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1. INTRODUCTION

The problem of modelling a packed bed reactor with porous cata-
lyst pellets is ideally one of trying to ascertain pressure, tempera-
ture and concentration in two 3-dimensional space structures (time
would constitute the seventh dimension in an unsteady state process).
One of the 3-dimensional space structures, in which the balance
equations are written for the moving fluid, would be a control volume,
large if compared with the size of the catalyst pellet and small if
compared with the size of the reactor. The pseudo-homogenecus models
that have been developed in the last two decades have considered this
size of the control volume. The other 3-dimensional space structure
is one within the catalyst pellet with a control volume large if com-
pared with the pores within the pellet and small if compared with
the size of the pellet. An ideal model for a packed bed reactor
would be one which effectively couples the fluxes within the catalyst
pellet with those in the fluid moving in the interstices between the
catalyst pellets in the bed. Unfortumately, it is quite a formidable
task to develop such a model.

The simplest models treat the bed of catalyst pellets as though
it were statistically homogeneous and the balance equations are writ-
ten as if it were a one phase environ. The model most commonly used
for similation studies has been obtained by considering that heat and
mass transfer in both axial and radial directions are the result of
superposition of two processes, namely, a convective flow, and a dif-
fusive flow following Fick's law of diffusion. Paris and Stevens

1970, N.R. Ammdson 1970, Froment 1972, Ray 1972, Adler et al. 1973,



Hoffman 1974, have summarised the various approaches to the problem
of modelling packed bed chemical reactors. The mathematical intract-
ability of the Fickian model has been commented upon by several re-
searchers. Particular attention has been drawn to the dispersion
terms expressed by second order differentials (Wehner and Wilhelm
1956, Beek and Miller 1959) and considerable experimental as well as
analytical work has been done in order to ascertain when one or more
of the four second order differentials can be neglected in the heat
and mass balance equations.

The intuitive justification for axial dispersion parallel to
the flow as a form of Fickian diffusion has been increasingly sus-
pect with recent investigations of the actual fluid dynamics in the
packed bed. It would be reasorable to represent the dispersive ef-
fect as diffusion only if there is a significant amount of backmixing
in packed bed reactors (Hiby 1963).

Deans and Lapidus 1960, assuming that backmixing is negligible,
have recommended that, instead of trving to use diffusion to repre-
sent an essentially different dispersive effect, one should formu-
1ate a set of difference equations akin to the mixing cell theory
(Aris and Ammndson 1957). The geometrical arrangement for the mixing
cells is based on a statistical model for a pattern of flow provided
by the random walk theory (Bakhurcv and Boreskov 1947, Baron 1952,
Ranz 1952) by assuming that the fluid particle has equal probability
of deviating on either side of the catalyst pellet when met head-on.

The structure is effectively considered to be a sequence of continu-
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ous stirred tank reactors in series. The temperature and concentration
conditions of any given cell are dependent only on those of the previous
row of cells. Both radial and axial dispersion as well as the mathemati-~
cal complexity associated with axial and radial boundary conditions is
automatically removed by the physical structure of the reactor.

Although this is a better representation of the behaviour of a
packed bed, it may get expensive in computing time because it requires
Steps equal to a particle diameter. However, for long beds axial dis-
persion effects are not important and hence one could as well take axial
steps equal to several particle diameters. The mixing cell model can be
extended to incorporate all heat and mass transfer processes (including
fluxes within the catalyst particle) except solid to solid heat conduc-
tion which is an important source of thermal feedback in the reactor.
The two phase heat transfer model which distinguishes between solid and
fluid phases has an advantage over the cell model in that all the trans-
port coefficients can be easily related to experimental data.

A higher level of complexity is reached in the heterogeneous
models which distinguish conditions in the fluid and on the catalyst
surface or even inside the catalyst. This more detailed and more
general representation of the packed bed reactor includes considera-
tions of both heat and mass dispersion in the radial and axial direc-
tions in the external fluid, and the resistance to heat and mass trans-
fer, both within the catalyst particles and across the film at the
catalyst surface (Feick and Quon 1970, Ammdson 1970, Beek 1972,

Froment 1972, Ray 1972), Experimental studies on heterogeneous cata-

lysis in packed beds have been reported (Maymo and Smith 1966,



Hawthorn et al. 1968, Richarz and Lattman 1968, Yamazaki et al. 1970,
Karanth and Hughes 1974, Van Doesburg and De Jong 1974); however,
they have been few and have not kept up with theoretical developments.

The rate of a heterogeneously catalysed reaction is determined
by both the chemical reaction kinetics at the solid surface and by the
rate of heat and mass transfer to this surface. When the reactor is
operating at a steady state, the number of moles of a component de-
stroyed at the catalyst surface by the chemical reaction is exactly
equal to the number of moles of that component transported to the sur-
face. Likewise, the heat generated by the reaction must be equal to
the heat removed.

Two mechanisms of heat and mass transfer are involved when deal-
ing with a catalyst pellet. The first mechanism is the hypothetical
£ilm of fluid surrounding the pellet. Both heat and mass transfer
occur across this film because the bulk temperature and concentrations
ave different from those at the surface of the catalyst. Mass trans-
for across the film occurs by both convection and molecular diffusion.
Heat transfer occurs by convection, conduction, and radiation.

The second heat and mass transfer mechanism involves the pores
and solid material of the catalyst pellet. Both temperature and con-
centration gradients may exist through the porous catalyst particle.
Mass transfer occurs by Knudsen diffusion, bulk diffusion, and surface
migration. Heat transfer occurs by conduction in both solid and fluid
phases. Effectiveness factors other than one are the result of tem-

perature and concentration gradients within the porous catalyst pellet



and also across the film.

For any given system, it is difficult to evaluate the relative
importance of film and pore effects unless detailed temperature and
concentration profiles are measured within the porous catalyst pellets
and the surrounding fluid. For instance, in a system where all the
reactants which reach the catalyst surface are reacted on the outer
surface before they have a chance to diffuse in the pores, then the
surface film gradients would be of particular interest in the study of
the kinetics of the reaction and the behaviour of the catalyst. In
such a case, the particle diameter would have considerable influence
on the reaction rate per unit external surface area (Fulton and
Crossner 1965).

Measurements of temperature profiles in catalyst pellets have
recently been reported. Irving and Butt 1967, in studying the hydro-
genation of benzene and, Hughes and Koh 1970, in studying the hydrogen-
ation of ethylene (both on 1.27 cm pellets) indicate that the external
£i1m offers the greatest resistance to heat transfer. Horak and
Jiracek 1972, have shown that during catalytic exothermic reactions,
significant temperature differences may be created between the exter-
nal surface of the catalyst particle and the bulk of the reaction
mixture. However, the experimental measurements of Kehoe and Butt
1972, of the response of the internal and external gradients to both
startup and perturbations of the steady state in a catalyst particle
(N; on Kiesulguhr) for the benzene hydrogenation reaction indicate

that both external and intraparticle temperature gradients must be



considered in some cases.

In the present work, the catalyst pellet is considered to have a
constant temperature throughout its bulk and the heat transfer resis-
tance is concentrated in the extermal film. At interparticle contact
points (where there may be stationary fluid held up), heat transfer
between adjacent particles takes place by pure conduction (see Fig.
1.a below). This particular heat transfer resistance has been concen-
trated in artificial "necks" connecting adjacent particles (see Fig.
2.a). Also it is apparent that the cross-sectional area of the par-
ticle through which conductive heat transfer takes place is smallest
near the contact points. These artificial "necks" have no heat capa-
city and serve only as the heat transfer resistance due to conduction.
The bulk of the catalyst pellet has all the heat capacity in it, but

it has no resistance to heat transfer by conduction.

FIGURE 1l.a. Schematic i1lustration of heat transfer between

adjacent catalyst pellets. Region I: Heat transfer by pure



conduction. Region II: Heat transfer by the wake region.

Region III: Heat transfer by the moving fluid.

Hougen 1961, has discussed various aspects of the external heat
and mass transfer resistances and has included figures for predicting
when such resistances need to be considered. The experimental re-
sults of Maymo and Smith 1966, indicate that for a large AH external
temper'ature effects can be significant when the diffusion effect is
negligible. Hutchings and Carberry 1966, also have predicted that
negligible mass-transfer and finite heat~transfer resistances would
exist for some reaction conditions. In the present work, wherever
catalyst pellets are considered to be porous, the Knudsen limit is
taken to be the operating regime and the external mass-transfer resis-

tance is neglected.

1.1 Fluid Dynamics in a Packed Bed Reactor

The fluid phase containing the reactants moves through the
interstices of the bed in a complicated manner because of the accelera-
tion and deceleration in the passages between the particles. It is
apparent that the situation at the upstream side of the catalyst par-
ticle where the fluid meets it head-on is quite different than on the
downstream side half where there may be a fluid mechanical wake which
involves a different transport mechanism and dispersion phenomenon.

The present work recognises the significance of the wake in heat and
mass transport in a packed bed. A mathematical model has been devel-

oped in which the dispersion in a packed bed reactor is considered to



be due to a wake entrainment and shedding phenomenon.

As flow impinges upon the surface’ of the catalyst pellet a boun-
dary layer is formed and the cross-sectioned area available for flow
is reduced compared to the fluid-free void cross-sectional area. Hence
the actual velocity is no longer simply related to the superficial
velocity and the total void fraction. Also at some critical bed void-
age vortex flow is formed behind the particles in the wake region,
thus further influencing the effective velocity. Kusik and Happel
1962, took a voidage of 0.2 to be very tightly packed and assumed that,
at this low voidage, vortices would disappear and eg would be zero,
where eg is the fraction of the total bed volume occupied by wakes.
Debbas and Rumf 1966, have shown that the minimum possible porosity
is 0.35 for a random packing of spheres. Thus, in most packed beds
there would be vortices present, which would cut down the area
available to fluid flow. Based on the above and other assumptions,
Kusik and Happel derived the following equation for estimating ep in

the case of a packing of spheres:
€g = 0.75 (l-ep) (ep - 0.2)

where ep is the fraction of the total bed volume not occupied by
solids.

If the bed is densely packed the flow can be visualised as being
composed of a series of "jets" and "wakes" in the interstitial space.
The phencmena of axial and radial dispersion can be considered to be

due to jet division, recombination, and the associated mixing in the



wakes. Deans and lapidus 1960, have idealised this phenamenon in a
model considering the flow as a number of stirred tanks in series.
The above jet mixing process would lead one to believe that the tur-
bulence intensity would be inversely proportional to the Peclet num-
ber for radial dispersion. Also the turbulence generated would in-
teract with the boundary flow formed on the particles in much the
same way as free-stream turbulence perturbs the laminar boundary flows
and increases transport on a bluff body in a free stream.

Tn most industrial packed beds, however, the void fraction is
0.38 to 0.437, in which case the catalyst particles will be sufficient-
1y far apart so that a vortex would be formed in the wake region of
each particle. The boundary layer would in effect have been separated
by the adverse pressure gradient. The vortex created would ~:i:i"rt:‘e-ract
with the free stream in terms of an interchange flow which would es-
sentially keep the wake volume constant. The vortex shedding would
then interact with the flow in the next downstream particle and its
boundary layer and vortex. As the voidage in the bed approaches unity,
the turbulence level would decrease to that of the free stream tur-
bulence of a single particle in an infinite medium. The turbu-
lence measurements of Mickley et al. 1965, and the experimental local
thermal transfer measurements of Galloway and Sage 1970, give credence
to this mechanism. Galloway and Sage were probably the first to ana-
lyse transport phenomena in packed beds from a more realistic fluid
dynamic point of view.

Kyle and Perrine 1971, from a photographic study of the flow

through a matrix of cylinders which were used to similate a packed
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bed of spheres, showed that in turbulent flow there is a zone in the
wake of each cylinder (which includes, but is greater in size than
the standing vortex pairs), where the flow is definitely inhibited
when compared to the rest of the region. As the turbulent intensity
increases, this stagnant zone becomes smaller, until at high veloci-
ties, there is general turbulence throughout the cell. As the energy
and frequency of the turbulent eddies increase so does the mixing ef-
ficiency: The liquid held back by the stagnant zones will bleed
slowly into the main stream thus elongating the dispersion profile
and producing the phenomenon called "tailing".

Gauvin and Katta 1973, have developed a theoretical approach on
the basis of this discrete particle model, utilising, for the first
time, the concept of stagnant void fraction to interpret the experi-
mental data. The wake volume and a new shape factor k, defined on
the basis of all possible orientations of the particle, were used to
derive equations for estimating ep for different shapes. A new fric-
ticn factor based on €y and k was defined and correlated with the
shape factor satisfactorily. The momentum transfer was also corre-
1ated in terms of a different friction factor based on the channel
model (Ergun's equation) and the sphericity of the particles. The
channel model was shown to be applicable only at high sphericities
(>0.8) while the discrete particle model was proved to be valid at low
as well as high sphericities. The concept of ep also explained cer-
tain apparent anomalies in some studies on packed beds.

Tt has been assumed that eg is independent of the Reynolds num-
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ber although this may not be a valid assumption when large Reynolds
mumber is considered. In the study made by Gauvin and Katta, Rey-
nolds number was varied from 400 to 2800 and they obtained the fol-

lowing expression for spheres:

EB = 2A(€T-0.2) (1—€T) (1.1.3.)

where A is a constant.

For spheres it was found that A = 0.8, so that for spheres:
eg = 1.6(ep~0.2) (1-erp) (1.1.D)

For non-spherical particles,
eg = 28k (ep-0.2) (1-e7) (1.1.0)

where, ks = yatio of mean projected area of a particle (sphere, cylin-
der, ellipsoid) to that of a sphere of the same volume.

The non-Fickian model presented in this work takes into account
all the above arguments. Since ep is a constant, and material is
transported back and forth between the stagnant volume and the flowing
stream, there must be a volumetric exchange befween the two "phases"
which is equal in magnitude in both directions. Hence a new parameter,
g, is defined as the interphase volumetric flow rate per unit volume
of the bed. This parameter has been correlated with pressure drop in
a packed bed for turbulent flow (form drag) and thus further insight
into the momentum transfer in a packed bed has been obtained.

Also of interest is the probabilistic time delay approach of

Buffham et al. 1970, Buffham and Gibilaro 1970, in describing flow
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through packed beds. A semi-empirical model, considering the number
of stops of a fluid element as a Poisson distribution and the delay
of the fluid element at the stop as an exponential distribution,
seems to fit the experimental data for a pulse test in trickle beds
quite well. As stated earlier, the two "phases" with fluid inter-
change in the non-Fickian model are considered locally well mixed and
hence correspond to the above conditions of the time-delay model with
exponentially distributed delays. However, since the present work
divides the interstitial space into two distinct phases, it is more

directly akin to Giddings 1965, coupling theory of chromatography.

1.2. Heat Transfer in Packed Beds

The rates of most industrial reactions are strong functions
of temperature, which thus affects conversion, selectivity and stabi-
1ity. Therefore, it is important to develop a mathematical model
which identifies a temperature at all points in the reactor. Heat
transfer in a packed bed occurs by several mechanisms which depend on
the physical and thermal properties of the flowing fluid and the
catalyst particles.

As indicated earlier, the simplest models consider the particles
+o be small enough compared to the size of the reactor so as to act
as a continuum embedded in a field of concentration and temperature.
The dispersion of heat is considered as Fickian diffusion and hence
two parameters, namely, the axial effective thermal conductivity and

the radial effective thermal conductivity, are defined. Considerable
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experimental and theoretical work has been done in order to correlate
these two very important parameters.

Yagii et al. 1960, proposed a model for axial effective thermal
conductivity by separating the heat transfer mechanism into two parts,

one independent of fluid flow and the other dependent on it. Thus,

X K2
= = =+0.8Re " Prg. (1.2.a)
A
f f
where,
ky = axial effective thermal conductivity in the packed bed.
kg = axial effective thermal conductivity in the packed

bed with no flow.

Ap = thermal conductivity of the flowing fluid.

&

Reynolds number

Prandtl number

N

More elaborate and accurate experimental setups have been devised
recently to determine axial effective heat transfer (Votruba et al.
1972, Gunn and DeSouza 1974, Vortneyer' 1975, Hansen and Jorgensen
1976).

The transverse effective thermal conductivity is not well agreed
upon, although there has been theoretical as well as experimental
analysis (Singer and Wilhelm 1950, Argo and Smith 1950, Chu and
Storrow 1952, de Wasch and Froment 1972). Argo and Smith consider

all possible mechanisms for radial heat transfer, including heat
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transfer through the solid phase and radiation, establishing the fol-

lowing relation:

G ¢ 4 €0 T h' k
k), = 2%, G Sl P
e eT(P) 2-8 T’ Zkgth'dy

e’m,n
(1.2.b)
where,
(ke)p = radial effective thermal conductivity in the packed bed.
G = superficial mass velocity.
% = heat capacity of the external fluid.

particle diameter.

'UQ‘

(Pe)m o radial effective mass Peclet number.
9

€, = emissivity of catalyst particles.

o = radiation constant

T = temperature of the external fluid.

h! = +otal heat transfer coefficient from particle surface

to fluid or to other particles.
k = molecular thermal conductivity of the solid particle,

based on a unit area of solid.

Tn the heterogeneous or two phase models separate energy equa-
tions are written for the solid and the fluid phase. The equations
typically written for one-dimensional, adiabatic packed bed with no

chemical reaction are:

aT 9T a
c + 9 = - .2,
o o eT o acp eT v = ha(T-T) (1.2,¢)
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( A, 2T 7
1ep oo = s (D . (1.2.)

where,

o = density of the external fluid

t = time
v = interstitial velocity
z = axial distance -

h = heat transfer coefficient from particle surface to fluid.

a = particle surface area per unit bed volume, for spheres,
6(1-ep)/d, Lt

"I\‘ = temperature of the solid catalyst pellet.

Py = density of solid

P
A
o}

heat capacity of the solid

axial effective thermal conductivity of the quiescent

bed, that is, a bed with no fluid flow.

Here heat transfer through adjacent sections of catalyst pellets
is considered to be made up of three mechanisms. The first mechanism
is heat transfer by pure heat conduction through the solids by direct
contact and through the stationary fluid interstices. The second
mechanism is heat exchange between the vortices and the solid by con-
vection. But this effect is generally considered as part of heat
transfer by conduction through the catalyst pellets, and is then re-
sponsible for increase of effective heat conductivity with increase
in Reynolds number (Eigenberger 1972). Others seem to incorporate it

by a heat transfer coefficient (Balakrishnan and Pei 1974,
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Bhattacharya and Pei 1975). The third mechanism is the conventional
fluid-to-particle convective heat transfer between the flowing fluid
and the solid.

Littman and Sliva 1970, have experimentally evaluated the para-
meters involved in the two phase heat transfer model, particularly in
the range of lower Reynolds numbers. Vortmeyer 1975, has effectively
evaluated an axial dispersion Peclet number equivalent to the one
phase (Fickian) model and has correlated it with extensive experi-
mental data available in the literature.

There has been no significant work done in the literature for a
two-dimensional two-phase model and therefore little or no informa-
+ion on transverse heat transfer coefficients is available.

The present work, in essence, has similar heat transfer para-
meters as in the two phase model described above. However, it has in
perspective the actual fluid dynamics in the packed bed in relating
the heat dispersion in the flowing stream; also, it proposes a two-

dimensional heat transfer mechanism without any additional parameters.
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9. MATHEMATICAL FORMULATION OF THE NON-FICKIAN MODEL

The system considered here is an assembly of particles packed to-
gether with a fluid flowing through the interstices. The fluid is,
in general, a mixture of chemically discrete species which may take
part in chemical reactions, either homogeneously or heterogeneously on
or inside the catalytic surface of the particles (preliminary equa-
tions are written for non-porous catalyst particles, however). Keep-
ing in mind the fact that most common packed bed reactors used in the
industry are of cylindrical geometry, an "axial" symmetry is assumed
so that the most general mathematical model can be considered to be
two dimensional.

Other general qualifying assumptions are:

1) The fluid which flows among the packing is referred to
as the "moving fluid" or "moving phase" to differentiate it from the
"stagnant fluid" or "stagnant phase" in the lee side of the particle
where there is wake formation.

2) The packing is taken to be non-porous.

3) The external fluid, that is, the moving as well as the
stagnant phase, is assumed to be a pseudo-binary mixture of reactive
components, one of them being the "tracer component" for which the
material balance equations are written.

4) The moving fluid is in turbulent flow, at least insofar
as axial and redial mixing is concerned.

5) Density and heat capacity of the external fluid as well

as that of the solid is constant.
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6) Molecular diffusion fluxes are negligible when compared
with the corresponding turbulent fluxes. )

7) The fraction of the total volume of the bed occupied by
the wakes, €p» is constant.

8) Material is transported back and forth between the
moving phase and the stagnant phase and the volumetric exchange be-
tween the two phases is equal in magnitude in both directions.

9) Radiant heat transport and secondary fluxes of heat and
material caused by thermodynamic coupling are negligible.

10) Driving forces fof material transport and chemical re-
action may be expressed in terms of molar concentrations rather than
chemical potentials.

11) The resistance to heat transfer from the moving fluid to
+the solid catalyst pellet is lumped at the surface of the catalyst
pellet.

12) Heat transfer by pure conduction occurs through the
solids by direct contact and through the stationary fluid interstices.
This heat transfer resistance by conduction is assumed to be concen~
trated in the artificial "necks" connecting adjaéent pellets as shown
in Fig. 2.a. (Also see Fig. 1l.a).

13) The heat capacity of the solid is assumed to be con-
centrated in the bulk of the catalyst pellets.

14) The velocity of the flowing stream is constant, that

is, plug-flow is assumed for this stream.
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.Fig. 2.8. Visual model for heatand mass transfer in packed beds
with mixing mechanism I
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Fig. 2.c. Mixing Mechanism 11
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2.1 Material Balance Equations

Fig. 2.a shows the visual model which is used to simulate heat
and mass transfer in packed beds. The shaded area behind each
particle signifies the wake region and the arrows going to and from
the wake regions represent the wake shedding mechanism which is used
to explain axial and radial mixing in packed beds. The balance
equations are written with the packed bed divided into discrete
sections of length A along the radial direction (y coordinate).

Along the z direction, however, each phase is taken to be continuous.
Balance equations are written for each phase across a cross-sectional
area 6A of the bed at an arbitrary point at distance z from the en-
trance of the bed and at section n along the radial direction.

At any instant it is assumed that the interphase volumetric flow
rate between the moving phase and the stagnant phase per unit volume
of the bed is g. This also maintains éB’ the fraction of the total
bed volume occupied by wakes as a constant, independent of time and
flow-rate.

Two mechanisms for wake shedding have been studied to simuilate

axial and vadial mass dispersion asshown in Figs. 2.b and 2.c.

2.1.1 Mechanism I

This mechanism of mixing is illustrated in Fig. 2.b. It pos-
tulates that the particles in the bed are oriented such that the
wake region (stagnant phase) of each particle is not in contact with

the particle in front of it and thereby sheds its elemental volume of
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fluid along the same radial section into the moving phase. At the
same time, the wake region receives an equal amount of elemental vol-
ume of fluid from the moving fluid which is at the adjacent radial

sections, one below and the other above the section being considered.

i) Mass balance of component i in the moving phase at position
n:
At any instant of time, in an elemental volume 8A+8z, of the
bed, the convective net input of component i is (cn(z)-vz-eA- SA -

cn(z+6z)-vz-eA- 8A) moles;

concentration of i in the moving phase at

where, cn(z)

gsection n and axial distance z.

v, = actual average velocity of the moving phase
| (based on eross sectional area available to
moving phase).
e, €p = eB = fraction of total bed volume

occupied by the moving phase.

The net input of component i due to the interphase volumetric

flow is (g 'En(z)oﬁA-6z - g-cn(z+ﬁz)-6A°Gz) moles per unit time;

where, En( z) = concentration of i in the stagnant phase

at section n and axial distance z.
The balance equation is written as

cn(z)ovz-eA-GA - cn(z+6z)-vz-eA-6A + g'En(z%SA-Gz - g-cn(z+62)'6A-62
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acn(z)
ot

+R-eA-6A-<Sz = . eA-SA-Sz . (2.1.1.a)

where, R = mate of production of i by chemical reaction, moles of

i/volume-time, in the moving phase.

For a differential 6z, equation 2.1.l.a can be written as

- —s-Z'VZ'EA'GA'GZ + glc, - c,) SA-8z + Regy8A-62 = —éj;eA-GA-Gz
Rearranging and dividing by €p°6A+6z
oc oCh —
n -
-t Va5t %X (c,-C) = R (2.1.1.b)

i1) Mass balance of component i in the stagnant phase at posi-

tion n:

There is no convective mass flux in the stagnant phase be-
cause of its "stagnant” nature. The moles of component i received
by the stagnant phase in the elemental volume SA+8z from the moving
phase at the adjacent radial sections is (%-cn.,,l(z)'SA- 8z +
% cn_l(z)'SA- §z). The moles of component i shed into the moving

phase at section n is g~'5n(z)-6A-6z. The balance equation is writ-

ten as
g _ ~ %,
[%‘cnﬂ_(z) + 3 q(2) - g°cn(z):\ SA+8z + R-€B°6A°Sz = —3?€B.6A.GZ
(2'1.1.0)

where, R = rvate of production of i by chemical reaction, moles

of i/volume-time, in the stagnant phase.
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Dividing by ep° 5A+8z and rearranging, equation 2.1.1.c becomes

oC.
“n.g |z _1% =
3t ¥ €p ‘:Cn -2 (eps * cn_l):l =R (2.1.1.4)

The discrete nature of equations 2.1.1.b and 2.1.1.d along the
radial dirvection can be smoothed out by using Taylor series approxi-
mation over length A. This would mean that radial mixing effects
predicted by the smooth equations have meaning only over distances

greater than A.

A { ntl
RE
v n-1
n-2 w
c(y)
——a(y)
FIGURE 2.4
let ¢, = e(y)
and En = cly)

Using the Taylor series up to second order terms and referring

to Fig. 2.d,

2
_ - c 1.2 {9C¢
chyy = oy + A = cly) + )"[ay] + A% '5';2‘]
y y
c] 1.5 la%
Choy = cly-A) = c(y) = A |3y g + oA 15;2-
y
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Substituting in equations 2.1.1.b and 2.1.1.d, the following

equations of continuity are obtained.

Moving phase:

g_% * v, g% + %\- (c -3) =R (2.1.1.e)
Stagnant phase: 5

%%,,%(g_c)_%g %}:E (2.1.1.£)

Thus, two coupled partial differential equations represent the
material balance in the packed bed. The second term in equation
2.1.1.e represents the mass flux due to convection, the third term
is due to the volumetric exchange between the two phases and this
generates the axial mixing in the packed bed. The last term on the
1eft hand side of equation 2.1.1.f represents the radial mixing in
the packed and is is quite akin to the Fickian model representation
of radial diffusion.

2.1.2 Mechanism I1

Fig. 2.c shows this mechanism of mixing. The particles are
assumed to be oriented such that the wake region (stagnant phase)
of each particle extends over the particle in front of it and is in
contact with it. Hence volumetric interchange cannot take place
along the same radial section and therefore has to take place be-
tween adjacent radial sections. The external fluid can be repre-

sented as shown in Fig. 2.e.
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FIGURE 2.e

The shaded area represents the stagnant phase and the unshaded

area is the moving phase.

i) Mass balance of component i in the moving phase at position
n:
Tn this mechanism, the net input due to interphase volu-
metric flow, of component i in the moving phase at position n is
( 5 0'5 (z)+8As6z + g°En_1(z)-6A-6z - grcy,(2)+8A82) moles per unit

time, so the mass balance equation is written as

cn(_z)-vz-eA-GA-cn(z+Gz)-vz-eA- SA+ %—En(z)-GA-Gz + %*En_l(z)-GA-Gz

acn(z)
3T -eA-6A~62 . (2.1.2.a)

-~ gec,(z)+8A6z + Regy*8As8z =

For a differential 6§z, equation 2.1.2.a can be written as

ac,
- —rv -e oSA8z + ( %- -c + g--c R ) 8Aséz

aCn
+ R-eA-GA-Gz = '—a'.E‘€A’5A°GZ
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Rearranging and dividing by € N SA«$z,

pYe) ac 1
it JRNE ¢ Sy - 3 . =(5 +38 _
st Yyt ot *E€ | %" 2 (e, + cn-l)] =R (2.1.2.b)

ii) Mass balance of component i in the stagnant phase at

position n:

The stagnant phase receives equal volumes from the lower as
well as the upper adjacent section of moving phase, each being equal
to %— per unit volume of bed per unit time. Correspondingly, the
stagnant phase sheds equivalent amounts of fluid into the two adja-

cent sections of moving phase. The balance equation is written as
§ oy (226082 + £ e (2)+6A06 - g+, (2)+8Aw62 + Regy-dhebz
¥,

=3¢ ° eB e A « 8z . (2.1.2.c)

Dividing by eB-GA-Gz and rearranging, equation Z.1.Z.c becomes

. (2.1.2.d)
_—B &_- — -]; _ — L2 L] L)

As in Section 2.1.1, the discrete nature of equations 2.1.2.b
and 2.1.2.d can be smoothed out by using a Taylor series approxima-

tion over length A.
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Tn order to smooth egn. 2.1.2.b, the mass balance equation for

the moving phase, let

c, = ely)

Using the Taylor series up to second order terms and referring to

Fig. 2.f,
- ”
S N W I <1 I Y DY R -
¢, = oyt P = cly) +7’[ay v3 {'2’] s
L)Y R N

s

2
te A2 (3%
- = Ay - = A %2 1 AT 12 c
cn+1 =C (Y" 7—) = C(Y) -9 LaY] + 2 l—z- { 2]
y Yy

Substituting in egn. 2.1.2.b, the following equation of conti-

nuity in the moving phase is obtained:

_8£.+V

2 2=
2 4y, 24 & (o) - 1.8 [l] R (2.1.2.€)
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In order to smooth egn. 2.1.2.d, the mass balance equation for the
stagnant phase, let

c = oy
n

Hence,

2 {42
= Ay - A |3c 1 (A%, ]3¢
e, = c(y- -2-) = c(y) - Vi {-a?"] + 5 l—z-] [a 2}
y Y iy

2 2
= A = A— —a—c- }-o L . _a_.—c—
C4l " cly + 7) = c(y) + 5 [ay]y + 5 lz] 5

Y .
yy

Substituting in eqn. 2.1.2.d, the following equation of conti-

nuity in the stagnant phase is obtained:

X.E (= _l.g_{}_].ac=_
e + s (c - c) 2'eg \2 ';2' R (2.1.2.£)

As in Section 2.1.1, two coupled partial differential equations
represent the material balance in the packed bed. The axial mixing
terms are the game as in Mechanism I. However, the radial mixing in
this mechanism is generated by two second order differential terms,

one in each equation.

2.2 Energy Balance Equations

There are three phases to contend with in order to represent
heat transfer in packed beds, namely, the moving phase, the stagnant
phage and the solid phase. Heat transfer occurs between all the
three phases, and thus is responsible for the overall dispersion of

heat in packed beds. The convective heat transfer between the stag-
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nant phase and the solid is assumed to be negligible. Dispersion of
heat is also generated by pure heat conduction in the solid phase and
through the stationary fluid interstices. Fig. 2.a shows the artifi-
cial "necks" where this heat transfer resistance due to conduction is
assumed to be concentrated.

The heat transfer equations are written for mixing Mechanism I;
and, although it has been assumed catalyst particles are non-porous
in the material balance equations, a heat source due to chemical re-
action is included in the solid phase, for the sake of generality.

As in Section 2.1, the heat equations are written with the packed
bed divided into discrete sections of length A along the radial direc-
tion (y coordinate). However, each phase is taken to be continuous
along the z direction. Balance equations are written for each phase
across a cross—sectional area 6A of the bed at an arbitrary point at
distance z from the entrance of the bed and at section n along the

radial direction.

i) Heat balance in the moving phase at position n:
The net heat input per unit time in an elemental volume 8A+0z

of the bed, due to the convective flow of the moving phase is

[a-cP-Tn(z)-vz-eA-GA-a-cp-Tn(z+Gz) -vz-eA-SA

where, o = density of the fluid
cp = heat capacity of the fluid.

T, (2)= temperature of the moving phase at section n and

axial distance z.
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The net heat input per unit time due to the interphase volumetric

flow by Mechanism I is

[a-cp-g-Tn(z)-GA-Gz-a°cp'g-Tn(z+6z)‘6A'Gz:‘

where, Tn(z) = temperature of the stagnant phase at section n and

axial distance z.

The net heat input per unit time due to the convective heat

transfer between the moving fluid and the adjacent solid particles is

[ -6S'En_._l(z) - Tn(zﬂ *SA-6z - h-Gs-En(z) - Tn+1(z_)_-‘ 6A-6‘z]

where, h = heat transfer coefficient between the moving fluid
and the catalyst surface.
8S = surface area of the particle which is effective in

convective heat transfer between moving fluid and
solid per unit volume of the bed.

"I\'n(z)= temperature of the solid phase at section n and
axial distance z.

The balance equation is
a-cp-Tn(z)-vz-eA-tSA - a-cP-Tn(z+6z)-vz-eA-6A
+ a-cp-g-Tn(z)-6A°62 - a'cp-g-Tn(z+Gz)-6A-Gz

+ heg§Se En-l(Z)'Tn(zz‘ SA8z - h-SS-En(z) - §n+1(ZE\ 8As 8z

- a . L] L] L .
+ e!‘-R-(-AH)-GA-Gz = = (o p T _(z)ee,*86A82)
(2.2.a)
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where, AH = heat of chemical reaction.

Tor a differential 6z, equation 2.2.a can be written as

oT
n
- azacPvZeA6A6z+acpchAsz (Tn-Tn)

- 2h*8S+8A*8z [I':- = (T n lﬂ + e:A-R(-AH)-GA-Sz
3T
= a-cp'sA-GA-cSz . —5% .

Rearranging and dividing by a-cp-eA-GA-Gz

oT aT

2h8S R(-AH)
_n 48 (pd
A Bz+A(T Tn)+ae [n 2[n+1 n':‘]

(2.2.b)

The discrete nature of equation 2.2.b along the radial direction

is smoothed out by using Taylor series approximation over length A.

N 2/\

~ A A 3T 1 2 3 T

T+1=T(y+)\)=T(y)+)\-{-—] =0 AT —5

n oy y 2 8y2
T 1 .2 32';1‘

T = "I\‘(y-)\) = 'f‘(y) -A-[—] + 5 e A T
n-1 2
oy y 2 3y

Substituting in equation 2.2.Db,

2 2
R(-AH)
oT , , 3T g_TT+2h. 7y hegSer” 3T
st V23 ( ) ———-—(TT) dc, €y 3y2 a o, (2.2.c)

The third and fourth terms in equation 2.2.c generate the axial
mixing of heat due to interaction of the moving phase with the stagnant

phase and the solid phase, respectively. The last term on the left
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hand side represents the radial heat dispersion, due to convective

heat transfer with the solid.

1i) Heat balance in the stagnant phase at position n:
It is assumed that there is no convective heat transfer be-
tween the stagnant phase and the solid. There is interaction with
the moving phase, however, due to the volumetric exchange by

Mechanism I. The heat balance equation is
E. g, T . P
ETn-l-l(Z) 3 Tn_l(z) g Tn(z+6z] ascpe8As8z + €5 Re (~=AH) « 5A* 82

9 _
= 3% (a-cP-Tn(z)-eB- 8A<62) (2.2.4)

Once again, using the Taylor series approximation,

2 2T

T+ Ty = 2T*2 o (2.2.e)

Hence, the continuous form of equation (2.2.d) is

— 2 2 =

oT g_— —_ ""E}; 3 T R (-AH) rn n £\
—+ - - ¢ ——> = ol
5t | €p (T-T) ZEB Byz o cp {(z2.2.1)

Equation 2.2.f is quite analogous to the corresponding mass
transfer equation (2.1.1.f). The second term is the axial heat mix-

ing term and the third term is due to radial heat mixing.

iii) Heat balance in the solid phase at position n:
Tn the heat balance for the solid phase there is convec-

tive heat transfer between it and the moving fluid and there is con-
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duction in both the radial and the axial direction. Referring to

Fig. 2.a, the heat balance equation is,

+

- - S . . + Ac (e 3 0 -
[qzlz.hsz qzlzln §S+8A8z + Repy (~AH) +SA+8z

where,

1e6Se8A82 [T 1(2) = T (2)] - hesSe6Aedz [T (2) - Tpyp (2)
n-1 n n ntl

) En—Z(Z) - Tn(z-):l

S

~ En(Z) - "fn.l.z(Zﬂ ~
: §5+8A+ 62 - kg 1 : 85+ 6A+ 82

% [pB-’c‘P“/I\’n(z)-GA-Sz}
(2.2.8)

thermal conductivity of the solid particles

cross-sectional area of the "necks" which is effective

in conductive heat transfer between adjacent particles,

per unit volume of the bed.

conductive heat flux in the "necks" (solid phase) in

the axial direction at séction n.

rate of production of i by chemical reaction, moles

of i/mass of catalyst-time, in the solid phase.

bulk density of the catalyst in the bed.

heat capacity of the solid catalyst.

For a differential 6z, eqn. 2.2.g is written as

A kS'GAS°5A'5z ~ ~ ~
he§Se8As8z (T, 4y + T g = 2T) + = (Tpup + T 5 - 2Ip)
.9lgy) N

-\
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n

3 A
§Se8A*82z + Re pB°(-AH) A-8z = 5¥ (pB'a.P-Tn'GA'GZ)

Assuming Fourier's law applies,
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3Tn
(qz)n = —ks '—a-z-
Substitu‘ting,

. kedSesAssz X
he§Se A SZ(Tn+l + Tn—l - 2Tn) + X (Tn+2 + Tn__2 - 2Tn)
82&'1,1 ~ A a A

+ Lo PRS- . . 4+ Re o (= . . = — -A . . .
A kS - 3S«8A+6z + R pB (-AH) «8A< 62 5t (pB Sp Th 8A+82)
(2.2.h)
Using Taylor series,
~ A A~ 2 azl’ii
Tn+2 + Tn_z =27 + A -a;,'f (2-2.1)

Substituting the continuous forms of equations 2.2.d and 2.2.1i and
dividing by pg Ep A 8z ,

L] Y . A L ¢ L] 2
_314- 2hofs ({[\' _ T) _ kS 8S A 32.5 _ kS 8SeA 3 .g ) h0680)‘2 823
t S Pg &5 oz pg & Y pg &y 3y
R pg (-0
s —— 2.2.9)

The second and last terms on the left hand side of eqn. 2.2.]
represent the axial and radial heat mixing terms, respectively, due
to convective heat transfer between the solid and the moving fluid.

The third and fourth terms are the conduction terms in the axial and

radial directions, respectively.
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3. 'DISPERSION IN ONE-DIMENSIONAL, ISOTHERMAL, NON-REACTIVE PACKED BEDS

3.1. Moment Analysis

Tn order to evaluate the axial dispersion in a packed bed, a
moment analysis of the equations is done. Consider a unit pulse of
a tracer injected at time t = O on the plane z = 0. The solution is
assumed independent of y, so equations for both mechanisms I and II

are the same. With no chemical reaction, the equations are:

%%— + v, g% + %— (cc) = 0 (3.1.a)
A
g—f +E G =0 (3.1.D)
B
c(z,0) = 6(z) 3 ¢ (z,0) = &(2) (3.1.c0)

The nth moment of e(z,t), un(t), is given by
0
w () = [ Zt o clz,t) ¢+ dz
-0

nN=0,1,2,...%

Also, defining the nth moment of c(z,t), W, (t), as

u (t) = [ 2"« Cz.t) - dz

-0

Therefore, the moment equations are written as

d

Hn -

F-D Vz'un_l + %Z (un-un) =0 (3.1.d)
dﬁ“)«E_(— ) =0 (3.1.0)
= E G - e
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uo(o) 1; ul(o) = uz(o) = . ...=0 (3.1.5)

U 0) =1 3 W, (0) =52(o) =....=0 (3.1.g)

Solving the equations with the help of laplace transforms, the

following are the expressions for the O'th, 15t and 29 moments.

Uy =1
W, =1
EAaB
i €V, €g, EafB -‘t/"g?:_T
ul-(ET)t+€ -gg-:r'(l-e )
€A€B
€AV EAV EAE -t/~FE-
NG Az | EA%B o T B

u]_:(eT)t-ST geT

My = 2v§ { p2-p2e /A pre™/A

+ 2 B [ A2ernlee P03 (1"t 3

w

A2 - - -
+ (B2 z +2A*(1-2 t/A)-2A3t+A2-A2e t/B_pre t/A ] }

€B Z
EAER
where A = ~g&—
&
28v2 t/A /A
W, = "e;z‘ { A2tealee -283(1-e )

A2+2 ~t/A ~t/A.
+ %‘g [ =5+ At (1-e / )-283t-A%te /A]

The average pulse velocity in the moving phase,
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_t,egzs
EAVZ erZ : T
= —QE‘ + —E-T—' * e . (3.1,h)

dE d(
af =

=)
"-,- (o]
t

d

and the asymptotic values of the velocity are:

t+0 : v=v

Similarly, in the stagnant phase,

EAE
_ acsh ~t/-ge
- gz L\ EAV, T .
v = T - d-t - eT - ET e . (301-1)

and the asymptotic values of the velocity are:

0

<l
i

t=+0

EAVZ
€

I

t >0 =

The asymptotic velocity for large t is the same in both phases,

€,V
Ay

v=v=vz (5 (3.1.3)

-

The deviation of the second moment about the mean, w, is given

by
H2 —_
w? = {'u;‘- @2 }

and the axial effective dispersion coefficient in the moving phase

is defined as,

1
(De), =7 &t
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The asymptotic values of the dispersivity are,

(3.1.k)

f'i'
4
o
~
o
hd
"
o

2
€V, , €
(Az)z B

i (3.1.1)

ot
4
8
~
®
A
i

Similarly, in the stagnant phase the deviation from the mean, &, and

the effective axial dispersion coefficient, (ﬁe)z, are defined as

_ oo
& = {-:2' - (3)2}
Yo

2
dw

Be) = 48

The asymptotic values of the dispersivity are,

t+0 : (D), =0 (3.1.m)
EpV €
N Sk = . (3.1.n)
T T

The asymptotic axial dispersivity for large + is the same in both

phases, namely,

2
i} ; _ EAVz.2 ©B
Dz = (De)z = (De)z = ( er ) 5”? . (3.1.0)

A moment analysis of the one-dimensional Fickian model,

doe, % p ooy
ot XA 9z% (3.1.p)
where cp = concentration

v = insterstitial velocity

D = axial effective diffusion coefficient.
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gives a constant velocity, v, of the pulse and a constant effective
diffusion coefficient, D. The plug flow model would have the same

velocity, but, of course, there would be no diffusion.

3.2 Pulse Injection Simulation

A pulse injection only in the moving phase at the entrance to the
bed gives an output which is identical to the residence time distribu-
tion. For this reason, it is quite an important test to perform.

Tn this section a general pulse test is simulated which, however,
would not give the residence time distribution as the output. Con-
sider a total of m moles of tracer injected as a pulse at the entrance
of the bed. Tt is assumed the injected mass divides itself at the
entrance of the bed into the two phases as the ratio of the relative
volumes of the two phases. This means that the mass enters the two
phases in equal concengrations. Thus, my = Eé—; moles go into the

moving phase and m, = —% moles go into the stagnant phase.

The equations are:

b +vz__.g—‘; + %X(c-a') =m e 8t) - 8(2) (3.2.2)
¥ iE@o)=m- D) « 82 (3.2.b)
t €R

Solving these equations by laplace transforms (Deans 1963), the

following expressions for the concentration profiles are obtained:

gz = ' 2
m g 'g‘;(t-% 2 2g’ (t-2/5)
c = gee AZe . & I, @ e, )

€ -2 1
A A€ sz(t ﬂ)
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}

-
+ §(t- =)
+oe 2 |
. -gzZ T zZ
g g-f\g Eg'(t"v;) .zgz(t-z/vz)
-l-v-é-A—v-;-e e B oI (2 _E-E_\—l—_) (3.2.c)

ABz

_&_ —-5(1:-—) 7
ﬂ& v zg“(t- 7.
c = A B Z2 .1 (2] —=%)
egv z o A

_E N 2. j(t"Z/ V) zgz(t-z/vz) zg (t-2/v;)
+ Vz € AEBVZ * Il (2 eAerz
£+
B
+me 8(z) . (3.2.4)

where I, and I, are the modified Bessel functions of zero and first
order, respectively.

The first term in eqn. 3.2.c. is the contribution from the in-
jection in the moving phase to the concentration in the moving phase.
The delta function represents a spike which moves at velocity v,3
it is the amount of tracer that never ever entered the stagnant phase.
The second term in egn. 3.2.c. is the contribution from the injec-
+ion in the stagnant phase to the concentration in the moving phase.
The first term in eqn. 3.2.d. is the contribution from the injection
in the moving phase to the concentration in the stagnant phase. The -
second term in egn. 3.2.d. is the contribution from the injection in
the stagnant phase to the concentration in the stagnant phase. The
third term represents the spike that remains at the injection point;

it is the amount of tracer that never left the stagnant phase.
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Writing the equations in dimensionless form and neglecting the

wave front spike,

€
CB) = X . (e ) Ty R+ BoPe, (o) T
2( L 1- z) T
A
(3.2.e)

c €pERPe,
N

2. (e ) T, 00+ Zoge (exp) T 00 (3.2.6)

m €1
where, dp = gartifle diameter
AV . .
T = —Eiég ; dimensionless time
Zy * z/dP dimensionless distance
AV
Pe, = dP g€ T ; asymptotic Peclet number
DZ e;Ve2
AzB
9 3
2epep Pe, z (&5 T-2)
X = -—fiéig——— l“L'fi]g'Ja“ : dimensionless argument
epEpPe, €
[(g,f)zPe -zo-—A—i:z-E(TT-z)]
(exp.) = T €A

The Fickian model gives the following solution for pulse injection:

[ - Pef (ZO-T f) 2
SfER Pegr '——EEE“——‘ (3.2.8)
(&) = e
uﬂrf
vt . . .
where, Te = &L ; dimensionless time
%
vdp
Pef = 75 Peclet number

For the Fickian model, the peak height is at z5 = Tg 3
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c. Pe |
S, £ (3.2.h)

On the other hand, in the case of the non-Fickian model, using

the asymptotic expansion for the modified Bessel functions,

X ,
T ~—  +0 (L1 ) (3.2.1)
2wX

the following simplifications from egns. (3.2.e) and (3.2.f) are ob-

tained,
Pe £ Pe =
cd = Eé 4 B z 2 .
(—mll)T:Zo B Em 4T + E‘T‘ l TRt { ot (3.2.7)
e} € I Pe e | Pe Pez
T2 T T 1 UTT { umt

Tt is observed that the peak heights in both the Fickian and the
non-Fickian model are identical when the pulse has progressed far
enough downstream.

An interstitial average concentration is defined by

— e c
P A cd €B

) + T ) (3.2.1)

where (iI:_E) and (SFdE) are obtained from equations 3.2.e and 3.2.f,
respectively, where the Bessel functions need not be in the asymptotic
form.

This interstitial average concentration is plotted in Figs. 3.2.a,
3.2.b, and 3.2.c, together with the corresponding Gaussian curve ob-

tained by the Fickian model. As can be seen in Figs. 3.2.a, 3.2.b, and
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Fig, 3.2.a, Pulse test response for the Fickian and Non-Fickian

models at ?'- 4,
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models at T= 4O,
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3.2.c, the concentration profile obtained by the non-Fickian model

approaches the Gaussian form of the Fickian model for large enough T.
The quasi-Gaussian form of the interstitial average concentra-

tion can be obtained from eqn. (3.2.1) by using the asymptotic ex-

pansion for the modified Bessel functions and the Taylor series.

pd € €A eg _ € €B
(—D) | A2 ]julé c, 1+ N -15 cgt c, ] ]
m large T ep  Ep ~ &g 2 Ep Ep €7 y I
-Pe('['-zo)2
Pe — T
Tyt © T (3.2.m)
where,
(1- -2, ) 3 0.2 EA
z1-__ O +&— - 2= 4 T
c; =1 e o' (1 ) 2( ) [1 = ( ) ]
(t-z) £ -2
- ) A, 1,92 €A €A 2
¢y =1+ 47 (1-8B)+32(T) [5-2-8-§+u(€B) ]
(t-2)
- _— A 1" =4,
cy = 1+ 47 (1- o )+ 55( p [ 5 - 2c + 4( ) ]
(2) gy %52 €A . A2
C|+=l+ (3+?‘)-32( ) [35+2€B+3('{.:—B") 1
-2
When l <<l , then
2
54 - -Pe(t-2z,)
—Py . e Lt
( m) = l e © (3.2.n)

and the non-Fickian curve beccmes Gaussian (see egns. 3.2.g and

3.2.n).
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If a single tracer molecule is injected at the entrance of the
bed, the time it would take to reach the exit would be random. A
tracer pulse test is nothing but the similtaneous performance of such
a test on a very large number of molecules so that the concentration
profile can be regarded as a frequency diagram for a very large num-
ber of individual molecule experiments.

Because of the random nature of the process of migration of the
molecules towards the exit, it is amenable to stochastic analysis.
There is a certain probability of the event that a tracer molecule
will arrive in the interval between z and z + 6z after a time t after
injection, If this probability is miltiplied by the total number of
such molecules, the number of molecules in the interval 8z and hence
the concentration profile is obtained.

Buffham et al. 1970, and Buffham and Gibilaro 1970, have devel-
oped a probabilistic time-delay description of flow in packed beds.
The present work, however, divides the interstitial space into two
distinct well-mixed phases and hence is akin to Giddings 1965,
coupling theory of chromatography. In this section it is shown that
applying Giddings' stochastic approach to the pulse test gives the
same solution as that of the non-Fickian model (egqn. 3.2.c and
3.2.4).

Consider a distance z from the entrance of the bed. The tracer
molecule has spent an average time t = % in the moving phase. If

the actual time t has elapsed, the time spent by the molecule in the
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stagnant phase is t_ = t-t, = (t- 2.
gnant p. s n v,

The parvameter g has been defined as the interphase volumetric
flow per unit time per unit volume of the bed. Let g/ep be the
probability per unit time that a tracer molecule will go from the
moving phase (m-phase) to the stagnant phase (s-phase); and g/eg be
the probability per unit time that a tracer molecule will go from
the s-phase to the m-phase. These probabilities are independent of
time or of the history of the molecule.

The event that a tracer molecule will go from the m-phase to the
s-phase will occur in one interval as in any other; also the occurence
of an event has no effect on whether or not another occurs. Hence,
the event can be considered to be a Poisson random variable and the
expected value of this random variable is % th © %K ;Z,;, over a period
of total time t that has elapsed. The probability that the event will
occur n times in this period is

z.n =£2_
(& ) EAV.
AVz e A’z
P(E=n) = AT (3.3.a)

3.3.1 Concentration in m-phase Due to Injection in m-phase

If the ‘tracer molecule was injected in the m-phase, in order
for it to end up in the m-phase at time t, it must have gone from
the s-phase to the m-phase n times. The chance that the nth time
that this happens is between tg and tg*dtg is the chance that it has
gone from the s- to the m-phase (n-1) times and the nth time it does
that is between time tg and tgtdtg. The probability differential is

dP_ = Pedtg



n-1 =g
) (é ts) s
= & at

(n-1)! eg 8 °
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(3.3.1.a)

The expression dP,, is the conditional probability which gives the

distribution in time spent in the s-phase provided it entered the

s-phase from the m-phase exactly n times. To remove this restriction,

dP, is multiplied by the probability P(E=n) that is goes from the m-

to the s-phase n times and then summed over all possible values of n.

n=l n
-0Z n-1 -
= 2 A_Z e dt
hnd - L] — O S
=1 n! (n-1)! €g
n'+l
- 1/2 =
peeteez Y XD
EAEB Vz Tg' iz n'1(n'+D)! s

e ¥ €_ S
A 'z B
n' = n-1
1/2
X = (4%—%—7-1:8)
AlB 2
o (52

Now, I;u'(z) = (G.N. Watson, 1944)

120 m! T (p+mt1)

Therefore, the probability density function, P = dP/dtg

X -E
P = 7€11(X) ce

(3.3.1.b)

(3.3.1.¢c)

(2.3.1.4)

(3.3.1.e)
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There is a finite chance, however, that the tracer molecule may

never go to the s-phase, and it is equal to e A’z |, Therefore, the
following distribution function may be added to the P already obtained
P' = e%; §Ctg) . (3.3.1.£)
The Dirac delta function, §(tg), indicates that the time tg is
precisely zero for that fraction of molecules not ever going into the
stagnant phase.

Peota1 = P p' (3.3.1.8)

m P total gives the same expression obtained for the moles per
unit 1ength by the non-Fickian model (the first term in eqn. 3.2.c),

when the pulse is injected in the moving phase.

3.3.2 Concentration in m-phase Due to Injection in s-phase.

If the pulse is injected in the s-phase and the tracer molecule
enters the s-phase n additional times, then it should enter the m-
phase (n+l) times in order to end up in the m-phase at time t3; and the
(n+1)th time should be in the interval dtg.

o B B

Pn = n! eB

(3.3.2.a)

where, Pr'1 is the probability that the tracer molecule has gone from
the s- to the m-phase n times and the (n+1)st time it does that is
between time tg and tg + dt.

In order to remove the restriction that the transfer occurs

exactly n times, P;l is multiplied by the probability P(E=n) that it
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goes from the m- to the s-phase n times and then summed over all pos-

sible values of n.

] P(E=mn) - Py

P =
n=o
L (B ()"
g -E B S| |EAVZ
“eg ) n!n!
n=o
-2 -E X
" €5 e IO( ) . (3.3.2.b)
m p€B . : .
v- P g gves the moles per unit length. The fraction 7 con-
z A A

verts the concentration based on stagnant phase volume to the moving

phase volume, which is what the second term in egn. 3.2.c represents.

3.3.3 Concentration in s-phase Due to Injection in m-phase

If the tracer molecule enters the s-phase from the m-phase n
times and the nth time it does that is between time tp and ttdt,

then the probability distribution is

n-1 -gz
[é— Tzz_] I\
£ p(Emm-1) = & . 1A E__S (3.3.3.2)
€A €A (n-1)!

The tracer molecule, however, would have gone from the s-phase
to the m-phase (n-1) times, the probability distribution function of
which is

€p e

(g_ ts} n-1 éi ts
P 1. Dl

(3.3.3.b)

Once again, the overall probability distribution function, P, re-



52

moving the restriction that the transfer occurs n times, is obtained

as follows:
oy &_ e
P= nzl P(Ean-1) ¢ Py
-1
o ( Z_ )"
- %_ e'E z g_A % V; 8
A n=1 (@m-1)! (n-1)!
o BB Z g
i} 5-_ e_E z €A €B VZ S
€a n'=zo n'!t n'!
_8 -E
- eA e IO(X) 3 (3.3-3.0)
m €A

‘;;; e P e gives the expression for concentration in the stag-

nant phase which is identical to the first term in egn. 3.2.d.

3.3.4 Concentration in s-phase Due to Injection in s-phase

Tf the tracer molecule goes from the s-phase to the m-phase n

+imes, the probability density function is
£
n
E- )" Fptg
1o B e

n - o (3.3.4.a)

Tn order for it to end up in the s-phase at time t, it should
have returned from the m-phase n times and the rith time should be
between time t and t + d'tm the probability distribution function for
which is

-g 2
z \n-1 v
(%— V_') eeB vz

P(En-l) « & = 22 - (3.3.4.b)
€A (n-1)! €a
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The overall probability distribution function, P, removing the

restriction that the transfer occurs n times, is

g
"

[« ]
») P;l” P(Emn-1} &-
n=1l

A
n 7 n-1
g £ ° (%ts) & 5
T ep© n! (n-1) !
A n=1 H H
A g @ (X/Z)Zn
=E ey
=z °° n=1 M (n-1)!
2n'+2
V2 g © (x/2)
=z ¢ 1 Tt
n'=o
v
_ 'z X
= = TIl(X) . (3.3.4.c)

Also, considering the chance that the tracer molecule never goes
to the m-phase in time t, the total probability distribution is

t
.z X + B (2 (3.3.4.4)
m . . . .
‘_'—z- . Pt otal SVes the expression for concentration 1n the stag-

nant phase which is identical to the second and third terms in egn.
3.2.4.

3.4 TFrequency Response Analyses of Flow Through Packed Beds

let C be considered the deviation of a sinusoidal signal (tracer
concentration) from its average value. For purposes of calculations,

it is customary to regard the signal as a complex harmonic function
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with a circular frequency w. The value of the signal at any place in

the system is given by:
=y elut (3.4.a)

Y is a complex magnitude which can be represented by a radius
vector in the complex plane, having a certain length (modulus) and
phase angle (argument) with respect to the positive real axis.

Kpamers and Alberda 1953, have compared the response function
for n perfect mixers in series and the Fickian model.

The harmonic response function of one perfect mixer is

= 1 (3.4.D)
i 1+ T

!-<| m!-<

where, Y, = complex magnitude of harmonic signal at the exit

]
u

complex magnitude of harmonic signal at the entrance

al
"

average residence time: volume of the mixer divided by
constant volumetric flow rate.
Applying the result to n perfect mixers in series having equal

times of residence T/n, the response function is

Y, . T
e -
— = @+=2D7 (3.4.c)
i
For large values of n, this can be approximated by:
Y, 222 3.3
an o = -in - ‘ul_t-’ + i wT + e o (3-L"od)
i 2n 3n

The Fickian model with the usual boundary conditions
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z=0 vci=vc-D‘3% (3.4.e)
z=L §_CZ_:=O (3.4.F)

has the following frequency response solution

Y, | "
& - P (3.4.8)
. (1+p)2 exp [:%/]LS (1-p)] - (l—p)2 exp [1‘2%‘ (1+p)]
where ,
[ uiyD
= 1+
PR

Note that for unsteady state processes the exit boundary condi-
tion of the Fickian model (egn. 3.u4.f) is not physically justifiable.
Even so, it is widely used in similations. The non-Fickian model,
however, does not need an exit boundary condition because of its
initial value nature and hence completely circumvents the problem of
exactly determining the exit boundary condition.

FTor small values of %—% = P__Z___
®m,z

eqn. 3.4.g can be approximated by

. %R (that is, for long beds),

Y 2 -iwD
e _ w DL v, W
'Y—i = (1 - —“""V3 ) e H “—’2' <1 (3.4.h)

which can be written as

Y 2
e

g = -idkoehy (3.4.1)
i v v3

The Fickian model yields the same frequency response diagram as

a number of n perfect mixers in series with the same total residence
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time T, if
—:‘l— =5 z2_. 2‘2 ... (mixing cell is of length equal to
e
m,2 one particle diameter)
(3.4.3)
Wt
and o <1 (that is, for low enough frequencies)
(3.4.k)
iwt - o iwt

Tn the non-Fickian model, assuming C = Yg and C = Y and

substituting in equation 3.1.b gives

€
7 = B (3.4.1)

Substituting for C and T in eqn. 3.1.a with the initial condi-

tion Y = Y; at z = 0, the following solution is obtained

g2
Ep 2
[——-2' + W ] 2
Y €€ ©
i «:,_)1; A’B _2L g (3.4.m)
.i A : 2 - eI\‘,-‘z‘ g \2 . ..21
[(E)? 4 w2] S 2L +wd
€8 €8

Relating g with the axial asymptotic dispersivity D, (egn. 3.1.0),

the following solutions are obtained for the moving and stagnant phase:

2
€
eAVzu B 2
Y b T eAsTDz
I — = -i—— >
Y. v, -
i €
Az B4 ]
T €., D
T "z
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€
j(i&v_Z_ﬂ B

w L & ep
- e v D (3.4.n)
v
A7’z “eAVle.'eB 9
[¢ ) + 0]
T 2 2
T z
Y Y
e e i
Iy, =ty -tnll+— = ] (3.4.0)
i i AVz\2 ©B
( ) =
T S
EA'z.2 B
If ()" ¢ 5 >>Ws then egns. 3.4.n and 3.4.0 reduce to eqn.
T T z

3.4.p. This condition implies that the probability per unit time
that a tracer molecule will go from the s-phase to the m-phase is

much larger than the circular frequency w of the tracer concentra-

tion.

Y Y wZLD
Zny_e'=2,n79 = - 3 ew% - evz (3.4.p)
i i 2z (B2
7 T

Hence the non-Fickian model yields the same frequency response
as the Fickian model for small values of %% (that is, for long beds),

and hence also the mixing cell model response under equivalent con-

ditions (egns. 3.4.3 and 3.4.k).
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4. TRANSVERSE DISPERSION IN TWO-DIMENSIONAL, ISOTHERMAL "NON-REACTIVE

PACKED BEDS

4.1 Moment Analysis

In order to evaluate the transverse dispersion in a packed bed,
a moment analysis of the equations is done for both kinds of wake
shedding and entrainment phenomena described in Chapter 2, namely,

Mechanism I and Mechanism II.

4,1.1 Mechanism I

Consider an infinite pulse at t = o on the plane y = o. The

solution is assumed independent of z, SO the equations become:

g-% + ;5— (e-c) = o (4,1.1.a)
A

.8 . X

Tte (c-c) - e =5 =0 (4.1.1.b)
B B 9y

and the boundary conditions are
ely,0) = 8(y) 5 cly,0) = §(y) 4.1.1.0)
The nth moments of c(y,t) and cly,t) are defined as:

o0 o
w0 = [ ely,) - dy s n = f ¥ . Sy,t) ¢ dy
=00 -0
(4.1.1.4)
The moment equations are:

C_lg% + 8 (u-uy) =0 (4.1.1.e)
‘A
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— 2

du - A -

—au-i%- + %-B- (i) - %EE n(n-1) w,_p = O (4.1.1.1)
uo(o) =1 3 ul(o) = uz(o) = =0 (4.1.1.g)
o) =1 3 'ﬁl(o) =y0) = . . . =0 (4.1.1.h)

Solving these equations with the help of laplace transforms, the

following are the expressions for zeroth, first and second moments:

U, = 1 (4.1.1.1)
My = 1 (4.1.1.3)
Wy = 1 (4.1.1.%)
ﬁ'l =1 (4.1.1.1)
2 ErEREN e
2 2¢€ 2
t 2€
T
£ ] : g
Ae t 2 - - =
N =g—-—3}‘2 ——-B--'l:-AEla'-2 1—e€B - A et/A-e EBJc
22| & g ) 1_5_]
AR ' B €a
\ )
ot 4 g
2 t t
A s 8 € (u’ololtn)
_2°Bl1 B -3 |1eB
€ €
AB

The asymptotic values of the dispersivity in the radial direc~

t+ion are obtained from the second moments as in Section 3.1.
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t+o (De)y =0 (4.1.1.0)
2
t>o (De)y = %, (4.1.1.p)
Similarly, for the stagnant phase,
-
t>+o0 : (De)y = 2€B (4.1.1.9)
= )\2
t > (De)y = %'e; (4.1.1.r)

The asymptotic transverse dispersivity for large t is the same in

both phases,

" 2
D, = o)y, = (De)y = g (4.1.1.8)

L |

4.1.2 Mechanism IT

Consider an infinite pulse at t = o on the plane y = o. The

solution is independent of z, so the equations become

B8 (-3 -18 M 32_"_:0 (4.1.2.a)

ot EA 2 Ep 2 -3‘:;:7 B

§§+5_(a_c)--1-&-(l)232°-0 (4.1.2.b)

ot €p 2 e 2 % ...
and the boundary conditions are

ely,0) = 8(y) 3 cly,0) = &(y) (4.1.2.¢)

The moment equations are

dun — 1 g A2 —

— * %K (uy - W) - 7 €, & nn-1) W ,=0 (4.1.2.d)
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@

R AL RES & 5— $?ntn -1 uyp = (1.1.2.e)
uo(o) =1 3 ul(o) = 112(0) = =0 (4.1.2.1)
ﬁo(o) =1 3 ﬁl(o) = Ez(o) =, ..z=0 (4.1.2.g)

Solving the equations with laplace transforms, the moments are:

U, = (4.1.2.h)
W, = (4.1.2.1)
Uy = 1 (4.1.2.3)
il-.1= 1 (4.1.2.%)

-
()
1
N
~~
] >
A4
N
*
ot
!
N
L ]
”~~
>
S
N

[ - t]
€A% €p €B
€TE '-g—-gT— 1l -e

: g €
B :

+
~

N|
-~

3 Ae € £
I = £ M2, B B B _B,2
u2-2'e = ('é' g t+A(-g—) e -A( )
A B \
- g - £
A2 -'t/A € t AZEB eBt
-3 e -e -5 |1l-e !
(K-g_)
€q _] ‘
- " En
{&_;]_&et/A+;e B B+
epg A €B A 2 B
+ + ()" j1l-e
g - 1)l.8 .1
(&%) &5

(4.1.2.m)
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The asymptotic values of the transverse dispersivity obtained

are.:
i _lg A2
fam : (Do) = & B2 (4.1.2.0)
y er 2

Similarly, for the stagnant phase,

= 1 A2
t+o0 : (De)y =5 %}; ) (+.1.2.p)
o (Do), = B’
tre (Do) :- 2 (4.1.2.9)

The asymptotic transverse dispersivity is the same in both

phases,

D' = (De).. = (Te)., = & (22 (4.1.2.7)

4.2 Point Source, Steady State and No Reaction

Bernard and Wilhelm 1950, conducted experiments with a point
source of tracer at steady state and with no chemical reaction, and
fitted their experimental data with the solution to the Fickian
equation neglecting the axial diffusion term. H.A. Wilson 1904, has
solved the complete equation including the axial diffusion term.
Wilson's solution, however, approaches the solution to the equation
neglecting the axial diffusion term, for a distance far enough down-
stream, which is a condition encountered in the experimental concen-

tration profiles of Bernard and Wilhelm.
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4.2.1 Mechanism I

For steady state, no chemical reaction, the equations are:

c
v, &+ Ee-d=0 (4.2.1.a)
)\2 320
Ec-o- %——3 = 0 (4.2.1.b)
B B 3y
which can be rewritten as
r€ v 2
A Vz | 3¢ odc
N - D e ™ = 0 (u.z.l-C)
ET 29z vy 3y2
D 2
- _ Er y . e

Eqn. 4.2.1.c is nothing but the Fickian equation with the axial

diffusion term neglected.

4.2.1.1 Cylindrical Bed With Axial Symmetry

For a cylindrical bed with axial symmetry equations equiva-

lent tc egqns. 4.2.1.c and 4.2.1.4 are:

ORI A e s L=

€ v 2
a
_ ep Dy | 3% + 13
c=c + 2g ;:_ ; —r (’4.2-1.1.1))

Tn some experiments of Bernmard and Wilhelm, radial diffusion was
1imited to the central core of the tube; whereas, in others, diffu-

sion proceeded until the tube wall boundary became important in stop-
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ping radial diffusive flux. In the former case, the Wilson's solu-
+ion to the Fickian model has been used to similate experiments.

When the wall boundary becomes important, a solution with a no-flux
boundary condition at the wall has been derived by Bernard and Wilhelm
which was used to simulate experiments. In this section an example
case with no wall effect is being considered. The boundary condi-

tions for the point source condition are:

o [, V
m | Zl . cepedr=Q, 2>0 (4.2.1.1.c)
€
o T
where, Q is the rate of injection of tracer (moles/time) -
clr,0) =0 , r>0 (4.2.1.1.4)

and assuming the concentration is decreasing exponentially in the

radial direction,

c(o, 2) =0 (4.2.1.1.e)

)

e analytic solution to eqns. 4.2.1.l1.a and 4,2.1.1.b with the

C =y e D‘- «z © y (4.2.1.1.5)
y
and
2 1A Va
e, Vv r €T
—_ Az .
c=1{1-"57 l1-"7 D 2 cc (4.2.1.1.g)
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Assuming the exponent is small (z large enough) so that the

second order terms can be neglected, then

€
€AV, 2 ZAz
r2[ . ] Er
- e T
y
and eqn. 4.2.1.1.g reduces to
—r2 E:sz]
€
T
€
_ ey Y, 7Dy, z
c=c~-__ . 72 e (4.2.1.1.h)
8ng Dy Z
27D
or S=zc--——2 c?
Q. g
c=c>0 (4.2.1.1.5)

For large z,

For distances far enough downstream, the concentrations in the

and the moving phase are almost the same. Thus for long beds,

stagnant
the non-Fickian model becomes identical to the Fickian model for a

point source, steady state and no reaction, at distances far enough

downstream.
.4,2.2 Mechanism IT
For steady state, no chemical reaction, the equations for this
mechanism are:
2 —
VZ%-CZ:-+%—(C-E) -12'-%—(%)2 3 ;=O (4.2.2.a)
A A oy
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5 1 9 3

~2—(E—c)-7-g—(L --—E}=o (4.2.2.b)
€g eB 2 ay

These can be rewritten as

12
eV 2 € gt
Az | % _p ey e (4.2.2.¢)
Ep 0z y 3Y2 4 g 3y|+
and,
]
€ D 2
S=ct -?-zg‘l o (4.2.2.d)
oy
e 3232
If it is assumed that -a;g- = 5;—2— , then eqns. 4.2.2.a and 4.2.2.b
can be rewritten as
€ v 2
Azl _p.8S:0 (4.2.2.e)

€T BZ y ayz

and € is given as in egn. 4.2.2.d. Thus equivalence with the Fickian
model (axial diffusion term neglected) is established as in Section
4.2.1.

For a cylindrical bed with axial symmetry equations equiva-

lent to eqns. 4.2.2.a and 4.2.2.Db are

2 —
L8 com-LtE M2 el
vzaz+eA(c'C)-2e. (23 [32+r
2
c

]%1%1|

A r

E (n_z L8 (M2, 9
EB(c c) ZEA(z) \:r+

These equations can be rewritten as

°c

Lol g

L

or

Q>

=0 (u.2.2.1.a)

e =0 (4.2.2.1.b)
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t r
ea%| dc _ oifa%e , Lae| _SPyLja |3 |2 d%eli 113 L3} o g
[ET 3%  V|apZ P or ug r.218rar IS 2|3rir 3r
(4.2.2.1.c)
)
€ 2 1
Py la%e, 1

The conditions for equivalence with the Fickian model are

%% = %i"’ (4.2.2.1.e)
2 2
P} ;:: 9 ;: (4.2.2.1.1)
3 9 r

and these when substituted in egns. 4.2.2.l1.a and 4.2.2.1.b, give the

following equation:

eA\-’Z] D 320 + _];lq_

=0 (4.2.2.1.8)
eTJ y 8r2 r 3r

and ¢ is given as in egn. 4.2.2.1.d.

As far as the tracer is concerned, it is going through bands of
stirred tanks in series alternately, with the moving phase in between
(see Fig. 2.1.2.a). The exit concentration in a stirred tank is the
concentration in the tank itself; thus any change in the concentra-
tion of a stirred tank band should be reflected equally in the ad-
joining moving phase. The balance equations are made continuous
(see Section 2.1) in the radial direction by using the Taylor series.

Eqns. 4.2.2.1.e and 4.2.2.1.f show that the first and second deriva-
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tives have to be equal in a cylindrical bed with axial symmetry to es-
tablish similar dispersion effects in the two mixing mechanisms that
have been studied. Hence similar results are obtained for Mechanism
IT as in Section 4.2.1.1 for Mechanism I by substituting DS'I for D

y
and using the conditions of equivalence (egns. 4.2.2.1.e and 4.2.2.1.5).

4,3 Evaluation of Parameters Through Experimental Values of Peclet

Number

4,3.1 Mechanism I

The asymptotic axial and radial Peclet numbers are defined as

d v d * €

‘g
(o), = 22— = -2 L (4.3.1.2)
D £,V
Z A’z t_:123
r
. dev €,V ] 2€
_ P _ . |-A 2 T
(Pe)g bt % 2| 2 (4.3.1.b)
Therefore, (4.3.1.c)

A = l 2 T

(Pe)y (Pe)z ’ €p

McHenry and Wilhelm 1957, have veported the following values of

Peclet nunbers for a void fraction Ep = 0.388 :
(Pea)Z =1.88 and (Pe)y = 12
The parameter €q is given by egn. 1.1.b. Therefore,
A = 0.628 dp

From the structural point of view,if "random dense packed" bed
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is considered as described by Oman and Watson 1944, then ideally it

would have a closed packed structure for spheres:

=Edp = 0.817 d,

For a random packing, it would be expected that
dp/P_ = 0.707 4,

4,3.2 Mechanism IT

The asymptotic Peclet numbers are defined as
d v d g €&
Db _L____

(Pe)) = +£— = (4.3.2.a)
Z D V
°B
iep

(Pe)! = v, EV (%.3.2.D)

y D'

y
Therefore, A o= (4.3.2.¢)

2
l(Pe)Z (Pe)y SB

For the values of Peclet numbers reported by McHenry and Wilhelm,

1

A’ = 0.888 dp =r2—)\. Hence for random packing,

1_2_ A= o, (4.3.2.d)

From the manner in which the physical structure is set up in
Chapter 2 based on which balance equations are written, it is
reasonable to expect that a typical eddy has to traverse a radial

distance equal to a particle diameter in mixing Mechanism II before
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it becomes entrained by another wake. In mixing Mechanism I, the

radial distance traveled is less than for Mechanism II by a factor
of l 2 .

4.4 Momentum Transfer in Turbulent Flow in Packed Beds

When fluid leaves a flowing channel and enters a stagnant re-
gion, its forward momentum is lost without corresponding pressure
recovery. An equal volume of stagnant fluid is then returned to the
flowing stream and must be accelerated up to the stream velocity. It
is this acceleration, or momentum generation, that gives rise to the
contribution to the total pressure gradient usually recognized as
"form drag". The "viscous drag" arises from flow of the moving

fluid over the surface of the particle (see Fig. b.h.a).

/1

—lp
Viscous Form
drag drag

FIGURE U4.4.a

Tn a lateral slice of the bed of thickness 6z and unit cross-
section, the mass flux into the flow region from the stagnant region
is a+ge8z and it must be accelerated from rest up to a velocity
v,. Thus the rate of generation of momentum is 8z+a-°g-v, . This is

equal to the force acting on the moving fluid at the faces of the slab:
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€ [ p(z) - p(z+62)] = - eA-%PZ--Gz

where, p(z) is pressure at axial distance z.

d - L [ 2
Therefore, - € {(—_15- ]f = aegev, (4.4.a)

The notation ( g% ]f indicates the contribution due to form drag to
the total pressure gradient.

The friction pressure drop AP in a stream of fluid flowing
through length L of a packed bed of uniform spheres is conventionally

represented by the equation

AP 2efegeu’

-1 ° _d;_— - (4.4.b)
where, f = friction factor
u = (gv,) = superficial velocity (fluid velocity

through the bed calculated as if no

particles were present).

For turbulent flows the contribution due to "yiscous drag" is
negligible and the total pressure drop is mainly due to "form drag".

Hence for turbulent flows, if the two correlations are equivalent,

then
ceeme (EaV. 32 aegev, .
2:fracCAzZ) | s Z (4.4.c)
d; A
g+d
or £z — (4.4.d)

3
2 €sz
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Relating g with the axial Peclet number (egn. k4. 3.1.a)

(Pe) € 2
£ = — z . [ B ] (4.4.e)

EafT

With A =—§R— and Pe, = 2, values of f and (Pe)y are written for
.{ 2

various values of € as shown in Table 4.4%.a. Also given in Table
4.4.a ave the values of the friction factor, f* = f*(ep), extrapo-
1ated from the composite correlation curves provided by Zenz and
Othmer 1960, in Fig. 5.1 of their book.

TABLE 4.4.a

e g €A £ £ (Pe)
0.30 0.112 0.188 3,943 14.0 14,167
0.35 0.156 0.194 5.278 10.0 10.070
0.0 0.192 0.208 5,325 6.5 8.680
0.45 0.220 0.230 4.518 5.0 8.368
0.50 0.240 0,260 3.408 3.8 5.680
0.55 0.252 0.298 2.364 3.0 9.527
0.60 0.256 0. 344 1.538 2.1 10.987

There is reasonable agreement between values of f and f¥*; also,
the values of transverse Peclet numbers are within range of experi-
mentally observed values. However, there is a discrepancy for the
rarely observed low voidage of 0.35 and 0.3. For beds of randomly

placed spheres, €p ranges from 0.38 to 0.47. Of the many investiga-
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tions carried out on the structural properties of packing, one of the
significant ones was performed by Debbas and Rumf 1966, on the degree
of randomess of packed beds. An interesting result of their study
was that the minimum possible porosity for a random packing of spheres
is 0.35. The unduly low friction factor predicted for low Ep MAY
arise because the mechanism for "form drag" does not hold at such low
voidages as the particles are not far enough apart for vortices to
form. The flow is more like a series of "jets" and "wakes" as ex-

plained earlier in Section 1.1.
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5. TSOTHERMAL CHEMICAL REACTION IN PACKED BEDS

5.1 'First Order, Homogeneous Reaction in a One-Dimensional Bed at

" 'Steady State

The reaction is taking place in the fluid and the non-catalytic
solid particles affect only the fluid dynamics in the bed. The flow-
ing substance is converted by an jrreversible first-order reaction so
that the rate of removal of the substance is kjc, where ky is tl;xe
reaction rate constant. The chemical reaction involves no volume

change and is, say, A > B.

5.1.1 Non-Fickian Model

For a first order chemical reaction taking place in the moving

and stagnant phase at steady state, the non-Fickian model becomes:

de , ¢

—— + - = - o do .
v, i -?—eA (c -0 kqc (5.1.1.a)
&eB (c - e) = “kqC (5.1.1.b)

Relating g to the axial asymptotic Peclet number (eqn. 4.3.l.a),
and rewriting the equations in dimensionless form, with initial con-

dition ¢ =S z1atz =0
loX (o]

o i
— o 82 -
de e €
.a-—o- = - B + A J1le (5.1.1.c)
- (o)
Pe t-:B &r
ep |F—*1
T J 8T
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Pe , B,
- _ g &
1+ ——
where, Cg = %—— ; dimensionless concentration in m-phase.
i
Eo = —2; . dimensionless concentration in s-phase.
c; = concentration at the inlet of the bed.
kld
g = - ; Dankohler number.
Az
€r
zZ5 © % : dimensionless distance.

The solution to these equations is

Pe * 82 ep j
c. =€ - pome -+ =J 2 (5.1.1.e)
R ¢2 |Pe € T °
T|Fe-t1
| I ¢
JE s
Pe € —
B ]
- Pe ° 82 € —‘
- __J°fr B . A
1+ -——E e% ..._..E +1
J € { J ST
L T
_ =J*z
For J<<1, ¢, =cy=¢@ (5.1.1.g)

The simplicity of the non-Fickian model will be ai)parent when the

corresponding similation of the first order chemical reaction is done
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with the Fickian model in the next section. The non-Fickian model is
essentially a first order linear o.d.e, (eqn. 5.1.1.c) as opposed to
the second order linear o.d.e,in the case of the Fickian model (egn.
5.1.2.a). Also there is no need of an exit boundary condition in the

non-Fickian model.

5.1.2 Fickian Model

Tn dimensionless form, the Fickian model is represented by
2

d Co dco .
— P ¢ — - e Jec =0 (5.1.2.a)
2 dz o}
dz o
(o)
The Danckwerts' boundary conditions are:
de
= { Z - ]_‘__ _°
z, = 0 (cg) = - 55 5 (5.1.2.b)
dcO
z, = L/dp' a—z;= 0 (5.1.2.¢)
where, L = length of the bed.
\4
Te = ?'-B— 5 Peclet number
A
kld
J = v s Dankohler number.
. . >\le . )‘2,20
The solution 1s, c, = ¢ *c,e (5.1.2.d)
Pe + ,Pe'2+ Ll'oP_eoJ
where M= D
Pe - |Pel+ 4ePeed
and, Ap = 2



77

--x-i- e 5 + Pe
cy = —
1 (A=A L (A-A)) L
——'a;— A
A, e -1} -Pe 2 e -1
2 oy :
o = Pe
2= _
0‘2”‘1) L "[ A ()‘2-;\1) L
A, |e - 'l -relge P -1

The exit concentration can be written as
cofl) = (eqq + cy) * exp EZL/dP:]

_()\2_11) L
where, Cqp = <::l dp
For Pe = 2 and low enough Damkohler number (implying a low
enough reaction rate constamt), J<<1; and using the binomial expan-
sion up to the first order terms, the expressions for }‘2 and A, can

1
be simplified as

: _ I
)\2=1-‘l+2J.= 1-|1+5’2'-(2J)]= -Jd

Ay can be written as,

Tn addition to the above assumptions, if the bed is sufficiently

long the exponent
()‘2->‘1) L (14J) L
— P

e = e

N
o



78

Therefore CH = ‘e = 2
’ 2" R =~ LT
P 2+J
J
and ‘u T 2a+m
4 + 6J + J2 : :
Then, cqq + Sy T 2 + 3] + J2) = 1, up to first order approxi-

mation and the expression for the exit concentration becomes

-JL/dp

co(L) = e (5.1.2.e)
'5.1.3 Plug-Flow Model

de,

a—z; = =J s 4 (5.1.3.a)

zo = 0 , ¢y = 1 (5.1.3.b)

-Jzo

The solution is cy = © (5.1.3.c)

Thus for low enough Damkohler number, the concentration profile
ie identical in the plug flow model and the non-Fickian model (moving
phase concentration) at all sections of the bed regardless of the
length of the bed (egns. 5.1.1.g and 5.1.3.c)

For sufficiently long beds and low enough Damkohler numrber, the
exit concentration in all the three models is identical (egns. 5.1.1.g,
5.1.2.e, and 5.1.3.c)

Figs. 5.a, 5.b, 5.c, 5.4 , show concentration profiles obtained
by the three models for various values of the parameters.

The concentration profile from the Fickian model is bounded by
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the moving phase and stagnant phase concentration proflles, so that an
interstitial average concentration defined as p= E—- o + ET o would
correspond quite closely to the values obtained by the Fickian model.
Fig. 5.a, which is drawn on an extended scale clearly shows the exit
concentration predicted by all three models is the same for low enough

Damkohler number and long beds of 20 particle diameters.

- 5.2 Seécond Order, Homogeneous Reaction in a One-Dimensional Bed at

‘Steady State.

If the flowing substance is converted by an irreversible second
order reaction so that the rate of removal of the substance is kzcz,
vhere k, is the reaction rate constant. The chemical reaction involves

no volume change and is, say, 2A ~+ 2B.

5.2.1 Non-Fickian Model

At steady state and second order homogeneous chemical reaction,

the equations are

A d,.. + %— (c-¢c) =-ky c? (5.2.1.a)
E (c-0 = -k 2, (5.2.1.b)
€

Relating g to the axial asymptotic Peclet number (egn. 4.3.1.a),

and rewriting the equations in dimensionless form

2 . | - ——

. dco Y 9 _ 8B Peo.eB 4J2qup
—— S —— QJ‘Z.CO - Pe! ———2— L] co - ———— 1 + ————————r— - 1
dZo eT eT 2J 2* eT Pe-« €B

(5.2.1.c)
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k2d c:.L
where J2 = (—P-— 3 Damkohler number .

eAVz‘
€
T

The initial condition is simply:

At z =0 , c.=1 (5.2.1.d)

The stagnant phase concentration can be found explicitly in terms

of the moving phase concentration:

LJAE
_ 1+——————2,§C° -1
5Ll 0 ( )
co-ci- {2 J2 ST} 5.2.1.e
Pet-:B

For low enough Damkohler number, J2<<1,

ll"-queTco 2J2€Tco

Pe-t~:B = 1+ ‘Pe'e

B
by Taylor series expansion, neglecting second order terms.

Then equation 5.2.c simplifies to

A
_— e T J ° C (5.2'10d)
d ZO Ep 2 fo)
and with the initial condition 5.2.d, the solution is
c = 1 (5.2.1.g)
o) €5
1+ — J2-z
Ep o)
and 2 AJZ E:T e
1+ °.1
- - _"PE_G:_'B——-

0
i
"
0
o

o 7 I, Ep (5.2.1.h)

Pee €p

'5,2.2 Fickian Model

For second order homogeneous chemical reaction at steady state,



the dimensionless equation is 85

d2.co de 9
2-Pe-—-— -Pe~J2-co = 0
d z (o)
o
. de
1 (o)
zo-O 1-co Pe°dzo
dco
Zo = L/dp H -a;(; =
k2d cy
where, J. o = p 3 Damkohler number.
v

This is a non-linear second order two point boundary value prob-
1em and hence its numerical solution is considerably more complex
than that for the solution of the non-Fickian model (eqn. 5.2.1.c)
which is an initial value first order problem. Finite difference
methods have been used to obtain the numerical solutions. Hamming's
predictor-corrector method was used to solve the non-Fickian equation
and the solution was, in fact, used as an initial guess for the
Newton-Raphson iterative process required to solve the Fickian equa-
tion by the quasi-linearization technique. The system is quite stable
and converges in less than two iterationms. Figs. 5.e, 5.f, 5.g, 5.h,
show the concentration profiles for the two models and also for the

plug-flow model for various values of the parameters.
5.2.3 Plug Flow Model

The dimensionless equation is

de
0 =-yg,c? (5.2.3.2)
(o]

o)
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with the boundary condition

Z, = 0 : ¢ = 1 (5.2.3.b)
. . 1
The solution is cy, = (5.2.3.c)
(1+ J2 z )

For low enough Damkchler number, the moving phase concentration
profile obtained by the non-Fickian model is very nearly the same as
that obtained by the plug-flow model (Fig. 5.e).

Also from the numerical solutions it is observed that the exit
concentration in all three models is the same for sufficiently long
beds and low enough Damkohler number (Figs. S.e and 5.g).

The overall behaviour of the plots is similar to that discussed
in Section 5.1 for the case of a first order homogeneous chemical

reaction.
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6. HEAT DISPERSION IN PACKED BEDS

The heat transfer equations have been formulated and the assump-
tions required to formulate them have been discussed in Chapter 2.
Analysis of dispersion of heat in packed beds is done in this chapter
and is analogous to the isothermal mass dispersion analysis in Chap-

ters 3 and 4.

6.1 Moment Analysis

In order to evaluate the axial heat dispersivity in a non-
reactive packed bed, a moment analysis of the heat transfer equations
is done. Consider an infinite temperature pulse at time t = O on the

plane z = 0. The solution is independent of y; so the equations

become
06. A
By BvE D+ izpe's (r-H = 0 (6.1.2)
A A
T8 (r-T =0 (6.1.b)
ot €B
A Kk s8SeA  n2n
2h*8S A 3T '
%{-+——:—(T-T)- E 3" 5 =0 (6.1.c)
pB CP B p A
with the initial conditions
T(z,0) = §(z) 3 T(z,0) = 8(z) 3 r’f‘(z,o) = 8(z) (6.1.d)

The nth moments for T(z,t), T(z,t) and P(z,t) are defined as in

Section 3.1,
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) il ' e T(z,t) * dz .
1, (1) =_°f°° zZl » T(z,t) * dz .
w () =-°f A . T(z,t) » dz .

The moment equations are

dun

—. 2he &S ~ -

a;c— - NVl g %-(un-un) + . (un-un) =0 (6.1.e)
duy,
_2.E& .G - =
i & G, -u)=0 (6.1.£)
an . k_85%2 R
——ur—1+ Zh-88 Cuy=iy) - i—;;— *n(n-1) *u _,=0 (6.1.g)
dat fp &P PB S n-=

uo(o) = 1 ul(o) = uz(o) = . . = 0

u0) = 1 3 Til(o) = Uplo) = . = 0 ¢ (6.1.h)

B0 = 1 W) = (e = = 0

The zeroth, first and second moments are solved for with the help

of laplace transforms

b = 1
Wt 1
ﬁo"'l

- [ ] - — .g—-. .&—‘ [ et )
By vz(%+h)B 132v Bh+vz hBt

-A
— 1
+ e_7 {CNl-cos Ct + (Np - %Nl) « sin Ct} )



where,

where,

A (]
A ZhES
chp
- %he
i o= e §S
acPeA
g . 8 »~ 8 &
= + + h
B [eAh € h+ Eg ]
C = B—ﬁ—
N -V.{g—+l\].l+-A—.vzgh
17 "z e B g2 €s
. v_ gh |2
= Og__ Ané. z 0-—A-—-
szVZ+VZ[€B+] B+ B 32
- _ N . A Vzgl'l
ul--vz.h%:- :7+€“B +
b B
A
-=T
7 ( A . .\ l_
+e CN3°cosCt+(Nu--§N3)' s:LnC‘t} 5
v, g vzghA
N, = +
3 €BB EBB2
N —vzg A+Vzgh.[l_§i 1
T eBB €p le
" = - og-voA_ Vzg}l
53] Vy €p h 2-l-E B t
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t A . 1
+ e CNS'COSC't+(N6--§-N5)‘SmCtE

z :
where, Ne = +
5 B eBB2
. :VzﬁA-'.vzgh.AZ-l
° B s |p? B

The expressions for the first moments, 1, given above are exact

vhereas those given below for u2's are asymptotic. For large t, the

exponential terms become negligible and,

e, B (B BB eg B €g B
A 2ks-6°s-x
2 A o A
_ 2vignll, 2Agh] hk g v, Bh
W, = ————|h + 28 - "‘-1:+ 5 _.t+ |3 . t?
e 32 B € B ENB BB
B B ] B v
. | 5 2
. 2vhegh LY hk g v, gh )
u = ———— e +2h_——'ot+ ot+ .'t .

The average temperature pulse velocity in the moving phase is
given by
« b
g _ _\o)

Vo T @@ . at



v,eh -5t I ayy A l
=g +e -(NZ—AN)-cosCt--—-_—+CN1'sinGt
g B l 1 2C ucC J
(6.1.1)
and the 1limiting vlaues of the velocity are
t+o V. = v
T Z
NS
o €
tesw : V. = Yz gn _ T
G €5 B ~ 0.5
14 —2P
o Cp ET
Similarly, in the stagnant phase,
Y
2
ét AN, A N3
2 (Ny-ANg)ecos Ct + |om= = 7 + CNy|+sin Ct
(6.1.3)

and the limiting values are:

-> =
t->o VT 0 -
Az
- eT
o VT = ~
p. C
14+ —B P

('!CPET
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In the solid phase, the average temperature pulse velocity is,

~
T a at
~ A 2
v, gh -3t AN, AN '
_EBB + e (NG-ANS)-cosCt- 20-—@—+CN5 esin Ct

(6.1.k)
and the limiting values are:

t-)-o:GT:O

The asymptotic temperature pulse velocity for large t is the

same in all three phases,

feA Vg
S TN S S . v
p - Vp T Vp T Vp T o & = oo &
B B
1+-B% | [1+_BP_
(!cPET cheT
(6.1.1)

The rate of spreading of the temperature pulse or the axial
effective heat dispersion coefficient is given in terms of the stan-

dard deviation, w, as follows:
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For the moving phase,

1 2
(D) =3 (w™)

€'H,z

7o

1"
N||—!
o.|o.

f:;l—?
(o) N

]

N

N

-4

™~ |

For the stagnant phase,

"
N
g1

p—
==
S
|
9]
L~ |

1d
(Do) =§—'(w)

’

For the solid phase,

n
N
e
T.‘.)l*:)l

~N

| o S

]

N |

e’
N

A _ -]; g— ~9

For large t, the asymptotic value of the axial effective heat

dispersion coefficient is the same for all three phases,

Dy, = Moy , = Tely , = P

€'H,z
9 g2
{E_A‘.,_.]° _e_B F‘E*V_A (pBap)z ~
) €T geT X ET J . -630)\
= r ; Y ‘3 r A—TB 0 —]
B %p ) PR®p B°p
1+ ——  (2688)( )|+ | ac_ene 1T
e p ey e L

(6.1.m)

The first term in egn. 6.1.m represents dispersion due to mixing
in the external fluid; the second term is generated due to the heat
transfer between the moving fluid and the solid phase; the last term
represents the dispersion due to conductive heat transfer in the

solid.
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6.2 Evaluation of Heat Transfer Parameters

Eqn. 6.1.m can be rewritten in terms of the asymptotic mass dis-

persivity

(w3

o |1+ €aVz| B p R

z| ¥ ep | ~ D, (2h8S)-ac eq| k_*6S*A

= 2 P + S
M,z * og cp |3 c
p

° 1§ . %p T

The asymptotic axial heat Peclet nunber is defined as,

E v
A
E i [ez}.dp
. _VTd . T
? l_i_[Az] B D

ep | | Dy (2neS) (acper)] k 85X

+

& 2

l+ch O‘QPET
OLCPST

(6.2.a)

In most of the experimental work that has been done (Gunn and
DeSouza 1974, using the one phase dispersion model or Fickian model;
{ittman and Sliva 1970, using the two phase model (egns. 1.2.c, 1.2.d)),
it is safe to assume for gaseous flow that the heat capacity ratio,

o, G
_B P s

acp ST

(6.2.b)

With this assumption, eqn. 6.2.a reduces to
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EpVz
............ [ 3.‘1'] ) dP
PeH z
’ a_cPaT : €AVz] acPeT kge 832
Dz ~ € 6
chP - =T J 2n0S o cp e
- 1
1. [%%er)? [eAVz]. p Looper (fr), 1, ks 2
Pe, |Pp &p Ep dy 2hssS €V J d  acp e

Now, with Pe, = 2 and inequality 6.2.b, it is observed that the
fipst term in the denominator is much smaller than the other two terms

and hence can be neglected. Thus,

1
Pe =
H,z ",
’ {EAVZ].}_‘O‘CPET+ epy 1 K
ep) dp 2SS €aVz) 9P o per
and with A = dp/./ 2
(eAvZ) o Cp-dp
Peq - = ] (6.2.0)
thae “E ) i . £ .
[(ev,) o] X 65+
Zhe 98 Y

D. Vortmeyer 1975, has an identical expression for the Peclet num-
ber (eqn. 6.2.e) neatly correlated with the most recent and extensive
experimental work done on axial heat Peclet numbers (Hansen and
Jorgensen 1974, Gunn and DeSouza 1974, Littman and Sliva 1970, Yagii,
Kunni and Wakao 1960).

Vortmeyer considered the two phase model (eqn. 1.2.c and 1.2.d),
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and assumed that the gas phase heat capacity is negligible and also
that the gas phase dispersion processes are negligible effects. Only
the solid phase contains a feed-back term (eqns. 1.2.c and 1.2.d) with
a coefficient A, which is approximately equal to the effective con-
ductivity of the quiescent bed. An equivalent one phase model was
derived (Vortmeyer and Shaefer 1974) by using an arbitrary assumption

called by Vortmeyer the equivalence condition, namely,

2 22
9_% =22 (6.2.d)
9z 32
The Peclet number obtained is
uoe .
Pe = mg.dg = - ReRPg sz (6.2.e)
. ol
Ao * M o,
ha Ar  B(1-Ep) Ny
where, me = mass flow rate of fluid o2

Ap = thermal conductivity of fluid (M L 3 1y
Re = Reynolds number, mfdp/uf

ug = dynamic viscosity of fluid (M e
c,u
Pr = Prandtl number, —PT-E
£

h
Nusselt number, —c-lR

Nu
e

Comparing eqn. 6.2.c with eqn. 6.2.e, the parameters in the non-

Fickian model are easily correlated as

A Ay V2
kg*8S = =5 (6.2.)
2
7he§S = ha (6.2.g)
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Henece axial Peclet numbers can be calculated as a function of Re

from known Ay/A £ ratios of the quiescent bed and from known correla-
tions for particle/fluid heat transfer data.

Eqn. 6.2.a can be rewritten as:

PeH = 1
= 7
’z ReiPp- [gB_.SP-]
1 + cp T + )‘O
. e o) 2 pr C 2 Ag*Re*Pr
Pe, [1+ STE}_Z%] 6(1-eT) *Nue [1+ %%] £

(6.2.h)

Eqn. 6.2.h gives the relationship between asymptotic axial heat

Peclet nunber and Reynolds number.

6.3 Transverse Heat Dispersion in Non-Reactive Packed Beds

Tn this section, radial dispersion of heat is studied with no
wall effects.

6.3.1 Moment Analysis

The equations of heat transfer have been written based on
Mechanism I (see Chapter 2). Consider an infinite pulse at t = 0 on

the plane y = 0. The solution is independent of z, so the eguations

become:
2
M, 8 (o s D88 (i DesSd 2T, (6.3.1.2)
at eA EA o CP GA ay
- ‘ 2 )
3T + £ (T-T) - S B
e+ (T-T) %é— =0 (6.3.1.b)
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o]

g_T_ . 2hsS .({fT) ) h°‘68'>\2. aZT kSOSSo)\ . 82T -0
a-t ~ - A 2 - ~ a
P PgC 3y° e W

T(y,0) = 8(y) 3 T(y,0) = 8(y) ; T(y,0) = 8(y) (6.3.1.4)
The nth moments of T(y,t), T(y,t), and T(y,t) are defined as in
Section 4.1,

Eqns. 6.3.1.a, 6.3.1.b, 6.3.1.c, are maltiplied by y* and inte-

grated, to obtain the following equations satisfied by moments.

oup, — 2h &S A Be 85022 AR
= + %Z (un-un) + 'oTcgez -(un-un) - 'a__c;—e; * n(n-1) W, 5 = 0
_ (6.3.1.e)
M.e G g .o (6.3.1.£)
—a-_—t— + 'E—B' (Un-un) - 2€B » n(n-1) un_z = eDed,
ai\'n 2h8S ,~ he8SeA ks'é\s'k A
-a—_t—- + ;—a—'o(un_un) - 3 a nin-1) 'un_z - _—‘-)_B—_é_P_ n(n-1) ]Jn_2 =0
Bp B P (6.3.1.8)
Bol0) =15 1) =uy0) = . . . =0 ]
ﬁo(o) =13 )= ﬁz(o) =...=0 (6.3.1.h)
B0 =1 35 Y0 = pe) = . . . =0

The zeroth, first and second moments are solved for with the help
of laplace transforms
Yo = Mg = fxo =1
U =g < a]_ =0
For large t,
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@’ , T8 o, kege6SeX "
[N 2€T occeT' o Cp €7 .
By = Hy = Ug = - (6.3.1.1)
N
o ¢ Ep

The rate of spreading of the temperature pulse determines the

radial effective heat dispersion coefficient which is defined by:

2
1d ,2,_14d]||* ul .
(De')H,y o W) =5 3 [uo] - [——uo]:\, for the moving phase.
- 112
14,2 14|42 1
D = — =z = == - = .
( e) H, > —{dt w) 2 at| (o T , for the stagnant phase
1d 2, _1d —ﬁz )2
A S 1 . .
(D.) ==— () =531 - |= for the solid phase.
ely,y T 2 dat 2 at s LO] , P

For large t, the asymptotic value of the radial effective heat

dispersion coefficient is the same for all three phases,

Dyy = Py = Podyy = Pedyy

— 9 0
\?2 » 285 kS.GS'ﬂ
_ 2ep O Cp Ep a cp €

-]

(6.3.1.3)

o

The first term in the numerator in egn. 6.3.1.j represents the

heat dispersion due to mixing in the external fluid; the second term

is generated due to the heat transfer between the moving fluid and
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the solid phase; the last term represents the dispersion due to con-

ductive heat transfer in the solid.
The asymptotic radial heat Peclet number is defined as

eAVZT
Vm d ‘ dp
Y [ET
Pe[_‘[’y - - 2 (G-Snllk)

"H,y 222 , 2hesSer” kg*65+1]
26, Gcopfp  Co e‘TJ

With A = dp/ Y 7 and, relating g with axial mass Peclet number

(eqn. 4.3.1.a), the radial heat Peclet number can be written in terms

of axdal and radial mass Peclet numbers and the heat transfer parameters

already correlated in Section 6.2.

’ Pem,y
'y 2 .“ .
1+ 2(2h.é8S) dP .[ET] . %k 8Se/ 2 . [ST]Z

i L

(aeep) | EAVZ B

acper) [_ST_] Pe, } Pe,
(6.3.1.1)

€B
or, in terms of dimensionless parameters like Reynolds number, Nusselt

€Az
€

(GCPST)[

L

number and Prandtl number,

Pe
oy y = — m,Y (6.3.1.m)
2
L 12(1-ep)Nu e, b O/ Ag) ' er
Re+PrePe, || Re*PrePe, |°B

6.4 Steady State Heat Transfer Equations

At steady state the heat transfer equations reduce to
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| L2

v, o+ & E (1D + 2hegS, (7 fy - fS 2 22 < RCMD (5.4.2)

%p°A s N P
_ 22 9%T _ R(-AHE)

%_ (T-T) - %E— > = 3o (6.1.b)

B B oy p

.55 A ~AH

e84 oy A Sssx 3%7 h-SSA.BZT_RpB( )
—~ W= - A 2" 7" 2 &
g S g cP 9z DB D oy pB D dy ) cp

(6.4.c)

Substituting for E—(T—T) from eqn. 6.4.b and —%P%S-(T—T) from egn.
A

6.4.c into eqn. 6.4.a, the. following equation is obtained.

. 5t . ~ 2 . A-'o 24
[EAVZ] R A N - pessid] 22r _ [hessa? |, KerSY| 2%
€r ) 32 a CpeT 322 %€ 0C ETJ ayZ ocpér o CP STJ 3y2

(e R+ ﬁ+§p Y (=pAHD)
= A B B (6.4.4)
ac €
p T

If the Vortmeyer equivalence condition (eqn. 6.2.d) is extended to

the radial direction also,

= > (6.4.e)

‘then eqn. 6.4.d becomes identical to the Fickian model and can be

written as,
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N ~
[eAVZI oT R 2, 2essa?, KersStd) o7
o, epf 52 |%r @G ET @ Bpf ay?
(e Rte RRAL) (-AH)

= (6.4.£)
o ¢ €r

Eqn. 6.4.f assumes that the Vortmeyer condition is satisfied both
axially and transversely. Hence, the detailed, general, two-dimensional
non-Fickian model for heat transfer can always be reduced to the
Fickian model with the help of Vortmeyer-type conditions. However,
these conditions should be used with caution as there is no physical
basis for these assumptions. Also, as will be shown in Chapter 7, the
Vortmeyer assumption introduces a significant change in the gain pro-
file in the frequency response analysis of a non-isothermal, first-
order chemical reaction case.

From eqn. 6.4.f, the steady state axial and radial Peclet numbers

are
€,v_)
| @
\ °T Re*Pr
(P ) = — = Pe (6.4.g)
eH,z Se Se rkS.SS'A 2o * H,z
Ae
aC
. P ET}
€.V
Az
| [ Ep } %
(Pe = Pe (6.4.h)

HQY SeSe &3 + 2h°68')\2 + kS.GS.A] H,y
2eT o cp Ep o cP eTJ

Egn. 6.4.g clearly indicates that the axial heat Peclet number,
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which is a parameter associated with the Fickian model, is inadequate
to represent behaviour in general. If one must use the Fickian model,
then the value of the axial heat Peclet number in the dynamic case is
smaller than the value in a steady state case, in order to incorporate

the dynamic heat transfer effects of convective heat transfer.

6.5 Numerical Simulation to Validate Use of Asymptotic Values

Tt is important to determine how soon the pulse velocity reaches
its asymptotic value in order to ascertain the range of validity of
asymptotic values of dispersion coefficients and hence Peclet numbers
as parameters to describe heat and mass transfer in packed beds.

Hansen and Jorgensen 1974, have experimentally investigated the
dynamics of a catalytic packed bed reactor. A pilot plant packed bed
was designed to eliminate secondary heat dispersion effects (like heat
transfer to the wall) and the dynamics were primarily due to the
packed bed itself. The reactor bed was used as a heat regenerator
whereby the heat transfer parameters were evaluated by study:fng the
response on step and pulse disturbances in inlet temperature at other-
wise constant operating conditions.

A typical set of experimental data (Exp. No. F22) wil} be con-
sidered in this section from the results published by Hansen and
Jorgensen 1974 (shown on page 108). In the experiment, with H, gas
flowing, a temperature pulse was injected in the adiobatic bed. A
one-dimensional homogeneous model (Fickian model) was used and two
parameters were estimated, namely, the Peclet number for heat trans-

port, PeH, and the thermal residence time, T. Results are given on



Table 1. Properties of Roactor and Catalyst

Paramelee

Renctor length (1)

Reactor dinmeter (1))

Reactor porosity ()

Thickneas of renctor wall

Catalyst density ()

Pore volume (V')

Catalyat porosity (n V)

Surfaee aren (S), BIST

Av, pore radiua (2V/S)

Catalyst diameter (d)

Specific heat capneity of catalyst
(enlorimetrio'mmnumment)

Value

M em

0.0 em

0.41

0.0l cm

1.24 gram/cm?

0.54 ecm?/gram

0.67

24 X 10¢ cm'/gram
450A

0.37 ecm
0.23 cal/gram

Table II. Experimental Conditions

L

a71.3
3718

P ap, ol
o.
aim aim (Inlet)
1.072 0.066 16.5
1.000 0.033 10.6

Table III. Estimation of Heat Transfer Parameters; Data Scries
of 64 Points Prolonged to 512 Points

o
Ezxp. ram/ Y
N:: c'm' ace mole.'%
F22 0.00437 0.70
Fat 0.00298 0.80
Ezxp, T.
No‘f min 2

Pey

F22 168 0.393 1215 (:10%)

¥22 168 0..4196 121
¥22 168 0.71%0 117

(= 8%;
(£ 7%

F22 168 0800 1115 (% 4%)

Fat 100 0.393 112

(3 4%
F31 196 0.490 110.5 (4 59,
F31 108 0.700 08 (= 8%
F31 108 0.800 93.8 (=119

L)
min Av. Values

10.17 (£0.8%) <« = 10.4 min
10.00 (:£0.5%) Pex = 118 -
10.75 (£0.4%) Pes X d/L = 087
10.59 (0.2%)

18.17 :;:0.3%; t = 18.1 min
1574 (£0.4%) Pes = 103.5
X d/L = 0.77

16.33 (tOAZg; Pey
16.00 (+:0.6%

108
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page 108, Table III.
Under the experimental conditions of F22, if a pulse of tracer is

injected into the bed, the velocity in the moving phase would be given

by eqn. 3.1.h. The density of the flowing gas, o =;§f'}—4
g o
where, Po = average pressure in the bed = 1.072 atm
M = molecular weight = 2
Rg = gas law constant = 82.05 am3-atm-g mole"lol('l

T, = temperature = 371.3 °K
For the experimental conditions of F22,
o = 7.038 x 107° g/cece

The superficial velocity,

us= (SAVZ) = g = 62.095 an/sec

where, G = superficial mass flow rate = .00437 g/cm2 sec

The two basic parameters in the non-Fickian model to describe
fluid flow in packed beds are €, and g.
From egn. 1l.1.b, €g = 0.198
The parameter g can be calculated in two ways.
The first way is from dispersion data in packed beds. Assuming

Pe, = 2, eqn. 4,.3,1.a gives
g = 78.28 sec™!

The second way to evaluate the parameter g is from friction factor
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data in packed beds. Fig. 5.1 in Zenz and Othmer 1960, shows that the
friction factor, £, for €p = 0.41 and large Reynolds rumber is 6. For
highly turbulent flows (large Reynolds number) eqn. 4.4%.d is valid and
hence can be used to evaluate g.
g = 90.51 sec™l .

The discrepancy is due to the approximate method of estimating the
friction factor from the data presented in Zenz and Othmer.

The average value is taken for further calculations: g = 84+.40
sec™l.

The pulse velocity in the moving phase given by egqn. 3.1.h is,
then,

5 = 151.45 + 14145 g 02*3 T

The negative exponent of the exponential is so large that the

pulse velocity reaches its asymptotic value almost instantaneously

T

vzv=Vv= {EAVZ] = 151.45 cm/sec

The thermal residence time and the Peclet number can be predicted
from the analysis pf the heat transfer equations of the non-Fickian
model in Sections 6.1 and 6.2. The thermal conductivity of Hy is
obtained from graph B-36a of the publication by McCarty 1975. The
heat capacity is obtained from p. 318 of the publication by American
Petroleum Institute Research Project 44, 1947. The Prandtl nunber is
obtained from Section 8.3 of the book by Bird, Stewart and Lightfoot

1960.
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e = 3,453 cals/g - Og
Ag = 14.609 x 107" cals/cm-sec oy
Pr = 0.73

For 13 < Re < 180, the correlation for Nusselt number is

Nu = 1.75 Re0+49 Pr1/3 (Vortmeyer 1975)
with Re = 15.5 (Table II)

h
Nu = rdE= 6.036

f

Therefore, h = 7.518 % 103 cals/cm-sec oy

6(1-

a = 290 | g 568 aml/cm

Therefore, 2h+8S = ha = 7.184 x 10'2 cals/cmS-sec o -

Eqn. 6.1.1 gives the average temperature pulse velocity in the
moving phase. The parameters in the equation are defined in Section
6.1 in terms of three of the four basic parameters in the one-
dimensional non-Fickian model, namely, €g> £ and 2héS which have been
evaluated above.

Hence,

- 0.4282 sec T

- 1.306 x 10° sec™
2.22 x 103 sec™t

- 5.95 % 105 sec™

o w » Do
]

7.979 x 102 i sec~l

0.2103

=
|
"

7,59 x 102

2
N
11}
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and
-1110 t (59713 cosh . (797.9 t) - 898.4 sinh (797.9 ©)}

Vo = 0.0896+e

The exponent is so small that the pulse velocity reaches its

asymptotic value almost instantaneously.

Therefore, { EpVy ]
' = €
=V =V, = = T =
Vip VT Vip VT 2. 0.0896 cm/sec
B %
1+
o cP Ep

The thermal residence time in the bed is

T=Ll: 50 = 9.3 min
vy (60)(0.0896)

Tn order to calculate the Peclet mumber for heat transport both
parameters of the non~Fickian heat transfer model, 2héS and kg és,

are needed. Vortmeyer 1975, uses

~

3S

~
(o}

S

v 2 )‘f

|

o™

Hence, from egqn. 6.2.h, Pey , can be calculated
?
PeH,z = 0.8714
Eqn. 6.2.e is the reduced form of eqn. 6.2.h with the assumption
. pg © .
that _—P—a e >>1. Egn. 6.2.e gives

PeH,z = 0.8709
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~

. . . Pp € . .
Hence assuming the heat capacity ratio, —B——GL >>1, is a fairly
o C, Ep
P

good assumption and affects the value of the Peclet number only in the
third decimal place and agrees closely with the experimentally ob-
served value of Peclet number, 0.87 (Table IIT), by Hansen and
Jorgensen.

Tt is concluded from this section that it is appropriate to use
asymptotic values of mass and thermal parameters for analysis of

packed beds.
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7. DYNAMIC MODELING OF A GAS PHASE CATALYTIC PACKED BED REACTOR

7.1 Introduction

Hansen 1973, has briefly summarised the state of the art in the
similation of the transient behaviour of a.packed bed reactor. Re-
search in the dynamics of a packed bed reactor with exothermic chemi-
cal reactions has been split into two main areas: (a) Multiple steady
state behaviour and (b) dynamic modeling in a single steady state.

The theoretical work done in these two areas has been considerable
(1iu and Ammdson 1963, McGuire and Lapidus 1965, Feick and Quon 1970,
Hansen 1971, Hansen et al. 1971, Sfewart and Sorensen 1972, Hansen
1973); whereas the reported experiments have been few (Lyche 1967,
Hoiberg and Lyche 1971, Padberg and Wicke 1967, Fieguth and Wicke 1971,
Hoiberg 1969, Doesburg and De Jong 1974, Hansen and Jorgensen 1974,
Hlavacek and Votruba 1974, Hansen and Jorgensen 1976).

In spite of all the research work done, it is still not possible
to discriminate unambiguously between the varicus types of models; for
example, the multiple steady state experiments of Wicke and co-workers
can be described by both homogeneous and heterogeneous models. As a
matter of fact, although these two kinds of models are based on dif-
ferent physical assumptions, both describe such important aspects of
reactor behaviour as multiplicity of steady states, ignition and ex-
tinction, hysterisis, and migrating reaction zones. Vortmeyer and
Shaefer 1974, have demonstrated that both models are equivalent in

these respects if the second derivatives of gas and solid temperature
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profiles are the same. Also in Section 6.4 it has been demonstrated
that this equivalence can even be extended to the radial direction.

T+ should be noted that the performance of a packed bed reactor
is highly non-linear due to the Arrhenius type temperature dependence
of the reaction rate. Hence analyses based on linearised models have
to be approached with caution. However, with fast computers and effi-
cient numerical procedures it has become possible to solve very com-
plicated models within reasonable computing time. Various researchers
in the field have identified dominant dynamic characteristics in the
packed bed and have also jndicated the simplifications that could be
introduced in the complicated models. Hansen 1971, and Hansen et al.

1971, have justified the following:

(1) Internal catalyst mass diffusion restriction is more impor-
tant than the external diffusion restriction. Internal catalyst heat
transport resistance is usually smaller than the external heat trans-

port registance, but they may be of the same order of magnitude.

(2) For many reaction systems the temperature change across the
catalyst film and the internal pellet is very much smaller than the
temperature change between reactor inlet and outlet. It is very im-
portant, however, to include the catalyst heat transport restrictions

in the heterogenecus models in order to simulate dynamic behaviour.

(3) The gas residence time in the reactor is very much smaller

than the thermal response time of the reactor, which is dominated by
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the heat capacity of the solid catalyst particles (and the wall). The
concentration profile can be considered to be quasi-stationary. This
means that the model equations neglect the finite rate with which the
very fast change in concentration profile takes place, almost without
any change in the temperature profile. ‘Thus the accumlation terms in
the heat and mass balances for the gas can be considered to be negli-

gible.

7.2 Dynamic Modeling Studies of Hansen and Jorgensen

Tn the present work, studies have been made comparing the Fickian
model used by Hansen and Jorgensen 1976, to similate dynamic modeling
of a gas phase catalytic packed bed reactor, with the non-Fickian model
which has been developed in the previous chapters.

Hansen and Jorgensen constructed a large scale fixed bed pilot
plant reactor for the dynamic experiments. The reactor system was es-
pecially designed to suppress secondary dispersion effects not charac-
teristic of the packed bed itself, particularly heat exchange with the
wall and surroundings. The chemical reaction taking place is between
hydrogen (99%) and oxygen (below 1%) on a platinum catalyst supported
by alumina. The inlet temperature was 100°C and the pressure in the
reactor was constant at a value slightly above atmospheric in their
experiments. Under these conditions the gas behaves nearly ideally.
The relatively high inlet temperature of 100°C prevents adsorption of
water from being a dominating factor. Thus it is not necessary to in-
clude balances for the catalyst surface in the dynamic model (Kabel

et al. 1968, Denis and Kabel 1970).
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Hansen and Jorgensen describe the experimental apparatus and the
modeling of the reaction kinetics in Part I of their three-part report.
In parts IT and III, the results of the dynamic experiments are com-
pared with the simulation by the one dimensional Fickian model where no
radial variations are considered.

The reaction between oxygen and hydrogen is normally considered
close to first order in oxygen partial pressure with Arrhenius-type

temperature dependence. The reaction rate expression is

Ry = kgrPeexp(-E/Rg'T) (7.2.a)
where, R = reaction rate; mole/ (cm3 sec)
k¢ = frequency factor, mole/ (em® sec atm)
P = partial pressure of oxygen, atm.
E = activation energy, cal/mole
Ry = gas constant, cal (mole °K)
T = temperature, °K
However, the chemical reaction rate is rnot clear-cut first order.

Nevertheless, a first order kinetic model was used with axially
variable parameters. The reactor was divided into three or four axial
segments. In order to fit the experimental data, combinations of kg
and E have been estimated simultaneously in these axial segments and
given in Table § of Part I of their paper for the various experiments
that they performed.

It is assumed that the temperature difference between catalyst

and gas is small and that the heat dispersion phenomena can be cam-
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bined into one overall dispersion mechanism. Also, it is assumed that
the concentration profile behaves quasi-stationarily and that the total
pressure is constant in the reactor. Then the model used by Hansen and

Jorgensen takes the following form:

3y, 3 - 1 .B_%X. Y(l—%)
3t + 32 = Pé-}—] azz + Dh°X'e (7.2.b)
1
2 Y(1- 3)

9 - .1?]_'_ . _a_}z_( - Dm.x.e y (7.2.c)

92 em 'a‘z
with boundary conditions:

ylo) = y, (7.2.4)

x(0) = X (7.2.e)

Fa = E@ =0 (7.2.£)
9z 92
where,
T P
yz— 3 x=35— 3 z=8L 5 Y=
TOS Pos Rg rI'os
=Y
- ol » L] Te _e
Dh ) (-0H)*Lekese Pos(l T)
G cp Tos
L.k Oe-YP oMe (]_-E ) N

D = £ tot T

m Gg
and,

Tos = inlet temperature at steady state, °k

L = reactor length, cm

2 = axial coordinate, cm

P -

os = inlet partial pressure of oxygen at steady state, atm.
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Piot = average pressure in reactor, atm.
t = dimensionless time, t'/t

t' = time, sec or min

T = thermal residence time, sec or min

Peh = axial Peclet number for heat transport
Pe, = axial Peclet number for mass transport.
-AH = heat of reaction = 116,300 cals/mole

G = mass flow rate (empty tube), g/ (cm? sec)

M = molecular weight of gas, g/mole

The thermal parameters Pe, and T are determined by fitting the
model response to the experimental response following disturbances in

the inlet temperature. For the mass transport Peclet number Pe a

)

value of 271 has been used corresponding to the relation Pep x = = 2

i 41

which is the asymptotic value for the Peclet number at high Reynolds

number.

7.3 Corresponding Non-Fickian Model

The non-Fickian model corresponding to the Fickian model described
in Section 7.2, is derived in this section for the same assumptions.
Assuming the concentration profile behaves quasi-stationarily, the mass-
transfer equations reduce to the steady state case. Neglecting gas
heat dynamics (Vortmeyer), and taking the heat source term due to
chemical reaction to be in the solid phase, the model equations (see

eqns. 2.1.1l.e, 2.1.1.f, 2.2.c, 2,2.f, 2.2.3) become:

v, L E (c-D=-R (7.3.2)
A
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€. (G- =-K (7.3.b)
€8
dr L g 2he§S -
v =+ (T-T) + o~ (T-T) = 0 (7.3.c)
Z dz eA : G-CP A
£ (T-M=0 (7.3.4)
€
B
7 A ke8SA 525 Reppe(-AH)
%‘E'+ —-—-—21'1 ES o (T-T) - S ~ 9 'g = °B — (7.3.e)
Pp c PR Cp 0z PB CP

7.3.1 Mass Transfer Equations

Substituting for the rate expressions in egns. 7.3.a and 7.3.b,

the mass transfer equations become

. g , va- %)
V. 3 + en (c-c) = - kg*Pee e (7.3.1.a)
- Y- %)
%- (T - c) = - kgPre e (7.3.1.b)
B

T (egn. 7.3.4)
P_
T

Since, T

(7.3.1.c)

3 ©=

7l
Al

The term involving the temperature gradient is much smaller than
the pressure gradient and hence is neglected. The equations became

-1
Y y)

P, B .(pP) = -k (RT)*Pee e (7.3.1.4)
dz €aVy



5 _ Y- 1
E_(F-P) = -ke (RD):Pee "ce y
€
P

Now, RT =

tot” Vot _ Peot M (epVy) Prot M (Ep Vy)

n (ep Vi)eo Cq

where, n = number of moles of gas in the reactor
Vtot= volume occupied by gas in the reactor

a = density of gas, I\—;ﬁ— .
tot
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(7.3.1.e)

(7.3.1.9)

Substituting for (P-P) and RT in eqn. 7.3.1.d from eqn. 7.3.1.e

and 7.3.1.f, respectively,

™ D'ed yia- 5
. L-Pe-eB

Writing the equations in terms of x

e, YA-2) e
Tt O

 Dledeee. Y- D)
1+ _ln___p.——'r- e y
Pe-L-eB

L

Y

€ A—-‘

(7.3.1.8)

(7.3.1.h)

(7.3.1.1)

(7.3.1.3)
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X = X - (7.3.1.%)
D *€p Y- =)
1+ B e y
LePece
or
dx -
aE-(; + Rl (x’y) = 0 (7.3.1.1)
where, 1
Y(1- =) [ e_/¢€ e, 1
Rl(x,y) = Dl;l-e - B T T + e_A' pd
D_ed e Y(1- =) T
I 2
PesLee
7.3.2 Heat Transfer Equations
_ n _Y Y(l-% )
With RpB s kf e '*Xee -Pos ,

the heat transfer equations (egns. 7.3.c, 7.3.d, 7.3.e) are written in

dimensionless form as follows:

%% + (HA) (y-9) = O (7.3.2.a)
g& A.. - -]—- . azA -
X+ E) Gy) - 5 _a—z% Ry (%,y) (7.3.2.b)
Y(1- 2)
where, Ry(%,y) = D, *xve y .
p o LeZhess
G «C
s P
t=t"/1
= L*pB'&

Gg *p
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b et LeGgre,

JSsen A
kg*8SeA (o}

(-AH) *Lekgoe TPog

1
Dh— G °c T
S p oOS

y = T/Tog

Hence the camplete (non-Fickian two-éphase) model which can be used
to similate dynamic experiments is represented by the set of eqns.
7.3.1.k, 7.3.1.1, 7.3.2.a, 7.3.2.b.

However, an equivalent one-phase heat transfer model can be de-
rived using the Vortmeyer condition. Given below is the derivation of
the one-phase non-Fickian model by introducing the Vortmeyer assump-
tion. In this chapter both the non-Fickian one-phase model and the
non-Fickian two-phase model have been compared with the Fickian model
used by Hansen and Jorgensen.

Adding eqns. 7.3.2.a and 7.3.2.Db, the following equation is ob-

tained

-%" -Sy:y—* %L £ 2% = R,(x,y) (7.3.2.0)

Taking the derivative werete 2 i1t eqn, 7.3.2.a and substituting

for %3&'}2— in eqn. 7.3.2.c, and with the Vortmeyer assumption (eqn.
(o}

6,2,d), the following equivalent one phase model is obtained:

A A U (7.3.2.)

(o]
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L

1 1
where, Pe, =®m P (7.3.2.e)
Eqn. 7.3.2.d is not the energy conservation equation as is appar-

ent from the way it was derived. However, since most of the energy in
a gas flow packed bed reactor is stored in the solid phase, it can be
regarded as a pseudo-energy balance equation equivalent with the
Fickian model. Note that the reaction rate terms have been written in
terms of y, the dimensionless temperature of the moving fluid. How-
ever, they could well have been written in terms of ¢, the dimension-
less temperature of the solid phase. This is because of the intrinsic
difficulty of comparing one-phase and two-phase heat transfer models
and also due to the uncertainty of experimental temperature measure-
ments being of the solid or fluid phase. Since in the present simula-
+ion it has been experimentally determined that there is negligible
difference between the gas and solid temperature, not much importance
is given to this aspect.

Egqns. 7.3.1.1 and 7.3.2.d represent the non-Fickian model in its
simplest form (non~Fickian one phase) and when One compares the corres-
ponding Fickian model (eqns. 7.2.b and 7.2.c), the mathematical advan-
tage of the non-Fickian model is clearly seen. The heat transfer
equations are identical (eqns. 7.3.2.d and 7.2.b). However, the mass
transfer equation is second order non-linear in the Fickian model
(eqn. 7.2.c), whereas it is a first order non-linear equation in the
non-Fick;'.an model which should be simpler to handle computationally.
At any rate, it cannot be more difficult. In later sections in this

chapter, it is shown that this mathematically simpler model simulates
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the experiments of Hansen and Jorgensen adequately.

7.4 ‘Steady State Profiles

For steady state operations, the equivalent one phase model can

be derived as follows (see Section 6.4).

[EAVZ] ar _Kg®A g R gD (7.4.2)
&r j dz o ¢ €y az?  ®Cp er
or, in dimensionless form
2
dvy _1.dy-pg (7.4.b
3%0 5 dzg 2 (%,¥) .4.b)

Thus in terms of the Fickian model, the Peclet number is Pe, in
the dynamic case and its value is P in the steady state case.

However, the steady state complete non-Fickian model (i.e., the
non-Fickian, two-phase model) without the Vortmeyer assumption would
have its heat transfer equations as in eqn. 7.3.2.a and 7.3.2.b with-
out the time dependent term.

Steady state profiles have been obtained by solving the steady
state Fickian model (see egqns. 7.2.b and 7.2.c), the steady state non-
Fickian one phase model (egns. 7.3.1 and 7.4.b), and the steady state
non-Fickian two-phase model (see egns. 7.3.1.1, 7.3.2.a, 7.3.2.b) for

D'

various sets of parameters v, D D, D n?

h* h* mw
in Fig. 7.4.a. The parameters chosen correspond to the "high flow"

and the plots are shown

experiments of Hansen and Jorgensen at Reynolds number equal to 14,
The numerical solution of all the models was done by using the

orthogonal collocation technique (Villadsen 1870, Finlayson 13972,
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Fig. 7.4.a Steady State Profiles. Curve 1 has parameters

= 8.23, Dy = D' =0.153, Dy, = Dp,' = 0.455. Curve 2 has
parameters =9.95, Dy =Dy'=0.189, Dy, = D_'=0,561
Curv: 3 has parameters = 9.50, Dy = Dy' = 0. 5'51, Dm =Dyt =
0. 89 '
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Finlayson 1974, Villadsen and Michelsen 1977) which was first developed
by Villadsen and Stewart 1967. Tt is a special case of the collocation
method and the method of weighted residuals and is particularly suitable
for chemical reaction engineering problems. Details of the method are
explained in the references given above.

In the method of weighted residuals, the unkmown exact solution is
expanded in a series of known functions, {yj(x)}, called the trial
functions

N
v = ) apey.(®) (7.4.¢)
i=1 .

This trial function is substituted into the differential equation
to form the residual. If the trial function were the exact solution
the residual would be zero. In the method of weighted residuals, the
constants a; are chosen in such a way that the residual is forced to
be zero in an average sense.

Tn the collocation method the residual is required to be zero at
N specified collocation points x4, and this determines the unknown
coefficients in the trial function. As N increases, the residual is
zero at more and more points. Hence as N approaches infinity, and the
residual is zero everywhere, the approximate solution that has been
generated approaches the exact solution.

There are two basic improvements made by Villadsen in the ortho-
gonal collocation method. One is that the trial functions are
orthogonal polynomials (this improves the rate of convergence as N

increases). Secondly, the computer programs are written in terms of
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the solution at the collocation points, {y* (xj)}, rather than the co-
efficients {ai}.' Also, the collocation po:i.n'ts are the roots of the
particular orthogonal polynomials chosen in the approximation.

Since the models are coupled non-linear ordinary differential
equations, discretisation in space by orthogonal collocation results
in a set of non-linear algebraic equations. These equations are
linearised by the Newton-Raphson procedure. The linearised equations
are solved by refined Gaussian elimination method. Successive appli-
cation of the Newton-Raphson method gives the solution in 4 to 6
iterations.

Solutions of all the three models seem to fall on the same curve
as is apparent in the plots of the steady state profiles. Hence the
non-Fickian model would also adequately simulate the experiments of

Hansen and Jorgensen at steady state.

7.5 ‘Frequency Response Analysis

Hansen and Jorgensen have done frequency response measurements
and simulated them with the non-steady state Fickian model. In this
section frequency response simulations are done using the non-Fickian
model and the results are compared, The theoretical analysis is based
on a method similar to the one explained in Section 3.4 for the iso-

thermal case.

7.5.1 Fickian Model

The analysis will be shown below for the Fickian model (egns.

7.2.b and 7.2.c). At the steady state the equations become:
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5.1 ¥, ) (7.5.1.a)
az  Pen g2 | 278s e

2
dXS 1 d XS

dz ~ Pep  gg?

- Ry (xg,¥) (7.5.1.b)

where the subscript s represents steady state values and

Yy - 1)
Ry(x,y) =D = x e y

Wl-%)
Rl(x,y) =Dm- X e

Perturbation variables are defined as
Y = V=Yg 3 X = X=Xg (7.5.1.c)

Linearising the rate terms about the steady state

3R, R,
R2(X,Y) = Rz(Xsays) + gg e X+ '@'S- e Y (7.5.1.4)
JyS xS
3Ry] !
Rl(xay) = Rl(xs,ys) + [Ws. « X + [ﬁ;} Y (7.5.1.e)
Jyg Xg

Subtracting equations 7.5.1.a and 7.5.1.b from equations 7.2.b
and 7.2.c, respectively, with the rate terms linearised, the follow-

ing equations are obtained in terms of the perturbation variables

sv .oy . 1 . 8%, [ R .
y Xg
o \
. 1 9% _ e | X - Efl .Y (7.5.1.8)
9z Pey 4.2 BXSJ 3y,
‘ -YS -xs



130

S YS
s S
3R, YQ-3) (3R ¥a- )
_5{—. = Dmoe =3 5 5;— = Dﬂ'l.xs. 5 1Y)
S < Ys
Ys S

Tt is convenient to write the variables as complex harmonic func-
tions with a circular frequency w. Let Y =T elwt ; X=C emt
where, T = (TR) + i (TI) and C = (CR) + i(CI).

Substituting in eqns. 7.5.1.f and 7.5.1.g,

2 3R 8R
s0T + 8L - L 3T+{ 2] .c+[_l] . T (7.5.1.h)
X

3z Peh az2 Bxs ays

Vs S
. 1, 320- aRl] ¢« C - ERl e T (7.5.1.1)
3z~ P az2 axSJ A

Vs X3

Writing these equations in terms of real and imaginary parts it
is observed that four coupled 1lirear - second order o.d.e's have to

be solved for the frequency response analysis of the Fickian model.

2 3R 3R
d?(IR) _ Pe, « a(TR) Peht-—z} «(TR) + Peh[——z—] (CR) +w-Pe, (TD) = 0
X

dz? dz g oxg
S Vs

2 | 3 3R
d*(cR) AR _ 5. I e _
v m[axs]y (CR) Pem{a__]x (TR) = 0

=] S



131

2. . oR
(TT) d(TI) 2| -t =
ig_ eh + Pehl ] ATI) + Pe {QXJ CI) - w Peh (TR)

S yS

2 oR. )

2D _pe €D _po [ (e - _

_d_zi_ - Pep, i Pem[axS] (CI) Pem[ ] (TI) =0
y x

s s (7.5.1.3)

For the T/T frequency response (temperature response to perturba-

tion of inlet temperature), the boundary conditions are

z=0: TR=0.03,CR=TI=CL=0 (7.5.1.k)

d(TR) . d(TI) _ 4(CR) . d(CI)
dz dz dz 3 -0 (7.5.1.1)

z=1:

For unsteady state processes, the exit boundary condition (egn.
7.5.1.1) is not physically justifiable. Even so, it is widely used in
similation studies. In frequency response experiments with sinusoidal
inlet perturbations, the exit boundary condition would be strictly
valid only when the feedback is such that a standing wave is generated
" with the exat at the "loop" point where the axial gradient is zero.
However, such a condition is unlikely to occur at the exit point.

The method of orthogonal collocation has been used to numerically
solve the model equations. The frequency response equations have also
been solved with the differential equations (egn. 7.5.1.3) being satis-
fied at the last collocation point (exit point) rather than the exit
boundary condition (eqn. 7,5,1.1). The results are discussed in Sec-

tion 7.5.3.
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For the C/C frequency response (concentration response to per-
turbation of inlet concentration), the following initial condition is

written instead of eqn. 7.5.1.k.

z=0: T=0, CR=0.035, TI=CIL =0 (7.5.1.m)

The equations are discretised in space by orthogonal collocation.
Eighteen internal collocation points have been used to ensure suffi-

cient accuracy.

7.5.2 Non-Fickian Model

The equations are locally linearised around the steady state and
equations corresponding egns. 7.5.1.3 of the Fickian model are ob-
tained. For the non-Fickian one-phase model (egns. 7.3.1.1 and 7.3.2.4)
the equations are four linear coupled o.d.e.'s; however, two of them

are first order and two second order:

2 oR oR
d"(TR) .4(TR) J 21 . 2, ePe. o =
o2 - Pey - + Peh [-s-y—s-] (TR) + Peh(axS] (CR) + w Peh (TI) =0
0 . - TS Vg
a@® , (B | ey o (2L ) = 0
az, axsj W
Vs s
2 oR oR
a“ () AT | pe o|—2| o(TT) + Pe +|-<2| <(CI) - wePe, +(TR) = O
dzg Zo “h Ys *h g *h
%5 Is

s s (7.5.2.a)
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For the T/T frequency response the boundary conditions are:

253 0: TR= 0.035, CR=TI =CI =0 (7.5.2.b)

2o =1 : ATR) . &TD) _ 4

(7.5.2.¢c)
dzo dzo

For the C/C frequency response instead of eqn. 7.5.2.b, the initial

condition 1is

zg=0: TR=0, CR=0.03, TL=CI=0

For the non-Fickian two-phase model (egns. 7.3.1.1, 7.3.2.a, 7.3.2.b),
the equations are as follows:

d(TR) 4+ (HA)+(TR - THR) = O
dzO

dz S s

22 R oR
d (THR) "ITZIR) + (HA)+P» (TR-THR) # w-P+(THI) + Pe {B_XZ] «(CR) + Pe [392-‘ «(TR) = O
(o) ys XS

d(TI) 4+ (HA)+(TT - THI) = O
dzq

GXCTHD) |, ()P (TI-THT)oePe (THR) + Pe 2| +(CD) + Pe|2{ +(TD) = O
dzg g s
Ve %y
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| 3 3R
d(CcI) [Rl] «(CI) + [_1] (TI) = 0
dz, oxg| dys "
yS S
(7.5.2.d)

where the solid phase perturbation variable is

§=§-§S with §’E="I\'ei“yC
where
T = (THR) + i (THI)

For the T/T frequency response, if the periodic signal is intro-
duced in the gas phase (which is generally the case in the experimen-

tal studies) then the initial conditions are

2o =0 : TR = 0.035, TR = CR=TL = THL = CI = 0

(7.5.2.e)
If the periodic signal is introduced in the solid phase, then the

corresponding initial conditions are:

2, =0: TR=0,THR=0.035,CR=TI='IH[=CI=O

(7.5.2.1)

However, for the signal introduced in the gas as well as solid
phase:

-zo-=0: TR = THR = 0.035, CR=TI=THI=CL=0 (7,5.2.g)

For the C/C frequency response:

25 = 0 2 TR = THR = 0, CR = 0,035, TI = THI = CI =0 (7.5.2.h)
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The exit boundary conditions are:

L ATHR) - ACTHD) _
o ’ dz,, dz

i
(=)

(7.5.2.1)

'7.5.3 Discussion of Results

The values of the parameters chosen to get the steady state
around which periodic perturbations are similated correspond to the

"high flow" experiments of Hansen and Jorgensen.

vy = 9.58
D= Dy =0.151
D= Dy = 0.446

Fig. 7.5.a and 7.5.b show the T/T frequency response profiles for
various values of the dishmbanée period for both the Fickian model
and the non-Fickian model. 7The ordinate dB represents the T/T ampli-
tude ratio in decibels (gain curve) and ¢ is the phase angle. The
range of frequencies in this plot goes through rather critical condi-
tions. The disturbance frequencies are close to the break frequency
below which the attenuation is severe. Any defect in the parameters
or in the model would be easily seen, particularly in the gain curve.
However, the results of both the Fickian as well as the non-Fickian
model fall on the same curve. Hence the frequency response experi-
ments of Hansen and Jorgensen could be simulated by the non-Fickian
model to the same degree of accuracy as the Fickian model, with simi-

lar assumptions.
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Fig. 7.5.a. T/T axial gain and phase lag profiles
for T = 2,3,4 min (7 = 12.1 min, Pe, = 145 )
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Fig. 7.5.4. T/T and T/ axial gain snd phase lsg
profiles for T = 4 min (T = 12.1 min, Pey = 145,
P = 188.36 )
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Hansen and Jorgensen have shown gensitivity of the gain and phase
curves to the parameters t and Pey characterising heat dynamics. Fig.
7.5.c shows a sensitivity of the non-Fickian model identical to the

Fickian model. Plots for both the models fall on the same curve. A

decrease in Pey from 145 to 125 does not affect the phase angle but de
creases the gain profile. A decrease in the value of T from 12.1 min
to 11.0 min increases the phase angle a 1ittle and also the gain curve.
Hansen and Jorgensen have noted that the theoretical amplitude
ratio obtained was higher than the experimental. In order to obtain a
better fit with the experiments, they added 10% to the estimated resi-
dence time as a compensation for the dynamics of the insulation. How-
ever, the reason for higher theoretical amplitude ratio could also be
due to the inadequacy of the model itgelf as is evident from Fig.
7.5.d4. When the non-Fickian two phase model is used, it becomes impor-
tant to ascertain whether the inlet periodic temperature signals are in-
troduced in the gas phase or solid phase. 1f identical inlet periodic
signals are provided both in the gas and solid phase, then the non-
Fickian two-phase model frequency response corresponds to the Fickian
and non-Fickian one-phase model. However, if the inlet perturbation
is made only in the gas phase (vhich is generally the practicable
thing to do and also which seems to be the case in the experiments of
Hansen and Jorgensen), then the gain is about 5 dB lower for the par-
ticular set of parameters in Fig. 7.5.d. If the inlet perturbation

is made only in the solid phase (vhich can be done by microwave tech-
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niques as explained by Bhattacharya and Pei 1975), then the gain curve
is about 6 dB lower. The phase angle, however, is completely unaf-
fected by the three types of inlet conditions.

Also it was observed by Hansen and Jorgensen that the theoretical
phase curve fit the experimental close to the reactor inlet but later
the phase angle is about 10-15% too large theoretically. This suggests
that the exit boundary condition may play a part in the discrepancy.
The frequency response solutions were solved with the differential
equations being satisfied at the exit collocation point (no exit boun-
dary conditions case) rather than the exit boundary conditions as writ-
ten in Sections 7.5.1 and 7.5.2. With no exit boundary conditions,
the phase angle as well as the gain curve have lower values near the
exit of the bed particularly for high frequency disturbances. For a
disturbance of period T = 2 min (high frequency disturbance) and para-
meter values as in Fig. 7.5.a, the phase angle is 3.7% lower and the
gain is 4 dB lower than the case where the exit boundary conditions
are used. TFor low frequency disturbances the differences are much
smaller.

Fig. 7.5.e shows the C/C frequency response diagrams. The ampli-
tude ratio is always less than unity and the shape remains the same for
most sets of parameters, The shape changes slightly for low frequency
disturbances. The phase angle is positive znd close to zero, but rises
rather steeply for low frequencies as has been observed experimentally
by Hansen and Jorgensen. A change in the value of the thermal residence

time, T, from i2.1 min to 11.0 min did not affect the gain curve but
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increased the phase éﬁgle slightly at a distance beyond half the length
of the reactor. Note that the values obtained by the three models fall
on the same curve. Hence the non-Fickian model is adequate represen-

tation for the experiments of Hansen and Jorgensen.
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NOMENCLATURE

particle surface area per unit bed volume; for spheres,
6(1-eq) /dP

coefficients

€A B

&

€ +£2 4+ 1 +nl| in section 6.1
€A ©B

elemental cross-sectional area of the bed

%— h o+ %—- h + %—ﬁ s parameter defined in section 6.1
A B B

concentration in the moving phase

concentration in the Fickian model

concentration of i in the moving phase at section n and
axial distance z

heat capacity of the fluid
heat capacity of the solid catalyst
dimensionless concentration

deviation of a sinusoidal signal (tracer concentration)
from its average value in section 3.4

V4
{B - ﬁ— ; parameter defined in section 6.1

complex magnitude of concentration perturbation variable
in section 7.5

imaginary part of complex magnitude of concentration
real part of complex magnitude of concentration
amplitude ratio in decibels

particle diameter
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axial effective diffusion coefficient in the Fickian
model

parameter defined in section 7.2

parameter defined in section 7.3

parameter defined in section 7.2
parameter defined in section 7.3

asymptotic radial dispersivity for large t
asymptotic axial dispersivity for large t
asymptotic value of the effective heat dispersion

coefficient in the radial and axial directions,
respectively

(De)y,(De)z—-— effective mass dispersion coefficient in the moving
* phase in the radial and axial direction, respectively
(De)H , (De) -- effective heat dispersion coefficient in the
oy H,2 moving phase in the radial and axial direction,
respectively
(exp) -- exponential defined in section 3.2
E -- activation energy
f, f* - friction factor
g -- interphase volumetric flow rate between the moving
phase and the stagnant phase per unit volume of the
bed
G, G -- superficial mass velocity
h ~- heat transfer coefficient between the moving fluid and
the catalyst surface
h' ~— total heat transfer coefficient from particle surface
to fluid or to other particles
A __ 2he$8S

OBE‘:P
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2he§S

%p®A

- 'Ls2he8S

GS. CP

heat of chemical reaction

modified Bessel functions of zeroth and first order,
respectively

Damkohler number

effective thermal conductivity in the packed bed in the

axial and radial direction, respectively

axial effective thermal conductivity in the packed bed

with no flow
frequency factor
thermal conductivity of the solid particles
ratio of mean projected area of a particle (sphere,
cylinder, ellipsoid) to that of a sphere of the same
volume, in section 1.1
2-kS-GS-A
DB CP

first order and second order reaction rate constant,

- respectively

axial distance

length of the bed

moles of tracer injected as a pulse
mass flow rate of fluid

molecular weight

nunber of moles of gas in the reactor
number of collocation points

Nusselt number



Nps Ny, Ny,
p(z) -~
&), -

f
P -
AP -

Pe, Peg, Pe

(Pe)y, (Pe)m,y

PeZ -

Pe.h, (Pe)H
(Pe)H y ——
Pr, Pr'f -

Ptot » P ==

POS

(qz)n -

Q -

N,, N
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53 Ng - parameters defined in section 6.1
pressure at axial distance z

contribution due to form drag to the total pressure
gradient

probability density function in section 3.3

partial pressure of oxygen in section 7.3.1

LG, c

— P , in section 7.3.2

Ao

pressure drop

-- Peclet number

. (Pe)m r asymptotic radial mass Peclet nunber
]

asymptotic axial mass Peclet number

-- asymptotic axial heat Peclet number

asymptotic radial heat Peclet number

Prandtl number

average pressure in the bed

inlet partial pressure of oxygen at steady state

conductive heat flux in the "necks" (solid phase) in
the axial direction at section n

rate of injection of tracer (moles/time)
radial distance

rate of production of i by chemical reaction, moles of
i/volume-time, in the moving phase

rate of production of i by chemical reaction, moles of
i/mass of catalyst-time, in the solid phase

Reynolds number
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T (2)
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gas law constant

rate expressions defined in sections 7,3, 7.5
rate expressions defined in sections 7.3, 7.5

surface area of the particle which is effective in
convective heat transfer between the moving fluid and
solid per unit volume of the bed

cross~sectional area of the "necks" which is effective
in conductive heat transfer between adjacent particles
per unit volume of the bed
time
dimensionless time in chapter 7
time
%— ; average time spent by a tracer molecule in the

Z

moving phase

average time spent by a tracer molecule in the stagnant
phase

temperature of the external fluid
temperature of the moving phase

oomplex magnitude of temperature perturbation variable,

in section 7.5

imaginary part of the complex magnitude of the solid
phase temperature

real part of the complex magnitude of the solid phase
temperature

imaginary part of the complex magnitude of temperature
real part of the complex magnitude of temperature
temperature ¢f the solid catalyst pellet

complex magnitude of _temperature perturbation variable
in the solid phase, in section 7.5

temperature of the mving phase at section n and axial
distance z
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Tos inlet temperature at steady state '
u -- superficial velocity
\Y —-  interstitial velocity in the Fickian model
-- asymptotic velocity for large t, in section 3.1
v -- asymptotic temperature pulse velocity for large t
'\7,1,, -V:T, 5,1. -~ average temperature pulse velocity in the moving phase,
stagnant phase and solid phase, respectively

v, - actual average velocity of the moving phase (based on
cross-sectional area available to the moving phase)

Vt ot volume occupied by gas in the reactor

x =-- P/P dimensionless partial pressure

os 3
Er
2 €y eé Pe, 2o ['e_Af T'Zo]
X -— 5 ; dimensionless arguments in
€p €p € section 3.2
2 1/2
- Y %— %— v tg ; dimensionless argument, in section

A Bz 3.3

-—  concentration perturbation variable in Chapter 7
vy — T/Tog 3 dimensionless température
-- radial coordinate
yi(z) -- trial functions
Y - complex magnitude of concentration, in section 3.4

-~ temperature perturbation variable, in Chapter 7

D>
1
i

temperature perturbation variable in the solid phase

Yoo ¥3 — complex magnitude of harmonic signal at the exit and at
the entrance, respectively
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axial coordinate

dimensionless axial coordinate in Chapter 7

W

Ho
dimensionless distance

differential axial distance

density of the fluid

E

R T
g os

Dirac delta function

fraction of total bed volume occupied by the moving
phase

fraction of total bed volume occupied by the stagnant
phase

emissivity of the catalyst particles

fraction of total bed volume not occupied by solids
radial length parameter

thermal conductivity of the fluid

axial effective thermal conductivity of the quiescent
bed, that is, a bed with no fluid flow

dynamic viscosity of fluid
nth moment
interstitial average concentration

bulk density of the catalyst



Pg - "
g

- -

; -

T —

£

¢ -

w -

" 'Superscripts

density of the solid
radiation constant
thermal residence time
€p Yy t
€

d
T P

s dimensionless time, in section 3.2

average residence time, in section 3.4
-Zi ; dimensionless time; in section 3.2
pll?xase angle

standard deviation

circular frequency

refers to stagnant phase

refers to solid phase
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