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Abstract

The fundamental feature of an OpenFlow network is

that the controller is responsible for the configuration

of switches for every traffic flow. This feature brings

programmability and flexibility, but also puts the con-

troller in a critical role in the performance of an Open-

Flow network. To fairly service requests from different

switches, to achieve low request-handling latency, and to

scale effectively on multi-core processors are fundamen-

tal controller design requirements. With these require-

ments in mind, we explore multiple workload distribu-

tion designs within our system called Maestro. These

designs are evaluated against the requirements, together

with the static partitioning and static batching design

found in other available multi-threaded controllers, NOX

and Beacon. We find that a Maestro design based on the

abstraction that each individual thread services switches

in a round-robin manner can achieve excellent through-

put scalability (second only to another Maestro design)

while maintaining far superior and near optimal max-

min fairness. At the same time, low latency even at high

throughput is achieved thanks to Maestro’s workload-

adaptive request batching.

1 Introduction

The emerging OpenFlow [16] network architecture al-

lows rich networking functions to be directly pro-

grammed on a controller platform, which in turn

sends instructions to switches to carry out the func-

tions. OpenFlow switches have not only been widely

used by the research community, such as the GENI

project [2], but have also attracted significant com-

mercial interest. A large number of computing and

networking companies have joined the Open Network-

ing Foundation [4] to help standardize and commer-

cialize OpenFlow. The success of OpenFlow can

also be seen from the large number of recent use

cases: programmable network testbeds [14][25][20],

datacenter network designs [22][19][5], enterprise net-

work designs [18][17][11], network measurement sys-

tems [6][23], to name just a few recent examples.

1.1 The performance challenge

A fundamental feature of OpenFlow is that the controller

is responsible formaking control decisions for every traf-

fic flow in the network. Whenever a switch sees a flow’s

first packet, because there is no flow entry configured

on the switch’s flow table to match this flow, the first

packet will be forwarded to the controller. We call this

first packet a “flow request”. The controller runs user de-

fined applications to process a flow request, for example

the controller computes a path for this flow and installs

flow entries on every switch along the chosen path, so

that subsequent packets of this flow can be handled by

the switches locally. Finally, the flow request packet it-

self is sent back to the origin switch.

Optimizing the performance of the controller system

is critical if OpenFlow were to be successful in high-

end deployment scenarios such as warehouse-scale dat-

acenters and large enterprises. Recent measurements of

traffic in datacenters of various sizes and purposes [7]

have shown that, in datacenter deployments, the con-

troller could see up to 0.1 million flow requests per sec-

ond per server rack today.

To address the performance challenge requires a multi-

prong approach: (1) maximize the performance of each

physical controller machine; (2) enable a cluster of con-

troller machines to work as a single logical controller;

(3) partition the network into zones with separate con-

trollers. While all three directions are equally impor-

tant and are being investigated, this study focuses on the

first direction. In particular, we investigate what soft-

ware design strategies would optimize the performance

of a controller machine under the workload characteris-

tics of OpenFlow, assuming the hardware is a commodity

computer based on a modern multi-core processor archi-

tecture.

1.2 Fundamental requirements

Optimizing the performance of a controller means more

than just hitting the highest aggregate flow request han-

dling throughput. A controller that does so but uninten-

tionally starves some subset of requests is useless. More

generally, a controller that has arbitrary performance bias

against certain requests is undesirable. A controller that

achieves high throughput but has uncontrollable latency

is also undesirable. Optimizing performance requires a

balance between fairness, latency, and throughput.

Fair capacity allocation: The capacity of the con-

troller must be “fairly” allocated among source switches

that generate requests according to a well defined fair-

ness policy. Especially when the offered workload is
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larger than the capacity of the controller, the controller

must not arbitrarily favor certain sources. A reasonable

fairness policy is weighted max-min fairness, where the

weights are specifiable by the operator. Equal weights

can be assigned to realize a basic max-min fairness pol-

icy.

Controllable latency: A controller’s throughput in

general can be improved by sacrificing latency. For in-

stance, the overhead of a socket read system call can be

amortized across a larger number of pending requests by

using a larger read buffer, thereby increasing throughput.

Many strategies of this nature could generally be called

batching. Batching, however, increases the latency expe-

rienced by requests that are positioned early in the batch.

Furthermore, batching could also hurt fairness at the fine

timescale, resulting in higher request handling latency

even for a switch that originates requests at a low rate.

An optimized controller must restrain latency while pur-

suing high throughput.

Scalable throughput on multi-core: The controller

must be able to runmultiple copies of user applications in

parallel to scale up throughput on multi-core processors,

and must do so while maintaining fairness and control-

lable latency. Users of the systemmust have the option to

write simple single-threaded applications and leave it to

the controller to parallelize them. This option reduces the

complexity of the application programs that users have to

write, thereby improves user productivity and system ro-

bustness.

1.3 Contributions

We present an open source controller platform named

Maestro [3]. Maestro provides the low level interfaces

for interacting with an OpenFlow network, enables the

composition and concurrent execution of user applica-

tions, and ensures the consistent usage and update of

shared data. This study uses the Maestro platform to in-

vestigate controller software design choices.

We present four workload distribution designs termed

shared-queue, static-partition, dynamic-partition, and

round-robin. These designs represent different trade-off

points between complexity, fairness, and scalability. We

also compare Maestro designs against two other avail-

able controllers, NOX [13] and Beacon [1], both cur-

rently employ a static-partition design. Through exten-

sive experimental evaluation, we find that the round-

robin design achieves far superior and near optimal fair-

ness while having excellent scalability, second only to

the dynamic-partition design.

We present a workload-adaptive request batching al-

gorithm that automatically selects the granularity for

batching requests for improved throughput while ensur-

ing request handling latency is well controlled. The key

to the algorithm is to use actual throughput and latency

measurements at run-time to control the dynamic adapta-

tion. Experimental results show that the algorithm is very

effective at maintaining high throughput while restrain-

ing latency regardless of the workload. In contrast, the

static batching algorithm currently employed by NOX

and Beacon leads to unnecessarily large latency at heavy

load.

Together, our designs, algorithms and experimental

evaluations provide extensive and quantitative insights

on balancing fairness, latency, and throughput in the

OpenFlow control plane.

1.4 Paper organization

The rest of this paper is organized as follows. We discuss

the related work in Section 2. In Section 3, we investigate

multiple design choices in Maestro to address the funda-

mental requirements. In Section 4, we experimentally

evaluate the performance of different Maestro designs,

together with other available OpenFlow controllers. We

conclude in Section 5.

2 Related work

NOX [13] and Beacon [1] are both multi-threaded, pro-

grammable OpenFlow controllers developed in parallel

to Maestro. NOX, Beacon and Maestro all allow users

to write simple single threaded applications and can run

them in parallel to scale up throughput on multi-core pro-

cessors. While there are far too many design and imple-

mentation differences between NOX, Beacon and Mae-

stro to enumerate, a focused comparison with respect

to the way they distribute the request workload among

worker threads could be made. In this regard, NOX and

Beacon turn out to be quite similar. NOX and Beacon

both statically assign the requests from a fixed subset

of the network switches to each worker thread. This

design maximizes parallelism and is conceptually ideal

when requests are uniformly arriving from all switches.

However, as we experimentally show, because not all

worker threads run at exactly the same rate in practice,

even under a uniform workload, there could be arbitrary

performance bias. And when the workload is not uni-

form, this design suffers from poor fairness and poten-

tially suboptimal throughput due to the under-utilization

of some worker threads. NOX and Beacon both adopt a

static granularity for request batching for improving the

throughput of an individual worker thread, though the

actual batch sizes used do differ. Although both sys-

tems achieve impressive raw aggregate throughput, as

expected, such a static batching strategy leads to unnec-

essarily large request handling latency when the system

is under heavy load. We hope the solutions that we
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present within Maestro for balancing fairness, latency

and throughput could inform future development of NOX

and Beacon.

The design of our solutions in Maestro has been some-

what influenced by recent works in multi-core software

router design [10, 9]. Whenever appropriate, Maestro

liberally borrows from the insights from these works,

such as the importance of batching workload, and the im-

portance of minimizing cross-CPU-core synchronization

overhead and cache contention overhead.

Complementary to solutions that aim at maximizing

the performance of each physical controller machine,

several recent works have aimed at enabling a cluster of

controller machines to work as a single logical controller

to further improve scalability. HyperFlow [24] extends

NOX into a distributed control plane. By synchroniz-

ing network-wide state among distributed controller ma-

chines in the background through a distributed file sys-

tem, HyperFlow ensures that the processing of a par-

ticular flow request is localizable to an individual con-

troller machine. Onix [15] further provides a general

framework for building distributed coordinating network

control plane, especially for the case of OpenFlow con-

trollers. More specifically, Onix provides a Network In-

formation Base which gives users access to several state

synchronization frameworks with different consistency

and availability requirements.

DIFANE [26] presents another approach to improve

flow-based networks’ control plane performance. It

provides a way to achieve efficient rule-based policy

enforcement in a network by performing policy rules

matching at the switches themselves. DIFANE’s network

controller installs policy rules in switches and does not

need to be involved in matching packets against these

rules as in OpenFlow. However, OpenFlow is more flex-

ible since its control logic can realize behaviors that can-

not be easily achieved by a set of relatively static policy

rules installed in switches. Ultimately, the techniques

proposed by DIFANE to offload policy rules matching

onto switches and our techniques to increase the perfor-

mance of the controller are highly complementary.

3 Maestro: Addressing the fundamental

requirements

In this section, we explore multiple design choices for

addressing the fundamental requirements.

3.1 Overview of the Maestro system

Maestro provides the low level interfaces for interact-

ing with an OpenFlow network, such as the “chopping”,

“parsing”, and “output” stages shown in Figure 1 & 2.

Because the length of each OpenFlow packet is specified
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in its header, the “chopping” stage is responsible for cor-

rectly chopping raw bytes read from a stream socket into

correctly aligned individual OpenFlow packets. Since a

socket read operation could receive an incomplete Open-

Flow packet, the “chopping” stage for one socket cannot

be parallelized, and lock synchronization must be used

for socket read to ensure the correctness of “chopping”.

On the other hand, the “parsing” stage which parses raw

OpenFlow packets into specific messages such as flow

requests, can be parallelized. The “output” stage puts

outgoing data into OpenFlow format, and sends out to

destination switches. If multiple threads are writing to

the same socket, synchronization is also needed.

Users of Maestro write their own applications, and use

the provided user interface to configure their execution

sequences to realize different functionalities. Figure 1

shows the “Learning Switch” example. There is only

one application LearningSwitchApp. This applica-

tion first remembers the switch port fromwhich a request

came from and associates the source address of the re-

quest packet to that port. It then checks to see if the des-

tination address of the request packet has been associated

to a port before. If so, it installs a flow table entry at the

origin switch for forwarding that destination address to

that port; subsequent packets for that destination can be

directly handled by that switch. Otherwise, the controller

instructs that switch to flood the request packet along a

spanning tree maintained by the switch.

Figure 2 shows the “Routing” example. In the

first user-defined application sequence, ProbingApp

periodically sends out LLDP packets to all active

ports of each connected OpenFlow switch. As

shown in the second application sequence, these

LLDP packets will be sent back to Maestro by

the neighbor switches connected to these ports, and

DiscoveryApp processes these packets to know the

topology of the network. Based on such topology in-

formation, IntradomainRoutingApp calculates the

RoutingTable, which is used by RouteFlowApp in
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the third application sequence, to calculate the entire path

for incoming flow requests.

Maestro also provides a user interface for specify-

ing applications, such as LearningSwitchApp and

RouteFlowApp, to be parallelized by Maestro, so

that users only need to write single-threaded appli-

cation but can still achieve high performance. De-

pending on the number of available CPU cores in the

system, Maestro dynamically creates multiple worker

threads, to work on multiple instances of the paral-

lelized application. Each application instance is ex-

ecuted in one worker thread to process a portion of

the incoming flow requests. In addition, Maestro

adopts standard techniques to ensure the consistency of

shared state among concurrent applications. For ex-

ample, when IntradomainRoutingApp updates the

RoutingTable at run-time, Maestro stalls pending

RouteFlowApp instances until the RoutingTable

updates finish. Unfortunately, due to space constraint,

we refer the readers to a technical report [8] for more de-

tails about Maestro that have to be left out here. Note

that the source code for Maestro is available for down-

load [3].

3.2 Achieving fair capacity allocation

while having scalable throughput

The offered workload needs to be distributed among all

available CPU cores in order to maximize the system’s

throughput. How such distribution is done will directly

affect the throughput scalability, and at the same time the

fairness in allocating the capacity of the system.

3.2.1 Maestro-Shared-Queue

To achieve a basic max-min fair allocation of the capacity

of the system to all source switches, the controller needs

to give each switch an equal chance to be served. Ini-

tially in [8] we started with a straight-forward design, in

which Maestro has a dedicated thread which is respon-

sible for reading incoming bytes from socket buffers.

This thread uses a mechanism which is similar to “se-

lect()” in the Berkeley sockets API to select all sock-

ets that have pending bytes, performs socket read on all

of them with the same maximum read size, and chops

the raw bytes into raw OpenFlow packets. We call this

thread a “select thread”. All the raw OpenFlow pack-

ets are put into a queue shared by all the worker threads.

We call this design Maestro-Shared-Queue from now on.

The worker threads fetch raw OpenFlow packets from

the shared queue, parse them into OpenFlow messages,

and execute applications to process them. workload is

evenly distributed among all worker threads, because any

idle worker thread will always be able to pick up pend-

ing raw OpenFlow packets from the queue if there is any

available.

This design theoretically can achieve a max-min fair

allocation of the system’s capacity, because the select

thread is giving each source switch equal chance (in

terms of bytes) to be served. If all the flow requests have

the same number of bytes, which is the case for TCP

syn packets, each switch will also get equal service in

terms of the number of flow requests served. More gen-

erally, to achieve weighted max-min fairness, a source

with weight w will be given w chances to be served in

each round. Although simple, this design has fundamen-

tal drawbacks, especially in throughput scalability. First

of all, all worker threads have to share a request queue,

so they have to rely on lock synchronization which intro-

duces a non-trivial amount of overhead. Second, reading

and chopping of raw bytes for a flow request is done by a

different thread from the worker thread that handles the

remaining parts of the processing, which can lead to ex-

tra cross-CPU-core overhead. Third, one single select

thread can only process a certain amount of requests per

second. If the worker threads’ aggregate processing ca-

pacity exceeds this dedicated select thread’s, either the

throughput of the system becomes bottle-necked, or ad-

ditional select threads need to be added. The next design

choices avoid having dedicated select threads.

3.2.2 Maestro-Static-Partition

To eliminate the overhead introduced by lock synchro-

nization of concurrent read accesses to a switch socket,

switch sockets can be partitioned and assigned to specific

worker threads, so that each worker thread has exclusive

read access to switch sockets in its partition. This also

minimizes the cross-CPU-core overhead because each

flow request is processed entirely by a worker thread (as-

suming that each worker thread is bound to a specific

CPU core, which we will discuss in more details in Sec-

tion 3.2.5). This is the design chosen by NOX and Bea-

con. We also explore this design in Maestro and name

it Maestro-Static-Partition. Usually each worker thread

is assigned the same number of switch sockets to bal-

ance the workload among all worker threads. However,

because each switch can have a different flow request ar-

rival rate (which we call the “input rate” from now on),

an equal number of assigned switches does not mean

equal workload assignment. As a result, such static par-

titioning may not be able to evenly distribute the work-

load among all worker threads, so both the fairness and

throughput of the system will be affected.
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For each worker thread t
Set t.assigned = 0
Put t intominHeap sorted by t.assigned
Sort all switches sw based on sw.inputRate, from high to low
For each sw in sorted list
Assign sw to worker thread t atminHeap.top()
t.assigned += sw.inputRate
update(minHeap)

Figure 3: Re-partitioning algorithm

3.2.3 Maestro-Dynamic-Partition

To improve upon Maestro-Static-Partition, we can dy-

namically divide switches into n partitions, where n is

also the number of worker threads. To fully utilize all

worker threads in the system, the dynamic partition-

ing needs to be done effectively so that the workload

is evenly distributed among all worker threads. First

of all, we need to measure the recent input rates of the

switches, in order to predict the future input rates for dy-

namic re-partitioning. The caveat is that this assumes the

input rates are stable over a short timescale. Such mea-

surement and re-partitioning can neither be done too fre-

quently because each re-partitioning involves unavoid-

able lock synchronization overhead, nor can they be done

too infrequently because the measurement based pre-

diction and re-partitioning could be much less accurate.

Second, the re-partitioning itself is a NP-complete prob-

lem to solve optimally [12]. In this study, we adopt a

simple greedy algorithm as shown in Figure 3.

We call this design Maestro-Dynamic-Partition. Even

if input rates can be reasonably predicted, this design still

has other limitations. First, max-min fairness in system

capacity allocation in general cannot be achieved even if

each worker thread makes sure that all switches within its

partition receive equal chance of being handled. For ex-

ample, suppose there are 2 worker threads and 3 switches

with input rates r, r, and 2r respectively. Switch 1 and

2 are therefore assigned to thread 1 while switch 3 is as-

signed to thread 2. In this case, switch 1 and 2 can re-

ceive only up to 25% of the system capacity, while switch

3 can receive up to 50%. Second, if the workload can-

not be evenly partitioned among worker threads, CPU

cores may not be fully utilized, thus throughput will not

be maximized. We will show in Section 4 that the fair-

ness problem and the CPU core under utilization prob-

lem, despite being less severe than that in Maestro-Static-

Partition, still exist.

3.2.4 Maestro-Round-Robin

A fourth design choice we consider is called Maestro-

Round-Robin. In this design, each worker thread is

individually running a round-robin service loop among

all switch sockets. By doing this, each switch will be

given equal chance to be serviced by each worker thread.

Thus, conceptually, the overall system also gives equal

chance to each switch and achieves max-min fairness, or

weighted max-min fairness by giving a switch w chances

to be served per round per thread. However, due to the

limitation that only one worker thread can read bytes and

perform chopping for a switch at a time, each worker

thread needs to check whether another thread is already

performing reading and chopping on a switch socket.

This leads to some locking overhead which affects the

throughput of the system. We will show the trade-off

between fairness and throughput achieved by Maestro-

Round-Robin in Section 4.

In Maestro-Round-Robin, each flow request is pro-

cessed entirely by one of the worker threads, thus cross-

CPU-core overhead is also minimized. Because each

worker thread can process requests from all switches,

Maestro-Round-Robin can have better throughput than

Maestro-Dynamic-Partition in the cases where the work-

load cannot be evenly partitioned. Furthermore, when

one worker thread finds out that another thread is per-

forming chopping on a switch, the worker thread skips

this switch and tries the next switch, to prevent wasting

CPU cycles waiting for another thread to finish. How-

ever, such skipped switches need to be remembered, so

that before a worker thread finishes one round, these

skipped switches are revisited, so as to give each switch

an equal chance to be serviced.

3.2.5 More on request and thread bindings

As alluded to earlier, minimizing cross-CPU-core over-

head is critical to maximizing the throughput. Some ex-

perimental results can be found in our previous work [8],

so here we only describe our findings briefly. First of all,

binding threads to cores is necessary, because otherwise

there will be a huge overhead introduced by thread con-

text switch if the operating system moves the execution

of one worker thread to another CPU core at run-time.

Second, it is also important to bind requests to threads,

so that each flow request is processed as much as pos-

sible by the same worker thread. Such binding mini-

mizes the overhead introduced by data synchronization

between threads. Recent work in multi-core software

router design has shown that in some cases, it is bet-

ter to have each thread working for one small process-

ing step because this could reduce the cache misses of a

thread [9]. We leave it as future work to explore whether

this design model could be borrowed in Maestro.

3.3 Achieving controllable latency while

having high throughput

There is unavoidable overhead in system calls such as

socket read/write, in executing applications to process
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flow requests such as preparing the state environment for

applications, warming up the CPU caches, etc. As a re-

sult, amortizing such unavoidable overhead across mul-

tiple requests is critical for improving the throughput of

the system. Such overhead amortization can be done by

reducing the number of system calls by reading/writing

more bytes per each socket call, and reducing the num-

ber of application executions by having an application

process a batch of requests in one execution.

Both NOX and Beacon adopt this approach: each

worker thread tries to read up to a large number of bytes

(we call this the “maximum read size”) from a socket

each time. The requests obtained from each socket read

forms a batch. Note that the size of each batch there-

fore depends on the amount of data pending at a socket

at the time of the read. The thread then processes all the

requests in the batch, and writes all pending messages

for a switch by calling socket write once when the desti-

nation socket is write-ready. The maximum read size is

static and the result depends a lot on the value chosen. To

provide a comparison, we also configure Maestro-Static-

Partition to perform a large socket read, and let the ap-

plication processes all requests generated from a socket

read as a batch.

In the other three Maestro designs, we adopt a differ-

ent approach for amortizing the overhead that provides

much more control over the batching behavior. First of

all, we use a much smaller maximum read size in socket

reads than NOX and Beacon. Although this means more

system call overhead, it providesmuch finer grained con-

trol over system latency because the system can visit and

serve each switch more frequently. Second, a worker

thread batches up to a certain number of flow requests,

as determined by an automatically selected parameter

called the Input Batching Threshold (IBT), before it initi-

ates applications to process all flow requests in the batch

at once. Thus, the size of a batch is independent of the

amount of pending data at individual sockets. Further-

more, the requests in a batch could very well come from

multiple socket reads from different switch sockets. Fi-

nally, similar to NOX and Beacon, all the messages to the

same destination generated from processing a batch are

also sent to the destination by calling socket write only

once when the socket is write-ready.

The key question then is, how should the IBT value

be chosen? When the IBT is increased, on one hand,

throughput could theoretically become higher because

the overhead is further amortized. On the other hand, in

reality the throughput does not keep growing with ever

larger IBT, because as more memory is used to form the

batch, memory access efficiency decreases and at some

point it will out-weight the overhead amortization gain.

In addition, with a larger IBT, flow requests will experi-

ence longer latency in the system. However, if the IBT

Initialization:

Trend = increasing
IBT = 10 (always lower bound by 10)
Sn initialized directly to S in first use
S′ = 0 in first use

After finishing one full IBT-sized batch:

Let t = time spent in processing this batch
Let n = size of this batch, score S = n/t
Smoothed score Sn = (1 − w) ∗ Sn + w ∗ S
Let S′ be the smoothed score of last full IBT-sized batch

If (Sn ≤ S′)

Trend = reverse(Trend)
If (t > BatchingDelayUpperbound)

Trend = decreasing
If (Trend == increasing)

IBT += 10
Else

IBT -= 10

When no pending bytes left in any socket buffer:

Process the current batch ignoring IBT

Trend = decreasing
IBT -= 10

Figure 4: IBT adaptation algorithm

is too small, not only the throughput of the system will

be low, but also the latency will increase because the

low throughput increases the waiting time of the flow re-

quests in socket buffers. Furthermore, for different ag-

gregate input rates, the system needs different IBT val-

ues to achieve a good balance between high throughput

and low latency. Thus, what we need is an IBT adapta-

tion algorithm according to the dynamic input rate of the

workload.

Each worker thread independently uses the IBT adap-

tation algorithm in Figure 4 to maximize throughput

while restraining latency. The algorithm measures the

time spent in the processing of a full IBT-sized batch, and

calculates the throughput score S of this batch. To elim-

inate noise from the measurements, the algorithm main-

tains a smoothed average score Sn = (1−w)∗Sn+w∗S,

where Sn is the smoothed score for batch size n. Cur-

rently we use a weight of w = 0.2. The algorithm com-
pares the smoothed throughput score of this batch to that

of the last full IBT-sized batch. If the score is higher, the

algorithm keeps the current IBT adjustment trend; other-

wise, the trend is reversed. The IBT is adjusted by a fixed

amount each time, currently chosen to be 10 requests.

The algorithm uses the BatchingDelayUpperbound

(BDU) parameter to control the latency of the system.

When the IBT adaptation algorithm finds the time spent

in one batch exceeds the BDU, the trend is directly set

to decreasing. The BDU can be dynamically configured

by the user of Maestro. So if she can tolerate a higher

latency, Maestro will operate at higher IBT to achieve

a higher throughput. If she requires a tighter in-system

latency, she can set a low BDU, at the cost of poten-

6



tially lower throughput. Notice that although related,

BDU cannot be directly translated into end-to-end la-

tency. Maestro cannot control the latency outside of it-

self, such as the round-trip network propagation delay,

the delay in socket buffers, or the delay introduced by

the kernel. In addition, BDU only controls the latency of

one batch, so if there are a large number of switches to

be served, a flow request from one switch may have to

wait for more than one batch.

Finally, under light load, when the algorithm finds

there is no pending bytes in any of the sockets, the algo-

rithm releases the current batch for immediate processing

ignoring the current IBT, decreases the IBT, and sets the

trend to decreasing. The effectiveness of the IBT adapta-

tion algorithm is evaluated in Section 4.3.

4 Evaluation

In this section, we evaluate the current Maestro pro-

totype (version 0.2.1, implemented in Java, available

at [3]) under a number of different workload scenarios

to see how effectively our design choices address the

fundamental requirements. Also, we compare Maestro

against a multi-threaded version of NOX written in C++

(branch destiny-fast, lead by Amin Tootoonchian), and

Beacon [1], which is also written in Java. Through these

comparisons, we aim to quantify the overall strengths

and weaknesses of the Maestro designs, as well as the

costs and benefits of our specific design choices. Be-

cause we are more interested in the raw performance of

the system itself than the applications, in all of the exper-

iments, we run only the most simple “Learning Switch”

application.

Both NOX and Beacon statically assign switches to

worker threads, and use a static maximum read size for

batching. Specifically, NOX uses 512KB for its max-

imum read size, while Beacon uses 64KB. In order to

provide a close approximation to Beacon’s static ap-

proach, in Maestro-Static-Partition we also use 64KB as

the static maximum read size. While in all other Maestro

designs we use 2KB as the static maximum read size. In

this section, we will show how these static design choices

affect the fairness, latency, and throughput of these sys-

tems, as compared to the dynamic approach of Maestro.

4.1 Experiment setup and methodology

Instead of using the standard controller benchmark

“cbench” provided by the OpenFlow community, we

have implemented and use our own network emulator.

Our network emulator provides greater functionality than

cbench. It can not only emulate the functionality of

the OpenFlow switch’s control plane, but also generate

Emulator 

Machine B

Emulator 

Machine A

Emulator 

Machine C

Maestro Machine M

Gigabit Ethernet Switch

Emulator 

Machine D

Figure 5: Experiment platform setup

flow requests at different controlled rates for the emu-

lated switches. This additional feature enables us not

only to precisely measure how fairly the capacity of the

controller is allocated among all switches, but also to

evaluate the performance of the controller under differ-

ent workload scenarios.

In each experiment, the OpenFlow controller is run-

ning on a server machine with two Quad-Core AMD

Opteron 2393 processors (8 cores in total) with 16GB

of memory. Because there are other processes/threads

responsible for managing either the Java virtual machine

(such as class management and garbage collection), or

serving other system functionalities, we dedicate at least

one processor core for such work, while the remaining 7

cores are used by the controller for worker threads. Thus

the best throughput (for most of the cases) is achieved

with 7 worker threads on this 8 core server machine.

This machine has four 1Gbps NICs to provide enough

network bandwidth. The controller machine is running

Ubuntu 9.10 with a 2.6.31 Linux kernel and the 64-bit

version of JDK 1.6.0 25.

We run the emulator simultaneously on four machines

to provide enough CPU cycles and network bandwidth

for the emulation, as shown in Figure 5. Each of the em-

ulator machines is connected to a gigabit Ethernet switch

by a 1Gbps link. Each of these machines emulates one

fourth of all the OpenFlow switches in the emulated net-

work. We run experiments using both a 79-switch and

1347-switch topology [21], to evaluate the effect of net-

work size. Together, the four machines can generate up

to four million flow requests per second. Additionally,

the emulator allows us to control the distribution of these

requests in terms of which switch they originate from.

We use three primarymetrics formeasuring the perfor-

mance of the controllers. The first one is the throughput

of the controllers, measured in requests per second (rps),

for which a larger value is better. The second one is the

average delay experienced by a low-rate (5rps) probing

switch, measured in milliseconds, for which a smaller

value is better. This delay is the end-to-end delay mea-

sured by the emulator. We choose not to use the average

delay experienced by all requests, because the delay of

requests from heavy-rate switches is largely affected by

the underlying TCP socket read/write buffer size config-

uration, which could vary significantly across different
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Figure 6: Distribution of flow request rates

systems. Instead the average delay of a low-rate probing

switch is a more accurate measurement of the latency in-

troduced by the controller plus the round trip time, be-

cause the TCP socket read/write buffer of the probing

switch will be empty most of the time. The third one is

the fairness of the capacity allocation. To measure the

fairness, we first calculate the max-min fair share of the

capacity for each switch, given each switch’s request rate

and the controller’s total throughput. Then we calculate

the deviation of the actual share that each switch receives

from its fair share. Finally we plot the CDF of such de-

viations. A deviation distribution around 0 means very

good fairness, while a wider deviation distribution means

worse fairness.

4.2 Fairness of capacity allocation

In this section, we compare the fairness of capacity al-

location for all Maestro designs (Maestro-Round-Robin,

Maestro-Dynamic-Partition, Maestro-Shared-Queue and

Maestro-Static-Partition) against NOX and Beacon,

through two different scenarios. We use the 79-switch

topology instead of the 1347-switch one, because there

is less fluctuation when the emulators are generating re-

quests for fewer switches, so that the fairness measure-

ment is more accurate. In all of these experiments, we

run the controllers with four worker threads, not only to

ensure that the server machine with eight cores can pro-

vide enough CPU cycles for the controller, but also to

make sure that the capacity of the controller is always be-

low the aggregate request rate from the emulators at any

instant in time. Otherwise, 100% of the requests could

be handled which leads to a naturally fair allocation.

In the first scenario, each emulator tries to generate

flow requests for its emulated switches at uniform rates.

However, because the four emulators cannot be perfectly

synchronized while at the same time providing a high re-

quest rate, the switches from different emulators do not

have exactly equal request rates. The distribution of re-

quest rates is shown as scenario one in Figure 6. An

optimal fair capacity allocation will be that all switches

get about the same share of the system’s throughput.

As shown in Figure 7, both Maestro-Round-Robin and
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Figure 7: Fairness result of scenario one

 0

 20

 40

 60

 80

 100

-50  0  50  100  150  200

C
u
m

u
la

ti
v
e
 p

e
rc

e
n
ta

g
e

Deviation, % of fair throughput allocation

Maestro-Round-Robin
Maestro-Dynamic-Partition

Maestro-Static-Partition
Maestro-Shared-Queue

NOX
Beacon
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Maestro-Shared-Queue achieve very good fairness in ca-

pacity allocation. All of the other designs that assign

switches to worker threads have worse fairness, espe-

cially Beacon which can allocate up to 50% less or more

throughput to some switches from their fair share. This

is because not all worker threads can process requests

at exactly the same rate, even in this simple scenario

where work load can be evenly distributed among worker

threads, there is still arbitrary fairness bias introduced.

Next, we configure the emulators to generate requests

for switches with vastly skewed request rates shown as

scenario two in Figure 6. This is a more challenging sce-

nario for all of the controllers. As shown in Figure 8,

Maestro-Round-Robin andMaestro-Shared-Queue again

have the best fairness performance, with all deviations

smaller than 1%. On the other hand, all other controllers

have worse fairness. We can see that the deviations are

much worse at the tails because the switches which gen-

erate heavier rates of requests get much larger shares than

is fair. Again Beacon has the worst fairness, where up

to 200% more throughput is allocated to some source

switches than is their fair share.

4.3 Effectiveness of the IBT adaptation al-

gorithm

In this section, to evaluate the effectiveness of the

IBT adaptation algorithm, we focus on Maestro-Round-

Robin using four worker threads and running on the 79-

switch emulated network with skewed request rates. To

establish the baselines and to investigate the effect of dif-

ferent IBT values on the throughput and delay of the sys-
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(a) 4 million rps request rate
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(b) 1.4 million rps request rate
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Figure 9: Results of using different static IBT values

tem, we manually measure the performance of Maestro

using different static IBT values under different work-

loads. We choose three different workloads: 4 mil-

lion rps as in Figure 6’s scenario two, which is more

than twice the maximum throughput of Maestro at four

worker threads; 1.4 million rps as in Figure 6’s scenario

three, which is about 80% of the maximum attainable

throughput; and 0.85 million rps as in Figure 6’s sce-

nario four, which is about 50% of the maximum attain-

able throughput.

As shown in Figure 9, under the 4 million rps work-

load, when we keep increasing the IBT, the throughput

of Maestro grows at first, but starts to decrease when the

IBT is larger than 1200. The probing delay decreases at

the very beginning because of the significant improve-

ment in throughput. Then the probing delay keeps grow-

ing with larger IBT, and is about half of the batching de-

lay plus the extra round trip time outside Maestro. This

is because in this 79-switch network where there are not

too many sockets to read from in a single round, and each

time we read at most 2KB from a socket, the batching

delay is essentially the worse case delay for a request to

spend within a batch, so the average case is that a request

spends half of the worse case delay in the batch. A 3ms

BDU would translate to a maximum IBT of about 1100.

For the 1.4 million rps workload, when the IBT is larger

than 500, the throughput starts to flatten out and decrease

slowly. For the 0.85 million rps workload, an IBT value

of 25 is sufficient for Maestro to handle every request

of the offered 0.85 million rps, while keeping the prob-

ing delay very low. In this case of light load, the BDU

should not be reached by the algorithm.

Now, we enable the IBT adaptation algorithm in

Maestro-Round-Robin, set the BDU to 3ms, and conduct

an experiment where the aggregate request rate dynam-

ically changes over time. In this experiment, the aggre-

gate request rate offered by the emulator changes every

ten seconds. It starts at 4 million rps, then drops to 1.4

million rps, then drops again to 0.85 million rps, then

goes back to 1.4 million rps, and finally returns to 4 mil-

lion rps. Through this dynamic configuration we want to

show that the IBT adaptation algorithm can effectively
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Figure 10: Dynamic IBT under changing request rate
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handle both an increasing and decreasing aggregate re-

quest rate. Figure 10 shows the dynamic IBT values

generated by the adaptation algorithm over time, together

with the corresponding aggregate request rate. In this fig-

ure we can see that, first, although IBT values generated

by the adaptation algorithm is fluctuating, Maestro is op-

erating at reasonable IBT values (within peak through-

put area) in all regions, while at the same time keeping

not only the batching delay but also the end-to-end prob-

ing delay under 3ms (as shown in Table 1). Second, the

adaptation algorithm responds to changes in the work-

load reasonably quickly.

For each of the time periods of different aggregate re-

quest rates, Figure 11 plots the IBT value distribution,

and Table 1 shows the measured throughput and prob-

ing delay. For the 4 million rps workload, about 90% of

the IBT values fall between 650 and 900, and the actual

throughput of Maestro is 1.70 million rps, which is the

same as the maximum rps achieved with a static IBT of

1200 in the previous experiment. The average probing
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Request Rate Maestro-R-R NOX Beacon

4M 1.70M / 2.8ms 1.84M / 342.9ms 2.67M / 10.7ms

1.4M 1.40M / 1.8ms 1.40M / 3.9ms 1.40M / 8.0ms

0.85M 0.85M / 1.4ms 0.85M / 1.6ms 0.85M / 2.1ms

Table 1: Throughput(rps) and probing delay under dif-

ferent request rates(rps)

delay for Maestro is 2.8ms. When the emulator’s offered

request rate is 1.4 million rps, about 90% of the IBT

values fall between 250 and 650. The actual through-

put of Maestro is 1.40 million rps, which is the same as

the emulator’s offered request rate. The average probing

delay for Maestro is 1.8ms. When the offered request

rate is 0.85 million rps, about 90% of the IBT values fall

between 10 and 100, the throughput of Maestro is 0.85

million rps, and the average probing delay is 1.4ms. The

long tails in these distributions come from the transition

periods from one offered request rate to another, where

the IBT needs to be gradually adjusted by the algorithm.

We also evaluate the same scenario using NOX and

Beacon, and Table 1 shows the results. When the request

rate is 4 million rps, although NOX and Beacon have bet-

ter throughput, their probing delay performance is much

worse than that of Maestro-Round-Robin. When the of-

fered request rate is brought down to 1.4 and 0.85million

rps, where all of the controllers can keep up, we can see

that unlike Maestro, NOX and Beacon are not operating

at the best batching behavior to keep a low probing delay.

4.4 Throughput and delay scaling

In this section, we conduct experiments that show the

throughput and probing delay scaling of all the con-

trollers. We let the emulators generate flow requests at

the maximum rate (4 million rps), to stress test all the

controllers. We run each experiment five times, using

both the 79-switch and the 1347-switch network topolo-

gies. In each network topology, we let emulators gen-

erate requests with both uniform and skewed rates. The

79-switch with skewed request rates is essentially sce-

nario two in Figure 6, while for the 1347-switch case the

rates distribution shape is similar, just with the difference

that the requests are from more switches.

Figures 12 and 13 show the throughput scalability with

an increasing number of worker threads under the dif-

ferent distributions and topologies. The vertical axis in

each figure is the achieved throughput relative to the ab-

solute throughput value at one worker thread. We can

see that Maestro-Dynamic-Partition has the best scal-

ability all the way up to seven worker threads, while

Maestro-Round-Robin follows in second place. For the

79-uniform workload, Maestro-Static-Partition comes in

third ahead of NOX. However, under the 1347-skewed
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Figure 12: Throughput scalability, 79 - uniform
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Figure 13: Throughput scalability, 1347 - skewed

workload, this outcome is reversed with NOX ahead of

Maestro-Static-Partition. Beacon scales pretty well up to

three worker threads, but after that the scalability more

or less flattens out. Maestro-Shared-Queue scales well

up to six worker threads, but either flattens out in 79-

uniform, or becomes worse in 1347-skewed. Because all

worker threads have to share the same work queue, its

poor scalability is expected. The other two experiments

(79-switch with skewed rates, and 1347-switch with uni-

form rates) show similar throughput scalability results,

so we do not include the figures here.

Table 2 shows the absolute throughput values for all

controllers using seven worker threads, for the two net-

work topologies and the two request rate distributions. In

all cases Maestro-Static-Partition has the best through-

put, which we believe is because of its larger maximum

read size than the other Maestro designs, and in Maestro

the application is executed once to process all requests

in one batch instead of being executed multiple times

as in NOX and Beacon. Maestro-Dynamic-Partition’s

throughput follows closely, especially in the experiments

with skewed request rate distributions. In these cases, the

dynamic re-partitioning can better balance the workload

in the worker threads. Note that the better throughput

of Maestro-Static-Partition is also because of its larger

buffer size, at the cost of increased delay. Also we be-

lieve that in more dynamic scenarios where the request

rate of switches changes over time, throughput of the

Maestro-Static-Partition will be worse. Although the

lock synchronization in Maestro-Round-Robin prevents

it from achieving the best throughput, it is not too far

behind.
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Controller Throughput, request per second

79-U 79-S 1347-U 1347-S

Maestro-Round-Robin 2.76M 2.60M 2.41M 2.25M

Maestro-Dynamic-Partition 3.11M 2.94M 2.69M 2.36M

Maestro-Static-Partition 3.43M 3.09M 3.01M 2.46M

Maestro-Shared-Queue 1.25M 1.10M 0.75M 0.74M

NOX 2.51M 2.55M 2.51M 2.41M

Beacon 3.08M 3.02M 2.96M 2.34M

Table 2: Absolute throughput values using seven worker

threads, U stands for uniform, S stands for skewed
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Figure 14: Probing delay in log scale, 79 - uniform

As shown in Figure 14 and Figure 15, the probing de-

lay performance of Maestro-Round-Robin and Maestro-

Dynamic-Partition (in which the IBT adaptation algo-

rithm is enabled) are much better than static designs.

This is not only because Maestro has much better fair-

ness in throughput allocation, but also because of the

IBT adaptation algorithm which prevents the batch from

growing too large. Because in Maestro-Shared-Queue

worker threads have to synchronize on a shared queue,

and because its throughput is much worse, its delay per-

formance is not as good. We believe the very bad prob-

ing delay performance of NOX is due to its very large

read batching size (512KB). Again, we do not include

the figures for the two other experiments (79-switch with

skewed rates and 1347-switch with uniform rates) be-

cause they show similar results.

4.4.1 Effect of small number of source switches

Instead of having flow requests coming from a larger

number of source switches, in this experiment we let

the emulators generate flow requests from a small net-

work with only four switches with a total request rate of

4 million rps. This workload is the worst case for any

design which assigns source switches to worker threads,

because flow requests from one switch can only be pro-

cessed by one worker thread. Therefore, it is impossi-

ble to evenly distribute the requests among more than

four worker threads. As shown in Figure 16, Maestro-

Round-Robin not only has the best scalability under this

workload, but also achieves the best absolute throughput

for seven worker threads. The throughput of Maestro-

Shared-Queue also keeps growing, although it is still the
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Figure 15: Probing delay in log scale, 1347 - skewed
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Figure 16: Absolute throughput values, 4 switches

worst in absolute terms. Throughput of all other systems

stops increasing for more than four worker threads.

5 Conclusion

Flexibility and direct control make OpenFlow a popular

choice for different networking scenarios today, but the

performance of the OpenFlow controller must be opti-

mized not only for raw aggregate throughput, but also

to simultaneously achieve fair capacity allocation and

low latency. We have systematically evaluated and com-

pared different design choices. The results have shown

that the Maestro-Round-Robin design can achieve near

optimal fairness in system capacity allocation, while at

the same time having throughput scalability second only

to Maestro-Dynamic-Partition. The IBT adaptation al-

gorithm of Maestro can effectively adjust the batching

behavior dynamically according to the aggregate input

rate to control request handling latency, while at the

same time achieving high throughput. Simply put, the

Maestro-Round-Robin design with the adaptive batching

algorithm achieves the best balance between fairness, la-

tency and throughput among all available OpenFlow con-

troller designs today.
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