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ABSTRACT 

Plasmonic Properties of Metallic Nanostructures 

by 

Tae-Ho Park 

Based on the plasmon hybridization theory, this thesis provides physical under­

standing of the plasmonic nature of metallic nanostructures. Metallic films and 

nanoshell particles exhibit bonding and antibonding plasmon resonances formed by 

hybridization of plasmon resonances associated with the two surfaces confining the 

metal. For both structures the lower energy bonding plasmon resonance is char­

acterized by a symmetric alignment of the charge densities. This thesis presents a 

physically intuitive explanation for why the repulsive symmetric charge alignment 

results in a low energy bonding plasmon. It also shows that the plasmon dispersion 

for a planar thin film can be obtained from the plasmon resonances of a metallic 

nanoshell in the limit of infinite radius. 

After clarifying the nature of plasmon modes of thin metal films, the optical 

properties of an individual nanohole in a thin metallic film are examined theoretically 

and experimentally. Subwavelength holes, one of the most important structures in 



nanophotonics, give rise to extraordinary transmission when patterened in arrays. 

The individual holes provided a site for excitation of the underlying thin film surface 

plasmons. It is shown that both hole diameter and film thickness determine the 

energy of the optical resonance. I also show that the hole plasmon resonance (HPR) 

depends strongly on the polarization of the incident light due to the optical coupling 

between antibonding film plasmon modes and perpendicularly polarized light to the 

film surface. 

The hybridization scheme is extended to the coherent coupling between the local­

ized plasmons of a nanoshell and the excitons of J-aggregate molecules adsorbed on 

the metallic nanoparticle surface. Tuning the nanoshell plasmon resonant energies 

across the exciton energy of the J-aggregate obtains hybridized energies for plasmon-

exciton coupling. The coupling strength depends on the specific plasmon mode of 

the nanoshell coupled to the exciton mode of the J-aggregate. Experimental data of 

optical extinction spectra is reproduced by using Mie theory, and the plasmon-exciton 

coupling of nanoshell/J-aggregate complexes systems can be quantitatively as well as 

qualitatively understood based on Gans theory. 

The plasmon hybridization theory can be also applied to various shapes of nanopar-

ticles using particular coordinate systems. This thesis investigate the optical prop­

erties of metallic toroidal nanoparticles using the plasmon hybridization theory. For 

incident light polarized in the plane of the torus, a low energy dipolar plasmon reso-



nance and a high energy resonance contributed by several higher order torus modes 

appear in the optical spectra. The low energy mode is highly tunable with the as­

pect ratio in terms of two characteristic radii of tori. For perpendicular polarization, 

the plasmon resonance is weakly dependent on the aspect ratio because the excited 

higher order torus modes are closely spaced. Optical spectra calculated by plasmon 

hybridization method show excellent agreement with numerical finite difference time 

domain calculation results. 
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Chapter 1 
Introduction 

The optical property of metallic nanostructures is a subject of considerable funda­

mental and technological importance. The excitation spectrum of a metallic nanos-

tructure or sub-wavelength structure is determined by its surface plasmon resonances, 

which are collective oscillations of the conduction electrons. The energies of plasmon 

resonances can depend strongly on shape and composition of the nanostructure. Ex­

amples of highly tunable pl&smonic nanoparticles are metallic nanoshellsfl, 2] and 

nanorods[3, 4]. 

The tunability of the plasmon resonances of metallic nanoparticles can be ex­

ploited to position the optical resonances at specific wavelength regions of interest 

and has led to a wide range of applications across many disciplines in science and 

engineering. The strong local electro-magnetic field enhancement accompanied with 

the surface plasmon resonances has been also used to manipulate light-matter in­

teractions, and metallic nanostructures on the sub-wavelength scale are widely used 

in Surface Enhanced Raman Spectroscopy (SERS) and Surface Enhanced Infrared 

Absorption (SEIRA). In addition to their fundamental importance, plasmonic nanos­

tructures are receiving a great deal of attention for their potential applications in ar­

eas such as subwavelength waveguiding[5, 6], optical nanoantennas[7, 8], photovoltaic 
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technology for efficient light coupling into solar cells[9, 10], metamaterials[ll, 12], 

chemical and biological sensing[13, 14], and biomedical applications[15]. 

The development of novel synthesis or lithography methods for nano-fabrication 

and nano-characterization techniques such as dark field and near-field optical mi­

croscopy make single nanostructure and sub-wavelength resolution measurements pos­

sible. Furthermore, the development of theoretical and numerical approaches such as 

Plasmon Hybridization (PH) theory, Finite Difference Time Domain (FDTD) method, 

Finite Element Method (FEM), Discrete Dipole Approximation (DDA), and Bound­

ary Element Method (BEM) help for the understanding of their optical properties. 

Therefore, all these theoretical and experimental developments are making the field 

of anophotonics an area of intense current interest. 

Based on the PH theory in this thesis, I clarify the optical and plasmonic proper­

ties of various metallic nanostructures such as nanoshells, thin films, individual sub-

wavelength holes in thin metal film, nanoshell/J-aggregate complexes, and toroidal 

nanoparticles. The theoretical results are compared with experimental measurements 

and numerical calculations such as Mie theory for the system with spherical symmetry, 

and FDTD simulations. 

The PH method was first invented to explain the behavior of gold nanoshell 

plasmons[l, 16]. In the PH theory, conduction electrons of metals are regarded as 

irrotational, incompressible fluids confined to a uniform positive background. The 
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primitive plasmons arise at each surface of a metallic nanostructures due to defor­

mation of the fluid. The kinetic energy associated with the plasmons is balanced by 

a potential energy arising from the electrostatic interaction of the surface charges. 

Plasmons interact electrostatically with those from other surfaces in terms of in­

stantaneous Coulomb potential. The PH method has been applied to several differ­

ent types of nanostructures such as nanoparticle/surface[17], multi-particle[18, 19], 

nanoparticle/film[20], nanoparticle/wire[21] systems and successfully explained the 

shift of plasmon resonance in terms of coupling among different plasmon modes in 

analogy with molecular orbital theory. 

Surface plasmon modes in metallic thin films and nanoshells may be viewed as 

arising from bonding and antibonding plasmon resonances formed by hybridization of 

primitive plasmons associated with the two surfaces confining the metal. In Chapter 2, 

I discuss the nature of the bonding and antibonding metallic film and nanoshell plas­

mons as a cornerstone of PH theory. Because conceptually symmetric and antisym­

metric surface plasmon modes in thin metallic film have not been clearly defined, the 

unclear' definition may lead to misunderstanding of the film plasmon modes[22, 23, 24]. 

The lower energy bonding plasmon mode is a symmetric alignment of the primitive 

plasmon modes associated with the two surfaces, while the higher energy antibonding 

mode has an antisymmetric alignment. This alignment of surface charges is counterin­

tuitive since one would expect the Coulomb repulsion to be lower for an antisymmetic 
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alignment. I will also show that the plasmon dispersion for a planar thin film can be 

obtained from the plasmon resonances of a metallic nanoshell in the limit of infinite 

radius. 

After clarifying the bonding and antibonding plasmon modes in thin metallic film 

in Chapter 2, I will discuss the optical properties of a subwavelength hole in a thin 

metallic film in Chapter 3. Theoretical studies on the diffraction of light through sub-

wavelength holes in conducting screens began a half century ago with studies by Bethe 

and Bouwkamp[25, 26]. However, the nanosized aperture or nanohole in a thin metal 

film has received particular attention since the discovery of the extraordinary optical 

transmission (EOT) phenomenon in nanohole arrays [27]. Near-field optical experi­

ments and modern numerical techniques have provided clues toward understanding 

this effect, but the underlying physical mechanisms for enhanced transmission are 

not yet fully clarified. Based on PH theory, I show that the microscopic origin of the 

nanohole plasmon resonance is a collective state formed by propagating thin film sur­

face plasmons of wavelengths equal to integer fractions of the hole diameter. It is also 

shown that the hole plasmon resonance (HPR) depends strongly on the polarization 

of the incident light due to the optical coupling between antibonding film plasmon 

modes and perpendicularly polarized light to the film surface. The polarization de­

pendency of HPR can be observed by using time-domain terahertz spectroscopy. 

In Chapter 4, I discuss the coherent plasmon-exciton coupling between the local-
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ized plasmons of a nanoshell and the excitons of molecular J-aggregates adsorbed on 

its surface in Au nanoshell/J-aggregate complexes, in which the properties of both 

the plasmon and the exciton are modified by their mutual interaction. The molec­

ular adsorbates can modify the physical properties of nanoparticles by shifting their 

surface plasmon resonance,[28] or adsorbate properties such as fluorescence can be 

quenched or enhanced by the influence of a nanoparticle substrate. [29, 30] It has re­

cently been shown that metallic nanoparticle-molecular adsorbate complexes can be 

designed that function as nanoscale pH meters[31], light harvesters[32], and optically 

responsive, active nanocornplexes[33]. Localized surface plasmons in nanoparticles 

are spatially confined and have significantly enhanced fields at the surface relative to 

the incident excitation field. This enhanced near field can strongly modify the proper­

ties of molecules, molecular complexes, or other excitonic systems, within the fringing 

field of the nanoparticle. Based on Gans theory and a Mie's calculation method, I 

calculate the optical absorption spectra of the plasmon-exciton hybridized states of 

the complex and compare the theoretical results with experimental measurements. 

Chapter 5 discusses the plasmonic and optical properties of metallic tori using 

the PH method. I show that the plasmon resonances in a nanotorus result from 

hybridization of primitive plasmon modes that can be described as toroidal harmonics. 

The energies of the hybridized plasmon modes depend on the aspect ratio of the 

torus, which is defined as the ratio of the radius of the tube to the radius of the ring. 
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The plasmonic structure and optical absorption spectrum are found to be strongly 

dependent on the polarization. For polarization parallel to the ring, two distinct 

features appear- in the absorption spectrum: A low intensity, high energy feature 

corresponding to the xcitation of several higher order overlapping torus modes and 

a stronger low energy feature corresponding to dipolar plasmon oscillation in the 

plane of the ring. The energy of this resonance is strongly dependent on the aspect 

ratio of the torus. For aspect ratios smaller than 0.8, it is shown that the dipolar 

mode can be described analytically as an infinite cylinder plasmon of a wavelength 

equal to the circumference of the torus. For light polarized perpendicular to the ring, 

the spectra display two very closely spaced modes which can be interpreted as the 

bonding and antibonding combinations of two infinite cylinder plasmons of different 

azimuthal symmetry. The energies of these modes are only weakly dependent on the 

aspect ratio of the ring. The calculated optical properties are found to be in excellent 

agreement with results from numerical FDTD calculations. 

In chapter 6, I summarize the main conclusions of previous chapters in this thesis. 

Based on plasmon hybridization theory, in chapter 2, I clarify the nature of plasmon 

modes of thin metal films and metallic nanoshell particles. In chapter 3, I explain the 

physical mechanism of the hole plasmon resonance in optical spectra for individual 

subwavelength holes in thin metal film. In chapter 4 and 5, I extend the plasmon hy­

bridization theory to more complex structures of nanoparticles to analyze the optical 
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properties of thoes. The coherent coupling between the localized plasmons of a metal­

lic nanoshell and the excitons of a J-aggregate molecules layer covering the metal gives 

rise to hybridized energies for plasmon-exciton coupling. The plasmon hybridization 

theory can also explain the optical properties of toroidal metal nanoparticles. 



Chapter 2 
Bonding and antibonding metallic film and 

nanoshell plasmons 

2.1 Introduction 

Metallic films and nanoshells are examples of tunable plasmonic nanostructures 

with important applications in waveguiding,[5, 34, 35] as nanoantennas,[7, 8, 36] 

metamaterials,[ll, 12] chemical and biological sensing,[13,14, 37] as light manipulators,[38] 

and biomedical applications. [15] Much recent work has been devoted to the metallic 

nanoshell where the plasmon resonance can be tuned very simply by varying the ratio 

of the shell thickness and overall radius. [2, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49] 

For both structures, the plasmon modes can be expressed as linear combinations 

of the primitive plasmons associated with the two individual surfaces confining the 

metal. For a planar surface, the primitive plasmon mode is described by the two 

dimensional wavevector k describing its propagation vector in the surface plane and 

for the spherical surface, the mode index is its multipolar symmetry (/, m). In both 

the shell and film geometries, the interactions are diagonal in the mode indices re­

sulting in hybridized bonding and antibonding plasmon modes of a common mode 

index. [50] The lower energy bonding plasmon mode is a symmetric alignment of the 

primitive plasmon modes associated with the two surfaces while the higher energy an­

tibonding mode has an antisymmetric alignment. This alignment of surface charges 
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is counterintuitive since one would expect the Coulomb repulsion to be lower for an 

antisymmetric alignment. 

2.2 Bonding and Antibonding Plasmon Modes 

In this thesis I provide a simple physical explanation for why the symmetric align­

ment of surface charges results in a lower energy mode. This attractive interaction is a 

consequence of the incompressibility of the electron gas which results in the primitive 

plasmons associated with one of the surfaces also inducing secondary surface charges 

on the opposite side of the metal. The attractive interaction between the primary 

charges and secondary charges on the same surface is found to be larger than the 

repulsive interaction between primary charges on opposite surface thus favoring the 

symmetric alignment. 

In the following we model the dielectric properties of the metals using a Drude 

Model (DM), e(u) = 1 - u2
B/UJ(LU - i5) with 0^=2.9 eV and 5=0.1. Although this pa­

rameterization only provides a semi-quantitative description of the dielectric response 

of a real gold metal,[51] its simplicity reduces the complexity of the mathematical for­

malism used below. We have confirmed that all of the conclusions presented in this 

paper remain valid also for more realistic dielectric permittivities and arbitrary di­

electric surroundings. 

In Fig. 2.1 we show Mie calculations of the extinction spectrum, field enhance­

ments and charge density amplitudes for a nanoshell of geometry (20,25) nm (inner 
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Figure 2.1 Mie calculations of the extinction spectrum (a), electric field enhancements 
(b) and charge density amplitudes (c) for the bonding 1.02 eV (left) and antibonding 2.71 eV 
(right) dipolar resonances of the nanoshell. The geometry of the nanoshell is (20,25) nm 
with dielectric data modeled using the DM. 

radius 20 nm and outer radius 25 run). The charge density amplitudes were obtained 

from the divergence of the electric field. The two features in the extinction spectrum 

of Fig. 2.1a are the bonding dipolar mode at 1.02 eV and the antibonding mode at 

2.71 eV. The symmetric alignment of the surface charges for the bonding mode is 

apparent both in the field enhancement and charge density amplitude plots. 

In Fig. 2.2, we show the dispersion relations, electric field profiles and charge 

distribution amplitudes for the plasmons of a thin film modeled using the DM and 
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Figure 2.2 Exact retarded calculation of the bonding and antibonding film plasmon 
dispersion (a), electric field profiles (b) and schematic surface charge density distribution 
(c) for the bonding (left) and antibonding (right) film plasmon of wavevector |fc|=40 //m"1. 
The film is modeled using the DM permittivity and the film thickness is T=20 nm. The 
dashed fines are the result from PH Eq. (2.5) and the red dotted line is the light line. 

calculated using an exact electromagnetic approach. [52, 53, 54] The lower branch 

is the bonding film plasmon and the upper is the antibonding branch. For large 

wavevectors the splitting between the two plasmon branches increase with decreas­

ing wavevector. For small wavevectors, the two branches interact strongly with the 

photon and exhibit an avoided crossing which push the energies of both film plasmon 

modes below the light line. As for the nanoshell, a symmetric alignment of the surface 
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charges for the lower energy bonding mode is apparent. The finding of a lower energy 

for the charge symmetric alignment of the film and nanoshell plasmon modes also 

applies for larger systems where retardation effects play a more dominant role. 

We now proceed to investigate why the symmetric alignment of surface charge 

density results in a lower energy plasmon mode than the seemingly attractive an­

tisymmetric alignment. In a fully retarded electromagnetic approach this becomes 

a very complicated task. However, as we will show below, the underlying physics 

emerges very clearly without unnecessary mathematical complications in the electro­

static: limit. To do this we employ the Plasmon Hybridization (PH) method which is 

an exact analytical method for the description of plasmons in the nonretarded qua-

sistatic limit.[1] The PH approach has been used previously to model nanoshell and 

film plasmons.[16, 20] For the small nanoshell discussed in Fig. 2.1, the PH method 

gives the same result as the Mie calculation and provide an exact description of the 

plasmons. For the thin film plasmons as shown in Fig. 2.2, the PH approach provides 

an accurate description for wavevectors larger than 20 / jnr 1 (wavelengths smaller 

than 300 nm) where retardation effects are negligible in the present geometry and 

DM for the metallic permittivity. 

In the PH method, the plasmons are modeled as incompressible deformation of the 

electron fluid of uniform electron density no constrained above a positive background 

provided by the metal ions. The physical deformation field of the conduction fluid can 
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be expressed as a gradient of a scalar potential r\ which satisfy Laplace equation. [16] 

In geometries where Laplace equation is separable, 7? can be expanded in a complete 

basis set, primitive plasmons, with time-dependent amplitudes. The normal modes 

are readily obtained from the Lagrangian of the system by application of Euler-

Lagrange equations. 

2.3 Film Plasmons 

For a thin planar film of thickness T, r\ can be expanded as a sum of primitive 

plasmon modes of a common two-dimensional wavevector A:, [20] 

Vs = p^y*-*-** + Q^ty^-^^, (2.i) 

where the amplitudes P^ and Qjf a r e the primitive surface plasmon mode amplitudes 

associated with the upper and lower film surfaces and the dots represent the time 

derivatives. The coordinates p and z refer to the lateral and and perpendicular 

coordinates of the electron liquid in the film and k = \k\. The interaction between 

the primitive plasmon modes is diagonal in A:,[20] and this subscript will therefore be 

omitted in the following. 

Each primitive plasmon induces surface charges on both surfaces of the film. The 

surface charge densities a are obtained from, a = n 0 e | | where h is the surface normal 

vector and e is the charge of an electron. As illustrated in Fig. 2.3, the primitive 

plasmon mode P induce a primary surface charge of amplitude a'P = en0kP on the 
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Figure 2.3 Illustration of the primary and secondary charge density distribution induced 
by the primitive plasmon modes Pg (a) and Q^ (b). 

upper surface and a secondary surface charge of amplitude a"P = — e~kTa'P on the lower 

surface. Analogously, the primitive plasmon mode Q induces a primary surface charge 

a'q — enokQ on the lower surface and a secondary surface charge a'q — —e~kT(TQ on 

the upper surface. The electrostatic interaction between the surface charges can be 

evaluated analytically. The self interaction between the surface charges associated 

with the individual primitive plasmon modes P and Q leads to potential energies 

proportional to P2 and Q2. The interaction between the two primitive plasmon 

modes can be expressed in terms of the instantaneous Coulomb interaction between 

the different surface charges as 

VPQ = V[a'P, a'Q] + V[a'P, <r£] + V[a"P, a'Q] + V[a'P, oQ], (2.2) 
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where 

V[a'P,a'Q} = 2imle2ke'kT PQ 

V[of
P,o»Q]=V[oP,o'Q] = -V[oJ,,</g] 

^ k p , ^ ] = e~kTV[a'P,a'Q]. (2.3) 

The Coulomb interaction between the two primary surface charges clearly is repulsive 

for a symmetric alignment of the primitive plasmon modes. However, the interaction 

between primary and secondary surface charges is attractive and counters this repul­

sive interaction and thus favors the symmetric alignment of surface charges observed 

in the bonding film plasmon modes. The Lagrangian for the primitive plasmon modes 

of wavevector k takes the form,[20] 

LFUm = ^lk{l^e^T^pi_^pl 

where me is the effective mass of a conduction electron, and the bulk plasmon fre­

quency, UJB = J4im0e
2/me). This Lagrangian can be diagonalized trivially by intro­

ducing the normal modes M^± = (l/v/2)(-P^ T Q%) where the subscripts — and + 

refer to charge-symmetric bonding and charge-antisymmetric antibonding modes. In 

the absence of background dielectrics, the energies of the film plasmon modes take 

the form: 
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Figure 2.4 Illustration of the primary and secondary charge density distribution induced 
by a primitive dipolar (1=1) plasmon modes 5; (a) and C; (b) for a nanoshell. 

2.4 Nanoshell Plasmons 

For a spherical metallic nanoshell of inner radius a and outer radius b, the scalar 

potential r\ can be expanded as a sum of primitive plasmon modes of a common 

multipolar index (Z,m),[16] 

nNS 
'km 

I I . ja2l+l . l 
Yimffl, (2.6) 

where Yim(Q) is a spherical harmonic, and the amplitudes 5/m and Cjm refer to the 

primitive plasmon associated with the outer and inner shell surfaces respectively. As 

for the metallic film, the interaction between the primitive plasmon modes is diagonal 

in (l,m). The plasmon energies do not depend on the azimuthal multipolar index m 

which therefore will be dropped in the following. 

As illustrated in Fig. 2.4, the primitive plasmon mode 5yTO induces a primary 

surface charge a's = enoJ-^Si on the outer surface, and a secondary surface charge 
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a"s = —(lY^cr's on the inner surface. The cavity plasmon Cim induces a primary 

surface charge a'c = enoJl-^fQ on the inner surface, and a secondary surface charge 

a'c = — (f )l+2o'c on the outer surface. As for the film, the electrostatic interaction be­

tween the surface charges can be evaluated analytically. The self interactions between 

the surface charges associated with each primitive plasmon mode gives potential en­

ergies proportional to Sf and Cf. The interaction between the two primitive plasmon 

modes cab be expressed as a sum of the interaction between primary and secondary 

charges, 

Vsc = V[a's,a'c] + V[a's,o"c\ + V\a%a'c] + V[o»s,o£], (2.7) 

where 

„ „ Jl(l + 1) /a\( '+i/2) 
V\a's,a'c] = ^y^^ril) StC, 

V[o>3,o»c] = V[^,a'c] = -V[a's,a'c] 

V\o»ayc] = (-bf
+1V[a's,a'c}. (2.8) 

Thus, as for the metallic film, the repulsive interaction for a symmetric alignment of 

the primary charges is countered by a twice as large attractive interaction between 

the primary and secondary surface charges. This attractive interaction results in the 

mode with a symmetric alignment of surface charges having lower energy than the 

antisymmetric antibonding mode. 

The Lagrangian for the primitive nanoshell plasmon modes of multipolar symme-
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try (I, m) can be expressed as, 

LNS = ^{l-i^lSf-^Sf 

+ C?-ullC? + 2u;s,iUcA°r)(l+1/2)SiCl}, (2.9) 

where OJS,I = ^By 2I+T a n ^ wc,( = w # y 2M' This Lagrangian can be diagonalized by 

introducing the normal modes iV/_ = cos&Cj + sin&S/ and iVj+ = sin&Cj — cos & Si, 

where tan& = %C''^'Y (a/b)l+1^2. These modes correspond to the bonding charge-

symmetric (—) and antibonding charge-antisymmetric hybridized nanoshell modes of 

energies, 

,.,2 r 1 / / „ \ 2 M - I " 
(2.10) 

w , , 2 _ ^ B 
" i ± - 2 

1 /, .„ . ., / a \ a + x 

1 ± 2 f f l V 1 + 

and multipolar symmetry Z. 

2.5 Connection between Nanoshell and Film Plasmons 

In this section, we show that in the electrostatic limit, the film plasmon dispersion 

Eq. (2.5) can be derived from the nanoshell plasmon modes Eq. (2.10) in the limit 

of a very large nanoshell of finite thickness T. The relation between the multipolar 

mode index I of spherical nanoshell plasmons and the propagation wavevector k of 

film plasmons is illustrated in Fig. 2.5 for the bonding modes. The situation is 

analogous for the antibonding modes. The surface charge density wave induced by a 

nanoshell plasmon of multipolar order I has 21 nodes along the circumference of the 

sphere. Thus for a nanoshell of geometry (R — T, R) the physical length of a segment 
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with surface charge of the same sign is Li = 2nR/2l. For a large radius R and 

large multipolar index I, this charge deformation is equivalent to a film plasmon of 

wavelength Afc = 2Lt = 2ixR/l. Since the relation between wavevector and wavelength 

for film plasmons is Afc = 2n/k, the relation between I and k can be obtained directly 

from A; = Afc, i.e. I = Rk. Inserting this multipolar index dependence on R and 

(2.11) 

These plasmon energies corresponds exactly to the bonding and antibonding film 

plasmons of wavevector k obtained using Eq. (2.5). 

Figure 2.5 Illustration of the relation between the multipolar index I of a nanoshell 
plasmon and the wavevector k of a film plasmon. The surface charges induced by a bonding 
Z=4 nanoshell plasmon can be viewed as a standing wave of a wavelength Aj. In the limit 
of infinite radius and finite film thickness, this surface charge distribution is equivalent to 
the surface charge distribution of a bonding film plasmon of wavelength Afc = A;. 

taking the limit R —• oo of Eq. (2.10) we obtain 

1 l im UJ+ 

= 

/ .2 

2 

, /,. /R-T\2Rk+l 
± \ lim rr— 

R 

1 ± exp(-ifeT) 
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We note that this derivation was performed in the electrostatic limit. Although 

we made use of the limit of infinitely large nanoshells, the relevant nanoshell plasmon 

modes were those of infinitely large multipolar index / which remain electrostatic since 

the instantaneous Coulomb interactions determining the energies of high multipolar 

index plasmon resonances of a nanoshell are local. At the moment we are unable 

to rigorously prove the equivalence between fully retarded film plasmon modes and 

finite thickness infinite diameter nanoshells plasmon modes. 

2.6 Dielectric and Electrodynamic Effects on Film Plasmons 

As we take into account the dielectric constant effects, the interacting potential 

energy term in the Lagrangian is modified to a screened form in terms of dielectric 

constants. The dispersion relations become 

^fc± = WB< 
(ep + CQC) + (ep - e^e-w ± 2e0e-*r 

where eo is the dielectric coastant of the background or vacuum and e^ is the high 

frequency component of the dielectric function of the metal. In Fig. 2.6a, we show 

the dispersion relation of the thin metallic film in the electrostatic limit with T=30 

nm, e0—l, 630=9.5, and UJB~8.94 eV to consider the Au film. For a very thick film, 

the plasmon frequency will have a constant value of the surface plasmon frequency 

ojs (=2.76 eV) in which the background dielectric effect is included. However, as the 

thickness of the film becomes thinner, the interaction of the primitive plasmons on 
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the upper and lower surfaces increases and the film plasmon energies are split into 

bonding and antibonding modes. 

The eigenmodes of the film plasmons can also be solved via MEs with boundary 

conditions for the given geometrical structure as Fig. 2.2. [52, 53, 54] Here, we only 

consider a transverse magnetic (TM) mode, in which the electric fields propagate in 

the x-direction and are constrained at the interface between the film surface and the 

vacuum to the z-direction. Therefore we make the following ansatz for the electric 

fields in three regions: 

Eue-7oZei(kx-o;t) ; z > 0 

E = 4 (EFue^z + EFle-^z+T^kx-^ ;-T<z<0 , (2-13) 

Ele7o(z+T)ei(kx-o>t) . z < _J, 

where, EU(E') is the electric field of the upper (lower) film surface in vacuum sides, 

and EFu(EF1) is the electric field of the upper (lower) film surface in the film. The 

quantities 70 and 71 are the z components of the wavevector in the vacuum and the 

film respectively, and have the form 7? = k2 — e,(a>/c)2; (i — 0,1), which are given 

by inserting Eq. (2.13) to the MEs, where t\ is the dielectric constant of a metallic 

film. The dispersion relation of the film plasmons are calculated from the boundary 

conditions with the following form 

71^0 + 7o£i = ±e~7lT(7ie0 - 7oei). (2.14) 

Fig. 2.6b shows the dispersion rlations for the metallic film in vaccum. The — sign of 
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spp 

Figure 2.6 (a) Dispersion relations of film plasmons in the vacuum, obtained from 
the electrostatic limit expression Eq. (2.12). The upper solid line is the antibonding film 
plasmon mode and the lower solid line is the bonding film plasmon mode for T=30 nm, 
£0=1) £oo=9.5, and wa=8.94 eV. The doted line is the surfaceplasmon energy (u;.s") including 
dielectric effect 2.76 eV (= UJB/VCO + Coo) as an electrostatic limit dispersion relation of 
SPPs for a thick metal film in the vacuum. The upper inset shows the charge distribution 
of antibonding mode and the lower inset shows the charge distribution of bonding mode.(b) 
Dispersion relations calculated using Eq. (2.14) for a thin metal film in the vacuum with full 
electrodynamics including the retardation effect. The upper solid line is the antibonding 
mode and the lower solid line is the bonding mode for T=30 nm, and ei(u>) = e^ —(J^/uP. 
Opened circle (antibonding mode) and triangular (bonding mode) data points are calculated 
from the dielectric contants of JC data for Au. The dotted line is the dispersion relation of 
SPP for thick Au film, and the dashed line is the light dispersion in the vacuum asw = ck. 
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Eq. (2.14) gives the lower energy branch which corresponds to the bonding mode, and 

the + sign gives the higer energy branch which corresponds to the antibonding mode. 

These two modes are split from the dispersion relation of a single interface, which is 

represented as a dotted line in Fig. 2.6b, as in the case of PH method. However the 

main difference of the dispersion relations by solving MEs and the PH method comes 

from the retardation effect. The dispersion relations of the film plasmons in Fig. 2.6b 

are put under the light dispersion line u> = ck, which is represented by the dashed 

line, since the speed of light c is a finite value. In order to get the dispersion relations 

as solid lines, we used the dielectric function of a metal as ei(a>) = tx — OJ2
B/UJ2 to 

mimic the dielectric functions for Au of the Johnson and Christy (JC) data, and 

opened circle and triangular data points are calculated by the real JC data. [51] In 

the electrostatic limit, the dispersion relations of Fig. 2.6b become Fig. 2.6a. 

In order to compare the dispersion relations obtained by PH method and the 

solution of MEs more analytically, we take the non-retarded limit (c —> oo) for the 

latter, where 70 a n ( i 71 become k, and ei(w) = 1 -Wg/w2 as in the Drude form. Then 

the eigen-frequencies are simply obtained from Eq. (2.14)as UJ± = UsJl ± exp(—kT) 

which are equivalent results with the PH method. We can further investigate the 

eigenmodes from the boundary condition for the normal components of the elec­

tric fields El and E[, El
z = e- 7 l T££ (e0/ei - 70/71) / (eo/d + 7o/7i) • From the non-

retarded limit and the Drude form of dielectric function for ei, for the higher frequency 
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OJ = UJ+, E[ = E1" which means that the normal component of the electric fields on two 

interfaces of the film are aligned in the same direction as each other as in Fig. 1(a) 

and opposite charges are antisymmetrically distributed on the film surfaces as the 

upper inset in Fig. 2.2b. However for the lower frequency to = CJ_, E\ = —E% and 

the normal components of the electric fields at two interfaces of the film are aligned 

in opposite directions of each other as Fig. 2.2a. 

In the nonretarded quasi-electrostatic limit, the SPP may propagate infinitely 

without any loss, because the imaginary part of the SPP wavevector Im[A;,,pp] is zero. 

However, in the realistic case, SPP propagate with finite distance because of the 

intrinsic damping and the ohmic loss. Therefore we calculated Im[&Spp] as a function 

of plasmon energies numerically from Eq. (2.14) using both real and imaginary parts 

of dielectric constant for Au from JC data. [51] In Fig. 2.7, circular data points are 

Im[A:A.pj,] for the antibonding mode and triangular data points correspond to that 

of the bonding mode. The real part of kspp for both of antibonding (lower dotted 

line) and bonding (upper dotted line) modes are plotted together with Im[fcspp]. The 

SPP propagation length of the antibonding mode is about 10 times longer than that 

of the bonding mode for the same plasmon energies, because the energy loss by the 

intrinsic damping of the bonding mode is larger than the ohmic loss of the antibonding 

mode. Im[fcspp] of both bonding and antibonding modes diverge as the plasmon energy 

approach to the surface plasmon energy UJS = 2.76 eV, that SPP can not propagate 



25 

30 

25 

20,®, 
7T 

w 
T3 
T3 

15,- . 
3, 

1 0 ^ 

5 

0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 
Plasmon Energy (eV) 

Figure 2.7 Imaginary part of the SPP wavevector (Im[fcSM,]) as a function of the plasmon 
energy (left axis). Circular data point are for the antibonding mode, and triangular data 
points are for the bonding mode. All data points are calculated with same parameters as 
Fig. 2.6(b) and dielectric constants of JC data for Au. Dotted lines are same dispersion 
relations as Fig. 2.6(b) but we represent the SPP wavevector RefÂ pp] as a function of the 
plasmon energy (right axis). 

for the energies higher than uis-

2.7 Conclusion 

Using simple and universal concepts we have provided an intuitive explanation 

for why the seemingly repulsive alignment of the surface charges associated with a 

bonding nanoshell and thin film plasmon results in plasmon modes of lower energy 

than the seemingly attractive antisymmetric alignment. We have also demonstrated 

that the plasmon dispersion for a thin metallic film can be derived from the expression 

for nanoshell plasmon energies in the limit of a large nanoshell of finite thickness. In 

addition, by considering retardation effect we have calculated the Im[fcgpp] numerically, 

and showed that the antibonding plasmon mode propagates 10 times longer than the 
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bonding mode. The main reason is that the intrinsic damping of the bonding mode 

is larger than the antibonding mode for the same energy. 



Chapter 3 
Optical Properties of a Subwavelength Hole in a 

Thin Metallic Film 

3.1 Introduction 

The optical properties of metallic nanostructures are a subject of considerable fun­

damental and technological importance. The excitation spectrum of a metallic nanos-

tructure is determined by its plasmon resonances, which are collective oscillations of 

the conduction electrons. The energies of plasmon resonances can depend strongly on 

shape and composition of the nanostructure.[55, 56, 57, 58, 59, 60, 61] Examples of 

highly tunable plasmonic nanoparticles are metallic nanoshells[2] and nanorods.[3, 4] 

The tunability of the plasmon resonances of metallic nanoparticles can be exploited to 

position the optical resonances at specific wavelength regions of interest, and has led 

to a wide range of applications across many disciplines in science and engineering. In 

addition to their fundamental importance, plasmonic nanostructures are receiving a 

great deal of attention for their potential applications in areas such as subwavelength 

waveguiding,[62, 63] substrates for surface enhanced spectroscopies, [65, 64, 66, 67] 

sensing, biotechnology and biomedicine.[68, 69, 70, 71] The development of novel 

synthesis methods for nanostructure fabrication[72, 73, 74, 75] and new theoretical 

approaches for the understanding of their optical properties [77, 76, 78, 79, 80, 81] is 

making the field of nanophotonics an area of intense current interest. 
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Among various metallic nanostructures, a nanosized aperture, or nanohole, in a 

thin metal film has received particular attention since the discovery of the extraordi­

nary optical transmission (EOT) phenomenon in nanohole arrays. [27, 82, 83] Near-

field optical experiments have provided clues toward understanding this effect,[84, 86, 

85] but the underlying physical mechanisms for enhanced transmission are not yet 

fully clarified. [87, 88, 89] 

In order to fully understand the properties of complex systems such as nanohole 

arrays and single nanoholes of complex shape, one must first understand the most 

basic system, a single circular aperture in a thin metallic film. The optical properties 

of a single nanohole have been previously studied experimentally by other groups. 

The measured elastic scattering spectra have revealed that a hole plasmon resonance 

(HPR) is tuned to longer wavelengths by increasing the diameter of the hole. [90, 37] 

Near-field scanning optical microscopy (NSOM) experiments have shown that the 

hole acts as a scattering center for surface plasmon polaritons (SPPs).[37, 85] In the 

optical response of isolated holes, it has also been shown that the HPR wavelength 

is sensitive to its local dielectric environment and that the nanohole is useful for 

chemical and biological sensing applications. [90, 91, 92] Several studies of the opti­

cal properties of individual nanoholes in metallic films have been performed using 

numerical approaches with results that agree well with experimental findings. Finite-

difference time-domain (FDTD) simulations have been used to elucidate the origins 
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of fringe patterns in films arising from the near field of a single nanohole,[85, 93] and 

the dependence of hole size and local dielectric environment on the light transmission 

and field enhancement of nanohole systems has been shown.[94] Boundary element 

method (BEM) has also been shown to reproduce the red-shifts of HPRs with in­

creasing hole diameter using transmission calculations. [37] Other methods such as 

the multiple multipole (MMP) technique[95] and analytic calculations based on a 

normal-mode-decomposition technique[96] have shown that SPPs strongly enhance 

the light scattering with subwavelength apertures in a metallic thin film. However, a 

clear picture of the microscopic origin of the HPR and the strong dependence of its 

energy on hole size has not yet emerged. 

In this thesis we provide a simple and physically intuitive picture of the HPR 

in a thin metallic film. In the thin film limit, the plasmons become symmetric and 

antisymmetric linear combinations of propagating surface plasmons localized on the 

upper and lower surfaces of the metal. In this case the plasmon dispersion depends 

strongly on the thickness of the film. [22] Using the Plasmon Hybridization (PH), 

method we show that the dispersion relations of the plasmon modes of a thin metallic 

film with a hole are the same as those of a continuous film. When the hole is present, 

the film plasmons can induce charges along the surface of the hole. Plasmon modes of 

corresponding spatial wavelengths can thus induce a dipole moment across the hole. 

Thase film plasmons, exposed by the presence of the hole, become optically active 
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f̂e/1 
Figure 3.1 Schematic description of geometrical structure for a nanohole in thin film. 
T and o denote the film thickness and the hole radius respectively. Cylinderical coordinates 
(p, <p, z) are also represented. 

and can be directly excited in contrast to the surface plasmon waves of a continuous 

film which require evanescent excitation. [22] It is these film plasmons rather than a 

localized hole-induced plasmon resonance that constitutes the HPR. Since the energies 

of thin film plasmons also depend on the thickness of the film, the energy of the HPR 

will also depend on film thickness. We verify this by measuring the scattering spectra 

of holes of fixed diameter in metallic films of varying thicknesses. To our knowledge, 

the film thickness dependence of the HPR has not been previously examined either 

experimentally or theoretically. 

3.2 Theory 

In the electrostatic limit, the nanohole in a thin metallic film system can be 

treated analytically using the Plasmon Hybridization (PH) method. [16, 20] The in­

compressible deformations of the electron gas in a film can be expressed in cylindrical 

coordinates (p, ip, z), where the origin of the coordinate system is placed in the center 

of the hole with the z-axis perpendicular to the surface. The geometrical structure 

for the hole in a film is described in Fig. 3.1. The primitive plasmon of the system 
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are obtained from the scalar- potential t] 

n = ^ L £ / dkk[P(k, m, t)Jm(kp)eim*ekz + Q(k, m, J ) 4 ( f c / ) ) e ^ r * + T » ] , 

(3.1) 

where I? is the area of the film surface, and Jm is a cylindrical Bessel function of order 

m. The quantities P(k, m, t) and Q(k,m,t) are the time derivatives of the primitive 

surface plasmon modes amplitudes of a wavevector k and azimuthal symmetry m 

associated with the upper and lower film surface. The hole does not need to be 

included in the expression for rj, but will be included when calculating the kinetic 

and electrostatic contributions to the energy. 

The Lagrangian for the primitive plasmons of the hole/film system is diagonal in 

m and can be written as, 

Lm = jdkjdk' [T$(P(k)P(k') + Q(k)Q(k')) + T$(P(k)Q(k') + Q{k)P{k'))] 

- "I [v${P(k)P{k') + Q(k)Q(k')) + V$(P(k)Q(kO + Q(k)P(k'))} . (3.2) 

The kinetic energy 1%™ and the interaction energy V^ terms represent the propa­

gation and scattering of a film plasmon of a wavevector k into another wavevector k' 

respectively. The kinetic energy terms can be written, 

T$ = d{k-k/) + K1(k,k';a) + K3(k,k';a) 

1*<™ = K2(k,k';a) + Ki(k,k';a), (3.3) 
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where 

k'smh((k+k')r) 

" l ( / ' ' A ; , ; a ) = (smhkTsmhk'T)^Jmik'k';a)' 

K,2(k,k';a) = ekTKi(k,k';a), 

ak' 
n3(k,k';a) = j-—K(k,k';a) 

ak' 
Ki(k,k'\a) = -——K(k,k';a) 

K K 
sinh((fc+fc ')r) 

where J'm is the derivative of Bessel function, and 

fa 

Jm(k,k';a)= dppJm{kp)Jm(k'p), (3.5) 
Jo 

for the hole with radius a. 

The total interaction energy is calculated by evaluating the product of the electro­

static potential and the induced surface charges a(f) on all surfaces of the system. [16] 

The coefficients of the interaction energy take the form, 

V$ = S(k-k')-7o(k,k';a)-7Q(k',k;a)+ll(k,k';a)+^(k,k';a) 

Vk™ = -e-kTS(k - k') + e-fc'T7o(/c,k';a) + e~kT
lo{k\k;a) - 72(fc,k';a) + 73(fc,k';a), 

(3.6) 

where 
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7o(fc,fc';o) = ^ = = ^ f c \ 7 m ( * , t f ; a ) , (3.7) 

yoc ( 1 + g-(fc'+fc)T\ _ e-pTfe-kT + e-k'T\ 

7i(k,k';a) = fc' / dpJm{p,k';a)Jm(k,p;a) , 
•/0 y (1 — e_ 2 f e T)(l — e~2k'T) 

r<*> e~pT(l + e~
(k'+k)T) - (e~kT + e~k'T) 

~/2(k,k';a) = fc' / dpJm(p,k';a)Jm(k,p;a) , , 
Jo J (i — e-2fcT)(l — e~2k'T) 

j3(k,k';a) = ak' . ( 1 ~ e~" ')J'm{k'a) [(1 - e~2kT)Jw{ka) 
^(l-e-2kT)(l-e-2k'T) 

' dPJm(pa)Jm(k,p; a)(l - e'kr - e^T - e-^ f e) ' r)] . 
o 

In the absence of the hole, only the delta functions S(k - k') remain in Eqs. (3.3) and 

(3.6) and the Lagrangian becomes diagonal in k and k'. 

To solve for the plasmon modes, the degrees of freedom P(k, m, t) and Q(k, m, t) 

defined in Eq. (3.1) are discretized in k-space. The Lagrangian is then converted to a 

quadratic form which can be solved by application of the Euler-Lagrange equations. 

The calculated dispersion relations for the hole/film system take the form of Eq. (3.12) 

and are unaffected by the hole. 

However, the presence of the hole has a pronounced effect on the optical spectra 

because an incident light wave can couple to the dipolar component of the surface 

charges induced by the plasmon modes around the hole. The interaction of an incident 

multipolar external field and plasmons of the nanohole system takes the form, [16] 

VT = J dSE0(t)r
lYlm(tt)*(f), (3.8) 
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where Eo(t) is the time dependent electric field, and Yim(il) are spherical harmonics. 

In the dipolar limit for parallel polarization, one only needs to consider / = 1, and 

m = ± 1 . The surface integral (dipole moment) of Eq. (3.8) is calculated in the same 

way as for the kinetic and potential energy calculation, and results in 

V/" = J dkD(k)(P{k,±l) + Q(k,±l)) (3.9) 

where the dipolar coupling to the primitive film plasmons are 

D(k) = Ca2(l - e-kr)(J2(ka) + J[{ka)) (3.10) 

and C is a normalization constant. The frequency dependent dipolar polarizability is 

given by 

a(u) = JdSrY;=hm(^(f) (3.11) 

and the optical absorption spectrum is obtained by taking the imaginary part, of the 

polarizability as <J(L>) = ^Im[a(u) + iS)], where the broadening parameter 8 is propor­

tional to the imaginary part of the dielectric function of the metal. The probability 

for excitation of a plasmon mode is proportional to the square of its dipole moment, 

D(k).[50] For large k the dipole moment D(k) vanishes as 1/fc15 resulting in an effec­

tive incident light-plasmon coupling which decreases as 1/fe3. To calculate the optical 

absorption, the interaction term Eq. (3.9) is expressed in our discrete basis and added 

to the Lagrangian which is then solved using matrix inversion. [16] 
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3.3 Experiment 

The method for experimentally fabricating nanoholes is explained in detail else­

where, [90] but briefly: Polystyrene spheres of a chosen diameter (desired diameter 

of nanoholes) are dispersed in a submonolayer onto a PDDA (polydiallyldimethylam-

monium chloride) functionalized glass slide. An Au layer of chosen thickness (here 

20 nm, 30 nm, 40 nm, and 80 nm) is evaporated onto the slide. The polystyrene 

spheres are then removed from the surface by tape-stripping, leaving behind a ran­

dom distribution of nanoholes in the Au film. Scattering spectra were obtained for 

individual nanoholes using dark-field microscopy. [90] A nanohole sample is brought 

into the focus of a 100X reflection dark-field objective (Zeiss). The image of the 

nanohole (a point source of light) is focused onto the slit of one of two imaging spec­

trometers (Acton, MicroSpec 2150i) selected by a beam splitter. One spectrometer is 

coupled to a CCD (Princeton Instruments, PhotonMax) for measurements at visible 

wavelengths, while the other spectrometer is coupled to a 1-D InGaAs array (Prince­

ton Instruments, OMA V) for NIR measurements. Once the image of the nanohole 

is positioned in the slit of one of the spectrometers, a grating is shifted into place for 

spectral measurements. NIR and visible spectra were spliced during data processing. 

The spectra were corrected for the instrument's spectral efficiency using a white cal­

ibration standard (Edmund Optics), and a background spectrum of the Au surface, 

in the vicinity of the nanohole, was subtracted from each spectrum. Film thicknesses 
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measured by atomic force microscopy (Nanonics MV2000) were found to agree closely 

with thicknesses measured during evaporation (Sharon Vacuum e-beam evaporator). 

3.4 Results and Discussion 
3.4.1 Hole Plasmon Resonance for a Nanosized Hole 

To understand the physical mechanism of the HPR, we start by analyzing the 

plasmonic properties and optical absorption of a hole in a thin perfect metallic film 

in vacuum, using a simple approach which neglects retardation effects. This analysis 

provides a simple and intuitive explanation of the microscopic origin of the HPR. 

Specifically, it predicts that for a fixed hole diameter, the energy of the HPR can be 

tuned by changing the thickness of the metallic film. The insight obtained from this 

simple model can then be used to analyze the optical properties of a more realistic 

system, i.e. a nanosized hole in a metallic film deposited on a substrate, modeled using 

realistic dielectric data and including retardation effects. Finally, our experimental 

study shows that the HPR can be tuned by changing the film thickness while keeping 

the hole diameter fixed. 

In the methods section we use the PH method [16] to derive the film plasmon 

dispersion relation and an expression for the optical spectra of a hole of diameter D 

in a thin metallic film of thickness T. We show that the dispersion of film plasmons is 

unaffected by the presence of an individual hole. In an electrostatic approach such as 

the PH method, the optical properties of a nanostructure are scale invariant and can 
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Figure 3.2 Dipolar optical absorption spectra of the hole/film system calculated by the 
plasmon hybridization (PH) method for different aspect ratios, i.e., the ratio of the diameter 
of the hole and the film thickness {D/T) probed by parallel polarization of incident light. 
The spectra are normalized by hole area. The aspect ratios are listed, in the key to the 
right, with color and line style corresponding to the respective spectrum. In the top inset, 
the geometrical structure for our calculation is displayed. 

only depend on the structural parameters of the system as the aspect ratio D/T. In 

Fig. 3.2 we show the calculated absorption spectra for incident light perpendicular to 

the film for several different aspect ratios D/T. For a given aspect ratio, the spectrum 

is asymmetric and consists of a strong absorption feature at low energies, the HPR, 

and several weaker features at higher energies. The figure reveals a clear redshift of 

the HPR with increasing hole diameter. 

In the PH method, the plasmon modes of the film are obtained as linear combi­

nations of the surface plasmons associated with the upper and lower surfaces. The 

dispersion relation for the film plasmons is 

iusp(k, ±) = usy/l±exp{-\k\T), (3.12) 
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where k is the two-dimensional propagation wavevector of the surface plasmon modes. [20] 

The — sign denotes the bonding (B) film plasmon with symmetric alignment of sur­

face charges on the top and bottom surfaces. The + sign refers to the antibonding 

(AB) film plasmon with an opposite alignment of the surface charges. The charge 

alignment of the A and AB modes is illustrated in panels (a) and (d) in Fig. 3.3. The 

surface plasmon frequency is defined as u>s = j2imoe2/me where no is the conduction 

electron density and me is the effective mass of a conduction electron. 

The physical mechanism for the excitation of the HPR is illustrated in Fig. 3.3. In 

the dipole approximation, the coupling of light with surface plasmons is proportional 

to the square of the dipole moment of the plasmons. For this reason, light polarized 

parallel to the surface can couple only to B film plasmons. (Perpendicularly polarized 

light can couple to AB plasmons as shown in Fig. 3.3f.) On a continuous metallic 

surface, the plasmons possess no dipole moment. However, in the presence of a hole, 

the film plasmons can obtain a dipole moment due to the localized surface charges 

induced along the rim of the hole. 

The optimal coupling between light polarized parallel to the surface occurs for 

film plasmons of half wavelength equal to the diameter of the hole, 

k%?~Q.83n/D. (3.13) 

The numerical factor 0.83 is due to the transformation of the wavevector of a plane 

wave in Cartesian coordinates into cylindrical coordinates (diffraction), and is equal 
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Figure 3.3 Charge configuration for Bonding (B) and antibonding (AB) film plasmon 
modes and the mechanism by which a nanohole allows coupling of light to these modes, (a) 
Symmetric charge modulation of B mode, (b) Optimal coupling between a B film plasmon 
mode and light of parallel polarization, (c) Coupling between a higher order B film plasmon 
mode and light of parallel polarization, (d) Antisymmetric charge modulation of AB mode. 
(e) No coupling between any AB film plasmon mode and light of parallel polarization, (f) 
Optimal coupling between an AB film plasmon mode and light of perpendicular polarization. 
Orange arrows represent the polarization direction of the incident light, and green arrows 
indicate the dipole moments resulting from the plasmon induced charges on the surfaces of 
the hole. 

to the ratio of the wavevector for which a sine wave is maximum and the wavevector 

for which a cylindrical Bessel function of order one is maximum. The microscopic 

nature of the HPR in the electrostatic limit is thus a superposition of film plasmons 

centered at the wavevector given by Eq. (3.13). 

As a result, we can expect a strong HPR at an energy 

TVT 
UHPR = usp(kff) = u ^ / l - e x p ( - 0 . 8 3 — ) . (3.14) 

This expression is in perfect agreement with the results in Fig. 3.2 and shows clearly 

that the HPR will redshift both with increasing hole radius and with decreasing film 

thickness. While the redshift of the HPR with hole diameter is a simple geometric 

effect, the redshift with decreasing film thickness can be understood using simple 

electrostatics. For decreasing film thickness, the attractive electrostatic interaction 
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between the surface charges on the opposite sides of the hole increases. 

Larger wavevector surface plasmons can also induce localized dipole moments 

across the hole as illustrated in Fig. 3.3c. The largest dipole moments are induced for 

plasmon wavelengths satisfying ksp = CN • (2N— 1)TT/D where N is an arbitrary integer 

and CN are the corresponding diffraction coefficients. These higher order plasmons 

give rise to absorption features at higher energies. However, the intensities of these 

features are strongly suppressed since the effective interaction with the incident field 

decays as the square of the dipole moment of the film plasmon Eq. (3.10), i.e., as 

1/fc3. Nonetheless, the spectra in Fig. 3.2 clearly reveal weak absorption features at 

larger energies than the HPR. 

A more realistic system consisting of a nanosized hole in a thin metallic film on top 

of a glass substrate is schematically illustrated in the inset of Fig. 3.4b. To determine 

the energy of the HPR, we need to calculate the film plasmon dispersion relations 

including retardation effects and a realistic dielectric description of the materials. 

For a metallic film on a substrate, the dispersion relations of the film plasmons 

can be calculated directly from the Maxwell equations in a planar geometry,[52, 54] 

\ei{uj) 7i(w)y \ei{cj) 7 i ( ^ ) / 

_ ( * - SM) ( * - 3!fe!>) , (3.15) 

where ej(i = 0,1,2) is the dielectric function in each region, i.e., vacuum, Au, and 
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Figure 3.4 (a): Dispersion relations calculated using Eq. (3.15) for a nanohole in a thin 
metal film supported by a glass substrate for different film thicknesses: T=20 nm (red), 
30 nm (green), 40 nm (blue), and 80 nm (violet). The upper branches are the antibonding 
(AB) film pksmon modes, and the lower branches are the bonding (B) modes. Solid lines 
are bound modes, and dashed lines are leaky modes. The light lines for vacuum u> = cfc, and 
for glass (J = ck/rigiass a r e included as a giiide to the eye. The HPR parameters deduced 
from the scattering spectra in Fig. 4 are shown in symbols: triangles (D=220 nm), diamonds 
(D=150 nm). The red stars denote the HPR parameters deduced from the experimental 
data for different D (scale on top of the figure) in Ref.[37] (b): Skin depth of Au (8(X)) as 
a function of wavelength (A) calculated using Eq. (3.16) and JC data. Inset: illustration of 
the penetration 6(X) of the incident light, (c): Energies of HPR calculated using retarded 
(solid lines) and electrostatic (dashed lines) film plasmon dispersions as a function of hole 
diameter D and film thicknesses T=20 nm (red), 30 nm (green), 80 nm (violet). 
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glass respectively. This expression includes retardation effects. To model the gold film 

ei(w), we use the Johnson and Christy (JC) data. [51] For the glass substrate, we use a 

constant dielectric permittivity of e2 = 2.25. The quantities 7, are the perpendicular 

components of the wavevector and have the form 7? = k2 — 6j(u;/c)2. The dispersion 

relation can be obtained analytically by solving Eq. (3.15); the imaginary part of ei 

does not affect this solution as long as surface plasmon oscillations remain weakly 

damped.[54] Figure 3.3a shows the dispersion relations of metallic films of several 

thicknesses supported by a glass substrate. To emphasize that these plasmons are 

calculated using a fully retarded approach, we refer to the energies of these modes as 

surface plasmon polariton modes (SPP) with energies uispp{k). As in the electrostatic 

limit, for each wavevector two SPP modes corresponding to a symmetric and anti­

symmetric alignment of the surface charges on the two surfaces of the film. For SPP 

modes in this geometry, the modes are classified as "bound" if the modes lie below 

the light line for glass and "leaky" if the modes lie below the light line for vacuum 

but above the light line for the glass substrate. For the small wavevectors shown 

in Fig. 3.4a, the antibonding modes are "leaky" i.e., bound at the metal/vacuum 

interface but radiative at the metal glass substrate interface. For larger wavevectors, 

these antibonding modes lie below the glass light line and are therefore bound at both 

interfaces.[37, 53] 

For a realistic description of the interaction of light with a nanosized hole we also 
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need to include the penetration of light into the metal around the hole (Fig. 3.4b, 

inset). This penetration increases the effective size of the hole and alters the reso­

nance condition of Eq. (3.13) obtained using the nonretarded PH method. A rigorous 

calculation of 5 would require taking into account both quantum and cavity quantum 

electrodynamic effects. As a simple estimate of this effect, we assume that the pen­

etration depth 5 is equal to the conventional skin depth. For a planar geometry, the 

skin depth of a metal is equal to: 

6{UJ) = ^ T ( V ^ H ' + ̂ H 2 - e«M)"1/2 , (3.16) 

where e#(u;)(e/(w)) is the real (imaginary) part of the dielectric function, ui is the 

angular frequency of the light, and c is the speed of light. The skin depth 8{u>) for 

Au, calculated using JC data, is plotted as a function of wavelength in Fig. 3.4b. The 

graph shows that in the near infrared (NIR) light can penetrate the Au by as much 

as 20 ~ 35 nm. With the penetration depth included, the optimal coupling occurs 

for film SPP modes of wavevectors centered around 

« = ° - 8 3 ' D T 2 ^ ' (3'17) 

where U>HPR — ^spp(k^). This equation predicts that the energy of the HPR can be 

directly obtained from the dispersion relation for the film SPP modes. We will refer to 

the parameters {k^, UJHPR) as the HPR parameters. Using this approach we can now 

analyze results from a recent study of the effect of hole diameter D on the HPR of a 
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hole in an Au film of thickness T=20 nm.[37] The energies of this HPR measurements, 

along with our prediction for the SPP wavevector Eq. (3.17), are shown in Fig. 3.4a. 

The HPR parameters follow the dispersion curve well and provide support for our 

simple model for the excitation mechanism of the HPR. The deviations from the 

experimental data may be due to material parameters, our oversimplified expression 

for the penetration depth 5, or that the fabricated holes are not perfectly cylindrical. 

In this previous study they also directly measured a wavelength XSSP ~ 285 nm of 

the SPP mode excited by 633 nm laser light for a D= 60 nm diameter hole. This 

result is in good agreement with Eq. (3.17), which predicts k^ « 2.2 x 107 in - 1 

corresponding to a wavelength of 280 nm. 

In Fig. 3.4c, we show the energy of the HPR as a function of hole diameter 

and film thickness. The figure directly shows the tunability of the HPR with these 

parameters. For comparison, we also show the results calculated using film plasmon 

dispersions determined using an electrostatic approach neglecting retardation. The 

effect of retardation is a redshift of the long wavelength film plasmons. This redshift 

results in a stronger dispersion of the film plasmon and thus a stronger dependence 

of the energy of the HPR on hole diameter. Retardation effects also decrease the 

coupling of the plasmon induced charges on the opposite surfaces of the film leading 

to a reduced film thickness dependence of the long wavelength bonding film plasmon 

modes. This is why the retarded calculation gives a weaker thickness dependence of 
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the HPR compared to the nonretarded calculation. 

Figure 3.4 shows characteristic scattering spectra of individual holes of 220 nm 

and 150 nm diameter in Au films of varying thickness. These data clearly illustrate 

the predicted redshift of the HPR with decreasing film thickness. For D=220 nm, 

the HPR shifts from 897 nm to 1020 nm when the thickness of the film changes from 

80 nm to 20 nm. For D=150 nm, the HPR redshifts from 755 nm to 900 nm as the 

thickness of the film is decreased from 40 nm to 20 nm. This figure also clearly shows 

the previously observed redshift of the HPR with hole diameter for constant film 

thickness.[90] As noted previously, the HPR spectra are significantly broader than 

individual nanoparticle spectra. [90, 37] We believe that this is due to the fact that a 

distribution of film SPP modes of wavevectors centered around the optimum film SPP 

wavevector k^ given by Eq. (3.17) can be excited. For an individual nanoparticle, 

only a distinct plasmon resonance is excited. 

The energies of the HPR shown in Fig. 3.5 along with the corresponding wavevec­

tors obtained using Eq. (3.17) are shown in the dispersion relations in Fig. 3.4a. The 

experimental data follow the theoretical predictions very well. For instance, not only 

does the HPR redshift with decreasing film thickness, but the magnitude of the shift 

is also smaller at higher energies, exactly as predicted by the dispersion relations. We 

also see the weak shoulders in the shorter wavelength (higher energy) region of the 

scattering spectra, which we believe may be due to excitation of higher order B modes. 
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Figure 3.5 Experimental measurement of optical scattering for different hole/film sys­
tems, (a) individual nanoholes with diameter 220 nm and film thicknesses 80 nm, 40 nm, 
and 20 nm with corresponding peak positions at A# = 897 nm, 912 nm, and 1020±54.6 nm. 
(b) individual nanoholes with diameter 150 nm and film thicknesses 40 nm, 30 nm, and 
20 nm with corresponding peak positions at AH = 755 nm, 815 nm, 900 nm. Except for the 
T=20 nm and D=220 nm hole, the standard deviations of A/? are less than 1.5%. 
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The experimental geometry also allows for the excitation of "leaky" antibonding film 

SPP modes, which should appear around 450 nm. These would be strongly damped 

due to interband transitions, which contribute below 500 nm. We believe that the 

small peak around 450 nm is most likely caused by interband transitions. 

The present approach could in principle be extended to individual nanoholes of 

arbitrary shapes and to periodic hole arrays. For a single noncylindrical hole our 

finding that the plasmons of the film were unaffected by the presence of the hole 

would still apply. However, the hole would introduce couplings between SPP modes 

of different azimuthal symmetries m leading to excitations of SPP modes centered 

around several different wavevectors rather than around a single wavevector such as 

the simple resonance condition Eq. (3.17). For a periodic array of holes, the film SPP 

dispersion would no longer be unaffected by the holes but would exhibit bandgaps and 

other features characteristic of periodic structures. The description of such effects and 

their influence on the electromagnetic properties of hole arrays is better handled using 

numerical approaches such as the Finite-Difference Time-Domain or Finite Element 

methods. 

3.4.2 Polarization Dependency 

Based on the plasmon hybridization (PH) theory, it has been shown that the HPR 

is constituted by an induced dipole moment around the hole via incompressible surface 

charge deformation associated with the film plasmons. [97] For simplicity, when we 
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neglect the retardation effect, the film plasmons have two different modes in vacuum 

with energies u>g± = usyl ± exp(-kT), where k is a wavevector of surface plasmon 

modes, T is the film thickness, Us = r&, and UJB is the bulk plasmon frequency. 

Wg_ (wjg+) is the plasmon frequency of bonding (antibonding) mode which surface 

charge densities between the upper and lower surfaces of the film are symmetrically 

(antisymmetrically) aligned.[98] 

The physical mechanism for the excitation of the HPR is illustrated in Fig. 3.6(c) 

and (d). In the presence of a hole, the light can couple with the film plasmons 

when the polarization of the light is parallel to the dipole moment induced around 

the hole. For parallel polarization, assuming the surface plasmon is a plane wave, 

the optimal coupling between light and the bonding mode surface plasmon occurs 

when half of the wavelength equals the diameter of a hole (A/2 ~ D) as discribed 

in Fig. 3.6c. Whereas, perpendicularly polarized light couple to the antibonding 

film plasmons and the optimal coupling occurs when the wavelength of the surface 

plasmon equals the diameter of a hole (A ~ D) as shown in Fig. 3.6d. However, 

when we consider the film surface as a two-dimensional plane, the surface plasmon 

propagating from the rim of the hole is described by a cylindrical Bessel function 

instead of the sinusoidal function. Therefore the optimal coupling conditions for the 

surface plasmon wavevector ksp are given by ksp ~ 0.837r/D for the coupling between 

a bonding film plasmon mode and a parallel polarization light, and ksp ~ 2 • 0.837r/£> 
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Figure 3.6 (a)Dipolar optical absorption spectra of the hole/film system calculated by 
the plasmon hybridization (PH) method for different size of the hole probed by parallel 
polarization of incident light. (b)Dipolar optical absorption spectra of the hole/film system 
calculated by the plasmon hybridization (PH) method for different size of the hole probed 
by perpendicular polarization of incident light. (c)Optimal coupling mechanism between 
parallel polarization light (orange arrow) and induced dipole moment (green arrow) around 
the hole by bonding film plasmon modes. Symetric alignment of charge configuration for 
bonding modes is also described, (d) Optimal coupling mechanism between perpendicular 
polarization light and induced dipole moment around the hole by antibonding film plasmon 
modes. Antisymetric alignment of charge configuration for antibonding modes is also de­
scribed, (e) Comparison between PH method calculation and optimal coupling condition. 
Red (blue) color denotes the coupling between bonding (antibonding) modes and parallel 
(perpendicular) polarization light. 
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for the coupling between an antibonding mode and a perpendicularly polarized light. 

In Fig. 3.6(a) and (b), we show the dipolar optical asorption spectra calculated 

by PH method for both parallel and perpendicular polarization of incident light and 

different aspect ratio D/T. For parallel polarization (Fig. 3.6a), the HPR exhibits a 

strong red shift with increasing hole diameter. We can also expect the resonance peak 

position around LOHPR\\ = wsJl — exp(—0.83^-) from the optimal coupling condition 

for a parallel polarization light and the film plasmon dispersion relation for bonding 

modes. For perpendicular polarization (Fig. 3.6b), the PH theory give rise to a little 

blue shift of HPR with increasing hole diameter. The resonance peaks are expected 

around UIUPRX. = oJsJl + exp(—0.83^) from the optimal coupling condition for a 

perpendicular polarization light and the film plasmon dispersion relation for anti-

bonding modes. However, this feature would be strongly suppressed if we consider 

the retardation effect for a realistic system. Fig. 3.6(e) shows that the HPR calcu­

lated by PH theory explain the optimal coupling condition very well. The square and 

diamond data points are surface plasmon wavevectors of bonding and antibonding 

modes obtained by inserting the HPR frequencies given by PH method calculation 

into the dispersion relation. Each data point shows accurate consistency with optimal 

coupling condition for given diameter of holes. 

Experimentally, in the visible or infrared wavelength range of light, individual 

holes with nanometer scale of diameter have shown the strong red shift of HPR 
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Figure 3.7 Comparison between theoretical expectation and experimental measurement 
of HPR. The red (blue) line denotes the theoretically predicted HPR frequencies associated 
with the bonding (antibonding) film plasmon modes as a function of hole diameters. Red 
square (blue diamond) data points are obtained by the peak positions of tera hertz spectra 
for different size of holes with parallel (perpendicular) polarization light. 

with increasing the diameter or decreasing the film thickness for parallel polarization 

light.[97, 37, 90] The red shift could be explained theoretically in terms of bonding 

film plasmon mode very well. On the other hand, for the perpendicularly polarized 

light, in visible range, the HPR peak position expected by the antibonding mode is 

overlapped around the peak caused by interband transition. Thus we could not have 

strong evidence for the observation of antibonding mode. However, in the tera hertz 

frequency regime, the metal film can be regarded as nearly perfect conductor, and the 

retardation effect strongly affect to the dispersion relation of the thin film. Therefore, 

the dispersion relations of both bonding and antibonding modes become the light 

dispersion line (<JJ%± = ck, where c is the speed of light in the vacuum.) regardless 

the film thickness. Even though the bonding and antibonding film plasmon energies 
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are degenerated in tera hertz regime due to the retardation effect, we believe that the 

plasmon hybridization between upper and lower film surfaces still exist in the thin film 

and the interaction between surface plasmons decays exponentially with increasing 

the film thickness as e~kT. Therefore, based on our theoretical viewpoint for HPR, 

we expect that the HPR for both parallel and perpendicular polarization exhibit 

the red shift with increasing diameter of holes associated with the optimal coupling 

conditions. We have compared our theoretical prediction and the experimental data 

obtained from tera hertz spectra in Fig. 3.7. They show excellent consistency each 

other as we expected. 

3.5 Conclusion 

Using the plasmon hybridization approach, we have presented a simple physical 

explanation for the experimentally observed resonance in the optical spectra of nano-

sized holas in thin metallic films. When the hole is present, the film plasmons induce 

charges on the surfaces of the hole. Film plasmons of certain wavelengths that de­

pend on the diameter of the hole can induce a large dipole moment across the hole. 

The hole thus mediates a coupling between these specific film plasmons and an in­

cident electromagnetic wave. A simple expression for the wavelength of the dipole 

active film plasmons is obtained. For increasing hole diameter, the wavelength of 

the dipole active film plasmons decreases resulting in a redshifted energy of the hole 

resonance. Our approach provides a quantitative explanation for the experimentally 
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observed redshift of a hole resonance as a function of hole diameter in previous exper­

iments on films with fixed film thickness. We predict a redshift of the energy of the 

hole resonance with decreasing film thickness, which is substantiated in experimental 

measurements on individual nanoholes. 



Chapter 4 
Plasmon-Exciton Coupling in 

Nanoshell/J-Aggregate Complexes 

4.1 Introduction 

Metallic nanoparticles in combination with molecular adsorbates provide one of 

the most adaptable architectures for the design and implementation of functionality 

at the nanoscale. The molecular adsorbates can modify the physical properties of 

nanoparticles by shifting their surface plasmon resonance, [28] or adsorbate properties 

such as fluorescence can be quenched or enhanced by the influence of a nanoparti-

cle substrate. [29, 30] It has recently been shown that metallic nanoparticle-molecular 

adsorbate complexes can be designed that function as nanoscale pH meters[31], light 

harvesters [32], and optically responsive, active nanocomplexes[33]. Localized surface 

plasmons in nanoparticles are spatially confined and have significantly enhanced fields 

at the surface relative to the incident excitation field. This enhanced near field can 

strongly modify the properties of molecules, molecular complexes, or other excitonic 

systems, within the fringing field of the nanoparticle. To date, strong plasmon-exciton 

coupling has been observed in metallic films with propagating plasmons,[99, 100] and 

in complex geometries where both propagating and localized plasmons both con­

tribute to the overall interactions of the system.[101, 102] while coherent plasmon-

exciton coupling has been observed between the fixed-frequency localized plasmons 
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in Ag nanospheres and molecular J-aggregates.[103] 

In this thesis, the plasmonic nanostructures used wer Au nanoshells, tunable plas-

monic nanoparticles consisting of a spherical silica core coated with a thin, uniform 

Au layer. (15) By varying the core size/shell thickness ratio, the plasmon energies of 

the nanoparticle can be systematically modified,(16, 17) and can be tuned through 

the exciton energy of the J-aggregate. This allows for the direct measurement of 

the coupling energy of the nanoshell-J/aggregate complexes. In section 4.2, based on 

Gans theory and a Mie's calculation method,I illustrate how to calculate the opti­

cal absorption spectra of the plasmon-exciton hybridized states of the complex and 

analyze the coupling strength of the hybridized states theoretically. I describe the 

experimental method in section 4.3, and discuss the experimental results with theo­

retical calcultion. Then I conclude the coherent plasmon-exciton coupling in section 

4.4. 

4.2 Theory 

In order to describe the nanoshell/J-aggregate complexes system, we consider 

a concentric three-layer model consisting of a two-layer spherical shell particle sur­

rounded by a layer of J-aggregate (Fig. 4.1). ex and eM are dielectric constants of the 

core with radius a and background media, respectively. e2 is a dielectric constant of 

the Au shell with radius b and the optical response is described by the Johnson and 
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Christy (JC) data [51] for realistic case or the Drude model 

where, LU is the frequency of incident field, UJP is the bulk plasmon frequency, V is the 

collision rate of electrons in Au, and e^ is the high frequency component of the Au 

dielectric function. 63 is a dielectric constant of the J-aggregate dye molecule covering 

the Au nanoshell with radius c. Optical response of e^ is phenomenologically obtained 

by the extinction spectra (Fig. 4.2) and the spectra is fitted well by Lorentzian line 

shape with an exciton energy w0 ~ 1-8 eV (690 nrn) 

esM = COOJ - / 2
 Uh • , (4.2) 

where, / is the strength constant of the exciton signal with around 0.01 ~ 0.03 from 

the best fit, 7 is the half width at half maximum (HWHM) of the exciton peak 

and Cooj is the high frequency component of the J-aggregate dye molecular dielectric 

function. 

First, we compute the optical spectra using Mie scattering theory, which solves the 

vector wave equations of a time-harmonic electromagnetic field (E,H) derived from 

the Maxwell equations. [104] In the Mie theory calculation, in order to compare with 

experiment, we use JC parameter for the dielectric constant of Au and for the. dye 

molecule we take e^j = 1, / = 0.02, and 7 ~ 0.052 as the best fitting parameters. 

The core of the nanoshell is silica that we use ei = 2.04, and the dielectric constant of 
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Figure 4.1 Schematic description of gold nanoshell/J-aggregate complex model for 
theoretical calculation, ei, €2, ei, and CM represent silica core, gold shell, J-aggregate 
molecular layer, and surrounding medium, respectively. The core radius (a), nanoshell 
radius (b), and nanoshell/J-aggregate total radius of the complex (c) are shown. 

water media CM — 1-77. For the. metallic nanoshell, it is well known that the localized 

surface plasmon resonance frequency can be tunned by varing the aspect ratio of 

inner and outer radii of the shell. Therefore, in principle, the plasmon frequency 

can be scanned through the exciton mode frequency. Fig. 4.4b,d show results of Mie 

scattering theory for dipole nanoshells and nanoshell/J-aggregate complexes, while 

Fig. 4.5b,d show the quadrupole nanoshell-based complex. Mie theory calculations 

accurately reproduce the experimental extinction spectra for both nanoshells and 

nanoshell?J-aggregate complexes. This implies that the coupling of plasmons and 

excitons can be microscopically understood in the classical electromagnetic context. 

Next, we apply Gans theory to analyze the nanoshell-J-aggregate complexes sys-
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tern. However, Gans theory probes only the dipolar component of plasmon modes 

because it is quasielectrostatic approximation. The electric potential of the concentric 

two-layered spherical shell particle of Fig. 4.1 in the uniform external electric field 

along the arbitrary one direction is calculated by solving Laplace's euqation associ­

ated with boundary conditions. Then, the polarizavility a of this system is obtained 

from the induced dipole moment divided by the external field. [105] This is expressed 

as 

where 

a = 47re0c
3 ^ C " , (4.3) 

A-2(b-) B 
teff = 68- , ; { - . (4-4) 

A = (2e3 + c2)(2e2 + e1) + 2(e3-e2)(e2-e1)(^j , 

B = (e3-e2)(2€2 + ei) + (e3 + 2 e 2 ) ( e 2 - e i ) ( | ) , 

and eo is the permittivity of free space. 

The polarizability becomes frequency dependent after substituting the expressions 

for e2 and €3 from Eq. (4.1) and Eq. (4.2) into Eq. (4.5). The optical absorption (a(u;)) 

is then calculated from the frequency dependent polarizability (a(a;)) by the following 

formula: 

U(UJ) — UJIVLI [cx(u;)]. (4.5) 
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For an analytical model, we use the following Drude parameters: e^ = 9.5, wv = 

9.0 eV, T = 0.5 eV for Au nanoshell and the Lorentzian parameters as e^j = 1, 

/ = 0.02, 7 = 0.05 for J-aggregate dye molecule. The new resonance frequencies 

(uf_) are calculated from the equation ^ M = 0 associated with Gans theory. These 

new resonant modes correspond to plasmon/exciton hybrid states resulting from the 

hybridization of the symmetric Au-nanoshell dipolar plasmon mode (o>i_) and the 

resonant exciton mode (UQ). As clearly shown in Fig. 4.4e, Gans theory results are 

very similar to the results from experiment and from Mie scattering theory. Note that 

the theoretical dispersion curves are obtained in a similar manner as the experimental 

dispersion curves. 

In order to estimate the coupling strength between plasmons and excitons analyt­

ically, we need to simplify the model parameters. For instance, by fully considering 

the dielectric effects, even the dipolar nanoshell plasmon modes are very complicated 

as 

where 

Cx = ea + 4eoo + 4eM - 2(a/6)3(2eoc - 2eM - a) 

±yj(ei ~ 4eM)2 + 4(a/b)*(eM - exf + 4(a/6)3(ef + 13eieM + 4e|,) 

C2 = (2eM + eoc)(e1 + 2e0 0)-2(a/6)3(eM-eoo)(ei-Coo)-
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A simple analytical model for the coupling between the exciton and the plasmon can 

be derived by assuming that e^ = 6M = £1 = 1. In this limit, the tunable plasmon 

frequencies of Au nanoshells are 

- ,2 

, .2 _uJP i ± a r i v l + 4 ' ( ' + 1 ) ( ! ) 
2M-1 

(4.7) 

where I is the order of spherical harmonics, and / = 1 is dipolar component, I = 2 

is quadrupolar, I = 3 is octupolar etc., and the — (+) represents symmetric (anti­

symmetric) coupling mode.fl] By varying the ratio a/b, the symmetric Au-nanoshell 

dipole plasmon mode 

LUp 

V2 Wl_ = - £ | l - ^ / l + 8 ( f 
1/2 

(4.8) 

is tuned across the resonant exciton transition mode (o>o) as shown experimentally 

and theoretically in Fig. 4.4a,b. The interaction between UJX_ and u0 results in the 

formation of new modes (plasmon/exciton hybrid states) which we denote here by 

uf_. The frequencies of these new states can be approximately obtained by equating 

the real part, of the denominator of a(w) to zero and solving the roots in the limit 

where T and 7 approach zero. Using this method, we obtain 

(^J2 = lMi + f) + w?_) ± y(<4-u$_)* + u4D*, (4.9) 

where 

D2 = f (2 + /) + , 1 -bm (4.10) 
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In the hybridization scheme, D2 can be regarded as a coupling term. We can generally 

interpret the coupling of Au-nanoshell plasmons and excitons from Eq. (4.10). The 

coupling strength increases as / and c increase, and does not change significantly for 

a very thick J-aggregate layer. On the other hand, the coupling strength decreases 

as / tends toward zero or as c approaches b. Therefore, the magnitude of splitting, 

\0J1_ — OJ{_ |, is controlled by the exciton oscillator strength and the thickness of the 

J-aggregate molecular layer. 

4.3 Experiment 

Nanoshells with a core radius r\ = 45 nm, resulting in a dipolar plasmon resonant 

with the J-aggregate exciton line, and nanoshells with a larger core radius r\ = 90 nm, 

with its quadrupolar plasmon resonant with the J-aggregate exciton, were designed 

and fabricated. 

The J-aggregate used in these experiments is formed from the dye 2,2'-dimethyl-

8-phenyl-5,6,5', 6'-dibenzothiacarbocyanine chloride, a system having high oscillator 

strengths and narrow transition line widths, suitable for achieving strong coupling 

at room temperature. The J-aggregate form of this dye has been well-studied in 

coupling with other systems, such as cavity photons[106, 107, 108, 109] and prop­

agating plasmons.[99] A 0.5 mM solution of dye (2,2'-dimethyl-8-phenyl-5,6,5', 6'-

dibenzothiacarbocyanine chloride) in a mixture of water/ethanol (50/50 by volume) 

was used throughout the experiment (Fig. 4.2a, inset). Addition of a polyvinyl alco-

file:///0J1_
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hoi solution transforms the dye to its J-aggregate form. Fig. 4.2a shows extinction 

spectra of 6 /uL of the dye solution in 3.5 mL of water (black) and aqueous polyvinyl 

alcohol (red). The J-aggregate form of this dye has a narrow line width of nom­

inally 20 nm and an absorption band that is red-shifted to 693 nm[99] relative to 

the monomer peak absorbance at 547 nm. The peak at 593 nm (black) is due to 

J-aggregate formation in solution resulting from the presence of ethanol. 

Au nanoshells were fabricated as previously reported. [110] Nanoshells are parametrized 

by the inner core and outer shell radii [ri, r?\. In Fig. 4.2b,c, the extinction spectra 

of [ri, r2] = [45, 63] nm nanoshells, and [r\, r2] = [90, 120] nm nanoshells, respec­

tively, are shown (red curves). The nanoshells are fabricated such that the dipole and 

quadrupole plasmon resonance energies are nearly degenerate with the J-aggregate 

absorption band. The [ri, r^] = [45, 63] nm nanoshells possess a strong dipole plas­

mon resonance at 680 nm and a weaker quadrupole plasmon resonance, seen as a 

small shoulder that appears at 570 nm. The [r*i, r?\ — [90, 120] nm nanoshells have a 

strong quadrupole plasmon resonance at 680 nm along with a dipole plasmon at 950 

nm. 

The extinction spectra for nanoshells shown in Fig. 4.2 (red curves) were obtained 

directly prior to the formation of the nanoshell/J-aggregate complex. To assemble 

the complexes, a volume of dye solution is added to an aqueous solution in which Au 

nanoshells are suspended, and mixed well by shaking. The solution is then allowed 
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Figure 4.2 (a) Black: extinction spectrum of dye solution in 50/50 water/ethanol by 
volume. The peak at 547 nm is due to dye monomers while the peak at 593 nm results 
from aggregates induced by the presence of ethanol. Red: transformation of dye monomers 
to J-aggregates with absorption at 693 nm when 6 fxL 0.5 mM dye solution is added to 3.5 
niL of aqueous polyvinyl alcohol. Inset: structure of the organic molecule 2,2'-dimethyl-8-
phenyl-5,6,5',6'-dibenzothiacarbocyanine chloride, (b) Red: extinction spectrum of aqueous 
solution of [r\, r<^\ = [45, 63] nm nanoshells with peak dipole plasmon resonance wavelength 
at 680 nm. Black: extinction spectrum of 3.5 mL of aqueous nanoshell solution to which 6 
[iL of 0.5 mM dye solution is added, revealing two hybrid peaks of almost equal intensity, 
(c) Red: extinction spectrum of aqueous solution of [r\, r2) = [90, 120] nm nanoshells 
with quadrupole plasmon resonance wavelength at 680 nm and dipole resonance at 950 nm. 
Black: 12 fj,L of dye solution added to 3.5 /iL of nanoshell solution results in two hybrid 
peaks. The peaks at 547 and 593 nm can be correlated to the peaks in the black curve in 
(a), (d) Black: extinction spectrum of nanoshell solution. Red: nanoshell and dye solution 
absorption in tandem cell. 
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to sit for at least 45 min, after which the extinction spectrum is measured. The 

resulting extinction spectra are shown in Fig. 4.2b,c (black curves). The dipole and 

quadrupole plasmon peaks shown are strongly modulated by the presence of the J-

aggregates and have been transformed into two new peaks separated by a dip at 693 

nm, which corresponds to the maximum absorption wavelength of the J-aggregate. 

Several control experiments were performed to confirm the formation of the nanoshell/J-

aggregate complex. In one experiment, separate solutions of nanoshells and J-aggregates 

were examined by UV-vis spectroscopy in a tandem cell (STARNA) where the beam 

path traverses the two separate solutions seqiientially. J-aggregates were obtained 

as before, by mixing the dye solution with an aqueous polyvinyl alcohol solution, 

but not in the presence of nanoshells. The extinction spectrum from the tandem 

cell, shown in Fig. 4.2d, appears to be the direct addition of the nanoshell extinc­

tion spectrum and the J-aggregate dye extinction spectrum, quite distinct from the 

distorted line shape observed in the plasmon line width of the nanoshell/J-aggregate 

complexes (Fig. 4.2b,c). This experiment confirms quite definitively that the spectra 

shown in Fig. 4.2b,c do not arise simply from the additive extinction of nanoshells and 

J-aggregates isolated from each other, but instead are directly the result of plasmon-

exciton coupling. 

The nanoshell/J-aggregate complexes appear to be formed through electrostatic 

self-assembly, due to the positively charged dye molecules and the nanoshell surfaces 
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Figure 4.3 (a) SERS and (b) normal Raman spectra of 2,2'-dmithyl-8-phenyl-5,6,5',6',-
dibenzothiacarbocyanine chloride. 

that possess a net negative charge. It is quite possible that the J-aggregate complex 

formation in the presence of nanoshells may be initiated by this electrostatic attraction 

with the nanoshell surface. Following the mixing of nanoshells with dye solution, the 

peak transformation shown in Fig. 4.2b and c from the red spectra to the black spectra 

progresses for 45 min, when it reaches its final, coupled state with no further changes 

in the extinction spectra. The resulting complexes appear to be remarkably stable: 

samples preserved for more than one month did not degrade. The weak spectral 

features that appear as shoulders at 547 and 593 nm in the extinction spectrum of 

the [ri, r2] = [90, 120] nm quadrupolar nanoshell/J-aggregate complex (Fig. 4.2c 

black curve) are attributable to residual dye monomers that remain in solution. 

Surface enhanced Raman scattering (SERS) measurements were also performed 

to confirm the formation of the nanoshell/J-aggregate complex (Fig. 4.3). Nanoshells 
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were first immobilized onto cleaned quartz substrates using a 0.1 % by weight 

polyvinyl pyridine solution in ethanol, a procedure shown previously to yield well-

dispersed single nanoshells on a variety of substrate surfaces. Complex formation 

was performed by immersion of these nanoshell-coated quartz slides into 0.5 mM dye 

solution for several hours. Before acquiring Raman spectra, the sample was rinsed 

several times with water. SERS spectra were obtained using a Renishaw in Via Ra­

man microscope (Renishaw, United Kingdom) with 785 nm wavelength excitation, 

55 //W laser power at the sample, a 63X water immersion lens (Leica, Germany) 

for light collection, and a 30 s integration time. Fig. 4.3 shows the experimental (a) 

SERS spectra of the 2,2'-dimetliyl-8-phenyl-5,6,5',6',-dibenzothiaearbocyanine chlo­

ride complexed with the nanoshells, compared with (b) normal Raman spectra of 

the same molecule in solution (normal Raman spectra of the isolated molecule and 

its J-aggregate in solution were found to be virtually indistinguishable). The strong 

SERS spectra directly confirm that the molecular J-aggregates remain bound to the 

nanoshell surface even after rinsing. 

4.4 Results and Discussion 

In the nanoshell/J-aggregate complexes, the plasmons interact with excitons giv­

ing rise to plasrnon/exciton mixed states. This process can be described as a hy­

bridization between the plasmons and excitons of the complex.[1, 111] Plasmon hy­

bridization theory, which has been developed for the plasmon response of complex 
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nanostructures,[l] can be extended to describe the interaction between nanoshell plas-

mons and J-aggregate excitons to describe this type of complex. In Fig. 4.2b,c, the 

peaks at low energy represent the bonding states (with the plasmonic and excitonic 

excitations in phase with each other) while those at high energy represent the anti-

bonding states (when the plasmonic and excitonic excitations are out of phase). The 

fact that the two peaks in the spectra of Fig. 4.2b,c are of almost equal intensity 

implies that the excitons and localized plasmons are in their strongest interaction 

regime. This is when the exciton resonance energy corresponds to the peak dipole or 

quadrupole pl&smon resonance energy. 

To determine the coherent coupling energy for the localized plasmon/exciton sys­

tem, dispersion curves were obtained for the nanoshell/J-aggregate complexes. This 

was done by tuning the nanoshell plasmon resonance energy across the J-aggregate 

absorption band by varying the nanoshell core size/shell thickness (ri/r2J ratio. 

Nanoshells of dimensions [ru r2] = [40, 58] nm, [40, 55] nm, [45, 63] nm, [45, 60] 

run, [45, 54] nm, and [60, 83] nm were used to obtain data points for the dipole 

dispersion curve (Fig. 4.4); while [ru r2] = [90, 127] nm, [90, 123] nm, [90, 120] nm, 

[90, 115] nm, [90, 110] nm, and [90, 107] nm were used to obtain the data points 

for the quadrupole dispersion curve (Fig. 5). The order in which the nanoshell di­

mensions are listed corresponds to data points in each respective dispersion curve. 

The experimental extinction spectra of the pristine nanoshells in water are shown in 
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Fig. 4.4a and 4.5a, while those of the nanoshell/J-aggregate complexes are shown in 

Fig. 4c and 5c. The number of nanoshells per milliliter of H2O was approximately 

6.68 x 109 for dipole samples and 1.86 x 109 for quadrupole samples. Twelve mi­

croliters of the dye solution was added to 3.5 mL of aqueous solution for each of the 

nanoshell solutions. Extinction spectra of all samples were obtained directly following 

the formation of the nanoshell/J-aggregate complexes. Peak energies of the resulting 

"plexcitonic" complexes were then plotted as a function of the plasmon energy of the 

pristine nanoparticles. 

In the dispersion curves shown in Fig. 4.4e and 4.5e, the low energy plasmon/exciton 

energy is shown in blue and the high energy plasmon/exciton peak is shown in red. 

Uncoupled plasmon and exciton energies are represented by the green and black lines, 

respectively. The dispersion curves display an avoided crossing at the energy posi­

tion where the uncoupled plasmon and exciton energies overlap. The splitting energy 

corresponds to the coupling strength between plasmons and excitons. The coupling 

energy from the dipole plasmon dispersion curve is approximately 120 meV while that 

from the quadrupole dispersion curve is less, approximately 100 meV. 

From our analysis, it appears that the observed splitting energies for our nanoshell/J-

aggregate complexes are limited by the thickness of the J-aggregate layer on the 

nanoparticle surface. On the basis of the molecular absorbance of the dye molecules 

and nanoshells used in this experiment, we estimate that the "effective" thickness, 
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Figure 4.4 (a) Experimental extinction spectra of aqueous gold nanoshell solution show­
ing dipole plasmon tuning. Nanoshell sizes from top to bottom are [r\, T2\ = [60, 83] nm, [45, 
54] nm, [45, 60] nm, [45, 63] nm, [40, 55] nm, and [40, 58] nm. (b) Gold nanoshell extinction 
spectra obtained from Mie scattering theory, (c) Experimental extinction spectra of aque­
ous solution of gold nanoshell/J-aggregate complexes, (d) Theoretical extinction spectra of 
gold nanoshell/J-aggregate complex obtained from Mie calculations. Johnson and Christy 
parameters are used for the Au shell and ei = 2.04 for the silica core. exj = 1, / = 0.02, 
and 7 ~ 0.052 for the J-aggregate molecular layer, (e) Dispersion curve from experimental 
data (diamond), Mie scattering theory (circle dashed line), and Gans theory (dashed line). 
The black and green lines represent uncoupled exciton and plasmon energies. Blue and red 
colors represent low and high energy plasmon-exciton hybrid states, respectively. 
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Figure 4.5 (a) Experimental extinction spectra of aqueous gold nanoshell solution show­
ing quadrupole plasmon tuning. Nanoshell sizes from top to bottom are [r\, r2] = [90, 107] 
nm, [90, 110] nm, [90, 115] nm, [90, 120] nm, [90, 123] nm, and [90, 127] nm. (b) Gold 
nanoshell extinction spectra obtained from Mie scattering theory, (c) Experimental extinc­
tion spectra of aqueous solution of gold nanoshell/J-aggregate complexes, (d) Theoretical 
extinction spectra of gold nanoshell/J-aggregate complex obtained from Mie calculations. 
Johnson and Christy parameters are used for the Au shell and e\ = 2.04 for the silica core. 
CocJ — 1) / = 0-02, and 7 ~ 0.052 for the J-aggregate molecular layer, (e) Dispersion 
curve from experimental data (diamond) and Mie scattering theory (circle dashed line). 
The black and green lines represent uncoupled exciton and plasmon energies. Blue and red 
colors represent low and high energy plasmon-exciton hybrid states, respectively. 
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or the depth of J-aggregate coupled to the nanoshell plasmon, is nominally 4 nm. 

In an attempt to increase the splitting energy of the nanoshell/J-aggregate complex, 

nanoshells were first functionalized with sodium 2-mercaptoethanesulfonate prior to 

complexation with J-aggregates, to increase the negative charge on the nanoshell sur­

face relative to complex formation with pristine nanoshells. The prefunctionalized 

sulfonated nanoshells were then exposed to dye solutions of various concentrations to 

produce J-aggregates of various molecular coating thicknesses. The splitting energies 

of these complexes as a function of the dye concentration used in formation of the 

nanoshell/J-aggregate complexes are shown in Fig. 4.6. While any further increase 

in splitting using this approach is rather small, indicating that the effective thickness 

may already have been reached, this experiment reveals a strong asymmetry in the 

onset of plasmon/exciton interaction in this complex, an effect that may be related 

to dielectric screening or phase retardation effects. [112] 

4.5 Conclusion 

We have shown that the coherent coupling between the plasmons of the nanoshell 

particle and the excitons of the J-aggregate can create the new hybridized state, using 

classical electromagnetic theory. The theoretical calculations of optical absorption 

for nanoshell/J-aggregate complexes could explain the experimental results of the 

extintion spectra. Strongly asymmetric splitting energies as large as 120 meV are 

observable in these complexes, where the splitting energy depends upon the plasmon 
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Figure 4.6 Onset of splitting in plasmon/J-aggregate complex as a function of dye con­
centration in media, which controls deposition of the J-aggregate adlayer on the nanoshell 
surface. Inset: nanoshell/J-aggregate plexciton spectra for various dye concentrations 
shown: 0 fiL (red), 4 fj,L (blue), 10 /xL (black). Spectra shown are offset for clarity. 

mode of the complex. We believe that this result may stimulate interest in the 

fabrication and properties of coupled plasmon/exciton nanostructures with controlled 

coupling, and with optical properties unique to this new class of nanoparticle-based 

materials. 



Chapter 5 
Plasmonic Properties of a Metallic Torus 

5.1 Introduction 

The electronic and optical properties of nanoparticles are topics of considerable 

current interest in nanoscience.[113, 114, 115] Novel nanofabrication and templat-

ing techniques are making it possible to fabricate metallic nanostructures of com­

plex shapes and with unusual properties. [116, 117, 118, 119, 120, 121] The opti­

cal properties of metallic nanostructures are determined by the their plasmon res­

onances which can depend sensitively on their shape, composition, and dielectric 

environment.[122, 123, 2, 81, 124, 125, 126, 127] For certain nanoparticles such as 

nanoshells[128] and nanorods,[129] the plasmon energies can be tuned all the way 

from the visible part of the spectrum well into the mid-infrared. This tunability has 

been exploited in a variety of important applications such as chemical and biological 

sensing,[5] optical manipulation of nanoparticles,[130] plasmonic waveguiding,[131, 

132] metamaterials,[55, 133] and biomedical applications. [134, 135, 136] 

The metallic nanoring or nanotorus is an interesting highly tunable plasmonic 

geometry with significant potential as a substrate for chemical and biological sensing, 

and possible magnetic effects at optical frequencies. [137, 138, 139, 69] The optical 

properties of nanorings have been calculated using the boundary element method,[140, 

141] and the dyadic Green's tensor approach. [142, 143] and the Finite difference Time 
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Domain (FDTD) method. [144] 

In this work, we investigate the plasmonic and optical properties of metallic tori 

using the Plasmon Hybridization (PH) method.[1, 16] We show that the plasmon reso­

nances in a nanotorus results from hybridization of primitive plasmon modes that can 

be described as toroidal harmonics. The energies of the hybridized plasmon modes 

depend on the aspect ratio of the torus which we define as the ratio of the radius of 

the tube r to the radius of the ring R, X = ^ . The plasmonic structure and optical 

absorption spectrum are found to be strongly dependent on the polarization. For 

polarization parallel to the ring, two distinct features appear in the absorption spec­

trum: a low intensity, high energy feature corresponding to the excitation of several 

higher order overlapping torus modes and a stronger low energy feature corresponding 

to a dipolar plasmon oscillation in the plane of the ring. The energy of this resonance 

is strongly dependent on the aspect ratio of the torus. For aspect ratios smaller than 

X=0.8, we show that the dipolar mode can be described analytically as an infinite 

cylinder plasmon of a wavelength equal to the circumference of the torus, 2TTR. For 

light polarized perpendicular to the ring, the spectra displays two very closely spaced 

modes which can be interpreted as the bonding and antibonding combinations of two 

infinite cylinder plasmons of different azimuthal symmetry. The energies of these 

modes are only very weakly dependent on the aspect ratio of the ring. 

The paper is organized as follows. In section 5.2 we present the extension of the 
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PH method to particles that can be described in toroidal coordinates. In section 

5.3, we compare the results of the PH method with FDTD. We examine the effect of 

retardation and present calculations of the local electric field enhancements. 

5.2 Theory 

The PH method has recently been reviewed with several relevant applications and 

will only be discussed briefly here.[59] In short, it is an exact electrostatic approach 

where the plasmons are considered as incompressible deformations of the conduc­

tion electron liquid of a uniform density no with respect to an oppositely charged 

background. The deformation field of the conduction electron liquid is expanded in 

a complete basis (primitive plasmons) which interact with each other through their 

surface charges. These interactions results in hybridized plasmon modes that can be 

expressed as linear combinations of the primitive plasmon modes. These hybridized 

plasmon modes constitute the plasmonic eigenmodes of the system. Since the kinetic 

energy of the deformation field is explicitly accounted for, the Drude contribution to 

the dielectric response is implicit in the method. To account for the dielectric screen­

ing contributed from the ionic backgrounds of the metals or from solvents, only the 

Coulomb interaction between the primitive plasmons is modified. The PH method 

provides a fast and intuitive description of the plasmon modes of a complex nanos-

tructure. When compared to fully retarded approaches,[145, 146] the method has 

been shown to be accurate for nanostructures of physical extents smaller than around 
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a quarter of the wavelength of the incident light. 

5.2.1 Plasmonic structure 

All physical quantities required for the description of the plasmons can be ex­

pressed in terms of a hydrodynamic scalar potential r](r, t) which satisfies the Laplace 

equation, [16] 

V2n = 0. (5.1) 

The spill-out surface charge density a is given by 

<K<) = n o e | | , (5.2) 

where no and e are the number of electrons per unit volume of the metal, and the 

electron charge, respectively, n is the outward unit vector normal to the surface. The 

dot above a indicates the time-derivative. The kinetic energy, T, is given by 

T-^l^n-dS, (5.3) 

where dS is the surface element and me the effective mass of a conduction electron. 

The nonretarded Coulomb interaction energy V, is given by 

In a recent paper we generalized the PH method to nanostructures with a geometry 

that can be expressed in separable curvilinear coordinates. [50] In toroidal coordinates 
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Figure 5.1 A schematic diagram of a torus and the toroidal angular coordinates. The 
origin of the Cartesian coordinates is at the center of the symmetry, and the z-axis is normal 
to the toroidal plane. R and r are the major and minor radii of the torus, respectively. The 
surface of the torus is denned by a = QO (Eq. 5.11). For a point P on the surface of the 
torus, the offset parameter a = rsinhao- As r —• 0, a —* R and the angular coordinate /? 
becomes equivalent to the azimuthal angle in a cylinder. 
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as illustrated in Fig. 1, (a, 0,4>) (following the notation of [147]), the general solution 

to Eq. (5.1) is not completely separable but takes the form 

rj(a, /?>;*) = £ £ G^(*)%„(a, P, <f>) (5.5) 
/J V 

where Glltl,{t) is the time-derivative of the primitive plasmon amplitude and the basis 

functions {^,^(a, /?, 4>)} are the scalar functions for the corresponding primitive plas-

mons. In toroidal symmetry, the primitive plasmons are labeled by the indexes (/i, v). 

The index /u is similar to the multipolar' index m that is commonly used in spherical 

or cylindrical symmetry. As will be demonstrated below, primitive plasmons of dif­

ferent ji will not interact and the allowed values for v is zero and positive integers. In 

the calculations, the summation over v will be truncated at a maximum value umax 

which depends on the geometry of the torus. 

The primitive plasmons ^^(a, /?, <f>) have the form, 

W " . & 4) = y/D(a,p)All:l/(a)BM^M (5-6) 

where 

D(a, /?) = cosh a - cos /?. (5.7) 

Substituting Eq. (5.6) in Eq. (5.1), we obtain the following set of second order differ­

ential equations. 

£ ^ + / * M = 0 (5.8) 
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d^ + »2B(0)=O (5.9) 

The two linearly independent solutions of each of Eq. (5.8), (5.9), and (5.10) 

are, <£((/>) = {cos//0,sin//^}, B(3) — {cosv3,smv6}, and Aflil/(a) = {P^j^cosha), 

Q^ i (cosha)}, respectively. The functions P1* t and Q''_i are the first and second 

modified Legendre functions respectively. The ranges of the spatial variables, a, ft, 

and <f>, are a G (0, oo), 3 € (—ir,+n), and 0 € (—IT, +ir). The solutions must be 

periodic in <j> and 6. Therefore, n and v are zero or positive integers. Because 

of the symmetry of toroid, a rotation of the x and y-ax.es around the 2-axis (see 

Fig. 5.1) by w/2 does not change the physical conditions, and cos/x^ in the old axes 

is equivalent to sin fi<f> in the new rotated axes. Therefore, in the following we will 

use only $/t(</>) = cos //</>. 

The surface of the torus is defined by a = ao given by 

coshao = — = -77 (5-11) 
r X 

where R and r are the major radius and the minor radius of a toroid (See Fig. 5.1) and 

X is the aspect ratio of the torus. The internal (external) space of the toroid is given 

by ft > «o(« < ao). Since the electron fluid is confined in the internal space of the 

toroid, the space of our interest is a > ao- The values and gradients of FM_i (cosh a) 

http://y-ax.es
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are singular at r=0. Therefore, the F'1 x (cosh a) term does not correspond to physical 

charge deformations and should be omitted. The primitive plasmons thus take the 

form, 

W * > P, <f>) = ^D(a,p)Q^(cosha)Bi(/3) c o s M (5.12) 
2 

where the index i denotes the cosu/3 or the sinuP solution for BV(P) in Eq. (5.9) and 

will be referred to as "cosine" and "sine" modes respectively. 

Since both the kinetic and potential energies Eqs. (5.3) and (5.4) involve only 

surface integrals, r\ and Vr; are evaluated at a = OCQ. The surface element is given by 

(5.13) 
= , C 2s inha 0 do = n-^r, —dpaq), 

D2(a0,p) 

where the scale factor is defined as C = y/R2 — r2. The component of Vr/M.V)j normal 

to the surface element is 

V??i -n 

where 

9%,K,i 

da 
a=cto 

c 

a™ 

da 
(5.14) 

+ 

xBl(P) cosn4>, 

a%ly/D(ao,/3) 

(5.15) 

and 

1 
2 : a):'„ = -sinhao<5^_i(cosha0) 

a(2) = 
d Q ^ ^ c o s h a ) 

cfa 

(5.16) 

(5.17) 
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Figure 5.2 Schematic illustration of the top and side views of the surface charge distri­
bution induced by several of the lowest order primitive plasmon modes for a torus of small 
aspect ratio X. 

The derivatives of the modified Legendre functions can be expressed in terms of lower 

order functions. [148] 

The surface charge induced by a primitive plasmon mode is obtained from the 

time-integration of the normal derivative of the corresponding scalar potential Eq. (5.2) 

at the surface ao of the torus. In Fig. 5.2 we schematically illustrate the surface charge 

distribution associated with the lowest order primitive plasmon modes. The index JJ, 
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refers to the <j> variations, and the v index denotes the (3 variation. For /j, = 0, the 

surface charges does not depend on the angle <f>, and there is no u = 0 mode since this 

mode is a compressible deformation. For JJL = 1 the surface charges are of opposite 

signs across the torus. 

The matrix elements of the kinetic energy Eq. (5.3) contain the definite integral, 

cos fj,<j> cos [i'<j)d(j> = 7r( l + <5,4,0)<W- (5.18) 

-it 

where 6^ is the Kronecker delta function. Since a nonvanishing matrix element is 

only obtained for /j, = /j,', the kinetic energy matrix element can be written as, 

T?,iy,ir = C^GM,1/)4(<)GMiJ/,j/(t)<^_i(co8hoo) 

/

IT 

-IX 

aH-"' , _(2) Bi(0)Bt(P)d/3 (5.19) 

where C£ is a constant coefficient defined as 

CH = raomeCsinhao70(/i,/i) 

The calculation of the potential energy matrix element Eq. (5.4) can be simplified 

by expanding the Coulomb potential in toroidal coordinates[149], 

x<5™_i (cosh t*0)P™_i(cosha0) COBm(<f> - (j)') cosn(/3 - /3'), (5.21) 

where the points f*and f1 lie on the surface of the torus a = «o- In this expression €& is 

the so-called Neumann factor,[149] which is equal to 1 if k = 0 and 2 if k > 1. Then, 
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substituting Eq. (5.21) in Eq. (5.4) and carrying out the (f> and <f>' integrations, we 

again obtain finite contributions only for // = / / — m. The potential energy matrix 

element can thus be written as 

V". , , = i - K e ^ ^ ^ C s i n l ^ a o l e„ ( - l ) " " g c » S " f t *l 

aw , „(2) 
2?(ao,/?) ^" 

QC ,(ooshao)i^ .(coshao) f d/3 f d/3' 
^ 2 " 3 7 - T T J—rr 

%y , _(2) 

D(a0,P>) %'"_ 

(5.22) 

cosn(/3 - ^Bl^B^i/^G^^G^At). 

The required nmax for convergence in Eq. (5.21) increases with increasing aspect 

ratio X, and depends on v and v'. We found that an nmax — umax + 3 where umax 

is the largest v included in the summation Eq. (5.5) was sufficient for the largest X 

investigated in this study. 

The integrals over the angles j3 and /?' in Eqs. (5.19) and (5.22) involve products 

of Bl
u and 5*' functions and are zero for cosine-sine combinations (i ^ i'). Thus both 

the kinetic energy and the potential energy matrices are diagonal in // and i and the 

Lagrangian L = £ /M: L^1'1 can be solved for fixed /J, and i. In the equation of motion, 

we renormalize the kinetic and potential energy matrices to T'M and V^1 by dividing 

with Cj. Eq. (5.20) and use the bulk plasmon frequency, 

/ 4 7 r e 2 n ° tn o'i\ 

uB = J — - (5.23) 
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to eliminate no, e, and me. The plasmon frequencies of symmetry /j, and i of the torus 

are then given by the solutions to 

det w2j7i,i _ ^ | s i n h a 0 ( l + ( $ , t , o ) ^ , ; 
47T 

= 0. (5.24) 

We notice that Eq. (5.24) does not involve the scale factor C, and depends only on 

cio of Eq. (5.11). Therefore, the eigenmodes UJ depend only on the aspect ratio X and 

not on the physical size of the toroid as expected in the electrostatic limit.[16] 

5.2.2 Optical absorpt ion 

To calculate the optical absorption, the coupling between the primitive plasmon 

modes and the incident light needs to be added to the Lagrangian of the system. In 

the electrostatic limit the incident light interacts with the primitive plasmons only 

through their dipole moments. Due to the angular symmetry of the torus, we will 

only consider the dipolar interactions for light polarizations in the parallel (x) and 

perpendicular (z) directions. The Cartesian coordinates x and z can be expressed in 

the toroidal coordinates as, 

x = CsmhaoDMy Z = CD{^J)
 (5"25) 

The dipolar couplings for x and z polarization can be written 

VxT = <W0<*Sf (5-26) 

where 

dZf = f{x,z}a^i(iS. (5.27) 
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For parallel polarization, the incident field only couples to fi=l cosine plasmons and 

for perpendicular polarization, only to /x=0 sine plasmons. For a finite aspect ratio 

X, an incident dipolar field can couple to all primitive v modes. However as can be 

seen from the schematic diagram of the surface charge distributions in Fig. 2, sizable 

couplings will only be present for the lowest v. For parallel polarization, the dominant 

couplings are to the fj,=l, u=0 and /x=l, u=\ cosine modes. The magnitude of the 

v = 1 coupling is smaller than the coupling to the z/=0 mode by a factor approximately 

equal to the aspect ratio X. For perpendicular polarization, only the primitive /J.—0, 

v=l sine mode couples significantly to an incident dipolar field. However, for both 

parallel and perpendicular polarization, due to the interactions, all hybridized modes 

will contain dipole-active primitive plasmons and can be excited by dipolar field. 

With the coupling to the incident light included in the Lagrangian, the equations 

of motion take the form, 

'jifrt _ tt>|sinIia0(l + ^ , o ) ^ 
Air 

where G/M = {G^Uii(t)}u is the primitive plasmon amplitude vector, and d'M is a 

vector {d%'z'*}„ where n=l and i refers to cosine modes for for parallel (x) polar­

ization and /u=0 and i refers to sine modes for perpendicular (z) polarization. This 

equation gives the plasmon amplitudes, G, in the presence of the incident light. From 

these primitive plasmon amplitudes, the induced dipole moment (dipolar polarizabil-

ity a(u>)) is calculated. The absorption cross section, <T )̂S(a;) is obtained from the 

girt (5.28) 
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imaginary part of the complex frequency dependent dipolar polarizability,[16] 

Vabs{u) = — lm[a(us + i5)) (5.29) 

In the above c is the speed of light, and 8 is the damping. The product 5ui gives 

the HWHM of the spectral lines. [50] In a realistic calculation S should be determined 

from the imaginary part of the dielectric function and will in general be frequency 

dependent. [20] 

5.3 Results 

. The required number of coupled primitive modes vmax for convergence increases 

with the aspect ratio of the torus. For aspect ratios close to 1, the two inner surfaces 

of the torus lie very close to each other enabling a strong interaction and hybridization 

of primitive plasmon modes with different v. Since our approach is variational, the 

energy of the lowest mode will decrease monotonously with increasing vmax. For the 

aspect ratios considered in this paper we found that vmax=35 was sufficient. To eval­

uate the toroidal Legendre functions we use public domain software. [150] To model 

gold metal we neglect the dielectric background screening mediated by the gold ions 

and use a renormalized bulk plasmon frequency Ws=4.6 eV. This choice of dielectric 

parameters places the dipolar resonance of a solid sphere at 2.6 eV in agreement with 

experimental data and provides a reasonable description of the plasmonic interactions 

in general nanoparticles. For the damping parameter 6 we will use sufficiently small 
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values that, individual plasmonic modes of the torus can be resolved. The exten­

sion to a more realistic dielectric background screening is straightforward but would 

significantly complicate the theoretical formalism.[20] 

5.3.1 Plasmonic s t ruc tu re 

In Fig. 5.3, we show several of the lowest energy ju=l hybridized cosine modes as 

functions of the aspect ratio, X. The energy of the lowest mode shows a strong aspect 

ratio dependence and increases from zero to a maximum value at QA5U>B for X ~ 

0.94. For larger X, the energy decreases due to the strong interaction of the surface 

charges on the interior surfaces of the torus. The second-lowest energy mode exhibits 

a relatively weak dependence on aspect ratio with a minimum around X=0.85 and 

a slight blueshift for aspect ratios close to 1. The higher energy modes are clustered 

together around 0.7UB and do not depend sensitively on the aspect ratio. The two 

lowest energy hybridized torus modes are both dipole active and their energies can 

be extracted from their corresponding peak positions in FDTD spectra. The figure 

shows the FDTD result obtained for small tori and a Drude dielectric function. The 

tori are chosen sufficiently small that retardation effects are negligible. The small 

deviations between the FDTD and PH results are caused by numerical stair-casing 

effects in the FDTD simulations. [146] 

The results in Fig. 5.3 are in excellent agreement with the results by Mary et 

al.[142] who calculated the plasmon energies of a torus using an electrostatic dyadic 
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Figure 5.3 The solid lines are the hybridized // = 1 cosine plasmon energy levels of a 
metallic torus as a function of the aspect ratio X calculated using the PH method. The 
open circles are the results for the lowest energy plasmon modes obtained from FDTD 
simulations for very small tori (R < 25 nm). 

Green's tensor approach. Their definition of the aspect ratio, xm, is different from 

our X and related as X — xm/{2 + xm). 

Figure 5.4 shows the plasmon energies versus aspect ratio for several different uniax 

and illustrates the nature of the plasmon hybridization resulting in the the formation 

of two lowest hybridized modes in Fig. 3. The figure shows that the magnitude of 

the hybridization of the primitive torus modes depends on the aspect ratio of the 

structure. For a thin torus, X < 0.1, since there is only little change of the plasmon 

energy when adding more primitive modes, the effect of hybridization is minimal. 

The two plasmon modes are essentially pure primitive v=§ and v=\ torus plasmons. 

As the aspect ratio is increased these two primitive modes begin to interact forming a 
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Figure 5.4 Plasmon hybridization in a torus for parallel polarization, i.e., /i = 1 cosine 
modes. The black solid hues are the energies of the two lowest modes for vmax= 1 (dashed), 
2 (dot-dashed), and 35 (solid). The lower dotted line is the energy of the individual v = 0 
primitive plasmon and the upper dotted line is the energy of the individual v = 1 mode. 
The red lines are the analytical infinite cylinder result Eq. (5.30) for k = 1/R and m' — 0 
(dashed) and m! = 1 (solid). 

bonding hybridized u=0 mode arid an antibonding hybridized v—\ mode. For aspect 

ratios 0.1 < X < 0.4 the bonding mode is well described by only including the v=l 

mode in the basis set. For aspect, ratios 0.4 < X < 0.8 it is necessary to also include 

the primitive u=2 mode in the basis set. 

For the antibonding v—\ mode, we note that for aspect ratios X > 0.2, the 

hybridization with the lower energy u—0 mode results in a too large blueshift. In­

cluding the higher energy primitive v=2 mode is sufficient for aspect ratios up to 

X=0.4. For a satisfactory description of the higher energy mode for X > 0.4, higher 
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order primitive plasmoas v > 2 axe necessary. 

For a thin torus, the local geometric structure resembles that of a solid cylinder 

and one could envision describing the torus modes as standing cylinder plasmons of 

wavelengths determined by the circumference of the torus. It is therefore of interest 

to investigate the relations between plasmons in a torus and those of a metallic cylin­

der. In the absence of dielectric backgrounds, the plasmon resonances for an infinite 

cylinder of radius r are,[21] 

um> = ujB\Jkrrm,{kr)Km>{kr). (5.30) 

In this expression Im> and Km> are modified Bessel functions of order m'. The quantity 

m' refers to to the azimuthal symmetry of the plasmon modes of a cylinder and 

k is the wavevector in the direction of the cylinder axis. For a thin torus, the 0 

coordinate is equivalent to the azimuthal cylinder coordinate <j>. The / i=l modes 

correspond to cylinder plasmons of a wavelength equal to the circumference of the 

torus 27rR, i.e. with k — 1/R. The lowest energy cylinder plasmon is obtained for 

m'=0 which corresponds to a primitive /u=l, ^=0 cosine plasmon in a thin torus. The 

second lowest energy cylinder plasmon for k = 1/R is the m '= l mode. For parallel 

polarization, this mode corresponds to the primitive / i=l , u=l cosine plasmon. 

In Fig. 5.4 we also show the energies of k = 1/R, m' — 0 and m' — 1 cylinder 

plasmons calculated using Eq. (5.30). As one would expect, the infinite cylinder ap­

proach provides a perfect description of the torus modes for small aspect ratios. This 
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is expected since for X < 0.1, hybridization is minimal and the two torus modes can 

be described as pure v=Q and v=\ primitive plasmons. However, what is remarkable 

is that this simple analytical form provides almost perfect agreement with the fully 

converged hybridized bonding and antibonding torus modes for aspect ratios up to X 

around 0.9. Although not discussed in detail in this paper, we have also found that 

the dominant dipole active primitive plasmon modes for perpendicular polarization 

is a bonding and antibonding hybridized torus mode resulting from the interaction 

of the yu=0, v=l and v=2 primitive sine plasmon modes. In the cylinder geometry, 

these primitive plasmons corresponds to cylinder plasmons of wavevector k=0 and 

azimuthal symmetries m'—l and m'=2. The energies of the hybridized perpendicu­

lar mode agree very well with the corresponding cylinder mode for all aspect ratios. 

The above observations are significant findings because they enable a very simple 

modeling of the plasmon resonances of a torus using the analytical approach for an 

infinite cylinder. Since the inclusion of a realistic dielectric backgrounds is trivial for 

an infinite cylinder, we will use this analogy in section IV to calculate the sensitivity 

of the torus plasmon energies to changes in the dielectric background. 

5.3.2 Optical absorption 

Next, we examine the optical absorption cross sections. First we consider parallel 

polarization of the incident light. For this geometry only n — 1 cosine plasmons are 

relevant. In Fig. 5.5 we show the absorption cross sections for two tori of aspect 
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Figure 5.5 Absorption cross sections for light of parallel polarization incident on a torus 
of aspect ratio X=0.2 (a) and X=0.8 (b) calculated using PH (red) and FDTD (blue). In 
the FDTD calculations, the sizes of the tori are r—2 nm, i?=10 nm and r—2 nm, R=2.5 nm. 
The damping parameter <5==0.2 eV. 

ratios 0.2 and 0.8 along with results from FDTD simulations. The spectra have been 

normalized to unity peak height. A peak in the absorption spectra appears when u) 

of the incident wave is in resonance with a hybridized plasmon mode. The intensity 

of the peak is proportional to the square of its dipole moment,[50] which depends on 

the relative amplitudes of the primitive plasmons that make up the hybridized state. 

The agreement between the results of PH and FDTD is very good. The small 

differences in the spectra for the small aspect ratio ring is due to FDTD stair-casing 

errors. [146] For both aspect ratios, the spectra reveals two features. The long wave­

length feature is very sensitive to the aspect ratio. This resonance is the hybridized 

bonding ^=0 mode discussed in Figs. 5.3 and 5.4. The intensity of this feature is 

large because of the strong admixture of the u=0 primitive plasmon which has a 

large dipole moment. The short wavelength resonance does not depend significantly 
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Figure 5.6 Absorption cross sections for perpendicular polarization calculated using PH 
(red) and FDTD (black) for a torus of r=5 nm and R=10 nm (X=0.5) using a damping of 
6=0.2 eV. The dotted green line shows the absorption spectra calculated using a damping 
5=0.005 eV. 

on aspect ratio and is dominated by the excitation of the hybridized antibonding v—l 

mode. However, several of the higher order hybridized modes depicted in Fig. 5.3 also 

contribute to the short wavelength absorption feature. Since the energies of these 

higher energy modes are very close, the individual modes can not be resolved in the 

spectra. Our calculated spectra agree qualitatively with the results from experiments 

and other calculations. [141, 143] 

In Fig. 5.6, we compare the perpendicular absorption spectra of a torus of aspect 

ratio X=0.5 calculated using PH and FDTD. The agreement is very good also for 

this polarization. As can be seen in the PH spectrum calculated using an artificially 

small damping, the absorption feature is made up of several closely spaced optical 

transitions. Although not discussed in detail in this paper, the calculated hybridized 
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Figure 5.7 Effect, of phase retardation on the tunable parallel torus mode. The open 
circles are the FDTD results for tori of a fixed aspect ratio of X—0A as a function of the 
major radius R. The horizontal dotted line shows the PH result. 

/i=0 sine plasmon modes are clustered between UJ/OOB=0.65 and 0.75 in the entire 

range of aspect ratios, and depend very weakly on X. The two dominant, absorption 

features in Fig. 5.6 are a bonding and antibonding modes formed from the interaction 

of the primitive /x=0 sine v=l and v=2 modes depicted in Fig. 5.2. As the aspect 

ratio of the torus increases, the bonding v=l mode exhibits a very weak redshift and 

the antibonding v=2 mode a very weak blueshift. However, the splitting between 

the resonances remains too small to be resolved in any calculation performed using 

a realistic damping parameter 6. As discussed above, these two perpendicular modes 

can also be well described as infinite cylinder plasmons of energies given by Eq. (5.30) 

for k=0 and m'=l and vn!~2. 
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Figure 5.8 Electric field enhancement calculated using FDTD in the three cuts defined 
by the surfaces (a-c) shown in the inset. The geometry of the torus is r=l() nm, R=20 nm 
corresponding to an aspect ratio X=0.5. The wavelength of the incident light is 811 nm. 
The damping is 6=0.2 eV. 

5.3.3 Field enhancements and retardation effects 

In Fig. 5.7, we investigate the effects of phase retardation on the tunable parallel 

v=0 hybridized mode by comparing the PH result with the energies of the lowest 

energy absorption feature extracted from FDTD spectra for tori of fixed aspect ratios 

X=QA but varying radii r and R. As R increases the retardation effects result in the 

expected redshift of the plasmon resonance relative to the electrostatic PH result. 
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In Fig. 5.8, we show FDTD calculations of the electric field enhancements for 

resonant excitation of the low energy dipolar resonance of the torus. The cuts defining 

the surfaces are shown in the inset. Panel (a) shows that the overall shape of the 

field enhancement is dipolar as would be expected from the primitive JJL—1 V—Q cosine 

modes. The largest field enhancements around 50 are induced in the cavity inside 

the torus. These enhancements are relatively homogeneous as have been pointed 

out previously. [138] A close inspection of panels (b) and (c) reveals that the field 

enhancements on the interior surfaces ((3 = ±7r) are slightly larger than those on the 

outer surface (/?=0). This asymmetry show that the plasmon mode also contains a 

/x=l, u=l component as expected from the hybridization evidenced in Fig. 5.4. The 

calculated field enhancements are qualitatively similar and consistent with previously 

published studies. [142, 141] 

5.4 Discussion and Conclusion 

Our finding that the tunable parallel dipolar plasmon mode can be well described 

as an infinite wire plasmon of m'—O and a wavelength equal to the circumference of 

the torus (k = 1/R) makes it easy to calculate the LSPR sensitivities of a metallic 

torus using realistic dielectric permittivities for the metal. The plasmon frequencies 

of an infinite metallic wire can be calculated analytically both in the electrostatic and 

in the fully retarded limit. In the electrostatic limit the parallel dipole resonance is 
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obtained as the solution of, 

eR{u) Io(X)K'0(X) 

n | r0(X)K0(X ' V-M) 

where / and K are the modified Bessel functions introduced in Eq. (5.30) and en is 

the real part of the dielectric permittivity of the metal and n^ the refractive index 

of the surrounding medium. Using experimentally tabulated data for gold,[151] we 

obtain LSPR sensitivities at nE—2.12 of 444, 861, and 1660 nm/RIU for gold tori of 

aspect ratios 0.333, 0.2, and 0.909. These values compare very well with the values 

444, 880, and 1660 nm/RIU obtained using an alternative analytical approach.[143] 

In conclusion, we have extended the Plasmon Hybridization method to a metallic 

torus. We have shown that the plasmon resonances of a torus result from hybridization 

of primitive plasmon resonances that can be expressed in terms of toroidal harmonics. 

For aspect ratios smaller than 0.8, the hybridization is relatively weak and the lowest 

order dipole active torus plasmon can be described analytically as an infinite cylinder 

plasmon of a wavelength equal to the circumference of the torus. The calculated 

optical properties of the torus agree with the results from FDTD simulation and with 

the results from other theoretical approaches. Our approach can easily be generalized 

to toroidal shell structures such as a dielectric torus covered by a thin metallic shell. 

We expect that the plasmon resonances of such a structure will exhibit a similar 

tunability as other dielectric core-metallic shell structures such as the nanoshell and 

the nanorice particles. [59] 



Chapter 6 
Conclusions 

Based on plasmon hybridization approach, the optical and plasmonic properties 

of various metallic nariostructures such as nanoshells, thin films, individual sub-

wavelength holes in thin metal film, nanoshell/.7-aggregate complexes, and toroidal 

nanoparticles were clarified. First, using simple and universal concepts we have pro­

vided an intuitive explanation for why the seemingly repulsive alignment of the surface 

charges associated with a bonding nanoshell and thin film plasmon results in plasmon 

modes of lower energy than the seemingly attractive antisymmetric alignment. We 

have also demonstrated that the plasmon dispersion for a thin metallic film can be 

derived from the expression for nanoshell plasmon energies in the limit of a large 

nanoshell of finite thickness. 

After clarifying the nature of plasmon modes of thin metal films, we have presented 

a simple physical explanation for the experimentally observed resonance in the opti­

cal spectra of nanosized holes in thin metallic films. When the hole is present, the 

film plasmons induce charges on the surfaces of the hole. Film plasmons of certain 

wavelengths that depend on the diameter of the hole can induce a large dipole mo­

ment across the hole. The hole thus mediates a coupling between these specific film 

plasmons and an incident electromagnetic wave. A simple expression for the wave-
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length of the dipole active film plasmons is obtained. For increasing hole diameter, 

the wavelength of the dipole active film plasmons decreases resulting in a redshifted 

energy of the hole resonance. Our approach provides a quantitative explanation for 

the experimentally observed redshift of a hole resonance as a function of hole diameter 

in previous experiments on films with fixed film thickness. We predict a redshift of 

the energy of the hole resonance with decreasing film thickness, which is substantiated 

in experimental measurements on individual nanoholes. 

On top of the clarified plasmonic nature of metal nanoshell particles, the hybridiza­

tion scheme was extended to the coherent coupling between the localized plasmons 

of a nanoshell and the excitons of J-aggregate molecules adsorbed on the metallic 

nanoparticle surface. We have shown that the coherent coupling between the plas­

mons of the nanoshell particle and the excitoas of the J-aggregate can create the new 

hybridized state, using classical electromagnetic theory. The theoretical calculations 

of optical absorption for nanoshell/J-aggregate complexes could explain the experi­

mental results of the extintion spectra. Strongly asymmetric splitting energies as large 

as 120 meV are observable in these complexes, where the splitting energy depends 

upon the plasmon mode of the complex. We believe that this result may stimulate 

interest in the fabrication and properties of coupled plasmon/exciton nanostructures 

with controlled coupling, and with optical properties unique to this new class of 

nanoparticle-based materials. 
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Finally, the Plasmon Hybridization method was extended to a metallic torus 

nanoparticle using toroidal coordinates. The plasmon resonances of a torus result 

from hybridization of primitive plasmon resonances that can be expressed in terms of 

toroidal harmonics. For aspect ratios smaller than 0.8, the hybridization is relatively 

weak and the lowest order dipole active torus plasmon can be described analytically 

as an infinite cylinder plasmon of a wavelength equal to the circumference of the 

torus. The calculated optical properties of the torus agree with the results from 

FDTD simulation and with the results from other theoretical approaches. 

There are more ways to develop the plasmon hybridization method. For instance 

in order to describe the plasmon-exciton coupling quantum mechanically for not only 

nanoparticle/J-aggregate complexes but also nanoparticle/quantum dot conjugated 

systems, the plasmon hybridization method can be combined to the density matrix 

formalism. [115] If the quantum mechanical and non-equilibrium effect is considered to 

the plasmon hybridization method, more interesting optical properties can be studied 

in the field of nanophotonics combined with nonlinear optics and quantum optics. 
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