(a < 7. It can be seen from (4.7)

that
1¥(d.a) - ¥(d, q)ll = lla - a.ll-
and hence,
I[Pq (&) (Bld. @) - B(q" ) I| < cilla —a.ll
Therefore, by selecting r = G o Uz L}({_l_;ﬁ)’ we have Conclusion 5.2 of this

1 c1 G162

lemma satisfied throughout B(d.) and B.(q,). This completes the proof of this
lemma. a

Now we are ready to present the first main result of this chapter.

Theorem 5.1 Let D' be a closed set satisfying Definition 5.1. For any
point q. € D' such that ¢(q,) = 0, let q, = a(q,), the parameterization

(1.9) is valid throughout B.(q,). o

Proof of Theorem 5.1: Follows from Lemma 5.1 and Lemma 5.2. a

5.2 Extending the domain to an arbitrary trajectory

Can the domain be extended? We can argue that (1.9) is valid along any arbitrary
trajectory that is contained in D’ as follows: Consider any given trajectory, that is
contained in D', starting from a point qj € D’ and ending in q;, € D'. Let’s denote
a(q') by q for any point g’ in D'. Hence a(qp) = q, and a(qy) = q,. Therefore, the
trajectory can be represented in the joint space by a sequence of points starting qq

and ending at q,. We next select a sequence of points q;, ¢ = 0,1,---,n along the
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Figure 5.2: The trajectory in D where control is to be implemented

trajectory such that all of the points of the trajectory between q,_, and q;. including
q; lies inside B,(q;_,) (see Figure 5.2). Since qy € D' and o(qp) = 0, from Lemma 5.2,
we see that all of the conditions of Lemma 5.1 are satisfied throughout B,(q,) and
B, (q,). Therefore, since the trajectory segment qq to q, is contained within B-{qp).
we have the conclusions of Lemma 5.1 valid along the trajectory segment qq to q;.
Note that o(q,) (the solution of (1.9)) will be equal to q} since w(q).q;) = 0 (since
é(q}) = 0 and q, = a(q})) and ¥(o(q,),q;)) = 0, and the uniqueness of the solution
to this equation is guaranteed by Lemma 5.1. Now we can use the same argument to
show that the parameterization is valid in the next segment. This can be extended
to show that the parameterization (1.9) is valid throughout the trajectory.

Hence, we see that for any random trajectory the robot may follow, if the mo-
tion is contained within D', the parameterization (1.9) is valid for each point in the
trajectory. However, we must keep in mind that at each given point, it’s only valid
in B,(q,). The actual set where (5.3) is valid for a given point is important in de-
termining the domain of attraction of a given control law since the actual domain of

attraction of the control law will be a subset of the set where (5.3) is valid.
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5.3 The Real Time Computation of ¢’ = o(q)

In this section we address the issue of computing @' = o(q) in real time. We first
present sufficient conditions to ensure convergence of the numerical scheme (5.3) and
then propose a procedure for implementing control in parallel robots.

It can be seen from Lemma 5.1 that if we start from a solution ¥(q’,q) = 0 and
q remains within B,(q), then the numerical scheme (5.3) will converge. Therefore, if
a numerical computation is initiated sufficiently frequently to ensure that q remains
within B,(q) from the time the previous numerical computation converged, then con-
vergence can be guaranteed. In Theorem 5.2 we derive conditions on the frequency
at which the numerical scheme must be initiated in order to ensure convergence. A
second important issue that is addressed in Theorem 5.2 is the condition for termi-
nating the numerical computations. If the numerical scheme is made to iterate until
convergence to within a desired tolerance, it may hold up other important duties of
the controller such as servicing the sensors, updating the motors etc. For this rea-
son it’s safer to set up the numerical scheme to terminate after a fixed number of
iterations. In this case however. there might still be substantial error even after the
numerical computation. This problem is also addressed in Theorem 5.2 where the
number of iterations required to reach a desired tolerance level is derived.

Before presenting Theorem 5.2, we define some terms that become important in
the remainder of this paper. In the implementation of control in a digital system
the control system reads sensory data and update the actuator inputs at a partic-
ular frequency commonly referred to as the “sampling frequency™ (f, say). Let’s
denote the corresponding “sampling period” by T,. In a parallel robot, in addition
to selecting the sampling period we also need to select a frequency for initiating the
numerical computation of @' = ¢(q). This frequency, which we will refer to as “initi-

ation frequency” and denote by f;, becomes important in the results of this chapter.
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We will denote the corresponding initiation period by T;. Note that the initiation
frequency refers to how often in time the numerical computation must be started and

it’s different from the step size of iterations during computations.

5.4 Conditions for Convergence

Theorem 5.2 Given a parallel robot following a trajectory contained
within a closed interval D' satisfying Definition 5.1, if the initiation period
T: is selected such that the joint velocity vector q satisfies

(5.23)

lal < =
qll = T
the numerical scheme (5.3) will converge to any desired tolerance e within

mn iterations where
In (9(1-(1))

cir

where 7 is given by (5.19). The desired tolerance must be selected such

that it is negligible when compared to 7' (given by (5.16)). &

Proof of Theorem 5.2: We will first prove that condition (5.23) ensures that the
trajectory remain within a ball of radius r during each initiation period T;. We
denote by q(t) the robot position at time ¢t and the corresponding joint velocity by
(t). From the generalization of the Mean Value Theorem [6]. there exists a time f..

t < t, <t+T; such that
la(t +T) — a(®)ll < lqE)IT-
Therefore, if q{t) satisfies (5.23).

lat + T3) — a®)ll < llat )T < 7
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for any given time ¢t. Hence. the trajectory remains inside a ball of radius r during
each initiation period. Now we will prove that the numerical scheme will converge to

tolerance level e within m iterations. Note that since ¥/(q,.q,) = 0.
o(a.a)ll = [¥(a.q.) - ¥(a.q)l = la-a.l
by substituting from (4.7). Now since the trajectory remains within a ball of radius
r during each initiation period, when the numerical scheme is initiated |[q — q.| < 7
and hence,
[d(a. gl <.

Therefore from (5.4). the error after m iterations satisfies

ld -l < =) g (@] (e q)l

< G- Q) R (@) (e @)l
{”'clr
1-G

by invoking condition 1 of Lemma 5.1 and substituting from above. However, if m

IA

(5.25)

satisfies (5.24), by multiplying both sides of (5.24) by In(¢;) we have

m () <In (e(l_—(Q)

cr
(note the change in direction of the inequality since In((;) < 0). By taking the

exponential of both sides,

C{n < e(l - Cl).

- ar
and hence we have ||’ — d,,|| < ¢ by substituting into (5.25). This completes the
proof of Theorem 5.2.
O
Note that Theorem 5.2 is independent of Theorem 5.1 and hence, if for some other
algorithin the region where convergence is assured is derived and an error estimate is

available, Theorem 5.2 can be used to obtain conditions for convergence.



114

5.5 Procedure for Implementing Control in Parallel Robots

Based on the results of this paper we propose the following algorithm for implementing

control:

5.1

5.3.

9.4

5.5.

(@S2}
o2

Based on the application select a closed interval D’ in R that is free of singu-
larities (If a potential choice of D' contains singularities the desired trajectory

must be redefined).

. Perform a numerical optimization to compute ¢; = max Il[—l.Tq/ (@)l subject

to ¢(q') =0, in D".

Compute bounds &; ; for the partial derivatives of the elements of [Eq,(q’ )i
satisfying (5.18). Often these bounds can be obtained by inspection. If this
is not possible they can also be computed by numerical schemes. Compute ¢,

from (5.17).

Select 0 < ( < 1 (let ¢ = 0.5) and compute ' and 7 from equations (5.16) and

(5.19) respectively.

Select the initiation frequency, fi, such that (5.23) is satisfied and set the number

of iterations to m such that (5.24) is satisfied.

Program the numerical algorithm (5.3) according to the above requirements and
implement control. Note that (5.3) will iterate faster than the popular Newton
algorithm since the matrix [qu (d.)]~! needs to be computed only once during
each implementation (it remains constant during iterations). For this reason

(5.3) has less computations when compared to the popular Newton algorithm.
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5.6 Trajectory Tracking Experiment

In this section we will present experimental results on trajectory tracking of the
R.P.D.R. The implementation was based on the procedure derived in the previous
section. For this application we chose a trajectory that will make the end effector
follow a circle of diameter 6.0 inches that is centered 9 inches above the axes of joints
one and two (see Figure 5.3). This translates into ranges of motion —24° < ¢; < 13°,

168° < go < 204°, 100° < g3 < 137°, —138° < g4 < —102°.

5.7 Implementation of the Procedure Defined in Section 5.5

For this motion we followed the procedure proposed in the previous section as follows:

- N
Desired Trajectory to be followed

by the end-effector: Circle
6 inches

/
\+ )—r

10 inches

Joint 1

Figure 5.3: The Trajectory to be Followed by the RPDR
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Step 1: Based on the range of motion of the joints we selected D' as follows:

>

D' 2 {q R -30° < gl <30°150° < gy < 210°,95° < g < 151°.
~151° < ¢} < —95°}.
Step 2: The bound for ”Wq’ (d.)]7!|l corresponding to D’ was computed to be

C1 = 57

Step 3: For the R.P.D.R. we have the following expression for Eq,(q’):

Uy (1, ) ‘/’qf(l 2) —agsin(qy +¢s)  assin(gz +qu)

qu(q,) _ Up(2.1) ¥,(2.2) ascos(qn +g3)  —aqcos(qz + )
0 0 0

0 1 0 0

where, ¥,(1,1) = —a;sin(q1) — assin(q: + g3), ¥y (1,2) = apsin(ga) + assin(gs + g4).
Eq,(l 1) = aycos(qy) + azcos(qr + g3), and ¢, (2,2) = —aycos(g2) — a4cos(qs + qi)-
While it’s possible to obtain bounds b;; satisfying (5.18) globally by inspection. in
order to obtain less conservative bounds we searched for the maximum magnitudes of
each of the derivatives the elements of Eq/(q’) in D’ and set each b;; to be that value.
Hence we obtained less conservative bounds b; ; that are valid within D'. Based on

these, we computed ¢, as follows:

0.39 0.39 0.43 0.43

0.40 0.40 0.43 0.4
c=|Bl=1 00 003 )3 =1.17.

0 0 0 0

Step 4: For ¢; = 0.5, we obtain r’ = 0.0154 rad. and r = 0.0066 rad.

Step 5: In order to compute initiation period, T:, such that (5.23) is satisfied, we
need to obtain the maximum value of [|G]. Since the velocity is dependent on the time
taken to traverse the trajectory, we chose to complete the trajectory in 0.5 seconds.

Parts (a) and (b) of Figure 5.4 shows the joint velocities ¢; and g» corresponding to
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Figure 5.4: The Joint Velocities and the Corresponding Magnitude of
the Velocity Vector for the Selected Motion.

this motion. Part (c) shows a plot of ||gf| = 1/¢i° + ¢»°. Based on this plot we assume

llall < 6.0 rad./sec. Hence. by selecting

T < E% = 1.1 milliseconds,

that is, if we select the initiation frequency, f;, to be greater than or equal to 910 Hz.

we can satisfy the requirements of Theorem 5.2.
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Based on the resolution of the encoders of joints 1 and 2. we selected the desired
tolerance level, e, for the numerical scheme to be 0.0005 radians. From (5.24) we

obtain the minimum number of iterations m required to guarantee convergence as,

In (e(—l_f—‘l)

m> ———t =7.23,

~ In(¢1)
That is, in order to satisfy the conditions of Theorem 5.2, we must select the initiation
frequency, f; to be greater than 910 Hz. and set the number of iterations to be 8.
Step 6: The Inverse Dynamics control law was implemented in the R.P.D.R. with
the algorithm (5.3) implemented such that the above requirements were satisfied. In

the next section we will present the experimental results.

5.8 Experimental Results

We began by computing g, ¢% and q¢ corresponding to the desired motion. An
initialization routine was written to ensure that the robot reached the first point in
the trajectory with the desired configuration (that is the correct q' corresponding to

q%). The control law implemented was the well known inverse dynamics control law

[66].
u= D(q)v+C(q,9)a+g(q).
where
v=q'+ Kiq' — @) + Kp(q” ~ ).
with

900 0
K, = | %0 k= |80 O
0 900 0 60

There was no compensation for friction. The algorithm (5.3) was set up to compute

qd= [ @ g @ ] corresponding to the measured value of q = [ a1 ¢ ] We
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set the number of iterations for the numerical computation (5.3) to be 8 based on
Step 5 above. We conducted the first experiment with initiation period T, =1
millisecond (corresponding to 1 KHz.). Hence, in this experiment all the requirements
of Theorem 5.1 were satisfied. Figure 5.5 shows the tracking results. Part (a) shows
a plot of the desired trajectory of joint 1. gf, (solid) and the actual trajectory of joint
1. qi. (dashed). Part (b) shows the corresponding plots for Joint 2. Much of the
tracking error that can be observed can be attributed to frictional effects since the
error present becomes large whenever the corresponding joint changes direction, the
point at which the effect of coulomb friction is dominant. Other errors can be due
to modeling errors and unmodeled actuator dynamics. In general we see the system
recovering from the errors introduced at points of direction change.

For the R.P.D.R., it’s possible to compute q' = [ qy ¢ g5 gy | analytically.
This presented an ideal opportunity to track the actual error in the numerical com-
putation (5.3). Since ¢; = ¢ and ¢5 = g¢a for the R.P.D.R.. there was no error
associated with computing them. Parts (c) and (d) of Figure 5.5 shows the initial
error before (5.3) is implemented, corresponding to the computation of g; and q4
respectively. Parts (e) and (f) of Figure 5.5 shows the final error after 8 iterations
of (5.3). It can be seen that the final error is in the range of 0.000001 rad., well
within the selected tolerance e = 0.0005 rad. Hence, we see that the results agree
with the conclusions of Theorem 5.2. In the next experiments we observed the effect
of increasing T;. violating Theorem 5.2. Due to space limitations we present only
two additional experiments corresponding to T; = 10 milliseconds (Figure 5.6) and
T, = 100 milliseconds (Figure 5.7). The results have the same format. It can be seen
from parts (c) and (d) that the initial error increases dramatically as expected. It
can be seen however, that even at T; = 10 milliseconds the final error is still well

within the desired tolerance level e (Parts (e) and (f) of Figure 5.6). Therefore, the
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trajectory tracking was unaffected. At T; = 100 milliseconds, we see the numerical
iteration unable to cope with the large error and at times diverging. This finally
causes the tracking to fail (See Part (b) of Figure 5.7). Hence, the experimental

results confirmed the conclusions of Theorem 5.2.

5.9 Summary

In this chapter we addressed two important issues associated with the implementation
of the dynamics formulation for parallel robots presented in [24]. The first issue is
the explicit characterization of a set where the parameterization q' = o(q) is valid.
Since the equations of motion are valid only in a set where the parameterization is
valid. in control the domain of attraction for a given control law will be a subset of
such a set. Hence, it's useful to characterize the full region surrounding a point in
the workspace where ' = ¢(q) is valid. In this chapter we partially answered this
question by characterizing a ball surrounding a point q, where q' = o(q) is valid.
The full set surrounding q where q' = o(q) is valid may be larger and hence. further
research needs to be done in order to fully resolve this issue. The more important
contribution of this chapter in this regard is the characterization of a region, D', of
the robot workspace such that the parameterization q' = ¢(q) is valid along any given
trajectory contained within D’. The set D’ is sufficiently large to allow a trajectory
followed by the robot in a typical application to remain entirely within D’. This
result will be useful in control synthesis for selecting the region of the workspace of a
parallel robot where control is to be implemented.

The second issue that was addressed in this chapter is the real time computation
of ¢ = o(q) for model based control. We proposed a numerical algorithm that is
easier to compute when compared to the popular Newton algorithm, and derived

conditions that ensure convergence. Based on this result we derived a procedure for
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implementing control in parallel robots and implemented it in a trajectory tracking
experiment with a planar delta robot. We found the experimental results to be

consistent with the results of this chapter.



Chapter 6

Conclusions and Future Recommendations

In this chapter we summarize the contributions of this thesis and discuss future ex-
tensions to this research. The work done in this project can be broadly categorized
into two areas. The contributions of Chapter 2 and Chapter 3 fall in to the category
of serial robot control. The issues addressed in Chapter 4 and Chapter 5 are in the

area of parallel robot control.

6.1 Control of Serial Robots

In the area of serial robots we addressed the uniform boundedness issue. In past
research the class of robots for which the inertia matrix, D(q) appearing in (1.1) is
uniformly bounded was characterized and named Class BD. Our objective was to
characterize corresponding classes of robots for which the other terms arising in (1.1)
are uniformly bounded. We concentrated on the C(q.q) matrix in Chapter 2 and
found that the class of robots for which the C(q. q) matrix is uniformly bounded is
the same as Class BD. The class of robots for which the Hessian is uniformly bounded
was characterized in Chapter 3 and named Class BGJ. We found that Class BD is a
subset of Class BGJ and hence, all of the terms in question are uniformly bounded
for Class BD robots. This is an important discovery since almost all of the known
commercial serial robots belong to Class BD. Since the uniform boundedness has
important implications in control and the conditions for belonging to Class BD are
not hard to satisfy, this issue should be taken into consideration when designing

robots.
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The next contribution is the derivation of explicit expressions for the uniform
bounds 3 and + satisfying (1.2)-(1.3). Since the uniform bounds frequently appear in
the expressions of control laws, in the implementation of control the explicit values
of the uniform bounds are often necessary to compute the control law expression.
In Chapter 2 we derived an explicit expression for the uniform bound v in terms of
kinematic link parameters. In Chapter 3 we first derived an explicit expressions for
the uniform bound 3 and then derived an expression for a local bound ¢4 satisfying
(1.4) for robots outside Class BGJ. If a given robot is outside Class BGJ, this
expression can still be used to implement control although the stability properties
will then become local.

The expressions for the uniform bounds 8 and + derived in chapters 2 and 3 lends
themselves well to algorithmic computation. A possible extension of this research is
the development of a software package that will automatically compute these uniform
bounds. Such a software package can be a stand alone program written specifically
to compute the uniform bounds or it can be part of a larger software package written
for control of serial robots. Such a software package can be designed to perform many
useful functions in control synthesis such as computing all relevant parameters, sug-
gesting an appropriate control law based on the application, computing trajectories,

and performing simulations.

6.2 Control of Parallel Robots

In the area of parallel robots we addressed several issues related to the implementation
of the dynamics formulation for parallel robots derived in [24]. Our first objective
was to characterize an explicit domain where the parameterization (1.9) exists. This
issue is important since the equations of motion for parallel robots presented in [24] is

valid only if the parameterization (1.9) exists. We addressed this issue in Chapter 5



127

and characterized an explicit set where (1.9) exists. In addition we also characterized
a region of the workspace, namely the set D', where the parameterization (1.9) exists
along any trajectory contained within D'. This region is sufficiently large to allow
the trajectory of the robot in a typical application to remain entirely within it. This
result is important in control synthesis.

The next contribution was the design and construction of the Rice Planar Delta
Robot (R.P.D.R.). This robot was specially designed to act as a test bed for results
on control of parallel robot. The versatile design allows for modifying the system to
change the dynamics parameters of the robot. Due to the simplicity of the R.P.D.R.
it was possible to compute the equations of motion quite accurately. The close agree-
ment between the simulation and the experimental results reported in Chapter 4
indicates the accuracy of the equations of motion. The R.P.D.R. was used exten-
sively in this project to experimentally verify the results. It will be useful in future
experiments on parallel robots also.

Another important contribution of this research is the experimental validation of
the PD plus simple gravity control law proposed for parallel robots in [22]. This
control law is ideal for set point tracking problems since the compensation term in
the control law is constant and hence, it can be computed off line which leaves very
little real time computation. A common application of parallel robots is in fast pick-
and-place operations. In Chapter 4 we implemented a fast pick-and-place motion in
the R.P.D.R. and compared experimental results with simulations. We also discussed
issues related to implementing the PD plus simple gravity control law for pick-and-
place applications.

For trajectory tracking applications, most of the available control laws require the
computation of the dynamics in real time. In order implement such control laws, the

parameterization (1.9) must be computed in real time. Since analytical expressions
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for (1.9) doesn’t exist in general, (1.9) must be computed numerically. A numerical
scheme to compute (1.9) in real time can only be implemented if convergence can
be guaranteed. In Chapter 5 we addressed this issue and derived conditions that
ensure the convergence of a numerical scheme proposed to compute (1.9). Based
on this result we proposed a procedure for implementing control laws that require
the computation of (1.9) in real time. Based on this result we implemented a tra-
jectory tracking experiment in the R.P.D.R. The experimental results validated the
theoretical predictions.

In this area an issue that remains unresolved is the characterization of the domain
of attraction of control laws. Note that since the equations of motion themselves
are not global for parallel robots stability properties of control laws are never valid
globally. The characterization of the domain of attraction of control laws that are valid
locally is a difficult problem even for serial robots. For parallel robots this problem
is even more complicated since the valid domain will be a subset of a set where the
parameterization (1.9) exists. The closed ball of radius r. characterized in Chapter 5.
where the parameterization (1.9) is valid is physically too small to implement control.
Hence, a useful extension to this work will be the characterization of a larger set where
(1.9) exists. Other useful extensions of this research will be the implementation of
the results reported in this thesis in more complicated parallel robots such as the six

degree of freedom hexa robot.

6.3 Summary

In this chapter we briefly summarized the contributions of this thesis and proposed

extensions. The following are the main contributions of this thesis:
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6.4.

6.5.

6.6.
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Characterization of the class of robots for which the C(q, q) matrix is uniformly

bounded and the derivation of an explicit expression for a uniform bound 7y

satisfying (1.3).

. Characterization of the class of robots for which the Hessian is uniformly bounded

and the derivation of an explicit expression for a uniform bound 8 saiisfying
(1.2).
Design and Construction of the Rice Planar Delta Robot which will serve as a

test bed for experiments on parallel robot control.

Experimental verification of the PD plus simple gravity control law for parallel

robots and the evaluation of this control law for fast pick-and-place applications.
Characterization of an explicit set where the parameterization (1.9) exists.

The proposal of a numerical scheme for computing (1.9) in real time for model
based control laws for trajectory tracking and the derivation of conditions for
convergence. Proposal of a procedure for implementing control based on this

result and the experimental verification.
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Appendix A

The Design of the Rice Planar Delta Robot

A.1 Introduction

In this appendix we describe the design process of the Rice Planar Delta Robot (R. P.
D. R.). We will begin with a general discussion of our design objectives. The design
process was based on these objectives. We will then describe the design of each of
the components of the robot in the remaining sections.

Our primary objective was to design and build a parallel robot which can be used
to implement control and test results in the area of parallel robots. In a typical appli-
cation a parallel robot is made to follow some desired motion. In order to achieve the
desired motion the actuators should be able to develop the necessary torque/force pro-
file based on the control law being used. Therefore, in order to conduct experiments
we needed a robot in which the actuator forces can be programmed. Furthermore,
since parallel robots are capable of very fast motion we needed actuators and a pro-
gramming system with a fast dynamic response. We chose a computer with a DSP
board to achieve this objective. The DSP board allows us to have a processor ded-
icated to compute the control law. This enables the implementation of complicated
control laws at a very high sampling rate.

The fact that our primary objective was academic research imposed requirements
that were different from typical objectives of designing a robot. These include ease of
modeling, easy access to model parameters, and the ability to vary the model param-

eters. Even though in a typical parallel robot it’s desired to keep singular configura-
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tions outside the workspace, in our application we wanted the robot to be capable of

moving through singular configurations in order to study them. Furthermore, since

we wanted to isolate and study the features of parallel robots, it was desirable to re-

duce unmodeled effects such as friction, backlash, and link and joint flexibility. These

requirements and additional safety requirements led to the following set of design

objectives:

1.1.

1.3.

1.4.

1.5.

1.6.

1.8

1.9

The actuators should be able to provide sufficient power to be able to achieve

high speed.

The control system should be capable of computing a complicated control law

at a very high sampling rate (in the KHz. range).
The robot should have all of the sensors necessary to implement control.

The robot should be easy to model and we should have access to as many model

parameters as possible.

It should be possible to vary model parameters of the robot such as link length,

masses etc.

The robot should be able to have a complete range of motion including singular

configurations.

. Unmodeled effects such as friction, backlash, joint and link flexibilities should

be minimized (Hexibilities and backlash effects should be minimized sufficiently

to make their effects negligible).

The robot should be safe to the operator as well as the surrounding environment.

A target end-effector error of 0.1 mm. or less.



142

The design process was guided by these objectives. The complete robot system (the

R. P. D. R.) consists of the following three components:
1.1. The robot and the base.
1.2. The amplifier circuit unit and power supply.
1.3. The computer, the dSpace board and software for both.

The robot and base consists of the links, the actuators and sensors, passive joints,
and the base. We will describe the design of the robot and base in Section A.2. This
is followed by Section A.3 where we describe the amplifier circuit unit which consists
of all of the interfacing circuitry between the computer and the robot. Finally in
Section A.4 we will discuss the computer and DSP board (dSPACE) which is used to

control the robot.

A.2 The Robot and the Base

The robot consists of four links connected by three passive joints terminated in the
two ends by actuators (See Figure A.1). The actuators are mounted on a solid base.
The robot work area is enclosed by a protective plexiglass box. We will next describe
the design of each of these components.

The Base: In designing the base several factors were considered. Firstly. we needed
a solid base which did not vibrate due to the motion of the robot in order to achieve
Objective 1.7. This was achieved by designing the base and attaching the plexiglass
cover (oriented along the direction of motion) to provide high stiffness at the loca-
tion where the actuators are mounted (See Figure A.2). The legs were made out of
steel tubing and the top surface out of steel channel. Secondly, in order to achieve
objective 1.6 the robot had to be mounted such that each link had a completely un-

obstructed vertical plane. This was achieved by mounting the actuators on opposite
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Passive Joints

- _/

Figure A.1: Joint and Link Configuration of the Rice Planar Delta Robot

sides of the base and having the links in between the actuators (See Figure A.1). This
allows a full circle range of motion for all of the joints. Thirdly, in order to achieve
Objective 1.5, we needed to allow for the variation of the one model parameter that
is related to the base, which is the distance between the axes of the actuated joints.
This was achieved by designing a series of mounting holes for the actuator units.
Finally, in order to achieve Objective 1.8, we estimated the maximum possible work
space and designed a plexiglass enclosure for it.

Actuator Unit: Each actuator unit consists of a motor and transmission system. an
optical encoder, and a brake (See Figure A.3). We chose DC motors because they are
easy to model and simple to control. Since a DC motor delivers low torque at high
speed, it needs a transmission that reduces speed and increases torque. We decided
against using a gear head since it adds backlash. In order to achieve Objective 1.7

we felt that the best choice was to use a sprocket and timing chain system. The
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J

Figure A.2: The Rice Planar Delta Robot-Full View

timing chain made of steel wires is especially designed to virtually eliminate joint
flexibilities and backlash (See Figure A.4). We chose a sprocket with 38 teeth for the
joint end and a sprocket with 9 teeth for the motor end. This results in an increase of
torque by a factor of 4.22 from the motor to the joint. We also added a belt tensioner
pulley. In order to select the motor, we conducted some simulations to estimate the
required maximum torque. The general approach was to estimate the torque required
to achieve the desired range of velocities and accelerations in a wide range of robot
configurations and then multiply this by a design factor to account for unmodeled

effects such as friction. Based on these we had an estimate of the required torque
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Transmission

Figure A.3: The Actuator Unit

output from the motor. After considering several products we chose a 1 /4 hp Bodine
4435 motor with an output torque of 100 Oz-in for continuous operation at 2500
r.p.m. The motors are capable of delivering much higher torque at lower speeds for
short periods of time. When designing the actuator system special attention was paid
to the alignment of centerlines and to making all rolling contacts through bearings to
reduce friction.

The sensors used for control in the RPDR are optical encoders. These provide
position feed back. The velocity feedback is obtained by differentiating the position
and filtering out noise. The selection of the encoder was based on the error target in
Objective 1.9. The worst case for error at the endeffector corresponding to the motion
of a joint is when the links corresponding to that joint are completely stretched out.

In this case, based on the dimensions of the links, the endeffector is 23 inches from
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Figure A.4: The Transmission

the joint. Hence, we can only afford an error, gerror, given by

quT‘OT

0.1
tan~! (—%) — tan~! (0.000171) = 0.000171 rad.

1

0.000171
40000°

o of a circle. Since

This corresponds to a resolution of approximately >
the resolution of a relative encoder with two channels (A and B) can be electronically
increased by a factor of four, an encoder with 10000 pulses per revolution will be able
to achieve our error target. We chose a Hengstler Optical Encoder with the required
resolution. Even though the design ensured alignment of the encoder centerline and
the joint centerline to a high level of accuracy, we chose to connect the encoder
through a flexible coupling to protect it.

We decided to add brakes to the RPDR to hold the links in place once it reaches
the desired configuration. We chose negatively actuated brakes, that is, brakes that

hold the load when the power is turned off. The brakes are controlled by the computer.

Therefore, when the robot needs to be moved power is applied to the brakes first to
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release the robot and then after completing the motion the brakes are turned off to
hold the robot. Even though we used this method in early experiments, since the
brakes add friction and there are time delays between applying power and when the
brakes are actually released, we chose to have the brakes released throughout in the
later experiments. In this case the torques developed in the motors hold the robot in
the desired configuration.

Links: The links were chosen to be light weight and sufficiently stiff to achieve
Objective 1.7. We chose 0.5 inch square, hollow steel tubing as they provide a high
stiffness to weight ratio. The link flexibility was computed and checked to make
sure that we achieve the stiffness required for Objective 1.7. In order to achieve
Objective 1.5 we wanted to allow for varying the length and weight of links. We
considered designing a length adjusting mechanism and chose against it since such a
mechanism would compromise our link stiffness and light weight objectives. Instead,
the links were attached to the joints by a single pin which allows for easy change
of the tubing. Since steel tubing is extremely inexpensive, when there is a need to
vary the link lengths and weight of RPDR, a new set of links can be made easily and
attached.

Passive Joints: In designing the passive joints we paid attention to reducing friction,
keeping them light weight, ensuring a rigid attachment to the links, and keeping them
within size limitations imposed by the need to keep the planes of motion of the links
free of obstructions. Each rolling contact was made through a pair of roller bearings
which ensured very low friction. The joint housing was made of an Aluminum alloy

to reduce weight.
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A.3 Circuit Box and Power Supply

There is a need for several interfacing circuits between the computer/dSPACE board
and the sensors and actuators. We placed all of these circuits in one unit which we
refer to as the “Circuit Box”. We made this unit in an old computer housing and
used its power supply for logic power. The 60 V DC power required to run the motor
is provided by a Hewlett Packard power supply. The actuator unit is connected to
the circuit box which in turn communicates with the computer/dSPACE board (See

Figure A.5). Inside the circuit box there are two circuits. The first circuit controls the

~

Figure A.5: The Circuit Box

motors. In order to drive the motors there is a need to have a circuit that reads the
signals from the dSPACE board and develops a voltage proportional to the desired
torque in the motors. While commercial amplifiers are available for this purpose,
we felt that they will introduce additional unmodeled dynamics. Therefore, in order

to achieve Objective 1.4 we decided to design the amplifiers ourselves. We chose H-
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Bridge drivers to control the motors. These circuits allow the control of amplitude by
using pulse width modulation and in addition allows direction control by switching
the power to the motor in either direction (See Figure A.G). We also incorporated a
safety switch that shuts power to the motors (See Figure A.7). The second circuit

controls the brakes which allows the brakes to be operated by either the computer or

Power Supply

¢

fl Brake | . '
Bl Circuit i~ Senn

Figure A.6: The Interior View of the Circuit Box

the manual switches located in front of the circuit box. The encoders only require a

5 volt DC power which was provided by the power supply in the circuit box.

A.4 The Computer, dSPACE Board and Software

In selecting the computer and the dSPACE board, the primary objective was to
compile a system that has the capability to compute complicated control laws very
fast. The dSPACE boards equipped with a fast DSP is ideal for this purpose. We

had further requirements such as optical encoder channels, pulse width modulated
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signal outputs, and digital input/output lines to control brakes and direction control
of motors. We chose the dSPACE 1102 board since it met all these requirements.
This board has been able to compute all of the control laws we have implemented
plus other additional calculations and data transfers for research purposes in under
500 micro seconds. This allows for a sampling rate in the KHz. range which has been
sufficient for all our purposes.

We needed a computer that is capable of real time plotting and saving data effi-
ciently. It also needs to communicate efficiently with the dSPACE board. For this
reason we chose one of the fastest personal computers available at that time, a 100

MHZ Pentium computer (See Figure A.7). Real time plotting and data acquisition

-

Safety Switch

Figure A.7: The Computer

is done by software provided by the dSPACE company. In order to provide a user
interface to control the robot, we developed software in C which ran in Windows. We

chose a Borland C++ compiler for this purpose.
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