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Abstract. In this work we consider an inexact Newton's method implementation of the primal­
dual interior-point algorithm for solving general nonlinear programming problems recently introduced 
by Argaez and Tapia. This inexact method is designed to solve large-scale problems. The iterative 
solution technique uses an orthogonal projection - Krylov subspace scheme to solve the highly indefinite 
and nonsymmetric linear systems associated with nonlinear programming. Our iterative method is a 
projection method that maintains linearized feasibility with respect to both the equality constraints 
and the complementarity conditions. This guarantees that in each iteration the linear solver generates 
a descent direction, so that the iterative solver is not required to find a Newton step but rather 
cheaply provides a way to march toward an optimal solution of the problem. This makes the use of 
a preconditioner inconsequential except near the solution of the problem, where the Newton step is 
effective. Moreover, we limit the problem to finding a good preconditioner only for the Hessian of the 
Lagrangian function associated with the problem plus a positive diagonal matrix. We report numerical 
experimentation for several large-scale problems to illustrate the viability of the method. 

Keywords: Interior-point, primal-dual, nonlinear programming, Newton step, large linear sys­
tem, Krylov subspace methods, iterative methods, preconditioners, preconditioned conjugated gradient 
method 

AMS(MOS) subject classification: 

1. Introduction. In this work we are concerned with an inexact method to solve 
large-scale nonlinear programming problems using the primal-dual interior-point frame­
work. We study the general nonlinear problem in the form 

(1) 
mm1m1ze f ( x) 
subject to h(x) = 0 

X ~ 0, 

where h(x) = (h1(x),h2(x), ... hm(x)f and J,hi: m,n--; IR,, i = 1,2, ... ,m (n ~ m) 
are twice continuously differentiable functions. 

A Newton method applied to problem (1) using the interior-point approach leads to 
a nonsymmetric and highly indefinite linear system that must be solved for the current 
Newton step, i.e., 
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(2) 
( 

A B -I ) ( ~x ) ( b1 ) BT O O ~y b2 ' 
Z O X ~z b3 

where A E IRnxn, is a symmetric matrix not necessarily positive definite; B E IRnxm, is 
a full rank rectangular matrix; and Z, X are positive diagonal n x n matrices. 

The use of primal-dual interior-point methods for constrained minimization is rel­
atively new [1, 2, 14]. The success of interior-point methods applied to linear pro­
gramming problems has generated great research interest in trying to extend these 
ideas to a more general framework, i.e., quadratic, convex programming and general 
nonlinear programming applications. Recently, interest in large-scale applications of 
interior-point methods brought about the idea of performing inexact Newton steps, in 
view of the expense of using direct solution techniques. However, mainly due to the 
fact that the linear operators are highly indefinite the construction of a robust iterative 
method for the repeated solution of such systems has presented as a major challenge 
computational. Efforts in this direction are still sparse in the literature and a variety 
of alternatives have been examined in the inexact Newton solution of linear program­
ming problems (see, e.g., [9]), as well as of nonlinear problems (see [13]). All things 
considered, at this point there are no conclusive results on how to define robust inexact 
Newton schemes for general optimization problems and the field still offers plenty of 
learning opportunities. 

In the arena of the solution of large-scale systems of nonlinear equations, the New­
ton theory has been extended in order to allow the inexact solution of the Newton linear 
system [8, 13]. Most of these advances have relied on the use of Krylov subspace meth­
ods [6, 7]. Of particular interest for the optimizer is the formulation of robust iterative 
solution techniques for saddle-point problems, i.e., linear equations of the form 

(3) 

Interior-point method formulations of (1) can be cast in the form of (3) by explicit 
elimination of the linear complementarity condition in (2). Consequently, design of 
robust inexact algorithms for (2) can rely on results from the formulation of saddle-point 
iterative solvers [9]. Other approaches have attempted to solve (2) by a preconditioned 
conjugate residual method. The obvious trouble here is that finding efficient or even 
mildly acceptable preconditioners for the entire matrix may prove to be a futile effort. 

Turning our attention to the saddle-point problem (3), the two major approaches 
to its solution are the iterative solution of the entire system and the direct, or iterative, 
solution of the resulting decoupled or reduced components of the system. The latter 
may mitigate the high computational cost associated with the former. However, effective 
preconditioners for system (3) are hard to obtain and in some cases the resulting lack 
of robustness can lead to procedures as expensive as the reduced approaches. 

One reduced-system approach leads to the construction of the Schur complement, S 
of the coefficient matrix in (3), i.e., S = -BT A-1 B. Clearly, this approach is convenient 
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if A can be easily inverted or good approximations to its inverse can be computed. In 
most cases this is not possible and sometimes, in order to overcome this drawback, 
nested or inner-outer iterations have to be employed to generate fair approximations 
of the Schur complement. The inexactness induced by the inner iterations spoils the 
symmetry and positive definiteness present in the exact Schur complement, hence an 
outer procedure has to employ general nonsymmetric solvers which potentially increases 
the computational cost. 

Other optimization linear solvers of the reduction type are those restricting the 
search direction to the null space of BT, denoted by N(BT). Most versions rely on 
finding a null space basis matrix for BT. Other methods ( this idea constitutes the core 
of this work) are based on the restriction of A to N(BT) as defined by an orthogonal 
projector P = I - BBt onto N(BT) with Bt = (BT B)-1 BT if B is of full rank. 

In this research, we adopt and analyze the orthogonal projection method proposed 
by Bramley [5] to solve problems of the form (2). We conclude that the orthogonal 
projection method exploited in an intelligent way offers the best compromise between 
effectiveness and robustness. 

One fundamental purpose of this work is to combine in an efficient manner the 
linear iterative solver obtained from the orthogonal projection method for (3) with 
the global nonlinear optimization algorithm recently presented by Argaez and Tapia. 
Specifically, we prove that each iteration of the projection method applied to the linear 
system (2) produces a descent direction for the generalized augmented Lagrangian merit 
function introduced by Argaez and Tapia . Therefore, the linear iterative solver is not 
used as a way to find a Newton step, but rather as a direct tool to march toward the 
optimal solution of the problem. This makes the use of a preconditioner inconsequential 
except near the solution, where Newton's method is very effective. Moreover, we limit 
the problem to finding a good preconditioner only for the upper block which, upon 
removing the complementarity condition, is given by the Hessian of the Lagrangian 
function associated with the nonlinear programming problem plus a positive diagonal 
matrix. 

This paper is organized as follows. In the following section we describe the nonlinear 
programming problem and summarize the interior-point algorithm given by Argaez and 
Tapia in [3]. In Section 3 we focus our attention on the technical details supporting 
the orthogonal projection method. We stress the advantages and disadvantages of this 
method and its relation with other methods. In Section 4 we introduce our algorithm 
for solving the linear system (2) and possible strategies for preconditioning the resulting 
projected system. Section 5 compares numerically the orthogonal projection method 
against other methods and covers computational experiments on the proposed inexact 
global minimization algorithm. We summarize the main results of the paper and propose 
further work in Section 6. 

2. The nonlinear interior-point framework. In this section we formulate a 
globalized primal-dual Newton interior-point method for solving the optimization prob­
lem ( 1) and its resulting associated linear system. We present an exact Newton version 
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of the interior-point algorithm and discuss some practical implementation issues as well. 

2.1. Description of the problem. The Lagrange function associated with prob­
lem (1) is given by l(x, y, z) = f(x) + h(xf y - xT z where y E Rm and z ~ 0 E Rn are 
Lagrange multipliers associated with the equality and inequality constraints, respec­
tively. 

The Karush-Kuhn-Tucker (KKT) conditions for the problem are given by 

(4) (

Vf(x) + Vh(x)y- z) 
F(x,y,z)= h(x) =0 

XZe 

(x,z) ~ 0, 

where X = diag(x), Z = diag(z) and e = (1, 1, ... , lf E IR.n. Equations associated 
with the bottom block of (4), i.e., the strict complementarity condition XZe = 0, are 
replaced by the perturbed complementarity condition X Z e = µe (µ > 0) in order to 
produce steps pointing away from the boundary of the feasible region and to promote 
the global convergence of the Newton interior-point method. For further details see 
El-Bakry et al. [l]. Therefore, the global convergence is based on the perturbed KKT 
conditions given by 

(5) (

V f(x) + Vh(x)y - z) 
Fµ(x,y,z) = h(x) = 0 

XZe - µe 

(x,z) ~ 0, 

where the perturbation parameter µ ~ 0. 
DEFINITION 2.1. A point (x, y, z) is said to be an interior-point for problem (1) if 

(x,z) > 0. 
We conveniently denote v = (x, y, z) and .6.v = (.6.x, .6.y, .6.z). For a givenµ > 0, 

we define the Newton step at the interior point v = ( x, y, z) as .6. v = ( .6.x, .6.y, .6.z), 
which is obtained as the solution of the linear system 

(6) F
1

(v).6.v = -Fµ(v), 

where µ > 0. In block form this is equivalent to 

where X = diag(x),Z = diag(z) and x,z > 0 E ffi,n andµ> 0. 
Let us denote v = ( x, z) corresponding to the point v = ( x, y, z). Accordingly, for 

a givenµ > 0, we define the Newton step at v to be .6.v = (.6.x, .6.z), where .6.x and ~z 
are obtained from (7). 



ORTHOGONAL PROJECTIONS 5 

To guarantee that the update point v+ = v + a~v is an interior point, we choose 
a steplength a E ( 0, 1] such that 

ii+ a~ii > 0. 

A standard way to find a in order to satisfy the above inequality is to let 

a= min (1, r&), 

where 

(8) 
-1 -1 

a= min{min(X-1~x,-1)' min(Z-1~zk,-1)}' 

for some TE (0, 1). 

2.2. A nonlinear interior-point algorithm. Before proceeding to present the 
algorithm given by Argaez and Tapia in [3], we briefly establish some of its supporting 
ideas. 

For a given fixed µ > 0, a nonlinear subproblem is solved whose optimal solution 
satisfies the perturbed KKT conditions (5). At this point,µ is reduced and the process is 
repeated. Thereby, the optimal solution of the problem is attained as µ asymptotically 
approaches zero. The exact solution of each subproblem may turn out to be expensive 
in most practical situations. Therefore, we prefer to work with an approximate solution 
to the subproblem and derive adequate tools toward this end. The following definitions 
are in order. 

DEFINITION 2. 2. An interior point ( x, y, z) is said to be a quasi-central point for 
problem {1) if h(x) = 0 and X Ze = µe for a given µ > 0. 

In regards to this definition it is important to specify proximity to a quasi-central 
point. 

DEFINITION 2 .3. The(µ, 1 )-neighborhood of the quasi-central point corresponding 
to µ is defined by 

( 9) Nµ (,) = { V = ( X, Z) > 0 E IR 2n : 11 h ( X) I I 2 + 11 W - µ w-1 
11

2 
::; 1 µ } , 

where w = (X Z) 112 e, and (µ, 1 ) > 0. The parameterµ, is called the neighborhood 
radius. 
The previous definition provides an effective measure of how close an interior -point is 
from satisfying the perturbed KKT conditions (5) for a given µ > 0. 

DEFINITION 2.4. The merit function Mµ(x,y,z;p) is defined by 

(10) Mµ(x, y, z; p) = I! (x, y, z) + p <I>µ(x, z), 

where C (x, y, z) is the Lagrangian function associated with probltm (1), i.e., 

f (x,y,z) = f(x) + h(xf y-xTz. 
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The parameter p is a nonnegative scalar called the penalty parameter, and <I>µ(x, z) zs 
the penalty term 

l n 
<I>µ(x, z) = 2 h(xfh(x) + xT z - µ I:)n (xizi)-

i=l 

For a perturbation µ > 0 and for the corresponding (x;, y;, z;) satisfying the per­
turbed KKT conditions (5), this merit function satisfies the following properties: 

• x: is a stationary point for any p. 
• The Hessian of Mµ with respect to x is positive definite at (x:, y;, z;) (i.e., 

V;Mµ(x:, y;, z;) > 0) for sufficiently large p. 
• x: = arg min .Mµ(x, y;, z;; p) for sufficiently large p, and finally 
• For any interior-point v that it is not a quasi-central point the Newton step ~v 

at ii is a descent direction for Mµ, for sufficiently large p, at v. i.e., 

VxMµ(x, y, z; pf ~x + VzMµ(x, y, z; pf ~z < 0. 

The penalty parameter p associated with the generalized augmented Lagrangian func­
tion that guarantees a Newton descent direction is given by 

(11) 
if Pk + C > Pk-l 

otherwise, 

h A _ V ((v)T Av _ A d > A 

w ere Pk - IV<t>,..(ii)TAiil, Ck - Pk-I - Pk, an Ck _ c . 
Under this framework, we now present the global primal-dual interior-point Newton 

algorithm presented by Argaez and Tapia in [3] for nonlinear optimization problems. 

ALGORITHM 2 .1. (Line-search interior-point Newton algorithm) 
1. Consider an initial interior-point v0 = (x0 , y0 , z0 ). Choose /3, p, 1 E (0, 1) and 

c > 0. 
2. For k = 0, 1, 2, ... until convergence do 

2.1 Choose µk > 0 . 
3. Repeat (INNER LOOP) 

3.1 Solve the linear system 

(OUTER LOOP) 

3.2 (Maintain x and z positive.) Choose Tk E (0, 1) and compute O'k according 
to (8). Let o:k = min(l, rkch). 

3.3 (Force a descent direction.) Calculate a Ck and a Pk by ( 11) to ensure a 
Newton descent direction for Mw 

3.4 (Armijo's condition of sufficient decrease). Find Ctk = pto:k where t is the 
smallest positive integer such that Ctk satisfies 

Mµk(Xk + Ctk~Xk, Yk, Zk + Ctk~Zki Pk)~ Mµk(vk; Pkr 

+ ckakf3V<I>µl(vk?vk. 
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3.5 Set Vk = (xk + o:k6.Xk, Yk + o:k6.Yk, Zk + o:k6.zk) 
4. (Proximity to the quasi-central path) 

4.1 If vk ¢ Nµk(,) (see(9)) 

go to step 3 
4.2 Else 

go to step 2 (END OF INNER LOOP) 

7 

REMARK 2.1. Details on some key parameters choices are given in {3} Section 7. 

3. An orthogonal projection method. The main purpose of this work is to 
extend Algorithm (2.1) so that it can handle large-scale problems which often arise 
in applications. The Jacobian of the KKT conditions for real problems is in general 
a large, sparse and nonsymmetric matrix. Therefore, considering a direct method for 
solving the linear system of equations (2) is an expensive computational choice. We 
prefer instead to use an iterative method to solve the linear system of equations. We 
do this by considering the Krylov subspace methods as inexact solvers. This section 
discusses two techniques for solving the linear system (3), that are especially useful 
for large scale problems. The objective is to reduce the problem to a problem in a 
space of smaller dimension where the solutions are obtainable in a more convenient 
way. We briefly introduce the projected Hessian method and discuss its advantages and 
drawbacks. Also we discuss the orthogonal projection method, whose idea constitutes 
the core of this paper. We denote the nullspace of BT by N(BT) and the nullspace of 
B by N(B). 

3.1. Reducing a linear system of equations. One technique used for solving 
the linear system (3) consists of reducing it to 

(12) zT AZw = zTJ, 

where Z E IR,nx(n-m) is a matrix whose columns form a basis for the nullspace of BT, 
N(BT). There are two traditional numerical approaches for forming the operator Z in 
(12). In the first approach one performs a QR factorization of B, say 

where Q1 consists of the first m columns of Q, Q2 is an orthonormal basis matrix for 
N(BT) E IR,nx(n-m) , and R 1 E IR,mxm is an upper triangular matrix. This suggests 
choosing Z = Q2 • It is important to note that in this case the matrix Z could be 
dense even though the matrix B is sparse, and therefore the required storage can be 
prohibitive. This is certainly an inconvenient feature even for moderate scale problems. 
The second deals with partitioning the matrix BT = [B1 B 2] where matrix B 1 E IR,mxm 

is nonsingular, and the null space basis is formed\ by Z = [-B11 B2 In-mr. This 
approach for calculating Z is more widely used thah the QR factorization, but it can 
fail if B is not full rank. In contrast with the QR fact1orization the sparsity of the matrix 
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B can be further exploited here. However, there exists an extra cost for an appropriate 
selection of the columns B 1 in order to preserve the sparsity of the matrix B. When 
using the QR factorization the matrix Z satisfies zT Z = I, and by Lemma 2 [13] we can 
conclude that zT AZ is not more ill-conditioned than A. However if the basis matrix 
Z is obtained by partitioning the matrix BT, the reduction does not guarantee that 
zT AZ is not worse conditioned than the original Hessian matrix A, see Lemma 10 [13]. 
More details about this technique can be found in [15]. 

3.2. The orthogonal projection method. We have discussed the strengths and 
weaknesses of reducing the linear system (3) for medium to large-scale implementations. 
Rather than generating a null space basis matrix for BT, the computation of an orthog­
onal projector onto N(BT) is preferable for reasons of efficiency. This requires using Bt 
(i.e., the Moore-Penrose pseudo-inverse of B) in order to form an orthogonal projector 
P onto the nullspace of BT, specifically 

(13) P = 1-BBt. 

If the matrix B has full rank, then Et= ( BT B )-
1 

BT is its Moore-Penrose pseudo­
mverse. The idea now is to reduce the linear system (3) to the following projected 
system, 

(14) PAPu = Pf. 

The following theorem describes the orthogonal projection method as a numerical 
solution method. 

THEOREM 3.1. Let P be given by (13). Then (Pu,p) solves the linear system (3) 
with g = 0 if and only if P APu = Pf and p = Et (J - APu) + w, for any w E N ( B). 

Proof Let (Pu,p) be the solution of the linear system (3), then 

APu + Bp = f. 
Solving the latter equation for p, then the general solution is p = Bt(J - APu) + w 
where the first term is a particular solution, and the second term w represents the 
solution of its associated homogeneous problem, i.e., Bw = 0. 
Now we substitute p into the same equation and solve for u. This gives 

APu + B [B\f - APu) + w] = f. 

which can be reduced to 

PAPu = Pf. 

The proof for the reverse implication is as follows. Let P APu = Pf 
and p = Bt(J - APu) + w, w E N(B). Substitute pinto: APu + Bp = f to obtain 

i 
APu + Bp = APu + B [ B\f - AP~) + w] 
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= APu + BBtJ- BBtAPu 

= PAPu + BBtJ 

=Pf+ (I - P)f 

=f. 

9 

Furthermore, BT p = 0 since p is a projection onto N (BT). D 
This result plays an important role in solving the linear system (2) which arises in 

nonlinear programming problems, and it will be discussed further in the next section. 

3.3. Advantages of the projection method. One of the main advantages of 
approach (13) over (12) consist of avoiding the explicit computation of a basis for 
N (BT). Therefore, issues such as instability and high cost are somewhat alleviated. 
Another advantage comes from the minimax characterization of singular values. The 
smallest singular values of A and PAP satisfy O"min(A) ~ O"min(P AP) while the largest 
singular values satisfy O"max(A) ~ O"max(P AP). Therefore, the condition number of 
the matrix PAP is no worse than the condition number of the matrix A [5]. Figure 
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FIG. 1. Spectra of A, yT AY (Z = Y, formed by the QR method), WT AW, (Z = W, formed by the 
variable reduction method) and PAP, for a matrix A with random entries. 

1 illustrates the spectrums of A, both QR and variable reduction methods of zr AZ, 
and PAP for a random saddle-point matrix. Note that although the variable reduction 
method offers the opportunity to exploit matrix sparsity, the condition number obtained 
for zr AZ is much worse. Moreover, the possible number of distinct nonzero eigenvalues 
of PAP is at most n - m compared to n for matrix A. This result suggests that the 
number of iterations required to solve equation (14) using any Krylov subspace method 
is not more than the number required to solve a single system with coefficient matrix 
A. In practice the number of iterations required by a Krylov subspace method to solve 
equation ( 14) depends on the distribution of its eigenvalues. Nevertheless, the projection 
method inherits the same drawbacks when Bis highly sparse and the application of the 
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operator P can destroy the sparsity pattern. 
The use of an orthogonal projection method brings to the foreground a subject 

that is often overlooked in the literature of preconditioning when solving systems like 
(3): the rank deficiency of B. This can happen during the process of solving the KKT 
linear systems. In order to overcome this problem, a positive constant ( is introduced, 
which controls the amount of regularization of the system. This lends one to solve the 
following alternative problem 

for ( > 0. 
A careful selection of this parameter is required to prevent possible ill-conditioning 

and a deterioration of the rate of convergence. This adds another parameter to the 
interior-point method. So, it is important to notice that the use of a good precondi­
tioner for the alternative problem has to take into consideration this parameter, in­
troducing further complications for a good preconditioner. On the other hand, since 
rank deficiency of the matrix B can be admitted in the definition of the projector P, a 
robust singular value decomposition formula can be employed to carry out the orthog­
onal projection. Obviously, this introduces an extra computational cost in the whole 
procedure, but it does not represent an additional complication to the functionality of 
the projection method. 

4. An orthogonal projection method for solving NLP linear systems. In 
this section, we explain how to reduce system (2) to a block symmetric system by a 
reordering of the unknowns and by a subsequent application of a orthogonal projection 
method. Then we apply a Krylov subspace method to solve the reduced block symmet­
ric system which will allow us to define an iterative procedure to solve the entire system 
(2). This procedure leads to satisfaction of both linearized equality constraints and 
linearized complementarity conditions associated with problem (1 ). We discuss some 
main properties and details about this iterative method and its implementation. 

Let the matrix A denote the Hessian of the Lagrangian function, the matrix B the 
gradients of the equality constraints, the vector b1 the negative gradient with respect to 
x of the Lagrangian function, the vector b2 the negative equality constraint functions, 
and finally the vector b3 the negative perturbed complementarity conditions. 

4.1. Reduction of the interior-point linear system. We introduce an appli­
cation of the projection method for solving the linear system (2). The following theorem 
formalizes this technique. 

THEOREM 4.1. Let P be given as in (13). Then (!}.x, !}.y, f}.z) is a solution of the 
linear system (2) if and only if 

f}.z = x-1 (b3 - Z!}.x), 

!}.y = B\b1 - A!}.x + f}.z) + w, for some w E N(B), 
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and .6.x = P .6.xh + .6.xP where .6.xp is a particular solution of BT .6.x = b2, and .6.xh 
satisfies 

(15) 

Proof By a block row and column switch, equation (2) can be written as follows, 

( iT 
-I 
X 
0 

We denote the matrix blocks by 

P = .6.y, J = ( !: ) and g = b2 

so that the linear system can be written 

(16) 

The projection method can be readily applied when the equations corresponding 
to the lower matrix blocks are homogeneous. In order to fit this framework, we express 
u as u =uh+ up, where uh EN ( fJT) and up is a particular solution of fJT u = g. Upon 
substituting into equation (16), one obtains 

(17) 

where J = f - GuP. At this point, the projection Theorem 3.1 can be directly 
applied to equation (17), whose solution is found by solving 

(18) 

, where w EN (iJT). 
It is straightforward to show that 

(19) 
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(20) 

(21) 

(22) 
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where the projection operator P is defined by (13). 
Substitution of P and jjt into equation (17), yields 

In order to clarify the notation used in these equations, we mention that the decompo­
sition of u into a homogeneous and a particular solution, which formally affects both 
6-x and ~z, leaves 6-z unchanged because of the special structure of B. D 

We remark that the same formulation can be attained by eliminating the comple­
mentarity equation, thus reducing the problem to a 2 x 2 block symmetric system, and 
then applying the projection method. 

4.2. Additional advantages of the orthogonal projection method. We no­
tice that the computation of ~z and 6-y, defined by equations (21) and (22), represent 
a small part of the overall computational cost for solving the system (2) because X 
is a diagonal matrix and the operator Bt has been previously computed to form the 
projector P, in contrast to solving the projected system (20). 

In previous section, we mentioned that the projection method is attractive from the 
standpoint of its algebraic properties because the condition number of P(A + x- 1 Z)P 
is not worse than the condition number of the original matrix A+ x-1 Z. Besides, we 
will show latter that if M is a good preconditioner for the matrix A then PM P is a 
good precondi tioner for the matrix PAP. 

Indeed, several attempts have been made to find good preconditioners for the entire 
linear system (2) and have resulted in little or no success. When this system is reduced 
to the saddle point problem by eliminating the complementarity equation, it has also 
been difficult to define good preconditioners for the reduced system since the first block 
A+ x-1 Z will become ill-conditioned near the solution of the problem. Therefore, the 
use of the projection method for solving the linear system (2) as described in Theorem 
4.1 puts us at a great advantage in terms of robustness. 

When the dimension m (number of equality constrains) is small compared with the 
dimension n ( number of variables), i.e. for instance m ~ ¼n, the projection method is 
strongly recommended. Also the method is of value, when m is large and the sparsity 
of the matrix B is such that the operator BT B has a high degree of sparsity. When this 
is not the case an option that deserves investigation to avoid the high cost associated 
with the computation of the projector P, is to establish a heuristic design such that 
the projector is fixed for some number of iterations during the minimization process. 
However, in both linear and quadratic programming, the projection operator is fixed 
and therefore need only be computed once, thus making the projection method very 
appealing even for large-scale problems for both of these classes of problems. 
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4.3. An iterative solution of the projected system . . The standard second 
order sufficiency condition for Problem 1, states that at the solution x* : For all r, =/:- 0 
satisfying V hi(x*f r, = 0, i = 1, ... , m ; eJ' r, = 0, j E B(x*) we have 

r,TV; f ( x*, y*, z*)r, > 0. 

The set B(x*) consists of the indices of the components of the primal variable 
that vanish at the solution, i.e., B(x*) = {j : x; = O}. This set is called the active 
set of indices. If the active set is nonempty, one should not expect the Hessian of the 
Lagrangian function, V; f (x*, y*, z*), associated to problem (1) to be positive definite in 
N ( BT) at the solution or, by continuity, in a neighborhood of the solution. Therefore, 

assuming the Hessian matrix A is positive definite in N ( BT) or the matrix (A+ x-1 Z) 
is positive definite over the entire space ( as is assumed in some studies ), compromises 
the success of general scope theoretical efforts. We assume that (A+ x-1 Z) is positive 

semidefinite in N (BT). In this way, we set the stage for the second order sufficiency 

condition to be more closely met since the positive diagonal contribution (possibly 
large) added to the Hessian matrix A assists in shifting the spectrum of A towards the 
positive real axis. With this assumption we can apply the conjugate gradient method 
to solve the projected system (20). From a mathematical point of view, we can assert 
that the method converges in at most (n - m) steps because the projected systerri has 
at most (n - m) nonzero eigenvalues. However, in practice, the number of iterations 
that the conjugate gradient method requires depends also on the distribution of the 
eigenvalues of the projected system. Moreover, if the matrix A+ x-1 Z is not positive 
semidefinite on N (BT), then a more general Krylov subspace method, such as SQMR 

[9], or MINRES [4] can be used. 

4.4. Conjugate gradient method for solving the projected system. In this 
subsection we outline the conjugate gradient algorithm used for solving the projected 
linear system 

ALGORITHM 4.1. (Conjugate gradient algorithm} 
1. Initialize k = 0, given (L).xh)o initial guess. 
2. Compute ro = do = P(b1 - A (L).xh) 0 ). 

3. Compute Po = rJ' ro. 
4. For k = 0, 1, 2, ... , do 

4.1 Wk = P APdk 
4.2 O:k = ~dp • 

k Wk 

4.3 (L).xhh+1 = (L).xh)k + o:kdk. 
4.4 rk+i = rk - O:kWk, 

4.5 Pk+t = rf+l rk+1. 
4.6 If (Pk+I < cp stop). 
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The following theorem states several properties of this algorithm. 
THEOREM 4.2. Let (.6.xh)o E N(BT). If A is positive definite in N(BT), and P 

is given by (13). Then 
(i) The conjugate gradient algorithm converges to the unique minimum norm solu­

tion of PAP.6.x = Pb1. 
(ii) The iterates (.6.xh)k, the conjugate directions dk, and the residuals rk remain 

in N(BT) for all k. 
(iii) The matrix-vector product Wk = PAPdk (see substep 4- 1) can be calculated 

instead by Wk = P Adk for all k. 

Proof. (i) The system is consistent because the left and right side of the projected 
system are preceded by the same projection operator P. 
Since A is positive definite on N(BT) then 

T T-dk Wk = (Pdk) A(Pdk) > 0. 

Therefore the step length ak given by the conjugate gradient algorithm 4.2 is always 
well defined. Hence the convergence follows from the classical work of Hestenes and 
Stiefel [11]. 
(ii) The proof is done by induction. Since (.6.xh)o, d0 = P(b1 - AP (.6.xh 0 )) E N(BT) 
and assuming (.6.xh)k , dk , rk E N(BT), then Wk = P APdk E N(BT), and 

dk+I = rk+I + f3k+1dk E N(BT). 

The unique minimum norm solution to PAP= Pb1 is one with .6.xh E N(BT). 
(iii) Since the conjugate directions dk are in the nullspace of BT, we have Pdk = dk. 
Therefore the first projection operator, P, in the calculation of wk can be omitted. i.e., 

Wk= PAdk 

D 
REMARK 4 .1. The latter theorem shows that with a proper initialization, i.e. 

(.6.xh)o E N(BT) 
1. One projection P per conjugate gradient iteration need be compute in step 4 

(a) 
2. Since the iterates (.6.xhh E N(BT), we have 

(23) 

Therefore Equation {20) can be replaced by 

(24) P(A + x-i Z) (.6.xhh = P(b1 - A.6.xP + (X- 1b3 + Z.6.xp)). 
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3. Also, it is important to comment, that the projector P does not need to be 
computed explicitly. Its action on a vector is given by 

Therefore by forming the Cholesky decomposition LLT = BT B one can compute 

the action of P on a vector v by 

3.1 Vt= Brv, 
3.2 Solve Ly = Vt, 

3.3 Solve LT z = y, 

3.4 V2 = Bz, 
3.5 W = V -V2, 

where w = Pv . It is important to point out that the Cholesky decomposition of 
BT B can be made efficient by a reordering scheme based on the sparsity pattern 
of B. 

4.5. Iterative solution of the complete system. Now, our fundamental pur­
pose is to define an iterative solver for the linear system (2) using an iterative solver for 
equation (20) and to combine it with Algorithm 2.1 in an efficient manner. Specifically, 
we will prove that a single iteration of our solver on the linear system (2) produces a 
descent direction for the penalty term and it is also a descent direction for the modified 
augmented Lagrangian function presented in definition 2.4. Towards this objective, we 
present the following definition 

DEFINITION 4.1. Our iterative solver (b.xk, b.yk, b.zk) for the linear system (2) is 
defined as 

(25) 

(26) 

(27) 

where (b.xh)k is given by conjugate gradient algorithm 9.3.1, and b.xp is a particular 
solution of BT b.x = b2 

Now, we present two strong theoretical result in the following theorems. 
THEOREM 4.3. Any search direction (b.xk, b.zk) given by (27) and (25) satisfies 

linearized equality constraints and linearized complementarity condition associated with 
Problem (1), i.e. , 
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Proof Substituting equation (27) into the second equation of the linear system (2) 
we obtain 

Since (6xh)k E N(BT) and 6xP is a particular solution of the equality constraint then 

BT 6xk = b2 

Now, from equation (25), we have 

D 
REMARK 4.2. From this proposition, we conclude that the residual error for solving 

the linear system (2) depends only on the residual error, rk, for solving the projected 
system (20). Therefore, we define the vector (rk, 0), 0 E IRmxn, as the residual vector for 
the original nonsymmetric and indefinite system (2). Consequently, if we can control 
the tolerance of the projected system (20), we can control the tolerance of the entire 
system (2). 

THEOREM 4.4. Considerµ> 0. Let v = (x,y,x) be an interior-point. Then the 

search direction (6xk, 6zk) given by (25) and (27) is a descent direction for the penalty 
term v'<I>µ and it is also a descent direction for the modified augmented Lagrangian 

function Mµ, for sufficiently large p, at v. i.e., 

and 

for p sufficiently large. 
Proof Theorems 4.1, 4.2 given in [3] and previous theorem establishes the theorem. 

0 
A couple of observations are in order. 
REMARK 4.3. The latter theorem means that any single iteration (6xk, 6yk, 6zk), 

defined by (25 ), (26) and (27), is sufficient to march towards the solution of the problem 
using the modified augmented Lagrangian function Mµ as a merit function. Therefore, it 
should be made clear that no preconditioner is needed except near the solution. Numeri­
cal experiments show that, for a large fraction of the total number of nonlinear iterations 
required for converging to the solution of the problem, single iterations are enough to 
obtain a good step. The remaining few iterations will no doubt require an accurate it­
erative solution of the projected system (20). This is not seen as a surprise since once 
the iterates are inside the region of quadratic convergence of Newton's method the merit 
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function does not play an important role, and therefore single iterations are not enough 
to obtain a good step. It is only at this stage of the procedure that, we will require an ac­
curate iterative quasi-Newton step. It is also at this stage that preconditioning becomes 
important. Some investigation on this issues is given below. 

REMARK 4.4. In the event that A+ x-1 Z is not positive semidefinite on N(BT), 
the last two propositions hold for any other Krylov subspace method. 

4.6. Preconditioning . In order to obtain reasonable convergence rates, precon­
ditioning the projected system (20) is very important for large-scale applications. In 
the next section, it will become apparent that full iterations on the projected system 
are not needed except near the solution. Nevertheless, for overall algorithmic efficiency, 
one is still interested in the fast convergence of the Newton step near the solution gen­
erated by the iterative method. It can be shown that if Mis a good preconditioner for 
A, then PM P is a good preconditioner for PAP. We can characterize the quality of 
(PM P)t in terms of how close the preconditioner Mis to A. If we consider'.the splitting 
PAP= P(M - N)P =PM P - P NP, then we obtain the following result. 

THEOREM 4.5. Let IIPNPll !i(PAP)tll = 1 < 1, then 

ll(PAP)t - (PM P)tll ~ 1 +2 J5 x 1 = 'Y ll(PAP)tll 

1 + J5 IINll ii(P AP)ti!2 

< 2 x 1 - IIN11 ll(PAP)t11. 

(28) 

Proof The first inequality can be obtained as a particular case of Theorem 8.24 
in Lawson and Hanson [12, page 46]. The second inequality follows trivially from 
the fact that the orthogonal projector P does not increase the norm of a matrix, i.e., 

IIP N PII ~ IINII- D 
Note that 

which is exactly the upper left block in the inverse of 

(29) 

It is a remarkable result that the pseudo~inverse of the coefficient matrix of the 
projected system appears naturally in the computation of the inverse coefficient matrix 
of the saddle-point problem. Hence, it is clear now why the projection methods are 
so well suited for our application, they support the choice of preconditioners for the 
projected system based solely on the properties of the operator A. In Theorem 4.5, the 
Golden Mean¥~ 1.618 is replaced by 1 when the operators involved are npnsingular, 
as is suggested by Golub and Van Loan [10, Theorem 2.3.4]. The theorem bhows that 
a reduction in IINII improves the quality of the preconditioner for the projedted system 
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PAP. This also implies a quality improvement of M as a preconditioner for A, and 
therefore the properties of A by themselves determine the choice of preconditioners for 
the projected system. 

5. Numerical experiments. We consider two types of numerical experiments. 
The first is designed to test the ideas of inexact global minimization that we have 
introduced in the last two sections. We show from the numerical point of view that one 
iteration on the linear system (2) is required at each step of the nonlinear minimization 
process until the iterates fall in the region of convergence of the Newton's method. Then 
it is necessary to consider a switch in order to ask for more precision of the iterative 
linear solver for a better performance of the orthogonal projection method. It is in this 
step that a good preconditioner is needed. In this context, we present a comparison of 
performances of the orthogonal projection method, GMRES acting on the whole linear 
system given by equation (2) and SQMR acting on a system with coefficient matrix 
given by (29). Only simple (i.e., block or incomplete Cholesky) preconditioners are 
tested and the results are very illustrative. 

5.1. Experiments on the global minimization algorithm. The first model 
problem is the minimization of a quadratic objective function subject to linear equality 
constraints and to nonnegativety constraints on the primal variables, i.e., 

(30) 

min (lxT Ax - cT x) 
subject to Bx - b =0, 

X ~0. 

The full rank matrix Band vector bin the equality constraints and the vector c in 
the objective function were chosen randomly. The matrix in the quadratic part of the 
objective function, A, is also chosen randomly but so it is positive definite in N(BT). 
It should be noted that the Hessian matrix, the matrix of linearized constraints and the 
orthogonal projector P = I - BBt are constant in quadratic programming problems. 
The only blocks that change throughout the minimization process are those ( diagonal) 
blocks corresponding to the entries of the primal and dual variable vectors. 

Problems of this type put the projection method immediately at an advantage in 
that the potentially costly step of computing the projection operator is done only once. 
However, the projector does not need to be computed explicitly but can be applied to a 
vector by working with the current form of the linearized equality constraints, not only 
for quadratic programming but also for general nonlinear programming problems. 

In the first experiment, the Hessian matrix A is order 50 and the number of equality 
constraints is 10. This makes the coefficient matrix of (2) order 110. Figure 2 shows 
the norm of the KKT conditions ( labeled the nonlinear residuals) as a function of the 
number of nonlinear steps. Four methods of solving the linear systems are compcjl,red 
in this figure: Newton's method, the projection method taking one iteration per non­
linear step, the projection method with a dynamically adjusted linear tolerance 1and 
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FIG. 2. Convergence of quadratic programming problem for exact Newton, orthogonal projection taking 
one iteration of CG on projected system throughout, orthogonal projection with dynamically adjusted 
linear tolerance and preconditioned GMRES. 
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dynamically adjusted linear tolerance. 
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FIG. 4. Convergence of quadratic programming problem for exact Newton and orthogonal projection 
taking one iteration of CG on projected system initially (x), and with dynamically adjusted linear 
tolerance near convergence to the optimum (-- ). 

preconditioned GMRES acting on the entire linear system (2) with a linear tolerance 
two orders of magnitude smaller than that imposed on the KKT conditions (i.e., 10-1

). 

This is an example of modest size and complexity but the results are enlightening. The 
exact Newton method takes 49 iterations to find the optimum. The final value of the 
perturbation parameter at the solution is of order 10-8

• The curve given by the projec­
tion method with full iterations reproduces the convergence path of the exact Newton 
method near the convergence to the optimum. The linear tolerance was set according 
to 

(31) tol = min (-
1
-

k + 2' [~]1.5) 
IJ(O)I ' 

where, k denotes the nonlinear iteration number and f denotes the objective function. 
It should be mentioned that the linear tolerance was O(lo-10

), in spite of this, the 
projection method never exceeded 12 iterations per solve even though no preconditioner 
was used for the conjugate gradient method. 

It is worth noting that GMRES does not do a good job of approximating the 
Newton steps or of finding a descent direction for the merit function Mµ, even though 
it is using a tailor-made preconditioner given by 

( 

A 1B 
Af = !'Ji I 

Z 0 

-I) 
0 ' 
X 

where 1B is such that its columns are the first m canonical vectors ei E IRn, i = l, ... , m, 
I.e., 
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FIG. 5. Eigenvalue distribution of coefficient matrix for interior point method formulation of the 
constrained quadratic minimization problem after 20 nonlinear iterations. 
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where Im is the identity operator of order m. This preconditioner is extremely rich, 
i.e., the only differences between the preconditioner and the original coefficient matrix 
are in the absence of the exact blocks B and BT and in the (necessary) nonzero block 
inserted in the main diagonal. Note the dramatic clustering of the eigenvalues under 
application of M-1 by comparison of figures 5 and 6. This situation is not realizable 
in practice, however, but the rationale for its use here is that one can hope to have 
a reasonable preconditioner for the Hessian block (given some problem structure), the 
remaining diagonal blocks of the coefficient matrix are easy to handle but formulation 
of effective preconditioner block corresponding to B and BT may not be so obvious. 
In summary, our choice of M gives a best-case scenario in which to illustrate the poor 
performance of preconditioned GMRES for these problems. 

The remaining curve on this graph corresponds to the projection method taking 
one iteration per linear system. For a little over 40 iterations this extremely cheap way 
of finding descent directions for the given merit function is also extremely effective in 
decreasing the nonlinear residual toward the optimum. 

To see intuitively what it is going on, we turn the reader's attention to Figure 3, 
where the values of the merit function, given by equation (10), are plotted versus the 
nonlinear iteration count for the exact Newton and the projection method using full 
linear iterations or one iteration throughout. It is apparent that the merit function 
is no longer decreasing appreciably near the region of convergence to the optimum. 
This behavior separates, at least qualitatively, the region in which the merit function is 
driving the global convergence ( this requires only one iteration of the projection method 
on each linear system) from that in which the merit function is no longer effective but 
the nonlinear iterates have presumably fallen into the region of quadratic convergence of 
Newton's method. This behavior is in agreement with the objective of a globalization 
technique where the merit function together with a descent direction is proposed to 
help the minimization process to carry out the steps inside of the convergence region 
of Newton's method. \1/hen the iterates fall into this region, it is necessary to make a 
switch and ask for a better approximation to the Newton step, in order to retain the 
faster rate of convergence of Newton's method. 

Based on this observation, the objective now is to propose a criteria that allows 
us to determine in what moment it is necessary to make a switch from a single linear 
iteration to full iterations. The control of the behavior of the linear solver at different 
stages of the nonlinear minimization process is given by, 

l p . _ !v'M,,(v)T ~(ii)! 
· switch - M,,(ii 

2. IF ( Pswitch > l ) 

2.1 MAX LINEAR ITERATIONS = 1 
3. ELSE 

3.1 LINEAR TOLERANCE AS GIVEN BY (31) 
4. END, 

I 
I 

where t: hopefully ~s given by a safe choice valid for a large range of problems. The choice 
of the numerator bf the switching parameter Pswitch is a natural one, since it measures 
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by how much the inexact (or exact, for that matter) nonlinear step produces a descent 
direction for the merit function Mw This value is further normalized by the currently 
assumed value of Mµ- In our experimentation, t: = O(lo- 2

) was found acceptably safe. 
An alternative idea to determine the switching point between single linear itera­

tions and full iterations is to follow the values of the perturbation parameter µ. If the 
neighborhood of the quasi-central path is hit repeatedly throughout the minimization 
process, the frequent reductions in µ can give an indication of how close one is to the 
region of Newton's quadratic convergence. However, in many cases the neighborhood 
of the quasi-central path is hit only a few times near convergence and this produces too 
few instances of µ-reduction to make this a reliable scheme. 

Finally in Figure 4, we show the behavior between Newton's method and the pro­
jection method taking one iteration per nonlinear step until the iterates fall into the 
region of quadratic convergence; then inside of this region, we dynamically adjusted the 
linear tolerance given by (31) in order to obtain a better approximation to the Newton 
step and therefore retain a fast rate of convergence. From the numerical results ob­
tained, we conclude that our method is viable. 

In general nonlinear programming problems, the main point of concern of the ap­
proach proposed here is the recomputation of the projection. As was mentioned above, 
the application of the projector P to a vector amounts to computing the Cholesky de­
composition of BT B, which requires O(m3 ) floating point operations (recall m is the 
number of equality constraints). On the other hand, the final termination property 
of Krylov subspace iterative methods guarantees that a solution to the projected sys­
tem can be obtained in 0( n - m) :floating point operations in exact arithmetic ( recall 
that the projected system has n - m nonzero eigenvalues). Therefore, at instances of 
the algorithm when the projected system must be resolved accurately, as the number of 
equality constraints, m, grows closer to the dimension of the vector of variables x E nr, 
the cost of applying the projector grows as m3 and the cost of solving the projected 
system decreases linearly as m approaches n. This suggests that one should schedule 
updates to the projection operator at intervals longer than after every nonlinear iter­
ation. Since this is a crucial issue in order to promote the proposed inexact method 
for application in general nonlinear programming problems, a study of it and related 
implementation problems is proposed for future research. 

6. Conclusions and further research. An inexact method based on orthogonal 
projections on N(BT) and iterative solution of the generated linear systems by Krylov 
subspace iterative methods is presented. This method produces extremely cheap non­
linear iterations by enforcing linear feasibility to generate a descent direction for the 
adopted merit function Mµ with one solver iteration on the projected systems for all 
instances of the global minimization algorithm for which V Mµ is steep. Near conver­
gence to the global optimum, the linear systems have to be resolved progressively more 
accurately and a criterion for dynamically selecting linear tolerances is given here, as 
well as a criterion for when to stop relying on single iterations of the iterative linear 
solver. The issue of preconditioning is also addressed. In the proposed algorithm, only a 
preconditioner based on the algebraic properties of V;f + x-1 Z is needed. We believe 
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that this is a tractable problem that can be solved satisfactorily for a large class of 
general nonlinear programming problems. A study of preconditioners for the inexact 
method introduced in this work as well as for some other inexact method proposed in 
recent literature is given, which suggests that the preconditioned projection method 
performs well when compared to its immediate competitors. 

Further research on repeated updates of the the projection operator P for general 
nonlinear programming problems as well as on quasi-Newton ideas incorporated to this 
algorithm will be given in a subsequent paper. 
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