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Weighted Least Squares Estimators on the Frequency Domain 

for the Parameters of a Time Series 

Abstract 

A procedure for estimating the parameters of a time series is proposed. The estimate minimizes a 

criterion function which is the weighted sum of squares of the distances between the periodograms 

and the spectrum of the series. Under mild conditions, the estimate is shown to be strongly con­

sistent. The asymptotic distribution of the estimate is also obtained. With a proper choice of 

weighting function, the estimate has the same asymptotic distribution as the one for the max­

imum likelihood estimate. Simulations were carried out to evaluate the performance of the esti-

mate. 

1. Introduction 

We consider a stationary time series X(t), t=0,1, ... , T-1, with mean zero and autoco-

variance function c(u) = E[X(t)X(t+u)]. When the autocovariance function satisfies 

00 

E lc(u)I < oo (1.1) 
11=-00 

the spectrum density function of the series X( t) is defined by 

00 

/(>..) = (21rt1 E c(u)exp(-i>..u). (1.2) 
•=-oo 

This relation can be inverted to obtain the representation 

11' 

c(u) = f exp(iu>..)J(>..)d>... 
-11' 

(1.3) 

In this paper, we are interested in the situations in which the spectrum of the series depends on 

some unknown parameters. Here are some examples: 

•This research was support in part by ONR Grant N 0001-485-K-0100 and ARO Grant DAAG 29-85k-0212. 
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Oo 
I (A)= [1+(A/Ao)l2 

(1.4) 

I (A) {1.5) 

(1.6) 

(1.7) 

{1.8) 

(1.9) 

Models (1.4) and (1.5) were used in Aki (1967) to model the spectra of far field body-wave dis­

placements of earthquakes. The parameter Ao is the corner frequency and 0 0 is proportional to 

seismic moment. Seismologists are very interested in estimating the parameters Ao and 0 0, which 

are important in the study of the source properties of earthquakes (cf Aki and Richards (1980)). 

Slutsky (1937) used model (1.6) in studies of economic time series. Model (1.7) has been used by 

Lumley and Panofsky (1964) for atmospheric turbulence, and by Whittle (1962) for agricultural 

spatial series. Pierson and Moskowitz (1964) proposed (1.8) as the spectrum of ocean waves 

caused by winds. The last example {1.9) is the spectrum of an autoregressive moving average pro­

cess of order (p ,q) (ARMA(p ,q )). In the following discussion, we let / (A,00) represent the spec­

trum of the series X( t ), and we are interested in estimating the parameter 90• 

The criterion function used in this paper is based on periodograms. The periodogram at fre­

quency A of a series X( t) is defined as 

l(A)=___!__Tdl(A)dl(-A) 
211' 

{1.10) 

where dl(A) is the finite Fourier transform of the series X( t ), 

T-1 

dl(A)= EX(t)exp(-iAt). (1.11) 
t=O 

The motivation of the frequency domain approaches is from the observation that, under some 
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mild conditions, the periodograms of a series X(t) on the Fourier frequencies O<'Ai=21ri/T<1r 

are asymptotically independently distributed according to exponential distribution with mean 

/('Ai) (cf Brillinger (1975)). Therefore, an "approximate maximum likelihood estimator" can be 

obtained by finding the (} that maximizes the function 

L(0) = -I)og(f('A,0))- EI(>..)/f('A,0) (1.12) 
). ). 

where the summation is over the Fourier frequencies in (-1r,1r)-{O}. Unless indicated otherwise, we 

use this convention throughout this paper. When the spectrum can be written as 

(1.13) 

g('A,0) does not depend on u2. We could obtain an estimate of (}0 by minimizing 

L'(0) = EI('A)/g('A,0) (1.14) 
). 

and estimate ol by u2=L1(0)/(21rT). The estimates which maximize L(0) or L 1(0) were studied in 

Bloomfield (1973), Hannon (1973), Whittle (1961) Dzhaparidze (1974), Davies (1973), Robinson 

(1978) and lbragimov (1967). Under various conditions, the estimates were shown to be asymp­

totically consistent and efficient. A similar estimation procedure was proposed by Taniguchi 

(1981), who considered the estimates which minimize the distance between the spectrum and the 

smoothed periodograms. 

I(>.)/ g('A,0) can be viewed as the periodograms of the series past a filter whose transfer func­

tion A(>.) satisfies IA(>..)1 2=1/g('A,0). The problem of minimizing L 1(0) is equivalent to finding 

g (>..,0) to make the expected value of /('A)/ g('A,0) be constant; this is asymptotically equivalent to 

finding a filter such that the filtered series is a white noise. Therefore, for ARMA processes, the 

estimate which minimizes L '( fJ) is asymptotically equal to the least squares estimate discussed in 

Box and Jenkins (1970). However, the function L 1(0) is much easier to handle than most of the 

objective functions defined on the time domain, such as in Box and Jenkins (1970). The difficulty 

in estimating the parameters on the time domain is mainly due to the intractability of the max­

imum likelihood equations (even for Gaussian processes). 
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In the following sections, we study the properties of the weighted least squares estimate 

which minimizes the criterion function 

Qr(9) = ~¢>(>-)[! (>.,9)-I(>.)]2. (1.15) 
). 

We will show that, with a proper weighting function, the estimate has the same covariance matrix 

as that of the approximate maximum likelihood estimate. 

The weighted least squares estimate has several advantages: (1) Due to the availability of 

various least squares algorithms, it is easy to implement the estimation procedure. (2) We are 

often only interested in the properties of the processes in certain frequency bands; by using a 

proper weighting function, we could avoid the effects from other bands or reduce the effect of 

additive noise. (3) The approximate maximum likelihood procedure cannot deal with the cases 

where / (>.,90) vanishes at some >.. The weighted least squares procedure does not have this 

difficulty. (4). Analogous to the robust procedures for independent observations, we could get 

estimates resistant to the presence of peaks ( corresponding to periodic components, such as sea­

sonal effect) in the series. Therefore, it is possible to estimate the spectrum of the de-seasoned 

series without removing the trend from the series. 

2. Assumptions and Results 

We are interested in the series X(t), t=0,1, ... , T-1, which satisfies the following assump-

tion. 

Assumption 1. X( t) is a stationary series with cumulants 

(2.1) 

The cumulants satisfy 

(2.2) 

for j=l, ... , h-1 and h=2,3, .... 

Under Assumption 1, X(t) hash-th order spectrum !,.(Ai, ... , A,t_1) with bounded and uniformly 
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continuous derivatives (cf Brillinger (1975)). 

Since the second-order properties of the series are often expressed in terms of its spectrum, 

it is more convenient to check whether E [1 + I u I l I c ( u) I < oo or not by inspecting the spec­

trum. A sufficient condition is given in the following theorem. The proofs of this and other 

theorems are given is Section 4. 

Theorem 1. Suppose X(t) is stationary and has spectrum /('>..) with a bounded and uniformly 

continuous derivative /'(>-.) which satisfies a Lipschitz condition of order o>O. Then 

E[l+ I u I l I c ( u) I <oo, here c ( u )=ci u) is the autocovariance function of the series. 

All of the examples except (1.7) given in Section 1 satisfy the conditions of Theorem 1. The spec­

trum of example (1.7) is not differentiable at A=O, and the autocovariance function is of order u-2 

(see Robinson (1978) and Whittle (1962)); thus Assumption 1 is not satisfied either. For situations 

similar to (1.7), we could filter the series to make the spectrum of the filtered series satisfy the 

conditions in Theorem 1. That is, we can use filter to smooth the singular points of the spectrum. 

Of course, we are not able to do this when the singular points depend on unknown parameters. 

We now establish two theorems which are of some independent interest and are more gen­

eral than the results required to prove the asymptotic properties of the weighted least squares 

estimates. 

Theorem 2. Let v,(>-.) be a continuous function on [-1r,1rl. If X(t) satisfies Assumption 1, then 

lim Tl E'I/J(>-.)Jk(>-.) = ~ J 1/J(>-.)Jk(>-.)d>-. almost surely, 
>. 21r 

(2.3) 

for k2:1. Here/(>-.) is the {second order cumulant) spectrum of X(t). 

Theorem 2 can be easily extended to the following result. 

Corollary 1. Suppose v,(>-.,0) is uniformly continuous on (>-.,0) E [-1r,1rl X0, and X(t) satisfies 

Assumption 1. Then, fork 2:1, 

(2.4) 
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and the convergence is uniform over 0. 

The asymptotic distributions of the variables in Theorem 2 are given below. 

Theorem 3. Under the conditions in Theorem 2, 

(2.5) 

where 

Remark 1. For series with / 4(>.1,).. 2,>.3)=0, such as in the case of Gaussian processes, the third 

term of (2.6) vanishes, and the asymptotic distribution is the same as the one in which I(>.;) are 

true independent variables. 

In proving the theorem concerning the strong convergence of the weighted least squares esti­

mates, we need assumptions about 0, /(>.,9), and the weighting function ef,(>.). 

Assumption 2. J(>.,9) is continuous on (>.,9) E [-rr,rr]X0, and 0 is a compact set in R'. 

Assumption 3. q,(>.) is a symmetric continuous function on [-rr,rr] and for all 9=/:90, 

'JI" 

f 4'(>-)[/ (>.,9)-/ (>.,90)]2d>. >O. 
-'JI" 

Assumption 3 requires that, on the support of ef,(>.), / (>.,90) is different from / (>.,9), 9=/:90 • From 

Corollary 1 and Theorem 2, the strong consistence of the weighted estimate can be established. 

Theorem 4. Under Assumptions 1 to 3, the estimate (} which minimizes Qr(9) of (1.15) converges 

to 90 almost surely. 

We need some more assumptions to derive the asymptotic distribution of the weighted least 

squares estimate 

Assumption 4- (}0 is an interior point of 0. 
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ABBumption 5. In a neighborhood of 00, f ()..,0) is twice differentiable with respect to 0, and the 

derivatives are continuous in ).. and 0. 

ABBumption 6. The r by r matrix A=A(00) is positive definite, and the ij-th element of A(0) is 

a;;(0)= 
2
1
7r f 4>(>.)/;(>.,0)/;(>.,0)d>. (2.7) 

where /;(>.,0) is the derivative of/ (>.,0) with respect to 0;, i=l, ... , r. 

We now describe the asymptotic distribution of the weighted least squares estimate. 

Theorem 5. Under the conditions in Theorem 4, and Assumptions 4 to 6, let 0 be the estimate 

which minimizes QT(0) of (1.15). Then vT (0-00) is asymptotically normal with mean zero and 

covariance matrix 2A-1BA-1+A-1DA-1• Here A is given in Assumption 6. The ij-th element of B 

and D are, respectively, 

(2.8) 

and 

(2.9) 

Remark 2. If we let 4>(>-)= r 2(>.,00), we obtain the same covariance matrix as the one in Theorem 

5 of Robinson (1978), which is the asymptotic covariance matrix of the estimate which maximizes 

the approximate likelihood function L(0) of (1.12) 

Remark 3. For Gaussian processes, / i>.,µ,w)=O, the matrix D vanishes, and when 

ef>(>. )= /-2()..,00), the covariance matrix is 2A-1, which is the asymptotic covariance matrix of the 

maximum likelihood estimate (see Hannon (1973)). Therefore, the estimate with weighting func­

tion 4>(>-)= r 2(>.,0o) is asymptotically efficient. 

Remark 4. An efficient estimate can be obtained by using an iterative procedure. We could use 

the unweighted least squares estimate to start with, or, use the weighted function ef>()..)=/-2(>,.). 

Here / (>.) is an estimate of the spectrum obtained by smoothing the periodograms. We then let 
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where 00 is our initial estimate, and find the estimate 01. Usually, only two or three iterations are 

required. 

The covariance matrix in Theorem 5 depends on the matrices A, B and D. A and B can be 

estimated by A ( 0) and B ( 0) respectively. An estimate for the matrix D is suggested by the fol-

lowing theorem. 

Theorem 6. Let¢(>.) be a continuous function on [-,r,,r], and let X(t) satisfy Assumption 1, then 

-¼ EE¢(>.)¢(µ)I(>.)I(µ) 
T >.,. 

(2.10) 

converges, in meam square, to 

(2.11) 

3. Simulation 

We conducted two simulation experiments to evaluate the performance of the estimate. We 

simulated autoregressive processes 

X(t)--0.6X(t-1)+0.3X(t-2) = f(t) (3.1) 

where f( t) are independent random variables with distribution N(O,l). The size of the simulated 

series is 256. The sample size is 200 for both experiments. 

In the first experiment, we use the weighted function 4>(>.)=f-2(>.,00) to find the estimate OT. 

The second experiment uses an iterative procedure to find the estimates. The initial estimate 00 is 

the unweighted least squares estimate. The first iterative estimate 01 is the estimate using the 

weighting function ef,(>. )= r 2(>. ,00). The second iterative estimate 02 is the estimate using the 

weighting function ef,(>.)=r2(>.,0i). Table 1 compares the sample means of the estimates OT, 00 , 01 

and 02 with the true parameters. In Table 2, the sample covariance matrices are compared with 

the asymptotic covariance matrix of the estimate OT, which is also the asymptotic covariance 
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matrix of the maximum likelihood estimate. From Table 2, it can be seen that the sample covari­

ance matrix of the second iterative estimate 02 is very close to the asymptotic covariance matrix 

of Oo. 

4. Proofs 

We now give proofs of the results in Section 2. 

Proof of Theorem 1. From integration by part, we have 

iuc ( u) = iu f_,/ (>-. )exp( iu).. )d>-. (4.1) 

= { /(1r)[exp(iu1r)-exp(-iu1r)J} - J_>'(>-.)exp(iu>-.)d>-.. 

Since the first term in (4.1) is equal to zero, then 

00 00 ,r 

E luc(u)I = E If /'(>-.)exp(iu>-.)d>-.1 < oo 
-,r 

(4.2) 
•=-oo •=-oo 

from Theorem (3.6) of Zygmund (1959) (p. 241). The theorem is finished by noting that c(0) is 

bounded. 

Proof of Theorem 2. Let 

L 
1h(>-.)= E q( u )exp(iu>-.) (4.3) 

•=-L 

be the Cesaro sum of the Fourier series of tp(>-.), and let Sr=EtpL(>-.)Jk(>-.). The expected value 
>. 

of Jk (>-.) is equal to 

where A;=(-li>-., and the summation is over all partitions v=v1LJ · · · LJv,, of the set 

{1,2, ... , 2k }. From Theorem 4.3.2 of Brillinger (1975), 

cum{d[(>-.1), .•. , d[(>-.11)} (4.5) 

= (21rt-t~(T)Lt?j) h(>-.1, ... , A11_i) + 0(1) 

where 
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T-1 
_6.(T)(>.) = E exp(-i>. t) . (4.6) 

t=O 

The function _6.(T)(>.) has the properties: _6.(T)(>. )= T for A==O (mod21r), and .6. (T)(21rs / T)=O for s 

an integer with s~O (modT). The product of the cumulants in (4.4) is of order T,. for the parti-

tions consisting of k sets, each of which contains an even number and an odd number. The 

number of such partitions is k ! , and the products of the cumulants are equal to 

(4.7) 

For other partitions, the orders of the products are smaller than Tk. So, 

(4.8) 

In the proof of Theorem 3, we will show that the variance of 1 1ST is of order 1 1
• This implies, 

by Chebyshev's inequality and the Borel-Cantelli Theorem, that N-2sN2 converges almost surely 

to the right hand side of (4.8). To prove the theorem, it is sufficient to show that SM does not 

differ much from the nearest SN2• 

L 
BT= E q(u)EX(t1)X(s1) · · · X(t,.)X(s.,) 

•=-L O; 

where the second summation is over all (t 1,si, ... , t,.,s,.) in 

Let 

Then 

,. 
n; {(t1,81, ... ,t,.,sk):E(t;-si}=u mod(T), I:5t;,s;:5T}. 

i=l 

L 
GM=BM-BN2 = E q(u) E X(ti)X(s1) · · · X(t,.)X(s,.). 

•=-L 0M-0N2 
• • 

L L 
EG,a. :5 E E q(u)q(v) E 

•=-L~=-L 

The expectation inside the summation of (4.12) is equal to 

(4.9} 

(4.10) 

(4.11) 

( 4.12) 
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I;cum(X(z.);iEv1) · · · cum(X(z.);iEvp) (4.13) 
,, 

where the summation is over all partitions of {1,2, ... , 4k }, and 

l 
t;, j=(i+l)/2, i is odd and i~2k 

_ s;, j=i/2,i is even and i~2k 
Zi - t';, j=(i+l)/2-k, i is odd and 2k<i 

8
1 • j=i/2-k, i is even and 2k<i , ' 

(4.14) 

The partitions giving non-zero products must consist of sets with two or more items. The number 

of sets is therefore smaller or equal to 2k. After rearranging the index in ( 4.12) according to the 

partitions, we see that EG,3- is of order N2,.. Therefore, 

(N+1)2 
E[ max GM] 2

~ E EG,3-=O(N2k+1
). 

N2<M~(N+1)2 M=N2+1 
( 4.15) 

Hence E{m_:c[N-2SM-N-2SN2]2 } is of order N 1_2,. for k~2. For k=l, it can be shown by straight 

calculation that the expectation is of order N-2• 

Finally, writing 1 1Sr as 

(4.16) 

and applying Chebyshev's inequality and the Borel-Cantelli Theorem, we prove that 

(4.17) 

almost surely. The theorem now follows from the uniform convergence of '¢,L(>.) to '¢,(>.) (cf 

Edward (1979), p. 87) and the almost sure convergence of r-1EJ,.(>..). 
>. 

Proof of Corollary 1. Let 

L 
'¢,L(>-.,0) = E q(u ,0)exp(iu>.) ( 4.18) 

•=-L 

be the Cesaro sum of the Fourier series of ,jJ(>-.,0). Since 

I q(u,0) I~ I i, .. 'I/J(>.,0)exp(i>.u)d>. I ~2,r s~p 1/(>.,0) I, (4.19) 

q ( u ,0) is uniformly bounded. From this and the fact that th (>.,0) is a linear combination of the 
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2L + 1 functions 

<f,{>.,u)={ 1-l:~) exp(i>.u), u=-L, ... ,L, (4.20) 

we establish the uniform convergence of 

r-1 ~)h (>.,O)Jk(>. ). {4.21) 
). 

The corollary follows from the uniform convergence of th{>.,O) to ,t,(>.,O), which can be shown by 

slightly modifying the proof of 3.2.2 of Edwards (1979). 

Proof of Theorem 3. The variance of r-1/2E,t,(>.)Jk(>.) is equal to 
). 

r-t EE1PL (>-1)1PL (>-2)cum{/k (>.i),Ik (>-2)) 
>-1 >-2 

{4.22) 

= r-2k-1(21rt2k EI;I;,t,L(>.i),t,L(>.2)cum{ d[(w;; );ijEv1)} · · · cum{ d[(w;; );ijEvp)}, 
11 >-1 >-2 

where w;;=(-1)'°>.; and the summation of vis over all indecomposable partitions of the table (cf 

Brillinger (1975)) 

(1,1) · · · (1,2k) 

(2,1) · · · (2,2k) 
(4.23) 

From ( 4.5), it can be seen that there are only three groups of indecomposable partitions giving 

non-zero limits: 

(1). There is one set which contains two items from each row; one of the two items in the same 

row is from an odd column and the other is from an even column. Each of the other sets contains 

two items (one from an even column, the other from an odd column) from the same row. The 

number of this kind of partition is k2(k!)2, and the product of the cumulants is 

(4.24) 

where/ i>.,µ,w) is the fourth cumulant spectrum of X(t). 

(2). There are at least two sets which contain one item from each row; both items are from even 

columns. The cumulants of these two sets are of order T when the >../s satisfy the restraint 
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>.. 1=->..2. The other sets could contain two items from the same row (one from an even column 

and the other from an odd column) or from the different rows (must satisfy the same restraint). 

The number of such partitions is k2(2k-2)!, and the product of the cumulants is (21rT)2,. / 2,.(>..1). 

(3) Same as (2), but the sets consisting of items from different rows contain one item from an 

even colum and one item from an odd colum. The cumulants of these two sets are of order T 

when the >..; 's satisfy the restraint >.. 1=>..2. The number of such partitions is k2(2k-2)!, and the 

product of the cumulants is (21rT)2,. / 2,. (>..1). 

Therefore The variance of 1 112E'¢,(>..)I,.(>..) is equal to 
>. 

21rk2( k !)2 r-2E I:;'¢,(>.. 1)'¢,(>..2)/ (>..1,->.. 1,>..2)/ ,._1(>.. 1)/ ,._1(>..2) 
>-1 >-2 

+ k2(2k-2)!T-1I;'¢,2(>..)/ 2,.(>..) + k2(2k-2)!11I;'¢,(>..)'¢,(->..)/ 2,.(>..) 
>. >. 

which converges to the u; of (2.6) in Theorem 3. 

(4.25) 

We next prove the asymptotic normality by showing that the cumulants of order bigger 

than 2 converge to zero. The h th-order cumulant is 

cum{r-1/2I;'¢,(>..)J,.(>..), ... , 1 1/2I;tµ(>..)J,.(>..) (4.26) 
>-1 >.A 

= r(-hk-h/2l(21r)-,.,. I;I;E'¢,i(>..i)'¢,L(>..2)cum{ d[(w;; );ijEv1)} · · · cum{ d[(w;; );ijEv,,)}, 
" >-1 >-2 

where w;; =(-1 )i >..; and the summation of v is over all indecomposable partitions of the table 

(1,1) · · · (1,2k) 

(2,1) · · · (2,2k) 

(h,l)···(h,2k) 

For any indecomposable partition, we consider 

r(-hk-h/2lI;EE1PL (>..1)'¢,i(>..2)cum{ d[(w;;);ijEvi)} · · · cum{ dl{w;; );ijEv,,)}. 
" >-1 >-2 

(4.27) 

(4.28) 

For the partition v, we can find a set v1 which contains items from different rows. H v 1 does not 

contain items from every row, we can find another set v2 which contains some items from rows 
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different from the rows of the items in Vi. If the union of Vi and v 2 does not contain items from 

all rows, we can find a set v3 which contain some items from rows different from the rows of the 

items in Vi or v 2• We repeat this until U=viLJ · · · LJv,. contains items from every row. Sup­

pose, in these n sets, there are m sets whose corresponding L\.(T) function does not introduce linear 

restraints. Each of these m sets must contain at least 4 items. The number of items in U is at 

least h+n-1+2m and the number of sets of the partition is smaller or equal to 

hk-(h+n-1+2m)/2+n. Also, the number of linear restraints introduced by the corresponding 

L\.(T) functions of the remaining vi is n-m. Therefore, (4.28) is of order T to the power 

[hk-(h+n-1+2m)/2+n ]+[h-n+m ]-hk-h/2 = -(n-1)/2. (4.29) 

Some possibilities for the v with n =1 are as follows: 

(1) vi contains at least two items from each row. Then, the number of sets is at most (k-l)h+l. 

Hence, (4.28) is of order T to the power of (k-l)h+l+h-kh-h/2=1-h/2. 

(2) Vi contains just one item from some rows. Then, there must exist a set v2 which contains 

items from different rows. The restraint introduced by v 2 is different from the restraint introduced 

by Vi. So, (4.28) is of order T to the power [kh-h/2+1]+[h-2]-kh-h/2=-l. 

(3) Same as (2), but the restraint introduced by v2 is the same as the restraint introduced by vi, 

the number of items in viLJv2 is at least 2h and (4.28) is of order T to the power 

[kh-h+2]+[h-1]-kh-h/2=1-h/2. 

Therefore, the hth-order cumulants of r-i/2E-rp(}.)J"(}.) (4.26) converge to zero for all h>2 and 
>. 

the proof is finished. 

Proof of Theorem 4. From Theorem 2, 

(4.30) 

almost surely. From Corollary 1, 
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lim 
1
T E<t>(>-)/ (>-,O)I(>-) = 2(211"t1 f ,r 4>(>-)f (>-,O)f (>-,Oo)d>-

>. -,r 
(4.31) 

almost surely and uniformly on 0. Therefore 

,r 

lim r-1 QT( 0) = (211"t1 f 4>(>-)[!2(>-,0)-2/ (>-,O)f (>-,00)+2/ 2(>-,00)]d>- ( 4.32) 
-,r 

,r ,r 

= ( 211"t1 i_ir </>(>-)[/ (>- ,0)-f (>-,Oo)] 2d>- + (211"t1 f-ir 4>(>-)f 2(>- ,Oo)d>-

= Q(O) 

Under Assumption 3, the minimum of Q(O) is attained only at 0=00• Let OT be a sequence of 

estimates which minimizes QT(O). Suppose that there exists a subsequence OT converging to 
n 

O'"'F00• Then 

Q ( O')=lim 1 1 QT(OTJ ~lim 1 1 QT( Oo)= Q ( Oo) (4.32) 

which is a contradiction, and the proof is finished. 

Proof of Theorem 5. This follows immediately from Theorem 3 and Corollary 1 by using the clas­

sical argument in Jennrich (1969). 

Proof of Theorem 6. The expected value of (2.10) is equal to 

Since 

(211"Tt2 r-2E E1P(>-)1P(µ )E[dl(>-)dl(->-)d/(µ )l 
>. /J 

E[d[(>-)d[(->-)d[(µ )di(-µ)] = cum{dl(>-),d[(->-),d,[(µ),d[(-µ)} 

+ cum { dl(>-),d[(->- )}cum { d[(µ )d[(-µ)} 

+ cum{d[(>-),d[(µ)}cum{d[(->-),d[(-mu)} 

+ cum{d[(>-),d[(-µ)}cum{d[(->-),d/(µ)}, 

( 4.34) is equal to 

211"T-2EE1/i(>-)1/i(µ)f i>-,->-,µ) + r-1:Etf(>-)/2(>-) 
>. /J >. 

+ r-1~1/l(>-)tµ(->-)/2(>-) + [ r-1~1/1(>-)/ (>-)r + o(l), 

(4.34) 

(4.35) 

(4.36) 

which converges to (2.11) in Theorem 5. Using a similar argument in the proof of Theorem 3, we 

can show that the variance of (2.10) is of order r-1, and finish the proof. 
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Table 1 

0o Or Oo 01 02 

0'2 1 0.990 0.964 0.984 0.988 

a 1 -0.6 -0.601 -0.614 -0.585 -0.599 

a2 0.3 0.304 0.313 0.287 0.301 

Comparison of the sample means of the estimates to the values of the true parameter 00 . 



Table 2 

(X 10-3) Theoretic Or Oo 01 02 

Var(o-2
) 7.81 6.98 25.23 8.54 8.18 

Var(a 1) 3.55 3.43 13.36 3.68 3.35 

Var{a 2) 3.55 3.22 8.40 3.68 3.36 

Cov{o-2,ai) 0 -0.34 13.31 -0.12 0.54 

Cov(&2,a 2) 0 0.41 -9.33 0.54 -0.42 

Cov(ai,a2) -1.64 -1.47 -8.03 -2.11 -1.51 

Comparison of the sample covariance matrices of the estimates to the asymptotic covariance 

matrix of 0 T. 


