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Abstract

A Quasi-Elastic Neutron Scattering Study of
Hydrogen Dynamics in Trypsin-D30 Solution

by
Hung Cao

The quasi-elastic neutron scattering (QNS) method is a useful technique to study
biomolecular dynamics. The versatility of the method makes possible motional studies of
biomolecules in different forms: powder, crystalline, and solution; and at different
temperatures. Thus, it allows investigation of biomolecular dynamics in different states of
matter. We have used the QNS method to study the motion of the trypsin chain segments in
powder and in D3O solution at temperatures of 200K, 280K, and 300K. The scattering
spectra S(Q,®) were measured in constant-Q mode. The S(Q,w) for trypsin protons in
liquid solution exhibits a broadening due to diffusive motion which is absent in the powder
and the frozen solution. This diffusive motion has the character of a jump diffusion. The
high-frequency thermal motion obtained from the Debye-Waller factor <u2>/3 = 0.33A2 at
T=300K is consistent with earlier measurements. The DW factor at lower temperatures for

trypsin solution shows deviation from theoretical predictions.
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I. Introduction.

A. Importance of Biomolecules.

The functional roles of biomolecules are essential to life. They are responsible for
maintaining cells, organs; carrying genetic codes; conducting nerve signals; catalyzing
biochemical reactions; transporting and storing charge and matter; and all other bio-
processes<1>, A class of biomolecules, called proteins, are made up of amino acids, the 20
building blocks of life. These biomolecules often fold into complex three-dimensional
structures. These structures exist in many configurations, or states, of nearly equal energy
— often called microconformations, or conformational substates — separated by energy
barriers. These substates are the result of small shifts in position of various segments of the
molecules<?>,

Due to their important but complex nature, biomolecules have attracted much
attention in recent years. Their characteristics make them ideal candidates for exploring the
physics of complexity, a recent trend in science. So what physics can we learn from these
biomolecules? As Fraunfelder summarized, we can take clues from well-established fields
of physics like atomic, condensed-matter, or particles physics. Experimental discoveries in
these fields often come from studies of structure, energy levels, and dynamics<2>, It is the
dynamical aspect that we want to discuss here, but it is also necessary to understand the

structure and energy levels of the biomolecule.

B. Techniques for Probing Protein Motions.

The complexity of biomolecules requires more than one technique to fully explore
their nature. Several techniques have been used: light scattering, X-ray and neutron
diffraction, small-angle neutron scattering, nuclear magnetic resonance (NMR), Mossbauer

spectroscopy, flash photolysis, inelastic neutron scattering, computer simulation, quasi-
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elastic neutron scattering (QNS), etc.<2> . We have used the QNS method to investigate the

motion of biomolecules. In this thesis, we discuss computer simulation, as well as QNS,

since some of its related results are compared with our experiment.

C. Computer Simulation Techniques.

Computer simulation has provided insights in bridging the gap between theory and
experimental properties of the dynamical biomolecules. Several techniques used in
computer simulations include molecular dynamics (MD), stochastic dynamics (SD), energy
minimization (EM), normal mode (NM), and Monte-carlo (MC) simulation<3:4.5.6>,

The basic principle of MD is the employment of numerical integration methods to
trace the Newtonian equations of motion of interacting particles over a certain length of
time, usually on the order of a few hundred picoseconds. The simulation may place the
biomolecule in an aqueous environment, water in most cases. The atoms are assigned initial
coordinates, determined from X-ray diffraction, and initial velocities, chosen from a
Maxwellian distribution for a given temperature. The force acting on a particular atom is
obtained from taking the derivative of the potential energy (PE) function with respect to its
position. The PE consists of many terms. Theoretically, these could be determined from the
Schrodinger equation. In reality, only a few simple models can be treated in this way.
Instead, the PE function is determined empirically. It contains terms for covalent-bond
stretching, bond-angle bending, harmonic dihedral bending, sinusoidal dihedral torsions
and non-bond (van der Waals and Coulombic) interactions. Quantum correction to this
approach have been shown to be small and only significant for local vibrations at
frequencies greater than 300 cm1.

SD is an extension of MD. The particles’ motion is followed by numerical

integration of the stochastic Langevin equations of motion.



3
The EM approach searches for equilibrium configurations by numerically moving

toward the minimum of the PE function.

NM analysis assumes that the system undergoes harmonic motion about its
equilibrium position, which is the minimum energy configuration. In this sense, it relates to
the EM approach.

MC simulation uses a random-walk technique on the PE surface, sampling many
configurations using the Boltzmann factor as the weight function.

One assumption of the NM and EM method is questionable, namely that the
biomolecule executes harmonic motion about its equilibrium position. Indeed, there is
much evidence against this hypothesis. MC's results give static properties. That leaves SD
and MD as two promising methods which yield both static and dynamic properties, and
possible anharmonic behaviors. The results mention in this thesis are from MD.

At the present stage, computer simulations can handle crystalline and gas systems
easily, using both classical and quantum treatments. It is still impossible to simulate the
biomolecule in solution quantum-mechanically. Classically, the simulation must be done by
brute force. What is often done is to reduce the problem to fewer degrees of freedom, or
fewer particles (so it is like the crystalline state) by symmetry or by dilution
respectively<3>. So in the comparison of the simulation results and experimental data, all
these limitations must be taken into consideration.

Much work has been done on MD simulation, but there are few experimental data
on the basic motion at the picosecond time-scale to compare with the simulations, which
would give a verification of the existence of picosecond fluctuations. QNS mainly extends
to the region of energy transfer ® = 0 (¥ 2meV), which samples the diffusional or
rotational motion of the biomolecules. The time scale is between 10-10 - 10-12 §<6>, The

motion of the atoms produces a Doppler broadening of the elastic line. The scattering is
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mainly due to hydrogen atoms, since the proton has such a large incoherent scattering cross

section that the scattering by other elements can be neglected.

D. The Main Work of This Thesis.

The purpose of our work is to employ QNS methods to explore the dynamics of
chain segments of biomolecules, in this case trypsin, which has been studied by computer
simulations. Previous work related to ours will be discussed and compared with our

results. Some relevant results from MD simulations will also be mentioned, especially the

recent work by A. E. Garcia<’>.

E. Previous Experimental Work .

QNS studies of trypsin motion were done by D. Bearden and C. Lin<8.9>, Bearden
studied the high frequency thermal vibrational motion of hydrogen in trypsin by measuring
S(Q) — the integrated intensity of the quasi-elastic peak. From these data, the mean-squared
local vibrational amplitude can be extracted from the Debye-Waller (DW) factor. However,
the details of the atomic diffusive motion can not be obtained in this way because no
information on the line shape is obtained. Corrections for background, spectrometer-
resolution, and inelastic scattering proved to be very difficult using this low-resolution
QNS technique.

C. Lin made high-resolution QNS measurements on "treated" trypsin powder
(freeze-dried lyophilized trypsin powder) and 20% by weight "treated” trypsin in D20
solution. This high-resolution technique was used to avoid the previously encountered
problems in Bearden's experiment, and to obtain details on the diffusional motion of

trypsin chain segments. One shortcoming was the large background due to the spectrometer
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configuration, which caused large statistical errors in the point-by-point background

subtraction technique.

Our experiments were similar to those of C. Lin. Both high and low resolution
scans were taken on trypsin powder and 20% by weight trypsin in D20 solution. We also
plan to study trypsin in the crystalline state to compare the dynamics in the crystal and the

solution.



IL. Trypsin and Sample Preparation.

A. Properties of Trypsin,

Trypsin is an enzyme released from the pancreas. It is responsible for the
hydrolysis of peptide bonds in proteins and peptides. Trypsin has many covalently bonded
hydrogens on the surface which can exchange with solvent hydrogens. About 60% of the
trypsin residues are classified as internal and inaccessible to solvent molecules. Trypsin
consists of 223 amino acids and about 154 solvent molecules. The structure type of trypsin
is mostly B form. There are, however, a few small sections that maintain o, helical structure
(from residues 164 to 168; 234 to 239; 241 to 244). The number of protein ligands
hydrogen-bonded to water molecules is 101. Out of 101 hydrogen-bonded ligands there are
188 bonded sites. Trypsin has been shown to undergo three reversible pH-dependent
conformation changes between pH 0.5 and pH 7.0, and is most active between pH 7.0 and
9.0. In an H/D exchange study of trypsin crystals (one year at pH 7 and 200C), Kossiakoff
found that, out of 215 exchangable amide peptide groups in trypsin, 68% were found to be
fully exchangable, 8% partially exchanged and 24% unexchanged<10,11,12,13>,

Trypsin has the ability to digest itself. Chymotrypsin, which has a structure similar
to trypsin, is relatively invulnerable to autodigestion, since the bonds that it cleaves best are
close to side chains which are generally located in the interior of the chymotrypsin
molecule. Therefore, these bonds are restricted and can not move around to damage the
molecule. Unlike chymotrypsin, trypsin cleaving-bonds are close to basic side chains
which are always exposed on the outside of the molecule, and thus it is very susceptible to
autodigestion — a process that often makes biochemical or crystallographic experiments
with native trypsin difficult<10>,

In crystal form, the trypsin molecule folds up in two halves. Each has a pseudo-

cylindrical arrangement of hydrogen bonds between adjacent anti-parallel extended chains
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similar to that described by Blow for a-chymotrypsin. Any motional change in the interior
of the molecule is often accompanied by a second one which is correlated with it and thus

allows the main chain folding to remain stable<10>,

B. Sample Preparation and Data Scans.,

Since our experiment is designed to look at the motion related to the trypsin itself,
namely the hydrogens associated with the molecule, D20 is used as the solvent. Initially,
the loosely bound hydrogens were exchanged with deuterons by the following procedures.
First, the raw trypsin powder was mixed with D0 in a closed container at about 6%
concentration. The sample was left in a refrigerator at about 30C for about 20 hours. Then
we placed the sample in an ethyl alcohol + dry-ice bath to freeze-dry it. Next, the sample
was placed in a vacuum chamber for about 30 hours to remove the solvent. The resulting
trypsin is called "treated" trypsin.

In the experiment, the treated trypsin was mixed with D20 to form a solution. The
pH of the solvent was adjusted with DCI to fall in the range 4 - 5 to prevent the trypsin
from self-digestion. The sample was placed in a cryostat filled with He gas during the
neutron scattering experiment for temperature-control purposes and to prevent the
condensation of water on the sample container surface. There are two different designs of
the aluminum sample chambers. One is made for holding dry samples. The other is made
for holding liquid samples to minimize the liquid loss during the experiment (see Fig.

la&b).
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II1. Basic Properties of the Neutron.

The neutron has
mass: 1.675x 10-27 kg
charge: 0
spin: %

magnetic dipole moment : jip =-1.913 un.

The importance of thermal neutrons comes from the basic properties of the neutron as listed
above. The energy of a neutron with velocity v is its kinetic energy %mv2 with wave

vector
m
k=—v 3-1
" G3-1)

and wavelength
(3-2)

Thermal neutrons emerging from reactor have a Maxwellian velocity spectrum. The flux
distribution is then

o (V) dv ~v3exp(- %i‘-’%) dv (3-3)

where, T = temperature of the moderator
¢ (v) dv = number of neutrons per unit area per second with velocities between vand v +
dv

m = neutron mass

kB = the Boltzmann constant.
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1
The maximum of the function ¢ (v) occurs when v = (3—1(I£—T ) 2 corresponding to a K. E.

of

1 3
KE. = 3mv? = SkgT. (3-4)

Normally, the neutron energy E is described by a temperature T through the relation E =

kgT . The momentum of the neutron is p = ik. And by convention, we have

1 1 h2

1
KE.=kgT = imv2 =3 2 =5 (3-5)
Substituting the values for m, ¢, i, kg into (3-5) gives
A =62831 =3956% =9.045-L =30.81- (3-6)
=6.283 =3956; =9.045jF =30.81yF
E =0086T =5227v2 = 81.81$ =2.072k2, G-7)

where A isin A, kin 1010 m-1 v in IS? , E in meV, and T in Kelvin. Other units often

used in neutron spectroscopy are

ImeV =0.24THz =8.07cm"1 =11.61K.

Neutron beam often are classified as being cold (.1-10meV), thermal (5-100meV),
hot (100—500meV), or epithermal (>500meV). In our experiment, we mainly used cold
neutrons<14,15,16,17,18>

As mentioned earlier, the neutron's basic properties make it an important tool for
studying the static and dynamic properties of condensed matter. To study the static

structure of macromolecules, the radiation needs to have a wavelength comparable in
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magnitude with the spatial dimensions between atoms. To probe the dynamical properties

of macromolecules, the radiation frequencies must be on the order of the vibrational
frequencies of the atoms. X-ray and infra-red radiations meet the static and dynamic
requirements respectively. Thermal neutrons satisfy both requirements.

Another reason for the importance of the neutron's properties is the interaction
between the neutron and nuclei. The scattered amplitude of the neutron scattered by an atom
depends on the nucleus' characteristics and so the amplitude varies between different
isotopes of the nucleus and between different nuclei. For certain nuclides, the incoherent
scattering amplitude, the absence of interference between waves scattered by different
atoms, is large; e.g. hydrogen, which is almost invisible to X-rays, is a strong neutron-
scatterer.

As a quantum object, neutrons are characterized by wave functions lk> such

that

k> =q& exp (k) (3-8)

where V is the volume of quantization, (the same as the volume of the irradiated sample).

The density of states of momentum k in this volume is given by<19>

\'%
pk) = W . (3-9)
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IV. Neutron Scattering.

A. Neutron - Nucleus Interaction.

A neutron and a nucleus interact via nuclear and magnetic forces. Since the nuclear
force is short range compared to the thermal neutron wavelength, it can be shown that the
interaction potential between a neutron positioned at r and a nuclei i at rj can be written as

2
VE) =2 b 8- ry). @1

This is often called the Fermi pseudo-potential<20.21>, The scattering length bj is
independent of the neutron energy and is a characteristic of the interaction. It can be
negative or positive depending on the repulsive or attractive nature of the interaction. The
determination of bj is very difficult theoretically and is usually done experimentally. In the
magnetic interaction, the neutron interacts with the spins by the dipole-dipole coupling.
For diamagnetic systems, it is always negligible compared to the nuclear interaction and

will not be considered.

B. Coherent and Incoherent Scattering Lengths. and Cross Sections.
In a system of a given atomic species i, with many isotopes having a nuclear spin,

the bj will change from one atom to another, since the interaction depends on the properties

of the nucleus and on the total spin state of the nucleus-neutron system.
The coherent scattering length is the average < bj > of bj over all the isotopes and

spin states. The incoherent scattering length is the mean square deviation of bj from < bj >.

We thus have

bjcoh = <b; > 4-2)
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1
bjincoh = [<b;2>- <b; >2]2 . (4-3)

It is clear that b; ©°h and b; incoh can be varied by changing the relative concentration of
the various isotopes. This point has important applications in neutron experiments, thru the

isotopic substitution technique. The coherent and incoherent scattering cross-section are

defined as<20>
Gioh = 4 (b; °oM)?2 (4-4)
o;incoh = 4gx (b; incohy2 (4-5)
C. Neutron Scattering Functions.<15.16,18,19,.21,22>

An elegant quantum technique to derive the neutron scattering function by F. Volino
is given in Appendix A. We however choose to derive it in a more conventional way. We
define the neutron N, the sample S, and the interaction hamiltonian Hc. The neutrons are
described by their plane wave functions Ik>. The sample is made up of M particles i located

at r;. The coupling between S and N is given by the Fermi pseudo-potential, summed over

all the particles i,

—Zm—z bi 8(r - ri). (4-6)
1

The neutrons are generally well collimated and monochromatized, so they are in a well

defined state lkg>. The interest is in the probability of the neutrons to make a transition to
another state lk;>. The amplitude of this transition H¢ can be written as

1

<kil H¢ ko> = V iexp (iQ.rj) 4-7
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where Q = kg - ki, is the neutron momentum transfer. In experiments, a beam of
monochromatic neutron kg is scattered from a sample, and detectors collect the scattered
neutrons with momenta between k; and kj + dk; . Let the number of incident neutrons per
cm?2 per sec be Ip. The sample has the volume V (a cylinder with cross section S and

length 1). The number of incident neutrons on the sample is Ip (%/6 ) where vq is the

incident velocity. Let I be the number of neutrons scattered per second between ki and k;
+dk; , W, kobe the probability per unit time that gives the change of the state of the

neutron, (see App. A) then

= ToGh) Wi P(ki) dii. @-8)
v
K)dk = —= 4-9
Pk = Vo @9)
1V
-I-a = V—O Wkl kO p(kl) dk]

_rr%% %d’i bj exp (IQ.[ri(t) - rj(0)])> kj dk; dQ

= % 2. <bi bj exp (1Q.[ri(t) - rj(0)] )> dw; dQ  (4-10)
ij

I d2c k
= = dQ dw; =N 1 S(Q,0)dQ duy, 4-11
Io = 40 do 0 =N iy SQ@ @ dar “-11)
with
SQ.m) = 2L det exp (—imt) [(Q,t) (4-12)
T
and

Q) =+ 3 <bjbjexp GQ.Ir() - rj®)])> . (4-13)
ij
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. . . d .
The double differential cross-section, m , Tepresents the normalized scattered
o

intensity per unit energy, per unit solid angle. I(Q,t) and S(Q,®) are called the intermediate
scattering function and scattering law, respectively. The molecular motion can be seen to be
related to the scattering functions, by averaging explicitly the intermediate scattering

function. Eq. (4-13) can be rewritten as

QY = Ip Q) +I5Q) (4-14)
where
@ = i Y bicoh bycoh <exp (QuIri(®) - (i @])>,  (4-19)
5
Q) =5 Y, (biincoh2 <exp GQ.IN(® - (0] )>); 4-16)
1
furthermore,
S(Q0 = Sp Q.0 +Ss(@.). (417)

This can be done because the scattering length bj is independent of its position. The
scattering function S(Q,t) has two parts: coherent and incoherent. If the sample contains no
hydrogen atoms, then the scattering is mainly coherent and bjcoh >> bjincoh | If the sample
contains hydrogen atoms, then the scattering is mainly incoherentand bjincoh >> bjcoh . In
our experiment, we are interested in incoherent scattering, which provides a unique and
powerful probe in the analysis of the motions of protons and consequently of the dynamics

of the macromolecule itself.
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«g—  Elastic peak

Neutron energy Neutron energy
gain lost

Quasielastic
region

Fig. 2. Schematic diagram of experimental incoherent neutron scattering spectra:
elastic, inelastic and quasielastic. Reproduced from Cusack (1989).

D. Inelastic. Elastic and Quasielastic Scattering <14:23:24.25>

The incoherent scattering spectra can be divided into three regions: inelastic, elastic,
and quasielastic (see Fig.2). The inelastic spectra contains regions of non-zero values of
energy transfer. It gives details on the exchange of energy with vibrational modes in the
molecule, and thus is an indispensable tool of vibrational spectroscopy. The elastic peak

has information on the correlation in the atomic positions at infinite time. Thus, the more
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restricted the nuclei are, the more intense is the elastic spectra . The quasielastic profile

includes the region around w=0. It provides information on stochastic motions such as
intramolecular barrier crossing events and over-damped vibrational modes. It is often

modelled as a Lorentzian or the sum of Lorentzians.

E. Incoherent Scattering from Hydrogenous Sample.

For a single hydrogen atom, the incoherent scattering function is

QY = Is(Qi) e <exp (Q.[r(® - r0)])>. (4-18)

Letr =d +p +u ; where d defines the molecular centre of mass (c.o.m.), p defines the
position of the proton with respect to the c.o.m., and u stands for the vibrational

displacement around the average position. In the classical approximation, we have:

<exp iQ.(r - rg)> = <exp iQ.(d - d) exp iQ.(p — po) exp iQ.(u — ug)>. 4-19)

Assumming that translation, rotation, and vibration are uncoupled, Eq. (4-19) becomes

<exp iQ.(r — rg)> = <exp iQ.(d — dp)><exp iQ.(p — po)><exp iQ.(u — ug)>, or
QD =Igwans Q) Iot(Qy) Lvib(QY. (4-20)

After Fourier transforming (4-20), we have

S5 (Q,0) = Sgtrans (Q@) ® Sg™ot (Qw) ® Sgvib (Qw). (4-21)
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where ® represents the convolution. So when the motions are uncoupled, the scattering

law is the convolution product of the scattering laws for three kind of

motions<8.9,19,20,26>

F. Incoherent Quasielastic Scantering Spectra,
1. Rotation:

For the case of isotropic rotational diffusion of a proton on a sphere of radius p, the
probability distribution Gg of its orientation €2 is governed by

9Cs _ b, v2,G, (4-22)

ot

where Gg ( Q, Qg, t ) is the probability of finding the orientation € at time t if it was Qg att

=0. Dy is the rotational diffusion coefficient. V2q is the operator on Q. The solution of

this equation is

oo 1
Gs(Q, Q0,t)=4x ¥ exp [Dr 10+1] X, Yn(@)Yh (Q0)- (4-23)
1=0

m=-1

The intermediate scattering function becomes<19.20.27>

Qo =~ J”dt exp iQ.(p — po) Gs AR dQy
T

= Jo2 (Qp) + 2, (21 +1) Ji2 (Qp) exp [-Dy I(1+1)t] (4-24)
I=1
and
D;1(1+1)
[D;1(1+1)]2 + @2

S Qo) =Jg2(Qp) 8(co)+-11;2<21 +1) 22 (Qp) (4-25)
=1
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Here the scattering law is composed of a sharp peak superimposed on a broadened

component (a sum of Lorenztians) whose width is of the order of a few Dy and whose

intensity depends on Q.

2. Translation:

For isotropic translational diffusion, the probability distribution is given by

9s _ p. vz, G, (4-26)

dat

Gs (d, dg,t ) is the probability of finding the particle at d at time t if it was atdgatt=0.
Dy is the diffusional constant. V24 is the operator on d.

The solution for G can be found:

3 - do)?
Gs(d,dot) =(@nDy t)2 exp [_tng:iQt)——]' 4-27)

The intermediate scattering function is :

Q) = det exp iQ.( d(t) - d(0)) Gsdd ddp = exp (-D;Q2%t), (4-28)

and

_ D; Q2 )
$@0 = o (4-29)

The line-width for this model varies as Q2 <19,20,28>,
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3. Yibration;
In the quasi-elastic region, the vibrational S (Q,®) can be shown to be equal to the

Debye-Waller factor exp(- Q2 <u?>), <u?> is the mean square vibration amplitude. This
Debye-Waller factor plays an important role in protein dynamics, especially in the
conformational substates concept introduced by Frauenfelder and others (see discussion in
a later chapter). It should be pointed out that the above DW factor results from the

assumption that the motion of the particles is unimodal and harmonic<7:19:21>,
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V. Data Corrections and Fitting.

A. Mulriple Scantering.

So far we have discussed the idealized situation in which the scattered neutron
intensities are obtained from a detector with an infinite-resolution and a monochromatic
incident beam. This is not the case in a real experiment and corrections must be made to
compare data with the models. There are also other effects that make the data analysis more
difficult, one of which is the effect of multiple scattering. Reallistically, the scattering law
should include second and higher-order scattering-terms. However, the multiple scattering
effect is complicated. It is advantageous if the effect can be avoided altogether; e.g., the
effect can be made negligible by employing samples with high transmission. Before
ignoring it, it is useful to see how multiple scattering depends on the physical features of
the sample. For simplicity, let us look at a flat sample, thickness d and other dimensions
large compared to the neutron beam. The mean free path of the neutron inside the sample is

1=3-1 where ¥ is the total cross section per unit volume,

Y =3+ X (5-1)
and ¥, is the absorption cross section, X is the scattering cross section per unit volume.
In our hydrogenated sample, we can ignore X3 (<< s ) . For example, in the case of water

H)O,p=1 g/cm3, mw (H20) = 18g, Gincoh (H) = 80 barns and Gincoh (O) = 0, we have

%5 = Tincoh = (11307 Na (Gincoh (0) + 20incon (H) ) = 5 e, (52)
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N, is the Avogadro number. Thus, the mean free-path in the sample is about 2 mm. A

formula, developed by S. J. Cocking, gives the effect of second order scattering relative to

the first order scattering as follows, given that S(Q) is independent of Q,

X(t.Q) =(I—t‘)ln(]-t:), fort < L (5-3)

where L is the mean free-path of neutrons in the sample,

tis the thickness of the sample,

X is the ratio of twice scattered intensity to once scattered intensity.
For S(Q) in the region of a maximum, at t = eL, X(t,Q) is independent qf t. And X(t, Q)
varies more slowly than t in all cases<29>. Thus, based on this formulation, the rough
estimation of X(t, Q) for L= 2 mm shows that X<< 1. A Monte Carlo simulation study has
been done by E. C. Trantham and D. Heidorn. The study concludes that the errors are
about 10% in the line width and do not change much with Q. The amplitude, however,

changes as much as 30% due to multiple scattering and fluctuates with Q<30>,

B. Inelastic Scantering.

The contribution of inelastic scattering of the sample in the quasiclastic regime
requires careful analysis which takes into account the inelastic background. One way of
estimating the inelastic contribution is to obtain the inelastic contribution spectrum
experimentally and extrapolate it to the quasielastic range for correction purposes. In our

case, we scan the quasielastic spectrum by varying @ and holding Q constant. The inelastic

background is well represented by a simple linear function,

Iinel. bg. = A +Bo. (5-4)
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The relative contribution of the inelastic background to the signal is approximately given

as<8>

__4.6x10-5Q2(0.77T + 1)
C=1ri6x105 Q2(0.77T + 1) (5-5)

where C is the ratio between the background and the signal. The above formula is derived
from the single-phonon scattering law for a crystal.

Another contribution to the background is the sample holder. In previous
experiments, a separate scan of the aluminum sample holder had been done, and it is
sufficient to represent it by a linear function of ® as in the case of the sample itself.

In order to observe the dynamics of protons associated with the biomolecules, we
placed them in a D70 solution. The scattering from the D20 in the solution also requires
some corrections to the data. For small Q, the intermediate scattering function for coherent

scattering (D20) can be approximated as<31>

FQD =exp[-C1(Q1-3C2(@t2..] (5-6)

where Cj (Q) is the term of immediate interest. In the frequency domain, this term
transforms into a Lorentzian lineshape with Q-dependent width. For small t, the second
term in the expansion is negligible. C; (Q) describes the deviations from exponential decay
of the time correlation and gives a non-Lorentzian component. For D20, the coherent cross
section is 80% of the total scattering cross section, so in the fitting, we require a second
Lorentzian for the D20 contribution. The fitting parameters were taken from a separate fit
on the D0-only scans and these parameters were held fixed in the protein + D20 scans
fitting. The fitting gives smaller errors and chi-squared when the second Lorentzian for

D,O is included.
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C. Spectrometer Resolution Function.
Before the data is analyzed, a few corrections must be done on the raw data. One of

the corrections is the effect of slit smearing. This problem arises from the fact that the
signal being detected is averaged over the geometry of the monochromafor, collimator, and
detector. Ideally, the instrument should have a source-monochromator-collimator
combination which delivers perfectly monochromatic, infinitely collimated radiation which
is directed through an infinitesimally thin specimen. The scattered neutrons then are
registered by a detector with an infinitesimally small acceptance aperture. In reality, the
beam has finite size, and even an ideal detector will be seeing scattered radiation over a
range of angles. A less-than-perfect monochromatization of the beam has a similar effect.
In all, the signal measured at scattering angle 6 will not be I(8) but some kind of weighted
average over a range of angles 6 + A . The signal measured is a distorted version of the
signal desired. Mathematically, the effect of smearing the signal can be thought of as a

convolution<8.9:32>,

I (Q,) , the measured signal, is given as follows:<33>

Q) = [ a0 [ do0 5:(@-Q0.0-00) R 00). &)
-Q -0

R (Q, ) is the resolution in (Q, ®) space, and S; (Q, ®) is the ideal signal. In our
spectrometer, the width of the Q-resolution function is much smaller than any feature in a

- constant & scan, except in the case of a Bragg peak. Thus for constant Q, the scattering law
is averaged over a narrow range of Q-space in which S; (Q, ®) is almost constant. So in

this approximation, it can be shown

R(Q ) =3 QR (w. (5-8)
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Then (5-1) becomes

Qo) = [ doo 5iQ 0-00) R @0). 59)

For convenience, the limits in (5-3) are usually taken to be + o .

Our resolution function was measured by scanning the elastic incoherent peak from
vanadium. It should be noted that the resolution is not symmetric about ® = 0, due to the
fact that the final wave vector kg is varied<34.35>, Taking the variation of kg into account,

the R(w) has approximately a Gaussian form in @ multiplied by a skew factor, <36>

? I
R(®) < (A—Bm)exp(—-I—(E) , whereK:Wﬁ-z—

Tt is the resolution full-width-half-maximum, A and B are arbitrary constants.

D. Voigt Function <3641>

Using the above mentioned resolution function, we can write Ip (Q,0) explicitly as,

' 2
Io(Qo) = kb—n [* don 5:(Q 0-00)(a~Bao) exp (—%) exp Q2.
-0

(5-10)

In some models used to describe the dynamics of protons in solution, the shape of

S; (Q, ) is Lorenztian, including the model we used to describe our system. So Si (Q, w)

takes the form

1 I2
i(Qw) =— 5-11
$i(Q @) nh ([72)2+ (o~wp)? ©-10)
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Then the experimental spectrum is:
<u2>) I2
37 (T/2)%+ (0—wp)?

1 (o a?
To Q) =L [ oo (A~ Boo) exp (5) exp (-Q2 (5-12)

Using the definition of the complex Voigt function, we have

oo y exp (-t2) _ . . _
f_mdt(x-t)2+ 52 =7 ReV(x +iy) (xisreal,y>0). (5-13)

It can be shown that Iy (Q,®) can be approximately written as,

2 r
QW) = — ep Q@A -Cal Re (VR+ig)), (19

where C = .02, a small correction, so it is permissible to assume the resolution function is

an ideal Gaussian in which Iy (Q,®) has the form

o JQ

2
L exp (D) Fe (VR +ing) )- (5-15)

Khvr

Ih(Quw) =

As shown later on, the fits done with both forms of resolution functions (5-14) and (5-15)
are approximately of equal quality, within the error bars. The numerical values of the Voigt
function can be found by Taylor series expansion, or by asymptotic series expansion, or by

numerical integration. The Voigt function is also related to the error function by

V(z) =exp (~z2)(1-erf (iz) ), and (5-16)
_2 (z 2
erf (z) i fodt exp (-t4).
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E. Fitting Techniques for the Voigt Function.

In principle when one of the two contributions to the experimental spectrum is
known, e.g. the resolution function, then the other can be obtained through Fourier
deconvolution. This procedure can go wrong if the transform of the response function is
exactly zero for some values of Ry, - the values for the experimental spectrum - since we
can not divide by these. This shows that during the convolution, the information was lost at
that one frequency so that a deconvolution of that frequency component is not possible.
This procedure is also quite sensitive to noise in the input data, and to the accuracy of the
known response function. It requires excellent statistics in the data set for success. So a
perfectly reasonable deconvolution procedure sometimes produces nonsense.

An alternate approach is an approximation to the Voigt line shape using a linear
combination of Gaussian and Lorentzian curves. The useful range of the approximation
includes the lines sharper than a Lorentzian and lines flatter at the top than a Gaussian. The

approximation can be written as

In the study of hydrated proteins, H. D. Middendorf and Sir J. Randall<4? > have applied

this technique successfully as compared to using the complete Voigt function. In this fit,

the width of the experimental line shape I is known but not the width of the Lorentzian and
the Gaussian. However, from the tabulated data in ref. 37, we can find the width of the

Lorentzian and of the Gaussian respectively.

Our approach is different from the above two mentioned methods. Using the

numerical values of the Voigt line shape, the experimental spectrum is fitted by a non-linear



28
least-square method developed by Marquardt. The guess for each parameter in the fitted

model is given initially by the user. The fitting algorithm then calculates the chi-square,

n
2 = yi— ¥y (Xisa1...am ) N
x i§1 ( Oj )2 (5-18)

If the guess is good, the jump from the current trial parameters acyr to the minimizing ones

2min CCCurs in one step,

amin =acur+ DL[ —VX2 (acur) ] (5-19)

where D-1 is related to the Hessian matrix, namely the second partial derivative of x2 with
respect to the parameters ag and aj. However, if the guess is a poor estimate to the
parameters of the model, we can take a step down the gradient as in the steepest descent

method:

a'cur = acyr— constant .[ Vx2 ( Qcur ) ]. (5'20)

The algorithm repeats the procedure until %2 and the parameters converge to a stable
equilibrium in the parameter-space. In order to test the goodness of the fit, several

procedures are used:

— several sets of initial guesses of parameters were used to check the convergence
of the algorithm.

— minimization of the number of free parameters whenever possible, to reduce the
dimensions of free parameter space, which is likely to reduce the "false” local minima that

the fits might converge to.
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V1. Neutron Spectrometer.

A. Production of Neutrons.

In the nuclear reactor, neutrons are produced by fission. As they collide with the
moderators, the neutrons lose some of their energy. At some distance from their origin,
they come to thermal equilibrium with the moderator and the beryllium reflector. These
neutrons are then transfered to the experimental sites by beam tubes. The energies of these
neutrons cover a wide range. In order to perform diffraction experiments, the beam needs
to be monochromatized. One way of achieving monochromatization is Bragg reflection of
the beam from crystal planes; the favorite crystal for this purpose is pyrolitic graphite

because of its high reflectivity coefficient. The Bragg scattering law states A = 2 dpj sin6,

h . . .
where A= preesi the neutron wavelength, dpy1 the distances between lattice planes, 6 the

diffraction angle. A Bragg diffraction, however, would also need an appropriate filter to
produce a true monochromatic beam, since more than one A can satisfy the Bragg's law at
fixed 0 . Usually, a polycrystalline filter is chosen such that the largest Amax is selected.
The cost of this procedure is a reduction in intensity of the neutron beam. The final energy
Es of the scattered neutrons must be analyzed to determine the energy change of the
scattered neutron.

Another method often used in a TOF (Time-of-Flight) spectrometer is a velocity
selector. The main components of the selector consist of a cylindrical rotor to chop the
beam and select a desired velocity for the neutrons used, and a helical channel to guide the
monochromatized beam. This way, however, is very costly in neutron intensity.
Monochromatization using crystals is more cost effective. However, it has some
disadvantages. First, to change neutron wavelength requires elaborate realignment of the
apparatus. Then there is a limit on what maximum wavelength can be obtained. It is also

costs valuable flux due to its less than perfect reflective feature<44>,
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B.Triple-Axis Spectrometer at BNL (Brookhaven National Laboratory), H8.

Our experiment was done at BNL on the H8 triple-axis spectrometer (see Fig.3).
HS8 is primarily used for single crystal inelastic neutron scattering experiments. However,
as in our case, it can also easily be adjusted to quasielastic scattering experiments. It is
equipped with a monochromator housing that can hold either a PG (002) or a Heusler
crystal, for unpolarized and polarized neutron experiments respectively. The incident
energy can be varied so scans with a fixed final energy can be obtained, or a fixed incident
energy with varied final energies can also be utilized. Cooled Be and pyrolytic graphite
crystals are available for removing higher order beam contamination. The sample table is
equipped with a manual two-axis goniometer with a + 100 range and is compatible with a
variety of available cryostats and furnaces. External collimation is provided by Soller slits

with 5x5 cm? cross section.

H ion Parameter

Flux at monochromator position

(20' in-pile collimation) 4.2x10° n/fcm? sec
Monochromator scattering angle 100<201<750
Eg or Ag (PG 002) 4.9<E)<240meV

4.1<Ay <0.58A
Beam size 5 (h)x3.1 (w) cm?
Sample scattering angle 450<204<1400
Analyzer scattering angle -1000< 20, <1000
In-pile collimation 10,2040’
External collimation 10',20',40'

Detector BF3
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Shutter with collimator 1
10'/20'/40' et IR
3.2cmx5.1cm beam size :

Filter No. 1 -
cooled Be

Filter I\_Io. 2 ) -
pyrolytic graphite

Monochromator
shield

Collimator
10'120'/40
3.2cmxS.1cm

base size ) ' .
Filter cavity with

monitor detector

Collimators '
10'/20'/40' Analyze( shield
5.1cmxS.lcm 18.7 cmid.
beam size

Beam line

g Detector shield
/

Fig. 3. Schematic plan of triple-axis spectrometer installed at HS.
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VII. The Effect of Solvent Molecules on Protein Dynamics.

The dynamics of proteins are directly coupled with their environment: the solvent
molecules, in most cases, are water. Water is an important factor in all living organisms.
Many functional and structural details of its interaction with biological molecules have been
investigated by a variety of techniques ranging from calorimetry to magnetic resonance.
These have shown that a small number of water molecules are tightly bound in the interior
of the protein and can be regarded as an essential part of its tertiary and quartenary structure
(see Fig.4 for basic structures of the protein). A number of these water molecules are
loosely bonded but still localizable at or near the biomolecule's surface.

Based on motional information on protein hydration at the molecular level from
different spectroscopic techniques, the water molecules can be classified into different
classes according to their characteristic rotational diffusion time 7 . First, a small number
are bound almost irrotationally (t; = 10-5 to 102 s) at specific hydration sites with multiple
hydrogen-bonds. Secondly, a large number interact less strongly with the biomolecule but
are still sufficiently restricted so that 7 = 10-9 s. Other water molecules that have motional
properties similar to bulk water are the third type (tr = 10710 to 10-11 5). With our
lyophilization procedure used on the trypsin, where the loosely bounded water molecules
are exchanged with D20 molecules, most of the water molecules closely associated with the
trypsin likely remain intact<4%>.

The solvent molecules have been shown to influence the dynamical properties of
proteins. These effects are not simply due to solvent viscosity, but also due to protein-
solvent interactions. In effect, the protein molecule also plays a role in solvent dynamics
and structure. For example, the water molecules around charged, polar, and apolar
sidechains have significantly different diffusion coefficients, and they exhibit different

structures. A study of Polyox/water by D. Bearden indicated that in the presence of polym-
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2

q

Primary structure

Reproduced from Frauenfelder (1991).

Fig. 4. Protein basic structures.
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er, HoO hydrogens have a reduced diffusion coefficient and an increased residence time

compared to pure water. QNS studies by Trantham et. al. on cysts of the brine shrimp
(Artemia) and 20% agarose gels in H20 and D20 show the reduction of the motional
freedom of intracellular water due to interaction with biomolecules<50:51.52>, The question
of how the solvent molecules influence the protein motion is more difficult. In determining
the effect of proteins on the motion of solvent molecules, we study the solvent system and
solvent + protein system. The effect of the solvent on protein motions is less obvious due
to the fact that we do not know how the protein behaves without the solvent molecules. It
is quite reasonable to say that the protein is "dead" without the solvent. As the percentage
of solvent molecules increases, the protein becames alive, the motions changing from local

vibration to large amplitude diffusive motion.
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VIIL Jump Diffusion Dynamics.

A. The Relevance of Jump Diffusion Dyngmics.

We seek to explain the motion associated with the biomolecules, in our case
trypsin, using the jump diffusion theory. There are several reasons for using the jump
diffusion theory:

— previous experiments in our group have shown in general the experimental data
revealed a similar behavior to that predicted by jump diffusion theory.

— the motion of the particles described by the theory is physically reasonable.

— the theory has been used to explain dynamics of systems similar to the system we
study.
Before going into the details of jump diffusion theory, we first look at the inadequacy of
continuous diffusion at large values of momentum tranfer Q, or small space-time values.
<r2>

The continuous diffusion theory predicts a rms velocity Vv2= oc t- 0.5, 50 fort

small the rms velocity becomes physically unreasonable. This theory is indeed only
applicable to the continuum; the motion of particles under the influence of their neighbors

requires a different theory, jump diffusion theory<46>.

B..Jump Diffusion Theory.

In explaining the details of this theory, we follow an approach<47> motivated by the
paper of Hall and Ross (1981). The advantage of this approach is its simplicity. The
method also introduces a parameter (jump length distance) that facilitates comparision with
experiment. Historically, the first continous diffusion model for H2O was proposed by
Bernal and Fowler (1933) and later modified by Lennard-Jones and Pople (1951). This
model later was proven to be inadequate on the basis of neutron scattering experiments by

Brockhouse (1959)<48>, This opened the way for a jump diffusion theory, in which the
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basic repeated mechanisms of a particle consist of a residence time and a diffusive time. We
first assume the jump diffusion is a Markovian process, where successive jumps are not

related, the spatial distribution of jump lengths is governed by p(r), and its temporal

distribution is a Poisson type.

1. Spatial distribution
We assume the jumps are isotropic, with a spatial distribution that obeys the
following conditions:
p(r) =p(n), (7-1)
pr(r) dr =1, (7-2)
0
I“ﬂ p@) dr = <r2>. 7-3)
0

A number of possible forms for p(r) will be considered below.

2. Temporal distribution.

The probability of m jumps in the time t is a Poisson process,

m
Pn = “F exp- 1), (7-4)

where T is the mean oscillation life time of a particle at a site.

3. Self- lation function

We write the self-correlation function as,

Gs(ryt) =m2 Rp(r)Pm(1), (7-5)

where Ry (r) = m-fold convolution of p(r) with itself
= p*p*p*... m times = pMm™* . (7-6)

The intermediate scattering function is:



I Q) =J' Gs(rt) exp(i Q.r) dr = FT [G(r,t ] =FT [ Y, p™* P () .

m=0

According to the Faltung theorem, we can write
FT [f*g*h] =(FTf) FT g) (FT h) ,so
FTpm* = (FT p)™ =[ F(Q) JM, where F(Q) is the FT of p(r)
We can rewrite the intermediate scattering function,

oo m
Q) = 3 (FQ G exp-t)

= eXP(—[l—F(Q)]i ) =exp(-r<Q>§ ).

The scattering law is then,

Si(Qw) = J. I (Q,t) exp(i wt) dt

= LI here It is the width.

T (I'/1)? + @2

4. Different spatial distributions.
We will consider some possible forms for the jump distribution p(r).

a. Gaussian.

pr) =

_1— ex (__—r‘—z )
V213 P 2rg2 77

202
FQ = [ p®) expl Q) dr = exp(- L&),

I - lu-ro)
T T

202
= 1= exp(-152)),

b. Exponential A.
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(7-7)

(7-8)

(7-9)

(7-10)

(7-11)

(7-12)

pir) = 1 exp(— L ), using the same procedure as above, (7-13)
dnro?r To

1
@ T
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¢. Exponential B.
or) = 41tr:)2r2 exp(—3)s (7-15)
FQ = g Qo)
- = 10 gy wlQo), (7-16)
d. Dirac-delta.
o) = 8 -t0), (7-17)
FQ = g sinQuo)
S = (- gsinQo) (7-18)

In all cases, the width is ~ Q2 ( classical diffusion) for Qrg<< 1, and I' approaches

constant for Qrg>>1.
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IX. Data Analysis and Discussion.

Our experiments were carried out on D20, trypsin powder, trypsin + D20 (refer to
chapter II for further details). The background scans on the D20 were done to allow
proper extraction of the real line shape of the scattering by the trypsin molecule. It turns out
there is more than one way to remove the background from the data. One way is point-by-
point subtraction. This method, however, introduces large statistical errors and thus affects
the true line-width. The chosen technique is to fit the background with a reasonable model,
in this case a Voigt function (see earlier chapter). All the parameters obtained from the D0
fits are then fixed in the fitting of the trypsin + D20 profiles. The exact form of the total

scattering cross section is as following,
S(Q,m) = A + Bw + L(D20)*R(w) + L(trypsin + D20)*R(w).

The S(Q,m) spectra for D20 was almost flat at high Q's (see appendix), and at low Q's
there is a small quasielastic peak, which is well fit with a Voigt function. A fitat Q=1.5 Al
, T=300K is shown in Fig.5 (the points with error bars are experimental data; the x's are
points from the fitting function.) The resolution function of the triple-axis spectrometer was
fitted with two forms: a gaussian, and a supposedly more exact form, a gaussian multiplied
by a skew parameter ( as discussed in chapter V). The results from the fitting show that
both forms are closely in agreement (within the error bars), with the resulting widths from
the skew-gaussian larger (see Figs.6 & 7 where ¢ = gaussian). From the line shape of the
width '/t versus Q2 in principle one should be able to obtain the details of the diffusive
properties of the protons. In terms of jump-diffusion theory, one can measure the jump-
length distribution p(r), which in general is assumed to be gaussian (e.g. in X-ray

scattering of biomolecules), but which could be different in the case of trypsin. One way to
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FIG.5. Q=1.5 T=300K TRYPSIN + D20 FIT & DATA
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FIG.6. TRYPSIN + D20 SOLUTION AT T=300K
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FIG.7. TRYPSIN + D20 SOLUTION AT T=280K
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extract the information on the p(r) is to work out the Q-dependent line-width from an
assumed model and then fit the data with this function (as is done in the jump-diffusion
theory section). Another way is to obtain a good set of data with better statistics, and
inverse-fourier-transform the data to obtain the jump-length distribution p(r). With the data
available, we are only able to derive p(r) by assuming 3 rcasonable jump-diffusion model
and fitting the data with a derived line-width versus Q2 function. The line-width as a
function of Q2 for the trypsin + D20 solution at 300K and 280K are shown in Fig.6 and
Fig.7 . The line shapes are similar at both temperatures. They are linear at small Q2 and
level off at large Q2 , which is characteristic of a jump-diffusion process. The leveling off
is, however, based only on one point at Q=2.5 A-1.(See App. B for our most recent data in
which more complete results are given for I'(Q2)). Thus we have only a tentative
conclusion: the protons associated with the trypsin molecule perform some type of jump-
diffusion. It is possible that the protons are also jumping between conformational substates
as suggested by Frauenfelder. Since we have already exchanged out the loosely bound
water molecules, the rearrangements of the more-tightly-bound water protons under study
is closely associated with the motion of various trypsin segments. The exact jump-diffusion
mechanism of these protons is uncertain at this time. The following quantitative discussion

of the data is based on the jump-diffusion model: (model 4b. of Sect. VIII B)

2Q°D

rQ) =———.
Q 1 + Q2D1g

The slope of the curve at small-Q values gives a diffusion coefficient of D = 0.18(
.019)x10-5 cm?/sec, and the leveling off at large Q gives the residence time Tg = of
47(£1.3 ) x 1011 sec at T = 300K. At T = 280K, we have D = 0.14(% .017 ) x 10->
cm2/sec, and T = 3.9(+.56) x 10-11 sec. For pure water, D is about 2.5 x 10-5 cm?/sec,

and Tg is approximately 2 x 10-12 sec. The results at 300K and 280K are consistent with
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one another, with slightly smaller values of D and tg at lower temperature, and with smaller

D and longer Tg compared to the values for pure water. The residence time Tg of the
hydrogens can be interpreted as the average lifetime of these hydrogens in their
conformational substates. The similar previous experiments done by C. Lin at ONRL are
not readily compared to ours because of his background problem, which caused a large
statistical error on the data fitting after point-by-point background subtraction. One thing
we can conclude with certainty is that the continous diffusion model is not compatible with
the motion of the system in our study.

The Debye-Waller factor gives the average mean-square vibration amplitude for the
hydrogens associated with the trypsin molecule. The main effect of the DW factor is a
reduction in the peak intensity at high momentum transfer Q. The basic assumption,
contained in the following equation:

>,
’

)

<ul
S(Q.=0) ~exp (- Q23

is that the probability of finding an atom a distance x from its equilibrium position due to its
high-frequency-thermal motion is isotropic, and is a gaussian. Here the mean-square

vibration amplitude <u2>QNs measured by QNS is different from the mean-squared

amplitude <u2>X.ray measured by X-ray methods, which is defined as
<U2>X._ray = <Uy2> + <ucs?> + <uig2>.

<uy2> represents the local atomic vibration (the same as <u2>QNs ). <ucs2> gives the

contribution of the transitions between conformational substates. <ujg2> is due to lattice

disorder<53>,
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FIG.8. DEBYE—-WALLER FACTOR TRYPSIN + D20 T=300K

80

70

60

50

40

1 ] 1 l I 1

1 s 1




46
The DW factor to the integrated intensity of trypsin in D20 at 300K is shown in

. . <u®> . . :
Fig.8. The fit result gives 3 = 0.33 A2 . Computer simulation results give a value for

the average <uy2> + <ucs2> between 0.28 A2 and 0.36 A2 . X-ray diffraction experiments
give a value of the average <uy2> + <ucs2> + <ujg2> between 0.48 A2 and 0.58 A2 .
According to a computer simulation on trypsin by McCammon, the averaged mean-square-
amplitude of localized fluctuations is 0.46 A2 <54>, This value is approximately one-half of
our experimental value <u2>=0.99 A2 at 300K.

The fits of the DW factor for trypsin in D20 at 280K and for trypsin powder using
the same model are less successful (see Fig.9 & 10). The previous experiment done by C.
Lin also shows a poor agreement with the DW model at 300K and 280K. One would like
to think the problem lies in the data and its analysis, thus still believing the DW model is
adequate to explain the high frequency vibrations of the system under study. This leaves
the possibility of further experiments to verify the DW model. Or the DW model may be
inadequate in this case. It is possible that the integrated intensity obtained experimentally
indicates a non-linear fluctuation which can not be analyzed with a DW factor, which
assumes a gaussian distribution of fluctuations around one conformation<’>,

The fit to the DW factor at room temperature T=300K is very satisfactory. The fits
to the DW factor of data at lower temperature T=280K and of powder trypsin are less
successful. It is possible that the effect is due to the reorientation of the trypsin hydrogens.
At room temperature, the effect of rotational motion is negligible, since the molecules are
less confined, and translational diffusive motion is dominated. At lower temperature and in

the powder, the rotational effect becomes more visible. Thus the scattering law has term(s)

2
due to rotational motion J02(Qp)exp(—Q2<l;,—>) and possible contributions from higher

order Bessel functions<8> which are counted as part of the DW factor in our analysis. The
disagreement seen in the experimentally determined <u2?> and some of the molecular

dynamics results could be due to rotational motion as described above.
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FIG.10. DEBYE—WALLER FACTOR POWDER TRYPSIN T=300K
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The frozen trypsin in D20 at 200K does not indicate any broadening due to

diffusive motion, showing a width equal to the spectrometer resolution function. The data
collecting time-limitation allowed us to obtain data at only three values of Q. The thermal

2
vibrational amplitude <3l.l Z =028 A2 , but it has a large uncertainty.

In the low-resolution experiment, the S(Q) for pure D20 at 300K shows a broad
peak at about 2 A-1, asexpected (see Fig.11). In trypsin + D20 at 300K, the same peak is
also present but is slightly less intense than for pure D20 (see Fig.12). The intensity, in
geneal, decreases with Q?2, an effect of the DW factor. However, the corrections due to
background and inelastic scattering are difficult to assess, so there is a large uncertainty in
determining <u2>, The lypholized trypsin powder S(Q) data (see Fig.13) did not show any
D70 peak as seen in the trypsin-D20 solution (see Fig. 12).
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FIG.12. S(Q) OF TRYPSIN + D20 AT T=300K
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FIG.13. S(Q) OF POWDER TRYPSIN AT T=300K
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X. Conclusion and Future Study.

These preliminary studies have been very encouraging. The dynamics from the
trypsin can be summed up as following:

— At small Q values, the trypsin hydrogens in liquid D20 exhibit a large diffusive
motion.

— Even though the evidence for the exact motional mechanism of these trypsin
hydrogens is still inconclusive, these particles appear to have a jump-diffusion like
behavior. According to the jump-diffusion model discussed in the text, the value of the
diffusive coefficient D is significantly smaller than the value of D for pure water, and the
residence time 7t is larger than that of water.

— At T=300K, the Debye-Waller factor, which reveals the local high-frequency
vibrational-amplitude, is larger than previous studies, and is in agreement with a recent
molecular dynamics study of Garcia on crambin, a smaller protein. In previous studies as
well as this study, the integrated intensities generally have shown a poor agreement with
the DW factor.

— Comparision between solution, powder, and frozen trypsin motion indicate that
the diffusive motion is greatly reduced in the powder and frozen solutions — the line-width
becomes much narrower in powder and frozen trypsin.

Based on this preliminary study and recent trends in protein dynamics, our plan for
future experiments is following. First, we would like to verify the leveling off of the line-
width at high Q, since our present data showing the asymptotic behavior at one value, Q2
= 6.25 A-2. More data at high Q will allow us to make a better analysis of the jump-length
distribution function. With more data, it may be possible to determine the jump-length

distribution p(r) by Fourier-transform methods (refer to jump-diffusion theory section),

which has not been done before (see appendix C).
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Further experiments, with better statistics, will allow us to study the poor

agreement of the measured integrated intensity with the Debye-Waller factor. This study is
important because at present it is the one parameter that can be compared directly with
molecular dynamics calculations and X-ray diffraction measurements, since there are few
studies on the microscopic details of the diffusive motion.

The S(Q) measurements still need detailed study. It is possible that the D20 peak in
the solution data at ~ 2 A-! might have different characteristics than in pure D20. This could
reveal some properties of the interaction between protein and the solvent.

Our next stage of study will also include trypsin crystals. One recent trend of
thought is that the motion of proteins can be studied by examining protein crystals, since
proteins in crystalline form contain as much as 60% water molecules. Using the QNS
method, we will be able to examine the dynamics of both solution and crystalline forms.
The idea that the protein configuration makes transitions between many conformational
substates is worth investigating in greater detail. We believe that QNS can provide a way to

test this idea (see appendix C).
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Appendix A.

An elegant technique for neutron spectroscopic experiments was given by Volino
(1978) in terms of the coupling between the two systems, in our case, the neutron and the
sample.<19>

We assume the system, in this case the protein sample, is in thermal equilibrium at
temperature T. The sample consists of N particles (or units) and is represented by its

Hamiltonian, Hg, with eigenstates Im'> and eigevalues Em'. The probability that the

sample occupies state Im'> is

Pm' = zlg exp(—BEm") (A-1)

m
with B=(ka)'1, kp being the Boltzmann constant, and Zg = Zexp(—BEm'). (A-2)
i=1

The second system is the neutron. The neutron is characterized by its Hamiltonian,
Hp, with the corresponding eigenstates Im> and eigenvalues Em. The neutron interacts
with the sample through the coupling Hamiltonian He. The basic principle is as follows:
first, the neutron is assumed to be in a defined dynamical state Im>. This means that the
neutrons are well collimated and monochromatized. As the coupling is turned on, the
neutron state varies with time to another state In>. The sample, initially at the state Im'>, is
also changed to another state In'>. In this neutron-sample interaction, we assume that Hg is

small compared to Hs and Hp, . Using the Fermi Golden Rule, we have:

Wnn' mm' = Zﬁz I<n'l <nl Hc¢ Im> Im'>I2 8(Em+Em'—En—En’) (A-3)
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Wnn' mm' denotes the probability per unit time that the total system, the sample and the

neutron, changes from Im>lm'> to In>In'>.

The aim of spectroscopic experiments is to measure a quantity which is proportional
to Wnm, as a function of In> or Im>. Dynamical information on the sample is obtained,
since Wnm is a function of variables in the sample. The problem is therefore to focus on

calculating Wpm and to relate it to measurable quantities. The probability per unit time that

gives the change of the state of the neutron is given by,

Wnm = Ewnn' mm' Pm' (A-4)

n'm'
7= 2 Wnn' mm' exp(-BEm) (a-5)
n'm'

For convenience, we define Hg , the average of He between the initial and final states of

the sample:

H = <nl HgIm>. (A-6)

H; only depends on the state of the sample. We now can rewritten Eq. (A-5) as the

following:
2 —_—
Wim === L) exp(-BEm) I<n'l Fg Im>2 SEm+Em'En-En)  (AT)
R Zs &=,
n'm
with hw =Em—En =energy gain of the neutron,

hion'm' = En' — Em' = energy loss of the sample.

Eq. (A-7) now becomes
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2%
W, ===
nm h

Zis n;, exp(-BEm") I<n'l He Im'>12 §(op'm' - @)  (A-8)

The delta function ensures an adequate expression for discrete peaks of the spectrum, for a
purely quantum mechanical system. In order to describe other complicated systems, it is
advantageous to formulate an equivalent expression for Wnm. This can be obtained by

noting the hermiticity of Hc and the integral representation for the 8 function. We have

l<n'l Hg Im'>2 =<n'l H; Im'><m’l He +n'> (A-9a)

and

o(®n'm' - ®) = ZL f “dt exp i(On'm' — O)t (A-9b)
yin

Substituting (A-9a),(A-9b) into (A-8), we obtain

2n 1 oo .
Wnm “82 Zs _oodt exp i(op'm' — W)t x
exp(~BEm") <m'l H¢ In'><n'l "Hg +im'> (A-10),

w1 (e :
_52 Z n'}r_:,\[oodt exp (—iwt)

exp(-BEm") <m'l Wln'><n'lexp(—i%) _HT*'exp(i% )m'>. (A-11)

The double sum denotes the expression of a trace in the Hilbert space of the sample states,

and
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Wnm = ;,112' J“dt exp (-io)) Tr {Ps He +(0) He (1)} (A-12)

where, g is the equilibrium density matrix of the sample

Ps = zis exp(-BHs) , (A-13)

and Hg (1) is the Heisenberg representation of the operator Hg = Hg (0),

H ) =exp (—%Hst ) Ho exp (ig Hgt) . (A-14)
The expresion
Tr (ps T 0 Ho ) =< Fe*O Ho 0>=Co 1 O (A-15)

is the quantum mechanical self-correlation of Hc . If the system is classical, then H¢ is

a classical function of the variables in the sample space and C % (t) is replaced by its

classical equivalent. Finally, the probability of the transition Wy, is obtained in term of the
time Fourier-transform of C w W @,

1 (e .
Cg wm@=; f dt exp (-iot) C g 7 O (A-16)
and

2%
Winm = h_ CE E (o) . (A-17)

The inverse transition probability Wmp from state Im> to state In> can be obtained by

changing ® into -. It can be easily shown, through conservation of energy, that
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Wnm = eXp (—Bh(’)) Wmn - (A-18)

This means that the neutron lose and gain of energy are directly related to one another by a
population factor exp (—Bh). This shows a lack of symmetry in the probability per unit

time of transition Wpm - representing the principle of detailed balance thru the differing

values of the probability for the gain or loss of energy by the neutron.



67
Appendix B.

After completing major portions of this thesis, further QNS studies were done on
trypsin. These experiments are a continuation of our studies of the motion of the protein
trypsin. We have now completed more detailed studies on the scattering from a 20%
trypsin solution in DO and trypsin single crystals.

The data for the solution exhibits a maximum in the line width at Q2 near 4 A-2,
This behavior is characteristic of a jump diffusion process with restricted jump lengths. A
similar behavior has been observed for hydrogen diffusing in metals. We believe that the
maximum in the line width is related to the rotational motion of the trypsin side chains
during transitions between microconformational states. At present, we are still working on
a theory to explain this motion.

The data for scattering from the crystals was obtained from a sample chamber
containing a large number of small crystal (about 0.5 - 1 mm) that had been soaked in D20
for approximately two weeks. The easily exchangeable protons would have been removed,
so that we observe the scattering from the protons closely associated with the trypsin. The
broadening in the crystal is greatly reduced from that in the solution. This is strong
evidence against the idea that X-ray studies of protein motion in crystals can be used as
indicative of the motion in solutions. A study done on myoglobin crystals also shows a

similar behavior to that of trypsin crystals.



Line Width

68

Trypsin in D20 and Trypsin Crystal T=300K

0.14

0.12

0.10 1

0.08 -

0.06 -

0.04 <

0.02 ~

0.00
o

Q**2




69
Appendix C.

Quasi-elastic scattering studies were conducted on the dry powder, 20% trypsin-
D70 solutions, and pure D20 as a function of temperature. The following scans were
made:
a) 20% trypsin-D20 solution: S(Q,w) was measured for 0.5< Q < 2.5 A-1for T = 200,
280, 300 K. An S(Q) scan was made at 300 K for 0.5<Q < 4.6 A-l,
b) Powdered trypsin: S(Q,w) was measured for 0.5< Q < 2.5 A-12at 300 K, and an S(Q)
scan was made at 300 K for 0.5<Q<4.6 A-1.
¢) D20: S(Q,) and S(Q) were measured at 300 K for the above Q ranges.
d) The spectrometer resolution function was measured at fixed Q (= 1.5 Ay

The data collected in constant-Q mode are plotted in the following pages. The fit
data are shown without the error bars. The D20 background is also included (these are the

lower data points).
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