
RICE UNIVERSITY 

Parameterization and Adaptive Search for Graph 
Coloring Register Allocation 

by 

Donghua Liu 

A THESIS SUBMITTED 

IN PARTIAL FULFILLMENT OF THE 

REQUIREMENTS FOR THE D E G R E E 

Mas te r of Science 

APPROVED, THESIS COMMITTEE: 

4 
Keith D. Cooper, Professor, Chair 
Computer Science 

William Scherer, Faculty Fellow 
Computer Science 

VrreirSarkar, Professor 
Computer Science 

Houston, Texas 

October, 2009 



UMI Number: 1486055 

All rights reserved 

INFORMATION TO ALL USERS 
The quality of this reproduction is dependent upon the quality of the copy submitted. 

In the unlikely event that the author did not send a complete manuscript 
and there are missing pages, these will be noted. Also, if material had to be removed, 

a note will indicate the deletion. 

UMT 
Dissertation Publishing 

UMI 1486055 
Copyright 2010 by ProQuest LLC. 

All rights reserved. This edition of the work is protected against 
unauthorized copying under Title 17, United States Code. 

A ® uest 
ProQuest LLC 

789 East Eisenhower Parkway 
P.O. Box 1346 

Ann Arbor, Ml 48106-1346 



Parameterization and Adaptive Search for Graph 
Coloring Register Allocation 

Donghua Liu 

Abstract 

Graph coloring register allocators use heuristics for register coalescing and allocation, 

which are relevant to the number of physical registers that a group of virtual registers 

will use after allocation. They cannot be determined accurately in allocation, thus we 

made them tunable by introducing new parameters as the thresholds for coalescing 

and the thresholds for denning constrained live intervals in simplification. Experi

ments demonstrated neither the aggressive method nor the conservative method can 

outperform the other for all tests and the best parameters vary significantly among 

programs. This parameterization is profitable because the best running time reached 

by varying the parameters is up to 16% faster than the best of fixed-parameter meth

ods. Hill-climbing and random probe algorithms were used to find good parameters, 

and the later performed better. Further analysis reveals the search space has many 

irregular fluctuations that are not suitable for the hill-climber. 



Acknowledgments 

Firstly, I wish to thank Prof. Keith D. Cooper, the committee chair, who taught 

me compiler courses and directed my research. Prof. Cooper showed me the beauty 

of compiler world through comp 412 and 512 courses. He is the best teacher I ever 

met - you can learn not only knowledge, but also passion. In my research, he gave 

me huge help and encourage. Each time after we talked, I saw the light leading out 

of swamp. Although being very busy, Prof. Cooper scrutinized my thesis and gave 

many comments. I learned many from him, through what he taught and what he did. 

I also express my appreciation to other committee members, Prof. Vivek Sarkar 

and Dr. Bill Scherer. They reviewed my work and gave advices on some issues, nec

essary for the final completeness of the thesis. Prof. Sarkar's comment on complexity 

let me pay attention to this issue to avoid unclearness. I also need to mention Prof. 

Kenneth Kennedy. I took his comp 515, an compiler course on vectorization and par-

allelization, and learned precious knowledge that is hard to get elsewhere. Although 

he passed away, his contribution and personality will be remembered forever. 

People who supported my study and research behind must receive praise. Ms. 

Belia Martinez helped the whole thesis procedure and other graduate student affairs. 

Ms. Darnell Price and Ms. Lena Sifuentes processed the administrative paperwork 

during my whole study. Dr. Adria Baker and Ms. Lily Lam from the Office of In

ternational Students & Scholars took all efforts to maintain my international student 

status. Their excellent work made me concentrate on my study and work. 

Finally, I must thank my wife and my parents, who are a part of my life. Without 

the understanding, encourage and love from them, I cannot be here. I owe them a 

lot, far beyond a thank. 



Contents 

Abstract ii 

Acknowledgments iii 

List of Illustrations vi 

List of Tables viii 

1 Introduction 1 

1.1 Register Allocation in Compilers 1 

1.2 Adaptive Compilers and Tunable Parameters 2 

1.3 Goals and Tasks 2 

2 Background 4 

2.1 Graph-Coloring Register Allocation 4 

2.2 Complexity in Graph Coloring Register Allocation 8 

2.3 LLVM Compiler 9 

2.4 Engineering Environment 10 

3 Tunable Parameters for Graph Coloring Register Allo

cator 16 

3.1 Implementation of the Register Allocator 16 

3.2 Dominative Choices on Parameters 21 

3.3 Tunable Parameters for Performance 22 

4 Properties of the Performance on Parameter Space 24 

4.1 Experiments for Data Analysis 24 



V 

4.2 Performance Range Analysis 25 

4.3 Performance Tendency Analysis 31 

4.4 Compilation Procedure Analysis 39 

4.5 Independence between Parameters 41 

5 Adaptive Search with Tunable Parameters 44 

5.1 Hill Climbing Search 44 

5.2 Experiments and Analysis 47 

5.3 Performance Stability over Parameter Changes 60 

6 Summary and Conclusions 69 

Bibliography 71 



Illustrations 

2.1 Integer Registers for Allocation 12 

2.2 Average Running Time vs the Number of Simultaneous Processes . . 15 

3.1 Graph-coloring register allocator 16 

4.1 Mesh Graphs of scimark Running Time 33 

4.2 Mesh Graphs of pifft Running Time 34 

4.3 Mesh Graphs of nasa Running Time 35 

4.4 Mesh Graphs of spice Running Time 36 

4.5 Mesh Graphs of analyzer Running Time 37 

4.6 Mesh Graphs of lambda Running Time 37 

4.7 Mesh Graphs of llu Running Time 38 

4.8 Mesh Graphs of sim Running Time 38 

4.9 Correlation between the interval statistics and running time for scimark 40 

4.10 Performance graphs for different floating-point parameters 42 

4.11 Performance graphs for different integer parameters 43 

5.1 Hill Climbing Algorithm 45 

5.2 Value on each step in a searching 49 

5.3 Value pair (#steps, best value) of every restart 52 

5.4 Histogram for distribution on best values 53 

5.5 Histogram for distribution on steps in a restart 53 



Vll 

5.6 Histogram and probability distribution of random points in scimark . 58 

5.7 Histogram and probability distribution of random points in pifft . . . 58 

5.8 Histograms of random points in spice and nasa 59 

5.9 Probability of reaching top 10% 60 

5.10 Histogram of the degree of all initial intervals 68 



Tables 

2.1 Benchmark Programs 11 

2.2 Errors in running time measurement for scimark 14 

2.3 Errors in running time measurement for pifft 15 

4.1 Running time on parameter space for integers and floats . . . . . . . 28 

4.2 Running time on parameter space for integers only 29 

4.3 Comparing the best results in [0, 20] x [0, 20] parameter space with 

the conservative and aggressive coalescing methods 30 

5.1 Hill-Climbing searching on scimark at 25%, 50%, 100% patience . . . 50 

5.2 Hill-Climbing searching on pifft at 25%, 100% patience 54 

5.3 Hill-climbing performance for scimark 56 

5.4 Hill-climbing performance for pifft 56 

5.5 A of spilled intervals in scimark when coalescing threshold changes . 64 

5.6 A of spilled intervals in scimark when simplifying threshold changes . 64 

5.7 A of coalesced intervals in scimark when coalescing threshold changes 65 

5.8 A of coalesced intervals in scimark when simplifying threshold changes 65 

5.9 A of spilled intervals in pifft when coalescing threshold changes . . . 66 

5.10 A of spilled intervals in pifft when simplifying threshold changes . . . 66 

5.11 A of coalesced intervals in pifft when coalescing threshold changes . . 67 

5.12 A of coalesced intervals in pifft when simplifying threshold changes . 68 



1 

Chapter 1 

Introduction 

1.1 Register Allocation in Compilers 

A compiler transforms the source code of a program into another form, mostly, in 

a machine-executable format. As part of a compiler, the register allocator plays 

dual roles for code-generation and performance optimization. In most programming 

paradigms, programmers can define an unlimitednumber of variables, but processors 

only provide a limited set of physical registers. Thus, the register allocator must 

determine which variables will reside in the physical registers and which register will 

hold each variable. In most cases, the physical registers cannot hold all variables 

through the lifetime of the program execution, so some variables must be spilled into 

memory when the physical registers are not sufficient and be reloaded when they are 

used again. 

From the programming view, most instructions in a program are operations on 

single or multiple variables; from the hardware view, the access time of memory is 

much greater than the access time of registers. Thus, the quality of register allocation 

has a strong impact on the execution performance of the compiled code. A global 

register allocator is not easy, because of the complexity of control flow structures. 

Theoretically, a global register allocation problem can be transformed into a graph 

coloring problem. And coalescing and spilling are often needed, increasing the com

plexity of allocation. Unfortunately, the graph coloring problem is NP-complete, so 

approximate heuristic techniques are used to solve the problem. 



2 

1.2 Adaptive Compilers and Tunable Parameters 

Traditional compilers using fixed optimizations are tuned for a good average perfor

mance on a large body of programs, but often fail to reach the best result for an 

individual program or for different optimization goals, such as code size, memory 

limitation, or power consumption. To solve this problem, adaptive compilers that 

can change their optimization method for specific applications or target hardware 

have been studied. Researchers have demonstrated the adaptive method can produce 

better code relative to an external objective function than traditional fixed-behavior 

compilers. Most of the work focused on selecting an optimal sequence of optimizations 

for a specific application or a specific optimization goal, and has gained significant im

provements through adaptive selection of optimizations [19, 20, 1, 2, 25, 15, 26, 16, 18]. 

However, these adaptive systems are based on existing compiler platforms, which 

are not designed for use in an adaptive compiler. For example, they do not expose 

adequate parameters to allow an adaptive compiler to vary significantly the behavior 

of the optimizations so that it can make larger improvements. More fine-grained 

controlling parameters for the compiler are necessary. This approach also means 

a challenge for the algorithms used in adaptive compilers, because there are more 

parameters to select and tune. First, we need to revise the existing algorithms to 

provide an effective parameterization and construct an expressive scheme to expose 

those parameters for explicit control in adaptive compilers. Next we need to test 

search approaches on the parameterized algorithms to evaluate the effect. In this 

thesis, we will focus on a representative register allocation method, the graph-coloring 

register allocation with live range coalescing, to find the tunable parameters and 

evaluate its performance. 

1.3 Goals and Tasks 

The general goal of this work is to parameterize the existing graph-coloring regis

ter allocator and find an effective strategy for setting those parameters. This work 



3 

consists of three parts. 

First, we will review the graph-coloring register allocation algorithm to find param

eters that can be varied. Then, we will examine if the parameters have a significant 

impact on code quality. If varying a parameter cannot change the results signifi

cantly, it is not profitable. If one choice on a parameter outperforms other choices 

for most programs, the compiler should fix that good choice in the algorithm, thus 

there is no need for adaptation. If some choices on a parameter may win over other 

choices for some programs but cannot win for most programs, this parameter may be 

a good candidate for parameterization. When finishing this work, we will have a list 

of parameters for adaptive register allocation. 

Next, we will study the impact of the parameters. We will explore the parameter 

space to find its properties. This study will show the theoretical maximum improve

ment and the difficulty of reaching it. It will also reveal if the parameterization is 

profitable enough to pursue. Also, the study on the structure of the parameter space 

can expose relationships among the parameters and the changing tendency over the 

parameters, which may help us on searching algorithms. 

Finally, we will run some search methods on the new tunable parameters, and 

know how fast they can reach good results. The search may need the knowledge 

from the previous steps and it may give feedback for the parameterization. The 

parameterization creates the possibility for improvement; the search turns it into 

reality. If the adaptive compiler cannot do the final job well, the parameterization is 

not practical. As a result of tradeoff, we may try to get back a little from the best 

possible result but get closer to the best feasible or acceptable result, or shrink the 

parameter space for a quicker search. 



4 

Chapter 2 

Background 

2.1 Graph-Coloring Register Allocation 

The task of a register allocator is to map the variables defined and used in a program 

to physical registers. In general, we call the variables as virtual registers, in contrast 

with physical registers. Because the physical registers are scarce resources, the register 

allocation is not an easy job. A naive method can do it by storing a value residing 

in a physical register to memory to make a physical register available, and reloading 

it later when it is accessed again. Obviously, the performance of the method is 

very poor, due to frequent memory loads and stores. Based on a model that precisely 

describes the relations among virtual registers and physical registers, a graph-coloring 

register allocator can produce better results. Because the graph-coloring problem is 

intractable, the graph-coloring register allocator solves the problem with heuristics. 

To formulate this, we need to introduce some concepts for virtual registers. In 

a well-formed program, a virtual register must been defined or assigned a value at 

first; and there should be some uses after the assignment. We say a virtual register is 

live between its definitions and its uses along the program execution paths, and the 

entire region where the virtual register is live is its live range (LR) (or live interval). 

Because programs have control structures, the live range often is not a single straight 

segment, which means, it may branch and join together. No matter how complicated 

the structure of a live range is, whether or not two live ranges are both live at some 

point is definite. If their life ranges overlap, we say they interfere. Thus, we can 

derive an interference graph (IG) that encodes the interferences between any two 

live ranges. In the interference graph, each node represents a live range, and if two 



5 

live ranges interfere, the two corresponding nodes are connected by an edge. If we 

use different colors to represent the different physical registers, the register allocation 

needs to color the nodes and ensure any two connected nodes do not receive the same 

color. In this way, we model register allocation as a graph-coloring problem. 

In graph theory, a fc-coloring of a graph is an assignment of k colors to the nodes, 

such that adjacent nodes are assigned different colors. The minimum k for which a k-

coloring exists is known as the chromatic number of the graph. If there are k physical 

registers, then a /^-coloring of the interference graph shows how to allocate live ranges 

to physical registers in a way that avoids spilling any live range to memory. But 

finding the minimal graph coloring is NP-complete, though some powerful heuristics 

for efficient coloring exist in practice. 

In many cases, the chromatic number of the IG is greater than the number of 

available physical registers, so some virtual registers must be spilled into memory. 

The choice of which registers should be stored/reloaded and when they should be 

stored/reloaded has a heavy impact on performance. The dynamic nature of the real 

stores/reloads adds more difficulty for this problem. 

Chaitin et al. were the first to implement a graph-coloring register allocator [14, 

13]. Chaitin's coloring heuristic is simple and relies on the graph theoretic property: 

Given a graph G and a node v such that degree(v) < k. then G is k-colorable if 

and only if G — v is k-colorable. 

Chaitin's algorithm uses this property to recursively simplify the interference 

graph by removing unconstrained nodes (degree < k) until the graph is empty or 

all the remaining nodes in the reduced graph are constrained (degree > = k). If the 

graph becomes empty, the algorithm inserts the removed nodes into the graph in the 

reverse order of removing (popped off from a stack), and assigns each node a color 

not used by any of its neighbors. The above graph theoretic property guarantees that 

a color is available for each node. 

Often, however, the graph cannot be reduced to empty. Here, Chaitin's algorithm 



6 

assumes the graph is not fc-colorable pessimistically, and selects one of the constrained 

nodes and removes it from graph, marking it for later spilling. The heuristics for this 

spilling are minimizing the spilling cost and reducing the degrees of other nodes 

mostly, so the node associated with the smallest spilling cost divided by the current 

degree is selected at first. After the node is removed and marked, the simplification 

procedure may continue until another node must be marked for spilling or the graph 

becomes empty. Eventually, the graph will be empty. Spill code will be inserted for 

the live ranges representing the nodes marked for spilling. Because the spill code 

uses some physical register resources, some unconstrained node before inserting spill 

code may become uncolorable. The entire process of building interference graph and 

simplifying will be repeated until no further spilling happens. Typically, this process 

converges in two to four passes. 

Chaitin's assumption that a node with k or more neighbors is uncolorable is pes

simistic, because some nodes among the neighbors may receive the same color and 

make the node become colorable finally. Briggs et al. proposed an improvement, 

optimistic coloring [10, 8, 11], by removing the pessimistic assumption. In Briggs' 

algorithm, a node is considered uncolorable only if its neighbors have used all col

ors. Instead of marking a constrained node for spilling, Briggs' method optimistically 

places it into the stack, just as it puts the unconstrained nodes into the stack. Af

ter the graph becomes empty, Briggs' method tries to find colors for the nodes, by 

popping them one by one from the stack and looking for a color. For constrained 

nodes, this method still has a chance to find a color for them, based on the coloring 

of their neighbors. If a node does not receive a color, it will be marked for spilling 

and will not be inserted back into the graph. After the stack is empty, spill code will 

be inserted for the nodes marked for spilling. The optimistic method may color more 

live ranges than the pessimistic method. 

There is another important transformation on live ranges that the allocator can 

perform, named coalescing. If two live ranges are joined by a move instruction and 



7 

they do not otherwise interfere, they can be coalesced. After coalescing, the two 

live ranges are joined into one, and the copy instruction is eliminated. Coalescing 

can decrease memory accesses directly by eliminating copy instructions. The impact 

of coalescing can be considerable. Briggs showed some examples where coalescing 

eliminates up to one-third of live ranges [8]. Besides this, coalescing has both negative 

and positive impacts on the colorability of the interference graph. The coalesced 

node often has a greater degree than each of the nodes before coalescing, so the new 

coalesced node may become uncolorable. On the other hand, coalescing may reduce 

the degree of adjacent nodes in the graph, increasing the chance that those nodes 

receive a color. It is hard to predict the overall effect of coalescing. 

Chaitin used an aggressive coalescing method that coalesces all possible live ranges. 

Briggs et al. proposed an approach named conservative coalescing [11]. If the degree 

of coalesced node is less than the number of colors, the coalescing is always benefi

cial, since it cannot make the coalesced node uncolorable. To avoid the possibility 

of making the coalesced node uncolorable, the conservative coalescing coalesces two 

live ranges only when the conservative condition is satisfied. George and Appel in

troduced iterated coalescing [24], which performs conservative coalescing iteratively, 

interleaved with simplify stage to expose more chances for conservative coalescing. 

As we have seen, the number of colors or the number of available physical registers, 

k, plays an important role in coloring and coalescing. In both coloring and coalescing, 

we use k for the assumptions that guarantee that the register allocator makes "safe" 

decisions. More precisely, in coloring, the best k should be related to the number of 

the distinct colors of the neighbors, not the number of the neighbors. The case in 

coalescing is similar. But the problem is when we need the value about the fc, we do 

not know about neighbor's colors. 

This thesis focuses on improvements that can be made by considering k as a 

tunable parameter. The experimental results in the next chapters will show that 

adjusting k can lead to significant improvements and that the appropriate value of k 



8 

varies from procedure to procedure. 

2.2 Complexity in Graph Coloring Register Allocation 

The introduction above showed the transformation from a register allocation problem 

into a graph coloring problem. Chaitin et al. demonstrated that all graphs can arise 

from register allocation, and proved the general register allocation problem is NP-

complete [14]. 

There are some transformations on the live ranges before the register allocation 

pass, such as the transformation into SSA form[3, 34, 21, 9]. These transformations 

may add constraints to interference graphs such that they are a proper subset of 

arbitrary graphs. For example, the interference graph based on post-SSA live ranges 

is a chordal graph [6, 12, 31, 27] and there exists a polynomial algorithm to color such 

graphs [23]. More strongly, the set of all chordal graphs and the set of the interference 

graphs of all SSA-form programs are equal [32]. However this does not mean the 

coloring of the interference graph derived in original register allocation problem is 

tractable. Because the SSA transformation cannot be reversed precisely, the coloring 

problems for the original interference graph and the post-SSA interference graph are 

not equivalent. 

No matter whether it is SSA-based, the register allocation in real world often 

requires spilling, and the optimization goal is to minimize the spilling cost. This 

optimization problem is NP-complete [22]. If we only consider the number of spilled 

live ranges instead of the spilling cost, this problem is still NP-complete for chordal 

graphs. But for interval graphs, it can he solved in polynomial time [39]. 

The coalescing is like an inversion of splitting. Bouchez et al. proved that all the 

best known variations of the coalescing problem are NP-complete [7]. 

Other requirements may add complexity. The pre-colored registers and register 

aliasing result in NP-complete complexity of register allocation, even if it is SSA-

based [29, 5, 30]. The register aliasing is a source of the irregularity of register files 



9 

and makes it hard to estimate the number of available physical registers, and we will 

discuss it in the following sections. 

2.3 LLVM Compiler 

LLVM (Low Level Virtual Machine) [28] is a compiler framework designed to support 

transparent, life-long program analysis and transformation for arbitrary programs, by 

providing high-level information to compiler transformations at compile-time, link-

time, run-time, and in idle time between runs. This framework defines a common, 

low-level code representation in Static Single Assignment (SSA) form, as the key to 

support its capabilities. The LLVM toolkit is implemented in the C + + language. 

LLVM has a pass manager and implements many passes, such as the passes for 

optimization, code-generation, and auxiliary support. In its implementation, a lin

ear scan register allocation algorithm [33] is used for global register allocation, for 

better just-in-time performance, we implemented a graph-coloring register alloca

tor, which uses support from some LLVM analysis passes, including Live Variables, 

PhiElimination, TwoAddressTransform and Looplnfo. 

The Live Variables pass derives variable information from an SSA structure, con

taining the definition of a node, the basic blocks it lives through, and the killing 

sites. 

The PhiElimination pass eliminates the necessity of PhiFunctions in SSA by 

adding copy instructions at the end of the predecessor basic blocks of the PhiFunc

tions. So it creates lots of live ranges connected by copy instructions, increasing the 

chances and importance of coalescing. 

The TwoAddressTransform pass transforms three-address instructions used in the 

intermediate representation of LLVM into two-address instructions used by the ma

chine instruction on some target platforms, such as X86. PhiElimination and TwoAd

dressTransform break SSA properties, because they introduce multiple definitions. 

The Looplnfo is used to compute the depth of loop for all instructions, which is 



10 

required for spill cost calculation. 

The graph-coloring register allocator also needs a data structure to maintain live 

ranges, which is a group of live variables connected by PhiFunctions. A live range 

stores a vector of live ranges addressed with instruction indexes. The live range 

analysis is implemented inside the graph-coloring register allocation pass, for easy 

dynamic updating. This register allocator also needs an interference graph, which is 

maintained as neighbor vectors in all live range objects in the implementation. 

2.4 Engineering Environment 

Hardware/Software Environment and Benchmark Programs 

All experiments are run on an Intel Core 2 Quad CPU Q6700 2.66GHz machine 

running a 32-bit Redhat Linux operating system. The running time is based on the 

user time outputted by tim,e program under linux. The experiments and evaluation 

will be based on the running time mainly, since it is single-valued and most directly 

related to performance. Other measurements are collected for evaluation and analysis, 

when needed. 

The LLVM version in use is 1.9. It uses the llvm-gcc front-end to transform 

C/C++ source code to LLVM byte code format, for later use by LLVM compiler lie. 

For the source code in Fortran, we used f2c to transform them into C language at 

first. 

The benchmark programs come from SPEC 95 and the LLVM test suite, includ

ing four programs that have many floating-point operations and four programs that 

have few floating-point operations. The following table lists the program names, the 

operation types, the test suites where they come from, the programming languages, 

the number of source code lines, and the brief descriptions. 



11 

Name 

analyzer 

lambda 

llu 

sim 

nasa 

pifft 

scimark 

spice 

! 

Type 

Integer 

Test Suite 

LLVM/freebench 

Language 

C 

Lines 

923 

Intervals 

498 

A dependency analyzer 

Integer LLVM C++ 2182 2896 

Lambda calculus interpreter 

Integer LLVM C 191 185 

A linked list traversal micro-benchmark 

Integer LLVM c 1596 2214 

Finding k best non-intersecting alignments between two sequences 

or within one sequence using dynamic programming techniques 

Integer +Floa,t SPEC 95 Fortran 1106 3183 

7 kernels for numerical computing that are heavily floating point 

intensive 

lnteger+Float LLVM/freebench C 4185 5223 

Calculation of PI(= 3.14159...) using FFT 

Integer -|-FIoat LLVM C 1233 903 

SciMark2 Numeric Benchmark 

Integer + Float SPEC 95 Fortran 18414 31173 

General purpose circuit simulation program for nonlinear dc, non

linear transient, and linear ac analyses 

Table 2.1 : Benchmark Programs 



12 

Available physical registers for register allocation in the programs 

The running environment is a 32-bit X86 machine, which provides 8 32-bit integer reg

isters, 8 80-bit floating-point registers STO through ST7, and 8 128-bit SSE registers 

XMMO through XMM7. 

The integer registers are complicated because of different register sizes and shared 

hardware units. The 32-bit registers also provide spaces for 16-bit registers and 8-

bit registers. Each 32-bit register can also be used to hold one 16-bit register. For 

example, EAX provides the space for AX. Each of the four general-purpose 16-bit 

registers can also be used to accommodate two 8-bit registers. Thus, some registers 

share the same physical units, and exclude the use of other registers that share the 

same space. And the two 8-bit registers in the same 16-bit registers do not exclude 

each other. Figure 2.1 illustrates the physical layout of these registers. 

General Purpose Registers (EAX, EBX, ECX and EDX) 

byte 3 byte 2 byte 1 byte 0 

EAX\EBX\ECX\EDX 

NOT USED 

NOT USED 

AX\BX 

AH\BH\CH\DH 

CX\DX 

AL\BL\CL\DL 

Pointer Registers (ESP and EBP) 

byte 3 byte 2 byte 1 byte 0 

ESP\EBP 

NOT USED SP\BP 

Index Registers (ESI and EDI) 

byte 3 byte 2 

ESI 

NOT USED 

byte 1 byteO 

EDI 

SI\DI 

Figure 2.1 : Integer Registers for Allocation 



13 

Beside four general-purpose integer registers, two index registers can also be used 

for general allocation. In LLVM compiler, pointer register ESP cannot be used for 

general allocation, but the other pointer register EBP can be used for general alloca

tion if the specified function does not need a dedicated frame pointer register. When 

the function has variable sized allocas or frame pointer elimination is disabled through 

command-line argument, a dedicated frame pointer is needed and the register EBP 

is used as the dedicated frame pointer, because the address in the frame cannot be 

determined at the compilation time. 

The floating-point registers STO through ST7 are not accessible directly, but are 

accessible as a LIFO stack. However, the register allocator allocates all registers as 

they can be accessed directly, so the allocator only use 7 such registers, with one 

reserved for later FP stackifier pass that transforms the direct register access into 

stack mode with the help of the reserved register. If the SSE registers are available, 

the LLVM compiler only uses the eight SSE registers for floating-point allocation. 

Because the hardware in use supports SSE registers, the register allocator used the 

eight SSE registers in the experiments. 

These complexities in physical registers add some difficulties to register allocation. 

For example, we cannot use a fixed value for k, the number of allocatable integer 

registers. Such irregular architectures exist in other target machines, so register 

allocation algorithms and implementations should consider them [37, 35, 36, 38]. In 

the terms used for generalized register allocation, RegisterClass refers to all registers 

that have the same type and size, and AliasSet means all registers that share the 

same physical space. For example, in X86, {AL, AX, EAX} makes an AliasSet, and 

{AH, AX, EAX} is also an AliasSet. AH and AL are not in the same AliasSet, 

but belong to the same RegisterClass. All registers in a RegisterClass provide the 

same functionality, so a virtual register can be allocated to any available register in 

a R.egisterClass. All registers in an AliasSet a.re names for the same physical register 

unit, so only one name from the set can be used. Since the RegisterClass describes 



14 

the type and size properties of registers, it is convenient to use the Register Class 

designation on virtual registers as well. 

Measurement errors in experiements 

The measurement of running time may be disturbed, resulting in errors of the per

formance results. In order to evaluate the effect of such errors, we ran scimark with 

5 different sets of the parameters for integer repeatedly and continually. This test is 

run under three modes: single process for 8 times, two simultaneous processes for 4 

times on every processing unit, and four simultaneous processes for 2 times on every 

processing unit. The following table contains the statistics from the measured results. 

According to the data, for most cases, the error range is less than 0.82%, but some 

relatively larger error appears occasionally, which is the reason for some big values 

(> 2.75%) of the "*»*Tm™. 
\ ' mm 

params 

{0,0} 

{0,16} 

{16,0} 

{16,16} 

{8,8} 

1-simultaneous 

mean 

29.2063 

26.4126 

26.8559 

30.0738 

25.7332 

stderr 

0.0211 

0.2391 

0.6644 

0.0483 

0.0520 

max — min, 
•mm 

0.20% 

2.75% 

7.37% 

0.50% 

0.55% 

2-simultaneous 

mean 

29.2028 

26.3150 

26.6241 

30.0936 

25.8278 

stderr 

0.0697 

0.0490 

0.0561 

0.0295 

0.2685 

rnax — min 
mm 

0.72% 

0.57% 

0.66% 

0.30% 

3.02% 

4-simultaneous 

mean 

29.2345 

26.3334 

26.6985 

30.1023 

25.7890 

stderr 

0.0329 

0.0734 

0.0681 

0.0313 

0.0484 

m a x - m t n 
rmn. 

0.34% 

0.82% 

0.77% 

0.29% 

0.54% 

Table 2.2 : Errors in running time measurement for scimark 

We noticed the simultaneous execution of scimark does not affect, the performance. 

But there are large errors from simultaneous execution in another program. The 

following table is from the similar running of program pifft. The standard error is still 

low, but the average running time changes greatly when the number of simultaneous 

processes changes. The greater the number of simultaneous processes is, the slower 

the program runs. The following figure shows it clearly. We also found that though 

the performance changes over the degree of simultaneity, the error for multiple runs 



15 

under one mode is still low. Thus, the experiments on this program should be run in 

non-simultaneous mode, in order to output comparable results. 

params 

{0,0} 

{0,16} 

{16,0} 

{16,16} 

{8,8} 

1-simultaneous 

mean 

23.2684 

28.7048 

22.4638 

25.6861 

22.6915 

stderr 

0.0435 

0.0399 

0.0568 

0.0460 

0.0306 

max —min 
min 

0.53% 

0.45% 

0.85% 

0.48% 

0.42% 

2-simultaneous 

mean 

25.2118 

29.9639 

24.5705 

27.2284 

24.7787 

stderr 

0.0973 

0.0896 

0,1183 

0.1723 

0.1193 

max —min 
min 

1.02% 

0.81% 

1.11% 

1.61% 

1.30% 

4-simultaneous 

mean 

41.9229 

43.6674 

41.5265 

42.6561 

41.7195 

stderr 

0.1080 

0.1528 

0.1245 

0.1064 

0.1143 

max — min 
m m 

0.73% 

1.17% 

0.80% 

0.73% 

0.90% 

Table 2.3 : Errors in running time measurement for pifft 

Average Running Time vs Simultaneous Processes 

4-simultaneous | 

1 ^simultaneous j 

1 1-simultaneous I 

i 

T i i r 

Figure 2.2 : Average Running Time vs the Number of Simultaneous Processes 



16 

Chapter 3 

Tunable Parameters for Graph Coloring Register 
Allocator 

3.1 Implementation of the Register Allocator 

In order to find tunable parameters, we need to get into the details of the graph 

coloring register allocation algorithms. The implementation details of the algorithm 

and the hardware environment can help us to understand the factors that might in

troduce good parameters. The implementation uses some facilities provided by the 

LLVM platform. This section will present the implementation details, the opportu

nities for tunable parameters, and the dominative choices. 

Figure 3.1 shows the structure of the graph-coloring register allocator in our im

plementation. We will discuss the implementation details in this section. 

^v build LR, 1G & 
spilling costs 

: jt&80i}ii fmcoloritig 

: iteration for etmlpseing ' 

coalesce' -+*: simplify 

I after each coalescing 

update' 1JR, IG 
& spiing costs R 

I 

•, - i 

) 

find colors ~ 

potenfial spill,.' 
update tR,!© 
& spilling costs 

ifthere is any uncolorable live range 
I 
1 

Figure 3.1 : Graph-coloring register allocator 



17 

Building Live Ranges 

The compiler scans all the basic blocks in a function and all the instructions in 

each basic block for definitions. Once a definition is found, it uses LiveVaribles 

information to find where it is live and inserts the ranges into live range structure. If 

the live range for this definition has been initialized, which may result from multiple 

definitions generated by either PhiElimination or Two Address Tranform, then the 

compiler combines the live ranges for these definitions together. 

When a live range is spilled, it becomes a series of tiny ranges. The allocator 

directly updates the live range structure to reflect these changes, so there is no need 

to re-generate the live ranges. 

The data representation used in live ranges can facilitate interference computation. 

Because it uses numbered indexes to describe the ranges, number comparisons are 

enoiigh for interference computation. The overlapping method is not the most precise 

method for interference computation, but it is simple enough. 

Building the Interference Graph 

Interference can be calculated by checking the overlap between live ranges. But in 

the real world, determining interferences is not so easy. On the X86, for example, the 

registers do not have identical functions. The LLVM compiler uses RegisterClass and 

AliasSet to define the relations among registers. If two virtual registers belong to the 

same RegisterClass, they may interfere. But this is not adequate. We need to define 

a new concept, Conflict-Set, which contains all the registers that may occupy the same 

physical unit. The ConfiictSet can be derived from RegisterClass and AliasSet. Put 

all RegisterClasses and AliasSets together, and if there are two sets that, have at least 

one element in common, replace the two sets with the union of them, until no more 

union can be made. Strictly, if two intervals belong to one ConfiictSet, they may 

interfere, and if not, they never interfere. For 32-bit X86 target machine, there are 

two ConflictSets, integer and floating point. Thus, the allocator can build separate 



18 

interference graphs for each ConnietSet, significantly reducing the cost of building 

the interference graphs. [17] 

Calculating the Degree in Interference Graph 

The computation of "degree"'in interference graph is a. little subtle. According to the 

usage of the concept, the term, "degree" is not the same as the degree in graph theory, 

because this "degree" is used to determine how many physical register units can ac

commodate its neighbors. The difficulty comes from two reasons - one is the complex 

relation among physical registers, the other is some neighbors may be allocated to 

the same physical register. 

Because of the use of RegisterClass and AliasSet, the precise calculation is com

plicated. Allocating a virtual register to different physical registers may result in 

different numbers of available registers. For example, allocating two 8-bit virtual 

registers to {AH.AL} and -\AL,BL} leads to different numbers of available 16-bit 

and 32-bit physical registers. Furthermore, even if we know how many physical reg

isters are used for the neighbors, we do not know whether the current register can 

be allocated in some cases. For example, if all 32-bit physical registers have been 

used and the virtual register that needs to be allocated is an 8-bit register, then this 

register still has a chance to be allocated, in case that one of physical registers only 

contains one 8-bit virtual register. To handle such cases, the allocator needs detailed 

knowledge about the current register allocation. But in practice, we often ignore this, 

because it is not realistic and the advantage is small. 

After allocation, some neighbors may receive the same physical register, so the 

real physical unit occupation may be less, than the earlier estimate. If the estimate of 

the number of physical registers that .will be used by a group of virtual registers could 

be more accurate, the chance of profitable coalesces will increase. More coalesces may 

lower the demand of registers. The difference between the number of used physical 

registers and the number of virtual registers can help improve the estimate, but the 



19 

difference varies among programs, and even within a single. A guess can be made for 

the number of physical register needed. Even an upper bound or a lower bound may 

be helpful, because sometimes it can lead to a "safe" decision. If the lower bound is 

greater than the number of physical registers, it is uncolorable; if the upper bound is 

less than the number of physical registers, it is colorable. For other cases, we may use 

probability. This can be regarded as a general model for the degree estimation used 

in coalescing. Aggressive and conservative coalescing are special cases of this model, 

for they set some strong assumptions for the upper bound or lower bound. 

There are some cases where we can improve the degree estimation. Spilling creates 

new smaller intervals. The new intervals are so tiny that they are only live within 

one instruction, so only tiny intervals in one instruction may interfere. As a result, 

two physical registers are enough for all the intervals from spilling, if the processor 

uses two-address instructions. The more knowledge we have about the relationship 

among the neighbors, the better estimate of degree we can make. Next, we will see 

an experiment on the degree calculation for the tiny intervals from spilling. 

We tested three methods for degree estimation - assigning all tiny intervals into 

one physical register, assigning all tiny intervals into two physical registers, and a 

precise method that checks the interference among the tiny intervals to determine how 

many registers they require. Experimental results indicate that the precise method 

is slightly better. So our implementation adopted the precise method. 

Calculating Spilling Cost 

The number of the executions of a loop is estimated as 10. So the computation of 

spilling cost is 

SpillingCost(LR) = Z d s / s , u s e s e L R 10**tfc of th* ""* 

The very short intervals, such as use-after-def and the intervals from spilling, are 

assigned a very large spill cost, so that they will not be spilled. 



20 

Coalescing 

In the implementation, each coalesce needs to erase one of the coalesced intervals, 

transfer its information to the other, and update the adjacency relation in interference 

graph. After coalescing, the degree of related intervals will change, creating new 

chances for coalescing. An iterative method is used for coalescing. 

Simplifying 

To simplify a graph, the allocator takes nodes off the graph and pushes them onto 

a stack to construct a coloring order for later use. This procedure can be divided 

into two stages. The first is to push all unconstrained nodes whose spill cost is not 

very large, and the second is to push all other nodes in the incremental order of 

costs. As described above, a large spill cost means the node cannot be spilled. Here 

we see "unconstrained" again. The traditional algorithm compares the degree in 

interference graph and the number of available physical registers to determine if a 

node is unconstrained. As we see in coalescing, we do not know accurately how many 

physical registers will be needed for neighbors finally, so this determination is also 

based on heuristics, which creates the chance to introduce some tunable parameters. 

Finding Colors 

The approach of coloring the nodes is used to find an available register for each live 

range. The procedure is to pop the stack and look for an available color for the 

popped node. If a node cannot be colored, it will be spilled. 

During the coloring procedure, using different policies for ordinary intervals and 

the tiny intervals from spilling is reasonable, because the properties of the two types 

of intervals are very different. My implementation assigns the first available color for 

an ordinary interval and the-last one in the available color vector for a tiny interval. 

It means to push the two kinds of intervals to the two ends of the physical register 

vector, such that the possibility that they interfere is reduced. The method makes an 



21 

apparent improvement, compared with assigning color in the same manner. 

Assigning Virtual Registers to Physical Registers 

Once all intervals receive colors, the register allocation can start to assign physical reg

isters and add spill instructions. In current implementation, load or store instructions 

are inserted to every tiny interval from spilling. This is a little inefficient, because 

some load instructions may be unnecessary. [4] 

Inserting Spilling Code 

The current implementation spills the intervals that do not get a color. Such intervals 

are broken into small intervals, which are marked "spilled", and assigned a very 

large spill cost. Load/store instructions are not inserted at this time, in order to 

avoid updating the instruction index in live ranges frequently. After the intervals are 

broken into small ones, the register allocator enters next coloring iteration, where the 

ordinary intervals and the tiny intervals from the spilled intervals will be put together 

and be colored again, until no new spilling happens. With the iterative method, the 

allocator need not reserve registers for spilling. 

3.2 Dominative Choices on Parameters 

By studying the details of the implementation, we found some points where different 

methods or different arguments are possible, which make the candidates for param

eterization. At first, we need to identify some parameters where one choice wins for 

most case. For these parameters, using the best choice can result in better perfor

mance and smaller parameter space. As described above, the following parameters 

have dominative choice: 

Degree estimation for a set of tiny intervals from spilling 

The level of interferences among such intervals is low and calculable, so the 



22 

allocator can calculate the number of physical register they really need, which 

is 1 or 2 for two-address processors, much less than the total number of the tiny 

intervals. 

Register assignment policy for tiny intervals from spilling 

Try to keep the tiny intervals in a small set of physical registers. On average, it 

can create more continuous spaces in physical registers such that more ordinary 

intervals can be accommodated. 

3.3 Tunable Parameters for Performance 

In a graph-coloring register allocator, the criterion for unconstrained/constrained 

and the estimation of spill costs is critical for the performance of compiled programs. 

However, it is very hard to calculate them when they are needed. Only after the 

whole allocation is finished, does the allocator know if an interval is unconstrained, 

i.e., colorable. For spill costs, it is dynamic in execution, so computing a precise value 

at compilation time is impossible. In order to solve these problems, people use some 

heuristics, as mentioned in previous chapters. My new method turns these heuristics 

into tunable parameters, creating a chance for better performance. 

We noticed that the number of available physical registers plays an important role 

in each of the heuristics. This value is used to make some important estimates and 

decisions in coalescing and simplification. 

In coalescing, the number is important for evaluating the profitability of a specific 

coalesce decision. One difficulty is that the number of available physical registers is 

not certain for the processor we are using, because of the complicated register layout. 

The other is that we do not know how many physical registers will be needed for a 

group of virtual registers, and this value will be compared with the number of available 

physical registers. If we define the number, of physical registers as a parameter, we 

can lessen the trouble from the first problem. As for the second, it is about the 



23 

comparison between two values, so making either side tunable is fine. 

In coloring, the number is used to divide the two stages of simplification. The 

boundary between the stages is determined by the number of available physical regis

ters, because it defines what is unconstrained. Like the inaccuracy in coalescing, the 

number of physical registers does not divide them accurately, but we cannot calcu

late an accurate value for it. We are not even sure whether one value is better than 

another. Therefore, we also let it be a tunable parameter. 

Now we have two parameters for adaptive control. Considering integer and float 

register classes do not intersect, we divide each parameter into two, one for integer 

and the other for float. 

We also tried different methods for spilling cost calculation and add it the param

eter list. Actually, the calculation for total spilling cost is identical, but the values 

used to order the intervals in the stack may contain other heuristics. My implementa

tion use three method - cost, ~j^~, and -;cost, - where the cost is the estimated total 
' degree.' , degree* 

spilling cost of the interval and the degree is number of interfered intervals. Previous 

research demonstrated no one wins for all application [4], so it is suitable as a tunable 

parameter. 

Finally, we have five parameters for adaptive searching. The new command line 

arguments are 

-coalcscing-thrtshold-inieger=< int > -stack-threshold-integer—< int > 

-coalescing-threshold-float—< int > -stack-threshold-float—< int > 

-weight-method-{0\1\2} 



24 

Chapter 4 

Properties of the Performance on Parameter Space 

4.1 Experiments for Data Analysis 

We compiled the benchmark programs with different arguments in the parameter 

space and ran them. The four arguments for thresholds vary from 0 to 20, and the 

weight-method parameter has 3 choices. Therefore, the size of the parameter space 

is 21 x 21 x 21 x 21 x 3. But, the experiments in this chapter only use sub-spaces, by 

fixing the parameters for integer intervals when varying the parameters for floating

point intervals or fixing the parameters for floating-point intervals when varying the 

parameters for integer intervals. Prom the experiments, we collected the values of 

running time, the number of spilled intervals, the number of coalesced intervals, and 

others. The log files of the compiler contain more details, so we are able to get more 

values from them when we need. The data were analyzed for the following goals: 

Performance range - At first, we want to know if the extended parameter space 

creates any chance of better performance than fixed parameter method. This 

is about the probability of better performance. 

Surface properties - We would better know the changing tendency of performance 

over tunable parameters. If the surface of the performance in the multi-dimension 

space is smooth, the adaptive searching can find the best value quickly. The 

surface properties have an impact on the selection and design of the searching 

algorithm. This is about the feasibility of better performance. 

Intermediate variables - We know lots of variables are correlated. In this experi

ment, we have an initial input and get a, compiled program, then get the running 



25 

time of the compiled program finally. Besides the initial input and final out

put, there are some intermediate variables in the compilation procedure. If 

we can establish some links between the input and the intermediate variables, 

or the links between the intermediate and the out, we may accumulate more 

knowledge on how the input affects the output and more heuristics for better 

searching strategy. This is about the path to better performance. 

Relation among parameters - If we can find the parameters are independent from 

each another, we may transform this problem into the optimizations of several 

sub-problems to improve searching efficiency. This is based on an observation 

that the allocations of integers and floats are independent, but experiments are 

needed to prove it. On the other hand, if we find redundant parameters, we can 

shrink the searching space. This is also about the path to better performance. 

4.2 Performance Range Analysis 

Table 4.1 presents the statistical values from the running time of the programs for 

integer and floating-point performance. The four major rows represent four programs. 

Each contains two major columns for data. The left column labeled with integer 

means changing each threshold parameter for integer intervals from 0 to 20, when 

fixing the threshold parameters for floating-point intervals to {8,8}. Similarly, the 

right column labeled with float means changing the parameters for floating-point 

intervals and fixing the parameters for integer interval to {8,8}. Each major column 

has three minor columns, representing the choices of the parameter for spilling weight 

calculation. In each group of experiments on a program with a spilling weight method, 

there are 21 x 21 = 441 executions. The table shows the best, the worst, and the 

average values from the 441 running time data, as well as the percentage representing 

the difference between the best and the worst values. The numbers in bold means 

the best (minimum) values from the three choices on weight calculation. 



26 

Table 4.2 lists the values for the programs only on integer performance. It is 

similar as Table 4.1, except it does not contain the float column. 

We also ran the algorithms with conservative coalescing and aggressive coalescing. 

In out parameter model, the threshold parameters for conservative coalescing are 

{8,8,8,8}; and the threshold parameters for aggressive coalescing are {00,8,00,8}. 

Although the number of available integer physical registers cannot be set precisely as 

discussed above, we assigned the closest estimate for it in the conservative coalescing 

method. Table 4.3 compares the conservative and aggressive methods with the best 

results in the [0, 20] x [0, 20] parameter space for the 8 benchmark programs with 

3 different spill-cost calculation choices. The table also contains the worst results 

in the parameter space for comparing. The percentage values in the table represent 

the relative difference to the best values that are benchmark values(100%). There 

are some cases where the aggressive method is better than the best value in the 

parameter space. This is reasonable, considering the best values are from a sub-space. 

We also found neither the conservative method nor the aggressive method wins over 

the other one. The percentage values in bold means the aggressive coalescing method 

perforins better than the best values in the row. Though in some rows of this table 

the aggressive method performs better, it is possible that varying the thresholds for 

simplification can make better results than fixing them to 8. 

Prom these tables, we can get the opportunity of performance improvements using 

parameterization and other important properties. The following lists the results. 

The parameterization is profitable. We can make this statement from table 4.3. 

The maximum improvement of the tunable parameter method over the bet

ter one of the conservative and the aggressive methods is 16%(scimark, cost 

method). Among all the 8 programs, 2 programs have significant improvement 

and 3 programs have not so large improvement with the tunable method. If a 

larger parameter space is used, the parameterization will make more improve

ments. And the effects of the improvement vary from program to program, so 



27 

there is not a method that always wins. 

Adaptive searching is necessary for the best parameters. For this conclusion, 

we need to see what parameters can give the best running times. Apparently, 

the parameters are very different among programs. In next section, we will see 

some figures showing more detailed data and clearly conclude that no one pa

rameter can give good results for all programs. Therefore, since every program 

has its own best parameters, the compiler needs adaptive search to find it. 

No choice on weight calculation always wins. The best values are in bold. We 

can find every data column contains numbers in bold, so no one spill heuristic 

wins always. This result confirms the experiments presented in [4]. Also, in some 

programs, the performance difference between certain choices on weight calcu

lation is large, especially, between cost and ;̂ f~- Overall, the ^fee method is 

better than the cost method, and is close to the -—^ method. 
n.pnrp.p.*' 



28 

Pro gram 

spice 

nasa 

pifft 

scimark 

i 

best 

worst 

mean 

worst—best 
worst 

best 

worst 

mean 

worst — besi. 
worst 

best 

worst 

mean 

worst—best 
worst 

best 

worst 

mean 

worst—best 
worst 

Integer 

cost 

6.857 

{16,8} 

7.985 

{3,20} 

7.21638 

14.13% 

2.527 

{13,6} 

2.755 

{8,16} 

2.58356 

8.28% 

27.431 

{18,4} 

36.450 

{2,19} 

31.2261 

24.74% 

25.258 

{6,6} 

36.043 

{6,15} 

30.6128 

29.92% 

cost 
degree 

6.853 

{16,9} 

7.979 

{2,20} 

7.19807 

14.1.1% 

2.512 

{13,9} 

2.696 

{2,0} 

2.55726 

6.82% 

21.810 

{20,6} 

32.558 

{6,20} 

.26.7503. 

33.01% 

22.710 

{10,17} 

32.228 

{13,20} 

27.1435 

29.53% 

cost 
degree2 

6.853 

{19,12} 

7.929 

{4,16} 

7.21828 

13.57% 

2.532 

{13,20} 

2.678 

{11,3} 

2.59058 

5.45% 

21.947 

{20,4} 

32.961 

{9,20} 

26.8491 

33.42% 

22.826 

{9,17} 

31.941 

{13,17} 

26.3835 

28.54% 

Float 

cost 

6.851 

{20,6} 

7.071 

{3,20} 

6.90894 

3.11% 

2.532 

{18,9} 

2.662 

{3,5} 

2.56462 

4.88% 

27.895 

15,2} 

32.479 

{19.19} 

29.5385 

14.11% 

29.051 

{18,8} 

36.833 

{1,16} 

32.2859 

21.13% 

cost 
degree 

6.906 

{20,10} 

7.138 

{16,19} 

6.9619 

3.25% 

2.499 

{15,10} 

2.656 

{0,4} 

2.53881 

5.91% 

23.553 

{11,18} 

29.137 

{17,19} 

25.0144 

19.16% 

25.564 

{15,16} 

30.387 

{2,18} 

26.5814 

15.87% 

cost 
degree2 

6.903 

{20,10} 

7.121 

{15,20} 

6.95663 

3.06% 

2.546 

{16,13} 

2.695 

{0,7} 

2.58917 

5.53% 

24.271 

{11,18} 

29.370 

{4,19} 

25.4652 

17.36% 

25.597 

{14,12} 

32.846 

{1,20} 

26.5861 

22.07% 

Table 4.1 : Running time on parameter space for integers and floats 



29 

Program 

analyzer 

lambda 

llu 

sim 

best 

worst 

mean 

worst—best 
worst 

best 

worst 

mean 

worst—best 
worst 

best 

worst 

mean 

worst—best 
worst 

best 

worst 

mean 

worst —best 
worst 

Integer 

cost 

41.187 

{12,12} 

50.240 

{13,9} 

44.7724 

18.02% 

6.089 

{7,4} 

6.673 

{3,17} 

6.27299 

8.75% 

13.346 

{14,20} 

15.145 

{0,13} 

14.1464 

11.88% 

10.859 

{7,14} 

12.581 

{18.9} 

11.3301 

13.69% 

cost 
degree 

42.967 

{17,14} 

51.955 

{19,0} 

44.9981 

17.30% 

6.089 

{9,20} 

6.591 

{10,12} 

6.31798 

7.62% 

13.376 

{6,11} 

15.087 

{0,17} 

14.1434 

n . 3 4 % - 1 

9.496 

{1,16} 

10.634 

{5,3} 

9.95391 

10.70% 

cost 
degree2 

42.263 

{10,3} 

46.457 

{2,6} 

44.0471 

9.03% 

6.115 

{6,19} 

7.061 

{8,3} 

6.32343 

13.40% 

13.456 

{18,10} 

15.240 

{4,12} 

14.1553 

11.71% 

9.652 

{3,15} 

10.978 

{14,1} 

10.0838 

12.08% 

Table 4.2 : Running time on parameter space for integers only 



30 

Program 

spice 

nasa 

pifft 

scimark 

analyzer 

lambda 

llu 

sim 

cost 

cost 
degree 

cost 
degree'2 

cost 

cost 
degree 

cost 
degree'2 

cost 

cost 
degree 

cost 
degree2 

cost 

cost 
degree 

cost 
degree2 

cost 

cost 
degree 

cost 
degree'2 

cost 

cost 
degree 

cost 
degree2 

cost 

cost 
degree 

cost 
degree2 

cost 

cost 
degree 

cost 
degree2 

best 

6.851 {8,8,20,6} 

6.853(16,9,8,8} 

6.853(19,12,8,8} 

2.527(13,6,8,8} 

2.499(8,8,15,10} 

2.532 {13,20,8,8} 

27.431 {18,4,8,8} 

21.810(20,6,8,8} 

21.947(20,4,8,8} 

25.258(6,6,8,8,} 

22.710(10,17,8,8} 

22.826(9,17,8,8} 

41.187(12,12,8,8} 

42.967(17,14,8,8} 

42.263 {10,3,8,8} 

6.089(7,4,8,8} 

6.089(9,20,8,8} 

6.115(6,19,8,8} 

13.346(14,20,8,8} 

13.376(6,11,8,8} 

13.456(18,10,8,8} 

10.859(7,14,8,8} 

9.496(1,16,8,8} 

9.652(3,15,8,8} 

worst 

7.985(117%) (3,20,8,8} 

7.979(116%) {2,20,8,8} 

7.929(116%) {4,16,8,8} 

2.755(109%) {8,16,8,8} 

2.696(108%) {2,0,8,8} 

2.695(106%) {8,8,0,7} 

36.450(133%) {2,19,8,8} 

32.558(149%) {6,20,8,8} 

32.961(150%) {9,20,8,8} 

36.833(146%) {8,8,1,16} 

32.228(142%) {13,20,8,8} 

32.846(144%,) {8,8,1,20} 

50.240(122%,) {13,9,8,8} 

51.955(121%) {19,0,8,8} 

46.457(110%) {2,6,8,8} 

6.673(110%) {3,17,8,8} 

6.591(108%) {10.12,8,8} 

7.061(116%) {8,3,8,8} 

15.145(113%) {0,13,8,8} 

15.087(113%) {0,17,8,8} 

15.240(113%,) {4,12,8,8} 

12.581(116%) {18,9,8,8} 

10.634(112%) {5,3,8,8} 

10.978(114%) {14,1,8,8} 

aggressive 

6.828(100%) 

6.863 (100%) 

6.860 (100%) 

2.717(108%) 

2.795(112%) 

2.747 (108%) 

26.778 (98%) 

23.982(110%) 

24.163(110%) 

32.979(131%) 

29.119(128%) 

28.959 (127%) 

34.085 (83%) 

34.469 (80%) 

34.004 (80%) 

6.373 (105%) 

6.502 (107%) 

6.274(103%) 

13.497 (101%) 

13.729 (103%) 

13.031 (97%) 

9.614 (89%) 

8.867 (94%) 

9.159(95%) 

conservative 

6.883 (100%) 

6.881 (100%) 

6.955(101%) 

2.563(101%) 

2.559 (102%) 

2.573 (102%) 

29.470 (107%) 

24.845(114%) 

25.655(117%) 

29.299(116%) 

25.701(113%) 

25.939(114%) 

42.178(102%) 

43.775 (102%) 

43.693(103%) 

6.232 (102%) 

6.310 (104%) 

6.253 (103%) 

13.656 (102%) 

13.785 (103%) 

13.758(102%) 

11.064(102%) 

9.660(102%) 

9.884 (102%) 

Table 4.3 : Comparing the best results in [0,20] x [0,20] parameter space with the 
conservative and aggressive coalescing methods 



31 

4.3 Performance Tendency Analysis 

Figure 4.1-4.8 graph the running time against the thresholds for each program. These 

executions are the same as those in Section 4.2. Every program contains three or 

six graphs, depending on whether the program contains integer performance only. 

The multiple graphs for a benchmark program correspond to the different spill cost 

calculation methods. For the programs on integer and floating-point, the left column 

means the changing on the integer thresholds, and right for changing on floating-point 

thresholds. From top to bottom, the weight calculation method is cost, dl°^ee, and 

d™rle2 respectively. In the graphs for an individual program, the value ranges of all 

three axes are identical, for easy comparison. In each graph, the X-axis and Y-axis 

are for the varying parameters, and the Z-axis is for the running time. 

From these graphs, we can easily see how the performance changes when the 

parameters vary. The properties of the surface are very helpful for evaluating the 

difficulty of space searching and designing a suitable algorithm. In these graphs, 

there are different properties of the surface. Also, the surface in a graph displays a 

composition of different properties. 

From a large scale, some graphs display a property of monotonicity. The integer 

graphs of spice (Figure 4.4) and pifft (Figure 4.2) are typical over the entire X-Y 

scope. Some other graphs show monotonicity for a part of the entire X-Y scope. For 

example, some areas on the integer graphs of scimark (Figure 4.1) is almost even, and 

the boundaries is monotonic. 

From a small scale, we noticed that some surfaces have a property of smoothness. 

Perfect smoothness is rare in these graphs. Some areas in the graphs for scimark 

(Figure 4.1) are close to this concept. For other graphs, we can classify the local 

properties of the surfaces. In some graphs, there are high steeps, even forming a spike 

with a small top. There also exist some uneven areas where the changes are small. 

The two types of changes may come from diiferent reason. Some of small changes 

are from measurement errors. The sudden changes may come from the instability 



32 

of algorithms. In the register allocation, it is possible that a small difference on 

parameters or internal states leads to a big difference on the final allocation result. 

Monotonicity and smoothness are good for searching. For other situations, some 

adjustments on searching algorithms are necessary for good performance. 

A composition of different properties is common. Some graphs are roughly mono-

tonic at a large scale, and not smooth at a small scale. Actually, for small changes 

among neighbors, a low-pass filter can make it smoother and reveal more large-scale 

tendency. 

The large-scale predictability and the small-scale unpredictability in some graphs 

imply the different consequences of the parameterization and the different reasons 

for better results. This parameterization creates a large space that may expand to a 

"good" area. On the other hand, it also introduces disturbance, resulting in good or 

bad results, in an unpredictable way. These mean two categories of good points. One 

is reachable using a searching algorithm; the other can often be reached by chance. 

It is unfair to state the first is good and the second is bad. In fact, the disturbance 

also expands the range of the performance spa,ce, bringing a probability of better 

result. The disadvantage is the disturbance may hidden the predictable properties 

of the surface and become an obstacle for reaching the first category of good points. 

Adaptive searching is suitable for the first category of good points, while random 

probing can be used for the second category. The average time of adaptive searching 

is relative to the algorithm itself; and the average time of random probing relies on 

the statistical property of the target space. Actually, most searching algorithms does 

both tasks. The searching algorithm for a certain problem may need a deliberate 

tradeoff between seeking a tendency and catching a chance. 

We also noticed these graphs show no diagonal symmetry, so the two thresholds 

do not have similar meaning, and should be treated separately. 



33 

scimark: integer, cost scimark: float, cost 

38-. 

36 -

<S 34 -
o 
% 32 -
to 

I 30-
o> 2 8 , 

| 26 -
rx 

2 4 , 
22 a . 
20 

- :% ^r 

UA 
I T 

38 

36 

<3 34 
c 
§ 32 

I 4 f - • >Vj^-7. V-... :;•-.:; 

Threshold for coalescing 0 0 Threshold for pushing stack Threshold for coalescing 0 0 Threshold for pushing stack 

scimark: integer, cost/degree scimark: float, cost/degree 

38-, 

36 

f3 41 
| 30 

oi 28 

| 26 
rx 

24 

22 
20 

Thieshold ior coalescing 

' " ^ ••*• 

Threshold fo. pushing stock Threshold lor coalescing Threshold for pushing stack 

scimark: integer, cost/degree" scimark: float, cost/degree' 

38 

36-

S 34 -
c= 
o 
8 32-

i i'kv,, 

Threshc'd tor coalescing 

i®> 

k\h v-

4-s>: 

Threshold lor pu-,hii-g stack Threshold for coalescing Threshold for pushing stack 

Figure 4.1 : Mesh Graphs of scimark Running Time 



34 

piffl. integer, cost pifft: float, cost 

Threshold tor coalescing Threshold for push-ng stack Threshold for coalescing Threshold for pushing stack 

pifft: integer, cost/degree pifft: float, cost/degree 

38^ 

36. 

6- 34. 

I *-
in 
^ 3 0 . 
E 
*= 2 8 . 
o> 
I 26-
rr 24- .,• 

2 2 . ' 

20 

Threshold for coalescing 

& 5 

38^ 

36-

' r?34. 

£ 3 0 , 
s 28 

1 26 

±' 24 

22 

20 

mniim 

0 0 1 hrahokj ior pushing slack T h ' e s h ° ! d , c r =°a!escing Threshold for pushing slack 

piflr integer, cost/degree2 pifft: float, cost-'degree 

36. 

5 34-

1 32~ 
f 30 

X 24.1 

22 .j 

mlfK 
•••' i n i i ! r r > r ^ - "••••• 

Threshold for coalescing 0 0 ioid for pushing stack Threshold for coalescing Thieshold for pushing stack 

Figure 4.2 : Mesh Graphs of pifft Running Time 



35 

nasa: integer, rost 

$$&: 

nasa: float, cosi 

Threshold for coalescing 0 0 Threshold-for pushing stack T h ^cho ld for coalescing Threshold for pushing stack 

nasa' integer, cost/degree nasa: final, cost/degree 

Threshold fo: coalescing Threshold for pushing stack Threshold for coalescing 0 0 Threshold for pushing stack 

nasa: integer, cost/degree-'" nasa: float, cost/degree 

y~>: \ 

<R *sm 

Threshold for coalescing Threshold for pushing stack Threshold (or ccalescinq 0 0 Threshold for pushing stack 

Figure 4.3 : Mesh Graphs of nasa Running Time 



36 

spice: integer, cost spice: float, cost 

7.8 

I,, 

I" 

LA-

HT'- ' 

Threshold for coalescing Threshold (or pushing stack Threshold for coalescing 0 0 Threshold for pushing stack 

spice: integer, cost/degree spice: iloat, cost/degree 

Threshold for coalescing Trueshold for pushing stack Threshold for coalescing Threshold for pushing stack 

spice: integer, cost/degree2 spice, float, cost/degree*^ 

7.8 J 
S" ! 
I 7-6-1 

Threshold lor coalescing Threshold tor purhing stack Threshold for coalescing Threshold for pushing stack 

Figure 4.4 • Mesh Graphs of spice Running Time 



37 

5 2 1 

^ 5 0 . 
•o 
c 
o 

0) ^ ° ~ 

01 

• I ^ 
O) 

c 
"g 44 . 
3 
cc 

4 2 . 

20 

analyzer: integer cost 

\ F 

M , 

r 
^ 

ll'i'i '• 
Mb-'' \ < 

V . i 
• • , N i -

Threshold for coalescing 0 0 Threshold for pushing stack 

analyzer integer, cost/degree 

5 2 1 

o 
u 4 8 , 

I 46-
c 

42 > 

20 ' 

i • 

Jf.V": 
IM-: 
11 ; i \ 

^ 

\ 

Threshold tor coalescing Threshold for pushing stack 

analyzer: integer, cost/degree' 

52 x 

_ 50~ 
-o 
c o S 48-

| 46. 

I 44-
IT 

42-

20 ' 

/ 

\ 

X 
V 

\ / 
\ 

\̂  

/• 

' \ ' 
A 

•?\\ 
//\ -r 1 

lambda: integer, cost 

Threshold tor coalescing 0 0 Threshold for pushing stack 

lambda1 integer, cost/degree 

7 2 . 

4 

r 
11 6 2 

I 
20 

Threshold for coalescing Threshold for pushing stack 

lambda: integer, costydegree 

7.2 

7-

I 6.8-

?T 6.6 
llXsA* 

\ \\\\ 1 , 1 I I I 
' ' " I I 

I 1 ? 

.V°" ^ \ / ' 

Threshold for coalescing 0 0 

! 
threshold for pushing stack I Threshold for coalescing 

Figure 4,5 : Mesh Graphs of analyzer 
Running Time 

Threshold for pushing stack 

Figure 4.6 : Mesh Graphs of lambda Run
ning Time 



38 

ilu: integer, t-nsx 

-\V'\V^V uwm]p^ 
Threshold for coalescing 0 0 Threshold foi pushing stack 

liu: integer, cost/degree 

Threshold for coalescing 0 0 Threshold for pushing stack 

liu: integer, cosi/degree7 

Sim: integer, cost 

Threshold tor coalescing 0 0 Threshold for pushing stack 

sim: integer, cost/degree 

Threshold for coalescing Threshold!'.: pushing stack j threshold for coalescing Threshold for pushing stack 

Figure 4.7 : 
Time 

Graphs of'liu. Running j Figure 4.8 : Mesh Graphs of sim Running 
! Time 



39 

4.4 Compilation Procedure Analysis 

We can construct a chain from the parameters to the final performance, and there 

may be some links between the two ends. The coalescing threshold parameter and 

pushing-stack threshold parameter have a direct effect on the number of allocation 

results, including coalesced intervals and spilled intervals. And the differences of the 

allocation results play a major role for the running time of the compiled code. If we 

model the relationship among them, it will be helpful for adaptive search, because we 

can estimate the final performance without running the code. 

We collected the number of spilled intervals, the number of coalesced intervals, 

the number of loads/stores added and the estimated spill costs, then plotted them 

to study the relation between them and the running time. Figure 4.9 contains the 

mesh graphs for these data, and running time of scimark. The graph for the number 

coalescing is very regular and smooth, but it looks not correlated well with the running 

time graph. The spill cost graph is also regular' and smooth, and the area where the 

thresholds are small shares the same surface as the running time. The graphs for 

spilled intervals, stores, and loads are complicated and it is haxd to correlate them to 

the entire running time. These last four graphs that are relevant to spilled intervals 

all have small values when the pushing-stack threshold parameter take values near 

10. 

We also made a linear regression for these data. The results show that the inputs 

and the targets have some correlations at large scale, but the regression results and 

the real results are not close enough. Especially, there are fluctuations at small scale 

that the regression cannot capture. Thus the statistics of the interval allocation 

cannot provide enough information for the performance estimation. Chapter 5 will 

discuss this problem, with the details of the intervals. There are also some factors 

related to real running, such as the dynamic running counts of basic blocks and the 

memory/cache effect, which also make the running time estimation is hard. 



40 

Running time The number of coalesces 

38 

36 > 

S" 3 4 . 
c 

V-.. -• 350.. 

300-

250 . 

200 . 

150. 

100 

50 J 

\v^M\ 

Threshold (or coalescing Threshold for pushing stack Threshold for coalescing Threshold for pushing stack 

Spill cost The number of spills 

fl!!!!?m> 

mmmmt 
^'miitiiiiiiil 

160., 

150 

140 

130 J 

I 
120.] 

110 

100 
20 

T*5££fe 
•^3*5<s£5? 

• " ' "• " ^ ^ ^ y 

Threshold for coalescing Threshold for pushing stack Threshold for coalescing 0 o Threshold for pushing stack 

The number of stores Thp number of loads 

Threshold for coalescing 0 0 Threshold for pushing stack Threshold for coalescing Threshold for pushing stack 

Figure 4.9 : Correlation between the interval statistics and running time for scirnark 



41 

4.5 Independence between Parameters 

We guessed that the parameters for integers and the parameters for floats may be 

independent, so we designed an experiment for it. When setting the floating-point 

threshold parameters to {0,0},{4,4},{8,8},{12,12},and {16,16} respectively, we ran 

scimark program on {0-20,0-20} parameter space for integers. Similarly, we also fixed 

the integer parameters and varied the floating-point parameters. We compared the 

graphs to see how similar the surfaces are. In other word, we want to know if there 

exists a linear correlation between the surfaces. For the graphs where the integer 

parameters vary, although the graphs have some similarities at a large-scale, it is 

different at small-scale. For the graphs where the floating-point parameters vary, the 

differences are significant. 

On the other hand, we want to know if the combination of good integer parameters 

and good floating-point parameters can make good overall parameters. We formulated 

it as this problem - if RunningTime(a', b1', c, d) and RunningTime(a, b, c', d!) are less 

than RunningTime(a,b,c,d) adequately, is RunningTime{a!,b',c',d') less than the 

above three values? The experiments in the 4-dimentinal space in the next chapter 

can answer this question. By looking for all cases where RunningTirne(a',b',c,d) 

and RunriingTime(a, b, c', d') are less than RunningTime(a, 6, c, d) adequately and 

comparing RunningTime(a', b', c', d') with the other three values, we found the prob

ability that RunningTime(af, b', cf, d!) is the lest is not very high. 

Although the register allocation for integer intervals and floating-point intervals 

are separated and independent, the running time from the mixing of varying the 

integer parameters and varying the floating-point parameters is much complicated. 

So we should not divide the parameters into subspaces to get a, global optimal result. 



42 

scimark: float parameters=O.G scimark: float parameters=12,12 

'C0<&>, 
3 3 , 

36 . 

? 34-
u 

8 32. 

E 3 0 -

I 28, 

I 26, 
24-
20 

Threshold for coalescing 

m \ '}:•'• :>. 

\\\li\(U 
\ \ \ -\\ i-V" 

\s> • • 

3 8 , 

36 

f 3",| 
S 32 J 

. 1 28 

h\ 
20 

3 8 , 

3 6 , 

f 34 -
o 
o 
8> 3 2 -

1 30-
? 28-

c 
I 26 

24 

20 

Threshold for coalescing 

y. 

scimark: float parameters=4,4 

x - s 
> 1 ~"T 

i 
j 

,'A ' ' ' 
V 

s ^ 

\ 
\ 

M 1 

~M 

/ 
r' 

Threshold-or pushing Slack Threshold fo, coalescing 0 0 

scimark: float parameters=16,16 

Threshold for pushing stack 

1 3" 
i '28 

i i ^ . 

''t lV \ Av-:: 

iHt M i r ' ' / 

Threshold for pushing stack -k Threshold for coalescing Threshold for pushing stack 

scimark. iloat parameters-8,8 

38 

36 

f 34 
o 
u 
8 32 

<B 

E 30 J 

I 28 J 

24 J 

5P/. 

r 

•V w^Aivvi t»\//'-.' 

20 V - ^ 

Threshold for coalescing Threshold for pushing stack 

Figure 4,10 : Performance graphs for different floating-point parameters 



43 

scimark: integer parameters=0,0 scimark: integer parameters=12,t2 

38 

3 6 . 

1" 34 . 
o 

3.32~ 
a> 
E 3 0 -

. § 2 8 
C 

| 26 

24 g 

20 

Threshold for coalescing 

: * - - ^ < S p * : 

Threshold for pushing stack Threshold tor coalescing 0 0 Threshold for pushing stack 

scimark: integer paraineters=4,4 scimark. integer parameters=16,16 

S&-.A 

Threshold (cr coalescing 

38-, 

3 6 , 

? 3 4 . 
o 
u 

% 32 -

| 3 0 -

§ 2 8 

1 26 

24-j 

30 

Threshold tor pushing stack Threshold tor coalescing 

H <\ 

Threshold for pushing stack 

scimark: integer parameters=8;8 

3 8 ^ 

36. 

f " 34-. 
o o 
0) M , 
42-
<D 
E 3 0 . , 

f 2 8 . 
c 

I 26-
24. 

20 

Threshold for coalescing Threshold 'or push-ng stack 

Figure 4.11 : Performance graphs for different integer parameters 



44 

Chapter 5 

Adaptive Search with Tunable Parameters 

5.1 Hill Climbing Search 

The hill-climbing search algorithm is a loop that continually moves in the direction 

of increasing value until reaching a peak where no neighboring point has a higher 

value. If the goal is to find the smallest value, just change the sense of comparison. A 

hill-climbing algorithm often fails to find a global maxima or minima because it may 

get stuck on a local maxima or minima. So random restart, is needed to get out of the 

local maxima or minima and continue the searching. The efficiency of hill climbing 

depends on the shape of the search space: if there are few local maxima/minima and 

plateaux, random-restart hill climbing can find a, good solution quickly. Few local 

maxima/minima can reduce the opportunity of restart, and few plateaux can make 

a rapid ascending or descending. In practical lull-climbing, the goal is often a point 

that is good enough, instead of the best one. So the number distribution of the good 

points also matters to the search time. A high percentage of the good points means a 

quick search. The position distribution of the good points in the search spa.ce is also 

relevant to the searching efficiency. In general, a sparse distribution can make the 

searching end successfully with less restarts. A hill-climber walks to a neighbor in each 

step, except restarts. Thus, the definition of neighborhood is also a key to the shape 

of the search space, especially in some high-dimentianal spaces. A good neighborhood 

definition can keep the climber on long paths with a good ascending/descending rate, 

and reduce the number of evaluations. 

The random restart in hill-climbing is like the random probe approach, which 

probes a node that is randomly selected in each step. The efficiency of random probe 

http://spa.ce


45 

initializaton 

repeat { 

pick a start point at random 

min = the value of the start point 

up_times = 0 

repeat { 

select (patience * #neighbors) unvisited neighbors randomly 

measure the values of the selected neighbors 

min_neighbor = the minimum value of the beighbors 

if (min_neighbor <= min*tolerace){ 

if (min.-neighbor > min){ 

if(up_times < allowed_ups){ 

up_times++ 

move to the neighbor and continue the loop 

}else{ 

terminate current path, exit this loop 

} 
}else{ 

up_times = 0 and min = min_neighbor 

move to the neighbor and continue the loop 

} 
}else{ 

terminate current path, exit this loop 

} 
juntil(terminate current path) 

if necessary, update the global minimum of all searching paths 

juntil(reach finish conditions) 

Figure 5.1 : Hill Climbing Algorithm 



46 

is determined completely by the number distribution of the points, i.e. the percentage 

of the good points. Because the hill-climber can walk along a monotonically ascending 

or descending path, it may reach the goal with less steps than random probe. But 

if the search paths cannot get close to the goal in an efficient way, the hill-climbing 

may degenerate towards random probe, depending on the position distribution of the 

points. A extreme example is a completely random point distribution, where each 

climbing does not make a meaningful move towards the goal, except in the sense of 

random. 

Th hill climbing algorithm has many variants. Other than searching all neigh

bors exhaustively, a hill-climber may act impatiently, by checking only a part of its 

neighbors, resulting in decrease time consumption at each searching point. However, 

this may miss some paths that can reach the goal quickly, leading to more restarts. 

The level of impatience can be defined using the percentage of the neighbors that the 

climber tries. 

To apply a hill-climbing algorithm to register allocation, we need to investigate the 

properties of register allocation over tunable parameters. A problem arises from the 

error of the measurement of running time, discussed in Chapter 2. Though the error 

is not very large, it is enough to change the results of a comparison, especially, when 

the imprecision is as large as the difference between two neighboring points. This 

may let the climber terminate the current search path even though the real values of 

the path are monotonia For example, there is a monotonic path with 0.1 increment 

at every step, but the measurement has an error up to 0.2. Therefore, the climber 

may find no higher neighbors and abort current path prematurely. Another trouble is 

the climber may go back to the point it has visited, because the multiple executions 

of one program have slightly different running time, which may let the climber think 

it is still on an ascending or descending way. 

To lessen these difficulties, the hill-climber tolerates small moving-up, though its 

goal is to move down. Also, it visits each point only one time. The climber records the 



47 

smallest value it has met on current searching pa,th. If the smallest neighbor value is 

less than the recorded smallest value multiplied by a coefficient that is slightly greater 

than one, the climber will move to the neighbor. This brings another problem - the 

climber may traverse an even area and does not terminate. So we set a limitation 

on the continuous steps that a climber can move up, in order to stop aimless roving. 

Figure 5.1 describes the pseudo code for the algorithm. 

As for the neighborhood, it is not very complicated, since the space is low-

dimensional and the input values vary in a continuous manner. In our implemen

tation, two points are neighbors when only one parameter differs and that difference 

is ±1 . And we fixed the parameter for spill cost calculation method in a search. So, 

the number of neighbors for a point is 8, if not on the boundary. 

5.2 Experiments and Analysis 

In the experiments, we used the hill-climbing algorithm to search in the parameter 

space of the four threshold parameters. Because within one program, the different 

choices for the spill cost calculation often separate the result sets on other parameters 

distantly, it is not profitable to put this parameter together with other parameters in 

the search. Thus we just fixed this parameter in a search. Therefore, the search space 

is 4-dimensions, each of which is in the range of non-negative integer. The start and 

restart points are randomly selected from the range of 0-20; but the hill-climber may 

move out of this range. We tried different numbers for patience, 25%, 50% and 100%; 

that is to say, we evaluated 2. 4 and 8 neighbors for one move. The tolerance for 

up-climbing is 1.65%, derived from the measurement errors discussed in Chapter 2. 

The maximum allowed number of continuous steps that are higher than the minimum 

in current search path is 3, 

During the experiments and analysis, a restart or a path refers to the entire proce

dure from randomly starting a point to terminating current search sequence. A step 

means making a decision on moving. Choosing an adjacent point and calculating its 



48 

value makes an evaluation or a try. 

We ran two types of experiments. The first is to run the hill-climber to a fixed 

number of steps, so that we can study the properties of the search paths. The second 

is to run the hill-climber to a fixed goal, in order to get the efficiency directly. 

Experiments based on a fixed number of steps 

The following data and analysis are based on program scimark with the spill cost 

calculation method fixed to cost. In these experiments, the termination condition is 

a path has just been terminated and the total number of steps from start has reached 

100. Thus, the number of steps in a searching may be greater tha,n 100; the benefit is 

we always have a complete path for each 'climbing'. We ran the hill-climber 8 times 

for each patience level, due to time limitation. These experiments are aimed at the 

behavior in every step, rather than the final result. 

Figure 5.2 illustrates the entire procedure in some searches, by which we can easily 

understand how it works. The horizontal axis means each step from start to end; the 

height of the squares on curves gives the best value found in that step. A continuous 

curve is a complete searching path. So, we can see how the hill-climber moves up and 

down, restarts and terminates, in the entire searching. 

Table 5.1 lists the key data for all 8 x 3 searches, including the best value, the 

number of restarts, the number of steps, and the number of evaluations in each entire 

searching. For every patience level, it gives the average length of paths, the average 

number of steps in a path, and the average number of evaluations in a step, based 

the accumulated data from 8 runs From these data, the high patience level has 

a potential to find better result than others, through it needs more time. We also 

found the best results from 25% patience and 50% patience is close; the 25% is even 

better. As expected, the search-with higher patience can go farther in a searching 

path, so it has more chances to reach better values. The number of evaluation in 

a step is very different, approximately proportional to the values of their patience. 



49 

32 H-

w1 •? t 

T i l i ! 

Patience: 25%, Test #3 

\ 

i t s * ^ 
&£te 

\ 1 ^ 

10 20 30 40 50 60 70 80 
#Step 

90 100 

Patience: 50%, Test #5 

f r*3ffi 

fes ^ j in i l 

3 -&B33BL; i &3S 

> \ i I i 
fee0 fessg^'J & 

2 0 30 4 0 50 60 

frStep 

SO 100 

! I 

A i I 

Patienoe: 100%, Test #5 

i 
i \ 

1 I 
k e ^ ! i 

feq 
* a ^ fi 

** 
l\-e.i 

t5B*eBf_£jS£ 

10 2,0 30 4 0 6 0 7 0 80 9 0 

Figure 5.2 : Value on each step in a searching 



50 

patience 

25% 

50% 

100% 

best 

23.916 

24.174 

23.800 

25.111 

24.284 

25.195 

24.241 

24.351 

25.065 

25.080 

23.991 

24.661 

23.920 

24.213. 

25.282 

24.115 

22.791 

24.526 

24.020 

23.911 

21.841 

24.611 

22.529 

24.017 

restarts 

26 

39 

28 

35 

34 

30 

34 

32 

22 

r" 32 

29 

33 

26 

37 

22 

27 

27 

25 

25 

24 

24 

27 

23 

21 

steps 

100 

105 

102 

104 

107 

104 

101 

101 

115 

100 

101 

105 

100 

109 

100 

107 

102 

107 

102 

100 

109 

101 

103 

100 

evaluations 

226 

249 

232 

243 

248 

238 

236 

234 

482 

432 

433 

453 

426 

473 

422 

455 

705 

709 

705 

694 

725 

687 

700 

665 

Average restarts 

32.2500 

Steps per restart 

3.1938 

Evaluations per restart 

7.3876 

Evaluations per step 

2.3131 

Average restarts 

28.5000 

Steps per restart 

3.6711 

Evaluations per restart 

15.6842 

Evaluations per step 

4.2723 

Average restarts 

24.5000 

Steps per restart 

4.2041 

Evaluations per restart 

28.5204 

Evaluations per step 

6.7839 

Table 5.1 : Hill-Climbing searching on scimark at 25%, 50%, 100% patience 



51 

The first random point in a restart is counted into the evaluations, so the number 

of evaluations in a step for 25% patience may be over 2. The hill-climber does not 

go back to the visited points, so the value for 100% patience is less than 8. In the 8 

executions at a patience level, the numbers of restarts, steps, and evaluations do not 

vary much, indicating statistics rules works. 

Without loss of adequate accuracy, the paths can be regarded as independent on 

each another, considering the space is large enough. We put the paths in all 8 runs 

together, to get more samples for statistical analysis. Therefore, we can focus on the 

set of 200+ paths, instead of on the 8 runs. Each path is associated with a best value 

and its length, which is the base for further analysis. 

Graphs in Figure 5.3 draw the length and best value of all paths from a patience 

level on one plane. Each pair of the values is a point on the 2-dimension plane, with 

the values as its coordinates. The curves describe the means of the best values at each 

length of paths. In these graphs, the best values often do not correspond to the long 

paths. Some samples indicate the longer paths tend to be on even area, which also 

accounts for their longer length. Longer paths consume more computing resources 

and often do not produce better results, so the hill-climber may stop some searches 

if it is long enough. 

Figure 5.4 and Figure 5.5 are the histogram graphs describing the distribution 

of the best value and the length respectively. The overall position of best values for 

100% patience is on the left of those of other patience levels. The differences between 

the path lengths are apparent. The searches at low patience level tend to stop earlier 

than others. 



52 

Points (steps before termination, local best): 25% 

\ ; 

S i * I ? t 
i ; * 

+ 

/N 

f- + 

10 12 
Steps before Restart 

Points (steps before termination, local best): 50% 

10 12 
Steps before Restart 

Points (steps before termination, local best): 100% 

+ 
* 
* t t • 

I s T • 
+ «. ,. i 

£ 

* 

± 

_*_., 

* 
t 

± 

$ 

J. 

$ V 
+ 

A 
/ \ 

, / 

22' 
0 6 10 

Steps before Restart 

Figure 5.3 : Value pair (#steps, best value) of every restart 



53 

Patience: 25% Patience: 25% 

32 34 
Best value (step: 0.25) 

Patience: 50% 

y ?1 FMZj PiPl 
24 26 28 30 

Best value (step: 0.25) 

Patience: 100% 

y n 
j j j_aja_ 

L-._L _ _ T H ^ , ,„.„.„ 
0 2 4 6 8 10 12 14 16 18 20 

The number of steps in a restart (Step: 1) 

Patience: 50% 

10 12 14 16 18 20 
The number of steps in a restart (Step: 1) 

Patience: 100% 

22 24 26 28 30 32 
Fiest value (step 0.25) 

10 12 14 16 18 20 
The number of steps in a restart (Step: 1) 

Figure 5.4 : Histogram for distribution on Figure 5.5 : Histogram for distribution on 
best values steps in a restart 



54 

The next is the similar experiment on program pifft for 25% and 50% patience 

levels with the spill cost method argument set to ,cost -. The number of minimum 
r ° degree 

tries is 110 in this experiment, instead of 100 in the experiment on scimark. Table 

5.2 lists the data for the two patience levels. The best values in this experiment are 

not much better than the best value 21.810 in Chapter 4 where only the parameters 

for integers vary. 

patience 

25% 

100% 

best 

21.277 

21.563 

21.412 

22.027 

21.988 

21.671 

21.775 

21.508 

20.932 

22.276 

21.220 

21.488 

21.653 

21.685 

21.581 

21.783 

restarts 

14 

18 

21 

22 

21 

19 

17 

19 

21 

21 

13 

16 

18 

15 

16 

14 

steps 

113 

116 

111 

114 

113 

112 

113 

112 

110 

115 

110 

122 

116 

115 

111 

117 

evaluations 

240 

250 

243 

250 

247 

243 

243 

243 

740 

759 

717 

779 

778 

755 

722 

768 

Average restarts 

18.8750 

Steps per restart 

5.9868 

Evaluations per restart 

12.9735 

Evaluations per step 

2.1670 

Average restarts 

16.7500 

Steps per restart 

6.8358 

Evaluations per restart 

44.9104 

Evaluations per step 

6.5699 

Table 5.2 : Hill-Climbing searching on pifft at 25%, 100% patience 



55 

Experiments based on fixed goals 

In order to evaluate the final performance of the hill-climber and the effect of the 

patience level, we ran the hill-climber with fixed goals as the termination condition. 

Because the traversal over the entire parameter space is not realistic, the best the 

running time is unknown. Thus we used the best values on the 2-dimentional 21 x 21 

grids from the experiments in Chapter 4, instead of the best running time. We also 

varied these best values by 5% and used them as the goals to evaluate the change of 

the search performance. 

The first experiment is also based on program scimark and uses two goals respec

tively for two groups of experiments. In the first group, we set the running time 

goal to 25.258s, the best running time for scimark in Table 4.1 a,t the same parameter 

configuration. And this group contains 150 runs. In the second group, we set the goal 

to 25.258 x 95% = 23.995s, and the total number of runs is 100. In each group, we 

used three patience values, 25%, 50% and 100%. In order to avoid too long running 

time, the hill-climber will terminate after 200 tries, no mater whether the goal has 

been reached. 

The second experiment is for program pifft. We got the goal 21.810s from the 

experiments in Chapter 4. Because this goal is hard to reach, we used an easy goal 

for comparison, 21.810 x 105% = 22.901s. The running time for pifft is too long, so 

we only ran 50 times. As the above pifft experiments, we iised two patience levels, 

25% and 100%. 

The points that the random start stage selects can be regarded as a, random set, 

since the probability that the random start selects a visited point is very low. We 

accumulated a point set for scimark with a size of 2052, and the set for pifft with a 

size of 971. Then we ran a random probe algorithm on these point sets to calculate 

the number of the tries that the random probe needs to reach a goal. The random 

probe simulator ran 100000 times on the point set to get the average performance. 

Actually, the random probe performance can be calculated, if the percentage of points 



56 

that are better than the goal is available. 

Table 5.3 and 5.4 list the the average number of steps used to reach the goals and 

the number of runs that did not reach the goals. The computation of the average 

number of steps only counts the runs that reached the goals. The two major data 

columns represent two goals, 25.258s and 23.995s, and the data rows are for different 

patience levels and random probe. 

Patience 

25% 

50% 

100% 

random 

25.258s 

average tries 

16.22 

20.14 

23.30 

10.47 

unsuccessful 

0/150 

0/150 

0/150 

0/100000 

23.995s 

average tries 

23.94 

37.55 

37.54 

16.83 

unsuccessful 

0/100 

0/100 

10/100 

2/100000 

Table 5.3 : Hill-climbing performance for scimark 

Patience 

25% 

100% 

random 

22.901s 

average tries 

20.36 

35.40 

6.48 

unsuccessful 

0/50 

2/50 

0/100000 

21.810s 

average tries 

80.08 

98.47 

71.30 

unsuccessful 

26/50 

33/50 

15424/100000 

Table 5.4 : Hill-climbing performance for pifft 

From these tables, we found that the different patience levels make different per

formance for different goals and 25% patience is better than others. For different 

programs, the performance data shows different pattern. 



57 

We also found a very important fact - the random probe algorithm performed 

better than the hill-climbing algorithm, and it has similar pattern as the hill-climber 

for the programs. According to the above data and analysis on the properties of 

the search paths, the hill-climber does not show a gradual and apparent ascend

ing/descending property, which is good for hill-climbing search. As showed in Figure 

5.2, big drops and wandering around a value occupy most search paths. The drops 

play a positive role to reach a goal, but they do not often happen in the search. In 

these figures, there are a few paths that drop apparently in most of their steps, but 

the improvement they contribute is small. The wandering is very negative for this 

search, because it results in many futile tries, which consume lots of time but con

tribute little for approaching the goal. In the search space, the neighbors often have 

similar values, so to visit these points neither makes effective ascending/descending 

paths to the goal, nor expands the value range of the visited points as random method 

does. In this case, the search performance is even worse than random probe. If he 

wanderings dominate the hill-climbing search, they offset the positive effect of the 

searches along a monotonic direction. Thus, we can conclude that the success of the 

hill-climber in these experiments should be attributed to the random parts of the 

algorithm, such as random restart and random neighbor-selection, and the futile tries 

may make its performance worse than random method. 

Figure 5.6 and 5.7 contain the histogram figures and the probability distribution 

figures for the random point sets we discussed above. The sets represent the properties 

of the whole search spaces approximately. We found the set for program scimark and 

the set for program pifft have different distribution properties. This can explain the 

different performance patterns of these two programs. 

The performance of the random probe is solely determined by the value distri

bution of the running time, If the distribution has some normal properties, such as 

not sparse or separate, the average tries of the random probe will not be too high, 

depending on the position of the goal. For example, if the goal is top 10%, the average 



58 

number of tries is around 10. The random probe can work as a feasible method for 

not too high goals. 

These figures also show the varying ranges of the running time of the compiled 

codes over the four parameters, as the data and figures do over two parameters in 

Chapter 4. They confirm again that the varying ranges are large enough to make the 

adaptive search profitable. Also, the values distribute over the entire varying ranges, 

not falling into several small ranges. 

HstnQr»m of ranttom poinB r sonarti ProOaH'iry •fisnuuijon of random eoitm, in scunart: 

Figure 5.6 : Histogram and probability distribution of random points in scimark 

Figure 5.7 : Histogram and probability distribution of random points in pifft 



59 

Histogram ot random points :n spice Histogram ot random points in nasa 

Running Time (second) 
2.6 265 
Running Time (second) 

Figure 5.8 : Histograms of random points in spice and nasa 

Fig\ire 5.8 shows more histogram figures for the random point sets. We found the 

distributions of the random points in the search space are very different from program 

to program. 

The performance of the random probe solely depends on the percentage of points 

better than the goal, but the distributions are so different that there is not a cor

respondence between the absolute value and the relative percentage, so it is hard 

to estimate the random tries to reach a goal given with an absolute value or base 

on a fixed value, such as the best in the search space. If we set the goal as a top 

percentage, the tries can be calculated in a simple way. The probability of reaching 

the top percentage t in k random tries is 1 — (1 -- t)k. The following figure illustrates 

the function figure where t is 10%. The average number of tries to reach the goal is 

9.84. 



60 

Figure 5.9 : Probability of reaching top 10% 

5.3 Performance Stability over Parameter Changes 

The previous experiments reveal some important information about the tunable pa

rameters and adaptive search. The overall properties of the search space tell us 

that the tunable parameters provide a big potential for performance improvements. 

But the hill-climbing seaxch fails to reach a good solution efficiently, becaiise the 

microstructure of the search space is not suitable for hill-climbing search. 

The running time data in the space are not good enough for an efficient hill-

climbing search, since they have more random nature and plateaus than regular slopes. 

In other words, the relationship among the running time results of the neighboring 

points is not good for an adaptive search. In some cases, there is a large running time 

difference between two adjacent points. In some other cases, the running time varies 

randomly over an area. The differences of the running time come from the difference 

of the initial inputs, i.e. the tunable parameters. However, the parameters are very 

regular over the space, since they are monotonic and changed by one. If we consider 



61 

the compiler as a black box, the inputs of the box are continuous, but the outputs are 

not continuous, in large and small scale. The question is why the continuous inputs 

lead to such irregular results. In order to study this, we traced from the parameters, 

to the detailed list of the coalesced intervals and the allocated intervals, and finally 

to the running time, and investigate the changes. 

The following data are from program scimark with the spilling cost method set 

to cost, and program pifft with the spilling cost method set to ^ ~ , as used in the 

hill-climbing search. In order to capture more details of the changes of the spilled 

intervals and coalesced intervals, we compared the lists of intervals to find out which 

intervals in one list are not in the other list, instead of only comparing the number 

of the list elements. Thus, we got two numbers for each comparison, the number of 

intervals that are deleted from the first list and the number of intervals that are added 

to the second list. For each program, we collected the differences of spilled intervals 

and spilled intervals when the parameter for coalescing threshold or pushing-stack 

threshold increases from 0 to 20 by 1. 

Table 5.5 - 5.8 are for program scimark, and Table 5.9 - 5.12 are for program 

pifft. The two numbers in the tables are in the form of number /number - the first 

number means the deleted intervals from the list whose parameter is less, and the 

second number is for the added intervals to the list whose parameter is greater. The 

different rows mean the varying of coalescing threshold, and the different columns are 

for the varying of pushing-stack threshold. In these figures, some threshold labels are 

not aligned with the data, rows or columns, because these thresholds are varying in 

these tables and the data represent the differences between the thresholds. If a data 

line lies between two labels, this data line contains the differences between these two 

labels. And the table borders represent the varying direction. In order to make the 

tables more readable, 0 is displayed using an empty cell in some tables. 

In Chapter 4, we found the number of coalesced intervals increases as the coalesc

ing threshold increases. Here, we also find this changes have two parts - new coalesced 



62 

intervals, arid the intervals that will not be coalesced. In some data, the number of 

the intervals that will not be coalesced is considerable. In each step, some come, and 

some go. Thus, these changes are greater than the changes of the total number can 

tell solely. The sequence of the number of the coalesced intervals as the coalescing 

threshold increases has peak values. The positions of such peaks are different in the 

two programs. After studying the distribution of the degrees of all intervals, showed 

in Figure 5.10, we guess they are relevant to the distribution of the degrees, because 

they have similar peaks. 

The changes of the spilled intervals also mix the adding of new intervals and the 

deleting of old intervals. There is a difference from the coalesced intervals - the change 

of the coalesced intervals is almost monotonia but the change of the spilled intervals is 

not. As the pushing-stack threshold increases from 0, the number of spilled thresholds 

has a tendency of decreasing at the beginning and increasing later. The turning'point 

is near 7 or 8 roughly, which indicates the choice of the number of physical registers as 

the pushing-stack threshold is logically reasonable. However, the running time does 

not follow these changes strictly, since the running time is determined not only by 

the total number of spilled intervals, but also by the detailed list of spilled intervals 

and others. The deleting and adding of the spilled intervals augment the changes and 

differences, leading to more fluctuations, i.e. instability over small areas. 

We have studied the effect of the coalescing threshold over the coalesced intervals 

and the effect of the pushing-stack threshold over the spilled intervals, which are 

intuitive. The tables also show the coalescing threshold has a,n effect not only over 

the coalesced intervals, but also over the spilled intervals, though the former is major. 

The same happens to the pushing-stack threshold. Because the graph-coloring register 

allocator uses an iterative procedure, the results of coalescing can change the results 

of pushing-stack in following iteration, and vice versa. The two effects also have some 

difference. The effect on itself is direct and major, but the effect on the other is 

erratic and minor. The former contributes more to the tendencies over large scale, 



63 

and the later is a source of the irregular fluctuations. 

Because of the complicated nature of the graph-coloring register allocation algo

rithm, to change the parameters may produce irregular and unpredictable results, 

which can be showed through the change details of the coalesced intervals and the 

spilled intervals. This creates a chance to extend the range of code performance, 

but may become an obstacle for efficient searches. Therefore, this method of tuning 

parameters has two sides. If potential is more important than efficiency, chaos may 

create such a chance. But if efficiency is the main goal, everything should be kept 

neat. In order to improve the efficiency, the algorithm should try to keep the stability 

throughout the entire procedure of the algorithm, and make the different parts less 

entangled. 



64 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

1 

/ 
/3 

/ 
/ 
/2 

1/1 

5/1 

1/2 

/I 

1/ 

/ 
/ 
/ 
/ 

2/1 

4/6 

4/1 

/2 

3/1 

/ 
/ 
/3 

/ 
/ 
/2 

1/1 

5/1 

1/2 

/I 

1/ 

/ 
/ 
/ 
/ 

2/1 

4/6 

4/1 

I'i 

3/1 

/ 
/ 
/3 

/ 
/ 
/2 

1/1 

5/1 

1/2 

/I 

1/ 

/ 
/ 
/ 
/ 

2/1 

4/6 

4/1 

/2 

3/1 

/ 
/ 
/3 

/ 
/ 
/2 

1/1 

5/1 

1/2 

/I 

1/ 

/ 
/ 
/ 
/ 

2/1 

4/6 

4/1 

/2 

3/1 

/ 
/ 
/3 

/ 
/ 
/2 

1/1 

5/1 

1/2 

/I 

1/ 

/ 
/ 
1 
1 

2/1 

4/6 

4/1 

;'2 

3/1 

/ 
/ 
/3 

/ 
/ 
/2 

1/1 

•5/1 

1/2 

/I 

1/ 

/ 
/ 
/ 
/ 
2/1 

4/6 

4/1 

/2 

3/1 

/ 
/ 
/3 

/I 

/ 
1/2 

2/1 

4/1 

V 
A 

1/ 

/ 
1 
i 
1 

2/1 

4/6 

4/1 

/2 

3/1 

/ 
/ 
/3 

/ 
/ 
/I 

/I 

1/ 

/ 
/ 
/ 
/ 
/ 
/ 
/ 
I/'1 

4/5 

3/1 

/l 

2/1 

/ 
/ 
/3 

/ 
/ 
/I 

/I 

/ 
/ 
/ 
/ 
/ 
/ 
/ 
/ 
1/1 

4/5 

3/1 

/I 

2/1 

/ 
/ 
/3 

/ 
/ 
/I 

/I 

/ 
/ 
/ 
/ 
/ 
/ 
/ 
/ 
1/1 

4/5 

3/1 

,/l 

2/1 

/ 
1 

/3 

/ 
/ 
/I 

/I 

/ 
/ 
/ 
/ 
/ 
/ 
/ 

1/ 

1/1 

4/5 

3/1 

IX 

2/1 

/ 
/ 
,/3 

/ 
/ 
./I 

/I 

/ 
/ 
/ 
1 
1 

n 
i/ 

i/ 

3/3 

4/5 

3/1 

/I 

2/1 

/ 
/ 
li 

i 
1 

/I 

/I 

5/ 

1/ 

2/ 

/ 
/ 

7/3 

3/2 

1/ 

3/1 

4/5 

3/1 

/I 

2/1 

/ 
/ 
/3 

/ 
/ 
/I 

/I 

•V 
1/ 

2/ 

/ 
/ 
7/3 

3/2 

V 
3/1 

4/5 

3/1 

/I 

2/1 

/ 
/ 
/3 

/ 
/ 
/I 

/l 

5/ 

1/ 

2/ 

/ 
/ 

7/3 

3/2 

1/ 

3/1 

3/3 

2/2 

1/1 

2/1 

/ 
/ 
/3 

/ 
/ 
/I 

/I 

5/ 

6/3 

2/ 

/ 
/ 

9/4 

3/2 

2/1 

3/1 

4/6 

3/2 

/ 
2/1 

/ 
/ 
/3 

/ 
/ 
/I 

/I 

3/1 

7/4 

1/1 

/ 
2/1 

13/1 

10/6 

5/3 

3/1 

5/5 

3/2 

/ 
2/1 

/ 
/ 
/3 

/ 
/ 
/I 

/I 

3/1 

7/4 

1/1 

/ 
2/1 

13/1 

11/5 

5/3 

3/1 

5/5 

3/2 

/ 
2/1 

/ 
/ 
/3 

/ 
/ 
/I 

/I 

3/1 

7/4 

1/1 

/ 
2/1 

13/1 

11/5 

5/3 

3/1 

5/5 

3/2 

/ 
2/1 

/ 
/ 
/3 

/ 
/ 
/I 

/I 

5/2 

7/4 

1/1 

/ 
2/1 

13/1 

12/6 

5/3 

3/1 

6/6 

3/3.: 

1/-

3/7'-

/ 
/ 
1/4 

/ 
/ 
/I 

/I 

6/5 

6/3 

2/ 

/ 
2/1 

13/1 

12/8 

5/3 

4/2 

6/6 

7/4 

1/ 

3/1 

Table 5.5 : A of spilled intervals in scimark when coalescing threshold changes 

0 

0 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

/ 
7 
/ 
/ 
/ 
/ 
/ 
/ 
/ 
/ 
/ 
/ 
/ 
/ 

J— 
1 
1 
1 
1 
1 
1 

1 

/ 
/ 
/ 
/ 
/ 
/ 
/ 
/ 
/ 
/ 
/ 
/ 
/ 
/ 
/ 
/ 
/ 
/ 
/ 
/ 
/ 

2 

/ 
/ 
/ 
/ 
/ 
/ 
/ 
I 

1 
1 
1 

I 
l 

1 
1 
i 
1 

1 
1 
1 

1 

3 

/ 
/ 
/ 
/ 
/ 
/ 
/ 
/ 
/ 
/ 
/ 
/ 
/ 
/ 
/ 
/ 
/ 
/ 
/ 
l 

i 

4 

/ 
/ 
/ 
/ 
/ 
/' 
/ 
/ 
/ 
/ 
/ 
/ 
/ 
/ 
/ ' 
/ 
/ 
/ 
/ 
/ 
/ 

5 

1/ 

1/ 

V 
1/ 

/ 
/ 

2/ 

2/1 

3/. 

3/ 

3/ 

3/ 

3/ 

3/ 

3/ 

3/ 

3/ 

3/ 

3/ 

3/ 

6 

8/ 

8/ 

8/ 

8/ 

9/ 

6/ 

9/ 

7/ 

5/ 

4/ 

5/ 

4/ 

4/ 

4/ 

4/ 

4/ 

4/1 

5/1 

4/1 

5/1 

4/1 

7 

1/ 

1/ 

1/ 

1/ 

1/ 

1/ 

1/ 

1/ 

/ 
/ 

/ 
• • / 

/ 
/ 
/ 
1 
i 

I 
1 
1 
1 

8 

/ 
/ 
/ 
/ 
/ 
/ 
/ 
/ 
/ 
1 

1 
1 
i 
1 
i 
1 
1 
1 

1 
i 
1 

9 

/2 

/2 

I'i 

/2 

/2 

/2 

A' 
/2 

/2 

/2 

/2 

/2 

/2 

/2 

/2 

/I 

/I 

/I 

/I 

/l 

/I 

10 

/ 
/ 

/ 
/ 
/ 

. / 

1 

i 
1 

/ 
1 

/I 

/ 
/ 

2/2 

2/2 

2/2 

2/2 

2/2 

11 1? 

2/17 

2/17 

2/17 

2/17 

2/17 

2/17 

2/17 

2/17 

2/12 

2/11 

2/9 

2/9 

2/9 

3/5 

2/4 

2/4 

/ 
/ 
/ 
/ 

/ 

/ 
/ 
/ 
/ 
/ 
/ 
/ 
/ 
/ 
/ 
/ 
7 
/ 

/ 
/ 
/ 
/ 
/ 

/ 

13 

/ 
/ 
/ 
/ 
/ 
i 

1 
i 

1 

1 
1 

/ 
/ 
/ 

/ 
/ 

2/1 

/I 

/ 
/ 

14 

3/6 

3/6 

3/6 

3/6 

3/6 

3/6 

3/6 

3/6 

3/6 

1/2 

1/2 

1/2 

1/2 

/ 
/ 

1/1 

1/1 

1/3 

1/2 

1/2 

/I 

Lo 16 

3/17 

3/17 

3/17 

3/17 

3/17 

3/17 

3/17 

3/17 

2/19 

3/20 

3/22 

3/22 

3/21 

4/15 

3/11 

2/9 

2/y 

1/6 

1/6 

1/6 

1 /6 

1/3 

1/3 

1/3 

1/3 

1/3 

1/3 

1/3 

1/3 

1/3 

1/3 

1/3 

1/3 

1/3 

1/3 

/ 
/ 
/ 
/ 
/ 
/ 
/ 

7 

/ 
/ 
/ 
/ 
/ 
/ 
/ 
/ 
/ 
/ 
/ 
/ 
/ 
/ 
/ 
/ 
/ 
/ 
/ 
/ 
/ 

18 

1/2 

1/2 

1/2 

1/2 

1/2 

1/2 

1/2 

1/2 

1/1 

1/1 

1/1 

1/1 

1/1 

1/1 

1/1 

1/1 

1/1 

1/1 

1/2 

1/1 

1/6 

19 2C 

4/16 

•1/16 

4/16 

4/16 

4/16 

4/16 

4/16 

4/16 

5/19 

5/19 

5/17 

5/17 

5/17 

5/17 

5/19 

5/19 

5/19 

5/19 

5/16 

5/16 

5/10 

Table 5.6 : A of spilled intervals in scimark when simplifying threshold changes 



65 

0/11 

0/29 

0/32 

0/38 

3/21 

2/29 

2/61 

4/15 

9/29 

6/32 

4/5 

2/5 

in 
5/5 

5/5 

5/8 

S/10 

1/4 

0/11 

0/29 

0/32 

0/38 

3/21 

2/29 

2/61 

4/15 

9/29 

6/32 

4/5 

2/5 

2/2 

5/5 

5/5 

5/8 

8/10 

1/4 

1/9 1/9 

3/9 |3/9 

0/11 

0/29 

0/32 

0/38 

3/21 

2/29 

2/61 

4/15 

9/29 

6/32 

4/5 

2/5 

2/2 

5/5 

5/5 

5/8 

8/10 

1/4 

1/9 

3/9 

0/11 

0/29 

0/32 

0/38 

3/21 

2/29 

2/61 

4/15 

9/29 

6/32 

4/5 

2/5 

2/2 

5/5 

5/5 

5/S 

8/10 

1/4 

1/9 

3/9 

0/11 

0/29 

0/32 

0/38 

3/21 

2/29 

2/61 

4/15 

9/29 

6/32 

4/5 

2/5 

2/2 

5/5 

5/5 

5/8 

8/10 

1/4 

1/9 

3/9 

0/11 

0/29 

0/32 

0/38 

3/21 

2/29 

2/61 

4/15 

9/29 

6/32 

4/5 

2/5 

2/2 

5/5 

5/5 

5/8 

8/10 

1/4 

1/9 

3/9 

0/11 

0/29 

0/30 

0/40 

3/21 

2/29 

2/61 

3/17 

9/26 

6/32 

4/5 

2/5 

2/2 

5/5 

5/5 

•5/8 

8/10 

1/4 

1/9 

3/9 

0/5 

0/31 

0/26 

0/31 

2/35 

2/22 

1/28 

5/50 

8/2S 

5/32 

2/S 

2/6 

2/2 

5/5 

5/5 

5/8 

S/10 

1/4 

1/9 

3/9 

0/5' 

0/31 

0/26 

0/31 

2/35 

2/22 

1/22 

5/56 

8/28 

5/32 

2/8 

2/6 

2/2 

5/5 

5/5 

5/8 

S/10 

1/4 

1/9 

3/9 

0/5 . 

0/31 

0/26 

0/31 

2/35 

2/22 

1/22 

5/56 

8/28 

5/32 

2/8 

2/6 

2/2 

5/5 

5/5 

5/8 

8/10 

1/4 

1/9 

3/9 

0/5 

0/.31 

0/26 

0/31 

2/35 

2/22 

1/22 

5/59 

8/24 

5/32 

2/3 

2/6 

2/3 

5/5 

5/5 

5/8 

8/10 

1/4 

1/9 

3/9 

0/5. 

Q/31 

0/26 

0/31 

2/35 

2/22 

1/22 

5/59 

8/24 

5/32 

2/S 

2/6 

4/3 

5/7 

5/5 

5/8 

8/10 

1/4 

1/9 

3/9 

0/4 

0/30 

0/26 

0/32 

2/28 

2/23 

0/27 

5/52 

7/22 

5/34 

2/7 

3/8 

4/11 

7/6 

5/5 

4/9 

8/10 

1/4 

1/9 

3/9 

0/4. 

0/30 

0/26 

0/32 

2/28 

2/23 

0/27 

5/52 

7/22 

5/34 

2/7 

3/8 

4/11 

7/6 

5/5 

4/9 

8/10 

1/4 

1/9 

3/9 

0/4 

0/30 

0/26 

0/32 

2/28 

2/23 

0/27 

5/52 

7/22 

5/34 

2/7 

3/8 

4/11 

7/6 

5/5 

4/9 

6/9 

2/3 

1/10 

3/9 

0/4 

0/26 

0/26 

0/32 

2/32 

2/23 

0/27 

5/52 

7/24 

5/33 

2/7 

3/8 

6/12 

7/6 

7/7 

5/10 

10/10 

2/4 

0/10 

2/9 

0/4 

0/26 

0/26 

0/28 

2/32 

2/29 

0/27 

5/47 

7/27 

6/24 

2/9 

3/6 

6/17 

9/10 

10/10 

4/9 

11/14 

2/4 

0/10 

2/9 

0/4 

0/26 

0/26 

0/28 

2/31 

2/30 

0/27 

4/46 

7/24 

6/17 

2/14 

2/5 

5/19 

8/11 

10/10 

4/9 

11/14 

2/4 

0/10 

2/9 

0/4 

0/26 

0/26 

0/28 

2/31 

2/30 

0/27 

4/46 

7/24 

6/17 

2/14 

2/5 

5/19 

8/11 

10/10 

4/9 

11/14 

2/4 

0/10 

2/9 

0/4 

0/26 

0/24 

0/30 

2/31 

2/30 

0/29 

4/44 

7/24 

6/17 

2/14 

2/5 

5/18 

8/12 

10/10 

4/9 

11/14 

2/3 A 

o/i'J 
3Al 

0/2 

0/26 

0/24 

0/31 

1/26 

2/39 

0/31 

4/32 

3/16 

4/19 

2/14 

2/5 

5/18 

8/12 

10/10 

4/9 

11/14 

2/5 

0/10 

1/7 

Table 5,7 : A of coalesced intervals in scimark when coalescing threshold changes 

0 

0 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

J 7 

18 

19 

20 

/ 
/ 
/ 
/ 
/ 
/ 
/ 
/ 
/ 
/ 
/ 
/ 
/ 
/ 
/ 
/ 
j 

1 
1 
1 
i 

1 

/ 
/ 
/ 
/ 
/ 
/ 
/ 
/ 
/ 
/ 
/ 
/ 
/ 
/ 
/ 
/ 
/ 
/ 
/ 
/ 
/ 

2 

/ 
/ 

' / 
/ 
/ 
/ 
/ 
/ 
/ 
/ 
/ 
/ 
/' 

/ 
/ 
/ 
/ 
/ 
/ 
1 

3 

/ 
/ 
/ 
/ 
/ 
/ 
/ 
/ 
/ 
/ 
/ 
/ 
/ 
/ 
/' 
/ 
i 
1 
1 
1 

I 

4 

/ 
/ 
1 
1 

1 

1 
I 
1 
1 
1 
j 

i 
1 

1 
1 

j 

1 
1 

/ 
1 

5 

1 
1 

1 
2/ 

./ 
/' 
i 
1 
/3 

/ 
/ 
/ 
/ 
j 

1 
j 

1 
i 
1 

1 

6 . 

/ 
6/ 

4/ 

8/ 

17/ 

2/ 

9/ 

41/ 

10/ 

7/ 

6/ 

1/ 

/ 
/ 

/._ 

/ 

" 
/ 
,' 

_/_ 
'/ 
/ 
/ 
/ 

6/ 

/ 
/ 
/ 
/ 
/ 
/ 

1 

1 
; 
1 

__/_ 
• / 

8 

/ 
/ 
/ 
/ 
/ 
/ 
/ 
/ 
/ 
/ 
/ 
/ 
/ 
/ 
1 
1 
1 
1 
i 
1 
i 

9 

/ 
/ 
/ 

/ 
/ 
/ 
/ 

. /3 

1/ 

1/ 

V 
1/ 

/ 
i 

/ 

/ 
1 

10 

/ 
/ 
/ 
/ 
/ 
/ 
/ 
1 
1 
1 
1 
1 
1 

' 1 
1 
1 
1 
1 
1 
1 

11 12 

. 1/ 

2/. 

2/ 

1/ 

8/ 

7/ 

. 2/1 . 

8/ 

9/ 

9/2 

10/2 

10/3 

2/3 

2/ 

2/ 

/ 
/ 
/ 
j 

• i 

i 

I 
1 
i 
1 
1 
i 
1 
1 
1 
i 

/ 
/ 
/ 
/ 
/ 
/ 
/ 
/ 

13 

/ 
/ 

j 

1 
1 
/ 
/ 
j 

1 
1 
I 

I 
1 
i 
i 

i 
1/2 

1/ 

/ 
. / 

14 

/ 
/ 

4/ 

4/ 

4/ 

/ 
/ 

1/1 

1/1 

1/3 

1/2 

1/2 

1/2 

1 
1 

2/2 

1/i 

4/1 

3/1 

1/ 

/ 

15 

/ 
/ 
/ 
/ 

4/ 

4/ 

4/6 

2/4 

7/4 

8/8 

15/5 

14/6 

16/6 

9/4 

7/4 

6/3 

5/2 

j 

I 

1 
1 

16 

I 

1 
1 

1 

! 
1/ 

/ 
/ 
i/i 

3/ 

10/ 

5/ 

6/1 

3/1 

/ 
/ 
7 
/ 
/ 
/ 
/ 

17 

/ 
/ 
/ 
/ 
/ 
/ 
/ 
/ 
/ 
/ 
/ 
/ 
/ 
/ 
/ 
/ 
/ 
/ 
/ 
/ 
/ 

18 

./ 
/ 
/ 

2/ 

/ 
/ 
/ 
/2 

/ 
/ 
/ 
/ 
/ 
1/ 

/ 
/ 
/ 
/ 

1/ 

/ 
3/ 

.19 2 

,'. / 
; 2/ 

I v 
2/ 

V 
6/1 

1/5 

/6 

9/3 

12/2 

6/ 

6/ 

6/ 

6/ 

6/ 

6/ 

6/ 

6/ 

4/ 

6/1 

3/ 

Table 5.8 : A of coalesced intervals in scimaxk when simplifying threshold changes 



66 

0 • 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 • 

/ 
/ 
1/2 

/2 

/3 

1/3 

/4 

5/1 

5/ 

4/6 

10/5 

3/2 

4/1 

2/1 

3/4 

4/6 

4/1 

7/6 

8/4 

3/1 

/ 
/ 
1/2 

. /2 

/3 

1/3 

/4 

5/1 

5/ 

4/6 

10/5 

3/2 

4/1 

2/1 

3/4 

4/6 

4/1 

7/6 

8/4 

3/1 

/ 
/ 
1/2 

/2 

/3 

1/3 

/4 

5/1 

5/ 

4/6 

10/5 

3/2 

4/1 

2/1 

3/4 

4/6 

4/1 

7/6 

8/4 

4/3 

/ 
./ 
2/2 

/3 

/3 

1/4 

/5 

5/1 

6/1 

3/5 

10/5 

3/2 

4/1 

2/1 

3/4 

4/6 

3/1 

7/7 

8/4 

4/3 

/ 
/I 

1/2 

1/2 

1/5 

3/2 

1/6 

4/1 

4/1 

2/5 

11/5 

2/2 

4/1 

2/1 

4/4 

4/6 

4/4 

8/5 

8/5 

4/3 

/ 
/ 

1/2 

• / 2 

/4 

2/1 

/5 

4/1 

6/1 

2/4 

10/4 

2/2 

4/3 

2/1 

3/4 

4/6 

4/1 

6/6 

10/7 

4/3 

/ 
/2 

1/2 

/3 

/I 

/4 

5/2 

5/2 

1/4 

8/2 

1/2 

4/3 

3/1 

/3 

5/5 

4/1 

6/7 

8/6 

4/1 

/ 
/ 

• / 2 

1/3 

/2 

/l 

1/4 

2/4 

5/ 

/2 

6/2 

1/1 

4/5 

2/1 

3/4 

4/6 

6,'2 

7/5 

11/6 

2/1 

. / 
/ 
1 

/I 

4/4 

3/3 

2/2 

2/7 

5/2 

/2 

7/2 

2/1 

5/7 

3/2 

4/6 

4/6 

7/2 

6/5 

11/6 

2/1 

/ 
/ 
l 

/I 

5/5 

/I 

2/4 

2/1 

1/5 

/2 

9/4 

2/1 

3/6 

2/3 

5/6 

5/6 

7/3 

5/4 

13/10 

4/2 

/ 
/ 
/ 
,'l ' 

5/5 

1/2 

2/2 

5/4 

2/11 

3/3 

8/2 

2/2 

6/8 

8/5 

10/8 

10/8 

9/4 

5/4 

13/9 

4/2 

/ 
/ 
/ 
/'I 

4/4 

/2 
3/4 

4/2 

2/11 

3/1 

9/9 

10/6 

17/10 

15/6 

9/9 

8/6 

10/5 

5/4 

/ 
/ 
/ 
/l 

4/4 

2/4 

3/4 

5/2 

4/16 

8/1 

13/15 

10/6 

25/14 

15/12 

18/14 

20/6 

15/11 

10/18 

13/13i17/16 

4/2 ] 6/4 

/ 
.1/1 

/ 
/I 

4/5 

2/4 

8/5 

6/3 

4/14 

9/1 

17/17 

14/10 

33/30 

26/16 

38/16 

23/8 

16/21 

20/13 

24/20 

4/3 

/ 
1/1 

/ 
/ 

5/3 

4/10 

6/4 

6/5 

8/15 

6/ 

21/15 

16/13 

32/17 

23/14 

40/19 

25/9 

15/20 

19/11 

19/15 

5/4 

/ 
/ 
/ 

• / 

4/3 

4/12 

6/4 

6/3 

10/15 

6/ 

19/17 

17/13 

30/14 

22/13 

26/15 

23/8 

14/5 

30/14 

20/16 

4/6 

/ 
/ 
/ 
/ 

4/3 

2/10 

6/4 

6/3 

J 2/1 2 

7/1 

19/21 

17/14 

30/14 

22/13 

27/15 

23/8 

15/11 

24/9 

25/16 

4/4 

/ 
1/1 

/ 
2/2 

4/3 

2/10 

5/2 

7/5 

12/12 

7/1 

19/21 

17/13 

37/16 

22/13 

26/16 

23/8 

13/5 

24/10 

25/15 

4/4 

/ 
1/1 

/ 
2/2 

4/3 

2/10 

7/4 

7/5 

12/12 

7/1 

20/22 

16/14 

37/16 

30/15 

27/15 

23/9 

12/4 

22/8 

26/18 

9/7 

/ 
1/2 

/ 
2/2 

4/3 

2/10 

7/4 

7/5 

12/12 

7/1 

20/22 

16/14 

39/17 

30/16 

27/17 

26/10 

16/7 

22/"<? 

25/.l<; 

4/4 

/ 
/ 
/ 

2/2 

5/4 

2/21 

18/6 

8/9 

12/12 

7/1 

20/22 

16/14 

39/17 

30/16 

27/19 

25/9 

15/6 

22/8 

23/13 

4/4 

Table 5.9 : A of spilled intervals in pifft when coalescing threshold changes 

12 
0 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

/ 
/ 
/ 
/ 
/ 
/ 
/ 
/ 
/ 
/ 
/ 
/ 
/ 
/ 
/ 
/ 
/ 
/ 
/ 
/ 
/ 

/ 
/ 
/ 
/ 
/ 
/ 
/ 
/ 
/ 
/ 
/ 
/ 
/ 
/ 
/ 
/ 
/ 
/ 
/ 
/ 
1/2 

5/ 

•V. 

5/ 

6/ 

5/ 

5/ 

4/ 

3/ 

3/ 

4/1 

3/ 

3/ 

3/ 

3/ 

3/ 

3/ 

3/ 

2/ 

3/2 

3/2 

3/2 

1/ . 

1/ 

1/1 

1/2 

1/ 

2/2 

5/1 

5/1 

4/1 

2/1 

2/2 

2/1 

2/2 

2/2 

2/2 

2/1. 

2/1 

2/3 

2/ 

!/ 
1/ 

3/4 

3/4 

4/4 

4/4 

3/4 

2/3 

2/3 

2/3 

2/3 

2/1 

3/1 

4/2 

5/3 

3/3 

4/4 

2/3 

4/5 

4/2 

3/4 

/i 

,/l 

8/1 

8/) 

8/1 

7/1 

8/1 

9/1 

7/1 

8/1 

9/2 

8/3 

7/3 

5/1 

4/1 

4/1 

5/1 

5/3 

7/3 

7/3 

9/6 

8/6 

8/4 

13/4 

13/4 

13/4 

13/4 

13/5 

14/5 

14/5 

17/7 

11/6 

10/3 

11/3 

9/3 

10/3 

8/3 

7/3 

10/4 

10/6 

11/6 

11/3 

14/3 

3.2/3 

4/7 

4/7 

4/7 

5/6 

5/5 

3/1 

6/3 

,9/3 

4/1 

6/5 

6/5 

7/5 

7/4 

8/6 

8/6 

7/6 

8/7 

9/7 

8/7 

8/7 

8/7 

9'3 

9/3 

9/3 

9/3 

9/3 

12/6 

9/4 

9/6 

14/5 

.5/3 

5/3 

8/6 

9/7 

4/3 

3/4 

•1/4 

5/4 

5/5 

7/7 

5/7 

4/5 

5/1 *>. 

5/16 

5/16 

5/16 

5/16 

5/16 

4/15 

3/12 

5/14 

7/21 

7/19 

3/14 

3/15 

4/15 

4/13 

3/7 

1/2 

1/1 

1/1 

3/2 

3/2 

8/20 

8/20 

8/20 

8/20 

8/20 

8/20 

8/21 

8/22 

6/19 

6/19 

8/19 

4/21 

3/16 

2/6 

2/ 

4/4 

!/l 

1/1 

1/1 

/3 

/3 

11/39 

11/39 

1.1/39 

11/39 

11/39 

11/39 

11/39 

11/39 

12/39 

11/41 

11/36 

13/40 

12/39 

11/34 

12/4.1 

' 8/33 

4/17 

9/23 

13/36 

13/36 

13/36 

11/56 

11/56 

11/56 

11/56 

11/56 

11/57 

11/57 

12/54 

10/52 

10/50 

10/49 

8/45 

8/45 

13/58 

12/50 

9/29 

9/28 

10/38 

2/15 

10/20 

10/21 

6/21 

6/21 

6/21 

6/21 

6/20 

7/18 

4/19 

3/19 

3/21 

6/21 

5/22 

5/16 

5/17 

6/6 

3/4 

4/6 

6/7 

4/5 

9/9 

3/3 

2/2 

5/16 

5/) 6 

5/16 

5/16 

5/16 

5/17 

7/21 

7/21 

9/21 

7/17 

7/17 

5/19 

6/19 

7/19 

7/19 

8/30 

14/37 

5/14 

7/8 

2/3 

1/5 

1/6 

1/6 

1/6 

1/6 

1/6 

1/6 

2/7 

2/7 

2/7 

4/4 

5/5 

5/9 

5/10 

5/10 

5/10 

4/8 ' 

4/8 

6/15 

5/15 

3/8 

3/6 

2/10 

2/10 

3/11 

3/11 

3/11 

3/11 

3/11 

5/12 

3/11 

3/11 

3/11 

3/11 

3/10 

1/3 

1/3 

2/6 

2/6 

/ 
1/2 

/ 
/ 

5/13 

5/13 

5/13 

5/13 

5/13 

5/13 

5/13 

4/12 

4/12 

4/12 

4/12 

4/12 

4/14 

4/14 

2/6 

3/5 

3/6 

1/4 

6/9 

4/9 

1/4 

4/7 

4/7 

3/7 

3/7 

3/7 

3/7 

3/7 

3/7 

3/7 

3/7 

3/7 

3/7 

4/8 

5/8 

4/8 

3/9 

5/9 

1/4 

4/8 

6/7 

1/4 

3/2 

3/2 

3/1 

3/1 

3/1 

2/ 

2/11 

/ 
1/4 

1/4 

1/4 

1/4 

1/4 

1/4 

1/4 

2/7 

2/7 

2/7 

6/10 

2/7 

2/7 

Table 5.10 : A of spilled intervals in pifft when simplifying threshold changes 



67 

0 1 2 3 4 5 6 7 8 9 10 

0/24 

0/98 

4/103 

9/128 

5/183 

14/122 

20/133 

25/137 

17/80 

16/70 

14/69 

21/52 

15/28 

18/22 

19/17 

10/U 

14/22 

13/18 

17/26 

6/20 

0/24 

0/98 

4/103 

9/128 

5/183 

14/122 

20/133 

25/137 

17/80 

16/70 

14/69 

21/52 

15/28 

18/22 

19/17 

11/12 

15/23 

12/17 

17/26 

6/20 

0/24 

0/98 

4/103 

9/128 

5/183 

14/122 

20/133 

25/137 

17/80 

16/70 

14/69 

21/52 

15/28 

18/22 

J9/17 

11/12 

15/33 

12/17 

17/26 

6/20 

0/24 

0/96 

4/100 

9/131 

6/185 

14/119 

20/136 

25/13S 

17/82 

16/70 

14/69 

21/52 

15/28 

18/22 

19/17 

11/12 

15/23 

12/17 

17/26 

6/20 

0/24 

0/105 

4/102 

9/114 

6/196 

20/114 

20/135 

25/139 

17/87 

14/67 

14/70 

21/51 

15/28 

18/22 

19/17 

11/12 

15/26 

13/15 

17/27 

6/19 

0/24 

0/91 

4/101 

9/127 

6/188 

20/123 

20/144 

25/133 

17/85 

14/75 

14/61 

25/43 

16/41 

17/20 

18/17 

10/13 

15/25 

13/14 

16/27 

6/19 

0/23 

0/88 

4/105 

9/121 

5/179 

15/129 

20/134 

25/136 

17/87 

14/79 

14/62 

26/46 

16/42 

17/20 

18/17 

11/13 

15/26 

13/14 

16/26 

6/24 

0/22 

0/75 

4/91 

8/137 

5/174 

14/115 

19/135 

25/147 

16/93 

14/75 

14/75 

26/46 

16/41 

17/21 

18/16 

11/13 

15/23 

12/17 

16/25 

6/25 

0/22 

0/75 

4/85 

8/135 

5/182 

14/113 

19/120 

25/157 

16/86 

14/89 

14/73 

26/47 

16/29 

15/32 

18/16 

11/12 

15/23 

13/19 

16/25 

6/21 

0/21 

0/75 

4/86 

8/134 

5/177 

14/117 

19/120 

26/133 

14/111 

15/82 

16/54 

17/62 

21/39 

18/33 

16/18 

14/11 

13/22 

12/18 

1.7/26 

6/20 

0/20 

0/60 

2/84 

5/136 

6/175 

11/118 

20/125 

24/127 

14/122 

18/89 

18/48 

18/53 

17/4] 

23/42 

17/19 

14/14 

13/22 

12/18 

17/26 

6/20 

15 

0/14 

0/73 

4/82 

8/126 

6/159 

11/113 

16/131 

24/139 

13/84 

12/81 

20/43 

17/45 

14/47 

16/52 

1 7/33 

11/31 

10/20 

13/33 

13/32 

6/16 

16 

0/14 

0/73 

4/82 

8/126 

6/159 

11/113 

17/130 

24/133 

12/89 

12/83 

21/42 

17/45 

13/53 

17/53 

18/34 

12/26 

10/21 

12/27 

17/35 

6/16 

17 

0/14 

0/R9 

4/79 

7/118 

7/161 

10/118 

16/138 

24/133 

13/89 

13/80 

21/41 

17/46 

13/56 

17/53 

18/34 

12/26 

10/21 

12/28 

17/34 

6/16 

18 

0/14 

0/69 

4/77 

7/113 

7/162 

10/119 

16/142 

24/135 

13/89 

13/76 

21/41 

17/55 

J 5/58 

21/49 

18/34 

12/26 

9/20 

11/28 

19/33 

7/19 

19 

0/14 

0/69 

4/77 

7/113 

7/161 

JO/120 

16/140 

24/135 

13/88 

13/77 

21/48 

19/50 

16/59 

19/44 

20/34 

11/27 

1 0/23 

10/26 

17/34 

0/16 

20 

0/9 

0/74 

4/77 

7/108 

7/154 

10/124 

16/148 

24/133 

13/90 

13/77 

21/48 

19/49 

16/60 

19/44 

20/34 

11/27 

10/23 

10/27 

16/33 

6/16 

10 

11 

12 

13 

14 

15 

16 

1.7 

IS 

)9 

20 

0/20 

0/58 

2/85 

5/136 

6/J 74 

11/323 

20/124 

24/127 

13/109 

16/91 

20/50 

21/64 

15/35 

21/44 

17/17 

13/13 

13/22 

12/18 

17/26 

6/20 

0/18 

0/56 

2/85 

5/133 

6/166 

10/121 

19/127 

26/139 

14/100 

13/91 

21/44 

23/51 

16/56 

26/44 

19/27 

10/22 

13/30 

14/23 

18/28 

LJT/'O J 

0/16 

0/56 

2/85 

5/131 

6/164 

8/liO 

17/134 

24/136 

14/93 

13/85 

22/36 

20/60 

31/51 

17/50 

17/36 

10/26 

13/28 

12/28 

18/32 

7/15 

0/16 

0/71 

2/80 

5/125 

S/155 

8/112 

16/131 

24/1.44 

16/79 

12/81 

18/37 

19/49 

14/55 

19/51 

17/35 

10/27 

11/26 

13/29 

18/31 

7/16 

Table 5.11 : A of coalesced intervals in piil't when coalescing threshold changes 



68 

/ 
/ 
/ 
/ 
/ 
/ 
/ 
/ 
/ 
/ 
/ 
/ 
I 

1 
1 
1 

2/2 

l 

1/1 

/ 
/ 

/ 
/ 
/ 
/ 
/ 
/ 
/ 
/ 
/ 
/ 
/ 
/ 

1 

1 
1 

1 
1 
1 
1 
1 
1 

1 

1 
1 

2/ 

5/ 

2/ 

1/ 

4/ 

1/ 

2/ 

1/1 

/ 
/ 
/ 
/ 
/ 
/ 
1 
1 
1 
1 
1 

1 
I 

/9 

/ll 

6/ 

/5 

6/ 

7/ 

4/ 

2/3 

/ 
/I 

/ 
/ 
1/1 

/ 
/ 
/3 

/ 
/I 

j 

1 
1 

14/ 

15/ 

2/ 

H/1 

1/ 

/s 
/2 

/ 
1/9 

4/3 

14/1 

3/2 

3/1 

1/ 

1/2 

1/1 

2/1 

/ 
/ 

/ 
1/ 

4/ 

/ 
6/ 

14/ 

3/ 

13/ 

10/ 

10/2 

4/ 

3/ 

1/ 

I 

i 
i 

1/ 

/ 
/ 
1/ 

/4 

/ 
1/ 

14/ 

29/1 

14/3 

18/2 

31/2 

28/1 

16/ 

10/1 

13/ 

/ 
/ 
1/ 

/ 
1/ 

2/1 

4/ 

/ 
1/ 

/ 

/ 
/ 
/ 

6/ 

8/ 

/ 
2/ 

17/ 

7/ 

15/1 

/ 
2/ 

1/ 

13/ 

/ 
/ 
1/ 

1/ 

1/1 

/ 
4/ 

1 

1/ 

1/ 

/ 
1/ 

8/2 

2/ 

2/ 

27/ 

2/2 

10/2 

29/ 

16/11 

3/3 

2/ 

/2 

3/1 

1/ 

2/1 

1/ 

2/ 

/ 
1/ 

16/ 

IS/2 

13/2 

15/1 

11/1 

9/3 

13/3 

8/9 

2/7 

5/2 

18/5 

15/8 

4/1 

3/ 

/ 
1 
1 
1 
1 

i 

1 
2/ 

2/1 

1/ 

2/ 

/3 

/2 

/2 

11/1 

15/9 

13/7 

10/12 

9/7 

2/4 

3/3 

/ 
/ 
/ 
/ 
/ 

j 

2/ 

4/ 

6/2 

12/5 

16/1 

16/ 

15/3 

12/10 

18/6 

14/5 

21/5 

35/4 

16/5 

18/2 

13/5 

2/fi 

1/13 

1/16 

/16 

1/16 

/ 
2/ 

2/ 

2/ 

5/1 

12/6 

19/4 

14/8 

13/6 

19/5 

28/8 

33/4 

25/8 

39/2 

29/7 

17/6 

13/6 

12/3 

2/ 

1/3 

5/2 

/ 
. / 
.1/16 

2/12 

7/11 

9/5 

4/2 

6/2 

1/5 

14/2 

16/1 

11/1 

21/1 

2/3 

/ 
2/1 

2/2 

1/1 

2/2 

1/ 

/ 

/ 
2/ 

/ 
2/2 

4/2 

2/3 

2/1 

3/2 

8/2 

1/3 

1/3 

4/10 

4/8 

9/5 

10/10 

11/9 

10/11 

6/2 

2/2 

1/1 

,/l 

/ 
/ 
/ 
/ 
/ 

1/1 

/ 
3/1 

8/ 

3/1 

1/1 

2/ 

2/ 

1/6 

1/6 

1/6 

2/1 

2/2 

6/1 

/ 
/ 

/ 
/ 

4/ 

7/ 

15/1 

13/ 

8/1 

3/5 

2/4 

1/2 

3/ 

4/ 

3/ 

/ 
/ 
/ 
/ 
/ 

1/2 

/ 
/ 

/ 
/ 
/ 

2/ 

7/ 

6/ 

5/ 

2/1 

/I 

/I 

3/ 

3/ 

3/9 

3/9 

4/2 

3/1 

4/2 

2/ 

4/3 

5/1 

2/ 

/ 
/ 
/ 
1 

i 
1/ 

/ 
2/ 

2/ 

3/ 

2/ 

2/7 

6/4 

5/3 

9/4 

9/2 

8/3 

4/1 

5/1 

4/3 

3/ 

/ 
5/ 

/ 
/ 

5/ 

12/ 

8/ 

/ 
2/ 

/ 
/ 
/ 
1/ 

/ 
/ 
/ 
/ 
/ 

1/2 

/I 

/I 

Table 5.12 : A of coalesced intervals in pint when simplifying threshold changes 

Histogram ot the degree g1 &il intervale in scroant 

fc El 
tL 

Jlt-Tu 
15 20 25 30 3s 40 «5 50 

Degree <*he part greater than 50 ^ rot displjyed) 

Histogram ol 'he degree of all intervals in pith 

h 

rad 

Figure 5.10 : Histogram of the degree of all initial intervals 



69 

Chapter 6 

Summary and Conclusions 

This work is about tuning the graph coloring register allocator to obtain a better code 

quality. It consists of two parts, adding tunable parameters to the current algorithm 

and looking for good parameters for individual programs. 

The existing graph coloring register allocators use some heuristics based on the 

number of available physical registers. The heuristics are used for live interval co

alescing and determining the order of live interval coloring. But no heuristics can 

guarantee the best results for different programs. Theoretically, making the heuris

tics more precise can improve the results. The problem is the precision is hard to 

obtain. Thus, we used the tunable parameters instead of the fixed heuristics. These 

tunable parameters include the threshold for coalescing, the threshold to separate the 

constrained and unconstrained variables in simplification. The thresholds for integers 

and floating-point numbers are separated. And the spill cost calculation method is 

also a parameter. Thus there are five tunable parameters in total, which are set as 

command line arguments of the LLVM compiler. The experiment results show the 

varying ranges of the running time are large - the difference between the best and the 

worst is up to 30%. So the parameterization provides a potential for better code. The 

best parameters also differ among the programs, so a search method for individual 

program is needed. 

In order to find good parameters, we ran an adapted hill-climbing algorithm over 

these parameters at three patience levels. The results indicated the lowest patience 

levels(25%) works better than others(50% and 100%). These runs also generated a set 

of points that are selected randomly in the parameter space, which can represent the 



70 

properties of the whole space approximately. We ran a random probe simulator on 

the random point set. However, the results indicate the random probe outperforms 

the hill-climbing. By analyzing the search paths, we found the structure of the search 

space is not good enough for hill-climbing search, because there are more random 

fluctuation and less regular slopes. Therefore, the hill-climbing search often wastes 

time in wandering over almost-even areas. 

Then we studied the reason of the poor space structure, by tracing the input 

paxameters to the internal states of the register allocator. Instead of comparing the 

number of coalesced and spilled intervals, we focused on the changes of the coalesced 

and spilled interval lists when a parameter increases by one and found two factors can 

contribute to the instability of the running time. First, the changes of the coalesced or 

spilled intervals often contain both adding new elements and removing old elements, 

which means more changes in the interval lists than only adding or only deleting, 

leading to large and irregular changes. Second, the two thresholds for coalescing 

and separating constrained/unconstrained intervals not only have direct effects on 

the coalesced intervals and spilled intervals respectively, but also have effects on the 

other in an erratic way. The iteration in the algorithm creates this entanglement and 

makes it hard to trace. Roughly, the effects on its own part are major and regular, 

but the effects on the other's part are minor and irregular. 

This study presents a method that creates a chance for better results; and the 

experiments on the adaptive search reveal some issues in practical, application. These 

make a good feedback for further improvements. In further work, we may try to 

modify the algorithm to reduce the randomness and instability. This may shrink the 

range of the running time, or change the distribution. It is possible to deliver a good 

overall performance in limited search time if the adaptive search works well. 



71 

Bibliography 

[1] Lelac Almagor, Keith D. Cooper, Alexander Grosul, Timothy J. Harvey, Steve 

Reeves, Devika Subra,manian, Linda Torczon, and Todd Waterman. Compilation 

order matters: Exploring the structure of the space of compilation sequences 

using randomized search algorithms, 2003. 

[2] Lelac Almagor, Keith D. Cooper, Alexander Grosul, Timothy J. Harvey, 

Steven W. Reeves, Devika, Subramanian, Linda, Torczon. and Todd Waterman. 

Finding effective compilation sequences. In Proceedings of the 2004 ACM SIG-

PLAN/S1GBED conference on Languages, compilers, and tools for embedded 

systems(LCTES '04), pages 231-239, 2004. 

[3] Bowen Alpern, Mark N. Wegman, and F. Kenneth Zadeck. Detecting equality 

of values in programs. Iti Conf. Bee. Fiftheenth ACM symp. on Principles of 

Programming Languages, pages 1-11, 1988. 

[4] David Bernstein, Matin C. Golumbic, Yishay Mansour, Ron Y. Pinter, Dina Q. 

Goldin, Hugo Krawczyk, and Itai Ncihshon. Spill code minimization techniques 

for optimizing compilers. In Proceedings of the ACM SIGPLAN 1989 Conference 

on Programming language design and implementation, pages 258-263, 1989. 

[5] M. Biro, M. Hujterand, and Zs Tuza. Precoloring extension, i: Interval graphs. 

Discrete Mathematics, 100(1-3):267-279. 1992. 

[6] Florent Bouchez. Alain Darte, Christophe Guillon, and Fabrice Rastell. Register 

allocation and spill complexity under ssa. Technical Report RR2005-33, LIP, 

ENS-Lyon, France, 2005-



72 

[7] Florent Bouchez, Alain Darte, and Fabrice Rastello. On the complexity of reg

ister coalescing. In Proceedings of the International Symposium on Code Gen

eration and Optimization (CGO '07), pages 102-114. IEEE Computer Society 

Press, March 2007. 

[8] Preston Briggs. Register Allocation via Graph Coloring. PhD thesis, Rice Uni

versity, Houston, TX 77005, April 1992. 

[9] Preston Briggs, Keith D. Cooper, Timothy J, Harvey, and L. Taylor Simpson. 

Practical improvements to the construction and destruction of static single as

signment form. Software—Practice and Experience, 28(8):859 -881, 1998. 

[10] Preston Briggs, Keith D. Cooper, Ken Kennedy, and Linda Torczon. Coloring 

heuristics for register allocation. ACM SIGPLAN Notices, 24(7):275-284, July 

1989. 

[11] Preston Briggs, Keith D. Cooper, and Linda Torczon. Improvements to graph 

coloring register allocation. ACM Transactions on Programming Languages and 

Systems (TOPLAS), 16(3):428-455, May 1994. 

[12] Philip Brisk, Foa.d Dabiri, and Jamie Macbeth. Polynomial time graph coloring 

register allocation. In 15th International Workshop on Logic an Synthesis, 2005. 

[13] Gregory J. Chaitin. Register allocation and spilling via graph coloring. In Pro-

ceddings of the ACM Symposium on Compiler Construction, pages 98-105, June 

1982. 

[14] Gregory J. Chaitin, Marc: A Auslander, Ashok K. Chandra, John Cocke, Mar

tin E. Hopkins, and Peter W. Markstein. Register allocation via coloring. Com

puter Languages, 6(l):47--57, 1981. 

[15] Keith D. Cooper, Alexander Grosul, Timothy J. Harvey, Steve Reeves, Devika 

Subramanian. Linda Torczon, and Todd Waterman. Exploring the structure of 



73 

the space of compilation sequences using randomized search algorithms. The 

Journal of Supercornputing, 36(2): 135-151, May 2006. 

[16] Keith D. Cooper, Tim Harvey, and Jeff Sandoval. Tuning an adaptive compiler. 

In First Workshop on Statistical and Machine learning approaches applied to 

ARchitectures and compilation (SMART 07). 2007. 

[17] Keith D. Cooper, Timothy J. Harvey, and Linda Torczon. How to build an 

interference graph. Software-Practice and Experience, 28(4) :425-444, 1998. 

[18] Keith D. Cooper, Timothy J. Harvey, and Todd Waterman. An Adaptive Strategy 

for Inline Substitution, volume 4959/2008 of Lecture Notes in Computer Science, 

pages 69-84. Springer Berlin / Heidelberg, April 2008. 

[19] Keith D. Cooper, Philip J. Schielke, and Devika Subramanian. Optimizing for 

reduced code space using genetic algorithms. In In Workshop on Languages, 

Compilers, and Tools for Embedded Systems, 1999. 

[20] Keith D. Cooper, Devika Subramanian, and Linda Torczon. Adaptive optimizing 

compilers for the 21st century. Journal of Supercornputing, 23(l):7-22, 2002. 

[21] Ron Cytron, Jeanne Ferrante, Barry K. Rosen, Mark N. Wegman, and F. Ken

neth Zadeck. Efficiently computing static single assignment form and the control 

dependence graph. ACM Transactions on Programming Languages and Systems 

(TOPLAS), 13(4) :451 - 490, 1991. 

[22] Martin Farach and Vincernzo Liberatore. On local register allocation. In The 

9th ACM-SIAM symposium on Discrete Algorithms, pages 564-573, 1998. 

[23] Fanica Gavril. Algorithms for minimum coloring, maximum clique, minimum 

covering by cliques, and maximum independent set of a chordal graph. Journal 

of combinatoric, B(16)(46-56), 1974. 



74 

[24] Lai George and Andrew W. Appel. Iterated register coalescing. A CM Transac

tions on Programming Languages and Systems (TOPLAS), 18(3) :300-324, May 

1996. 

[25] Alexander Grosul. Adaptive Ordering of Code Transformations in an Optimizing 

Compiler. PhD thesis, Rice University, April 2005. 

[26] Yi Guo, Devika Subramanian, and Keith D. Cooper. An effective local search 

algorithm for an adaptive compiler. In First Workshop on Statistical and Ma

chine learning approaches applied to ARchitectures and compilaTion (SMART 

07), 2007. 

[27] Sebastian Hack, Daniel Grund, and Gerhard Goos. Register allocation for pro

grams in ssa-form. In 15th International Conference on Compiler Construction 

(CC 2006), pages 247-262, 2006. 

[28] Chris Lattner and Vikram Adve. Llvm: A compilation framework for lifelong 

program analysis &; transformation. In Proceedings of the 2004 International 

Symposium on Code Generation and Optimization (CGO'04), Palo Alto, CA, 

April 2004. 

[29] Jonathan K. Lee, Jens Palsberg, and Fernando Magno Quintao Pereira. Aliased 

register allocation for straight-line programs is np-complete. Theoretical Com

puter Science, 407(l-3):258-273, 2008. 

[301 Danial Marx. Precolormg extension on unit interval graphs. Discrete Applied 

Mathmatics, 154(6) :995-1002, 2006. 

[31] Fernando Magno Quintao Pereira and Jens Palsberg. Register allocation via 

coloring of chordal graphs. In The Third Asian Symposium on Programming 

Languages and Systems., pages 315 - 329, 2005. 



75 

[32] Fernando Magno Quintao Pereira and Jens Palsberg. Register allocation by 

puzzle solving. In ACM SIC PL AN 2008 Conference on Programming Language 

Design and Implementation (PLDI), 2008. 

[33] Massimiliano Poletto and Vivek Sarkar. Linear scan register allocation. ACM 

Transactions on Programming Languages and Systems, 21(5):895-913, 1999. 

[34] Barry K. Rosen, Mark N. Wegmari, and F, Kenneth Zadeck, Global value num

bers and redundant computations. In Conf. Rec. Fiftheenth ACM sym,p. on 

Principles of Programming Languages, pages 12-27, 1988. 

[35] Johan Runeson and Sven-Olof Nystrom. Generalizing chaitin's algorithm: 

Graph-coloring register allocation for irregular architectures. Technical Re

port Technical Report 2002-021, Uppsala University, Department of Information 

Technology, 2002. 

[36] Johan Runeson and Sven-Olof Nystrom. Retargetable graph-coloring register 

allocation for irregular architectures. In SCOPES, 2003. 

[37] Michael D. Smith, and Glenn Holloway. Graph-coloring register allocation for 

irregular architectures. In Proceedings of the Conference on Programming Lan

guage Design and Implementation (PLDI'01), 2001. 

[38] Michael D. Smith, Norman Ramsey, and Glenn Holloway. A generalized algo

rithm for graph-coloring register allocation. In Proceedings of the A CM SIG-

PLAN '04 Conference on Programming Language Design and Implementation, 

pages 277-288, 2004. 

[39] Mihalis YannaJsakis and Fanica Gavril The maximum k-colorable subgraph 

problem for chordal graphs. Information Processing Letters, 24(2): 133-137, 1987. 


