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Code Design for Multiple-Antenna Systems

Mahsa Memarzadeh

Abstract

We propose a systematic method for the design of space-time codes for AWGN slowly
and fast Rayleigh fading channels. This can be accomplished by adopting a con-
catenated space-time code structure, where an orthogonal transmit diversity system
constitutes the inner encoder. We will show that this will cause in decoupling of the
problems of spatial and temporal diversity gains maximization, involved in the design
of space-time codes. This decoupling significantly simplifies the code design procedure
and presents a systematic code construction technique. In the case of slowly fading
channels, where no temporal diversity gain is available, the concatenated structure
of the space-time code, will help to decouple the problems of spatial diversity and
coding gains maximization. However in a fast fading channel, the proposed system
will decouple the problems of spatial and temporal diversity gains maximization. At
the end, some issues involved in designing codes for downlink broadcast channels will

be discussed.
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Chapter 1

Introduction

Wireless channels are characterized as random and unpredictable. The major inherent
impairments of these channels are the time varying fading, multipath, noise and
interference. Because of the unavailability of the line of sight path between the
transmitter and the receiver in most cases, the wireless channel is statistically modeled
to be Rayleigh fading. As a result, recovering the transmitted data bits at the receiver
is extremely difficult and this is the main challenge of designing a reliable wireless
communication system.

A well studied method to combat the destructive effects of a wireless channel is
the use of diversity techniques. These techniques fall into three major categories:
time, frequency and space. The main idea of diversity is to provide the receiver with
multiple replicas of the same transmitted signal which are faded independently.

In a time diversity system, the same information bearing signal is transmitted
in different time intervals. If the separation between these intervals is large enough
to guarantee independent fades, there is a good chance that not all the copies of
the transmitted signal are severely attenuated. In a similar fashion, in a frequency
diversity system, the same signal is being transmitted over different frequency bands.
Again, if the separation between these bands are chosen to be large, we will have
independent fades.

Not both of the above mentioned diversity techniques are appropriate for different

types of fading conditions. For example, in a slowly fading channel, where there are
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very slight time variations in the channel, the assumption of independent fading
coeflicients between the time intervals corresponding to the transmission of the same
information bearing signal is very unrealistic. Thus, in these channels, diversity gain
due to the time variations of the channel (referred to as temporal diversity gain), is
not available. A similar argument holds for the case of frequency diversity techniques.

To achieve temporal diversity gains in a mobile radio wireless channel, we need
to have very high velocity mobile terminals. This is not usually achievable un-
less interleaving/de-interleaving is applied. However, the use of interleaving/de-
interleaving techniques does not provide a good performance for delay sensitive appli-
cations (like voice or video). Thus, the necessity of using spatial diversity techniques
becomes evident.

The spatial diversity techniques suggest the use of multiple-element transmit
and/or receive antennas. Providing sufficient spacing between the elements of both
the transmit and the receive antennas guarantees independent fading channels be-
tween transmit and receive antenna pairs. The gain provided by the use of multiple-
antenna systems is called spatial diversity gain. This source of diversity, if exploited ef-
ficiently, provides significant performance improvements over the single-element trans-
mit and receive antenna systems, irrespective of the slowly or fast fading nature of
the channel.

The information theory aspects and the capacity of multiple transmit and receive
antenna systems have been well studied in the literature [21, 9, 16]. It has been shown
that employing multiple antennas, results in a considerable increase in the system
capacity. Thus, in addition to overcoming the fading effect of the wireless channel,
the multiple transmit and receive antenna systems are considered as a solution to the

increasing demand for higher data rates in today’s mobile wireless communications .



Receive diversity has received more attention than transmit diversity in today’s
practical systems. For example, most of the current mobile radio wireless communi-
cation systems, use multiple antennas at the base station to exploit receive diversity
in the uplink channel (mobile terminal to base station). However, because of the
difficulty of having multiple antennas at the mobile terminals (for the size limitations
and the cost of multiple RF down conversions), the use of receive diversity in the
downlink channel has not yet been deployed.

To summarize some previous work on the transmit diversity systems, they can be
categorized as follows: systems with feedback [10, 25, 17], systems with feedforward
and no feedback first proposed in [26], and blind systems (with neither feedforward
and nor feedback information). Recently, an effective coding scheme for multiple
transmit antennas was proposed in [20]. These codes, which are capable of provid-
ing both spatial and temporal diversity gains without sacrificing the bandwidth, are
referred to as space-time codes in the literature. Space-time coding schemes assume
perfect channel information at the receiver and no channel information at the trans-
mitter.

In [20], the criteria for the design of optimum space-time codes to achieve maxi-
mum diversity and coding gains in slow and fast fading channels were derived. In a
slowly fading channel, where no temporal diversity gain can be exploited, the code de-
sign rule is based on the maximization of spatial diversity and coding gain. However,
in a fast fading environment, the space-time coding scheme can provide significant
amounts of temporal diversity in addition to spatial diversity gain.

Based on the design criteria of [20], most of the space-time codes designed so
far, try to maximize the spatial and temporal diversity, and the coding gains si-
multaneously. As a result, no systematic way of constructing space-time codes for

transmission over fading channels has been introduced so far. Most of the proposed



codes are hand made and ad hoc and mostly the result of extensive searches over all
possible codes.

In this work, we will introduce a systematic method for the design of space-time
codes over AWGN Rayleigh slowly and fast fading channels. It will be shown that
applying Orthogonal Transmit Diversity (OTD) systems [1], the problems of spatial
and temporal diversity gains maximization involved in the design of space-time codes,
can be decoupled. As will be shown in Chapter 3, this will significantly simplify the
code design procedure and will present a systematic code design technique.

In Chapter 2, some background information for the performance criteria and de-
sign of coding schemes in fading channels will be provided. Chapter 3, will present
the design criteria for concatenated space-time codes using orthogonal transmit di-
versity systems as the inner code. It will be shown that depending on the type of
the fading channel, the criteria will result either in decoupling the problems of spa-
tial diversity and coding gain maximization (slowly fading channel), or spatial and
temporal diversity gains maximization (fast fading channel). Simulation results for a
bandwidth efficient outer coded modulation scheme will be demonstrated in Chapter
4. Generalization of the design criteria scheme to the case of orthogonal systems with
more than two transmit and one receive antennas will be discussed in Chapter 5. In
Chapter 6, some issues of designing codes for downlink broadcast channels will be

discussed, and Chapter 7 will present the conclusions.
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Chapter 2

Background

In the first section of this chapter, we will review some existing results from the
literature on the code design criteria in Rayleigh fading channels. We will first discuss
the design criteria and techniques for single transmit and receive antenna systems.
Later, the use of multiple transmit and receive antenna systems will be motivated and
the performance criteria of space-time codes in slowly and fast fading channels will
be be discussed. we will then talk about the orthogonal transmit diversity systems
and their characteristics.

In the second section, the Chernoff upper bound and the design criteria for space-
time codes in block fading channels derived in [3], will be presented. The background
information provided in this chapter, will be used as a basis for the rest of the dis-

cussions in this thesis.

2.1 Code Design Criteria in Rayleigh Fading Channels
2.1.1 Single Transmit and Receive Antenna Systems

It has been well established in the literature that the performance of optimum codes
for transmission over single transmit and receive antenna systems, are guided by
different factors in Additive White Gaussian Noise (AWGN) and Rayleigh fading
channels. In [24], it has been shown that the criterion for the design of optimum
codes in AWGN channels is based on the maximization of the code free Euclidean

distance.



The code design criteria in fading channels with complete channel state informa-
tion at the receiver, was first studied by Divsalar and Simon in [7]. They proved
that in fast fading channels, unlike the additive white Gaussian noise channels, the
performance of the code is not ruled by the code free Euclidean distance. Instead the
performance in this case is mainly determined by two other factors: the length of the
shortest error event path and the product of the squared Fuclidean distances of the
code symbols along the shortest error even path.

The first factor, which is primarily the code minimum Hamming distance, is mea-
sured by the number of code symbols with nonzero Euclidean distance along the error
path with the shortest length. This determines the rate of decay (slope) of the error
rate of the code vs. Signal to Noise Ratio (SNR) and is usually referred to as diversity
gain. The intercept point of the error rate curve with the error rate axis is determined
by the second factor which is referred to as coding gain.

Motivated by the code performance criteria in fast fading channels, Divsalar, et
al, proposed Multiple Trellis Coded Modulation (MTCM), as a new coded modula-
tion technique with better performance compared to the conventional Trellis Coded
Modulation (TCM) schemes. The superior performance of the MTCM scheme is due
to its better Hamming distance properties which in turn results in higher achievable
diversity gains.

In a conventional TCM scheme, just one code symbol is assigned to each transition
of the trellis. Thus, the diversity gain is limited to the number of the branches of the
shortest error event path. In the case of a trellis with parallel paths, the diversity
gain is limited to one, which means that the asymptotic error rate of such code in a
fast fading channel varies inverse linearly with SNR. On the contrary, in an MTCM

scheme, more than one code symbol is assigned to each trellis transition. Thus, even



in the case of the existence of parallel paths, the error probability performance varies
with the inverse of the SNR at a faster rate.

In [8], a systematic set partitioning method for designing optimum MTCM schemes
using MPSK modulation for single transmit and receive antenna systems is presented.
The code construction technique is based on the Hamming and product distance
criteria for the design of optimum codes in fading channels with interleaving/de-
interleaving. The design method of [8] provides codes with higher diversity gains as
compared to the conventional TCM schemes having the same number of trellis states.

One of the contributions of this project is to develop a systematic code design
method for multiple transmit and receive antenna systems in fast fading channels
based on the set partitioning scheme of [8]. This work will be motivated in the next

sections.

2.1.2 Multiple-Antenna Systems and Space-Time Codes

It is well known that the application of multiple transmit and receive antenna systems
results in remarkable performance improvements and higher data rates in mobile
wireless communications. By ensuring enough spacing between the antenna elements
of the transmitter and the receiver, considerable amounts of spatial diversity gain can
be provided by these systems. This is due to the fact that the signals transmitted
over different antennas undergo independent fades. So, there is a high chance that
some of the replicas of the transmitted signal will be less faded and so the transmitted
information can be recovered at the receiver with less error probability.

Inspired by the design criteria of optimum codes in fading channels introduced
in [7], Tarokh, et al, initially proposed the concept of space-time coding. Space-time
codes are bandwidth efficient coding techniques for multiple transmit and receive

antenna systems. They provide both spatial and temporal diversity gains and have



the potential of significantly improving the error performance and system capacity as
compared to single transmit and receive antenna coding schemes.

Based on the Chernoff upper bounds for the pairwise error probability, the design
criteria of space-time codes in slowly and fast fading channels, were presented in [20].
The maximum achievable diversity gain of a space-time code with ny transmit and
npg receive antennas can be shown to be nyng. In a slowly Rayleigh fading channel,
where the fading coefficients are assumed to be constant during the transmission of a
whole block of data and independently varying from one block to another, the design

rule has been shown in [20] to be based on the following criteria:

o The Rank Criterion: In order to achieve the maximum diversity gain
of nynpg, the code difference matrices have to be full rank for all pairs
of codewords. If the minimum rank of the code difference matrices
over all codewords is r < np, then the achievable diversity gain would
be rng.

o The Determinant Criterion: To achieve maximum coding gain, the
minimum of the determinants of the matrices D(c, e)D (c, e) taken
over all pairs of codewords should be maximized (D(c, e) is the code
difference matrix).

In a fast fading channel, it is assumed that the fading coefficients of the channel
vary independently from one symbol interval to another. This can be achieved by
using interleaving /de-interleaving techniques. Unlike the slowly fading case, the time
varying nature of this kind of channels results in considerable temporal diversity gains.
The code design criteria for Rayleigh fast fading channels are derived in [20] as the

following:

e The Distance Criterion: In order to achieve the diversity gain of vny,
any two codeword matrices should differ in at lease v columns.

o The Product Criterion: For a given diversity gain, in order to achieve
the maximum coding gain, the minimum of the products of the
Euclidean distances of the code symbols in those columns of the
codeword matrices in which they differ, taken over all pairs of code-
words, should be maximized.



The above design criteria has later been applied in [20] to construct space-time trellis

coding schemes for transmission over multiple-antenna systems.

2.1.3 Orthogonal Transmit Diversity (OTD) System

For two transmit antennas, a simple transmit diversity technique which is capable of
providing full spatial diversity gain is the Orthogonal Transmit Diversity (OTD) and
was first discovered by Alamouti [1]. The system is shown in Figure 2.1 and works as
follows: suppose that the symbol sequence ¢y, ¢y, -+, ¢ is to be transmitted. During
the first symbol interval, the two symbols ¢; and ¢y are simultaneously transmitted
from antennas one and two, respectively. At the second interval, antenna one trans-
mits —cj and the second antenna transmits ¢j. This procedure continues to transmit
the rest of the symbols, similarly.

It can be seen that the system is a full rate system (one symbol per transmission)
and can be shown to provide a full spatial diversity gain of 2. Moreover it has been
proven in [15] that this system preserves the capacity of multiple transmit and single

receive antenna systems.

[
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5| Transmitter
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Figure 2.1 Orthogonal Transmit Diversity (OTD) system
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However, the most appealing characteristic of the OTD system is the simplicity
of its decoder structure. The maximum likelihood decoding can be achieved by the
use of a linear combiner [1] to decouple the symbols transmitted from each transmit
antenna, as opposed to joint detection techniques.

The simplicity and good performance of Alamouti’s OTD system has been used
as a motivation in some recent research works [23, 22] to find similar orthogonal
designs for more than 2 transmit antennas. These designs which we will refer to
as Generalized Orthogonal Transmit Diversity (GOTD) systems, use the theory of
orthogonal matrices studied by several mathematicians like Radon-Hurwitz. While
the GOTD systems provide full diversity and use a simple linear combiner as the
maximum likelihood decoder, they are not full rate. This will be discussed in more
detail in Chapter 5.

The so far discussed characteristics of the OTD and GOTD systems are moti-
vations to think of a concatenated space-time code structure. This concatenated
structure can use the OTD or the GOTD system as the inner code to provide full
spatial diversity. The outer code which can be a bandwidth efficient coded modulation
scheme, will provide both temporal diversity and coding gain. The idea of concate-
nated space-time codes and their design criteria in slowly and fast fading channels is

the topic of Chapter 3.

2.2 Design Criteria of Space-Time Codes in Block Fading
Channels
In [3], the performance criterion of space-time codes in block fading channels has

been studied and the Chernoff upper bound for the pairwise error probability has

been derived. The approach in the analysis is very similar to the one taken in [20]
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for the design criteria of space-time codes in slowly and fast fading channels. In this
section, those results are presented from [3].

Assume that

[ a ¢
C =
\CTT ey’ " )
and
[l b el
e e e
e =
\ B?T egT . STIL,T

represent the matrices of transmitted and erroneously decoded symbols, respectively,
where ny is the number of transmit antennas and L is the length of the code block. It
is assumed that the channel is block fading with block length M. i.e. fading coefficients
are constant across blocks of length M and are independently varying from one block
to another, and that there are K such blocks in a frame, i.e. L = K x M. So, the

code difference matrix in the kth block Dy(e,e) would be

1 1 S S |
Ck—1)Mm+1 — C(k—1)M+1 Cem — €M
2 2 2 2
Ch—nym+1 — Ck—1)m+1 " Cem T Ckm
Dy(c,e) =
nr _ ny - nr _ ny
\ C-1)M+1 — C(k—1)M+1 Cemr — €kl

Assuming that complete channel state information is available at the receiver, the

Chernoff upper bound for the pairwise error probability is shown in [3] to be

K
1
Plc —e) < ‘ _
kl;[l det (1, + Dx(c, E)Dk{{(c, e)E,/4Ny)""
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where np is the number of receive antennas, I,,, is the identity matrix of size np, and
Es/4Ny is a measure of signal to noise ratio.

Later in [3], it has been shown that the above upper bound results in the same
rank and determinant criteria for slowly fading channels and the distance and product
criteria for the fast fading channels both introduced in [20]. These criteria were
described in Section 2.1.2.

The fact is that these criteria do not provide a methodical procedure of designing
space-time codes in fading channels. That is because maximizing the spatial and
temporal diversity gains simultaneously, and optimizing the coding gain at the same
time, does not result in a systematic code design technique. So far, this has been
the only approach taken in this direction. Thus, most of the codes proposed so far
[20], are manual and hand made and the result of broad searches over all possible
codewords. In the next chapter, we will present a systematic method for the design

of space-time codes in both slowly and fast fading channels.
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Chapter 3

Code Design Criteria For Orthogonal Transmit
Diversity System

In this chapter, we consider the design of space-time codes in Rayleigh fading channels,
using the orthogonal transmit diversity system of Figure 2.1. We will also develop
guidelines for the design of bandwidth efficient coded modulation schemes for this

system in slowly and fast fading channel conditions.

3.1 The System Model

The model of our proposed system is shown in Figure 3.1. The input information bits
are first encoded using a coded modulation block. These encoded symbols are later
passed through the OTD transmitter, acting as an inner encoder in this scenario. The
two symbol streams resulting from the Alamouti’s orthogonal transformation (Figure

2.1) are then transmitted through the two transmit antennas.

Outer Encoder Inner Encoder Inner Decoder Onter Decoder
a S —— —_———
? -
Data Bits Coded Coded ;
Recovered Bils
— | Modulation > OTD TX antenna 1 A S— OT.D Modulation ——
Transmitter S Receiver f
Encoder Decoder
— IR
RX antenna

TX antenna 2

Figure 3.1 Concatenated Orthogonal Space-Time Code
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The channel is modeled to be Rayleigh fading AWGN, with statistically inde-
pendent fading coefficients between each pair of transmit and receive antennas. The
additive noise terms at different symbol intervals are assumed to be independent
samples of a zero-mean complex Gaussian random variable with variance Ny/2 per
dimension.

The received symbol at the receiver during each symbol interval is the sum of the
two faded symbols of the two transmitters affected by the additive white Gaussian
noise. Later in this section, we will show that the optimum decoder for this scheme
is the concatenation of Alamouti’s linear combiner (standard OTD receiver) and a
maximum likelihood decoder for the outer coded modulation scheme. The OTD
receiver performs a combining operation on the received symbols and finally, the
combined symbols are sent to the outer coded modulation decoder to recover the

data bits.

3.2 Design Criteria for Slowly Fading Channels

As explained in Chapter 2, in a slowly fading environment, it is assumed that the
fading coefficients of the channel remain constant during the transmission of the
whole block of length L. To conform with (2.1), this suggests considering a single

block (K = 1) of length M = L. Thus, for the system of Figure 3.1, (2.1) reduces to

< ! )
= det(ly 4+ D(c,e)D"(c,e) £=)

Plc — e) (3.1)

where D(c, e) is the difference matrix between the code block ¢ and the erroneously
decoded block e. Because of the orthogonal transmission structure of the OTD system

shown in Figure 2.1 and assuming that L is even, we will have

Ga=a1 q=-—q
,forl=24,--- L.
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Thus, the difference matrix D(c, e) can be expressed as

1 — € —(02 - 62)* o Cr—1 — €1 _<CL - GL)*

D(c,e) =
Co — €2 (01 - 61)* s L — €L (CL—1 - €L—1)*

Substituting the above matrix in (3.1), it follows that

Plc —e) < ! s . (3.2)

14+ S o — el (£)]

An upper bound for the pairwise error probability of the system of Figure 3.1 in

slowly fading channel conditions follows from the Chernoff bound of (3.2) as

Plc - e) < [(gm _e,|2) (4?\;0)

The upper bound of (3.3), shows a full spatial diversity gain of 2 resulting from

(3.3)

the OTD system. It should also be noticed that because of the slowly fading nature
of the channel during the transmission of the whole block of symbols, no temporal
diversity gain can be provided by the coded modulation scheme. Instead, the code
design criterion in this case would involve the maximization of the coding gain, which

is expressed as .,
d.(c,e) = Z ler — el] . (3.4)

I=1
The above expression is the definition of the Euclidean distance of the code. Thus,
the criterion for the design of optimum coded modulation schemes for the system
of Figure 3.1 is exactly equivalent to the code design rule for single transmit and
receive antenna systems in AWGN channels. The important conclusion drawn from
this argument is that any coded modulation scheme, already designed for optimum
performance in an AWGN channel with single transmit and receive antennas, would

also be optimum for the system of Figure 3.1.
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Moreover, it is evident that designing a code based on just maximization of the
free Euclidean distance and benefiting the inherent spatial diversity gain of the OTD
system, is much simpler than designing space-time codes according to the rank and
determinant criteria in [20]. Interestingly, the error performance simulation results
reported in Chapter 4, show that the system of Figure 3.1 provides a higher coding
gain as compared to the space-time trellis codes in [20] with the same complexities,

both designed for optimum performance in a slowly fading environment.

3.3 Design Criteria for Fast Fading Channels

In this section, it is considered that the block length of the fast fading channel of
interest for the system of Figure 3.1 is equal to two symbol intervals and if needed,
sufficient interleaving is applied. This means that the fading coefficients of the channel
remain constant during the transmission of a block of two symbols and are statistically
independent between different blocks. To derive the Chernoff upper bound as in (2.1),
the whole block of length L can be partitioned into K = L/2 blocks of length 2 each

(assuming that L is an even number). Thus, (2.1) can be expressed as

L/2
1
Plc —e) < —
g det(Iy + Di(c,e)D! (c,e) £)

4Ny

(3.5)

where Dy (c, e) is the difference matrix between ¢ and e for the k" block of length 2.

Because of the orthogonal transmission structure of the OTD system, we will have

1 1 *
c = Cop_q Cop = —C
21 = C2%k—1  Cyp 2%
, fork=1,2,--- L/2.

2 _ 2 x
Cop—1 = C2k Cop = Cyp_q-

So, the matrix D(c,e) can be written as

Cop—1 — €251 —(Cor — €9x)"

Di(c,e) =

Cop — €2k (CQk—l - €2k—1)*



Substituting the matrix Dy (c,e) in (3.5) results in

L/2

P(c—>e)§H !

k=1 [(1 4 (|ear—1 — €2p—1|> + |cor — €2k|2)41]~:\;0

(3.6)

)

An upper bound for the pairwise error probability of the system of Figure 3.1 in

a fast fading channel with block length of two, follows from (3.6) as

Plc—e) < 1T [(|(;2,c_1 — eapa|” + ean — enn]) (ﬁvo)] E (3.7)

(e2k—1,c2k) # (eap—1.e2k)
k=1,---,L/2

As can be seen from (3.7), a full spatial diversity gain of 2 results from the orthog-
onal transmission system. Hence, applying the OTD system, we have maximized the
spatial diversity gain achievable by two transmit antennas. It should also be noticed
that unlike the slowly fading scenario, in a fast fading channel, a considerable tempo-
ral diversity gain can be provided by the coding scheme. Hence, the optimum coded
modulation scheme in this case is the one which maximizes the temporal diversity
gain as well as the coding gain.

In [7], it has been shown that the performance of codes in fast fading channels with
single transmit and receive antennas is controlled by two factors: the code minimum
Hamming distance (length of the shortest error event path), and the product of
squared symbol distances along the shortest error event path. These two factors
determine the temporal diversity gain and the coding gain, respectively. However,
from (3.7) it follows that the optimum code for transmission over the OTD system
is not simply obtained by the criteria in [7], but instead it involves maximization
of new distance quantities defined in terms of pairs of consecutive symbols. These

new pairwise Hamming and pairwise product distances, denoted by dpw,n and dpw,p
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respectively, are defined as:

dpwu(c,e) = Z 1, (3.8)

(cap—1,can) # (eap_1,€2k)
k=1,---,L/2

and

dpw.p(c.e) = H (|e2k—1 — ear—1]® + |con — ex]?). (3.9)

(cak—_1,car) # (e2p_1.€2k)
k=1,.-+,L/2

The pairwise distances motivate us to introduce a new code design technique for
the OTD system in a fast fading channel, based on expanding the signal constellation.
The expansion can be performed in either dimension or size of the constellation (going
to higher orders of modulation). Each point in the new constellation can be considered
as the concatenation of two consecutive signal points from the original signal set.
Denoting the sequences of transmitted and erroneously decoded symbols in the new
constellation by C = {C4,C5,...,Cr)2} and E = {E}, Ey, -+, Ep )2}, respectively, we

have:

Cr = (cop—1,006) k=1,2,--- L/2,
By = (egp—1,€9¢) k=1,2,--- L/2.
Thus, (3.8) and (3.9) can be rewritten as

dpw.u(c.e) = Z 1 = du(C,E), (3.10)
Cr # Ey
kE=1,.--,L/2
and
— 2 _
drwplce)= [ 1Ci—Ful = dplC.E) 3.11)
Cy # Ey
k=1,--.,L/2

Hence, the code design criteria will be based on maximizing the minimum symbol

Hamming and product distances in the expanded constellation.
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Thus, to achieve a temporal diversity gain of L equal to the length of the code
block, only a minimum symbol Hamming distance of L/2 in the expanded constella-
tion is needed. This does not necessarily require a minimum Hamming distance of L
in the old signal set. In fact, it is clear from the upper bound of (3.7) that adopting
the orthogonal transmit diversity, the Hamming distance requirement of the code-
words halves. This is the consequence of the inherent spatial diversity gain of two
resulting from the orthogonal transmission system. The reduction in the Hamming
distance requirement allows us to have larger subsets in the signal set partitioning,
which in turn results in higher achievable code rates with less code complexities. This

will be explained with more detail in Chapter 4.

3.4 Optimal Decoding Algorithm

In this section, we will prove that the optimum decoding algorithm for the system of
Figure 3.1 can be obtained by concatenating Alamouti’s linear combiner (standard
OTD receiver as the inner decoder) and a maximum likelihood decoder for the outer
coded modulation scheme.

Assuming perfect channel state information at the receiver, the decision metric
of the optimum (maximum likelihood) decoder for a space-time coding scheme with

block length of L, can be expressed as

7.] )
Tz Zaz G

where rl denotes the received signal at the j'* receiver during the {** symbol interval,

(3.12)

?

and a’;” is the complex Gaussian fading coefficient of the channel between the '
transmitter and the j'* receiver in the /** symbol interval . So, the maximum likeli-
hood receiver decides in favor of the codeword which maximizes the decision metric

of (3.12).



20

For the orthogonal transmission system of Figure 3.1 with two transmit and single

receive antennas, (3.12) reduces to

L/2

. 1 2 2 1 * 2 x 2
§ : (‘7 2p—1 — Qg Cop—1 — Od?pc2p‘ + |T2p + QopCop — 02p62p71| )7 (313)
p=1

i,j

where the index j in the expression oy,

is dropped as the number of receive antennas
is assumed to be one. The received signal at each symbol interval is the sum of the
two faded transmitted symbols affected by the additive white complex Gaussian noise

with variance Ny/2 per dimension

1 2
Top—1 = Qg Cop_1 + Q5 Cop + Nigp_1
p 4P 2p—4p P )
, forp=1,2,---,L/2. (3.14)
. 2 % P B
T2p - a?p(’Qp—l a2p(’2p + Naoyp

Expanding (3.13), the maximum likelihood decision rule can also be written as

Sl {ree—il? - 1repl?) + (Jad,l? + 13, 2) (Jezp” + [e]?)

(3.15)
—2R [(rap-10d, +135,03,) 5, 1] + 2R [(rop-103; —5,05,) 5,
where R[] denotes the real part of x.
Now, let’s define z9,_1 and 29, as
Zop 1 = Top 105+ 15,05,
, forp=1,2,--- L/2. (3.16)
Zop = 7"2p_1a§; — rgpoz%p.

These quantities are exactly the outputs of the standard OTD receiver/combiner
proposed by Alamouti in [1]. The important point of the discussion so far is that
based on the Neyman-Fisher factorization theorem [12], 29,1 and z, defined as
above are sufficient statistics for the maximum likelihood decoding of (3.13). This
means that using the standard OTD combiner at the front end of the receiver causes
no information loss in estimating the symbol sequence ¢y, co,-- -, cp.

Considering that the first term of the summation in (3.15) is independent of

the symbol sequence to be estimated, it can be replaced by any other expression
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which is also independent of ¢1,co, -+, cr. Thus, we replace |r|* with |z]?/3; for

l=1,2,---,L, where

,Bl = |Ogll|2 + |a}2|27 for [ = ]_727 e 7L. (317)

It can be easily seen that minimizing the decision metric of (3.13) is equivalent to

minimizing the new maximum likelihood metric

L/2

|22p-1” | [22p]° 2 . )
Z { < 52 + /3: + /BQP (|02p—1|{) —|— 02p|2) + 2% (22p_102p71 —|— ZQPCZp) .
p=1 =zp ~2Zp
(3.18)
Equation (3.18) can also be expressed as
al? « "1z = Bial?
Z (| é' + Bilal” - 2%(21010 = Z ITM (3.19)
P - }

=1
On the other hand, substituting (3.14) in (3.16), the linear combiner outputs at

two consecutive symbol intervals would be

2o 1 (|a'1 |2 + |a2 |2)02 1+ oy, 4+ a2 nl
? o pl e U forp=1,2,---,L/2. (3.20)

~2p (|O‘ép

2 212 2 1k
° + |az,|7)cap + agpnop-1 — agpit 03,
Defining Ny, 1 and Ny, the noise terms at the output of the OTD receiver during

two consecutive symbol intervals, as

N, = a¥n + a3 n;
p—1 2p't2p—1 2p'“2p
) ) , forp=1,2,---,L/2, (3.21)
T 2% o *
]\/QP - O‘Qpn2p—1 a?pn2p
It can be easily shown that N;’s for/ = 1,---, L, are zero mean, iid complex Gaussian

random variables with variance 5;Ny/2 per dimension.

Therefore, the decision metric of (3.19), is in fact the metric for the maximum like-
lihood decoding algorithm performed on the output symbols of the linear combiner
(OTD receiver). Thus, it is concluded that the optimum decoder for the orthogo-

nal system of Figure 3.1 is achieved by concatenating the linear combining scheme
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of (3.16) with a standard maximum likelihood decoder operating on the combined
symbols. Moreover, the complexity of the decoder remains unchanged compared to

the existing space-time trellis decoders.



Chapter 4

Design of Trellis Coded Modulation Schemes for
the OTD System

In Chapter 3, it was explained that the system in Figure 3.1 can considerably simplify
the design procedure of maximum diversity gain coding schemes for multiple-antenna
communication systems in fading channels. We later derived upper bound expressions
for the pairwise error probability of this system in slow and fast fading channel con-
ditions. Based on these bounds, guidelines for the design of concatenated space-time
coded modulation schemes were proposed and discussed in detail. In this chapter, we
will put these criteria into practice by designing bandwidth efficient TCM schemes
as the outer code for the system in Figure 3.1. The simulation results reported in
the next sections show that codes designed for this system have better performance

compared to the space-time trellis codes of [20] with similar complexities.

4.1 Code Design for Slowly Fading Channels

It was shown in Section 3.2 that the criterion for designing optimum outer codes for
the system in Figure 3.1 in slowly fading channels, is based only on the maximization
of the free Euclidean distance. To analyze the error performance of the codes designed
as such, consider designing rate 2 b/s/Hz codes for the system in Figure 3.1. We will
use Ungerboeck’s 4 and 8-state TCM codes with SPSK modulation, designed based on
the maximization of the free Euclidean distance criterion, for optimum performance

in AWGN channels [24]. In Figures 4.1 and 4.2, the simulation results for the error
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Figure 4.1 Performance comparison of rate 2 b/s/Hz 4-state space-time
trellis codes, with two transmit and one receive antennas, designed to achieve
diversity gain of 2 in slowly fading channels.

performance of these codes for different levels of SNR are shown and compared to the
outage probability given in [21].

For comparison purpose, we have also plotted the error performance of two space-
time trellis codes proposed in [20] with two transmit and single receive antennas
and the same trellis complexities and code rates, designed based on the rank and
determinant rules of [20] for slowly fading channels. While both codes demonstrate
a diversity gain of two, it can be seen that the system of Figure 3.1 shows more than
1 and 2 db gain over the space-time trellis codes of [20] for the two cases of 4 and
8-state trellises, respectively. Besides, it is observed that the concatenated orthogonal

space-time system performs closer to the outage probability.
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Figure 4.2 Performance comparison of rate 2 b/s/Hz 8-state space-time
trellis codes, with two transmit and one receive antennas, designed to achieve
diversity gain of 2 in slowly fading channels.

4.2 Code Design for Fast Fading Channels

In Section 3.3, it was described that the outer code design criteria for the system in
Figure 3.1 in fast fading channels, is based on the maximization of the Hamming and
product distances in the expanded constellation, where each point is the concatena-
tion of two points from the original signal set. Assuming that the original signal set is
two dimensional (2D), one way of constructing the new constellation is to consider the
four dimensional (4D) Cartesian product of the original 2D signal set by itself (signal
set expansion in dimension). Another way is to construct a new 2D constellation of
size M?, where M is the size of the original signal set (signal set expansion in size).
The code design will later be performed for the new constellation trying to maximize

its Hamming and product distances. At the output of the coded modulation block,
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each encoded symbol from the new constellation will be considered as the concatena-
tion of two signal points from the original constellation, and will be transmitted in
two consecutive symbol intervals through the OTD system as in Figure 2.1. Multiple
Trellis Coded Modulation (MTCM) and MultiLevel Coding (MLC) design techniques
satisfying the Hamming and product criteria of Section 3.3, have already been pro-
posed in the literature ([8, 18]). These are appropriate coded modulation schemes
for fast fading channels, as they can be designed to achieve good distance properties
required by the criteria derived in [7]. Thus, the use of MTCM and MLC schemes as
the outer code for the system of Figure 3.1 is recommended.

In the next subsection, the idea of signal set expansion in size and the above design
procedure is demonstrated through an example, where an MTCM scheme is designed
for the system in Figure 3.1. The idea of signal set expansion in dimension is very

similar and is shown in [3].

4.2.1 Constellation Expansion in Size: Design of MTCM for OTD

Consider designing a code with an overall diversity gain of 4 and rate 1.5 bits/s/Hz
using QPSK modulation. In order to achieve a minimum Hamming distance of 2
resulting in a total diversity gain of 4 using the OTD system, it suffices to consider
an MTCM code with multiplicity of 4 and perform the set partitioning task for a
2-fold Cartesian product of a 16PSK signal set. Each point in the 16PSK signal
set is considered as the concatenation of two consecutive QPSK symbols. If the
set partitioning scheme of [8] is adopted for a 2-fold Cartesian product of 16PSK
symbols, a maximum of 16 code sets can be assigned to each subset. This means
that a maximum of 16 parallel paths can be considered for the trellis. So, if a 4-state
fully connected trellis is considered, the encoder would be capable of encoding 6 input

bits. Together with the 4 QPSK symbols assigned to each transition of the trellis,
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Figure 4.3 Performance comparison of MTCM scheme designed for the
concatenated orthogonal system of Figure 3.1, and the single transmit and
receive antenna system. Codes are designed to achieve a total diversity gain

of 4 in fast fading channels (R = 1.5 b/s/Hz).

this results in the desired rate of 6/4 = 1.5 bits/sec/Hz. Note that if we wanted to
use the same trellis to design a code with diversity gain of 4 for single transmit and
receive antenna system, the maximum achievable rate would be 1 bit/s/Hz. That is
because the set partitioning of the 4-fold Cartesian product of QPSK symbols, would
result in subsets with a maximum size of four [8]. Thus, for comparison purpose,
an 8 state fully connected trellis with 8PSK modulation has been used to design an
MTCM code with rate 1.5 bits/s/Hz and diversity gain of 4 for single transmission
scheme.

The error performance comparison of these two transmission schemes is shown in
Figure 4.3. It can be seen that while both codes provide a diversity gain of 4, the
MTCM code designed for the orthogonal system in Figure 3.1, outperforms the single

transmit and receive antenna transmission scheme by 1 dB.
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Figure 4.4 Performance comparison of AT&T smart-greedy space-time
trellis code with concatenated orthogonal space-time MTCM code with two
transmit and one receive antennas in a slowly fading channel (R = 1 b/s/Hz).

To demonstrate the robustness of the system in Figure 3.1, its performance has
also been compared to the smart-greedy space-time code of [20] in Figures 4.4 and
4.5. Smart-greedy codes are designed to provide a good performance in both slowly
and fast fading channels. Thus, even if the transmitter doesn’t know the channel,
the code is constructed to take advantage of both the space diversity provided by the
use of multiple antennas, and the possible time variations of the channel. As such,
the smart-greedy codes guarantee a diversity gain of r; in slowly and 7o > r; in fast
fading channel conditions [20].

For comparison purpose, we picked up the 2-state smart-greedy space-time code
of [20] with QPSK modulation which is designed to achieve a diversity gain of 2 and
3 in slowly and fast fading channels, respectively, using two transmit and one receive

antennas. The error performance has been simulated in both cases and compared to
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Figure 4.5 Performance comparison of AT&T smart-greedy space-time
trellis code with concatenated orthogonal space-time MTCM code with two
transmit and one receive antennas in a fast fading channel (R =1 b/s/Hz).

the concatenated orthogonal space-time code in Figure 3.1 applying an MTCM outer
code of multiplicity 4. The complexities of the two trellises are similar (both have 2
states), and the code rate is 1 b/s/Hz in both cases.

As can be seen from the simulation results of Figures 4.4 and 4.5, the concatenated
space-time code shows a better performance in both slowly and fast fading channels.
In slowly fading case, the concatenated system provides just a spatial diversity gain
of 2 and no additional temporal diversity is gained from the outer MTCM scheme.
That is why the two error curves are parallel with slope of almost —2. However, the
concatenated system presents a higher coding gain. In the case of fast fading channel,
the concatenated space-time code demonstrates an asymptotic diversity gain of 4 (2
spatial and 2 temporal from the inner code), as compared to the gain of 3 resulting

from the smart-greedy code.
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Chapter 5

Design of Concatenated Space-Time Codes with
Generalized Orthogonal Transmit Diversity

In this chapter, we will extend the design criteria of Chapter 3 to orthogonal sys-
tems with more than two transmit and one receive antennas. We refer to these as
Generalized Orthogonal Transmit Diversity (GOTD) systems.

In [19], it was proven that for complex signal constellations, full rate, full diversity
orthogonal designs of size ny exist if and only if ny = 2 (ny is the number of transmit
antennas). For more than two transmit antennas, full diversity generalized orthogonal
designs with rates less than one, have been introduced in the literature [19, 22].
These designs fall into two main categories: rate halving codes and square matrix
embeddable codes. The rate halving codes [19] are basically built by concatenating
real orthogonal code block matrices and their complex conjugates together, halving
the overall rate of the resulting complex orthogonal design. For example the rate 1/2
code for 4 transmit antennas built from the real orthogonal design has the following
code block matrix

* * * *
(Cl —Cy —C3 —C C —C —C3 —64\

c € ¢4 —c3 ¢ ¢ ¢ —C

] ol ] ol

C3 —C4 C1 Co Cyg —Cy G Cy

\ ¢y €3 —cp € ¢ 3 —¢ 4 )
The square matrix embeddable codes are based on orthogonal square code matrices

with dimension ny (assuming to be a power of 2). For number of transmit antennas
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that are not a power of two, the code block matrix dimension is assumed to be ny X ()
(@ > ny for the code to be linearly decodable) which is obtained by deleting a row
from an orthogonal design of higher dimension. For example, for the case of three
antennas, the code is constructed by deleting one row from the 4 x 4 square code.
Codes for 5, 6 and 7 antennas are built similarly from the 8 x 8 square orthogonal
design and so on.

Some examples of the square matrix embeddable codes are the sporadic codes of
[19] for ny = 3 and 4 (with rate 3/4), and the unitary designs of [22]. It has been

proven in [22] that the maximum achievable rate of these codes with np transmit

[loganT]+1

st ([2] 1s the integer greater or equal to x). Unitary designs

antennas is
and their construction have been introduced and fully explained in [22]. The code

matrix for a unitary design with four transmit antennas and the maximum rate of

3/4, constructed in [22] has the code block matrix

(cl —c5 —cz3 0 \

ol ol
2 O 0 c
c= , (5.2)
cg 0 a =

\ 0 —C3 Co C1
while the code matrix of the sporadic code of [19] having the same rate and number

of transmit antennas is expressed as

( —c < <5 \
C1 Cy /3 75
* cy cy
Co Cq 5
c= v v2 . (5.3)
s 3 (za—cdte—c)  (cteitea—c])
V2 V2 V2 V2
\6_3 3 (ea—estear—cl)  (atcefter—cl) )
V2 V2 V2 73

It can be seen that the unitary design of (5.2) has simpler structure and is more power

balanced compared to the sporadic code of (5.3).
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For a generalized orthogonal design of rate R and code matrix block size of ny x @),
we assume that R() symbols are transmitted during () consecutive symbol intervals,
through the GOTD transmitter. As an example, for the orthogonal design of (5.2)
where Q = 4 and R = 3/4, 3 coded symbols are transmitted during the transmission
period of the code block.

The important characteristic of all the above designs is the orthogonality of their

code block matrix, c
RQ
cc = " leg)? L, (5.4)
q=1

This causes the orthogonal systems to be capable of providing a full spatial diversity
gain of nyng (ng is the number of receive antennas) as will later be shown in this
chapter. Moreover, in a similar way to the discussion of Section 3.4, it can be shown
that the optimum decoder for the concatenated space-time codes with GOTD systems,
is also obtained by concatenation of a linear combiner with a maximum likelihood
decoder for the outer coded modulation scheme.

In the next two sections, we will study the criteria of designing concatenated

space-time codes with the GOTD system in slow and fast fading channels.

5.1 Design Criteria for Slowly Fading Channels

As in Section 3.2, in a slowly fading environment, we assume constant fading co-
efficients for the channel during the transmission of the whole block of length L.

Considering a single channel block (K = 1) of length M = L, (2.1) results in

1
< . 5.5
= det(1,, + D(c,e)D¥(c, ) Lu )ux (5.5)

4Ny

P(c — e)

On the other hand, because of the linearity of all the orthogonal designs discussed

so far, the code difference matrix D(c, e), will also inherit the orthogonality property
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Figure 5.1 Error performance of codes designed for generalized orthogonal
transmit diversity systems with more than two transmit or one receive
antennas. Codes are designed for slowly fading channels (R = 1.5 b/s/Hz).

(5.4) of the code block matrix [22]. Thus for the code difference matrix D(c,e)

expressed as

D(Cve) = (Dl(cve)vD?(cve)a T 7DL/Q(C7e)) ) (56)
we will have
RQ
H _ 2 _ =~
Dp(cae)Dp (C7 e) - Z ‘C(pfl)RQ+q — €(p—1)RQ+q ]TLT7 for p= ]-7 27 e 7L/Q (‘)' {>
qg=1

So, (5.5) reduces to

1
P(c —»e) < - - 5
det(Ly + 32,7 S0 et = €o-nma+a| o Lur)"™

or equivalently
1

1+ 208 o — el e yrrmn

Plc—e) <
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Figure 5.2 Comparison of the performance of rate 1.5 b/s/Hz codes
designed for generalized orthogonal transmit diversity systems with 1 receive
antenna, with the outage probability in a slowly fading channel.

An upper bound for the pairwise error probability of concatenated space-time
codes employing GOTD systems in slowly fading channel conditions, follows from the

Chernoff bound of (5.9) as

e {(§) ()

The above upper bound shows a full spatial diversity gain of nyng provided by

—nTng

(5.10)

the GOTD system. It can also be seen that due to the slowly fading characteristic
of the channel, the coding scheme cannot provide any temporal diversity gain. Thus,
the criterion for the design of optimum outer coded modulation schemes in this case,

is also based on the maximization of the code free Euclidean distance

RL
de(c.e) = e — el (5.11)
-1
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Figure 5.3 Comparison of the performance of rate 1.5 b/s/Hz codes
designed for generalized orthogonal transmit diversity systems with 2 receive
antennas, with the outage probability in a slowly fading channel.

Thus, it is concluded that for slowly fading channels, the design criterion of concate-
nated space-time codes with GOTD systems is the same as the code design rule for
the system of Figure 3.1 described in Section 3.2.

In Figure 5.1, the simulation results for the frame error probability of codes de-
signed for the unitary design of (5.2) are provided. As the outer code, we have used
the 8-state Ungerboeck’s TCM code [24] designed based on the maximization of the
free Euclidean distance, for optimum performance in AWGN channels. The inner
code is the GOTD unitary design of (5.2) with ny = 3 and 4 antennas. The unitary
design for 3 transmit antennas is obtained by deleting one arbitrary row of (5.2).
Ungerboeck’s TCM code has a rate of 2 b/s/Hz, which together with the rate 3/4 of

the unitary design, results in an overall rate of 1.5 b/s/Hz.
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It can be noticed that there is an increase in the slope of the frame error probability
curves as the number of transmit and receive antennas increase. This increase in the
diversity gain is expected according to (5.10). Moreover, the codes with 2 receive
antennas provide a higher coding gain with respect to the single receive antenna
codes. It is seen that at frame error rates of 1073 and lower, the code with 4 transmit
and 2 receive antennas gives more than 6 dB gain over the case of 4 transmit and
single receive antennas.

The performance comparison with the outage probability is demonstrated in
Figures 5.2 and 5.3. It can be seen that at frame error rate of 0.1 (in these sim-
ulations, each frame consists of 176 coded symbols transmitted from each transmit
antenna), the code for 4 transmit and single receive antennas performs within ap-

proximately 2.5 dB of the outage probability.

5.2 Design Criteria for Fast Fading Channels

In this section, we assume that the block length of the fast fading channel equals to
the length of the code block matrix (M = Q). Thus, for a total of K = L/Q blocks,

it follows from (2.1) that

L/
Plc —e) <

QO

1

det(I,, + Dy(c, e)D]Ij (c.e) 4%0 \nR )

(5.12)

£
Il

1

Substituting (5.7) into (5.12), an upper bound for the pairwise error probability of
concatenated space-time codes with the GOTD systems in fast fading channels, can

be derived as

RQ 5 E
Plc =€) < 11 [(Z | -1 RQ+q — €<k—1)RQ+q|‘) <m)

—nrngr

(¢(k—1)RQ+1:" " "1 CkRQ) # 9=1
(e(k—1)RQ+1+ """+ €ERQ)
k=1,.-,L/Q

(5.13)
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Figure 5.4 Error performance of codes designed for generalized orthogonal
transmit diversity system with three and four transmit and single receive
antennas. Codes are designed for fast fading channels (R = 1 b/s/Hz).

It should be noted from (5.13) that in the case of fast fading channels, in addition
to the full spatial diversity gain of nyng resulting from the GOTD system, the coding
scheme is also capable of providing some temporal diversity gain. Similar to the
discussion of Section 3.3, it can be concluded that the code design criteria in this case
is also based on the maximization of minimum product and Hamming distances in
the expanded signal set. This expansion can be performed in both dimension or size,
however here for the generalized orthogonal designs, the constellation points in the
new signal set are the concatenation of RQ signal points (2 for the system of Figure
3.1) in the original signal set. Thus for an original 2D signal set of size M, the signal
set expansion in size is equivalent to constructing a new 2D constellation of size A/ <

and performing the set partitioning in the new signal set.
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To demonstrate the above design procedure, we have simulated the performance of
codes designed for the unitary design of (5.2) with 3 and 4 transmit and single receive
antennas in fast fading channels. The simulation results are reported in Figure 5.4.
The outer encoder is a 4-state fully connected MTCM code with 64 parallel paths,
multiplicity of 6 and uses QPSK modulation. The code design would be based on
the maximization of Hamming and product distances in the expanded constellation,
where each point is the concatenation of R() = 3 signal points from the original QPSK
signal set. The aim is to achieve diversity gains of 6 and 8 for three and four transmit
antennas respectively. The set partitioning technique of [8] for the 2-fold Cartesian
product of 4% = 64PSK signal set would result in subsets of size 64 (that is 64 parallel
paths). Thus the 4-state fully connected trellis would be capable of encoding 8 bits.
Together with 6 QPSK output symbols per each transition of the trellis, the rate of
the MTCM encoder would be 4/3 b/s/Hz. Since the rate of the unitary design of
(5.2) is 3/4, the overall rate of the concatenated code will be 1 b/s/Hz.

It can be seen from Figure 5.4 that asymptotically, the codes are achieving their
expected diversity gains of 6 and 8 for three and four transmit antennas, respectively.
The code for 4 transmit antennas shows over 1 dB gain over the 3 antenna code at

symbol error rates of 10~ and lower.
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Chapter 6

Broadcast Coding for Multiple-Antenna Systems

This chapter is mainly intended to motivate our ongoing research on the problem of
designing codes for fading broadcast channels. We start by overviewing the problem
and will later provide a system model description. The achievable mutual informa-
tion rates for different cases of channel state information at the transmitter will be
discussed in Section 6.3. In the last section of this chapter, some preliminary numer-
ical results on the achievable user capacities, adopting multiple-antenna systems in
broadcast channels, will be presented. These results will motivate our future research

plans which will be outlined in the same section.

6.1 Overview

Next generation of wireless networks are expected to support high rate data appli-
cations in addition to voice. In fact it is anticipated that packet data will dominate
voice data in future’s communication systems. Wireless networks supporting data
applications can range from cellular networks with central controllers in the form of
base stations to ad hoc networks where no central control units are available.

High data rate applications are characterized by their required throughput and
maximum sustainable delay and error rates. In order to meet these constraints and
provide quality of service to all simultaneous data users, the issue of downlink resource
allocation and scheduling in wireless networks has recently been addressed by some

researchers [2, 4]. Some of the proposed scheduling schemes take advantage of the
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feed back channel information at the transmitter to change the transmission rates so
as to satisfy the delay and throughput constraints of most of the users [4].

In this research, we study a downlink broadcast scenario where a single transmitter
is simultaneously transmitting data to multiple data users and no time sharing scheme
is adopted. The transmitter is a multiple-element antenna system. The use of multiple
antennas at the receivers is optional. FEach user is interested only in part of the
transmitted data and for complexity reasons, we assume that each receiver is equipped
with a single-user optimal decoder.

The issue of finding the set of simultaneously achievable rates by different users
in a broadcast channel was first introduced by Cover in [5]. He showed that by
superimposing high-rate and low-rate information in a Gaussian broadcast channel,
it is possible to design codes to achieve rates greater than those achievable by simple
time-sharing schemes [5, 6].

For the case of fading broadcast channels, the capacity region has been studied
in [13, 14], under the assumption that both the transmitter and the receiver have
perfect channel information. In [13, 14], the capacity regions of code division (CD),
time division (TD) and frequency division (FD) schemes have been calculated. It is
also shown that the CD schemes can achieve higher simultaneous rates as compared
to TD and FD schemes.

In this work, we evaluate the effect of using multiple-antenna systems in a downlink
broadcast fading scenario. We will show that using a beamforming scheme, it would
be possible to simultaneously transmit to more than one user. The beamforming
vectors at the transmitter are computed such that to cancel out the interference of
other users. Thus, it suffices for the users to be equipped with single-user detectors as
opposed to multi-user detectrs, which are more complex. We will quantify the gains

in achievable user capacities resulting from the use of multiple-antenna systems in a
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Figure 6.1 Broadcast Beamforming Scheme

broadcast channel with different number of simultaneous data users. But first, let’s

present the system model.

6.2 System Model

The system model is shown in Figure 6.1. We assume multiple-element antennas at
the transmitter and the receiver of each user. The number of transmit and receive
antenna elements are denoted by nyp and npg, respectively. It is known that using
a beamforming scheme, the system can support a maximum number of N = np
simultaneous users [11].

The system works as follows: at a certain symbol interval, the code symbol of
the i user, ¢;, chosen from a unit energy constellation distributed as CA(0,1), is
multiplied by its corresponding ny X 1 normalized beamforming vector, W;, summed

over all users and then transmitted over the np antennas. The power assigned to user
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¢ is denoted by P;, and the average power constraint of the system is expressed as
trace(E[XXH]) ZP <P. (6.1)

The channel is modeled as slowly Rayleigh fading AWGN, with independent and
identically distributed (i.i.d.) fading coefficients between each pair of transmit and
receive antennas of each user. The fading is also considered to be i.i.d. between

different users. The baseband representation for the received signal of the i** user is
YiZH’iI‘X—l-Ni, fOI'iZl,z,---,N, (6.2)

where X is the np X 1 vector of the sum of the simultaneous transmitted information
data of all users as in Figure 6.1, H; is the np X ng channel matrix of user 7, Nj

is the complex circularly symmetric additive white Gaussian noise vector, and Yj is
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the ng x 1 received signal. Both the channel matrix H; and the noise vector Nj are

distributed as CN (0, I).

6.3 Achievable Rates Region

In this section, the achievable rates region of the broadcast beamforming scheme of
Figure 6.1 will be analyzed for two cases of perfect and noisy channel state information
at the transmitter (CSIT). It is considered that perfect channel state information is
always available at the receiver. For simplicity, we assume that the receivers of all

users consist of a single-element antenna.

6.3.1 Perfect CSIT

When perfect channel state information is available at the transmitter, the beam-
forming vectors can be chosen such that the power of the undesired signals at each
user is made equal to zero at any instant. In order to do this and also to maximize
the average mutual information, it can be easily shown that the beamforming vector
of the " user, W;, should be computed as the projection of its own channel vector
H; onto the intersection of the null spaces of the channel vectors of all other users.
Having chosen the beamforming vectors as such, the baseband representation of the

received signal in (6.2) reduces to
Y;=H'X;+Nj, fori=1,2,--- N. (6.3)

This means that each user will receive only that part of the information data which is
primarily intended for him. It can be further shown that the achievable rates region

of the users can be expressed as

P:
R; < Fg, [log (1 + —Z|HiTWi|2>] , fori=1,2,---,N. (6.4)
nr
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6.3.2 Noisy CSIT

Here, it is assumed that a noisy version of the channel state information is available
at the transmitter. Denoting the noisy channel state information of the i’ user as

H; and its corresponding beamforming vector as Wi, we will have
H; =H;+Z;, fori=1,2.--- N, (6.5)

where Z; is a complex additive white Gaussian noise distributed as CA(0, 021).
Using the beamforming scheme explained in Section 6.3.1, it is evident that in
this case the undesired signal energy at the users cannot be completely neutralized.

The achievable rates region of the users can be shown to be smaller than the perfect
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6.4 Numerical Results and Future Work

, fore=1,2,--- N.

45

(6.6)

In this section, some preliminary numerical results on the achievable rates of the

broadcast beamforming scheme of Figure 6.1, using Monte-Carlo integration tech-

nique, are presented. These results motivate further research work on related issues.

In Figure 6.2, the achievable rates regions of the broadcast beamforming scheme

with two users are plotted for the two cases of perfect and noisy CSIT. In the second

case, the variance of the additive noise of the channel state information at the trans-
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mitter (0?) is considered to be 0.1. The number of transmit antenna elements (nr)
are 2 for both cases, and the total power constraint of the transmitter (P) is assumed
to be 0 dB.

Similarly, the per user capacity of the noisy CSIT case for different values of noise
variance (02) is plotted in Figure 6.3. Here, we have considered equal powers assigned
to each user. No power control scheme is adopted in any of the above cases. These
results show the importance of channel state information at the transmitter for the
broadcast beamforming scheme of Figure 6.1. It can be seen that as the variance of
the noise increases the scheme becomes less and less efficient.

In Figure 6.4 and 6.5, the effect of the number of transmit antenna elements as well
as the number of simultaneous users in the network, have been analyzed. In Figure
6.4, the per user capacity is plotted for different numbers of transmit antennas. Here,
it is assumed that the number of users are fixed and equal to 2. It can be seen that
as the number of transmit antennas increase, higher rates can be achieved. This is in
fact expected as we know that the application of multiple-antenna systems results in
higher data rates in wireless networks [21].

The case of variable number of users has been studied in Figure 6.5, where the total
user capacity is plotted versus the number of transmit antennas for fixed % =a It
is noticed that there is still an increase in the total achievable capacity as the number
of transmit antennas increase.

Inspired by the gains obtained in achievable rates using a multiple-element antenna
structure in a broadcast channel, it would be interesting to do further research on the
design of codes which can actually achieve those gains. We will consider the design
and error performance analysis of space-time codes for broadcast channels as future

work.
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. /
elements for variable number of users (Ti\—T = a).

So far, we have been assuming that in addition to channel state information,
the information regarding the beamforming vectors are also available at the receiver
of all users. This implies a network where all the users (nodes) share information
with each other (global channel knowledge). We are also planning to analyize a
distributed network where no information is shared between different nodes (local
channel knowledge). And finally the design of power control schemes for the broadcast
beamforming scheme of Figure 6.1 is another important issue to be considered in this

research.
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Chapter 7

Conclusions

In this thesis, we propose a systematic technique in order to design space-time codes
for slowly and fast AWGN Rayleigh fading channels. It is shown that this can be
done by constructing a concatenated space-time code structure, with an orthogonal
transmit diversity system as the inner code. Applying this system will result in de-
coupling the problems of temporal and spatial diversity gains maximization, involved
in the design of space-time codes and hence will considerably simplify the code design
procedure. We also derive the code design criteria of the outer encoder for both slowly
and fast fading channel conditions.

In a slowly fading channel, no temporal diversity gain can be provided by the
outer coding scheme. Thus, the concatenated space-time code structure will help
in decoupling the problems of spatial diversity gain and coding gain maximization.
The inner orthogonal transmit diversity system, will provide full spatial diversity
gain. In order to maximize the coding gain, it is shown that the criterion for the
design of the outer encoder, is just based on the maximization of the free Euclidean
distance. This is exactly equivalent to the design criterion of optimum codes for
AWGN channels with single transmit and receive antennas. So, the codes designed
for optimum performance in an AWGN channel are well suited as optimum outer
codes in the concatenated space-time code structure.

For the case of a fast fading channel, significant temporal diversity gains can be

provided by the outer coding scheme. Here, the concatenated structure of the space-
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time code will help in decoupling the problems of spatial and temporal diversity gains
maximization. The inner orthogonal transmit diversity system will again provide full
spatial diversity gain. In order to design the outer code, we introduce the idea of
constellation expansion, and show that the outer code design criteria in this case is
based on the maximization of the Hamming and product distances in the expanded
signal set.

To analyze the performance of our proposed design technique, we construct codes
for both slowly and fast fading channels and compare them to some existing codes
in the literature. It is observed from the error performance simulations that the
codes showed better performance compared to some other codes having the same
complexities. For the case of slowly fading channels, the codes are shown to perform
close to the outage probabilities.

We also evaluate the effect of using multiple-antenna systems in downlink broad-
cast channels for different cases of channel state information at the transmitter.
Inspired by the gains of multiple-antenna systems observed by some preliminary nu-
merical analysis, it would be interesting to design codes which can actually achieve
those gains. The design of power control schemes and the analysis of distributed net-
works, where the nodes do not share information among each other, are also among

our future research plans.
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