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Abstract. A convergence analysis to the weak solution is derived for interior penalty discontinuous
Galerkin methods applied to the heat equation in two and three dimensions under general mixed boundary
conditions. Strong convergence is established in the DG norm, as well as in the Lp norm, in space and in
the L2 norm in time.
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1. Introduction. This work is dedicated to the strong convergence of the discrete
discontinuous Galerkin (DG) solutions to the weak solution of the heat equation. Analysis
is given for all three variants of the interior penalty DG methods, and for general mixed
boundary conditions. In addition, Lp bounds and convergence for discrete broken Sobolev
spaces are obtained.

In [4], strong convergence is shown for the steady Poisson problem with homogeneous
Dirichlet boundary condition; it is obtained by introducing an associated discrete gradient
operator and working directly on the scheme and PDE. Here in order to address the heat
equation, we first derive a bound for the time-derivative in the L2 norm in time and in a
dual norm in space. We then work also directly on the scheme and PDE. This gives strong
convergence of the solutions in the DG and L2 norms, in space and in the L2 norm in time.
In addition, convergence in the Lp norm in space is recovered by lifting the DG functions
with a non-conforming interpolant and a conforming regularization. This approach is in
the spirit of that used by Brenner in [1]; it is robust, valid in 2D or 3D; and it applies to
general mixed boundary conditions. Since the model problem is linear, the analysis only
uses linear techniques, and in particular, does not need an Aubin-Lions lemma. However,
apart from this compactness lemma, the tools used in this work can give an insight on
what could be done for the analysis of DG methods applied to some nonlinear parabolic
problems.

The outline of the paper is as follows. The model problem is described in the next section.
The discrete scheme for the PDE is introduced and the convergence result of the broken
gradient is stated in Section 3. Intermediate results are obtained in Sections 4 and 5.
General Lp convergence results in broken Sobolev spaces are derived in Section 6. The
proof of the convergence result for the broken gradient is given in Section 7. Some technical
proofs are outlined in an appendix.
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2. Model problem and weak formulation. Let Ω be a bounded domain of IRd,
d = 2, 3, with a Lipschitz boundary ∂Ω partitioned into two disjoint parts ∂Ω = ΓD ∪ ΓN .
The regions ΓD and ΓN need not be connected, but we assume that the number of connected
components of ΓD and ΓN is finite. Let QT = Ω × (0, T ) denote the space-time cylinder.
The exact problem reads: Find u such that

∂u

∂t
−∆u = f, in QT ,

u = 0, on ΓD × (0, T ),

∇u · nΩ = 0, on ΓN × (0, T ),

u = u0, in Ω at time t = 0,

where nΩ is the unit outward normal vector to ∂Ω. The analysis below includes the cases
where ΓN = ∂Ω or ΓD = ∂Ω.

Define the space
X = H1

0,ΓD
(Ω) = {v ∈ H1(Ω) , v = 0 on ΓD},

equipped with the norm of H1(Ω), and let X ′ denote its dual space. The L2 inner-product
over a generic domain O is denoted by (·, ·)O, or simply by (·, ·) when there is no ambiguity,
and the duality pairing between the dual X ′ and X by 〈·, ·〉.
Assume that f belongs to L2(QT ) and that u0 belongs to L2(Ω). The weak formulation is:
find u ∈ L2(0, T ;X) ∩ L∞(0, T ;L2(Ω)) such that∫ T

0

(
〈∂u
∂t
, v〉+ (∇u,∇v)Ω

)
dt =

∫ T

0

(f, v)Ωdt, ∀v ∈ L2(0, T ;X), (2.1)

and
u(0) = u0. (2.2)

By a standard argument, see e.g. [12], it can be shown that (2.1) has exactly one solution
u in L2(0, T ;X) ∩ L∞(0, T ;L2(Ω)) satisfying

∂u

∂t
∈ L2(0, T ;X ′).

As is usual, we associate with (2.1) the space

W (0, T ) = {v ∈ L2(0, T ;X) ;
∂v

∂t
∈ L2(0, T ;X ′)}, (2.3)

equipped with the graph norm. It is well-known (see e.g. [5]) that C∞([0, T ];X) is dense
in W (0, T ) and, as X ↪→ L2(Ω) ↪→ X ′, with continuous and dense imbeddings,

W (0, T ) ↪→ C0([0, T ];L2(Ω)). (2.4)

Therefore, the above initial condition is well-defined.
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3. Numerical scheme. We combine the backward Euler method in time with the
interior penalty discontinuous Galerkin method in space. Let Eh be a regular (in the sense
of Ciarlet [2]) partition of the domain Ω into simplices, or quadrilaterals or hexahedra
according to the dimension, constructed so that any given boundary face belongs to either
ΓD or ΓN . Denote by Γh the set of interior faces. Let h denote the maximum diameter
of the mesh elements. For a given face e, let he denote the diameter of the face. Let Xh

denote the finite-dimensional space of discontinuous piecewise polynomials:

Xh = {v ∈ L2(Ω); v|E ∈ Pr(E), ∀E ∈ Eh}, r ≥ 1,

where Pr(E) is, for simplices, Pr(E), the space of polynomials of degree less than or
equal to r. For quadrilateral or hexaedral elements, Pr(E) is the image by the inverse
transformation, i.e., x̂ = F−1(x), of polynomials of degree less than or equal to r in each
variable, i.e. Qr(Ê). Let N > 0 be an integer, define ∆t = T/N and tn = n∆t. The fully
discrete scheme is to find un+1

h ∈ Xh satisfying

1

∆t
(un+1

h − unh, vh) + aDG(un+1
h , vh) = (fn+1, vh), ∀vh ∈ Xh, 0 ≤ n ≤ N − 1, (3.1)

where

fn+1(x) =
1

∆t

∫ tn+1

tn

f(x, t)dt, a.e. in Ω,

and u0
h = Phu0, where Ph is the L2 projection operator in space defined for any v in L2(Ω),

by Phv ∈ Xh satisfying
(Phv, wh) = (v, wh), ∀wh ∈ Xh.

We recall the usual notation for the DG set-up. We define the broken gradient ∇hwh as
the piecewise gradient on each mesh element. For a given interior face e, a unit normal
vector ne is fixed, and its orientation is used to uniquely denote the elements that share e
by Ee

1, Ee
2. The jump and average of a function v ∈ Xh across a face e are given as

[v] = v|Ee
1
− v|Ee

2
, {v} =

1

2
v|Ee

1
+

1

2
v|Ee

2
.

For a boundary face, the unit normal vector ne is the outward normal nΩ to ∂Ω, and the
jump and average simply coincide with the trace. The DG bilinear form is for all w, v in
Xh:

aDG(w, v) =
∑
E∈Eh

(∇hw,∇hv)E −
∑

e∈Γh∪ΓD

({∇w} · ne, [v])e

+ ε
∑

e∈Γh∪ΓD

({∇v} · ne, [w])e +
∑

e∈Γh∪ΓD

σe
he

([w], [v])e.

The symmetrization parameter ε may take the values −1, 0 or +1. The penalty parameter
σe ≥ 1 may vary from face to face, it is chosen in particular so that the form aDG is coercive
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in the case when ε = −1 or ε = 0, see [9]. Define the semi-norms

‖w‖Xh
=

(∑
E∈Eh

‖∇w‖2
L2(E) +

∑
e∈Γh∪ΓD

σe
he
‖[w]‖2

L2(e)

)1/2

, ‖w‖L2(0,T ;Xh) =

(∫ T

0

‖w‖2
Xh

)1/2

.

(3.2)
They are norms if |ΓD| > 0. For convenience, we will use the compact notation (·, ·)Γh∪ΓD

for the sum of L2 inner-products over the interior and Dirichlet faces.

Standard energy-type estimates yield

sup
1≤n≤N

‖unh‖2
L2(Ω) + ∆t

N−1∑
n=0

‖un+1
h ‖2

Xh
+

N−1∑
n=0

‖un+1
h − unh‖2

L2(Ω) ≤ C. (3.3)

Throughout the paper, the constant C denotes a generic constant that is independent of
h and ∆t.

3.1. Main results. The main convergence result of this paper is the strong conver-
gence of the broken gradient ∇hu

n
h to ∇u in L2. More precisely, we prove the following

theorem:

Theorem 3.1. We have

lim
h,∆t→0

N−1∑
n=0

∫ tn+1

tn

‖un+1
h − u‖2

Xh
dt = 0. (3.4)

Moreover,
lim

h,∆t→0
sup

0≤n≤N
‖unh − u(tn)‖L2(Ω) = 0. (3.5)

Of course, (3.5) implies

lim
h,∆t→0

N−1∑
n=0

∫ tn+1

tn

‖un+1
h − u‖2

L2(Ω)dt = 0. (3.6)

This theorem has the following corollary:

Corollary 3.2. Let p0 be the exponent of the Sobolev embedding of H1(Ω) into Lp(Ω)
defined by

1

p0

=
1

2
− 1

d
. (3.7)

Then, for all p < p0

lim
h,∆t→0

N−1∑
n=0

∫ tn+1

tn

‖un+1
h − u‖2

Lp(Ω)dt = 0. (3.8)

This corollary is an immediate consequence of Theorem 3.1 and the following theorem on
Lp bounds for broken Sobolev spaces:
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Theorem 3.3. For each p ≤ p0 defined by (3.7), there is a constant C independent of h
such that,

‖vh‖Lp(Ω) ≤ C(‖vh‖2
L2(Ω) + ‖vh‖2

Xh
)1/2, ∀vh ∈ Xh. (3.9)

In addition, if |ΓD| > 0, then

‖vh‖Lp(Ω) ≤ C‖vh‖Xh
, ∀vh ∈ Xh, (3.10)

and if |ΓD| = 0, then

‖vh −
1

|Ω|

∫
Ω

vh‖Lp(Ω) ≤ C‖vh‖Xh
, ∀vh ∈ Xh. (3.11)

The bound (3.10) has been obtained for p = 2 in [1], for any p for d = 2 in [7], and
for any p for d = 2, 3 in the case ΓD = ∂Ω in [4]. The proof of Theorem 3.3 is in
Appendix 9. Section 6 contains an additional important Lp convergence result for broken
Sobolev spaces. The proof of Theorem 3.1 is given in Section 7. It requires intermediate
stability and convergence results for two functions uh,∆t and ūh,∆t introduced in the next
section.

4. A priori bounds of uh,∆t and ūh,∆t. It is usual to construct from the sequence
(unh)n a function uh,∆t that is continuous in time in [0, T ] and a function ūh,∆t that is
piecewise constant in time in ]0, T [. More precisely we define for any n, with 0 ≤ n ≤ N−1:

uh,∆t(t, x) = un+1
h (x)

t− tn
∆t

− unh(x)
t− tn+1

∆t
, ∀(t, x) ∈ Ω×]tn, tn+1]

and
ūh,∆t(t, x) = un+1

h (x), ∀(t, x) ∈ Ω× [tn, tn+1[.

Clearly, (3.4) is equivalent to

lim
h,∆t→0

‖ūh,∆t − u‖L2(0,T ;Xh) = 0. (4.1)

In the next section, we state and prove properties of these two functions uh,∆t and ūh,∆t.
The proof of (3.4) and (3.5) is given in Section 7.

We easily see that the scheme (3.1) can be rewritten as:

(∂tuh,∆t, vh) + aDG(ūh,∆t, vh) = (f̄∆t, vh), ∀t ∈]0, T ], ∀vh ∈ Xh, (4.2)

where f̄∆t is the piecewise constant function, equal to fn+1 on the interval ]tn, tn+1] for any
0 ≤ n ≤ N − 1.

4.1. A priori bounds of ūh,∆t. The a priori bounds for the sequence (unh)n yield
several bounds for the function ūh,∆t. From (3.3), there is a constant C independent of h
and ∆t such that

‖ūh,∆t‖L∞(0,T ;L2(Ω)) + ‖ūh,∆t‖L2(0,T ;Xh) ≤ C. (4.3)

This immediately implies that
‖ūh,∆t‖L2(QT ) ≤ C. (4.4)
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4.2. A priori bounds of uh,∆t. From (3.3),the fact uh,∆t is a piecewise linear function
in time, and the definition of u0

h, there is a constant C independent of h and ∆t such that

‖uh,∆t‖L∞(0,T ;L2(Ω)) ≤ C. (4.5)

This bound immediately implies

‖uh,∆t‖L2(QT ) ≤ C. (4.6)

Next, we will derive a bound on the time derivative of uh,∆t. Considering the definition of
Xh, Ph is a local L2 projection in each element. It is easy to check that

‖Phv‖L2(QT ) ≤ ‖v‖L2(QT ),

and

‖Phv‖L2(0,T ;Xh) ≤ C‖v‖L2(0,T ;H1(Ω)), ∀v ∈ L2(0, T ;X). (4.7)

Lemma 4.1. There is a constant C independent of h and ∆t such that

sup
v∈L2(0,T ;X)

∫ T
0

(∂tuh,∆t, Phv)dt

‖v‖L2(0,T ;H1(Ω))

≤ C. (4.8)

Proof. Let v be a function in L2(0, T ;X). Since Phv belongs to Xh, we obtain from (4.2)∫ T

0

(∂tuh,∆t, Phv) dt =

∫ T

0

(
(f̄∆t, Phv)− aDG(ūh,∆t, Phv)

)
dt.

The first term in the second line is simply bounded as

N−1∑
n=0

∫ tn+1

tn

(fn+1, Phv)dt ≤ ‖f‖L2(QT )‖v‖L2(QT ) ≤ C‖f‖L2(QT )‖v‖L2(0,T ;H1(Ω)).

For the second term, we have

−
∫ T

0

aDG(ūh,∆t, Phv)dt = −
∫ T

0

(
(∇hūh,∆t,∇hPhv) + ε({∇hPhv · ne}, [ūh,∆t])Γh∪ΓD

)
dt

+

∫ T

0

(
({∇hūh,∆t · ne}, [Phv])Γh∪ΓD

− (
σe
he

[ūh,∆t], [Phv])Γh∪ΓD

)
dt.

We bound each term in the right-hand side. First, using (4.3) and (4.7), we obtain∫ T

0

(∇hūh,∆t,∇hPhv)dt ≤ ‖∇hūh,∆t‖L2(QT )‖∇hPh(v)‖L2(QT ) ≤ C‖v‖L2(0,T ;H1(Ω)).
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Next, by using equivalence of norms, we obtain∫ T

0

({∇hPhv · ne}, [ūh,∆t])Γh∪ΓD
dt ≤C

(∫ T

0

∑
e∈Γh∪ΓD

σe
he
‖[ūh,∆t]‖2

L2(e)dt

)1/2

×
(∫ T

0

‖∇hPhv‖2
L2(Ω)dt

)1/2

.

Then (4.3) and (4.7) imply∫ T

0

({∇hPhv · ne}, [ūh,∆t])Γh∪ΓD
dt ≤ C‖v‖L2(0,T ;H1(Ω)).

For the third term, using again an equivalence of norms, we write∫ T

0

({∇hūh,∆t · ne}, [Phv])Γh∪ΓD
dt ≤C

(∫ T

0

‖∇hūh,∆t‖2
L2(Ω)dt

)1/2

‖Phv‖L2(0,T ;Xh)

≤ C‖v‖L2(0,T ;H1(Ω)),

by another application of (4.3) and (4.7). For the penalty term, we simply have∫ T

0

(
σe
he

[ūh,∆t], [Phv])Γh∪ΓD
dt ≤

(∫ T

0

σe
he
‖[ūh,∆t]‖2

L2(e)dt

)1/2

‖Phv‖L2(0,T ;Xh)

≤ C‖v‖L2(0,T ;H1(Ω)),

using again (4.3) and (4.7). Combining the bounds above we have obtained∫ T

0

(∂tuh,∆t, Phv)dt ≤ C‖v‖L2(0,T ;H1(Ω)),

whence (4.8).

Lemma 4.2. The function ∂tuh,∆t is uniformly bounded in L2(0, T ;X ′). More precisely,
there is a constant C independent of h and ∆t such that

‖∂tuh,∆t‖L2(0,T ;X′) ≤ C. (4.9)

Proof. Pick an arbitrary v ∈ L2(0, T ;X) and write:∫ T

0

(∂tuh,∆t, v) dt =

∫ T

0

(∂tuh,∆t, v − Phv) dt+

∫ T

0

(∂tuh,∆t, Phv) dt. (4.10)

Since Phv is the L2 projection of v onto Xh for almost every t, we have∫ T

0

(∂tuh,∆t, v − Phv) dt =
N−1∑
n=0

∫ tn+1

tn

1

∆t
(un+1

h − unh, v − Phv)dt = 0.

7
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Thus from Lemma 4.1 we have, for all v ∈ L2(0, T ;X)∫ T

0

(∂tuh,∆t, v) dt =

∫ T

0

(∂tuh,∆t, Phv) dt ≤ C‖v‖L2(0,T ;H1(Ω)),

which yields the result.

5. Convergence of uh,∆t and ūh,∆t. The a priori bounds obtained in the previous
section yield the following results.

Theorem 5.1. There is a function u ∈ L2(QT ) with ∂tu ∈ L2(0, T ;X ′) such that

uh,∆t and ūh,∆t converge weakly to u in L2(QT ),

and
∂tuh,∆t converges weakly to ∂tu in L2(0, T ;X ′).

Proof. From (4.6), there is a subsequence (uh,∆t)h,∆t that converges weakly to a function
u in L2(QT ). Bound (4.4) implies that there is a function ū in L2(QT ) such that, up to a
subsequence

ūh,∆t converges weakly to ū in L2(QT ).

The difference

uh,∆t(t, x)− ūh,∆t(t, x) = (un+1
h (x)− unh(x))

t− tn+1

∆t
, ∀(t, x) ∈ Ω× [tn, tn+1[,

gives

‖uh,∆t − ūh,∆t‖2
L2(QT )) ==

∆t

3

N−1∑
n=0

‖un+1
h − unh‖2

L2(Ω).

Using (3.3), we obtain
‖uh,∆t − ūh,∆t‖2

L2(QT ) ≤ C∆t.

Hence
lim

h,∆t→0
‖uh,∆t − ūh,∆t‖L2(QT ) = 0.

This yields that u = ū, and, up to a subsequence,

ūh,∆t converges weakly to u in L2(QT ).

Bound (4.9) implies that there is a function w in L2(0, T ;X ′) and a subsequence, still
denoted by (uh,∆t)h,∆t such that

∂tuh,∆t converges weakly to w in L2(0, T ;X ′).

A classical argument proves that, for all v in C∞0 (0, T ;X), we have

〈w, v〉QT
= −

∫ T

0

(u, ∂tv)dt = −(u, ∂tv)QT
= 〈∂tu, v〉QT

.
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This means that, in the distributional sense,

w = ∂tu,

which concludes the proof.

Following [4], we introduce a discrete gradient as follows. For any face e in Γh ∪ ΓD and
any function ϕ ∈ L2(e), we define the lifting re(ϕ) ∈ Xd

h by∫
Ω

re(ϕ) · vh =

∫
e

{vh · ne}ϕ, ∀vh ∈ Xd
h. (5.1)

Then, for any wh in Xh, we set

Rh([wh]) =
∑

e∈Γh∪ΓD

re([wh]),

and define the discrete symmetric gradient Gh(wh) in each element E by

Gh(wh)|E = ∇wh|E −Rh([wh])|E. (5.2)

In particular, we have

(Gh(wh), a) = (∇hwh, a)Eh − ([wh], {a · ne})Γh∪ΓD
, ∀a ∈ Pr(Eh)d. (5.3)

Let w̄h,∆t be the function, piecewise constant in time, defined by

w̄h,∆t(t, x) = wn+1
h (x), ∀(t, x) ∈ Ω×]tn, tn+1].

We thus can extend the definition of the discrete gradient Gh(w̄h,∆t):

∀t ∈]tn, tn+1] , Gh(w̄h,∆t)(t) = Gh(w
n+1
h ). (5.4)

The discrete gradient satisfies the following important property.

Lemma 5.2. Denote by Y the space of functions in H1(Ω) whose trace vanishes on ΓN ,
namely Y = H1

0,ΓN
(Ω). Let v be a function in L2(0, T ;Y d) and let vh be any function in

L2(0, T ;Xd
h) ∩ L2(0, T ;Y d). Let (wnh)n be a sequence of functions in Xh. There exists a

constant C independent of h and ∆ t such that

∣∣∣ ∫ T

0

(Gh(w̄h,∆t),v) + (w̄h,∆t,∇ · v)dt
∣∣∣ ≤ C‖w̄h,∆t‖L2(0,T ;Xh)

×

(
‖v − vh‖2

L2(QT ) +
∑

e∈Γh∪ΓD

he‖v − vh‖2
L2(e×]0,T [)

)1/2

.
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Proof. By applying Green’s formula, and the definitions (5.4) and (5.2), we obtain∫ T

0

(Gh(w̄h,∆t),v)dt =
N−1∑
n=0

∫ tn+1

tn

(
−(wn+1

h ,∇·v)+([wn+1
h ],v·ne)Γh∪ΓD

−(Rh([w
n+1
h ]),v)

)
dt.

By using the fact that vh belongs to Xd
h ∩ Y d for each t, we write equivalently,

∫ T

0

(Gh(w̄h,∆t),v)dt = −
N−1∑
n=0

∫ tn+1

tn

(wn+1
h ,∇ · v)dt

+
N−1∑
n=0

∫ tn+1

tn

(
([wn+1

h ], (v − vh) · ne)Γh∪ΓD
− (Rh([w

n+1
h ]),v − vh)

)
dt.

It is easy to show that

N−1∑
n=0

∆t‖Rh([w
n+1
h ])‖2

L2(Ω) ≤ C

∫ T

0

∑
e∈Γh∪ΓD

1

he
‖[w̄h,∆t]‖2

L2(e)dt. (5.5)

The result is then obtained.

The following lemma is a generalization of a result obtained in [4].

Lemma 5.3. Let (w̄h,∆t)h,∆t be a sequence of functions, piecewise constant in time, satis-
fying

‖w̄h,∆t‖L2(0,T ;Xh) ≤ C,

where C is independent of h and ∆t. Assume that (w̄h,∆t)h,∆t converges weakly to a
function w in L2(QT ). Then, the limit w belongs to L2(0, T ;H1(Ω)) and the sequence
(Gh(w̄h,∆t))h,∆t converges weakly to ∇w in L2(QT )d.

Proof. Using Lemma 5.2, we have for any function v in L2(0, T ;H1
0 (Ω)d)

lim
h,∆t→0

∫ T

0

(Gh(w̄h,∆t),v)dt = − lim
h,∆t→0

∫ T

0

(w̄h,∆t,∇·v)dt = −
∫ T

0

(w,∇·v)dt =

∫ T

0

〈∇w,v〉dt.

(5.6)
In addition, we have, using (5.5)

‖Gh(w̄h,∆t)‖L2(QT ) ≤ C‖w̄h,∆t‖L2(0,T ;Xh) ≤ C.

Therefore the sequence (Gh(w̄h,∆t))h,∆t converges weakly to a function z in L2(QT )d and
(5.6) shows that the distributional derivative ∇w is in fact equal to z.

The next theorem shows that the limit u in Theorem 5.1 belongs to L2(0, T ;X).

Theorem 5.4. With the notation of Theorem 5.1, we have

u ∈ L2(0, T ;X).
10
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Proof. First let us prove that u takes its values in H1(Ω). Let φ be an arbitrary function
in L2(0, T ; C∞0 (Ω)d). We have, from the weak convergence of ūh,∆t to u in L2(QT ):

−
∫ T

0

(u,∇ · φ)dt = lim
h,∆t→0

−
∫ T

0

(ūh,∆t,∇ · φ)dt.

Green’s formula in each element E implies

−
∫ T

0

(ūh,∆t,∇ · φ)dt =

∫ T

0

(
(∇hūh,∆t,φ)− (φ · ne, [ūh,∆t])Γh

)
dt.

Therefore

| −
∫ T

0

(ūh,∆t,∇ · φ)dt| ≤
∫ T

0

‖∇hūh,∆t‖L2(Ω)‖φ‖L2(Ω)dt

+

∫ T

0

(
∑
e∈Γh

σe
he
‖[ūh,∆t]‖2

L2(e))
1/2(

∑
e∈Γh

he‖φ‖2
L2(e))

1/2dt.

By a standard trace theorem∑
e∈Γh

he‖φ‖2
L2(e) ≤ C(‖φ‖2

L2(Ω) + h2‖∇φ‖2
L2(Ω)).

Therefore the bound (4.3) yields

| −
∫ T

0

(ūh,∆t,∇ · φ)dt| ≤ C
(
‖φ‖2

L2(QT ) + h2‖∇φ‖2
L2(QT )

)1/2

,

and passing to the limit as h and ∆ t tend to zero, we derive

| −
∫ T

0

(u,∇ · φ)dt| ≤ C‖φ‖L2(QT ).

This means that the distributional gradient of u is in fact in L2(QT )d.

Next, In order to prove that the trace of u vanishes on ΓD, let φ and v be any functions
respectively in L2(0, T ) and Y d, so that φv belongs to L2(0, T ;Y d). We apply Lemma 5.2
to the sequence of functions (unh)n and, considering that both Gh(ūh,∆t) and ūh,∆t converge
weakly, we obtain:

lim
h,∆t→0

∫ T

0

(Gh(ūh,∆t),v)φdt = − lim
h,∆t→0

∫ T

0

(ūh,∆t,∇ · v)φdt.

Using Lemma 5.3, and passing to the limit, we have∫ T

0

(∇u,v)φdt = −
∫ T

0

(u,∇ · v)φdt.

11
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This implies for all φ ∈ L2(0, T ) and v ∈ Y∫ T

0

(u,v · ne)ΓD
φdt = 0,

which in turn implies that the trace of u vanishes on ΓD.

With Theorem 5.1, we then recover the initial condition, namely

u0(·) = u(0, ·). (5.7)

6. Lp convergence results for broken Sobolev spaces. In this section, we obtain
convergence in Lp of a uniformly bounded sequence of discrete functions in broken Sobolev
spaces. The result is valid independently of the choice of the boundary conditions.

Theorem 6.1. Let p0 be the critical exponent of the Sobolev embedding defined by (3.7)
and let p < p0. Let (vh)h be a sequence of functions in Xh, uniformly bounded:

‖vh‖Xh
≤ C. (6.1)

Then, if |ΓD| = 0, there is a function v ∈ H1(Ω) such that (vh−
∫

Ω
vh)h converges strongly

to v in the Lp norm. In addition, if |ΓD| > 0, the function v belongs to H1
0,ΓD

(Ω) and (vh)h
converges strongly to v in the Lp norm.

The proof of this result contains intermediate steps that can be useful per se. The dis-
continuous function vh is transformed into an H1 function by means of three operators.
The first operator Lh reduces the degree of the polynomials to one; it is simply a standard
Lagrange interpolant of degree one applied locally to vh in each element with no global
continuity requirement. The next operator Ch regularizes Lh(vh) at the center of each
face to transform Lh(vh) into a Crouzeix-Raviart element (see [3]). Finally, Ch(vh) is glob-
ally regularized by a Scott-Zhang type element (see [10]), denoted Rh(vh). Details of the
constructions of Ch and Rh are given below.

To construct Ch, consider first an interior face e shared by Ee
1 and Ee

2 (normal ne points
from Ee

1 to Ee
2), let be denote the midpoint of e in 2D and the barycenter of e in 3D. Then

λe is a discontinuous piecewise polynomial of degree one, uniquely defined by

λe(be)|Ee
1

= 1, λe(be)|Ee
2

= 0, λe(bγ) = 0, ∀γ ∈ Γh ∪ ΓD, γ 6= e.

The process is similar for a boundary face e adjacent to Ee; we define λe, a discontinuous
piecewise polynomial of degree one, by

λe(be)|Ee = 1, λe(bγ) = 0, ∀γ ∈ Γh ∪ ΓD, γ 6= e.

Then Ch(vh) is defined by

Ch(vh) = Lh(vh)−
∑

e∈Γh∪ΓD

(
1

|e|

∫
e

[Lh(vh)]

)
λe.

12
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By construction, Ch(vh) is continuous at the center of each interior e and vanishes at the
center of each e in ΓD.
We now regularize Ch(vh) by constructing a function that is a polynomial of degree one
in each element, belongs globally to H1(Ω), and is of the Scott-Zhang type [10]. Let Ph
denote the set of vertices of Eh, including those on the boundary ∂Ω. For each vertex
a ∈ Ph, let φa be the nodal basis function of degree one associated with a, and let ba
be the center of a face with vertex a, chosen so that the face is not contained in ΓN . In
addition, if |ΓD| > 0 and if a lies on ΓD, the face is chosen so that it belongs to ΓD. Then
Rh(vh) is defined by

Rh(vh) =
∑
a∈Ph

Ch(vh)(ba)φa.

By construction, Rh(vh) belongs to X.
The following lemma collects useful approximation properties of these operators. Its proof
is easy and given in the appendix.

Lemma 6.2. Let the mesh be regular in the sense of Ciarlet [2]. Then, there exists a
constant C independent of h, such that

‖vh − Lh(vh)‖Xh
≤ C‖∇hvh‖L2(Ω), ∀vh ∈ Xh, (6.2)

‖vh − Ch(vh)‖Xh
≤ C‖vh‖Xh

, ∀vh ∈ Xh, (6.3)

‖∇Rh(vh)‖L2(Ω) ≤ C‖vh‖Xh
, ∀vh ∈ Xh. (6.4)

For each p ≤ p0, the critical exponent of Sobolev’s embedding, there exists a constant C
independent of h, such that

‖vh − Lh(vh)‖Lp(Ω) ≤ Ch1−d( 1
2
− 1

p
)‖∇hvh‖L2(Ω), ∀vh ∈ Xh, (6.5)

‖vh − Ch(vh)‖Lp(Ω) ≤ Ch1−d( 1
2
− 1

p
)‖vh‖Xh

, ∀vh ∈ Xh, (6.6)

‖vh −Rh(vh)‖Lp(Ω) ≤ Ch1−d( 1
2
− 1

p
)‖vh‖Xh

, ∀vh ∈ Xh. (6.7)

We can now prove Theorem 6.1.

Proof. All weak convergences below are up to subsequences.

We consider two cases according to the measure of ΓD. If |ΓD| > 0, it follows from (3.10)
with p = 2, that vh is uniformly bounded in L2(Ω) and hence there is v ∈ L2(Ω) such that
vh converges weakly to v in L2(Ω). Similarly, there is a function w ∈ H1

0,ΓD
(Ω) such that

Rh(vh) converges weakly to w in H1(Ω). This means that Rh(vh) converges strongly to w
in Lp(Ω) for all p < p0. But (6.7) implies that vh − Rh(vh) converges strongly to zero in
Lp(Ω) and therefore on one hand v = w and on the other hand, vh converges strongly to v
in Lp(Ω).

Next, consider the case |ΓD| = 0; then ‖ · ‖Xh
is a semi-norm, and vh is defined up to an

additive constant. Let

ṽh = vh −
1

|Ω|

∫
Ω

Rh(vh).

13



It is easy to see that by construction

Rh(ṽh) = Rh(vh)−
1

|Ω|

∫
Ω

Rh(vh).

Thus Rh(ṽh) belongs to H1(Ω) and
∫

Ω
Rh(ṽh) = 0, and hence by Peetre-Tartar’s lemma

(see [8], [11] and Theorem 2.1 in [6])

‖Rh(ṽh)‖Lp(Ω) ≤ C‖∇Rh(ṽh)‖L2(Ω) = C‖∇Rh(vh)‖L2(Ω) ≤ C‖vh‖Xh
≤ C.

Therefore there is w ∈ H1(Ω) such that (Rh(ṽh))h converges weakly to w in H1(Ω) and
strongly to w in Lp(Ω) for p < p0. Reverting to ṽh, we write

‖ṽh‖Lp(Ω) ≤ ‖ṽh −Rh(ṽh)‖Lp(Ω) + ‖Rh(ṽh)‖Lp(Ω).

But
ṽh −Rh(ṽh) = vh −Rh(vh)

and therefore, again by (6.7),

‖ṽh‖Lp(Ω) ≤ ‖vh −Rh(vh)‖Lp(Ω) + C‖vh‖Xh
≤ C‖vh‖Xh

.

Hence there is a function v ∈ Lp(Ω) such that ṽh converges weakly to v in Lp(Ω). In
addition, it stems from

‖ṽh − w‖Lp(Ω) ≤ ‖ṽh −Rh(ṽh)‖Lp(Ω) + ‖Rh(ṽh)− w‖Lp(Ω),

that (ṽh)h converges strongly to w in Lp(Ω). This implies that v = w. Summing up, the
sequence

(vh −
∫

Ω

Rh(vh))h

converges strongly to v in Lp(Ω), and v ∈ H1(Ω). Since by (6.7),

1

|Ω|
‖
∫

Ω

(
Rh(vh)− vh

)
‖Lp(Ω) ≤ |Ω|1/p−1/2‖Rh(vh)− vh‖L2(Ω) ≤ C|Ω|1/p−1/2h‖vh‖Xh

,

the conclusion holds for (vh − 1
|Ω|

∫
Ω
vh)h.

7. Proof of Theorem 3.1. For two sequences of functions in Xh, ṽh = (vnh)n and
w̃h = (wnh)n, define the bilinear form associated with the left-hand side of (3.1):

Ah(w̃h, ṽh) =
N−1∑
n=0

(wn+1
h − wnh , vn+1

h ) + ∆t
N−1∑
n=0

aDG(wn+1
h , vn+1

h ).

Lemma 7.1. Let ṽh = (vnh)n be a sequence of functions in Xh. There is a constant C
independent of h, ∆t and ṽh such that

Ah(ṽh, ṽh) ≥ C

N∑
n=1

∆t‖vnh‖2
Xh

+
1

2
‖vNh ‖2

L2(Ω) −
1

2
‖v0

h‖2
L2(Ω). (7.1)
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Proof. The proof is well-known. We give it for completeness. By definition

Ah(ṽh, ṽh) =
N−1∑
n=0

(vn+1
h − vnh , vn+1

h ) + ∆t
N−1∑
n=0

aDG(vn+1
h , vn+1

h ).

On one hand, the coercivity of aDG implies

aDG(vn+1
h , vn+1

h ) ≥ C‖ṽh‖2
Xh
.

On the other hand, the first term satisfies

N−1∑
n=0

(vn+1
h − vnh , vn+1

h ) ≥ 1

2

N−1∑
n=0

(‖vn+1
h ‖2

L2(Ω) − ‖vnh‖2
L2(Ω)) =

1

2
‖vNh ‖2

L2(Ω) −
1

2
‖v0

h‖2
L2(Ω).

This concludes the proof.

Ideally, the desired strong convergence should be deduced by substituting into (7.1) the
difference between uh and some interpolant of the limit function u. But, considering the
low regularity of u, we replace it by a smooth function and argue by density. More precisely,
we know that u belongs to W (0, T ), see (2.3). Since the smooth functions are dense in
W (0, T ), we can find a sequence (φk)k in C∞([0, T ];X) such that

φk converges strongly to u in W (0, T ),

and the embedding (2.4) implies that φk converges strongly to u in C0([0, T ];L2(Ω)). In
other words, for each δ > 0, there exists k0 such that for all k ≥ k0,

‖φk − u‖W (0,T ) ≤ δ, (7.2)

and
sup
t∈[0,T ]

‖φk(t)− u(t)‖L2(Ω) ≤ δ. (7.3)

Let Ih,∆tφk be an interpolant of φk, of the Scott-Zhang type [10], continuous in time and
space, vanishing on ΓD and satisfying

Ih,∆tφk converges strongly to φk in L2(0, T ;X),

∂t(Ih,∆tφk) converges strongly to ∂tφk in L2(QT ).

This implies
Ih,∆tφk converges strongly to φk in C0([0, T ];L2(Ω)).

We set
Īh,∆tφk(x) = Ih,∆tφk(tn+1, x), ∀(t, x) ∈ Ω× [tn, tn+1].

15
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It can be easily checked that, since Ih,∆tφk belongs to a finite dimensional space in time,
Īh,∆tφk also converges strongly to φk in L2(0, T ;X), and moreover

‖Īh,∆tφk − φk‖L2(0,T ;H1(Ω)) ≤ C‖Ih,∆tφk − φk‖L2(0,T ;H1(Ω)). (7.4)

Denote by Ĩh,∆tφk the sequence of functions (Ih,∆tφk(tn, ·))n and by ũh the sequence of
functions (unh(·))n. We apply Lemma 7.1 to the sequence ũh − Ĩh,∆tφk0 with the index k0

chosen in (7.2). We have, since the interpolant does not jump

C

(
N∑
n=1

∆t
(
‖∇h(u

n
h − Ih,∆tφk0(tn, ·))‖2

L2(Ω) +
∑

e∈Γh∪ΓD

σe
he
‖[unh]‖2

L2(e)

))
+

1

2
‖uNh − Ih,∆tφk0(T, ·)‖2

L2(Ω)

≤ Ah(ũh − Ĩh,∆tφk0 , ũh − Ĩh,∆tφk0) +
1

2
‖u0

h − Ih,∆tφk0(0, ·)‖2
L2(Ω).

(7.5)

This implies

C‖ūh,∆t − Īh,∆tφk0‖2
L2(0,T ;Xh) +

1

2
‖uNh − Ih,∆tφk0(T, ·)‖2

L2(Ω) ≤Ah(ũh − Ĩh,∆tφk0 , ũh − Ĩh,∆tφk0)

+
1

2
‖u0

h − Ih,∆tφk0(0, ·)‖2
L2(Ω).

(7.6)

The right-hand side of (7.6) can be split into three terms. The first one is evaluated by
the expression (3.1) of the scheme:

Ah(ũh, ũh− Ĩh,∆tφk0) = ∆t
N−1∑
n=0

(fn+1, un+1
h −Ih,∆tφk0(tn+1, ·)) =

∫ T

0

(f̄∆t, ūh,∆t− Īh,∆tφk0)dt.

The weak convergence of ūh,∆t in L2(QT ), the strong convergence of Īh,∆tφk0 to φk0 in
C0([0, T ];L2(Ω)) and the strong convergence of f̄∆t to f imply that

lim
h,∆t→0

Ah(ũh, ũh − Ĩh,∆tφk0) =

∫ T

0

(f, u− φk0)dt. (7.7)

The next lemma evaluates the limit of the second term.

Lemma 7.2. We have

lim
h,∆t→0

Ah(Ĩh,∆tφk0 , ũh− Ĩh,∆tφk0) =

∫ T

0

(∂tφk0 , u−φk0)dt+

∫ T

0

(∇φk0 ,∇(u−φk0))dt. (7.8)
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Proof. Since Ih,∆tφk0(tn, ·) belongs to X, the expression of Ah simplifies:

Ah(Ĩh,∆tφk0 , ũh − Ĩh,∆tφk0) =
N−1∑
n=0

(
(Ih,∆tφk0(tn+1)− Ih,∆tφk0(tn), un+1

h − Ih,∆tφk0(tn+1))

+ ∆t(∇Ih,∆tφk0(tn+1),∇hu
n+1
h −∇Ih,∆tφk0(tn+1))

−∆t({∇Ih,∆tφk0(tn+1) · ne}, [un+1
h − Ih,∆tφk0(tn+1)])Γh∪ΓD

)
.

(7.9)

Therefore the first term in the above sum can be rewritten as

N−1∑
n=0

(Ih,∆tφk0(tn+1)− Ih,∆tφk0(tn), un+1
h − Ih,∆tφk0(tn+1))

=

∫ T

0

(
∂tIh,∆tφk0 , ūh,∆t − Īh,∆tφk0

)
dt.

By assumption, ∂tIh,∆tφk0 converges strongly to ∂tφk0 in L2(QT ). We also have shown the
weak convergence of ūh,∆t to u in L2(QT ). From (7.4), Īh,∆tφk0 converges strongly to φk0
in L2(QT ). Therefore, the first term in the right-hand side of (7.9) converges to∫ T

0

(∂tφk0 , u− φk0)dt =

∫ T

0

〈∂tφk0 , u− φk0〉dt. (7.10)

We first rewrite the sum of the two remaining terms as∫ T

0

(
(∇Īh,∆tφk0 ,∇hūh,∆t −∇Īh,∆tφk0)− ({∇Īh,∆tφk0 · ne}, [ūh,∆t − Īh,∆tφk0 ])Γh∪ΓD

)
.

Using the discrete gradient Gh(ūh,∆t − Īh,∆tφk0), this expression becomes

N∑
n=1

∆t
(

(∇Ih,∆tφk0(tn),∇hu
n
h−∇Ih,∆tφk0(tn))−({∇Ih,∆tφk0(tn)·ne}, [unh−Ih,∆tφk0(tn)])Γh∪ΓD

)
=

∫ T

0

(Gh(ūh,∆t − Īh,∆tφk0),∇Īh,∆tφk0)dt.

Next we observe that the sequence (ūh,∆t−Īh,∆tφk0)h,∆t is uniformly bounded in L2(0, T ;Xh).
It stems from Lemma 5.3 that the sequence (Gh(ūh,∆t − Īh,∆tφk0))h,∆t converges weakly
to ∇u − ∇φk0 in L2(QT ). From (7.4), we see that the sequence (Īh,∆tφk0)h,∆t converges
strongly to φk0 in L2(0, T ;H1(Ω)). We then conclude that

lim
h,∆t→0

∫ T

0

(Gh(ūh,∆t − Īh,∆tφk0),∇Īh,∆tφk0)dt =

∫ T

0

(∇φk0 ,∇(u− φk0))dt,

which combined with (7.10) gives (7.8).
17
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For the last term in the right-hand side of (7.6) that involves the solution at the initial
time, we first see that, since u0

h is the L2 projection of u0

lim
h→0
‖u0

h − u0‖L2(Ω) = 0.

Then the strong convergence of Ih,∆tφk0(0, ·) to φk0(0, ·) in L2(Ω) implies

lim
h→0
‖u0

h − Ih,∆tφk0(0, ·)‖L2(Ω) = ‖u0 − φk0(0, ·)‖L2(Ω).

By collecting the above results, and combining with (5.7), (7.7) and (7.8), we obtain on one
hand that for each ε > 0 there exist hε and ∆ tε such that for all h ≤ hε and ∆ t ≤ ∆ tε,∣∣∣Ah(ũh − Ĩh,∆tφk0 , ũh − Ĩh,∆tφk0) +

1

2
‖u0

h − Ih,∆tφk0(0, ·)‖2
L2(Ω)

−
∫ T

0

(
(f, u− φk0) + 〈∂tφk0 , u− φk0〉+ (∇φk0 ,∇(u− φk0))

)
dt− 1

2
‖u(0, ·)− φk0(0, ·)‖2

L2(Ω)

∣∣∣
≤ ε.

(7.11)

On the other hand, by applying (7.2) and (7.3),∫ T

0

(
(f, u− φk0) + 〈∂tφk0 , u− φk0〉+ (∇φk0 ,∇(u− φk0))

)
dt+

1

2
‖u(0, ·)− φk0(0, ·)‖2

L2(Ω)

≤ ‖f‖L2(QT )‖u− φk0‖L2(QT ) + ‖∂tφk0‖L2(0,T ;X′)‖u− φk0‖L2(0,T ;H1(Ω))

+ ‖φk0‖L2(0,T ;H1(Ω))‖u− φk0‖L2(0,T ;H1(Ω)) +
1

2
‖u(0, ·)− φk0(0, ·)‖2

L2(Ω)

≤ δ(‖f‖L2(QT ) + ‖∂tφk0‖L2(0,T ;X′) + ‖φk0‖L2(0,T ;H1(Ω))) +
1

2
δ2 ≤ C1δ,

(7.12)

for some constant C1 independent of δ. In particular, by choosing ε = δ, we infer from
(7.11) and (7.12) that for all h ≤ hδ and ∆ t ≤ ∆ tδ∣∣∣Ah(ũh − Ĩh,∆tφk0 , ũh − Ĩh,∆tφk0) +

1

2
‖u0

h − Ih,∆tφk0(0, ·)‖2
L2(Ω)

∣∣∣ ≤ (1 + C1)δ, (7.13)

with the constant C1 of (7.12). By reverting to (7.6), (7.13) implies that, for all h ≤ hδ
and ∆ t ≤ ∆ tδ

‖ūh,∆t − Īh,∆tφk0‖2
L2(0,T ;Xh) + ‖uNh − Ih,∆tφk0(T, ·)‖2

L2(Ω) ≤ C2δ, (7.14)

for another constant C2 depending only on C1 and the constant of (7.6). From the triangle
inequality, (7.14), the convergence of Ih,∆t, and (7.2) we deduce that, by possibly restricting
further hδ and ∆ tδ, there holds for all h ≤ hδ and ∆ t ≤ ∆ tδ

‖ūh,∆t − u‖L2(0,T ;Xh) ≤‖ūh,∆t − Īh,∆tφk0‖L2(0,T ;Xh) + ‖Īh,∆tφk0 − φk0‖L2(0,T ;Xh) + ‖φk0 − u‖L2(0,T ;Xh)

≤ C3δ,
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with another constant C3 independent of δ. This is precisely the convergence (3.4). Of
course, (7.14) implies the same convergence for uNh −u(T ) in L2(Ω), and the same argument
can be applied to the value at any intermediate point, thus implying (3.5).
Finally, by reverting to (7.5), the convergence (3.4) implies that the jumps tend to zero:

lim
h,∆t→0

∆t
N∑
n=1

∑
e∈Γh∪ΓD

σe
he
‖[unh]‖2

L2(e) = 0. (7.15)

8. Passing to the limit. Let φ be a smooth function in space and in time satisfying
φ(T ) = 0, interpolated with the same interpolant as above. From (4.2), we have by choosing
vh = Īh,∆tφ (recall it is the piecewise constant in time function):∫ T

0

(∂tuh,∆t, Īh,∆tφ) +

∫ T

0

aDG(ūh,∆t, Īh,∆tφ) =

∫ T

0

(f̄∆t, Īh,∆tφ). (8.1)

Clearly the right-hand side converges to

lim
h,∆t→0

∫ T

0

(f̄∆t, Īh,∆tφ) =

∫ T

0

(f, φ).

Since ∂tuh,∆t converges weakly to ∂tu in L2(0, T ;X ′) and Īh,∆tφ converges strongly to φ in
L2(0, T ;X) we have

lim
h,∆t→0

∫ T

0

(∂tuh,∆t, Īh,∆tφ) =

∫ T

0

〈∂tu, φ〉.

We expand aDG, considering that Īh,∆tφ does not have any jumps in space:∫ T

0

aDG(ūh,∆t, Īh,∆tφ) =

∫ T

0

(∇hūh,∆t,∇Īh,∆tφ) + ε({∇Īh,∆tφ} · ne, [ūh,∆t])Γh∪ΓD
.

Since ∇hūh,∆t converges strongly to ∇u in L2(QT ), and ∇Īh,∆tφ converges strongly to ∇φ
in L2(QT ), we have

lim
h,∆t→0

∫ T

0

(∇hūh,∆t,∇Īh,∆tφ) =

∫ T

0

(∇u,∇φ).

It follows from (7.15) that

lim
h,∆t→0

∫ T

0

∑
e∈Γh∪ΓD

σe
he
‖[ūh,∆t]‖2

L2(e) = 0.

We write by equivalence of norms∫ T

0

({∇Īh,∆tφ} · ne, [ūh,∆t])Γh∪ΓD
≤ C

(∫ T

0

∑
e∈Γh∪ΓD

σe
he
‖[ūh,∆t]‖2

L2(e)

)1/2

‖∇Īh,∆tφ‖L2(QT ).
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Therefore,

lim
h,∆t→0

∫ T

0

ε({∇Īh,∆tφ} · ne, [ūh,∆t])Γh∪ΓD
= 0.

Hence by collecting these limits, the function u satisfies (2.1).

Remark 8.1. In the case of quadrilateral or hexahedral elements, since DG functions
require no continuity, Pr(E) can also be used, instead of F−1(Qr(Ê)). In this case, the
interpolants cannot be continuous in space; thus their jumps do not vanish, and must be
estimated. But those estimates are straightforward, they increase somewhat the length of
the proofs, but do not change the results.

9. Appendix.

9.1. Proof of Theorem 6.2. The estimates (6.2) and (6.5) are easy consequences of
the approximation properties of the standard Lagrange interpolant Lh and the smoothness
of vh in the interior of each element.

Next, we turn to Ch. To derive the interior estimate (6.3), we consider ‖Ch(uh)−Lh(uh)‖Xh
.

We have for an element E:

‖∇(Ch(uh)− Lh(uh))‖L2(E) ≤
∑

e∈∂E∩(Γh∪ΓD)

1

|e|

(∫
e

[Lh(uh)]

)
‖∇λe‖L2(E).

Therefore, we infer from (6.2) that

‖∇h(Ch(uh)− Lh(uh))‖L2(Ω) ≤ C

( ∑
e∈Γh∪ΓD

σe
he
‖[Lh(uh)]‖2

L2(e)

)1/2

≤ C

( ∑
e∈Γh∪ΓD

σe
he
‖[Lh(uh)− uh]‖2

L2(e)

)1/2

+

( ∑
e∈Γh∪ΓD

σe
he
‖[uh]‖2

L2(e)

)1/2
 ≤ C‖uh‖Xh

,

and
‖∇h(uh − Ch(uh))‖L2(Ω) ≤ C‖uh‖Xh

.

To bound the jumps, let e be an arbitrary interior face, shared by Ee
1 and Ee

2, the argument
being similar for a boundary face e ∈ ΓD. By definition,

[Ch(uh)− Lh(uh)]|e = −
∑

γ∈Γh∪ΓD

(
1

|γ|

∫
γ

[Lh(uh)]

)
[λγ]|e.

Denote by Se the set of faces in (∂Ee
1 ∪ ∂Ee

2) ∩ (Γh ∪ ΓD):

‖[Ch(uh)− Lh(uh)]‖L2(e) ≤
∑
γ∈Se

(
1

|γ|

∫
γ

[Lh(uh)]

)
‖[λγ]‖L2(e).
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Thus
σe
he
‖[Ch(uh)− Ih(uh)]‖2

L2(e) ≤ C
σe
he

∑
γ∈Se

‖[Lh(uh)]‖2
L2(γ),

and ∑
e∈Γh

σe
he
‖[Ch(uh)− Ih(uh)]‖2

L2(e) ≤ C
∑

e∈Γh∪ΓD

σe
he
‖[Lh(uh)]‖2

L2(e).

For the Lp estimate (6.6), it suffices to show that

‖Ch(vh)− Lh(vh)‖Lp(Ω) ≤ Ch1−d( 1
2
− 1

p
)‖vh‖Xh

.

On an arbitrary mesh element E,

‖Ch(uh)− Lh(uh)‖Lp(E) ≤
∑

e∈∂E∩(Γh∪ΓD)

1

|e|

∣∣∣∣∫
e

[Lh(uh)]

∣∣∣∣ ‖λe‖Lp(E)

≤ Ch1−d( 1
2
− 1

p
)

 ∑
e∈∂E∩(Γh∪ΓD)

σe
he
‖[Lh(uh)]‖2

L2(e)

1/2

.

By applying Jensen’s inequality, valid here since p ≥ 2, we obtain

‖Ch(uh)− Lh(uh)‖Lp(Ω) ≤ Ch1−d( 1
2
− 1

p
)

( ∑
e∈Γh∪ΓD

σe
he
‖[Lh(uh)]‖2

L2(e)

)1/2

,

whence (6.6).

Now, we turn to Rh. The stability and approximation properties of the Scott-Zhang
operator imply that

‖∇Rh(uh)‖L2(Ω) ≤ C‖∇hCh(uh)‖L2(Ω)

and on an arbitrary mesh element E

‖Ch(uh)−Rh(uh)‖pLp(E) ≤ Ch
p+d− dp

2
E

j∑
k=1

‖∇hCh(uh)‖pL2(Ej)

where ∪jk=1Ek is a macro-element containing E, where the values of the function are taken
to evaluate Rh. Then (6.7) follows from the results obtained for Ch(vh).

9.2. Proof of Theorem 3.3. We write

‖vh‖Lp(Ω) ≤ ‖vh −Rh(vh)‖Lp(Ω) + ‖Rh(vh)‖Lp(Ω).

From (6.7), we obtain

‖vh‖Lp(Ω) ≤ Ch1−d( 1
2
− 1

p
)‖vh‖Xh

+ ‖Rh(vh)‖Lp(Ω).
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By Sobolev’s embedding,

‖Rh(vh)‖Lp(Ω) ≤ C‖Rh(vh)‖H1(Ω).

We know that
‖∇Rh(vh)‖L2(Ω) ≤ C‖vh‖Xh

,

and using (6.7) with p = 2

‖Rh(vh)‖L2(Ω) ≤ C‖vh‖Xh
+ ‖vh‖L2(Ω).

Therefore,
‖Rh(vh)‖Lp(Ω) ≤ C(‖vh‖Xh

+ ‖vh‖L2(Ω)),

and we obtain (3.9).

Next, assume |ΓD| > 0. This implies

‖Rh(vh)‖L2(Ω) ≤ C‖∇Rh(vh)‖L2(Ω) ≤ C‖vh‖Xh
,

which, in turn, implies
‖Rh(vh)‖Lp(Ω) ≤ C‖vh‖Xh

.

This concludes the proof of (3.10).

Finally, we consider the case |ΓD| = 0. As in the proof of Theorem 6.1, we define

ṽh = vh −
1

|Ω|

∫
Ω

Rh(vh)

and we obtain, in an exact fashion, the bound

‖ṽh‖Lp(Ω) ≤ ‖vh −Rh(vh)‖Lp(Ω) + C‖vh‖Xh
.

Using (6.7) we have
‖ṽh‖Lp(Ω) ≤ C‖vh‖Xh

.

Next, we write

‖vh −
1

|Ω|

∫
Ω

vh‖Lp(Ω) ≤ ‖ṽh‖Lp(Ω) + ‖ 1

|Ω|

∫
Ω

(Rh(vh)− vh)‖Lp(Ω).

This implies

‖vh −
1

|Ω|

∫
Ω

vh‖Lp(Ω) ≤ C‖vh‖Xh
+ |Ω|1/p−1/2‖Rh(vh)− vh‖L2(Ω).

Using (6.7) with p = 2, we obtain (3.11).
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