RICE UNIVERSITY

Soft Typing: An Approach to Type Checking for
Dynamically Typed Languages

by
Mike Fagan

A THESIS SUBMITTED
IN PARTIAL FULFILLMENT OF THE
REQUIREMENTS FOR THE DEGREE

Doctor of Philosophy

APPROVED, THESIS COMMITTEE:

Robert S. Cartwright, Chairman
Professor of Computer Science

Matthias Felleisen
Assistant Professor of Computer Science

Richard Tapia

Professor of Mathematical Sciences

Bruce Duba

Research Associate of Computer Science

Houston, Texas

August, 1992

Soft Typing: An Approach to Type Checking for
Dynamically Typed Languages

Mike Fagan

Abstract

In an effort to avoid improper use of program functions, modern programming lan-
guages employ some kind of preventative type system. These type systems can be
classified as either static or dynamic. Static type systems detect “ill-typed” program
phrases at compile-time, whereas dynamic type systems detect “ill-typed” phrases at
run-time.

Static typing systems have two important advantages over dynamically typed
systems: First, they provide important feedback to the programmer by detecting a
large class of program errors before execution. Second, they extract information that
a compiler can exploit to produce more efficient code.

The price paid for these advantages, however, is a loss of expressiveness and mod-
ularity. It is easy to prove that a static type system for an “interesting” programming
language necessarily excludes some “good” programs.

This paper focuses on the problem of designing programming systems that retain
all the expressiveness of dynamic typing, but still offer the early error detection and
improved optimization opportunities of static typing. To that end, we introduce a
concept called soft typing.

The key concept of soft typing is that a type checker need not reject programs
containing statically “ill-typed” phrases. Instead, the soft type checker inserts explicit
run-time checks. Thus, there are two issues to be addressed in the design of soft
typing systems. First, the typing mechanism must provide reasonable feedback to
programmers accustomed to dynamically typed languages. Current static systems fail
to satisfy the programmer’s intuition about correctness on many programs. Second, a
soft typing system must sensibly insert run-time checks (when necessary). This paper
develops a type system and checking algorithms that are suitable for soft typing a

significant class of programming languages.

Acknowledgments

A thesis is never the work of one person. In my case, this is especially true. A great
many people contributed to this work. This section is an attempt to recognize and
thank the people who analyzed, cajoled, consoled, and otherwise supported me in
this effort.

First and foremost, I would like to thank my committee. Every Ph.D. candidate
owes a debt to his committee, but in my case, the debt is exceptionally large. Thanks
to Corky Cartwright, my committee chairman, who asked the appropriate questions,
and provided a great deal of the intuition behind the ideas of this thesis. Corky never
failed to see the “big picture”, and his vision was the driving force for this thesis.
Thanks to Matthias Felleisen for helping me break down large problems into smaller
ones, and for reviewing my prose. Thanks to Bruce Duba for technical help on ML, as
well as his interest in this work. Matthias and Bruce receive special commendation for
their willingness to be added somewhat late in the game. Special thanks to Richard
Tapia, who agreed to serve as my outside member. Richard has known me for years,
and he still agreed to serve.

Additional thanks to Hans Boehm, who originally served on this committee, before
he moved on from the Rice community. Hans provided very valuable insights into
type checking unusual languages.

Special thanks to Tim Griffin, who first introduced me to the advanced unification
theory. Tim provided many alternatives to the approach 1 initiated. The resulting
synthesis was instrumental in analyzing the results in this thesis.

I would also like to thank the funding agencies for supporting this work. So,
thank you IBM, thank you DARPA (PRISM project), and special thanks to the
Texas Advanced Research Program, and the Advanced Technology Program.

Besides the faculty, I would also like to thank the students for their valuable
feedback. Becky, Dorai, Rama, Mark, Andrew, Jerry, Mike, Marina — thanks a lot.
[appreciated it. Also, special thanks to Dave Johnson, who always answered my TEX

questions.

v

Anyone who has ever written a thesis also realizes that there are many people who
contribute moral support. This kind of support is as necessary as technical support.

First, I acknowledge Keith Cooper and Linda Torczon, who first encouraged me
to come back to graduate school. They convinced me I wasn’t too old.

Second, special thanks to all my friends in the dance community. After 12 or 14
hours of left brain activity, the right brain really needs some exercise to maintain
balance. While the list of people is too large to cover adequately, I'd like to mention
Glen Hunsucker and his crew, Rick Archer and SSQQ, Mario and the X-team, Debbie,
Jeannie, and Kay.

Extra special thanks to Carrie Estes. She doesn’t have any interest in computer
science, but she still provided lots of TLC.

In a similar fashion, my two oldest friends, Joe and Jeff, deserve some kind of
medal for keeping me sane (or what passes for sanity in my case). I hope you guys
know how much your encouragement has meant.

Last, but certainly not least, I must thank my family. Mom, Dad, Pattye, Steve,
Kyle, John, and Paigee Beth — thanks so much. Without you, this whole project

would never have been done.

I dedicate this thesis to my family.

Contents

Abstract i
Acknowledgments i
Introduction 1
1.1 Design Criteria for a Soft Type Checker

1.1.1 Non-Uniformity

1.1.2 Recursive Types 11
1.2 Summary of Thesis Goals 0. 12
1.3 The General Plan 13

A Family of Programming Languages, Type Languages,

and Type Inference Systems 15
2.1 Avwview of program data Lo oo 16
2.1.1 Firstorder datao oo 16
2.1.2 Higher order data L. 18
2.2 The Programming Language Exp, 19
2.3 Semanticsof Exp oo o 21
2.3.1 The Data Domain. 21
2.3.2 Semantics of the Programming Language Constructs 22
2.3.3 Semantics for The Constants 23
2.4 A Type Language for Exp 00000 25
2.4.1 A Review of Regular Tree Expressions 28
2.4.2 Regular Types and Polyregular Types. 31
2.4.3 Regular Types with Functions 34
2.5 The Semantics of Regular Types 35
2.5.1 A Summary of the Ideal Model for Types 36
2.5.2 Semantics of Regular Types 39

2.5.3 Soundness of Subtype Inference 40

2.6 Type Inference for Exp Using Regular Types

2.7 Some Example Deductions 000
2.8 Proofs for Chapter 2 oo

2.8.1

2.8.2
2.8.3
2.8.4

Theorem 2.6 (Formally Contractive implies Semantically
Conlractive)
Theorem 2.7 (Soundness of First Order Inference)

Theorem 2.8 (Fatended Subtype Soundness Theorem)
Theorem 2.9 (Soundness of Regular Type Inference)

Automated Type Assignment for Regular Types

3.1 The Milner Type System and algorithm W
3.2 Equalities, Inequalities and Type Inference
3.3 Slack Variables and the Rémy Encoding
3.4 Automating Type Assignment for Regular Types

3.4.1

Encoding discriminative regular types

3.5 Accommodating Recursive Types

3.5.1
3.5.2

Using Algorithm W for R-type assignment

Interpreting R-terms as sets of regular types

3.6 Some Examples

3.6.1

Some Anomalies

Inserting Explicit Run Time Checks

4.1 Dynamic Typing and Explicit Run-Time Checks

4.2 Soundness of type inference for explicitly checked programs

4.3 Automating the Insertion Process

4.4 Some Observations
4.5 Proofs for Chapter 4 Lo

4.5.1
4.5.2
4.5.3

Theorem 4.2 (Soundness of Algebraic Subtype Inference) . . .
Theorem 4.3 (Fatended Soundness for Inference Rules)
Theorem 4.4 (Fatended soundness of type inference)

Perspectives: Related Work and Future Work
5.1 Related Work

5.1.1
5.1.2

Philosophically Similar Work
Related Static Type Systems.

vi

42
45
Hb)

Hb)
Hb)
39
61

64
65
71
74
79
80
90
93
98
99

114

123
126
137
138
148
149
149
151
152

5.2 Future Work

5.3 Conclusions

Bibliography

Vil

Chapter 1

Introduction

Most modern programming languages support some notion of “type”. While formal
accounts of “type” vary, they all focus on the idea of confirming that applications of
program functions to arguments are well defined. Most primitive program operations
presume that their arguments satisfy certain constraints. A similar observation holds
for functions and arguments in the realm of mathematics. The expression f: A — B
indicates that function f maps elements from set A to elements of set B. The notation
implies that f is defined for all elements of A, and maps these elements to elements
of B. On the other hand, if is not an element of A, then f(z) has no meaning. In
other words, functions in mathematics have a specified domain of definition, a set of
values for which application is considered well-formed. The same intuition underlies
the notion of typing in programming languages.

Like mathematical functions, program operations have domains of definition.
Most program functions are can be meaningfully applied only to a specific set of
values. If a function is applied to arguments outside of the intended set, the results
are unpredictable. Consider the function add1. This function takes an integer n
as input and produces the integer n + 1 as its value. For example, add1(5) = 6.
On the other hand, the application of of add1 to the value “string” is meaningless.
Attempting to apply add1 to a string is an example of faulty application.

Since the programs submitted to a language translator may contain undefined
applications, the language must provide some mechanism for coping with them. For
this reason, most programming languages impose a type discipline on program text.
This discipline can either be static or dynamic. The essential difference between
static typing and dynamic typing lies in when type faults are detected. A static
type system examines program text for dubious applications before any execution is
attempted. If a program contains a possible type fault, it is not executed. Dynamic
type systems, on the other hand, confirm that each application is appropriate during

program execution.

Since static type analysis takes place before execution, a static type system must
provide a set of rules determining whether or not a piece of program text is well-typed.
The set of well-typed program expressions as defined by the type system must satisfy

two criteria:
1. No well-typed program has any applications that will give run-time errors.
2. The property of being well-typed must be decidable for arbitrary program text.

Since well-typedness is decidable, the implementation of a statically typed language
must provide a type-checker' to make that decision. In a statically typed language,
programs deemed statically type correct by the type checker are eligible for execution.
Programs not deemed statically type correct are systematically rejected. In other
words, the type-checker acts as a filter on programs.

Advocates of static typing cite three advantages to programmers:

e Static typing performs a weak form of program verification. Clerical and simp-
le conceptual errors often lead to type errors detectable by the type checker.
Experimental results estimate the number of errors due to detectable type faults

as something between 30% and 80% of all program errors [24].

o Assigning types to program variables and operations provides a succinct, in-
telligible form of program documentation, making programs easier to read and
understand. Moreover, the type checker certifies that the type documentation

is consistent.?

e Type information is useful in program optimization. Type information may
permit a compiler to choose an optimal representation for some given data
structure. Likewise, static analysis may prove that certain run-time checks are

unnecessary, and therefore may be eliminated.

In contrast, the dynamic typing strategy detects type faults during program ex-
ecution. All of the primitive operations check each argument before using it in a

computation. If an argument is inappropriate, the operation signals a run-time error.

!The type checking process is almost always incorporated in the compilation or interpretation stage.
Conceptually, however, the type checker can be considered a separate entity.

?Even in dynamically typed languages, a programmer could certainly provide type information. The
difference 1s that a static type checker also checks the type information for consistency.

Unlike a statically typed language, there is no type checking guardian that excludes
programs; any syntactically correct program can be executed. Dynamically typed
languages are much more flexible and expressive than statically typed ones because
they do not exclude any programs. The absence of restrictions on programs that
can be executed provides the expressive power in dynamically typed languages. The

expressiveness of dynamically typed languages offer the programmer:

Flexibility No type checker can decide whether or not an arbitrary program will
generate any undefined applications. Therefore, the type checker must err on
the side of safety and reject some programs that do not contain any semantic

€rTors.

Generality: Some abstractions cannot be encapsulated as procedures because they
do not type check. As a result, a programmer may be forced to write many
different instances of the same abstraction. In Pascal, it is impossible to write a
sort procedure applicable to arrays of different lengths; a separate sort procedure
must be written for each array index set. In ML, it is impossible to write the
polyadic taut function in example 2.9. A separate function must be written for

each arity.

Semantic Simplicity The type system is a complex set of syntactic rules that a pro-
grammer must master to write correct programs. Otherwise, he will repeatedly

trip over the syntactic restrictions imposed by the type checker.

Programmers accustomed to dynamically typed languages are reluctant to sacrifice
this flexibility, even for the cited advantages of static typing.

The lack of flexibility in statically typed languages is inherent in any “interesting”
programming language. An informal proof of this fact requires a more precise under-

‘ interesting programming language”. Informally, the

standing of what is meant by *
crucial property of a programming language is that it specifies a computation. The

following definition solidifies this intuition.

Definition 1.1 (What is a programming language?) A programming
language £ is a triple (L, V,[-]). The first component, L, is a set of
terms. The set L is called the syntaz, or the expressions of L. The
second component, V. is a set of values. The third component, [-] is a

mapping from syntax to values. This component is called the semantics

of the language. Notationally, one indicates [e] = v to indicate that the

semantics of expression e is the value v.

Intuitively, the expression e computes to the value v.

These definitions accommodate a great many programming languages. To narrow

the possibilities a bit, this thesis focuses on “interesting” programming languages.

Definition 1.2 (What is “interesting” ¢) An “interesting” program-

ming language has the following features:

1. For any e € L, there is a v € V such that [e] = v. In other words,

all terms have a value.

2. The set V' contains at least three distinguished values: one for “er-
roneous” computations,one to indicate “non-terminating” computa-
tion, and some distinguished value for branches (see item 3). . Call
the erroneous value wrong,the non-terminating value 1, and the
branch element T'. Furthermore, there is at least one element P, € L

such that [P,] = wrong, and at least one element P, € L such that
[P.] # wrong.
3. For every P, P, P, € L, P' € L, where

P'if P then P, else P,

and
1 [P]=1L
[P1=1 [P] IPI=T
[P.] otherwise

4. The set of programs B = {P € L|[P] # L} is recursively enumer-

able (r.e.) but not recursive.

Informally, an “interesting programming language” is a programming language that
permits non-terminating computation, branching, and has at least one program that
has a run-time error. Furthermore, an “interesting programming language” has an
undecidable halting problem.

The definition of interesting yields the following simple fact.

Lemma 1.1 (The set of “Good” programs is not recursive) The set G
of all “good” programs, that is G = {P € L|[P] # wrong}, is not

recursive.

Proof Suppose G is recursive, using decision procedure D. Then, let

P € L be any arbitrary program. By items 3 and 2, we can construct P’
P'=if P then P, else P,

Using D, we can decide if [P'] = wrong. But, [P’] = wrong iff [P] # L.
So, we can use D to decide B. By assumption, B is not recursive. So, by

contradiction, (& is not recursive. (]

Based on this preliminary framework, the analysis of statically typed languages
and dynamically typed languages proceeds with definitions intended to capture the

informal notions previously mentioned

Definition 1.3 (Static type systems) Let L = (L,V,[-]), with type sys-
tem T. Let Lw C L be a recursive set, called the well-typed expressions,
such that for any e € Ly, [e] # wrong. Then the programming language
(Lw,V,[-]) is a statically typed language.

The key notion of statically typed language is that the set of expressions in the
language is smaller than the original language.

Note that a statically typed language has the same semantics and set of values as
the original programming language.

We can now easily prove:

Theorem 1.1 (Fundamental Theorem of Static Typing) Let G ={P €
L|[P] # wrong}. Then G— Ly # 0. That is, thereisa P € G, P & Ly.

Proof By definition 1.3, if P € Ly, [P] # wrong, so P € . This
means Ly C G.By definition 1.3, if P € Ly, [P] # wrong, so P €
(G. This means Ly C G. By lemma 1.1, G is not recursive. But, by
definition 1.3, the subset Ly is recursive. So Ly # (G. Therefore, There
is always some P € G — L. (]

We state the theorem informally as

For any interesting programming language, a statically type discipline
necessarily excludes some good programs.

As a corollary, we note

For any interesting programming language, there will always be some
programs that user must rewrite to accommodate a static type checker.

The basic philosophy of static typing is a conservative one. Statically typed lan-
guages exclude some programs that have no run-time to ensure that there are no
programs that do contain errors. In practice, however, not even this principle is
sacrosanct. To avoid massive inconvenience in certain cases, some static type sys-
tems permit programs that might possibly “go wrong” to be certified as type correct.
These languages rely on features of the run-time system to avoid disasters. The classic
case is ordinary division. The divide function takes two numbers as input. The sec-
ond number, is supposed to be non-zero. Many static type systems, however, permit
the type of divide to be number x number — number. In such systems the expres-
sion divide(5,0) passes the type checker, even though a misapplication is present.
Without this laxity by the type checker, programmers would be forced to write in
their own run-time checks every time the divide operation is used. For type systems
that permit some run-time checking, the term “type fault” is defined as “whatever the
type checker says it is”. In the context of this thesis, any inappropriate application
is called a type fault.

In spite of the lack of expressiveness, statically typed languages still possess the
three advantages cited previously. Clearly, one would certainly like to retain the
expressiveness of dynamic typing but still gain a measure of the advantages of static
typing. This desire is the motivation for this thesis. In this thesis, we introduce a
concept we call soft typing as an approach to gaining the best of both static and
dynamic typing. To do so, we alter our view of the function of a type-checker. Soft
typing views the type-checker as a program transformation tool. From our point of
view, a dynamically typed languages possess statically typed sublanguages. A given
statically typed sublanguage (may) have useful properties. In particular, dynamically
typed programs that are not statically correct may indicate the presence of errors.
Also, the implementation and documentation benefits of static typing can be extended
to the entire dynamically typed language if it is possible to transform an arbitrary

dynamically typed program into a program in the statically typed sublanguage that

has the same meaning as the original program. The goal of soft typing is to discover
useful static sublanguages and methods for transforming programs.

A soft type checker inspects program fragments for potential run-time errors in
the same fashion as a static type checker. In addition, the soft type checker will
transform non-conforming programs into equivalent statically correct programs by
inserting explicit run-time checks.

We design a type checker to be used as an auxiliary tool, not a filter. In a soft typ-
ing system, a programmer programs in his accustomed dynamically typed style, and
prior to execution, he runs the soft type checker. The checker infers types wherever
possible, and flags the places in the program where no type can be inferred, or where
a possible run-time error may occur. In addition, the soft type checker inserts the
appropriate dynamic checks. After the programmer inspects the places highlighted
by the soft checker (and possibly makes corrections), he runs his program. Moreover,
this paradigm does not require that a programmer use only one type checker. A
soft typing system may be served by a suite of type checkers. The key point of this
methodology is that the type checker does not stop the programmer from executing
a program that it cannot guarantee. In this way, the expressiveness of dynamic type
systems is maintained. The programmer, however, receives the error checking feed-
back from the type checking process. Furthermore, since the ultimate output of the
soft type checker is a statically type correct program, the implementors can use the

types to compile more efficient code.

1.1 Design Criteria for a Soft Type Checker

As presented, a soft typing system can be used as either a pure static system or a
pure dynamic one. Programmers who insist on static typing would run the soft type
checker and refuse to run programs not blessed by the type checker. Alternatively,
programmers who are zealously attached to dynamic checking may choose to ignore
the output of the type checker. Since soft typing encompasses both programming
styles, one might assume that any type checker can serve as a soft type checker.
There are both technical and pragmatic issues, however, that mitigate against the
use of many common type checkers.

Before we begin our analysis, we state the design criteria for a soft typing system:

1. No syntactically correct programs are excluded.

2. Run-time safety is assured by run-time time checks if such checks cannot be

safely eliminated
3. The type checking process must be unobtrusive

Qualitatively, we formulate two general principles to characterize an unobtrusive

type system.

Minimal-Text Principle The system should require little extra text (in the form of
declarations) for the type checker to function. In particular, the type checking
system should function in the absence of programmer-supplied type declara-

tions.

Minimal-Failure Principle The checker must pass “a large fraction” of dynamic
programs that will not produce an execution error. We realize that not all
programs can be certified, but a type checker that “cries wolf” too often is a

burden rather than an aid.

As our first pragmatic observation, we note that any programming system that
requires the programmer to declare types qualifies as unduly intrusive. We might
be willing to provide some type information on an interactive basis to improve the
accuracy of the typing process, but any system that requires declarations for routine
program functions is not what we want. There are several static type checkers that do
not require type information from the user. The most notable such checker is a com-
ponent of many modern functional languages. ML is the canonical example of such
a language [34, 17]. Other members of the family include Hope[7] and Miranda[51].
These languages may be viewed as variants of the simply typed lambda calculus.?
Barendregt[4] calls this family of languages the implicitly typed lambda caleuli, or the
Curry family. The key property of the Curry family is that the type checking method
does not require type declarations.

Another feature of the implicitly typed languages that plays a major role in soft
typing is parametric polymorphism. Parametric polymorphism describes program
procedures that are re-usable in regular ways. Routines with this property accept as

input a wide variety of different, but structurally similar data, and the output type

3Some researchers believe that these languages forced fundamental extensions to the typed lambda
calculus to accommodate polymorphic function definitions, but Wand’s[52] research indicates this is
not necessary.

of such a routine depends on the input type in a uniform way. The type behavior of
parametrically polymorphic routines can be uniformly characterized by type variables

(the type parameter). A few examples will clarify this concept.

Example 1.1 The identity function, Azx.z has type o = «. This means
that the identity function can be thought of as having many different
types. For example, if « is assigned the type bool, then the identity has
type bool — bool. Likewise, a = int produces the type int — int as a type
for the identity function.

Example 1.2 The append function on lists takes two lists, and joins
one to the other. The function works on two lists of integers, giving a
list of integers. It works equally on lists of booleans, yielding a list of
booleans. The append function additionally accepts two lists of floating
point numbers, returning a list of floating point numbers. These behaviors
are instances of a quite general pattern, that can be characterized using

type variables. The type of append is (list(a), list(er)) — list(a).

As stated earlier, Curry style languages supports both declaration free type check-
ing and parametric polymorphism. A natural consideration, then, would be to base
a soft typing system on a Curry style type checker. Unfortunately, there are far
too many correct dynamically typed programs that do not pass the Curry style type
checker. Furthermore, many of these examples are simple enough to be deemed “pro-
gramming clichés”. These clichés can be partitioned into two different classes. One
class reflects the more flexible use of functions in non-uniform ways. The second class

indicates the natural occurrence of recursive types.

1.1.1 Non-Uniformity

The non-uniformity common in dynamically typed languages is best illustrated with

some examples.

Example 1.3 Consider the function

Ax. if x then 1 else nil

The function takes a simple boolean value and either returns an integer

1, or the empty list. Clearly, no run-time error results as long as x is a

10

boolean. Existing Curry style systems fail to assign a type to this function
because the if expression is required to have the same type in both its
then branch and its else branch. In these static systems, 1 and nil

belong to different types.

Example 1.4 A similar problem exists with the function:

(Ax.cons (1, 2)) [true, false]

The expression builds the list [1,true, false]. Again, no run-time er-
ror results from the execution of this expression. The elements of the
construction, however, belong to different types. Some are integer, some
are boolean. In Curry static systems, non-uniform lists are systemically

rejected.

The intuitive reason for the failure of these examples derives from the view of type
embedded in the Curry tradition. Curry style languages ascribe to the view that a
value has exactly one type. The Curry principle was popularized as the Hoare-Dahl-
Dijkstra view of types[16].

Every value belongs to one and only one type

In contrast, programmers using a dynamically typed language (like Scheme) ex-
pect values to be uniquely constructed, but they frequently define functions that work
on different kinds of data. For example, Scheme programmers conceives that the value
nil (empty list) and values constructed with cons are fundamentally different. The
programmers may, however, write a function that will work on either nil values or cons
values. Stated another way, scheme programmers expect data values to have unique
fundamental types based on how they were constructed. Program functions, however,
may be defined to work on unions of these fundamental types. From a Scheme point
of view, functions that work on list values are working on values of type nil U cons.
The ML system, on the other hand, views both nil and cons values as being of type
list. Consequently, there are no functions defined that work only on cons values, and
no functions that work on nil or integers.

The concept of union typing confers reasonable types on both example 1.3 and
example 1.4. For example 1.3, the function has type bool — int Unil. The reader also
observes that 1 having type int, also has type int U nil, and similarly nil has both

11

type nil and nilUint, so some degree of “uniformity” is maintained. Thus, parametric
polymorphism and union typing integrate smoothly.

Example 1.4 also maintains the same smooth integration. One observes that the
type of the expression is cons (int U bool). In this manner, we have “uniform” (non-
empty) lists of int U bool values.

One additional advantage conveyed by union typing derives from the ability to
make finer grained type distinctions. For example, the hd function, which extracts the
first element of a non-empty list, has Curry type « list — a. This type is somewhat
misleading. One might believe that hd produces some value on nil, when, in fact, the
run-time system signals an error. The ML, community refers to this phenomenon as a
partial function. This situation does not occur in the union type framework because
nil and cons are distinguishable. The hd function has type o cons — a.

The qualitative analysis of union types presents two distinct advantages in the
soft typing context. One, many common dynamically typed programs not checkable
by a Curry style type checker are type checkable with union types. Two, some of
the run-time errors introduced in ML-like systems can be detected by a type checker

supporting union types.

1.1.2 Recursive Types

Functional languages encourage a programmer to use recursion, so it is not surprising
that recursive types occur with some frequency. The following examples illustrate
typical programs that suggest recursive types. For the purpose of these examples,

recursive types are notated by equations.

Example 1.5 The classic example of a program needing recursive types

appears in the Y combinator, or fixed point operator:
Y = AFXe(F (z 2) \e.(F (2 2)).

Curry style type checking systems, lacking recursive types, cannot assign
a type to the subexpression (z x). Consequently, no type can be assigned
for Y. With recursive types, the type for z is @« = a — 3, and the type
for Vis (0 = a) = a — a.

When used in conjunction with union types, recursive types express the types of

many common dynamically correct programs.

12

Example 1.6 Define a recursive function P as follows:

P =z
if © =0 then 1 else cons(P(x —1),nil)

The output type for P is a recursive union type: 7p = int U cons(7p).
Intuitively, the type indicated by 7p is either an integer, or a non-empty
list of integers, or a non-empty list of non-empty list of integers, and so

on. A Curry-style checker cannot assign a type to P.

These examples are legal programs in any dynamically typed language — no run-
time error is ever generated. To produce “equivalent” functions in a static language
like ML, one must resort to defining new data types, as well as changing the program
text to accommodate the newly defined constructor functions. This extra textual
burden on the programmer is a violation of the minimal-text principle of the soft
type design criteria.

This analysis indicates that recursive types, particularly in conjunction with union
typing, are an integral part of dynamically typed programming style.

Having decided on unions, recursion and parametric polymorphism as desirable

properties the technical challenge is a two-fold question:

1. Can unions, recursion, and parametric polymorphism be accommodated in an

automated type assignment method 7

2. Are these constructs sufficient to insure that all dynamically programs can be

automatically transformed into statically correct ones ?

1.2 Summary of Thesis Goals

The main goal of this thesis is to establish design criteria and methods for designing
soft typing systems. We narrow our immediate goal to the design of a soft typing
system for a family of prototypical programming languages. In particular, this thesis
will establish, by construction, that there is at least one soft type system for the
chosen language family satisfying the criteria of section 1.1. To satisfy this goal, the

soft type system must exhibit three constructs:

A type language suitable for soft typing: By the minimal-failure principal, the
type language must be designed with sufficient features to describe several typ-

ical dynamically typed language behaviors, including:

13

e Parametric Polymorphism
e Union Types

e Recursive Types

A type reconstruction algorithm for the type language: To meet the minimal

text requirement, the programmer must be able to avoid type declarations.

A transformation method : The type system must admit an automatic trans-
formation method for programs that are not in the associated statically typed

language.

1.3 The General Plan

The exposition of the research results directed towards meeting the goals outlined in
section 1.2 are divided into five chapters.

This current chapter describes the motivation for soft typing. It contains our
design principles, as well as examples justifying our choices. It also summarizes the
goals of the research.

Chapter 2 first establishes a family of programming languages. In order to make
precise statements about the properties of the system, the specification of the pro-
gramming language must include a formal semantics. The programming language
family will be dynamically typed. Given a programming language family, the de-
sign of the a type system suitable for soft typing is the next task. The choice of
type constructors is influenced by the data constructions of the language as well as
the union, recursion and parametric constructions suggested by the considerations of
section 1.1. The type language, together with the programming language serves to
define a statically typed sublanguage. The statically typed sublanguage requires a
type inference system, and a semantics for types such that the inference system and
type semantics are sound with respect to the programming language semantics.

With a tentative type system in hand, Chapter 3 proceeds to investigate the auto-
matic type assignment process. The type assignment problem has some consequences
for the type language design. The type language presented in chapter 2 is too general.
To automate the assignment process requires a mild condition on the use of unions
types. Chapter 3 contains some example deductions for evidence of the mildness
of the restriction. At this point, the design of the statically typed sublanguage is

complete.

14

The final component of a soft typing system must address the is the transformation
of dynamically typed programs that are not statically type correct into programs that
are statically type correct, and have the same meaning as the original dynamically
typed program. Chapter 4 indicates a method for our chosen programming languages
and their associated statically typed sublanguages.

Chapter 5 contains a summary of the results, and a section on related work, to
provide perspective for this work. Additionally, some thoughts on related research

appear in this chapter.

15

Chapter 2

A Family of Programming Languages, Type
Languages, and Type Inference Systems

This chapter concentrates on the specification of a programming language family, and
the design of an associated family of type systems suitable for softly typing members
of the language family. To simplify the analysis, we restrict ourselves to functional
languages, but we expect to be able to extend our ideas to non-functional constructs
in a similar manner to Tofte[50] or Duba[19].

The family of functional languages adopted herein is parameterized by the set of
constants, or primitives. The set of constants, in turn, is guided by the data used by
the program. Program data is a design consideration, and, as such is programmer-
directed. Section 2.1 explains this dependency in more detail.

For a given set of constants, the programming language Exp is syntactically fixed.
Section 2.2 defines the language syntax. Exp is a simple functional language with a
let construct.

A language specification must also include semantics. In fact, we must ultimately
give two semantics for members of our language family: one semantics when the lan-
guage is viewed as statically typed, and one semantics when the language is viewed
as dynamically typed. In this chapter, we concentrate on the statically typed lan-
guage, and defer the dynamically typed semantics till chapter 4. The statically typed
semantics for Exp expressions appear in section 2.3. The semantics are denotational.

Once the programming language is fixed, section 2.4 describes the design con-
siderations for a type language to accommodate “most” Exp programs. The formal
definition for the type language appears later in the section. The set of types proposed
in this section is called the regular types.

The semantics for type language, appearing in section 2.5 employs the ideal model
for types. The ideal model is explained in [31, 32]. A brief review of these results
prefaces the actual semantic definition for the type language. We show that the

semantic definition is well defined with respect to the the fixed point components.

16

Section 2.6 connects the programming language and the type language with a set
of inference rules. The inference rules for ML, are contrasted with the inference rules
for the type language described in this chapter. In addition, section 2.6 contains the
soundness proof for the regular type inference rules.

Finally, section 2.7 contains some example inferences to illustrate the system.

2.1 A view of program data

This section begins with a short methodological digression. Statically typed languages
encourage a design philosophy that is somewhat different from the typical design phi-
losophy encountered in dynamically typed languages. Advocates of statically typed
languages cite the design of types as a crucial part of the program design process.

In contrast, programmers accustomed to dynamically typed languages focus on
the design of the data, instead of the types. In some ways, this method is simpler.
For example, a programmer may decide that his program needs integers, fractions
and floating point numbers. His program may contain functions that act on various
combinations of these data. A static type programmer, however, must decide how the
various data must be put together into disjoint unions. That is, a function that acts
on both integers and fractions has a different type from a function that operates on
only integers. Consequently, from a type design point of view, the programmer must
consider the effect of adding the type “integers or fractions” — a consideration that is
absent from the data design viewpoint. The data designer assumes that the dynamic
type system will provide the appropriate checking for types that are combinations
(that is, unions) of different data types.

The types designed in this section is intended to support the paradigm of data
design. Furthermore, the data required by a program also influences the program-
ming language itself, as the appropriate primitives for data construction and analysis
must be provided as constants in the language. For this reason, the data language
and type language are quite similar. Furthermore, the importance of the data de-
scription system influences us to break tradition with the standard typing literature

and describe the data language ahead of the programming language.

2.1.1 First order data

Even though functional programming languages emphasize the importance of func-

tions as data values, the first order data is equally important. The view of first order

17

data taken here is the constructive view established in Cartwright[10]. A similar view
is taken by Mishra and Reddy[35]. The constructive view considers all first order data
to be built from constructors. Furthermore, a constructor may restrict its arguments
to be of a certain construction (in a crude form of dynamic typing). Finally, for each
constructor, there is a unique set of selectors corresponding to each argument position
of the constructor. The specification of the constructors, the valid constructions for
arguments to the constructor, and the names of the associated selectors make up a
constructive definition, or, first order specification. We consider the first order speci-
fication to be an integral part of the language specification. The notation in [10] gives
a nice, succinct notation for the necessary information in a first order specification.
The syntax for a constructive definition, in full generality, can be described as a

series of statements of the form:
constructor C-name[S-name : C-name[+C-name|"]"

The C-name and S-name are syntax for the names of constructors and selectors (as
one might suppose).

An example will help clarify these concepts. To simplify matters, example 2.1
ignores the selector components at first, and then introduces the full first order defi-

nition later.

Example 2.1 (Constructive data definitions) Suppose the data needed

consists of non-negative integers and lists. Then consider the following:

constructor 0;
constructor suc(0 + suc);
constructor nil;

constructor cons(0 4 suc,nil + cons)

The above definition indicates that 0 is a constructor requiring no argu-
ments, and the suc constructor takes a single argument. Furthermore, the
argument to suc must have been constructed with either a 0 or a previous
application of the suc constructor. Similarly, nil is a constructor requir-
ing no arguments, and cons requires two arguments. The first argument
must be constructed via 0 or suc. The second argument’s construction
must be either a nil or some other cons construction. Some sample data

elements:

18

0,suc(suc(0)),nil, cons(0,nil),

cons(suc(suc(0)),cons(0,nil))

Some tnvalid data elements are:
suc(nil) nil is not a valid construction for
suc’s argument
cons(nil,nil) nil is not a valid construction for
cons’s first argument
cons (0,0) 0 is not a valid construction for
cons’s second argument

suc No argument to suc, so usage is wrong.

Additional important elements of a constructive definition involve primi-
tives called selectors. A selector function extracts a given argument from
a construction. The constructor involved, of course, must have an arity

greater than zero. To illustrate:

constructor 0;
constructor suc(pred:0 U suc);
constructor nil;

constructor cons(hd:0 U suc,tail:nil U cons)

A selector selects a given argument for its associated constructor. The

effect of selectors works like:

pred(suc(suc(0))) = suc(0)
hd(cons(suc(0),cons(0,nil))) = suc(0)
t1l(cons(suc(0),cons(0,nil))) = cons(0,nil))

Note that all constructors have a fixed arity.

2.1.2 Higher order data

One of the distinctive features of a functional language is the treatment of functions as
first class objects. That is, functions may be passed as arguments to other functions,
and may be returned as the output value of a function. In this fashion, functions are

treated just like first order data objects.

19

Functions differ from first order data objects by the absence of a “constructor”.
Functions are constructed by the lambda abstraction operation of the programming
language defined in section 2.2.

The presence of functional data introduces one minor difficulty. Suppose a pro-
grammer designs a data constructor, one of whose arguments should be a function.
What should be done 7 The constructive mechanisms introduced so far do not ac-
commodate functions as data. The solution adopted in this research introduces the
— symbol as a pseudo-constructor. No selectors correspond to —, but the symbol
may be used in the same way as any other constructor symbol in the first order data

specification.

Example 2.2 (Constructive definition, including functions)

constructor 0;

constructor suc(pred:0 U suc);

constructor nil;

constructor cons(hd:0 U suc U consUnilU —,tail:nil U cons)

Example 2.2 indicates that cons may take any kind of value whatsoever as its first

argument.

2.2 The Programming Language Exp

The prototypical programming language family is related Exp family introduced by
Milner[17, 34]. Our version of Exp lacks the if construct. Branching is accomplished
by special constants. Note that the language family is parameterized by the set of

allowed constants.

Definition 2.1 (The programming language) Let x range over a set of

variables Vars, and ¢ range over a set of constants K

20

(L L)
letz =L in L

The set of constants for a given member of the Exp family depends on the first
order specification. Let S be a specification for a collection of first order data. That
is, suppose S to be given as a set of constructor statements as illustrated in exam-
ples 2.1,2.2. Then, S contains a set of constructor names M and selector names ().
Let P=MUCQ. Then P C K.

The set K must also contain a suite of case functions. The set of case functions
also depends on the first order specification in the following way. Each case function
is subscripted by a non-empty tuple of unique elements of M. For example, using
S = {0,cons,nil, suc}, as in example 2.1, then caseq gyc and casecgngnil o are
valid case functions. These case functions are the branching mechanisms for the Exp
family. Note that if can be expressed as casetrye falses Whenever the language
has booleans.

Throughout this work, case expressions are syntactically sugared as follows:

Example 2.3 (case syntactic sugar) The expression

case z of
C1 . €1
Co ! €9

is syntactic sugar for:

((caseq, (A zo€1)(A 2o€2)...))

In fact, the user does not normally program with the case functions, but

rather resorts to the syntactic sugar version instead.

The set K may include some additional constants such as if or fix as long as
the semantics are specified.

To summarize, a programming language is completely specified by definition 2.1
and aset K. The set K is determined by a first order specification S, and an (optional)

set of auxiliary constants.

21

2.3 Semantics of Exp

To give meaning to the programming language requires a semantics. The semantics
for Exp employs the well understood denotational model illustrated in [45, 41, 42]
and many others.

The first requirement for any denotational semanticsis a data domain, as described
in section 2.3.1. The remaining sections comprise the denotational definition of Exp.
Section 2.3.2 defines the semantics for the language constructs, and section 2.3.3 gives

the semantics of the set of constants described in section 2.2.

2.83.1 The Data Domain

To define the relevant domain D, let Triv be a one element domain {, L}. Let
W, F, and D abbreviate Triv. Let the set of data constructors be M. Let x (
infix) denote the n-ary smash product* for domains. Let D* abbreviate D x D*=1),
and let D¢, abbreviate DAM%¥(Ci| Let the @& symbol be infix notation for the n-ary
coalesced sum®operation for domains. Let — (in this context) be the continuous func-
tion domain constructor. Define D as the least fixed point solution of the following

equation:

D=(D = D)@ Dey @ Dey @ ... Deyy W G F (2.1)

The domain W (a copy of Triv) appearing at the end of the summation is not asso-
ciated with any constructor (or function). The purpose of this summand is to fatal
errors®. The value wrong abbreviates Inyy(*). The domain F models run-time er-
rors that are caught by the run-time system. The value fault abbreviates Ing(*).
The value fault is distinguished from wrong in that fault is non-fatal. The detailed

treatment of the fault value appears in chapter 4.

4Smash product is defined by
Dy x Dy = {<d1,d2>|d1 ;é 1Le Dl,dz ;é 1Le DZ}U{J_}

See [41]

5The coalesced sum is defined as

Di@...Dp={d,1)|di# LEDYU.. {(d,n)|dp#LED}ULL)

5Some of our colleagues have suggested “core dump” as the name for this value

22

All program expressions take values in D.
There are two auxiliary domains:a syntactic domain Id of identifiers and an envi-

ronment domain, Env : Id — D.

2.3.2 Semantics of the Programming Language Constructs

The semantics for Exp, excluding the constants, is conceptually straightforward, but
can be notationally awkward. Consequently, we introduce the following conventions
and definitions to overcome some of the clumsiness.

First, functions depending on different conditions appearing as

val; condition
f(z) =

val, conditiony

describe a function that tests the conditions in sequential order. That is, condition;
is tested. If it is true then val; is the value of the function. Only if condition; is false
is conditiony considered. In general valy can only be the value of f if conditiony is
true, and condition;, 1 <17 < k is false.

Semantic definitions depend on environments, so to facilitate the notation for en-

vironments derived from previous environments we introduce the following definition.

Definition 2.2
Let n : Id — D be an environment function, that is, an assignment of
values to free variables. Then

v ify=ux

nlr =v](y) = {

n(y) otherwise

Some aspects of the semantics depend on the various components (summands)
indicated in defining equation 2.1. Intuitively, the domain D consists of various kinds
of “tagged” elements. The “tagging” is represented formally as the n-ary coalesced

W

sum operation. Semantic definitions require both “tagging” “untagging” auxiliary

functions. The formal treatment of “tagging” uses injection and projection operations.

Definition 2.3 (Injections) Let

D=D,&---Dy---D,

23

and let d € Dj. Then define

L d, = L
(k,dy) otherwise

IHDk (dk) = {

The Out operation is a partial inverse for In When the inverse is not defined, the

value wrong results.

Definition 2.4 (Projections) Let
D=D,@®---D,---D,

Then for d € D
1 d=_1
Outp,(d) =<3 o' d=1Inp,(v)

wrong otherwise

With notation set, the semantics for Exp (except constants) goes as follows:

Definition 2.5 (Semantics for Fxp) . Let Env be the domain of envi-
ronments Vars — D, that is, assignments of free variables. Let Exp refer
to the (syntactic) domain of programming language expressions. The

semantic function [-] : Exp — Env — D is defined by the semantic

equations
[zIn = n(z)
[Az.eln = Inp.p(f)

such that f(v) = [e]n[z = v]
vy v1 € {wrong, fault}
[(er ex)ln = vy vy € {wrong, fault}

v1(vy) otherwise

where vy = Outp_p([er]n), va = [e2]n

[let # =€ in eyl = [ex]n[x = v1], where vy = [eq]n

2.8.3 Semantics for The Constants

Constants for Exp, called K in section 2.2, must include the constructors and selectors

specified in the first order specification, as well as the set of case functions. In

24

addition, a language designer may choose to include some other primitives beyond
the required ones. This section describes the semantics for requisite elements of K,
any additional functions must have separately defined semantics.

The semantics for all requisite constants includes a test for “appropriate” argu-
ments. If the argument is not “appropriate”, then the value is automatically wrong,.
The set of “appropriate” arguments, however, may include values in more than one
summand of D. For the remainder of this chapter, a set of “constructors” includes

the function pseudo-constructor —.

Definition 2.6 (Confirming) Let R = {ry,...,r,} be a set of construc-
tors. The auxiliary function Cg verifies that its argument belongs to one

of the summands specified by R. It is defined by the equation:
d d= ImDr1 (d")
Cr(d) =< °
d d=TInpy (d')

wrong otherwise

where Dy, is the summand of D associated with constructor r;.

We generalize the confirming notion to tuples of legal constructions. For
1 <11 <k, let each R; be a set of constructors. Then we define:

CRl,...,Rk(<d1, cee dk>) =
(di,...,d) foralli,1<i<k
Cr,(d;) # wrong

wrong otherwise

For each constructor ¢, the first order specification indicates both the intended
arity of the construction, and the valid constructions for each argument position. The
meaning of a constructor ¢, where Arity(c) > 0, however, is a curried function. A
constructor function waits for all of its arguments before yielding the constructed

value.

Definition 2.7 (Constructor semantics) Let n = Arity(c) and let R;

be the set of valid constructions for the i-th argument of c. Then

Inp (*) n=>0

Eleln = { Inpop(K) n#0

25

where

K =M, ...d,Inp_(Cr,,..r,((d1,...,dy)))

The semantics for selectors are defined similarly.

Definition 2.8 (Selector semantics) Denote the selector for the i-th
position of constructor ¢ by st. Let p;({wq,...,w;, ..., w,)) = w;, that is,

p; is the standard cartesian projection for tuples, and let €' = {C'}. Then
E[siIn = Tnp-p(S)

where
S(v) = { pi(Outp,(v)) Co(v) # wrong

wrong otherwise

Finally, the semantics of the case function family:
Definition 2.9 (Case functions)
g[[case<cl,...,ck>]]77 = InD—)D(C)

where

fild) d=Tn,(d)
C = Mfy ... f :
B d=)

wrong otherwise

2.4 A Type Language for Exp

As illustrated in the introductory chapter, dynamically typed programs often involve
types that are easily expressed with the mechanisms of union and recursion, sup-
ported by parametric polymorphism. One natural approach might be to “throw in” a
union operator and a recursion operator into a standard polymorphic type language.
Syntactically, such an extension is easy. A type language, however, consists of more
than just syntax. A type language must support some form of formal reasoning about
both the relevant properties of types, and the connection between the programming
language family and the associate type language. Standard type formalisms do not

account for all the relevant properties of the union and recursion operators. Thus,

26

the type language for the FExp language family must provide augmented reasoning
methods as well as some new syntax.

Syntactically, the potential type language starts with a standard type language:

StdType ::=
Co
x

¢n(StdTypey, ... StdType,,)

where the ¢; are type constructors of arity 7. To this standard language, we add the
union (+4) operation and the fix operation, giving the syntax for the proposed type

language as:

Type ::=
Co
x

cn(Typelv s Typen)
Type; + Type,
fix x.Type

One useful technique for reasoning about the properties of these types can be
discovered by noting the resemblance between the syntax of type terms and the form
of regular trees. The theory of regular tress is a generalization of the more well known
theory of regular expressions. A regular expression represents a set of strings over
some alphabet. There exist algorithms for deciding whether a regular expression
represents the empty set, whether it represents a finite set, or, given two regular
expressions, whether one is a subset of the other. In other words, all basic questions
about regular sets are decidable. For a complete account of regular expressions, see
[27].

As discussed above, the theory of regular expressions is based on sets of strings.
The general regularity theory is based on sets of terms or trees. In fact, in the
literature, this theory appears under various names: tree automata theory, regular
tree expressions, and regular term languages to name a few. The most important
feature of general regularity is that all of the decidability properties of the standard

string theory are retained.

27

The usefulness of basing a type language on regular tree expressions derives from
the presence of two operators: union and closure. A tree expression union operator
corresponds to the same concept for types, and the closure operator corresponds
to the least fixed point operation used in recursive type definitions. Furthermore,
the decision procedure that answers the subset question for regular tree expressions
constitutes a ready-made system for reasoning about sub types relations. A similar
type system was developed by Mishra and Reddy[35]. A type system based on general
regularity theory contains a rich set of types. For example, it is possible to distinguish
even and odd integers, and to prove that even (or odd) is a subtype of regular integers.

Regrettably, the correspondence between types and regular trees is not perfect.
The presence of functional values implies the necessity of functional types. Functional
types do not have the same algebraic or order theoretic properties of first order types.
Consequently, we cannot accommodate all of the desired type language properties
within the framework of regular tree expressions.

To overcome this limitation, we introduce a formal inference system that subsumes
the algebraic reasoning of regular tree mechanisms, but incorporates additional mech-
anisms for reasoning about functional types. The inference system is a composite of
two methods. That is, the syntax of regular tree expressions is still acceptable for a
language with functional types, but the nice algebraic algorithms for deciding the sub-
set question do not apply if the function constructor appears in the type expression.
Type expressions with arrows must be reasoned about in a less convenient manner.

To summarize, the type language design is based on the general theory of reg-
ularity. The syntax for types is uniform, but any syntactic reasoning about type
expressions is dichotomous: If there are no functional types in the expressions, then
standard algebraic regular tree expression methods apply. On the other hand, the
presence of functional components in the type expressions require the less automatic
inference methods.

To preface the type language design, section 2.4.1 reviews the important definitions
imported from regular tree expression theory. The discussion in section 2.4.2 continues
with the design of the type language. Section 2.4.3 further explains the anomaly for

functional types.

28

2.4.1 A Review of Regular Tree Expressions

The primary source for this treatment of regular tree expressions, can be found in
Géceg and Steinby[25]. Some further sources are Thatcher and Wright, Brainerd,
Arbib, and Goguen [48, 5, 3, 47]. Some aspects of the theory may be derived from
universal algebra, as in Burris[6] This section is expository. The proofs for these
results can be found in the cited references.

A regular tree expression defines a set of terms, so one should clarify what is

meant by a term.

Definition 2.10 (Terms) lLet F' = {fi,..., fx} be a set of function
symbols. Every symbol f; € F has a fixed arity, denoted Arity(f;). Let
X be a set of variables disjoint from F. The set of terms X(F, X) is the

smallest set satisfying

1. x € B(F,X), forall 2 € X
2. if ¢ € F, Arity(c) = 0, then ¢ € X(F, X)

3. if f € F,Arity(f) = n, and tq,...,t, € X(F, X), then f(t1,...,1,) €
S(F, X)

In universal algebra, X(F, X) is the free term algebra over F'.

Note that an element of £(F, X') can be expressed as a tree with nodes labeled by F'
in the obvious way: The 0-arity elements of F are leaves, and some term fi(t1,...,1,)
is a tree whose root label is f; and whose subtrees are the trees constructed from
T

Throughout this section, “terms” and “trees” will be used interchangeably.

The regular tree expressions indicate sets of terms.

Definition 2.11 (Regular Tree Fxpressions) As before, let F' be a set
of function symbols, with given arities. Let X, again, be a set of variable
names disjoint from F. Then the set of regular tree expressions R(F, X)

is as the smallest set satisfying

In fact, some alternative presentations of this material focus more on the generation of trees. These
presentations use regular tree grammars instead of regular tree expressions as the primary formalism.
Both points of view are equivalent. Again, see Géceg and Steinby[25]

29

1. The special symbol () is a regular tree expression

2. If 2 € X, 2 € R(F,X). Similarly, if f € F,Arity(f) = 0, then
f € R(F,X).

3. If f € FAvity(f) = n, By ... FE, € R(F,X), then f(Fy,...,E,) €
R(F, X).

4. Fy,Ey € R(F,X) then (Ey 4+ Fy) € R(F,X). The parentheses are
often dropped.

5. F € R(F,X),z € X, then (E)* € R(F, X). This operation is called

the (generalized) Kleene closure.

To define the set of terms indicated by a regular tree expression requires a few
auxiliary concepts.
First, we define a set of terms with the same outermost function symbol. This set

of terms is also called a set of grafts.

Definition 2.12 (Set of grafts) Let f € F, with Arity(f) = n. Let
Ti,...,T, be sets of terms. Then define the set of terms f(Ty,...,T,) as

follows

f Arity(f) =0
[T, Ty) =49 0 Arity(f) > 0,any of the T; = ()
{f(t1,...,ta)|t; € T;} otherwise

We generalize the graft notion to all regular expressions:

Definition 2.13 (Substitution from a set) Let t € ¥(F, X) be a term.
Let T be a set of terms. Then define the set of terms t[x + T recursively

as:
l.2fe«<T)=T
2. ylr « T ={y}, fory # z
3. c[x + T] ={c}, where ¢ € F, Arity(c) =0
4. [ty . to)e < T] = f(ta[z « T],...,tuJx < T), using the set of

grafts notation from definition 2.12

30

The notion is extended to a set of terms in the obvious way:

Let A, T be a set of terms. Then

Alx « T]={t|t € t'[x + T], for some t' € A}

Definition 2.14 (Kleene closure definition) Let A be a set of terms.
Then define the set of terms A** by using the following sequence of sets

a. Ao = Alz + (]
b. Ai-l—l = A[l‘ — AZ]

Define
A™ = sup A;

Definition 2.15 (The terms of a regular tree expression) To each reg-

ular tree expression F, the associated set of terms X(F) is defined as:

L2(0)=0

2. Y(x) = {x} for 2 € X ,Similarly, if f € F, Arity(f) =0, then X(f) =
{r}

3. If f e FLArity(f) =n, Ey... E, € R(F,X), then X(f(F1,..., F,)) =
F(2(Ey),...,5(E,))

4. N(Fy + Fy) = X(Fy) UX(FEy).

5. E € R(F,X),z € X, then X((E)™) = £(E)=

The following theorem, proved in [25], justifies the interest in regular tree expres-

sions

Theorem 2.1 (Decidability of Emptyness, Finiteness, and Subset) Let
E be a regular type expression. There is an algorithm to determine if
Y(F) is empty, or if it is finite. Furthermore, if £’ is another regular

tree expression, then there is an (algebraic) algorithm to determine if

S(E) C S(F)

31

2.4.2 Regular Types and Polyregular Types

To base a type language on regular tree expressions requires the identification of
a set of function symbols to serve for term formation. For this purpose, the first
order specification again manifests a central role. As before, let M be the set of
constructor names associated with the first order specification. For each member
m € M, introduce a type constructor name c. Call the set of type constructors C.

Typographically, a type constructor appears as a — constructor to distinguish it
from a-constructor € M.

The choice for the arity of the type constructors is not so straightforward. The
arity of a type constructor reflects the degree of polymorphism permitted. For reasons
of simplicity, a designer may choose a smaller arity for the type constructor than for
the data constructor. An example should clarify the options. Please note that the

type language used in the example is, for the moment, informal.

Example 2.4 (Arity for type constructors)

Using the first order specification from example 2.2 (repeated here for

convenience):

constructor 0;

constructor suc(pred:0 U suc);

constructor nil;

constructor cons(hd:0 U suc U consUnilU —,tail:nil U cons)

The above definition induces C' = {0, suc, nil, cons}. As for arity, 0 and nil

must have O-arity, as the data constructors are 0-ary.

Consider first the effect of a unary suc constructor. Then one may define
such intuitive types as “whole numbers > 2”7 or “the even whole numbers”

via

suc(suc(suc(B) +0) | whole numbers > 2
where B = suc(B) + 0
FE = suc(suc(k)) + nil | The even whole numbers

32

The price for this flexibility, however, is additional complexity for simpler
functions. For example, the suc constructor has the type 0 + suc(/) —
suc(/), where I = nil 4 suc([]).

In contrast, one might choose to have the type constructor suc be 0-ary,
even though the data constructor suc is unary. In this case, the sophisti-
cated types such as “even numbers” are not definable, but the constructor
suc has type 0+suc — suc. A language specifier may decide that the extra

complexity of type expressions does not warrant the additional flexibility.

Now consider the cons, nil pair of types. The data constructor cons is
2-ary, so the type constructor can be designed as 0O-ary, l-ary, or 2-ary.
The first argument to cons can be any construction (including —). This
complete lack of restriction suggests that cons should be at least 1-ary. If
a designer chooses 1-ary for cons then the constructor cons’s type can be

written without recursion:

cons : a — nil + cons(a) — cons(«)

As suggested by example 2.4, the choice of arities for the type constructors requires
some thought by the designer.

Once the type arity decision has been made, however, the type language for the
first order specification consists of ¥(C, X), the regular tree expressions over ', X
where X is a set of type variables. As an expression alternative, we often indicate A*”
as fix 2. A, or even “equationally” as x = A(x). For the sake of completeness, we
repeat definition 2.11 here, using the fix notation. We coin the phrase regular types
for this type language.

Repeating for convenience, the syntax of regular types is defined as:

Definition 2.16 (Regular Types — Regular Tree Expressions Revisited)
Let C be a set of type constructors, and let X be a set of type variables.
Let ¢g range over all 0-ary type constructors, and x stand for any variable

of X. Then the following grammar generates the regular types

RegType =

Co

33

cn(RegTypey,...RegType,)
RegType; + RegType,
fix z.RegType

For semantic reasons, the fix operation must be slightly restricted. The restriction

is mild. The sorts of expressions that are excluded are of the form:
fix z.x

or even

fix .o+ e(x) + k

The syntactic restriction for fix expressions is termed formal contractiveness®. The

definition is as follows:

Definition 2.17 (Formal Contractiveness) A regular tree expression F
is formally contractive in z iff:

E = ¢g, for some 0-ary constructor

FE = 2’ for some variable =’ # x

E=c,(Fy,..., F,), with ¢, an n-ary constructor

E = Fy + E;, where F; and Fy are both formally contractive in x

AN e

E = fix 2'.F;, and F; is contractive in x and z’.

A regular type is considered ill-formed if it has the form fix z.F, and E is not
formally contractive in . From now on, “regular type” means “well-formed regular
type”.

Standard type literature distinguishes the type expressions with no type variables
as the monotypes. The analogous concept for regular types is slightly different, due

to the presence of the fix operator.

Definition 2.18 (Free type variables) Let R be a regular type expres-
sion. Let V(R) be the set of all type variables occurring in R. Then the
set of free variables of R, notated as F'(R) is

) V(R)—{z} R=fixa.R
F(R) = { V(R) otherwise

8This corresponds to a reduced grammar in the tree grammar treatment

34

Then R is a regular monotype iff F(R) =)

The standard literature also distinguishes quantified types as type schemes. This
same quantification distinguishes regular types from regular type schemes.? Regular
type schemes mimic the standard situation exactly: If R is a regular type, possibly

containing free variables, then V x.R is a regular type scheme.
RegTypeScheme ::= Regtype|Vx.RegTypeScheme

Regular type schemes are considered equivalent up to renaming of bound (by the
quantifier) variables. Note that both a regular type and a regular type scheme may
contain free variables.

Regular type schemes are sometimes called Polyregular types.

2.4.3 Regular Types with Functions

We can extend the syntax of regular types to type expressions including the func-
tion space constructor by simple inclusion of the function (arrow) constructor!®.
Syntactically speaking, the function constructor — behaves like any other 2-ary con-
structor. From an algebraic/order-theoretic point of view, however, the function con-
structor is very different from the first order constructors. The difference is that arrow
is antimonotonic in its first argument. Example 2.5 illustrates the antimonotonicity

of functions.

Example 2.5 (Antimonotonicity of function types) Let f be a function
of type 0 4+ suc — 0 + suc. Now if f/ : 0 + suc — suc is certainly such a
function — the input types are identical, but the output type must be a
suc object. But any suc object is trivially a 0 4 suc object. Therefore, the

— type constructor is monotonic in its second argument.

On the other hand, f : 0 + suc — 0 + suc works on input values that are
either 0 or suc. So, in particular, f : suc — 0 4 suc. This suggests that
(0+suc — 0+suc) C (suc — 0+ suc), even though suc C (04 suc) Stated

9The distinction is blurred somewhat in implementation. The actual quantifiers are not explicit in
the output of type information by the language processor. Free variables are implicitly quantified.
Nevertheless, at the theoretical level, it 1s easier to make the quantification explicit.

10For purposes of formal contractiveness, — is treated as any other 2-ary constructor.

35

in words: The more restrictive the class of inputs to a function, the more

types it belongs to. This property is named antimonotonicity

The — type constructor is antimonotonic in its first argument, but mono-

tonic in its second argument.

The antimonotonicty of arrow does not fit in the regular tree expression framework
established for non-functional types. To reason about functional types requires an

inference system:

Definition 2.19 (Inference Rules for Functional Types)

OrRD1: AFTy CTy, Ty, Ty are first order,X(7Ty) C X(T5)

AXIOM: AnCnbtrnCn
REFL: AFTCr
UNION: AF Cr4m
A|_T1g7—2 A|_7'2g7'3
TRANS:
A|_Tlg7'3
AFn Cr... AT, C7)
CON:
At e(r,...,m) Ce(r,..., 7))
Frs AT Cn AFn Cry
AFm—>nCr — 1)
Fix1: AF fix a7 = 7[x + fix 2.7]
AxCylm C
Fix2: =Y =T

Ab fix z.my Cfix y.m

The associativity, commutativity, and idempotence of the + operator are
assumed in the above inference rules. Amadio and Cardelli[2] derive a sim-

ilar inference system to address the problems of subtyping and recursive

types.

2.5 The Semantics of Regular Types

In order to make meaningful statements about type expressions, and their relation
to program expressions, we need a semantics for type expressions. The semantic for-

malism for types in this exposition is a metric space of ideals of D. The ideal struc-

36

ture is closed under union, cross products, direct sums, and function construction.
Furthermore, the metric structure assures solutions to certain fixed point equations.!!

A summary of the important features of the ideal model for types appears in
section 2.5.1. Next, the semantics for the regular types of section 2.4.2 are defined
in section 2.5.2. Finally, section 2.5.3 contains a proof of soundness for the first
order (algebraic) subtype inference scheme, and well as a proof of soundness for the

inference scheme in definition 2.19.

2.5.1 A Summary of the Ideal Model for Types

The informal notion underlying the concept of type is that a type is a “set” of values.
When the value space has structure, however, the set of values comprising the type
should have some structure as well — that is, given two types, one would like for the
cartesian product to be a type, the continuous functions to be a type, etc. If a type
can be structure free, then there may be no good way to define new types from old.

When using domains (countably based, algebraic, complete, partial orders), one
successful semantics for types introduced by MacQueen et al[31] uses the ideals of
the domain to interpret type expressions.

The definition of an ideal is:

Definition 2.20 (Ideals of D) Let D be a domain with order relation
C, and let I C D. Then [is an ideal iff:

1. Iis downward closed. That is, for all x € I, if y C z, then y € I.

2. I is consistent closed. That is, if X C [is a consistent (that is,
dbe D,st. Vae X,2Cb), then UX € [. That is, . Note that
X = () gives the result that L € [

The set of types consists of the ideals not containing wrong:

Definition 2.21 (The Set of Types)

T ={I|Iis an ideal of D, and wrong & I}

"The ideal model is not the only possible choice for denotational type models. See Cartwright[11]
for a discussion of other possible choices

37

Theorem 2.2 (7 is a lattice) T is a complete lattice under C (set in-
clusion) or D (set containment). The lattice (Z, D) is sometimes notated

as Z°

The type building operations forming products, direct sums, functions, and unions
are continuous functions over Z (or Z°). In particular, the continuous function con-

structor is the most interesting:

Definition 2.22 (Function Constructor) For A,B €T

A= B={feD— D|f(A) C B}

To treat recursion in the context of types-as-ideals, we need to impose some extra
structure on Z. The extra structure is a metric, turning 7 into a complete metric
space. Given a complete metric space, the Banach fixed point theorem from classical
analysis assures the existence of unique fixed points for “contractive” maps. The
type expressions of the type language fortunately, are all contractive, as shown in
section 2.5.2.

The MacQueen-Plotkin-Sethi(MPS) metric is defined via a rank function. A rank

function assigns to each finite element of D, a natural number.

Definition 2.23 (The MPS rank function) Recall that D is constructed
by a limiting process using a chain of domains D,,, starting from Dy =

{L}. The next domain is given as:
Dn—l—l - Dn — Dn S, (Dn)cl S, (Dn)cl S, \)\%

The rank of a basis element b is taken to be the least n such that b € D,
but b Q Dn—l-

Given a rank of elements, define a metric on ideals:

Definition 2.24 (MPS metric on ideals) Let I,J € I. Then I # J
implies there is an element distinguishing the two ideals. Furthermore, by
closure properties of ideals, there is a finite element separating the two
ideals. Let b be the basis (finite) element of least rank separating the two
ideals. Then the closeness of I,.J,c(I,J) = rank(b). If I,.J are equal, the

closeness is defined to be co. The distance between [, .J is defined to be

d(I,.J) =277)

38

Theorem 2.3 (Z,d), with d as above is a complete metric space.

Furthermore, d satisfies a strong version of the triangle inequality:
d(1,J) <max(d(I,K),d(K,.J))
In other words, d is ultrametric.

Contractive mappings are the mappings of interest for fixed point theory.

Definition 2.25 (Contractive, Non-Fxpansive Maps) Let f: X = Y
be a map of metric spaces. Then f is uniformly contractive if there is a

real number 0 < r < 1 such that for all x,2" € X
A(f(w), Fa)) < rd(z, ')

If we relax the restriction on r so that 0 < r < 1 then the map f is termed

non-expansive

The Banach fixed point theorem [20] summarizes the importance of contractive

maps.

Theorem 2.4 (Banach fized point theorem) Let X be a complete metric
space. Let f: X — X be contractive. Then f has a unique fixed point
given by the limit of the Cauchy sequence f"(xq) where xq is any point in

X.
MacQueen, Plotkin and Sethi show:;

Theorem 2.5 (Properties of standard type functions)

1. The union function U is non-expansive in its arguments

2. The product (tuple construction), direct sum, and function type op-

erators are all contractive.
3. The projection functions are all non-expansive

4. The composition of a contractive map with a non-expansive map

(and vice-versa) is contractive.

5. Since d is an ultra metric, a multi-argument function is contractive

iff it is contractive in all arguments separately.

6. If f(u,v) is contractive, then u f is contractive.

This subject is discussed in more detail by MacQueen et al [31, 32].

39

2.5.2 Semantics of Regular Types

The definition of semantics for a type language is quite similar to the definition of
semantics for a programming language. For a type language, however, the meanings
are ideals of D, rather than elements of D.!2

The definition for the semantics of regular types appears below:

Definition 2.26 (Type semantic function T[-]) Let v:V — T denotes
a valuation for free type variables; Ing denotes the injection function for
summand S mapped over ideals of S (interpreted as sets); u stands for the
fixed point operator on contractive functions mapping Z into Z: ¢ denotes
any type constructor other than —: and =: 7 — 7 — T denotes the

ideal function space constructor defined by the equation:

A= B={feD— D|f(A)C B}.

Let T[], the semantic function for types be defined recursively by these

equations:

Ty = {L}
Tlelyv = Z(De) for 0-ary functions (constants)
Tle(tr,....t)]v = Z(De)(Ttalv, ..., Tta]v)) for ¢ #—
Tt — t2]v = Z(D — D)Th]y = T[t2]v)
Tl + v = Tlt]v U T[t]v
Tltix oty = pa.f(i)
where f(1) = Ttlv[a = 1]

In order to establish that the semantic function in definition 2.26 is indeed well-
defined requires that the argument of the u operator is contractive. Recall that
the syntactic argument to the fix operator must be formally contractive as stated in
definition 2.17. Consequently, it suffices to show that formally contractive expressions
are semantically interpreted as contractive maps on Z. We begin by showing that the
types induced by elements of M are contractive.

We introduce the notion of an induced function to facilitate reasoning about the

fixed point values.

12As a note on terminology, a function from type variables to ideals is often called a valuation.

40

Definition 2.27 (Induced Function) As notation, define the induced
function F; as

Fiay(i) = Ttv[a = 1]

Lemma 2.1 (Constructor terms are contractive) Let ¢ € M be any

constructor such that Arity(c) > 1. Then F. is contractive.

Proof Let I,J be two ideals, distinguished a witness v € D of rank r.
Then F.(I) =Z(D)(Tyx...1...xT,),and F.(J) =Z(D)(Tyx...J...x
T,) are distinguished by a; x...v X...a,, where a; € T;. The min rank of
this element is at least v+1. Consequently, d(F.(I), F.(J) < £d(I,J), and
so F'y is contractive in any argument. Further, since MPS is an ultrametric,
contractiveness in each argument separately implies contractiveness in all

arguments. (]

Lemma 2.1 and the results of theorem 2.5 key the proof that F; for any formally

contractive ¢ is contractive.

Theorem 2.6 (Formally Contractive implies Semantically Contractive)
Let ¢ be any expression formally contractive in x. Then F} is contractive
with respect to the MPS metric.

Proof Proceed by case analysis on the the structure of ¢ (according to

definition 2.17). Details for this proof appear in section 2.8. (]

Theorem 2.6 assures that the semantics for fix-types given in definition 2.26
are defined for all formally contractive regular type expressions. By convention, only
formally contractive expressions are allowed for fix expressions. Hence, the semantics

for regular types is well-defined.

2.5.3 Soundness of Subtype Inference

The type language itself admits a reasoning process for determining when one type is
a subtype of another. The semantics should preserve the subtype properties derivable
by either regular tree (algebraic) decision procedure, or the conventional inference sys-

tem given in section 2.4.3. Consequently, we will show the soundness of the composite

41

system in two parts: First, we will establish that the decision procedure for first order
regular types is sound with respect to the ideal semantics. Then, we establish that
the rest of the inference system of definition 2.19 is sound with respect to the ideal
semantics.

The first order decision procedure takes two (first order) regular type expressions,
and algebraically determines whether one is contained in the other. We would like to
show the soundness of the first order decision procedure, however, without reference
to any specific procedure. This is possible by observing that one can prove t € F
by running the containment decision procedure to determine if {¢t} C F. Note that
any term t € X(C,X) is also a regular type. Thus, for any regular type E, ¥(F)
is a union of singleton sets, each singleton a regular type. Consequently, showing
soundness of subtype inference requires showing the equivalence union of singleton
term ideals with the ideal for the original regular type. The equivalence is shown in
theorem 2.7. The proof of the theorem is deferred to section 2.8.

As noted earlier, X(T') is a set of special regular types called regular terms. The
algebraic reasoning system using regular tree algorithms (or their equivalent) makes
statements about containment of various ¥(7')’s. The ideal based semantics, however,
works directly with the T expression. The connection between ¥(T') and the ideal
semantics, fortunately, is very strong. The connection is formulated in the following

soundness theorem.

Theorem 2.7 (Soundness of First Order Inference) For any first order
regular type expression T, T[X(T)[v = T[T]v.

Proof We use structural induction. Details are in section 2.8]

The of theorem 2.7 is to assure that any correct decision procedure for deciding
the subset relationship of two regular type expressions is sound with respect to the
ideal semantics for regular types.

The complete inference system of definition 2.19, includes all the first order subset

relations, as well as some others. The soundness of the extended inference system is
the subject of theorem 2.8.

Theorem 2.8 (Fxtended Subtype Soundness Theorem) The inference

rules in definition 2.19 are sound.

42

Proof By structural induction on the shape of the proof. Details in
section 2.8 (]

2.6 Type Inference for Exp Using Regular Types

The previous sections of this chapter introduced both a programming language and
a type language, and defined their respective semantics. The usefulness of a type
discipline, however, hinges on its ability to prove statements of the form “expression
e has type t”. The intuitive notion “has type” is formalized by a set of inference rules.

The components of a type inference statement consist of a type assumption A, an
expression of Exp e, and a type expression . A type assumption is an assignment of

all free variables to type expressions. Type statements take the form
Abe:t

The intuitive meaning of a type statement is “under assumption A, the expression
e has type t”. The type inference system provides a system for constructing type
statements. One crucial property of such a system is soundness. The type statments
that are deduced within the inference system framework should certainly be valid,
otherwise the system has no practical value.

The inference system for the regular types is based on the inference system for
ML as defined by Milner. These original rules serve to illustrate the treatment of
parametric polymorphism. To understand parametric polymorphism in this context
requires an understanding of instantiation.

The parametric polymorphism in the ML system, and the regular type system
both depend on the distinction between types and type schemes. A type scheme,

recall, is quantified at the outermost level. Thus
Definition 2.28 (Generic Instances) Let o be a type scheme:
oc=VYay,...,0,.T

Let 7" be a type. Then 7/ is a generic instance of o, written o > 7/ iff

there exists substitution S over {ay,...,a,} such that
S(ry=r1"

The definition is extended to type schemes by asserting that oy > oy if

for all types 7, o9 > 7 implies oy > 7

43

Intuitively, a function described by a type scheme has all of the types that are
generic instances of the type scheme. For example, the length function can be said
to have type Vt.list(t) — int. That is, length has any generic instance of its type
scheme, such as: list(int) — int, or list(int) — int, or even V¢.list(list(¢)) — int.

The Milner rules appear below in definition 2.29. Conventionally, any o expres-
sions ranges over type schemes or types, but any 7 term must be a type (unquantified

type expression).

Definition 2.29 (The Milner rules)

TAUT: AFz:0o Alz) =0
INST' M /<
' Al az:0o 7=
AlFe:o .
GEN: A e Voo o not free in A
AU{a: 7t Fe T
A :
psT AFdver: 17— 7)
App: AFf:m—>mn AbFe:mn
Al (fe):m
LET: Abeio AU{z:0o}bey:T

AF letz=e; iney: 7T

The Milner type system presumes that all monotypes are disjoint. In contrast, the
regular types, and polyregular types have more structure. The type inference rules for
polyregular types must accommodate this extra structure. The regular types admit a
relation C giving an order structure to the types. Consequently, the inference systems

for polyregular type inference contains one extra rule:

Sup: Afert o
Al et T=T

!/

For convenience, we restate the Milner rules, plus the new rule in definition 2.30
Please note that both < (for generic instance) and C (the ordering relation) appear
in the following definition. The convention of ¢’s for either type schemes or types,

and 7 for types only is still in force for the definition.

44

Definition 2.30 (The modified rules)

TAUT: ArFax:o Alz) =0
INST: M ’<
' Abx:0 70
GEN: % o not free in A
AU{a: 7t Fe T
A :
psT AFdver: 17— 7)
App: AFf:m—>mn AbFe:mn
Al (fe):m
LET: Abe o AU{:L':.U}I—GQ:T
AF letz=e; iney: 7T
AbFe:r
: _ cC 7
SuUB e TCrT

The rules in definition 2.30 indicate when a syntactic expression e has a syntactic
type 7. Semantically, a value v € D has type T' € I, written as v : T whenever
v € T. Analogously, an expression e in environment p has type 7 in valuation v iff
Elelp € Tr]v. Extending this idea to polyregular types employs the interpretation
of polyregular types as “standing for” all their generic instances. Definition 2.31

captures this notion:

Definition 2.31 (Polyregular type semantics) let o = Vay...a,.t be
a polyregular type. Let 71,...,7, be any regular monotypes. Let I; be
the ideal 7[r;Jv. Then a value v : T[o] in valuation v if for every choice

of monotypes 7;:
v € Ttv[on + I, + 1]

Damas[18] proves a useful lemma. This lemma presumes that type schemes are

equivalent up to renaming of quantified variables.

Lemma 2.2 (Structure of instance relation) Let oy = Va.7,09 = V.
If oy > oy, then
T[[Tl]]l/ = T[[TQ]]I/

for any v.

45

Finally, soundness requires that the type assumption A and the environment p be

semantically “matched” That is,

Definition 2.32 (Environment matches assumption) An environment p
respects a type assumption A iff for all € Dom(A), A(z) : o, p(x) : To]v

for all valuations v.

Given an environment respecting the type assumptions, soundness is the property

that syntactic type inference is modeled by semantic type membership.

Theorem 2.9 (Soundness of Reqular Type Inference)

Let AF e: o be any inference from definition 2.30. Let p be an environ-

ment respecting A, and let v be any valuation. Then E[e]p : T[o]v

Proof By structural induction on the last step of the inference. Details

in section 2.8.]

As perspective, all the cases in theorem 2.9 are virtually identical to the original
proof in [34, 18]. The only difference is the rules of definition 2.30 have one additional
element, namely rule SUB. The semantics of rule SUB are very intuitive — any type
can be replaced by a supertype. The effect of such a simple change is surprising. In

section 2.7 some example deductions serve to illustrate these effects.

2.7 Some Example Deductions

The usefulness and flexibility of the polyregular type system can be best seen with
some examples. In this section, we will examine the two examples in the introduction,
as well as two other more intricate examples.

The first examples are taken from chapter 1 Throughout these examples, the if

construct is syntactic sugar for:

1f = casegpye false

By assumption, if : V a.true + false - o — a — a.

46

The examples use the following first order specification:

constructor 0;
constructor suc(pred : (0 + suc));
constructor nil;

?

constructor cons(hd: (04 suc),tl: (nil + cons))
constructor true

constructor false
The types for the constructor functions are

suc : 04 suc — suc

cons : YV a.ao — (nil 4+ cons(ar)) — cons(a)

The first example we consider is one of the motivating examples from chapter 1.
Recall that example 1.3 could not be assigned a type using standard methods, because
there were no union types. The following example indicates that the union type

facility of the regular types are adequate to assign a type in this case.

Example 2.6 Consider the function

Ax. if x then 1 else nil

The symbol 1 abbreviates the term suc(0)). Abbreviate the initial type
assumption as Tp. Abbreviate Ty U {z : true + false} as Tj.

Consider the following polyregular deduction:

1 Ty F if : Va.true +false - o — « AX

2 Ty F if : true 4 false — (nil 4 suc) — (nil 4 suc) 1, INST

3 T, F x:true 4+ false AX

4 Ty F if(z): (nil 4 suc) — (nil + suc) — (nil + suc) 2,3, ApP
5 Ty F1:suc AX

6 TyF1:suc+nil 5, SUB, alg
7 Ty F if(x)(1) : (nil 4+ suc) — (nil 4 suc) 6,4, APP
8 T)F nil : nil AX

9 Ty F nil: (nil + suc) 8, SUB, alg
10 Ty F if(2)(1)(nil) : (nil 4 suc) 7,9, AppP
11 ToF Ax.if x then | else nil:

true + false — (nil + suc) — (nil 4 suc) — (nil +suc) 10, ABS

47

The next example indicates that regular types also remove the difficulty of exam-

ple 1.4 from chapter 1.

Example 2.7 Consider the function

(Ax.cons (1, 2)) [true, false]

The expression [true, false| stands for

cons(true, cons(false,nil))

And so, has type cons(true + false).

As in example 2.6, let Ty be the initial type environment, and let Ty be

ToU{x : cons(suc+true+false)}. With these conventions in mind, consider

the following deduction:

10
11
12

T\ cons : Ya.a — (nil 4 cons(ar)) — cons(ar) AX
Ty F cons:
suc + true + false —
nil + cons(suc + true + false) —
cons(suc + true + false) INST
Ty F 1 :suc AX
Ty =1 : suc + true + false SUB, algebra

Ty F cons(1) :
nil + cons(suc + true + false) —
cons(suc + true + false)
Ty F cons(1) :
cons(suc + true + false) —
cons(suc + true + false)
Ty b 2 : cons(suc + true + false)
Ty F cons(1)(x) : cons(suc + true + false)
To b Az.cons(1)(x) :
cons(suc + true + false) —
cons(suc + true + false)
To b [true, false] : cons(true + false)
To b [true, false] : cons(suc + true + false)
To b (Az.cons(1)(x))[true, false]:

cons(suc + true + false)

2,4, App

5, SUB, inference
AX
6,7, APP

8, ABS
AX
10, SUB, algebra

9,11, App

Example 2.8 (The function deep) The following example is taken
from an introductory Scheme course taught at Rice. The function deep
is supposed to take a non-negative integer n as input, and return a list
that has a 0 nested n+41 deep. Using Exp, with the first order specification
as above, one possible solution is:

deep =

An.case n of

0 : cons(0,nil)
suc : cons(deep(pred(n)),nil)

Note the use of syntactic sugaring for case. In fact, the recursion is syn-
tactic sugaring also. To do the type deduction, we will use the desugared

version:

deep =
rec (AD.An.

caseq gyc

(Ad.cons(0)(nil)
E)\;l.cons(D(pred(d)))(nil))

where rec is the least fixed point function.

For this example, the initial type assumption Ty includes:

caseg gyc : Vo.(0— a) = (suc = a) — (0 + suc — a)

rec : Va.(a—=a)—a

as well as the standard types for the constructors and selectors.

Again, some abbreviation simplifies presentation. Abbreviate the type
fix 1.0 4 cons(t)) by Z. Use the following names for various type environ-

ments:

Tv = ToU{D:0+ suc — cons(Z)}
T, = TiU{n:0+ suc}

Ty = TyU{d:0}

Ty = TyU{d:suc}

48

49

Beginning with the inner function:

1 T5F cons:V a.a — (nil + cons(a)) — cons(a) AX

2 Ts;F cons: 0 — (nil + cons(0)) — cons(0) INST

3 T5FH0:0 AX

4 TsF cons(0) : (nil + cons(0)) — cons(0) 2,3, ApP
5 T5F nil:nil AX

6 75t nil: nil + cons(0) SUB, alg.
7 T5F cons(0)(nil) : cons(0) 4,6, App
8 Ty F Ad.cons(0)(nil) : 0 — cons(0) ABS

Continuing with the next inner function

9 TiF pred:suc — 0+ suc AX
10 Tk d:suc AX
11 Tjt pred(d) : 0+ suc 9,10, App
12 T;+ D : 0+ suc — cons(Z) AX
13 T3+ D(pred(d)) : cons(Z) 11,12, App
14 Tjt cons:V a.a — (nil + cons(a)) — cons(ar) AX
15 Tjt cons:Z — nil 4 cons(Z) — cons(Z) 14, INST
16 T4t cons(D(pred(d))) : (nil 4+ cons(Z)) —

cons(Z) 13,15, ApP

17 T{F nil:nil AX
18 T4t nil: nil 4+ cons(Z) 17, SuB, Alg.
19 Tt cons(D(pred(d)))(nil) : cons(Z) 16,18, App

20 Ty F Ad.cons(D(pred(d)))(nil) : suc — cons(Z) 19, ABS

To continue the derivation, we abbreviate
Ad.cons(0)(nil)
by Ci1. Additionally, we abbreviate

Ad.cons(D(pred(d)))(nil)

by Csa. Thus, the relevant lines in the proof can be rewritten as:

8 Tyt Cyp:0 — cons(z) ABS
20 Ty F Cg :suc — cons(Z) 19, ABS

Using these notations, we consider the case subexpression:

21 Ty F caseq gyc * Va.(0 = a) — (suc — a) —

(0 4 suc — «)
22 Ty & caseq gyc : (0 — cons(Z)) —
(suc — cons(Z)) —
(0 4 suc — cons(Z))
23 TyFCy:0— cons(Z)
24 Tyt caseo7suc(C1

(

) : (suc — cons(Z)) —
(0 4 suc — cons(Z))

)

AX

21, INST
8,SUB, Alg

22,23, App

25 Ty caseq gyc(C1)(C2) : (0 + suc — cons(Z)) 20,24, ApP

26 Ty Fn:0 -4+ suc
27 Ty & caseq gyc(C1)(C2)(n) : cons(Z)

Again, in the interest of simpler notation, abbreviate

caseo7suc(cl)(cz)(n)

as S. Then we write

27 Ty FS:cons(Z) 25,26, ApP

So we conclude

28 Ty F An.S: 0+ suc — cons(Z)

29 ToF AD.An.S : (0 + suc — cons(Z)) —
0 + suc — cons(Z)

30 Tot rec:Va.(a = a) = «

31 ToF rec: ((0+ suc — cons(Z)) —
(0 4 suc — cons(Z))) —
(0 + suc — cons(Z))

32 ToF rec(AD.An.S) : 0+ suc — cons(Z)

Line 32 above states

AX
25,26, App

27, ABS
28, ABS

AX

30, INST
29,31, App

To - deep : 0 + suc — cons(fix t.z + cons(?))

rewriting the abbreviation for Z.

50

Example 2.9 (A tautology checking function) This example was pre-
sented to us by Jim Hook and Neal Nelson[38]'®. The purpose is very
simple. Given a curried function f that takes some arbitrary number
of boolean arguments, decide if f is a tautology or not. That is, is

flz1,22,...,2,) always true.

Recall that the first order specification includes the 0-ary constructors
true,false. It is convenient to abbreviate true and false as T and F
respectively. Furthermore, we will use fun to indicate the — constructor

on the case statement.

With that in mind, consider the following (syntactically sugared) function

taut.
taut =
Af.case f of
T : T
F : F

fun : and(taut(f(T)))(taut(f(F)))

The type reasoning is more transparent using a desugared version

taut =
rec(AUMS.
Ad.T
Ad.F
Ad.and(U(d(T)))(U(d(F)))
| (f)

Again, the initial type assumption Ty contains all the constructor and

selector information, as well as the constant and

caser pfun : Vafy.(T = a) —
(F=a)= (=7 —a) —
(T+F+(B—17v)) —a
and : (T+F)—=(T+F)—=(T+F)

13They claim it came from an old SASL manual

51

Some of the type expressions become unwieldy without abbreviation. To
prevent this obscurity, the following abbreviations are active for the re-

mainder of this example

B = T+F
TA = fixt.T+F+(T+F—1)

Next, we introduce some notation for some type assumptions used in

intermediate steps:

T, = ToUu{U:TA — B}

T, = TyU{f:B+(B—TA)}
Ty = ToyUu{d:T}

T, = TyU{d:F}

Ty = Tyu{d:(B) — TA}

The innermost functions (the arguments to case) receive treatment first:

Ts3-T:T AX
T5-T:B 1, SuB, alg.
ToFAT: T —B 2,ABS

Similarly,

TiFF:F AX
T:FF:B 5, SUB, alg.
Ty A.T: T —B 5,ABs

52

And finally,

10
11
12
13
14
15
16
18
19
20
21

TVET:T

T/ FT:B
TY+d:(B)— TA
Ti+=d(T): TA
TY+=U:TA — (B)
T3 = U(d(T)) = (B)

T{t and: (B) — (B) — (B)
TY + and(U(d(T))) : (B) — (B)

TYFF:F

TV FF:B

Ti+ d(F): TA
T+ U(d(F)): B

T+ and(U(d(T)))(U(d(F)

Ty b Ad.and(U(d(T)))(U(

B

d

)
(F))

B
)

(B — TA) —

33

AX

7,SUB, Alg
AX

8,9, APP
AX

10,11, App
AX

12,13, ApP
AX

15, SUB, Alg
9,16, ApP
11,18, ApP
14,19, App

20, ABS

As in example 2.8, we give the above functions names so that the expres-

sions are simpler. For the next piece of the derivation,

Cl =
Cz =
Cg =

Ad.and(U(d(T)))(U(d(F)))

Considering the case statement:

54

22 Tyt caserp,fun: Vofy.(T = a) = (F—= a) —
((B—=79) = a)—=
B+(B—=7)—a

Ty b caserp gm: (T =+ B)— (F—B) —
(B—TA) —B) —
(B+(B—TA))— B

23

24

25

26

27
28

Ty b caserr sun(C1) : (F = B) —

(B—TA) —B) —
(B+(B—TA))—»B

Ty b caser p +un(C1)(C2) : (B — TA) — B) —
(B+(B—TA))—»B

Ty b caser r +un(C1)(C2)(Cs3) :
(B+(B—TA)) —»B

T+ f:B+(B—TA)

Ty b caser,r +un(C1)(C2)(C3)(f) : B

AX

22, INST

3,23, ApP
6,24, APP
21,25, App

AX
26,27, App

Abbreviating caser r sun(C1)(C2)(C3)(f) as S the derivation concludes:

29

30

31

32
33

34

T FAf.S:
B+(B—TA)—B

ToF AUMNS :
(TA - B) —
(B+(B—TA)) —» B

ToF AUMNS :
(TA—-B)—-TA—B

To bk rec:Vo.(a = a) >«

ToF rec:

((TA—-B)—TA —-B) —

((TA - B) —TA = B))
—
((TA - B) —» TA —» B)
To b rec(AUAS.S) :
(TA—-B)—-TA—B

28, ABS

29, ABS

30, SuB, inf Fix1
AX

32, INST

Hb)

Hence, the inference system for taut can be read off line 34 of the deduc-
tion.

taut: (TA —+B) - TA—B

2.8 Proofs for Chapter 2
2.8.1 Theorem 2.6 (Formally Contractive implies Semantically Contractive)

Let ¢ be any expression formally contractive in x. Then F} is contractive
with respect to the MPS metric.

Proof We proceed by case analysis on the the structure of ¢ (according
to definition 2.17)

Case t = cg . In this case Fiy(I) = Z(D,,), for any I € Z. For any metric

whatsoever, constants are contractive.

Case t = x'.x' # x . Again, this is a constant function, hence contrac-
9 9 9

tive.

Case t = cp(t1,...,tn) . By lemma 2.1, these expressions yield contrac-

tive maps.

Case ty + te, with t1,t2 formally contractive . By induction, each
of Fi,, Iy, is contractive. By theorem 2.5, U(x,y) is non-expansive in
both arguments. Furthermore, the composition of a non-expansive

function with a contractive one is contractive.

Case t = fix x'.t1, with t; contractive in both x,x’ . Since contrac-
tive in both arguments separately, MPS is an ultra-metric, so Fj, is
contractive. By theorem 2.5, u F}, is contractive. But p F}, is pre-

cisely Feix . - So the theorem holds for this case.

O

2.8.2 Theorem 2.7 (Soundness of First Order Inference)

A regular term is a synonym for a regular type expression corresponding to a term
in %(C, X).

To simplify notation, the following convenience prefaces theorem 2.7.

56

Definition 2.33 (Futended T[-]) Let A = {T|T is a termexpression}

be a set of regular term expressions. Then define the obvious:

TIAy = U TITv

TeA

By convention,

TM0lv ={L} = B.

The proof of theorem 2.7 depends on a the semantic function possessing a substi-
tution property. Hence, we establish that the semantic function we use possesses this

crucial property. Throughout, the symbol B denotes the trivial ideal {_L}.
Lemma 2.3 (Term Substitution Lemma) Let A be a set of terms. Then

T[A[z + SJv = T[AJv[z «+ T[S]v]

Proof 1If A =, then Az < S] = (), and the lemma is trivially true.
So, suppose A is non-empty. Let ¢ € A be a term. We now show by

structural induction on the shape of terms that
Ttz < S)Jv = T[tJv[x «+ T[S]v]
Since t is arbitrary, the lemma is shown.

Case t = x . In this case [z + 5] = S5,s0
Tlz[z + S]Jv = T[S = Tz]v[z < T[S]V]

Case t =y,y #x . Here t[z + S] =, so the lemma is trivially true
Case t = c,c € C, Arity(c) = 0 . Same as above
Case t = cp(t1,...,tn) . By the inductive hypothesis,
T[[tz[l‘ — S]]]I/ =
Tt:vz <+ T[S]v]
So

(TTt[x < S]Jv, ... Tta[z < S]Jv) =
(TTt]vlz < TSIV, ..., Tlta]vie < TIS]v)

57

Consequently

Z(DH)(T Ttz « S, ... Ttalx « S]Jv)) =
Z(DH){T]v[z < TS, .., Tlta]vie < T[S]v]))

Rewriting the equality using definition 2.13, and definition 2.26
Tle(t, ... t)[x < Sv = Tle(ty, ... t)]Jvjz + 5]

completing the proof for this case.

O

The MPS metric has the property that some sequences of non-telescoping sets
may still converge in the metric sense. Lemma 2.4 indicates that a telescoping series

that is also cauchy converges to the same limit.

Lemma 2.4 (supl, = lim[;) Let Ix be a cauchy sequence of ideals
such that [, C I,,1y. Then I, C lim I} for any n.

Proof Suppose not. Let [, be an ideal in the sequence such that some
element v € [,,,v & lim I;,. Furthermore, assume v is the minimum rank
such element, of rank r. Since [}, is a cauchy sequence, select I, such that
n > m and d(I,,lim[l;) < 27". Sincen > m, I, C I,, sov € I,,v0 /
inlim I,. The rank of v is r, so the rank of the distinguishing element of
I, lim I must be less than r. This means that d(/,,lim ;) > 27". A

contradiction. Consequently, no such [, exists, and the lemma is proved.

[]
Theorem 2.7 (Soundness of First Order Inference) For any first order
regular type expression T, T[X(T)[v = T[T]v.

Proof We use structural induction.

Case T =x,x € TyVars .
Here X(2) = {x}, so T[{x}]v = T[z]v by definition 2.33.

Case T = cp,co € M, Arity(c) =0 .
As for variables, T[{co}]v = T[co]v by definition.
Case T =cn(T1,...,Th) .

By the first order hypothesis, ¢, #—. Thus, it is sufficient to consider
only tuples of ideals.

TIE(T)]v = TI[T:]v, by ind. hyp.
(TIM]v... T[Ty = (TIE(T)]v... TIE(T,)]v)
I(Den)(TITlv ... TITalv)) I(Den (TIE(T)]v ... TIS(T)]Y)

Hence,
TIE(en(Try ..., To))Ww] = Tlea(Tr, ..., Tu]v
Case T=T; +T> .
By induction, T[T:]Jv = T[X(T:)]v, so T[Th]vUT [Ta]v = T[E(Th) vy
T[[Z(TQ)]]I/ And thus, T[[Tl + TQ]] = T[[Z(Tl + TQ)]]

Case T = fix x..T' .
By definition 2.15, ¥(7T") = X(7")**. By definition 2.14, %(T")*" =
sup T/, where T/ is the Kleene sequence
Ty = T'x + 0]

TZ'/_I_I = T’[l‘ — TZ/]

By lemma 2.3
Ty = T[Tv[z + {L}]
T[[Tz’/+1]]’/ = T[]z + T[T:]v]

Note that

T[Tl = Fr({1})

By simple induction, (using above as base case) we note
TIT v = P ({L})

The right hand side of the above is a banach sequence for y . Frw
beginning at {1 }. Consequently,

T[Ty = pa. Frw = T[fix . T|v

39

The sequence T} is known to be telescoping, so T [T/]v is a telescoping

series of ideals. By previous analysis, it is a cauchy sequence, so
sup T[T/|lv = Tfix «. T v
Definition 2.33, and elementary properties of sets gives
sup T[T!/v = Tsup T!]v

S0
Tlsup T/]v = Tfix «.T"|v

This is, by definition 2.14

TIE(T"*) v = T[E(fix . T")]v = T[fix «.T'|v

2.8.3 Theorem 2.8 (Eztended Subtype Soundness Theorem)

The inference rules in definition 2.19 are sound.

Proof By structural induction on the shape of the proof.

Case T1 C Ta, Ty, T first order This is theorem 2.7
Case TCT T[T CT[T]v.
Case Ty C Ty + Ty T[]y CT[Thv U T[]y

Case T;1 CT», T2 C TgF Ty C T3 Again, by elementary properties of
sets: If T[Th]v C T[Te]v, T[Te]v C T[Ts]v, then T[Ti]v C T[Ts]v.

Case T3 CT;,To C Tyt (T1 — T2) C T3 — T4 By hypothesis for this

case, and inductive hypothesis,
T[[Tg]]l/ g T[[Tl]]l/, T[[TQ]]I/ g T[[T4]]I/
By definition 2.22,

TIT = Ty = {f [/(T[T]v) € TIT]v}

But since T[Ts]v C T[Ti]v, any f with f(T[Ti]v) C T[T2]v is also

an f
HTIy) C Ty

Likewise, since T[Ty]v C T[Tav, any f such that f(T[Ts]v) C
T[T3]v is also an f

f(TTTv) € Ty
Consequently,
fedglo(TITE]y) C TITalv}
So
THTy = To)]v CT(Ts — Ty)]v

Case fix x.T = T[x « fix x.T| By definition 2.26,
Tlfix . Ty = ukrv
Similarly,
TMTzx + fix 2Ty = T[Tz « T[fix «.T7]|
= Fruv(uFrv)
= pFrv by definition of fixed point
Case F1X2 The hypotheses for this rule is
t1 Cty b Ti[x + 1] C Tola + 5]
So, let Iy C I, Since Ty C Ty, the induction hypothesis yields
TIv[x < L] C T[T:]v[e < 1]
By definition 2.27
I, C Iy rmimplies Fr,(I) C Fr,(1>)
This implies
Fr. (1) C Fp, ()
Consequently,
pkr, © plr,
Or,
Tlfix . T\]v C Tfix 2.7T3]

60

61

2.8.4 Theorem 2.9 (Soundness of Reqular Type Inference)

Let AF e: o be any inference from definition 2.30. Let p be an environ-

ment respecting A, and let v be any valuation. Then E[e]p : T[o]v

Proof By structural induction on the last step of the inference.
Case TAUT By hypothesis, p respects A, so
Elelp - TIAR)

Case INST By rule requirements, A b e : a. So E[e]p : T[o]v by in-
ductive hypothesis. Write o = Va.t,o’ = Va.t'. This is possible by

renaming bound variables. Then lemma 2.2 establishes that
Tty = T[]

Consequently, v : To]v implies v : T[o']v.
Case GEN By inductive hypothesis,

Elelp : Tlolv

for all valuations v. Since « is not free in A, any valuation v]a +]
also maintains the theorem. In particular, let ¢ be a regular mono-

type, and [; the ideal T[tJv. Then
Elelp : Tlolvla + L]

But ¢ was arbitrary, so

Elelp : TVao]v

Case SUB By inductive hypothesis
Elelp : Trlv

By theorem 2.8, if 7 C 7/

Tlrlv C Tl v

Thus,
Elelp : TTr'Tv

by transitivity of set inclusion.

Case ABST By inductive hypothesis,
Eled]ple v : T[r'v] € Tlr]v
By definition 2.5
E[N z.ex]p(v) = Eler] p[x + v]
Consequently
EIN x.ex]p(v) € Tr]v
whenever v € T[r']v. By definition 2.22, this means
E[N z.ea]p € T —]
Case APP By inductive hypothesis,

Elflp € Tlnlv = Tr]v
Elelp € TInl

By definition 2.22, any element F' € T[r]v — T[taus]v has the

property
F(TInlv) € Tlrly

Since E[f]p is one such element
ELfp(ELel) € TTr]
Case LET By the inductive hypothesis,

Eled]p : Tlov

From definition 2.5
Elet x = ey in ;] = Efex]p[x + E]er]p]
So p[x + E[eq]p] respects the assumption
AU{z:o}

Consequently, the inductive hypothesis applies to the second condi-

tion for this inference rule, and we have
Elealole « o] - 7
Putting this together yields

Elet x =€ iney]: 7

62

63

64

Chapter 3

Automated Type Assignment for Regular Types

A major obstacle to programmer acceptance of statically typed languages is the re-
quirement that the types of identifiers be declared. To remove this particular obstacle,
some implementations provide an automatic method of assigning types to program ex-
pressions. Such a method is essential in a soft typing system. In fact, the importance
is codified in the Minimal-Text Principle of chapter 1. Consequently, this chapter
presents an automatic type assignment method for RegType, the type language of
chapter 2.

The automatic type assignment algorithm presented in this chapter is based on
Milner’s type assignment algorithm [34] The Milner type assignment method can be
decomposed into two separate tasks. First, all expressions are assigned a unique type
variable, and the inference system generates a set of equality constraints necessary for
the type inference to be valid. This task resembles generating verification conditions
for programs. After task one is complete, task two finds the most general solution to
the constraint equations, or reports failure if no solution exists.

The type language used by Milner, however, is not as expressive as RegType.
Furthermore, the regular types do not fit the framework of equality constraints. The
SUB rule (see definition 2.30) generates inequality constraints instead. The task of
inequality constraint generation is not any more difficult than generating equality
constraints, but the task of solving the inequalities is much more difficult than the
corresponding task for equalities. Consequently, the type assignment task becomes
one of solving inequalities.

One standard mathematical tool for handling inequalities is the introduction of
slack variables. By adding slack variables, we can convert inequalities to equalities
For example,

r<H

can be changed into

z+5=5

65

where S is the slack variable. Analogously, for the type assignment context, one
converts

TCpu

to
TUS =p

Using slack variables, we may convert the inequalities we generate for regular type
assignment to equalities over type constructors, and the union operator. We say the
resulting set of equalities is the slack form of the problem.

Regrettably, using slack variables still leaves the problem of finding solutions for
the resulting slack form equalities. Our regret is that a general solution method for the
slack form equalities is an open problem. To overcome the difficulty, we restrict the
solution space by assuming the solutions have a certain special form. This restriction
of the solution space, of course, excludes certain solutions. The restriction we impose,
however, is mild, and retains most types of practical interest.

Our solution method adapts a a technique developed by D. Rémy for typing variant
records in an object oriented language. By restricting the set of type expressions
appropriately, Rémy’s method can be applied to the slack form equalities discovered
in the constraint generation phase.

All of these issues are detailed in the five sections of this chapter. Section 3.1
reviews the Milner type assignment algorithm. We include constraint generation
in Section 3.2 continues the analysis by discussing inequality constraints, and slack
variables, and difficulties with unrestricted slack variables. Next, section 3.3 indicates
an appropriate restriction of the slack variable form. The solution of these restricted
slack variable equalities uses Rémy’s technique. To show the efficacy of the method,
section 3.4 demonstrates that inferences produced using the restricted slack variable
method can be translated to inferences using the inference rules for regular types
(definition 2.30). The final section, section 3.6, illustrates the method with a few

concrete examples.

3.1 The Milner Type System and algorithm W

One of the key properties of the Milner inference system is the decidability of de-
duction in that system. An algorithm exists to determine whether an expression can

be proved to have some type. Furthermore, there is a best type for any expression

66

having a type, and, moreover, there is an algorithm constructs computes the best
type for a given expression (or fails when no type can be deduced for the expression).

Naturally, then, we would like to generalize the Milner algorithm to our type
inference problem. Generalizing the algorithm to regular types, however, is non-
trivial because the Milner system addresses a less expressive type language than the
regular types. The Milner type language has no notion of union or recursive type.

Type inference for Exp under the Milner type language uses the rules from defi-
nition 2.29 (repeated here for convenience)

Recalling that A is a set of type assumptions about the types of free type variables,

the inference rules are:

TAUT: AFz:0o Alz) =0
INST' M /<
' Al az:0o 7=
AlFe:o .
GEN: 1 e Voo o not free in A
AU{a: 7t Fe T
A :
ST AFdver: 17— 7)
App: AFf:m—>mn AbFe:mn
Al (fe):m
LET: Abeio AU{z:0o}bey:T

AF letz=e; iney: 7T

Milner defines a denotational semantics for his language, and shows that his rules
are sound with respect to the semantics.

Associated with the inference system is the type assignment algorithm, often called
“algorithm W7 in the literature. The version given by Damas and Milner[17] uses
the unification algorithm of Robinson[40]. The symbol U denotes this unification
algorithm. For further notational convenience Z(t) = VYa;...qa,.t where the a; are

free in t, but not in A.
Definition 3.1 (Algorithm W) W(A,e) = (5,7) where

i). if e is @, a variable or a constant, and A(z) = Voaq...a,7’, then
S =1d and 7 = 7'[a; < (3], where the ;s are new.

ii). if e is erez then let W(A,e;) = (51, 71) and W(S1A,e2) = (52, 72),
and U(Sy71, 72 —) = V, where (3 is new; Then S = VS35, and
T=Vpg.

67

iii). if e is Ax.eq, let 8 be a new type variable. Let W(A[zx : 3], e1) =
(S1,71); Then S =51, and 7 = 5108 — ;.

iv). if eislet @ = ey in ey, then let W (A, er) = (51, 72) and W(S1 Al :
S1A(71), €3]) = (S2,72); then S = 5,5, and 7 = 7.

The algorithm fails whenever any of the above conditions are not met.

Damas[18] proves two theorems concerning algorithm W.

Theorem 3.1 (Syntactic Soundness) If W (A, e) succeeds with (S, 1),

then there is a derivation using the Milner rules of SAF e: 7.

Theorem 3.2 (Syntactic Completeness) Given A e, let A’ be an in-

stance of A, and o a type scheme such that
Ate:o
Then

1. W(A,e) succeeds
2. f W(A,e) = (S5,7) then, for some substitution R,

A= RSA and 0 < RSA(T)
where < is the generic instance relation of definition 2.28

These two theorems demonstrate that algorithm W is exceptionally well suited
to the Milner inference system. The syntactic soundness theorem indicates that any
proof produced by the algorithm corresponds to a proof in the inference system.
Syntactic completeness, on the other hand, states that any proof in the inference
system can be generated automatically, up to generic instance. That is, given any
proof in the inference system, the concomitant automated proof derives a type that
has the original type as a generic instance. In other words, algorithm W generates
the most general, or principal type.

We gain some additional insight into algorithm W derives from separating the
type assignment process into two phases: a constraint phase, and a solution phase.
Intuitively, type assignment can be viewed as giving all terms an unknown type, and

using the inference system to derive constraints that must hold for a derivation to

68

be valid. When the constraint phase is finished, one solves the resulting constraint
equations. In algorithm W, the solution method is term unification.

To clarify the mechanics of this view of type assignment, consider example 3.1.
This example indicates the constraint generation process in an informal way. For a

more systemic treatment, see Wand[54].
Example 3.1 (Constraint generation) Consider the S combinator.
S = Ar. Ay Azaz(yz)

Initially, assign type to to S.

Considering the outermost lambda, if we assume = : ¢, and that term
Ay.Az.xz(yz) has type t2, then the ABST rule requires to = 1 — 5.
Similarly, let y : t5, and Az.xz(yz) : t4, then ABST

ty =13 =14
And again, the if z : {5 and xz(yz) : ts, then
ty =15 = ig
Examining (xz), under the assumption that (yz) : ¢7 gives
rz ity — tg
The types of and z are already assigned, so
ty =1t5 — (tr — 1)
Also yz : t7, using assigned types gives
ts =15 — tr

Gathering all these constraints together yields the set

to = 11—ty
to = 13—ty
ty = 15— tg
i = 5= (tr = tg)

t3 = t5—>t7

69

Unification gives the solution

to=(ts = tr = tg) = (t5 = t7) = (15 — t6)

Both example 3.1 and Damas-Milner use Robinson’s unification algorithm as the
solution mechanism for the system of equalities. Unification exactly characterizes
solutions of equations over the free algebra ¥(C, V). This algebra is also called the
algebra of finite trees over (C,V). Consequently, the solutions to the systems of
equations must, perforce, be finite trees. Some simple equations, however, cannot be
solved when the solution space is restricted to finite trees. For example, z = f(x)
has no finite tree solution. To solve a larger class of equations, we must enlarge the
space of possible solutions In particular, other algebras besides the finite trees may
be candidate solution spaces.

One useful alternative solution space to consider is the rational trees. Rational

trees include all the finite trees, and some infinite ones. They are characterized by

Definition 3.2 (Rational Trees) Let T be a tree, and let
Ts={Ty,....T:...}

be the set of non-isomorphic subtrees of T. Then T is rational if Ts is
finite.

Obviously, any finite tree is certainly a rational tree, but some infinite trees are

also rational. For example,

Example 3.2 (An infinite rational tree) Let ¢ € C be an arity-2 con-
structor, and let a € C' be a constant. Let T be the tree that has its root
labeled with ¢, and its right son is a, and the left son is isomorphic to T
The set of non isomorphic subtrees of T' = {a,T}, so T is rational. In
fact, T is often written as a recursive equation: T = ¢(T,a). Pictorially,

T is shown in figure 3.1.

Since the rational trees contain the finite trees, any set of equations that has
solutions over the algebra of finite trees will have solutions over the algebra of rational
trees. Furthermore, some equations that are unsolvable over finite trees algebra are

solvable over rational trees. Example 3.2 illustrates this property. The equation

70

Figure 3.1 An example of a rational tree

X = ¢(X,a) has no finite tree solution, but the indicated rational tree solves the
equation.

Rational trees share an important property of finite trees. This property is the
existence of an algorithm to solve systems of equations. For finite trees, Robinson’s
unification algorithm computes the most general solution. For rational trees, thereis a
variant of ordinary unification, called “circular” unification[14, 12, 33] that computes
most general solutions. This algorithm makes rational trees viable for solving type
constraint equations.

One must take care, however, to examine carefully the consequences of using a
different algebra as a solution space. Changing solution spaces requires a change
in the type language. In the case under discussion, the change is from finite trees
over (C, X) to rational trees over (C, X). The natural question to ask, then, is do
syntactic soundness and completeness still hold for Algorithm W with the new type
language 7 In the case of rational trees, the answer is yes. Rémy[39], building on
results of Huet[28], proves that both syntactic soundness and syntactic completeness
are valid for algorithm W, even when the type language is the rational trees over

(C, X) and standard unification is replaced by circular unification.

71

To summarize, the Milner type assignment method can be viewed as two distinct
processes: the generation of a set of constraint equations, and the solution of the
equations. Consequently, there are two separate degrees of freedom for generalizing
the Milner algorithm. This section focused on the generalizing the solution process.
In particular, examination of the standard Robinson unification method suggested
the use of rational trees and circular unification as a possible alternative. For this
particular generalization, the syntactic soundness and completeness properties still
hold.

Even though the extension of the Milner method to rational types is important, to
handle regular types in any meaningful way requires an examination of the constraint

generation component as well. That is the subject of the next section.

3.2 Equalities, Inequalities and Type Inference

We observed in an earlier section that type assignment in the context of subtyping
involves the generation of inequality constraints. Intuitively, the use of the SUB
introduces the inequalities. As a very simple illustration of the phenomenon, consider

the typing for Az.z in example 3.3

Example 3.3 (Inequality Constraints) Proceeding as in example 3.1,
we assign unknown types to all subterms of Az.x, and carry on with a

deduction. The assignment looks like
(Az'.2™)
Following the inference system in definition 2.30

{z:ty}Fa:t; AX
{z: i} kot SUB provided t; C 1,

Consequently,

FAz.x: t; —t; ABS
FAz.x: ta SUB provided t; C t,

Thus, Az.x : t3 as long as

t1—>t2

M

ls

72

There are many different approaches to handling the generated inequalities. Almost

all of these strategies fall into one of the following two strategies:

Retained inequalities This strategy incorporates actual inequalities as part of the

type expression

Convert to Equalities “Somehow” convert the inequalities to equalities, and use

some appropriate method for solving the concomitant equalities.

The primary advocates of the retained inequalities method are Mitchell[36], Fuh
and Mishra[21, 22, 23], and Curtis[15]. In this approach, some inequality constraints
are retained as part of the type expression. For example, the identity function Ax.x

has a type described as
t{a C B, (a—=p)C i}
The type expression informally reads as

The function Az.x has type ¢, where ¢ must contain a type a — 3, and «
must be contained in 3

This method has several interesting properties, but it also has some features that

make 1t unsuitable for soft typing:

1. The set of inequalities is potentially quite large, even for simple program ex-
pressions. This makes the type expression almost unreadable in some cases.
Fuh and Mishra have developed techniques for reducing the set of inequalities
in the type, but some program expressions simply do not have comprehensible

type expressions.

2. In any event, some solution to the inequalities must be found to establish that
the set of inequalities are consistent. For these systems, an inconsistent set of

inequalities signals a type error

3. Few of these systems support parametric polymorphism.

These disadvantages indicate that the “convert to equalities” strategy is the right

choice for soft typing systems. The conversion of inequalities to equalities suggests

14

the venerable mathematical technique of “slack variables”'*. The slack variable ap-

proach introduces auxiliary variables to “take up the slack” in the inequalities. To

1 The idea of slack variables appears to be very old. The interested reader, however, may wish to
examine Tapia’s account of this technique in a different context from typechecking[46, 37]

73

see specifically how this applies to type inequalities, suppose a generated constraint
requires

XCY
Using the slack variable technique, the constraint may be expressed

Y=XUS

for S some new variable. S is the slack variable. The slack variable equations gener-
ated by regular type constraints may be alternatively notated as Y = X + §.

Equations generated in this fashion, however, cannot be solved using Robinson’s
unification method. Recall that Robinson’s algorithm solves equations over a free
term algebra. The algebra of regular type constraints, is not free, as it uses the + op-
erator. The + operator is associative, commutative, and idempotent. Consequently, a
solution method for equations over an associative, commutative, idempotent algebra
is required.

The solution of equations over various algebraic theories is the subject of general
unification theory[43]. For an associative, commutative, idempotent theory, general
unification theory provides ACT unification[8, 30]. In principle, ACI unification could
be used to generate solutions to regular type equations. This method, however, also

has drawbacks:

1. There are multiple unifiers, as opposed to standard unification’s single unifier.

Hence, there are no principle types.

2. Tt is not clear how to modify the ACT unification algorithm to include “circu-

larity”. The circularity property is necessary to infer recursive types.

3. ACI theories do not have enough structure to capture the behavior of regular
types. Some distributivity is required. For example t(a) + t(b) = t(a + b) is
valid in the theory of regular types, but this equality is not captured in the ACI
theory. Furthermore, distributive, associative theories do not have a unification

method associated with them.

The disadvantages associated with ACI unification force us to consider some alter-
native methods for solving regular type slack equations. The method that we propose
places a mild restriction on the solution space. The restricted solution set has addi-
tional properties we can exploit to produce viable solutions to the slack equations.

The restriction, and its associated solution method is the subject of the next section.

74

3.3 Slack Variables and the Rémy Encoding

As seen in section 3.2, solving inequalities using general slack variables is not com-
pletely acceptable. In cases where general methods are inconvenient, a standard
mathematical strategy is to introduce a bit more “structure” into the solution space,
and exploit the additional structure for solutions. For the problem at hand, we add
our additional structure to the set of acceptable type expressions.

The structure we impose on the type expressions depends on one key observation:
the number of type constructors is finite. Consequently, union types that have at
most one outermost occurrence of any given constructor can be put into standard

form by sorting the subterms. For example

Example 3.4 (Standard form for union types) Let a,b,c be type con-
structors, and let a be polymorphic, that is, Arity(a) = 1. Furthermore,
let the sort order be exactly a < b < e¢. Then

Type Expression Standard Form

a(x) + ¢ a(x) + ¢
c+b b+c
c+ a(e+b) alb+e¢)+ ¢

We intend to limit slack variable equations to be of the form in example 3.4.

While formal arguments will appear shortly, the intuition inspiring this particular
specialization of the slack variables is important. The idea is fairly simple: having
some standard ordering obviates the need for associative and commutative compli-
cations, and the limitation to single occurrences of type constructors eliminates the
idempotence consideration. Thus, finding solutions for slack variable equations in
this form may require only standard unification.

To formalize the argument requires a firm definition of the type expressions pro-
posed as the special forms. In particular, the notion of “occurrences” of a constructor

is central. Hence,

Definition 3.3 (Occurrences of a constructor) Let C be a set of con-
structors, and X(C, X) the set of terms over C' with X as a set of variables.
Let 4+ be 2-ary function symbol, + & C. Let t € ¥(C' U {+},X). Then

75

define the syntactic function Occur(e,t) by

1 t=c(...)
Occur(e,t) = 4 Occur(e,t1) + Occur(e, ta) ¢ = +(t1,t2)
0 Otherwise

The terms of interest have at most one occurrence of any constructor. Furthermore,

each subterm has the same property. These are the discriminative terms.!®

Definition 3.4 (Discriminative terms) Let C be a set of constructors,
and let 4+ be a disjoint 2-ary function symbol. Then ¢t € S(C U {+}, X) is

discriminative iff for any subterm t’ of ¢, and any ¢ € C', Occur(c,t’) < 1.

To illustrating the definition, consider

Example 3.5 (Discriminative, and non-discriminative types) Let a,b,c
be type constructors, with a having arity 1. Then the following terms are

discriminative

a(x) + ¢
b+c

On the other hand, all of the following terms are not discriminative

b+b b used twice
a(b) + a(c) a used twice
a(b+b) b 4+ b subterm not discriminative

With the definition of the discriminative terms in mind, there are two different
situations in which they can be used to indicate solutions to inequalities, depending
on whether constructors appear on the right side, or the left side of inequalities.

Example 3.6 (really several examples in one) indicates some of the various possibilities.

Example 3.6 (Using discriminative slack variables) In this example, a
is a l-ary type constructor, b, and ¢ are 0-ary type constructors, and z,y

are variables. Then the inequality

z Calb)+c

15This terminology is derived from a similar notion by Mishra and Reddy[35], which is discussed in
chapter 5.

76

has the following three solutions

r = a(b)
r = a(b)+c

These solutions are obtained by simply eliminating components from the

upper bound a(b) + ¢, and solving the corresponding equation.

On the other hand, solving the inequality

a(b) Cx

is more complicated. In this case, we want to add components instead
of take components away. For example, adding a b component yields one
solution:

alb)y Cx = alb)+b=2x

Adding a ¢ instead of a b yields another:
alb)y Cx = alb)+c==x

In fact, any of the following equations are possible solutions to the original

inequality
a(b) = =
alb)y+b = =
alb)y+e¢ = =

alby+b+c¢ = =z

The requirement of discriminativity is crucial for inequalities of this type.
Without this requirement, then there are arbitrarily many solutions: a(b)+

a(c) =, a(b) + a(a(b)) = x, etc.

As example 3.6 suggests, restricting solutions to discriminative type expressions
allows a systematic generation of of solutions not present in the unrestricted case.

Even with the restriction, we need to develop succinct representations for arbitrary

77

sets of incomparable types. fortunately, Didier Rémy has invented an ingenious en-
coding of multiple types as a single record type. His encoding allows us to try the
various combinations “all at one time”.
To get a glimpse of the intuition behind Rémy’s technique, consider the following
set of discriminative types:
a(b)
a(b)+b
a(b)+ ¢
a(b)+b+ ¢

Since the number of constructors is finite, the set of types might be expressed as a
“table”, indicating the presence or absence of a component:

Status | Status | Status
a(b) b c
a(b) present | absent | absent
a(b)+b | present | present | absent
a(b)+ ¢ | present | absent | present
a(b) + b+ ¢ | present | present | present

The table enumerates all the discriminative supertypes of a(b). The table could

be simplified to one line:

Status Status Status
a(b) b c
present present
present or or
absent absent

This representation can easily be extended to incorporate constructors with argu-
ments. That is, for the same set of constructors, suppose we want the discriminative
supertypes of b, then a(b) 4 b is one, a(c) + b is another, a(a(c)) + b is yet another. So
is a(a(a...). Clearly, there are an infinite number of discriminative supertypes. The
trick to encoding this infinite number is to use a variable to cover all the structurally

similar ones. In general, a(x) + b is a supertype, for any z. In extended table form:

Status | Arg | Status | Status
b c

present | absent

a
b absent
a(x)+b present
b+c absent
a(x) + b+ ¢ | present

present | absent

present | present

RIR[(R|R|Q

present | present

Reducing to a single line gives:

Status | Arg | Status Status
a a b c
present present
or T | present or
absent absent

type b + ¢, then the discriminative subtypes are:

The table representation works for discriminative subtypes as well. Consider the

b
c
b+c
The full table representation is:
Status | Arg | Status | Status
a a b c
b absent | x | present | absent
c absent | x | absent | present
b+ c | absent | = | present | present
Which condenses to the single line:
Status | Arg | Status Status
a a b c
present present
absent | or or
absent absent

Observe that in supertype considerations, the positive, or “present” information
is crucial, whereas for subtype considerations, negative, or “absent” information is
crucial

The final technique in Rémy’s representation is to encode single line tables by
using additional variables to express the “present or absent” condition. Using this

idea, the previous tables can be written as:

Supertypes of a(b)

Status | Arg | Status | Status
a a b c
present b P P,

79

Supertypes of b

Status | Arg | Status | Status
a a b c

P x | present Py

Subtypes of b+ ¢

Status | Arg | Status | Status
a a b c
absent | =z P B

To express this representation in algebraic form, we can formulate tables as terms
over a single 4-ary constructor R. To simplify notation, use the symbol ! for “present”

and — for “absent”. Then write

Supertypes of a(b)

R(1,b, P, Py)
Supertypes of b

R(Pg, x, !, P4)
Subtypes of b+ ¢

R(—,$7P5,P6)

The beauty of Rémy’s representation is that is reduces subtypes and supertypes
to substitution instances of R-terms. It eliminates the need for associative, commu-
tative, and idempotent operators. The discriminative types are encoded in a free
term algebra over {R,!,—}. Being a free term algebra, regular unification is a viable
solution method for equations over {R,!,—}. As an added bonus, the Milner algo-
rithm constitutes a method of both generating the constraints, and solving them. A

rigorous treatment of this process appears in the next section.

3.4 Automating Type Assignment for Regular Types
Based on intuitions described in section 3.3, we prove the main result of this chapter:

Type assignment for discriminative regular types can be accomplished

using Algorithm W.

As discussed in section 3.3, discriminative regular types may be encoded using a
special R constructor. Therefore, the general plan for type assignment consists of

three parts:

80
1. Translate discriminative regular types for constants and constructors into the
R-terms
2. Use Algorithm W to do type assignment for types described by R-terms.
3. Translate the R-terms back to regular types

Each step is discussed in the sections that follow

3.4.1 Encoding discriminative regular types

To encode discriminative regular types as R-terms we must rigorously define what
constitutes an R-term. The arity of the R function symbol on the specification of
the programming language.

For the remainder of this treatment, let ' be the set of type constructors derived
from a language specification. Fix an ordering C' = {¢,...,¢,}. The following

definition formalizes the R function symbol

Definition 3.5 (The R function symbol) Let
N = Z(Arity(ci) +1)

Then R is an N-ary function symbol

For each ¢; € (', there is a set of argument positions in an R-term associated with
¢;. Those positions consist of a flag position, and Arity(¢;) argument positions. By

convention, the flag position occurs before any of the argument positions. Thus,

Definition 3.6 (Argument positions for a constructor) Let the argu-
ment positions of the R function symbol be numbered from 1 to N. For

any constructor ¢; € (', define the flag position f; in R as:

fi = 1 1 =1
o Si<i(l 4 Arity(c;)) otherwise
The argument positions for ¢; extend from f; + 1 to f; + Arity(e;).

As a notational convenience, we define selector functions p; by

pj(R(alv Iy RN 7 N P .,CLN) = a;

81

Let {!,—} be two constants. We distinguish F', where
FC Z({Rv !7 _}7X)
called the definite R-terms.

Definition 3.7 (The definite R-terms) Let r € X({R,!,—}, X) be a
term such that py,(r) =! or py,(r) = — for any flag position f;. Then r is
a definite R term. The set of all definite R terms is named F

As a notational convenience, let Ri, . k. (...) = (€1,...,€n) be an identical R-

term, except that argument position k; is ;. That is,

, = (e € = S =N
Pi(Riy b () = (€15 -+ €m)) { p;(R(...)) otherwise

Let FF C X(C, X) be the discriminative subset of the regular types. To make the

definition of the translations somewhat easier, we note the following lemma:

Lemma 3.1 (Leading constructor form for +) Any discriminative reg-

ular term of the form +(#1,13) can be written in the form:

+(ei(), 1)

Proof The proof proceeds by induction on the number of + symbols.

The key observation is that + is associative.

Casen =1 . The term must be +(¢(...),¢;(...)). So the lemma is

trivially true

Case n > 1 . Assume the lemma is true for all terms with less than n
+ symbols. Consider +(1,¢2). Clearly, both #; has less than n +
symbols. If ¢; has no + symbols, we are done. If ¢; has 1 or more,
then the induction hypothesis gives t; = +(¢(...),t}). So

+(t1,t2) = +(+(e(...), 1)), t2) (induction)
= +(ci(...), +(#),t2)) associativity

Corollary 3.1 (Standard form for +) Every regular term can be writ-

ten so that any + subterm can be written

+ail--), 15)

Proof Structural induction on term shape

Case t = ¢i(t1,...,tm) . There is no outermost +, so, by inductive hy-
pothesis, there are terms ¢! of the appropriate form, so ¢(t},...,1,)
satisfies the corollary.

Case t = +(t1,t2) . By lemma, ¢t = +(¢;(u1, ..., um),t5). By induction,

there are ul,ty satisfying the corollary. Hence, +(¢;(uf, ... ul), 15)

satisfies the corollary.

O

We define a map R: £ — F

Definition 3.8 (Translating E to F'') Lett € F, and let X’ C X be a
set of variables that do not occur in . Then define R, R; by

x t=z,x e X
Ri(t) =< (L R(t1), R(t2),..., R(tm)) Occur(c;(ty,... tp),t) =1
(— 2,2l) Occur(e;,t) =0

R(t) = R(E: (1)[[Ba(1) . - [[Ra(1))
where the notation A||B is a syntactic concatenation operator: that is
<a1,...,ak>||<bl,...,bl> = <a1,...,ak,bl,...,bl>
Note that R; is well-defined. By definition 3.4,

Occur(e,t) = 1
OR
Occur(e,t) =0

Furthermore, since the depth of a term is finite, the mutually recursive

definition is consistent.

82

83

An example will help clarify the definition of R.

Example 3.7 (The use of R) Let a,b,c be type constructors, with
Arity(a) = 1, and the ordering as given. Then

R(a(b)+¢) =R(L, R(—,z},1,—),—, 1)

Similarly,
R(b + C) = R(_v $/2, !7 ’)

Finally,
R(a(a(c)) + b) = R(!vR(!vR(_v xé’n e !)7 e _)7 L _)

In a similar fashion, we define C': F' — K

Definition 3.9 (Translating F' to F©') Define a set of mutually recursive
syntactic functions C,C; Let t = R(...) be an R-term such that there
exists an ¢ for which py,(¢) =!

Cl(t) = Ci(C(pr_l (t)v SRR C(pfi+m(t))

Py, (1)=!
where Y in this case is the analog summation for the regular expression

+ symbol. Also set

We note that R and C' are pseudo-inverses in the following precise sense:
Theorem 3.3 (R and C are pseudo-inverse pairs) Let t € K. Then
C(R(t)) =t.

Proof By induction on M, the total number of constructors ¢; occurring
in t.

Case M = 0 . If no constructors appear in t, ¢ must be a variable. In
this case, C(R(x)) = x trivially

84

Case Inductive Part . Assuming the theorem is true for all terms having
M or less constructors, Consider a term ¢ with M + 1 constructors.

Using definition 3.8,
R(t) = R(Rs(1)]]... Ra(1))
So suppose Occur(ci(tr, ..., 1), 1) = 1. Then
Ri(t) = (1, R(t), ..., R(t,))
This means that py, (R(t)) =!. Also, by definition 3.9,
CR(1)) = c(C(R(t)..... C(R(1.))))

But each term ¢; has M or fewer total constructors, so by the induc-

tive hypothesis
Ci(R(1)) = ci(t, .. 1)
Thus, if
Occur(ci(th, ... 1) 1) = 1
then
Occur(ci(ty, ... 1), C(R(1)) = 1
Now suppose Occur(ci(t, ..., t,),1) = 0. Then

Ri(t) = (—,2%,...,2})

b n

So ps,(R(t)) = —. Consequently,
Occur(e;(t1, ..., 1), C(R(t)) =0

By discriminativity, Occur(e;, t) can only be 0 or 1. Hence, the the-

orem is true for the inductive case as well.

O

The definite R-terms, however, fail to capture the notion of subtyping or su-
pertyping. In section 3.3, we discovered (intuitively) that variables provide the key
element for encoding the discriminative subtype / supertype behavior. To enhance
our understanding of this process, we introduce two more variants of the R mapping
- R, and R,. Both mappings have codomain L({R,!, —}, X), rather than just the
definite R-terms. In all of the following definitions, the x; variables are type variables

distinct from any other type variables labeled by z;

85

Definition 3.10 (The mapping R,) lLet ¢t € F, and let X’ C X be a
set of variables that do not occur in {. Furthermore, let f; be a set of
variables intended to have only {!, —} substituted for them. Then define

R, R,
x t=x,r € X
R,i(t) =14 (, Ry(t1), Ry(ta), ..., Rp(tm)) Occur(ei(ty,... tm),t) =1
(Kj, 2, .. 2l) Occur(e;,t) =0

Each occurrence of ; in the above formula is distinct.
Ry(t) = R(Bp 1 (|| Bpo(1) - [Rpnl))
where the notation A||B is a syntactic concatenation operator

Definition 3.11 (The mapping R,) Lett € FE, X' and P as in defini-
tion 3.10 Then define R,,, R, ;

x t=x,r € X
R.i(t) =< (kj, Ra(t1), Ru(t2), ..., Ru(tm)) Occur(c;(tiy... tm),t) =1
(— 2, ...,z) Occur(e;,t) =0

Each occurrence of ; in the above formula is distinct.

Ro(t) = R(Bna (D) B (1) - - [[Rnt))

These two transformations transform subtyping and supertyping into substitution
instances of the appropriate term. To prove the necessary result requires two stages:
First, we establish the appropriate properties of these transformations formonotonic
constructors. A monotonic constructor, recall, has the property that u; C uy implies
¢i(u1) C ¢;(uz). Second, we extend the result to the function constructor —. The
function constructor is not monotonic, but an appropriate transformation can still be
defined.

For the moment, the only relevant substitutions involve only the flag variables.

The relevant form of substitution is defined by

Definition 3.12 (Flag-defining substitution) TLet T be an R-term, with

flag variables {x;}. Then a flag defining substitution is a finite function
s:{k;} = {!, —}. Note that s assigns a value to all flags of T'.

86

With this definition in mind, we proceed to analyze R, and R, with respect to
monotonic constructors.

Theorem 3.4 (R, gives supertypes) Let t € K, T = R,(t). Assume
every ¢; € (' is monotonic. Then for any flag defining substitution S
for T, t C C(S(T)). Furthermore, if S’ is any flag substitution, then
C(S(T)) C C(S(S(T)))

Proof We note that

S(Rp(1)) = R(S(Rpa(1))|[S(Rp2(t)) .. |[S(Bpu(t)))
so that

C(S(Ry(1))) = 3 Ci(S(R,(1)))
fi=!
By induction on M, the total number of constructors in ¢

Case M = 0 In this case, t = z, for # € X. So the theorem is trivially

true.

Case M =k + 1 . Assume the theorem is true for any term having k or

fewer constructors. Suppose Occur(e;(t1,...,tm),t) = 1. Then

Rp,i(t) = <!7 Rp(tl)v Rp(tQ)v) Rp(tm)>

by definition 3.10. Furthermore, note that the flag position is already

set, so, f; =!, consequently, no substitution alters it:

Ci(S(Rp,i(t))) = ci(C(S(Rp(tl)))v'"7C(S(Rp(tm)))
Ci(S(S'(Rpi(1))) = a(C(S(S"(By(11)))), -, C(S(S(Rp(tm))))

Each term t¢; has k& or fewer constructors, so by the induction hy-

pothesis,
t; CC(S(R,y(t;)) for any j

87

By monotonicity of ¢;,
ci(tlv s 7tm) - C(S(Rp(ci(tlv s 7tm))))

Thus, in this case, the theorem is true.

Now suppose Occur(¢;,t) = 0. Then

Ryi(t) = (kj, 2%, ..., 2))

b m

If S(k;) = —, then py,(S(R,(1))) = —, so this term does not alter
C(S(R,)),s0 the theorem holds trivially for this case

Equally, if S(k;) =!, then p;,(S(R,(t))) =!, so the term

ci(C(S(R(x1))), - C(S(R(w,)))) = iy, .o ar,)

occurs in C(S(R,(t))). Consequently, the theorem holds for this case

as well.

O

Virtually the same proof works for the R, translation in relation to subtyping

phenomenon.

Theorem 3.5 (R, gives sublypes) Let t € E, T = R,(t). Assume
every ¢; € (' is monotonic. Then for any flag defining substitution S
for T, C(S(T)) C t. Furthermore, C(S(S'(T))) C C(S(T)) for any flag

substitution S’

Proof [sketch] By induction on M, the total number of constructors in
t

Case M = 0 t is a variable, so theorem is trivial

Case M =k + 1 . Assume the theorem is true for any term having k or

fewer constructors. Suppose Occur(e;(t1,...,tm),t) = 1. Then

Rui(t) = (kj, Ra(t1), Ru(t2), ..., Ru(tm))

88

by definition 3.10. If S(x;) = —, then py,(S(R.(t))) = —, so this term
does not appear in C(S(R,(t))), even though Occur(¢;,t) = 1. So
the theorem holds trivially for this case. Now suppose S(kappa;) =!
S(Rni(1)) = (L S(Ru(t1)), S(Ru(l2)), .- - S(Raltm)))
And so
Ci(S(Rni(1))) = ci(C(S(Rn(tr))), - -, C(S(Ra(tm)))

Each term t¢; has k& or fewer constructors, so by the induction hy-

pothesis,
C(S(Ra(1)) C 1; for any j
By monotonicity of ¢;,
C(S(Ru(ci(try .y tm))) C ity o ytm)
Thus, in this case, the theorem is true.

Now suppose Occur(¢;,t) = 0. Then
R,:(t)=(—a,...,2)

Then S(R,:(t)) = R,:(t). Furthermore, the — flag assures that
Occur, (¢;, C(S(Rx(t))). So the theorem holds in this case as well.

O

Now that the appropriate properties are established for monotonic constructors,
the extension to the function constructor — can be established. Since — is a two place
function constructor, with the first argument being antimonotonic. Consequently, to
get supertyping behavior for the entire term requires subtype behavior in the first
argument, and supertype behavior in the second argument. Formalizing this intuition

gives

Definition 3.13 (Fztended R, and R,) Define R,;, R, ., R,, R, as fol-

lows:
x t=z,ve X
(LRy(t1), ..., Ry(ty)) Occur(ei(ty, ... tm),t) =1,
Rpi(t) = ¢ F—

(LR(th), ..., Ry(tm)) Occur(ty — ta,t) =1

(K, ah, . o 2l) Occur(e;,t) =0

89

x t=z,2€ X
(Kjy Ru(t1), ...y Ru(tm)) Occur(ei(ty, ... tm),t) =1
R,i(t) = ¢ #£—
(kj, Ry(t1), Ru(t2)) Occur(ty = tm,t) =1
(—, 2}) Occur(e;,t) =0
Ry(t) = R(Bus (Ol Rpat) | Byt

R.(t) = R(Rna
As before, each k; is unique.

The extended R,, R, retain the supertype/subtype properties of the original trans-

formations.

Theorem 3.6 (Extended Properties of R,,R,,)
Let t € E, T, = R,(t), T, = R,(t). Assume every ¢; #—€ (' is mono-

tonic, — is antimonotonic in its first argument, but monotonic in its sec-
ond. Then for any flag defining substitution S for T', C'(S(T,)) C ¢, and
t C C(5(T,)). Similarly, C(S(5(T,))) € C(S(T5)), and C(S(5'(T3))) €
C(S(Tp))-

Proof It suffices to consider the case when Occur(t; — t2,1), otherwise,
previous arguments hold. Also, note that the induction proofs for theo-
rem 3.4 and theorem 3.5 hold here as well. So, we consider the inductive

case.

Assume the theorem holds for all ¢ with k& or fewer constructors, and
consider a system with & + 1 constructors. Note that for this proof, the
inductive property holds for both R,, and R,,.

Looking at R, first,

SO

So C(S(R.(t1)) = C(S(R,(t2)) appears in C'(S(T,)). By inductive hy-
pothesis,

90

and

ty © C(S(Ry(t2))

Thus, by antimonotonicity, monotonic properties of —, ({1 — 3) C
C(S(R.(t1)) = C(S(Ry(t2)), so t C C(S(Tp).

Similarly,

By (1) = (rj, Bp(th), Ba(t2))
If S(k;) = —, then the theorem holds trivially. So suppose S(x;) =
Then

S(Ra(1) = (L S(Ry(1)), S(Ra(t2)))
And C(S(R,(t1)) = C(S(R,(t2)) appears in C(S(T,)). By inductive hy-
pothesis, t1 C C(S(R,(t1)) and C(S(R,(t2)) C ta. Again, by antimono-

tonicity, monotonicity properties of the function constructor —,
C(S(R,(t1)) = C(S(Ru(t2)) Ct1 — 1o

and the theorem holds.]

3.5 Accommodating Recursive Types

Theorems 3.3,3.4,3.5, and 3.6 form the foundation for doing regular type inference via
translation to R-terms. None of these theorems, however, addressed the fix types.
To extend the results to fix types requires extending R-terms to rational R-terms.
Moreover, only a certain kind of rational R-terms is useful. These are the rational

terms that do not have any flag position as a fix bound variable. That is,

Definition 3.14 (The free-flag R-terms) Let T = fix t.R(fi,t1,...,1,)
be a rational R-term. Then T is bound-flag R-term iff t = f; for some flag
position 7, where = means syntactically identical. If T' is not a bound-flag
term then T is a free-flag R-term. By convention, any finite R-term is

flag-free.

We can extend R;, R; to accommodate discriminative fix regular types in an

obvious fashion.

91

Definition 3.15 (Ry, Ry for fix types)

R;(t) _ fix t.R;tl t = fi}‘{ t.1
R,(t) otherwise

B.t) = {fixt.R;tl t=fix t.h

R,(1) otherwise

The use of £ix for defining rational trees, as well as for recursive regular

types is, hopefully, intuitive rather than confusing.
Likewise, the (' transformation may be easily extended to free-flag R-terms

Definition 3.16 (C*, translating flag free rational R-terms) Let T be

a rational R-term. Define

(rpy = | TIELC) T =gixtn
B c(T) otherwise

The extended R, andR; retain the supertype/subtype properties.

Theorem 3.7 (C*(R:(t)) is a supertype of t, R is a subtype) Let t be
a discriminative, rational term. Let S be a flag defining substitution. Let

S’ be any flag substitution. Then:
Lt C O(S(RA(1)))
i CH(S(Ry(1) C 1
Proof By induction on the number of fix operators

Case (0 operators In this case,

Ry(t) = Ry(1)
R.(t) = Ru(t)

Consequently,

~
M
=2
=4
~
=

C(S(Ba(1)))

M

By definition 3.15, and the assumption of no fix operators in ¢,

neither R,(t) nor R,(t) contain any fix operators. Consequently,

= C(S(R(1)))
= C(S(R(1)))

So the theorem is proved for this case

Case k + 1 fix operators Suppose t = fix z.t;. Then

Ry(t) =
R.(1) =

So

And

By induction,

(SR (1))

fix z. Ry (1)
fix x.R (1)

fix z.5(R; (1))
fix x.S(R(t1))

fix .C*(S(R;(t1)))
fix x.C*(S(R;(t1)))

M 1N

Consequently, by the F1X2 rule of definition 2.19,

fix x.t

fix ©.C*(S(R;(t1)))
By definition 3.16,

fix x.t

C*(S(R(fix x.t1)))

And the theorem is proved

fix 2.C"(S(R(t1)))

fix ».14

C*(S(R:(£ix 2.t1)))

fix ».14

92

93

3.5.1 Using Algorithm W for R-type assignment

The second step of the strategy for discriminative type assignment employs algorithm
W to assign R types to program expressions. The function of Algorithm W is to
generate proofs in the inference system of definition 2.29. Given such a proof over
the R term algebra, we seek a method for transforming it into a proof about regular
types, using the inference system from definition 2.30. The two inference systems are
similar, differing only in the SUB rule for regular types.

To maintain clarity, we will subscript the F symbol to indicate the appropriate

inference system:

Aty e:R(...) For inferences using defn 2.29

AFgrpe:o For inferences using defn 2.30
The main idea behind the translation is that a proof using R terms may correspond

to many different regular type proofs. An R term encodes many different regular
types, and different instantiations of R proofs may require different proof trees in the
regular type inference system.

We extend R, ™ to type schemes in the obvious fashion

Definition 3.17 (R;,C* for type schemes) Let 0 = Vouy...v.7 be a
regular type scheme. Then define

Ry(o) =VYfi... fovi . oo B(T)
where each f; is a flag variable in [;(7). Similarly, let
v=Vfi...fuvr...0n.uR
be a R type scheme. Let S; be a flag defining substitution for yr. Then
C*(S¢(v)) =Yor...0.5(pr)
Finally, if A is a set of regular type assumptions,
v ViR (o) € Ri(A)if z:0€ A
For purposes of simplifying the presentation of the inference translation method,
we make some assumptions:

L. VS .. fivg....7,and Vgy...g,v1....7 are both R type schemes, with f;, g,
as flag variables, then {f;} N {g;} = 0.

94

2. A flag defining substitution for Vf; ... fivy....7 is a flag defining substitution

for 7.

The main theorem states that any flag defining instance of a Fj; inference can be

converted to a Fp inference.

Theorem 3.8 (Regular type inference via R-term inference) Suppose
R(A)Fye:o
Then for any flag defining substitution Sy for o

Abpe:C*(S¢(0))

Proof By structural induction on the last line of the proof tree in
Case TAUT In this case
Ry(A)(x) = o =V fiv; Ry(7)
by definition 3.17. By theorem 3.7, any S; for 7 has the property
T C C(Sf(Rp(7)))
Hence, for any Sy, given Ry(A) Far et o by TAUT, construct

L1 AbFga:Vvu.r TAUT
L2 Abpa:Vo.C*(S¢(Ry(7))) L1,SUB

Case INST In this case, the hypothesis is
R,(A)bpye:o, o <o

And the conclusion

R,(A)Fe:d

Let ¢’ = S(o) for some substitution of bound variables. Then S may

be decomposed into 5, 0 5%, where S, applies to argument variables,

and 5% applies to flag variables. Such a decomposition is possible be-
cause flag and argument variables are disjoint. Furthermore, Sy 0 5%
is still a flag defining substitution for . Also note that S, is an ordi-
nary substitution for argument variables. By induction hypothesis,

for any S for o, there exists an inference such that
Afpe:(C7(5¢(0)))
In particular, for any S; o S}, there is a deduction
Abpe:C*(Sy 0 Si(a)))
By definition,
Su(C7(Sy 0 54(0)))) < C7(Sy 0 Si(0)))

Consequently, for any Sy, the deduction

L1 Abe:C*(SfoSh (o)) induction hyp
SU(C*(SfoS}(U)))) < C*(SfoS}(U))) defn
L2 Abe:S,(C(Sfo0S%a)))) L1,INST

But, since flag variables and argument variables are disjoint

S.(C* (S0 5(a))) = (S50 (5,0 8)(0)))
= C(S(S(0)))
= C(S4(0")

Thus, L2 can be written
L2 Abe:C*(S¢(o’) L1,INST

So the theorem is true for this case

Case GEN For this case we have the hypothesis

R,(A)Fype:o
and that o does not occur free in R,(A). The conclusion is

R,(A)Fye:Va.o

95

96

There are two cases to distinguish. First suppose « is a flag variable.

By induction hypothesis, for any S there is an inference
AFre:C"(S¢(0))

By hypothesis, the flag variable o appears in o, and for any assign-
ment of «, there is an inference as above. Hence, by definition 3.17,
any Sy for o is also a Sy for Va.o. Thus, the inference constructed
by hypothesis also works here. Similarly, if « is an argument vari-
able, by definition of R,, o free in R,(A) means « free in A. so the

inference

L1 AbFgpe:C*(S¢(0)) Inductive hyp.
L2 Abrpe:C*(S¢(VYa.o)) L1,INST

Case ABST In this case, we have

R,(A)x:7]Fpe:r
R,(A) by dze: 7 — 7/

By the substitution property for ks, for any F

(F(Ry(A)[x: 7)) Fare: F(T)
R,(A) by dze:m — 7/

But 7 is a type, not a type scheme, so any free flag variables in 7 are
unquantified, and may be disjoint from from the flag variables in any

type scheme of R,(A). Consequently,

(Bp(A)[z: F()])) Far e F(T)
R,(A) by dze: 7 — 7/

By inductive hypothesis for any Sy, there is an inference
Alz : C*(Sp(m))] Fre: C*(S(7")
So, construct proof tree

L1 Alx : C*(Sy(7))] Fre: C*(Ss()) Inductive hyp.
L2 AbpgAr.e: C*(Si(1)) = C*(S¢(7")) ABST

97

But L2 can be written as
AFpgAz.e: C*(Si(r = 7))

So the theorem holds in this case

Case APP The deduction on the Fjs side reads

R,(A) by fim =71 Ry(A)Fye:n
R,(A)Fa (fe):m

By induction, for any Sy, there must be inferences
AFg f:0%(Ss(m = 1))

and
Abpe: C*(S¢(m))

So we construct the inference

L1 Abp f:C*(S¢(m1 — 72)) Inductive hyp.
L2 Abpe:C*(S¢(m)) Inductive hyp.
L3 Abgp(fe):C*(Ss(m)) L1,L2,ApP

proving the theorem for this case

Case LET The inference for 3 must be

R,(A)bFyer:o Ry(A)z:o]lbapes: T
R,(A) by let 2 =ep iney: 7

From this, construct the following g inference for any S

L1 AbFgpe : C*(Ss(0)) Inductive hyp.
L2 Alx: C*(S¢(o)] Fm ez : C*(Sp(7)) Inductive hyp.
L3 Abpyletz=¢ iney: 7 L1, L2, LET

Theorem 3.8 justifies the use of algorithm W for type assignment.

98

Corollary 3.2 (Algorithm W yields reqular type assignment) TLet A
be a set of regular type assumptions, and suppose W(R,(A),e) = (0, 5).
Then for any flag defining substitution S, there is a deduction

S(A)Fre: C*(Ss(0))

Proof By syntactic soundness for algorithm W, there is an inference
S(R,(A)) Fype:o
But R,(A) contains no free flag variables, so S(R,(A)) = R,(S(A)) By

theorem 3.8, there is a deduction

S(A)Fre:C*(Ss(0))

3.5.2 Interpreting R-terms as sets of regular types

Ideally, we would like to translate any R type derived from algorithm W back into a
discriminative regular type. Regrettably, this is not always possible. Some combina-

tions of INST and SUB do not yield single regular types as results.

Example 3.8 (A non uniform deduction) Consider a function f; :
(0« = a) = a — a, and a function f5 : @ + b — a. Consider the following
deduction for (fif2) : a — a.

1 Tobr fi:(a—a) = a—a Taur

2 Tobtr fit(a—a)—>a—a 1,INST

3 ToFr fa:a+b—a TAUT

4 Tokpr foia—a 3,SUB

5 Tot (fif2):a—a 2,4, ApPL

Another deduction, however, yields

I ToFr fit(la—=a)—a—a TAaUT

2 Tokrp fi:(a+b—a+b) —>a+b—a+b 1,INST

3 TotFrfoia+b—a TAUT

4 Torpfo:a+b—a+b 3,SUB

5 ToF(fifz):a+b—=a+b 2,4, APPL

The types a + b — a + b and a — a are incomparable.

99

The inferences above indicates the futility of hoping for a “principal” discrimina-
tive regular type as the outcome of the translation process in all cases. Consequently,
the best that can be said of type assignment process it that it always yields a set of
regular types. If R,(A) Fare: o, then e: {v|v = C*(S¢(0))} where S; ranges over
the entire range of flag defining substitutions.

The worst case, however, appears to be infrequent. In most examples, the type
assignment yields a single regular type. Examples of both phenomena appear in

section 3.6.

3.6 Some Examples

To ease the presentation, some notational conventions for R types are useful. Instead
of positional notation, we will label the position. For example, the type table

Status | Arg | Status | Status

a a b c

fi T ! Ja

corresponding to
R(flv T, !7 f2)

can be written using labels as

[fr-a(z) [Lo] fa.d]

The labels give us the freedom to reorder constructor names.

Also, since in most cases, the actual names of the flag variables are unimportant
for understanding the type, Consequently, these will be given a “.”. In rare cases
where the actual flag variable cannot be anonymous, we will provide it. Modifying

our example for this convention yields
[.a(z) |L.b| .]

As a final simplification, we note that most flag variables are either ! or —, depending
on whether R, or R, has been used to generate them. Notationally, we indicate “the

2

rest are variable” with “...” and “the rest are —” by closing the bracket. For our

running example, the convention yields

o] ..]

100

For an example of the — convention, consider the function f with regular type b+¢ —
b. Then the abbreviated notation for this function is (with £n being the — constructor
label)

[LEn([.b] ., L0]...]) -]
To illustrate the workings of algorithm W, we indicate the depth of recursive calls
by a level number. For application, there are two separate recursive calls, so we
show these by level n and n’. We show the type output via a line “= type”. The

substitution component is shown implicitly in subsequent type environments

Example 3.9 (Non uniform if) Consider the function from exam-
ple 1.3

A x.if v then 1 else nil
To simplify this example, we will assume
if : true + false > a - o = «

The bracket convention expresses this as

if : [fn([.true | false], [!fn(a, [fn(c,) |]..) | -..]) | -]

The initial type assumption Ag is

if tif as above
Ag= 1 [lsuc|...]
nil :[lnil|...]

Stepping thru the algorithm, the initial recursive calls find the innermost

function application

0 A A z.if z then 1 elsenil
1 Aoz :7] (((if) 1) nil)

2 Aolx:7] ((if 2)1)

3 Aofz:7] (if)

4 Aple: 7] if

4 =

'fn([.true | .false],

[
Mn(a, (e,) ..) |- | ..]

101

Then, the argument for this application is checked:

3 Aoz :7] =
3 = T
' Uni ['fn([.true | false], ['fn(c, fn(a,) | ...]) | ...]) | -]
B Uil { tn(, 3,)]
4,3 =
7: [.true | false]
Br: (e, Mn(a,a) | ..]) | .. .]
3 = B

The type assumptions are now:

A= Ay x : [.true | false]
B [Mn(o, [Mn(a,a) | ..]) | ..]
So,
2 Ay 1
A
2" [lsuc|...]
) (e, [fn(a,a) |...]) | -]
3,2 Unif
y{ n(lsue | ... 5]
3,20 =
3,2 a:[lsuc]|...]
B : [Mn(a,a) | ..]
Letting

A2 - Al
B : [fn(o,a) | ...

a:[lsuc|...]]
]

102

we continue with

1/ A2 nil
1 =
1 il] ..]

2,1 Unify{ [[’f"(a_aa)]

2.1 =
2.1 Unify [lsuc|...]
7 il | ..]

2.1 =
2,1 a:['suc|nil |...]
Ba : [lsuc il | ..]

1 =

Now, using the A rule gives

[Yfn(r,53) | ...]

Using the built up substitutions, and re-interpreting the bracket notation,

0
0

the algorithm deduces:

Ax.if x then 1 else nil : true + false — suc + nil

In a similar fashion, Algorithm W deduces a satisfactory solution for non-uniform

lists, as in example 1.4.
Example 3.10 (Non-homogeneous list) The function
Az.((cons 1) x)
can be applied safely to any list. So, the application

((Ax.((cons 1) x)) ‘(true false))

is well-typed using union types. We trace the execution of Algorithm W
for this example. To simplify the illustration, we will assume that the

constant list given as an argument has type
‘(true,false) : [lcons([!true |false | ...]) | ..]

We will also abbreviate

['true |!false | .. .]

as [!bool | ...] The constructor cons is 2-ary, and is treated as polymorphic

in its first argument. So, the initial type assumption is

cons : [Mfn(a,[fn([.nil | .cons(a)], [lcons(a) | ...]) |...]) |..]
1 : [lsuc|...]

Type assignment for the outermost application performs type assignment

on the A-expression first :

Ag ((Ax.((cons 1) x)) ‘(true false))
Ag Az.((cons 1))

Aolr 7] ((comns 1) z)

Aglr : 7] (comns 1)

Aplz : 7] cons

R S i e

['fn(a, [!fn([.nil | .cons(a)], [lcons(ev | ...]) | ...]) | .. .]
3 Aglr:T] 1

3 —
[lsuc | ...]
, _ ["fn(a, [Mn([.nil | .cons(a)], [lcons(a) | ...]) | ...]) | -..]
4 Umfy{ Mn([lsuc | ...], 61)]
4,3 =
a <« [lsuc|..]
B1 [Wn([.nil | .cons(a)], [lcons(a) | ...]) | ..]
3 —

Altering Aol : 7] to reflect the new substitutions

a <« [lsuc|..]

A= AT (i | consta] leons(a) | -]} | ...

103

104

Continuing
20 Az
2y =
' Uni ['fn([.nil | .cons(a)], [lcons(e) | ...]) | ..]
3,2 U fy{ tin(r.)]
3,20 =
7 < [.nil | .cons(a)]
B2 + [lcons(a) | ..]
2 =

Ba
At this point the type assumption Ag[z : 7] is altered to :

a <« [lsuc|..]
B1 + [Mn([.nil | .cons(a)], [lcons(a) | ...]) | ..]
7« [.nil | .cons(a)]
B2 + [lcons(a) | ..]

Ay = Aglz : 7]

So that the function rule gives

1 =
[Yfn(7,02) | ...]
['fn([.nil | .cons(a)], [lcons(ar) | ...]) | ..]

where the type for the A expression has been partially rewritten. By

assumption, the type for the argument gives
0" Ay [lcons([!bool |...])|...]
so the unification step gives

, . ['fn([.nil | .cons(a)], [lcons(e) | ...]) | ..]
R fy{ ['fn([!cons([!bool | ...]), B) | ...]
0,1 =

B3 + [!cons([!bool |lsuc|...]) |...]
0 —

[lcons([!bool |lsuc|...])|...]

105

after using the substitution value for a. Consequently, Algorithm W

deduces
((Ax.((cons 1) x)) ‘(true false)) : cons(true + false 4 suc)

after removing abbreviations, and re-interpreting the bracket terms.

As a final example, we follow the automated type assignment process for a fairly
complicated function. The example function is recursive, and higher order, so all
of the features of regular typing come into play. The purpose of the function is
to determine when arbitrary boolean functions are tautologies — that is, are true

regardless of their inputs. The function taut serves this purpose

taut =
AB.case B of
true : true
false: false
fn: ((and (taut (B true))) (taut (B false)))

The function taut examines its input value to determine if it is a boolean constant
or a function. If it is a boolean constant, then the constant itself determines tautolo-
gous nature — true is always a tautology, and false never is. On the other hand, if
the input to taut is a function, then the function is a tautology iff it is tautologous
on both boolean values. The function branch of the case statement performs the
appropriate test for boolean functions. Example 3.11 indicates how the automated

inference system handles this function.

Example 3.11 (Tautology Function) To perform the type inference,

we must “de-sugar” the taut function:

taut =
(rec AT AB.
((((case
Ad.true)
Ad.false)

Ad.((and (T (d true))) (T (d false)))
B)

where case abbreviates casey e false,,- The initial type assumption for
this problem includes the assumptions for case and rec as well as true

and false The initial assumption Ag is

case : [fn([fn([ltrue|...],a)],
[Mfn([!fn(['false | ...], a)],
[fn([fn([Mn(~,8) | ...],
a)], [Mfn([.true | .false | .fn(~, d)],
a)yl..Dl--Dl--D -]
rec : [n([fn(e,a)|...],a)]|..]
and : [ifn([.true| .false],
['fn([.true | .false], ['true |!false | ...]) | ...]) | ..]
true : [ltrue]...]
false : [lfalse]|...]

Note that o is a generic variable in both case and rec. Generic renaming
will normally be indicated subscripting or priming. After discovering the
type for rec, the main work for type assignment lies in discovering the

types for the lambda expression argument to rec

0 Ag (rec A TAB....)
1 Ag rec
1 =
[Mfn([!fna/, o/ | ..], ") | ..]
1" A AT AB. ...
U AT : 7] AB. ...

2 AT : m][B: 7] (case...)

106

Note that we renamed the generic variable o to o' in the type for rec.

Abbreviating Ao[T : 71][B : 7] as A for simplicity, we continue

3

4

3/
4/
4/

3/

4,3

A ((case Ad.true)...
A case
[Mfn([!fn(['true | ...], a)],
[Mfn([!fn(['false | ...], a)],
[Mn([!fn([Hn(~,8) | ...],
a)], [Mfn([.true | .false | .fn(~,d)],
a)|..Dl--DIl--Dl--]
Ad.true

A
Ald : 73] true
[ltrue | ..]

[Mfn(7s, [ltrue|...]) | ..]
[Mfn([!fn(['true | ...], a)],
[Mfn([!fn(['false | ...], a)],
[fn([fn([Mn(~,8) | ...],
a)], [Mn([.true | .false | .fn(~,d)],
a)yl ..l D D]
[Mfn([!fn(7s, ['true |...]) | ...],01)]

Unify

73 < [ltrue | ..]
a < [ltrue| ..]
[Mfn([!fn(['false | ...], a)],
[fn([fn([Mn(~,8) | ...],
a)], [Mn([.true | .false | .fn(~,d)],
a)y|l ...l

B

107

The false arm of the case statement is similar:

3//
4//
3
3

4//

3,4"

3,4"

3//

Note that

A
A

((case ...) Ad.false)...
Ad.false

Ald: 7y false

[_!false | ...]

[Mfn(7y, [Mfalse | ...]) | ..]

Unify

]
[Mfn([!fn(['false | ...], a)],
[fn([fn([Mn(~,8) | ...],
a)], [Mfn([.true | .false | .fn(~,d)],

a)|l ...l
[Mfn([!fn(7y, [false | ...]) | ...], B2)]

T4« [false | ..]

a < [ltrue |!false | ..

By

32

the « instance for the case construct is updated as more

]
n([fn(n(~,6) | .-],
a)], [Mfn([.true | .false | .fn(~,d)],

)l D]

information is acquired.

108

The fn arm of the case statement is substantially more complicated than

its predecessors.

3///
4///
3
6
6

6/

7/

8/

8/

8,8

7/

A (...(case...) Ad.((and (T (d true))...
A Ad.((and (T (d true))...

Ald: 7] ((((and (T (d true))...

Ald: 75] and

['fn([.true | .false],
['fn([.true | .false], ['true |'false | ...]) | ...]) | ..]
Ald:m] (T (d ...
Ald:ms) T

Ald: 5] (d true)
Ald: 1) d

Ald: 75] true

[ltrue | ..]
Ts

Unify{ ['fn(['true | ...], 33)]

75 < [fn([ltrue | ...], 33)]

Bs

109

110

Continuing:

7,7 Unify { (s,)]

71 [fn(0s, B4)]

6 =
Ba
['fn([.true | .false],
6,6" Unify ['fn([.true | .false], ['true |'false | ...]) | ...]) | ..]
['fn(Ba, 35)]
B4 ¢ [.true | false]
Bs « ['fn([.true | .false], ['true |'false | ...]) | ..]
(66) Bs

The second argument to and has a similar derivation:

111

6" Ald: 7] (T (d falsef))
7 Ald:Ts] T
7// —

6" Ald: 5] (d false)
7 Ald:Ts) d

7/// —

Ts
7" Ald:Ts] false
7//// —

[false | .. .]

. Ts
7///7 7//// U f
o y{ [Mn([false | ..], B6)]

75 < ['fn([!true |'false | ...], 5s)]

Be + B3

6/// —
Bs

6", 6" Unif m
y{ [0 (3o, 5r)]

Br < B4

6// —
Bz

Again, note the updating of the type of the argument of d to include false

as well as true.

112

With the second argument of the and construct, we conclude the deriva-

tion of the last case subexpression.

B

(6 6),6" Unify{ (fn(B, s)]

. ['fn([.true | .false], ['true |'false | ...]) | ..]
Y fy{ ['fn([.true | .false], fs)]

fs + [ltrue |'false | ..]

[ltrue |'false | ..]
A =
[Mfn([!fn(['true |!false | ...], 3s)], [ltrue |false | ...]) | ..]
tn([tFn([tn(,) | ..],
a)], [Mfn([.true | .false | .fn(~,d)],
374" Unify a)| ...
([tn([ifn([Mn(['true |Malse | ...], B6)],)
['true |'false | ...]) | ...], 59)]

v ['true |'false | ..]

§ < [

By + ['fn([.true | .false | .fn(v,0)],) | ..]
(33'3"3") =

Ba

113

With the type assignment finished for the case application, we can pro-

ceed with the type assignment for the function definition:

3////
3////

(3 3/ 3// 3///)7 3////

1/

L

A B

T2

. [Mfn([-true | false | .fn(v,)],) | ..]
Unif
y { ['fn(72, B10)]
Ty < [.true | false | .fn(~,d)]
Bro + «a

Mn(ry, [n(re,a) [...])] ..]
g ln([ifna’, o’ | ..], a') | ..]
Unify { Mn([tn(m, (s a) | ..) | ..] Bin)]

T — o
o — [Mfn(re,a) | ..]
By o

Oé/

The unification step for this last part of the derivation bears closer exam-

ination, as circular unification is truly required here:

114

Performing the substitutions for 71,7, and « gives

i [n([Yn(a’,0")], /) | ..]
Unify { [n([Mn(r, [Mn(re,a) | ..]) | -], B11)]

!

Unify{ (s, 0) | ..]

_ ['fn(fs, [.true | .false])]
nif
Y y{ [Mn([.true | false | fn(+,8)],0) | ..]

['fn(fs, [.true | .false])]

Unify (['fn([.true | .false | .fn([!true |!false | ...], 35)],)
['true |false | ...]) | ...]

B3 [.true | .false | .fn(['true |!false | ...], 33)]
a « [ltrue |!false]

Note that the unification substitution for (3 is circular. Rewriting the

type assignment for taut in conventional notation, we see that
taut : 5 — (true + false)

where

B3 = (true + false + ((true + false) — (33))

In this case, 33 can be seen as arbitrary arity boolean functions (curried).

3.6.1 Some Anomalies

According to theorem 3.8, any type assignment produced by the R-term algorithm is
sound. In a few cases, however, the algorithmic method produces a less informative
type than could be derived by using the inference rules differently. The intuitive
reason for such a difference lies in the nature of the solution method. Since the form
of the slack variable equations is limited, some solutions to the original inequalities
are inevitably lost for some cases

An example of such behavior is the deep function of example 2.8.

Example 3.12 (The deep function)

deep =
rec (AD.An.

Z(ilcllf:cons(z)(nil)
(Ad.cons(D(pred(d)))(nil))

(n)

where rec is the least fixed point function. We will not subscript the case

primitive here.

The initial environment Ag is

case : [fn([fn([lz|...],®)],
[Mfn([!fn([!suc|...],a)],
[Mn([.z | .sucl,a) |...) |...]D)]--]
fo([fn(a,) |...],a)|..]

fn(o, [Mn([.nil | .cons(a)], [lcons(ar) | ...]) | ...]) | ...]

rec [
o

pred : [Wn([!suc|,[!z|lsuc|...])|..]
[
[

cons

nil

nil | ..]

z z]...]

All the a’s are generic type variables

The initial steps of the algorithm assign unknown types to D, n initially

0 Ag (rec (AD.An....)
1 Ag rec
1 =
[Mfn([!fna/, o/ |...],0)) | ..]
1" A (AD.An. ...
1 Ag[D : 7] An. ...

2 Ao[D:m]n:m] (case (Md....

Using A to abbreviate Ag[D : 7][n : 7], then

115

116

(case (Ad.(cons z nil))...)

case

B W
o

[n([n(['z]...],)],
[Mfn([!fn([Isuc|...],a)],

Mn([z | .sucl,a) |...) [..])] .. 1]

Typing the first arm of the case expression (and resolving) yields

3 A (Ad.(cons z nil)
4" Ald: 7] (cons znil)

[d: 73] cons

I o=

[—

fn(aq, [Mn([.nil | .cons(aq)], [lcons(ar) | ...]) | -..]) | -]

5/
5/

o

N

['fn(aq, [Mfn([.nil | .cons(aq)],
fcons(ar) [...) [+]) |-+]
o'z]...], 51)]

5,5

—
=8
=y :
/_/%1'_1

ap [z |..]
— [Mn([.nil | .cons(ay)], [lcons(ay) | ...]) | ..]
5,5' -
[Mfn([.nil | .cons([!z | ...])],[leons(['z | ...]) | ...]) | .-]
5 A nil
5// —
[nil | ..]

= U [Mfn([.nil | .cons([!z | ...])], [lcons(['z | ...]) | ...]) | ...]
55,8 U fy{ Mn([nil | ..], 32)]
4" =
fcons([lz]...])|...]
3 =
['fn(7s, [lcons([!z | ...])) |...] |-]

Before typing the second arm of the case statement, we must unify the

current arm with the first argument to the case statement.

3, 4" Unify

[n([fn(['z]...],)],
[Mfn([!fn([Isuc|...],a)],
[Mn([.z | .suc,a)|...) ...]--]
[Mn([!fn(7s, [lcons([!z | ...])) | ...]| -], Bs)]

T3 [z |..]
a <« [lecons([lz|...]) |...]
Bs + [Mn([fn([lsuc | ...],)], ['fn([.z | .suc],a) | ...]) | ..]

Typing the second arm of case now gives

o
o
.
o

9/
10

10/

10, 10'

A ... (AMd.(cons (D (pred d)) nil)
Ald: 75] (cons (D (pred d)) nil)
Ald: 75] cons

fn(ag, [fn([.nil | .cons(az)], [lcons(as) | ...]) | ...]) | ..]

—

fn([!suc],[!z |lsuc|...]) | ..]
[d:7m5] d

I

Ts

. ["fn([!suc], 'z [lsuc|...]) |...]
Unify { [fn(7s, 5]

75« [lsuc]
Ba + ['z|lsuc| ..]

117

118

Continuing,
9 =
Ba

T

9,9 Unify{ (B,)]

71 [fn(Ba, B5)]

7.8 teons(ag) | ...]) [..])] .. 1]

{ ['fn(aq, [fn(].nil | .cons(ay)]
Unify
[fn(3s5, Bs)]

g 4 [
Be < [{n([.nil | .cons(ay)], [lcons(as) | ...]) | ..]
7 Ald:Ts] nil

il | ..]
1 = : ﬁG
778 Umfy{ ([

il | ..., 3r)]

Br + [lcons(an) | ..]
6 =

Bz
5// —
[Yn(7s, 07) | ...]

Unifying this result with the previous case arm gives

Bs

3,4",5" Unify{ Mn([Mn(rs, 87) | .. .], Bs)]

;5 + [Isuc]
ﬁ7 — o
Bs « [ffn([.z | .sucl,a) | ...]

So, we can type the entire expression up to the rec operator:

3//

37 4//7 5//7 3//

1/

To clarify what happens next, we rewrite 1’ using substituted information

to give

1 =

=

!

n(ra,) |...]

—

lfn(m, [fn(re,0) | ...]) | ..]

[Mfn([!fn(['z |!suc| ..],

Bs)],

['fn([.z | .suc], [lcons(Bs) | ...]) |...]) | ...

where 85 = [z] ...].

Finally, we are ready to complete the type assignment, encorporating the

type for rec.

119

120

[fn([fn(ca/, /)| ...],a) | ..]
n([n([n(['z [!suc | ..], 55)];
['fn([.z | .suc],
feons(Bs) | ...]) |- [-], Bro)]

1,17 Unify

o« [Mn([!z |'suc], £ix Gs.[!z |lcons(f3s) | .. .])]
Bio ¢ o

0 —
['fn([!z |'suc], £fix B5.[!z |lcons(G5) | .. .])]

The final type is valid for the function deep, but the output type is has a
spurious z present. The extra component is introduced in the unification
step 7', 8.

This unification step is, in reality a reflection of the restriction of solutions

to discriminative union types. Informally, we might proceed

D : (z+suc)— (3 for some 3
(cons (D pred...) : cons(f3)
(case (...cons(z) ...(D) : cons(z)+ cons(f3)

The expression cons(z)+cons(3) is not discriminative. So, we must convert
the output to cons(y). This entails converting 3 to z+ A. So that the

type for the case branch becomes cons(z + A).

If we could retain non-discriminative types, then the final output

fix [3..(cons(z) + cons(f3))

would be derived, as expected.

Another form of anomalous is really an aspect of the inference system itself. In
this case, the lack of a single “best” type manifests as an R-term that can only
be translated to a set of regular types. The example below is an adaptation of

example 3.8.

Example 3.13 (The twice Fxample) Consider the application
(twice F)

where
twice= Af. x.(f (f 2))

and

F:a+b—a

for some types a,b Simple tracing yields:

twice: (@ > a) > a = «

So, the type assumption Ag for the application is

twice : [Mn([fn(e,)], [n(a,a)|...])]|..]
F o [Mn([fi.a| fob],[la]...]) |-]

Note that the flag variables for F' are explicit. So, we trace

0 Ag (twice F)

Ay twice

n([Mn(a, o)), [fn(a,a) |..]) | ..]
' Ay F
Mn([fial bl ltal .)]
L1 Unifs { n([Mfn(a, o)), [fn(a,a) | ..]) | ..]
tn([n([fia | bl Mt]) |-,)

a <« ['a| fi.b]
B« [Mfn(a,a) | ..]
i

n(o, o) | ...

The flag variable f;, however, appears on both sides of the fn constructor

in the final type. So, a unique discriminative union cannot be obtained.

121

122

Consequently, we instantiate f, as —,! respectively giving the following

set of discriminative types

(twiceF):{a%a }
(a+b)— (a+b)

In essence, both derivations of example 3.8 are encoded in the type.

123

Chapter 4

Inserting Explicit Run Time Checks

As explained earlier, no type checker can pass all “good” programs, and exclude all
bad ones. The discriminative polyregular type checker from chapter 3 can assign
types to a broad class of programs. Nevertheless, some programs will not pass even

that liberal type checker. For example:

Example 4.1 (Function with no type)
Ny =X f.if f(true) then f(5) + f(7) else f(7)

Attempting to type N leads to incompatible types for the argument f.
To be appropriate for the if test, f : true — true 4 false. Similarly,
the first alternative requires f : suc — 0 + suc. There is no unifier for
the two different types of f, so there is no type for Ny. The function N,

is not badly defined, however, because Ni(A z.x) never goes wrong.

In addition, a type checker may successfully type an expression, but produce a
restricted type, limiting possible uses of a function. Consider the following related

example

Example 4.2 (An anomaly)
Ny =X f. if f(true) then f(5) else f(7)

In this case, Ny : true 4+ suc — true + false, but Ny(A z.z) is also well
defined, but does not type check.

In both examples, the program is meaningful, but the type analysis is too coarse to
assign an appropriate type. Consequently, the statically typed languages of chapter 2
will either reject or severely limit these example programs. An equivalent dynamically
typed language, on the other hand, will certainly accept these programs, and allow

them to be used in their full generality.

124

A soft type system must be equally as flexible. Furthermore, the soft type system
must also produce a statically type correct program as its output, so that the program
validation and compilation advantages of static typing may be retained. The soft
type system transforms programs by inserting explicit run-time checks!®. The system
should, however, strive to minimize the number of run-time checks a program requires.

To illustrate the idea:

Example 4.3 (Modified Fxample 4.1) Let ci: z+ suc + true + false —
z + suc, and let cy : z+ suc + true + false — true + false. Then consider

program N
N{ = X f. if co(f(true)) then c1(f(5)) + c1(f(7)) else f(7)

The type for N{ is now (z 4 suc + true + false — z + suc + true + false) —

z + suc. Also, the application N{(A x.z) is now type correct.

Similarly:

Example 4.4 (Modified example 4.2) Let cy,ce be as in example 4.3.
Then the function Ny can be modified to NJ using only one change to

indicate that N is type correct.
Ny =X f. if co(f(true)) then f(5) else f(7)
Now, the type system infers the type for V} as:
(z + suc + true + false — z + suc + true + false) — z 4 suc + true + false

So, N5(A z.x) now type checks.

We cannot compare the meanings of the original programs Ny, N with their re-
spective altered programs N, Nj without a semantics for cy,co. To that end, we

define:

16Tn practice, static type systems must also retain some run-time checks. Normally, the errors
produced by the run-time system for a statically typed language are not called type errors.

125

Definition 4.1 (Semantics for ci,cy)

v v = Ing(v')
(Eleilp)(v) = v v = Ingyc(v')

fault otherwise

v v = Intrye(v’)
(Elez]p)(v) = q v v = Infalse (V')

fault otherwise

Note the use of the fault element. This element is intended to signify that a run-time
check has failed.

Definition 4.1 indicates that ¢y 5 verify their arguments are elements of some given
set of summands of D. If so, the argument is returned, otherwise, fault is returned.
Put another way, the c; 5 functions have function as run-time checks for their respec-

tive functions. Consequently, it is no surprise that:

E[Nip = E[Np
E[N:]p = E[N:]p

To summarize, for each example, we were able to insert explicit run-time checks
that did not alter the semantics of the original programs, but the modified program
could be assigned a type.

Ultimately, we seek a method for automatically inserting the necessary run-time
checking functions with the same properties. That is, given any program P, if P does

not type check, we seek a P’ such that:
1. P"is obtained from P by inserting run-time checking functions
2. P’ type checks

3. E[P']p = E[P]p, that is, the (dynamically typed) semantics of the programs

are identical.

We divide the analysis of the insertion of run-time checks into four parts. First,
section 4.1 defines the dynamically typed semantics, introduces the semantics of ex-
plicit run-time checking, and indicates an appropriate method for inserting run-time

checks in programs without modifying their semantics. Second, section 4.2 analyzes

126

the soundness of explicitly checked programs with respect to the type inference sys-
tem. Third, section 4.3 provides a method for automating the method of section 4.1,
additionally indicating that the derived program passes the type checker. Finally,
section 4.4 discusses how the modified programs provide possible information for op-

timization and verification.

4.1 Dynamic Typing and Explicit Run-Time Checks

In order to discuss the meaning of dynamically typed Exp programs, and compare
them to statically typed Exp programs, we must give the semantics for Exp programs
when they are viewed as dynamically typed. The semantics for dynamically typed
programs is nearly identical to the statically typed semantics, except that dynamically
typed programs never produce wrong as a value. They produce fault instead.

Using the same conventions as in chapter 2, we define

Definition 4.2 (Dynamically typed semantics) Let R = {ry,...,r,} be
a set of constructors. The auxiliary function Dp verifies that its argument

belongs to one of the summands specified by R:
d d= ImDr1 (d")

Dp(d) =4
4 d=Tnp, (&)

fault otherwise

This is generalized to tuples as

DRl,...,Rk(<d1, cee dk>) =
(di,...,d) foralli,1<i<k
Dg,(d;) # wrong

fault otherwise

We define one more auxiliary function C':

Cy() = { o v=Tnpsn(f)

| fault otherwise

With these in mind, the dynamically typed semantics for the Exp core is:

[z]n = n(z)

127

[Az.eln = Inpop(f)
such that f(v) = [e]n[z = v]
vy v1 € {wrong, fault}
[(er ex)ln = vy vy € {wrong, fault}
v1(vy) otherwise
where vy = C¢([e1]n), v2 = [ea]n
[let # =€y in e3ln = [ex]n[z = v1], where vy = [eq]n

The semantics for constructors is identical to the statically typed seman-

tics:
Inp (*) n=>0

Eleln = { Inpop(K) n#0

where

K =MXdy...d,Inp (Dr,,.r,((d1,...,dy)))

The semantics for selectors and case functions are analogous

E[siIn = npon(S)

where
S(v) = { pi(Outp, (v)) De(v) ¢ {fault, wrong}
v otherwise
and
E[case,...cyln = Inpp(C)
where

fault d # wrong

wrong otherwise

To formally account for explicit run-time checks, we must add some functional
constants be added to the programming language. These additional constants repre-
sent the functions that perform the explicit checks. Intuitively, a run-time check may
only inspect the “tag” of a value, but nothing more. That is, a run-time check may
verify that a certain object is a function, but it may not check that the object is a

function from int — int. For the functional languages under consideration, a “tag”

128

is represented by a type constructor. A run-time check, then, verifies that a value
has an appropriate tag. In other words, a run-time check confirms that a value is
an acceptable element for the operation in question. In addition, the type checker
typically infers a type for the checked expression that restricts the set of possible
inputs to the run-time checking function. For example, a value v may be know to
be either an int or bool, and the run-time check merely confirms that v is indeed of
type int. Seen in this, way, a run-time check narrows the choices for values. For these

reasons, we will refer to run-time checks as either a confirmations or narrowers.

Definition 4.3 (Syntax for run-time checks) Let C be the set of type
constructors for the language. Then for every T' C S C C define an S5, T

narrower constant scp. Let the set of all such narrowers for a language

be N.
The notation for narrowers may use + instead of the set brackets {-}. For example:

Example 4.5 (Some typical confirmation constants) Let C = {—,11,12}.
Then (L 14yer, is a {—=, 11}, {t1}-narrower. Likewise, 4 14,4-¢h 4, 1s a
{t1 + t2+ —},{t1 + t2}-narrower.

Having added some new constants to the programming language, we must now
define the semantics for these constants. The semantics of a narrower are best un-
derstood by observing that a “tag” from a semantic viewpoint identifies a given
summand of the data domain D. Recall that for each type constructor ¢t € C, there

is a corresponding summand of D = D, & ... D; @ ... (see section 2.3.1)

Definition 4.4 (Semantics of narrowers) lLet ¢ be an S,T-narrower.
Identify summands of D by subscript, such as Dy, indicates the summand

corresponding to the constructor ¢;. Then define E[ser]p by

L v=_1
v if there is some t; € T,
Elser]p(v) = and some v’ € D

s.t. v =1Inp, v/
(2

fault Otherwise

129

The types assigned to narrowers must also reflect “sufficient generality”. Intuitively,
functions that inspect only a “tag” should not impose any other restrictions on the
value. Consequently, a “tag” type should be “as polymorphic as possible”, and nar-

rower’s types should be expressed using these general types.

Definition 4.5 (Tag types) Let ¢ be any type constructor of arity n.
Let t1,...,1, be n distinct type variables. Then ¢(ty,...,1,) is the tag
type for constructor c. Similarly, if S = {e¢f,...,¢1} is a set of type
constructors, then the tag type for S = ¢1(t1,...,1,) + c2(t(ng1ys---»). In
other words, the tag type for a set of constructors is the union type of all

the individual tag types. The tag type of a set S is denoted Tagt(5)

The type for a S, T-narrower, then is defined in

Definition 4.6 (Types for narrowers) 1If ser is a narrower, then
ser @ Vi, Tagt(S) — Tagt(T)
where the quantification is over all type variables in Tagt(5), Tagt(T').

The act of explicitly run-time checking a program using narrowers is a form of
program transformation. That is, some original program, written without explicit
checks, is syntactically transformed into a program that may have the explicit checks
“inserted”. Furthermore, the derived statically typed program should have the same
meaning as the dynamically typed source program. This property can be realized
by mimicing the action of implicit run-time checks. Run-time errors in dynamically

typed programs have two distinct sources:
1. Primitive operations: data constructors, data selectors, and case statements
2. expressions of the form (fz), where f is not a functional value

Each different source of run-time error gives rise to a different kind of program trans-
formation. We consider each source in turn.
First, we analyze the transformation strategy for primitive operations. The prim-

itive functions functions of the programming language are:
1. Value Constructors

2. Data Selectors

130

3. case Functions

For each different kind of primitive, we define an explicitly-checked analog for the
primitive.
Definition 4.7 (Fuplicitly checked analogs of primitive functions)
e Value constructors: Let b be a constructor, with Arity(b) > 0,

and signature:

constructor b(Ty,Ts,...,T,)

where T} = d;, +...d;,. According to chapter 2, each d;, in a T}
expression is a constructor name. Furthermore, each constructor
name has a corresponding type constructor name. Hence, each T} has
an associated set of type constructor names. Let T synonymously

stand for the associated set of type constructors. Then any b’ where
b =Xy ..xp(ber ... e,)
and

€; = r;

e; = (scr,x;) for some narrower ser,

is an explicitly checked analog of b.
Note that if T}, = €, where (' is the entire set of type constructors,

there is no narrowing constant of the form gcc, so in these cases,

6]‘ = l’]‘.
e Data selectors: Let s be a selector for value constructor b. Then

any s’ where

and

e = x
OR

e = (scqpyr) for some narrower scgp

is an explicitly checked analog of s

131

e case functions: According to chapter 2, each case function is in-
dexed by a set of type constructors. Consequently, for any caser, T'

a set of type constructors, and |T| = k, then any case), where

casep = Aszy...xp.(caser €y ... T,)
and
e = =z
OR
e = (gerx) for some narrower geT

We often abbreviate the phrase [’ is an “explicitly checked analog” of f
by
f' ecap. f

Using the concept of an explicitly checked analog, we define one kind of program

transformation.

Definition 4.8 (Fecap replacement) Let P be a program expression,
and let b be a subexpression of P at location [, where b is a constant of
the first order specification. Let ' e.c.a.p. b. Then P’ is an e.c.a.p.
replacement of P using b at [iff P = P’, or P’ is identical to P, except
that the subexpression b at location [is replaced by '

The second source of run-time errors, expressions of the form (fx), require a
slightly different transformation strategy. This strategy depends on a a certain subset

of narrowers, the IsF narrowers.

Definition 4.9 (The IsF narrower) Any narrower gcq) is an IsFg

narrower.

An explicitly checked application analog is defined by:

Definition 4.10 (FEaxplicitly checked application analog) Let (f a) be
an application expression. Then an explicitly checked application is any

expression of the form ((IsFg f) a) We indicate this relationship as

((IsFs f) a) e.ca.a. (f a)

132

Replacing a applicative subexpression with its explicitly checked analog defines

ecaa replacement.

Definition 4.11 (Feaa replacement) Let P be a program expression,
and let (f a) be the subexpression of P at location [. Let

((IsFs f) a) e.ca.a. (f a)

Then P’ is an ecaa-replacement for P iff P = P’ or P’ is identical to P,
except that the subexpression at location [is ((IsFs f) a).

The complete program transformation strategy, then, is finite application of either
ecap-replacement, or ecaa-replacement. A program P’ is said to be an explicitly-

checked replacement of P when:

Definition 4.12 (Fc-replacement) Let P be a program expression of
Exp. Then P’ is an explicitly-checked replacement for P iff there is a
finite sequence

Ph=PP,....,P, =P

where P;;; is either an ecaa replacement or an ecap replacement of P;.

The most important property of Ec-replacement is that it preserves the (dynami-
cally typed) semantics of programs. We will show that if P’ is an ec-replacement of P
then E[P']p = E[P]p. Intuitively, the proof of this fact relies on the observation that
ecap replacement preserves the semantics of constants, and ecaa replacement pre-
serves the semantics of application. These intuitions are formalized by the following

lemmas.

Lemma 4.1 (Feap preserves constant semantics) Suppose b’ e.c.a.p. b.

Then for any environment p,

ETp = Elb]p

Proof Consider the case where b is a constructor. Let b = E[b]p. Let
b=MXry...xp.(bep ... €)

Then
((E[Tp) v1 - va) = (b Elen]p’ ... E[en]p’)

133

where p' = plzy < v1,..., 2, + v,]. According to definition 4.7, ¢; = ;,,
or ¢, = (ser, x;). If ¢, = x;, then Ee;]p’ = vy If ¢, = (ser, @), then
Ele:]p’ =s er,(vi). There are two cases to consider. Suppose first that all
v; € T;. Then gerq,(v;) = v;, by definition 4.4. Consequently, E[e;]p" = v,
and

((E[V]p) v1 .. vn) =(bovr... v,)

Now suppose that some vy, & T. Then
(b v ... v,)="fault
If e, = z, then Efex]p’ = v, and
(b Eled]p’ ... vi... Een]p’) = fault
If e, = (ser, @) then Eex]p’ = wrong, so
(b Eler]p’ ... fault... Ee,]p") = fault
For either choice of e
(€[p) v1 -.. v,) =fault = (b vy... v,)

and the lemma is proved.

The proof for selectors and case are similar. (]

Likewise,

Lemma 4.2 (Fcaa preserves application semantics) Let

((IsFs f) a) e.ca.a. (f a)

Then for any environment p,

EN(TsFs [) a)lp = EN(S a)lp

Proof By definition 4.2

ENCS a)lp = (ELfTp Elalp)

134

and
E[((1sFs [) a)]p = ((IsFs E[f]p) E]a]p)
If E[f]p € D — D, then

(IsFs E[f1p) = E1fTp

And so
((IsFs E[f]p) €lalp) = (€[f1p E[alp)
It E[flp € D — D, then

(€[f]p Elalp) = fault.

Also, in this case

(IsFs E[f]p) = fault

So
((IsFs E[f]p) Elalp) = (fault E]a]p) = fault

In all cases

ENCS a)lp = (ELfTp Elalp)

which shows the lemma]

These lemmas enable us to show

Theorem 4.1 (Fc-replacement preserves semantics) Let P be a pro-
gram expression. Let P’ be derived from P by either a single ecap-

replacement step, or a single ecaa-replacement step. Then E[P]p =

E[P e

Proof The strategy is structural induction.

Case P = x There are no ecaa-replacements or ecap replacements possi-

ble for this case, so the theorem is trivially true.

Case P = ¢ If ¢ is first order constant, then only ecap may be valid. If
Arity(¢) = 0, then no replacement is possible, so the theorem is
trivially true. If Arity(c) > 0, then P’ = ¢/, where ¢ e.c.a.p. ¢ is a
possible ec-replacement. By lemma 4.1, E[P']p = E[P]p.

Case P = \x.e In this case, any replacement step must apply to the
subexpression e. Let ¢’ be the resulting replacement program. Let v

be any value, then by the induction hypothesis
E[eplz + v] = E[e]pr < v
By semantics for A expressions, this means
(E[Az.€Tp v) = (E]Ax.€]p v)
Since v is arbitrary, we conclude

E[rx.']p = E[Ax.€]p

Case P = (f a) For this case, there are three possibilities:
1. PP=(f"a)
2. PP=(fd)
3. P"=((IsFs f) a)

Considering each case in turn, if P = (f" a), then by inductive hy-
pothesis

ELfTp = Elflp
So,
(M Tp Elalp) = (E1f1p Elalp)

Similarly, if P’ = (f '), then the inductive hypothesis again gives

Ela'lp = Ela]p
So,
(E[(fIp Ela'Tp) = (E[fTp Elalp)

In the final case, P’ e.c.a.a. P, so lemma 4.2 shows the theorem for

this final subcase.

Case P = let x = e in es For this case P/ = let =z €} in ey, or

o

P’ = let © = e; in €. Supposing P’ = let = = €] in ey, by the
induction hypothesis,
Eled]p = E[i]p

135

136

Consequently,
plr < Eleip] = plz + E[€\]p]

So,
Eleslol + Elerle] = Elealolir E1¢410)

which means
Elet x = €] in e3]p = E[let = €1 in es]p

The other case is similarly straightforward.

An obvious corollary gives the desired semantic preservation property.

Corollary 4.1 Let P’ be an ec-replacement of P. Then E[P]p = E[P']p.

Proof By induction on the length of the replacement sequence P, ..., P,.

Case n = 0 . In this case, P = P’, so the theorem is trivially true.

Casen=k+1 .
By inductive hypothesis,

E[PLp = E[Px]p

We know Py is derived from Pj by a single ecaa-replacement, or a

single ecap-replacement. So, by theorem 4.1

EMP]p = EMPkalp

Consequently,
ENPYp = E1Peirlp

137

4.2 Soundness of type inference for explicitly checked pro-

grams

The type language analysis of chapter 2 dealt with statically typed constants that did
not return the fault value. Consequently, to insure that our type inference and type
assignment methods are still valid requires reworking the soundness theorem. To do
so, we must alter the semantics of types slightly. The semantics for types detailed
in definition 2.26 did not take into account the fault value. For type inference in
the presence of run-time errors to be sound, fault must be a member of every type.
We refer to the extended type semantics by 7°[-] The definition for 7°[-] follows the

notational conventions of definition 2.26

Definition 4.13 (Fxtended type semantics)

Let v : TyVars — 7 be a valuation for free type variables. Denote by
Z(S)(J) the ideal Ing(.J), where .J is an ideal of S, and S is a summand
of D. Additionally, Z(S) = Z(S)(Triv). Let u stand for the fixed point
operator over the ideals using the MPS-metric. Let F' = {fault} Then
define T[] as:

Tlelv = Z(De) U F
for 0-ary functions (constants)
Tele(ty, ..., t)]v = Z(De(T]y, ..., Tta]v)) U F
for ¢ #—
Tt — 2]y = Z(D — D)T]y — Tt]v) U F
NOTE: — on the rhs is
the ideal function constructor
Tt + ol = T[]y U T[t]v
Telfix o]y = pi.f())UF
where f(1) = T°[t]v[e = 1]

Using the extended type semantics, we must re-verify the soundness of the sub-
type inference system — both the algebraic system and the inference system. As
in chapter 2, the actual details of these proofs are all presented in separate section,

namely section 4.5.

138

Theorem 4.2 (Soundness of Algebraic Subtype Inference) For any first
order regular type expression T, T¢[S(T)]Jv = T[T]v.

Similarly, the soundness of the type judgment rules of definition 2.19 is established
by

Theorem 4.3 (Frtended Soundness for Inference Rules) The inference

rules in definition 2.19 are sound with respect to the extended semantics.

Continuing our analysis, we show that the type inference system for program

expressions is sound with respect to the extended semantics.

Theorem 4.4 (Frtended soundness of type inference)

Let AF e: o be any inference from definition 2.30. Let p be an environ-

ment respecting A, and let v be any valuation. Then E[e]p : T¢[o]v

The extended semantics for types, then, respects all of the inference processes
established in chapter 2. The interpretation of “well-typed”, however, is different

from its chapter 2 counterpart. The principle

Well typed programs do not go wrong

must be replaced by

Well typed explicitly checked programs do not go wrong, but they may
signal a run-time error.

4.3 Automating the Insertion Process

Using the methods previously established, a programmer may modify a faulty pro-
gram by applying some number of ecaa or ecap replacement steps to produce a new
program. Theorem 4.1 assures that the new program is semantically identical to his
original program. If, in addition, the new program type checks then theorem 4.4 pro-
vides the further assurance that the output of the program either has the indicated
type, or some run-time check is activated. Consequently, if the programmer can
find some ec-replacement for his original program that also type checks, then he is
assured that the replacement program performs the same computation as his original
program, and is completely safe. The scenario proposed above, however suffers from

two defects:

139

1. No assurance has been given that some ec-replacement program that type checks

can always be found.

2. The programmer must manually insert the narrowing functions (perhaps making

several tries), violating the minimal text principle for soft typing.

The remedy for these defects comes in the form of an automated transformation of
a program to an ec-replacement program that type-checks. Since the method always
succeeds, it resolves both objections.

Intuitively, the method can be thought of as enumerating all possible ec- replace-
ment programs, and performing automatic type inference on each one until some
solution is found. Again, as in chapter 3, we use a Rémy encoding instead of actual
enumeration to solve the problem. An entire set of narrowers can be represented as

a single Rémy term thusly:

Example 4.6 (Narrowers via a Rémy encoding) let the set of type
constructors be {a(t),b,c}. Then consider the set of narrowers gng.;. By
enumeration, this set is
a(t)4cTe
a(t)+b+cle
btelle

This set of narrowers can be tabularized as

a a b | ¢ | narrower
argument
! t — | ! a(t)4cTe
! t ! ! a(t)4+b4clle
— t ’ ’ bteNe

And finally, using the Rémy notion of summarizing via variables, the above

table becomes
R(Ul, t, V2, ’)nR(—, t/, — ’)

Observe the lack of — flags in the argument positions for the set of narrowers.
The transformation that “removes” negative information from the argument types
of primitive functions gives a compact representation of all possible ec analogs for the

primitive. These ideas are formalizes in the following treatment.

140

Definition 4.14 (FEc general type) Let S = {¢;} be a set of type con-
structors. Define the ec general type of S, notated ECG(S) as

R(...,fl,al,ai,...)

1y Wi Wi

where
! c, €85
Ml = .
f; otherwise
where each f; is a distinct variable. Each af is distinct as well. Additionally,

define
ECG(r) =17

for any type variable

The expressive ability of this type definition can be seen in

Lemma 4.3 (FEc expression correspondence) Let T be either a set of
constructors, or a type variable. Then there is a 1 — 1 correspondence

between flag substitution instances of ECG(T') and all valid ej expressions

(definition 4.7) for : T.

Proof First, suppose T' is a type variable. In this case, there is only one
flag substitution, namely the identity. According to chapter 2, this means
that x € €, where C is the entire set of constructors. By definition 4.3,
there is no narrower gn¢, since C' O S for any S. Consequently, there is
only one valid e expression, namely x itself. So, associate Id and x. If

T = (', the same argument holds.
Consequently, suppose T' C C'. Then let V' be the flag substitution

V(fi):{!_ Wi

otherwise

Then let V' correspond to the e expression x. For any other flag defin-
ing substitution V', V'(fi) =!, for some k s.t. ¢ € T. In this case,
definition 4.14 yields

ECG(T U {ex | V'(fx) =1}) = VI(ECG(T))

141

Letting S =T U {cx | V'(fr) =!}, the substitution V’ corresponds to

(snr)

O

As a corollary, we note that IsF narrowers are a special case of narrowers in

general so we have

Corollary 4.2 (Application replacement corresponds) There isa 1 —1
correspondence between valid ecaa replacements for (f a) and flag substi-

tutions of ECG(—).

Proof 1IsF is a narrower with T'= {—}. So, by lemma 4.3, any valid
((IsFs f) a) corresponds to some flag defining substitution O

One other useful corollary is an observation about the proof. Note that the e, = =

possibility occurs exactly for the flag substitution produces — for any constructor not
in T
Corollary 4.3 (Id substitution correspondence) If V(f;) = —, for ¢; ¢

T.then e = z is the corresponding expression.

Proof By construction in the proof of lemma 4.3 (]

The set of R terms derived in accordance with definition 4.14 are terms with-
out any occurrences of — flags. In particular, this set of R-terms is a subset of
Y({R,!}, X). These l-only terms have an important property: For any set of these
terms, there is always a circular unifier ! The use of circularity is indispensable, as

the proof of the following lemma indicates:
Lemma 4.4 (1-only R-terms circular unify) Let
{(L1,R1), (L2, Ra)y ..., (Liny Rin)}

be a set of l-only R-term pairs. Then there exists a substitution S such
that

S(L1) = S(R1), S(Ly) = S(Ry)s..., (L) = S(Ry)

That is, for any set of l-only R-term pairs, there exists a unifier.

142

Proof By induction on the maximum number of R symbols in the Ly

terms.

Case max = 0 For this case, the set of terms must be

($1, Rl), ($2, Rz), ceey (wm, Rm)

where the x;’s are variables. Since we are using circular unification,
the substitution

produces the desired solution. Circular unification is critical. Without

it, an occur check may prevent solutions

Case max = k 4+ 1 . Assuming the theorem for all sets of pairs where L;
has k or fewer R symbols, consider a set of terms that has at least
one pair (Lg, Rs) such that L, contains k + 1 R symbols. If Ry is a
variable, then, again, by circular unification, the problem is solved
in this case, so consider Ry = R(...). For each such pair, by l-only
restriction, any element in a flag position Ly or R, must be either !,
or a variable. Let F' be the set of flag variables for (L, Rs). Let Sy
be the substitution

S(fi) = vi
where f; is a flag variable in position ¢, and v; is the associated symbol

in the opposite term. Then S is well defined, since v; must be either

a variable or !. So,

St(Ls), Sy(Rs)

agree on the flag positions. For the argument positions AZR, con-

struct the following set of pairs
{(le Rl)v e } - {L57 Rs} U{AZLv }%}

Each A% has k or fewer R symbols, so by induction, there is a sub-

stitution S solving the system. In particular,
S5 = 947

So, (80 S¢)(Ls) = (8 0 Sy)(Rs), and consequently, S” o Sy is the

required substitution for the original set of pairs

143

O

The correspondence lemmas, and the unification property of R-terms are the ba-
sic tools for constructing the automatic insertion method. Intuitively, the idea is to
replace all applications, and primitive constants with by their ec analogs. The types
derived for narrowing and primitives, however, are represented by the ECG trans-
lation. Then, automatic type assignment using the methods of chapter 3 yields an
assignment of types to expressions. The assignment method terminates as a conse-
quence of the unification property. After the conclusion of the assignment process,
we know that any flag defining substitution of the derived type for a narrower yields
a valid ec-replacement by the correspondence lemmma. Hence any flag defining sub-
stitution for the new program can be translated into an ec-replacement of the original
program. Therefore, we pick one according to some “reasonableness” criterion, and
produce an ec-replacement program that is type correct, satisfying the goal of this
chapter. The formal development follows.

First, we define the transformed program syntax. For this treatment, one need

only alter the applicative terms. The transformed program is called the ec-template.

Definition 4.15 (Fc-template) Let P be an Exp program expression
(without explicit narrowers). Let P’ be the program derived from P by
replacing every subterm of P of the form (e; e3) by ((Isf e1) e3). P’ is
the ec template for P

Given the ec-template P’ for P, the next step in the narrower insertion process is
to run algorithm W on P’, with a special set of type assumptions. For convenience,
algorithm W is repeated below, with the Rémy encodings made explicit. For our

purposes, the U is the circular unification algorithm

Definition 4.16 (Algorithm W (again)) W(A,e) = (S,7) where

i). if e is @, a variable or a constant, and A(z) = ay ... a,7’, then S = 1d

and 7 = 7'[a; « (3], where the (3;’s are new.

ii). if e is (e1 ez) then let W(A,e1) = (S1,71) and W(S1 A, e2) = (52, 72),
and U(Sy7, R(..., Y5y, 72,8,...,) =V, where 3 is new; Then S =
VSQSl and T = Vﬁ

144

iii). if e is Ax.eq, let 8 be a new type variable. Let W(A[zx : 3], e1) =
(S1,7); Then S =5y, and 7 =R(..., {53,516, t1,...).

iv). if e is let @ = ey in ey, then let W(A,e;) = (51, 72) and W (S, Alz :
S1AT, eq]) = (S, 7); then S = 555, and 7 = 7.

The algorithm fails whenever any of the above conditions are not met.

The main theorem establishes that algorithm W always succeeds for type as-
sumptions that are l-only R-terms (or variables). To simplify notation, let Ry =
{l-only R-terms}

Theorem 4.5 (Algorithm W succeeds for P’) Let P be an exp program.
Further, suppose all free variables x of P have A(x) defined. Finally
suppose A(x) € Ry for all

Then W (A, P) = (S5, 7) for some S, 7, and 7 € Ry, and S(y) € Ry for all
Y.

Proof By structural induction on the shape of P.

Case ¢ is x, a variable or a constant . By assumption, A(z) € Ri,s0

the theorem is trivially true in this case.

Case ¢ is (€1 €3) By the inductive hypothesis, W(A,e;) succeeds with
S1,71 € Ri. Also, by the inductive hypothesis, since Si(y) € Ry,
S1A(y) € Rs, so inductive hypothesis applies to W(514,e3). So
Sy, T satisfies the conditions of the theorem. So S,m € Ri. Also, by

definition,

R(...,!{_&,Tg,ﬁ,...,) € Ry
So, by lemma 4.4,
U(SQTl,R(. . .,!{%},Tg,ﬁ,. . .,)

exists. Call this unifier V. Since V' is a unifier over Ry, V(y) € Ru.
Consequently, V' 5351(y) € Ry, and V3 € Ri. So, the theorem is true

in this case.

Case e 1s Ar.e; If 8 is a new type variable, then 3 € R, by definition, so
the inductive hypothesis applies to Az : 8], e1. So, W(A[z: f],e1) =
(S1,71) with Sy, 71 as specified by the theorem. So S13 € Ry, and by
definition

R(cey !{_>}, S10,tq, ..) € Ry
So, the theorem holds in this case

Case ¢ is let # = ¢; in ey . Again, by induction, W(A,e;) = (S1,71)
has the appropriate properties. So, S1A is a type assumption of the
appropriate kind, and since closure operator merely renames vari-
ables, S{A is a valid Ry only substitution. Hence, the inductive

hypothesis applies to Sy A[x : S; AT, €3], and therefore
W(SlA[l' . Sl—ATl, 62]) = (SQ, 7—2)

with S, 7 as required by the theorem. Hence 5,5, also satisfies the
theorem so (5351, 79) meets the requirements of the theorem for this

case.

O

145

We note that the primitive constants of Exp can be assigned types in Ry so that

both theorem 4.5 and lemma 4.3 apply. This typing for the primitive operations is

termed the ec constant template.

Definition 4.17 (ec constant template) Let p be a first order primitive,

with constructor constraints
p:Ty =Ty, —...—=T,
where T; are sets of constructors, or variables. Let
p: ECG(Ty) — ECG(Ty) — ECG(T,)
be the ECG typing for p. Then the ec template for p is

P RO oy, BECG(TY), R(Y Ly ECG(TL), R(..), .),

146

where all flag and argument variables are distinct. In addition, define the

ec template for IsF constant to be

R('{'}v ({}7 767) ({}, ,ﬁ,))
where all unmentioned variables are distinct.

Lemma 4.3 can be used in an elementary way to extend the correspondence to ec

constant templates.

Lemma 4.5 (Fc template correspondence) Fach flag defining substitu-

tion for an ec template corresponds to a valid ec analog.

Proof Let F' be a flag defining substitution for some ec template. Then
F'is a flag defining substitution on its components as well. So, for each
ECG subexpression, F' defines some ¢, according to the correspondence

lemma (4.3). Thus, any F' defines an ecap replacement function:

pr=Ar1...x5.(perFerp... €mp)

where each e; r is the e determined by F.

Similarly, any flag defining substitution F' for the IsF family is, in partic-

ular, a flag defining substitution on the first argument of the form

({}7 767"')

Hence by lemma 4.3(second part), F' determines a unique eg: Either

((IsFr f) a) or (f a).]

Given these associations, we can now prove that any program P has an ec replace-

ment program that type checks.

Theorem 4.6 (Type correct ec replacement programs always exist) Let
P be any Exp program without free variables, and let A* be the standard
type assumption on the first order constants. Then there exists an ec

replacement P*, and a substitution S*, and a type 7 such that

STATE P

147

Proof By construction. Let P’ be the ec template. Let Ag be the set
of type assumptions that consists of the ec constant template for each
primitive function, plus the ec-template for IsF. Then, by theorem 4.5,
W (A, P') succeeds with (S,7) as its output. Let F' be a flag defining
substitution for the flag variables of the ec-templates in Ag, then, by

syntactic completeness of algorithm W for k4 !7
FSAobm FP - Fr

By lemma 4.5, however, F' defines an ecap or an ecaa analog for each
appearance of any constant. Hence F'P’ is a valid ec replacement pro-
gram. Let I'P" = P*. Furthermore, by theorem 3.8, for any flag defining
substitution S

C*(SpFSAg) F P C*(S;FT)

Letting S* = C*(S¢F'S), and 7" = C*(S;F'7) satisfies the theorem. [

Theorem 4.6 indicates an entire family of type correct ec replacements, one for
each flag defining substitution F'. Given the freedom of choice, one would naturally
like to choose a “reasonable” F' so that the number of narrowers (explicit run-time
checks) is “frugal”. While we cannot prove optimality, the following F™* seems a good

choice.

Definition 4.18 (A good ') Let P’ be the program of theorem 4.6,

with all subexpressions annotated with their types. Then construct F'* by

F(f) = { o

! otherwise

Intuitively, sets as many flags as possible to —.

Remark. Each instance must be considered individually, because some
variables are generic (quantified), and there may be different instances in
different parts of the program

171 o4 is the inference relation for the Milner system of definition 2.29

148

4.4 Some Observations

The purpose of the analysis in this section is to analyze what to do when the type
checker of chapter 3 fails. The intuitive solution is to retain run-time checks in
subexpressions where the typing process fails. The methods of this chapter use explicit
functions in the form of narrowers to formalize the notion of “run-time check”. The

main technical results of this chapter are:

1. For a program that has explicit checks inserted for parameters of primitive
functions, and in the function position for applications, type correctness insures

the safety of the computation, without altering the computation.

2. The type assignment method of chapter 3 provides a mechanism for automati-

cally constructing the explicitly checked programs.

Setting the technical considerations aside for the moment, some informal analysis
of the proposed system suggests some intriguing possibilities. In particular, we would
like to make some informal remarks about the information content of the narrower
functions.

First, note that in some cases the source set is not very much bigger than the
target set. That is, for narrower snr, the set S — T # (), but it may have a small
cardinality. An illustration of this phenomenon appears in example 4.1. The narrower
¢y 1z + suc + true + false — z + suc. This is the appropriate narrower even if the first
order constructors consist of many more constructors than just the 4. The difference
S — T for this example indicates that the expression in question is “not too far”
from being type correct. Perhaps this information might be of some benefit to a
programmer in a soft typing system, giving an indication in some informal way of the
degree of “wrongness” of the program.

Another potential benefit of narrowers with a small S — T difference comes in
the actual implementation of a run-time check. A small cardinality for the S — T
difference implies that fewer bits of a run-time type tag must be examined. For
example, suppose run-time tags are full 32-bit words. Then |[S — T| = 2 for c;.
Hence, only two bits of the 32 tag must be investigated to perform the type-check
enforced by cy. Bit comparison instructions on most hardware is faster than general

compare-and-jump instructions.

4.5 Proofs for Chapter 4
4.5.1 Theorem 4.2 (Soundness of Algebraic Subtype Inference)

For any first order regular type expression T', T¢[S(T)[v = T[T]v.

Proof For this proof, we use the same notational extensions as in the-

orem 2.7. In particular, if F is a set of expressions,

Te[E = U Te[e]v

eels

We use structural induction.
Case T =x,x € TyVars .
Here Y(z) = {2}, so T[{z}]v = T[z]v.
Case T = cp,co € M, Arity(c) =0 .
As for variables, T°[{co}]v = T [eo]lv by definition.
Case T =cn(T1,...,Th) .

By the first order hypothesis, ¢, #—. Thus, it is sufficient to consider
only tuples of ideals.

Te[[Z(TZ)]]I/ = Te[[TZ']]I/
by inductive hypothesis. Thus,

(T[T]y ... T[T)v) = (T[2(T)]v ... TE(T)]v)
I(Den)(TO[Th]v ... T[Tu]v)) = I(Dep){T[2(T)]v ... TIX(T,)]v)
So,

I(Den)) (T[] ... TE[T]v)) U F =
I(Dep (TIS(T)]v ... T[S(T)) U F

Hence,

TIE(eal(Try .., To))] = Tlea(Ty, ..., Ty

Case T=T; +T> .
By induction, T¢[Ti]v = T[X(T;)]v, so

TN v U T[Ty = TE[2(T)]v U Te[2(T,)]v
And thus, T[Ty + T2] = Te[2(Ty + T3)]

149

Case T = fix x..T' .
By definition 2.15, ¥(7T") = X(7")**. By definition 2.14, %(T")*" =
sup T/, where T/ is the Kleene sequence
Ty = Tz + 0]
TZ'/_I_I = T’[l‘ — TZ/]

By lemma 2.3

Te[To]v T[T vz + {L}]
TAT L]y = T[T vz « T[T;]v]
Note that
T[Ty = Fr({L})

By simple induction, (using above as base case) we note
Ty = P ({L})

The right hand side of the above is a banach sequence for y . Frw
beginning at {1 }. Consequently,

W T[T v = pa.Friv = T[fix 2. T v

The sequence T! is known to be telescoping, so T¢[T/]v is a telescop-
ing series of ideals. By previous analysis, it is a cauchy sequence,

SO

sup T[T/|v = Te[fix «.T v
Elementary set manipulations yield
sup Te[T!]v = T [sup T!]v

S0
Tlsup T/|lv = T[fix «. T v

This is, by definition 2.14

TOE(T) v = T[E(fix «.T")]v = T [fix «.T" v

150

151

4.5.2 Theorem 4.3 (Extended Soundness for Inference Rules)

The inference rules in definition 2.19 are sound with respect to the ex-
tended semantics. Note the use of F. from definition 2.27

Proof By structural induction on the shape of the proof.

Case T; C Ta, Ty, T2 first order This is theorem 4.2
Case TCT T°[T]v CT°[T]v.
Case Ty C Ty + Ty T[T\]v C T[]y U Te[T:]v

Case T;1 CT», T2 C TgF Ty C T3 Again, by elementary properties of
sets: If Te[Ti]v C T[Ty, Te[T2]v C Te[Ts]v, then Te[Ti]v C
Te[[T;),]]I/.

Case T3 CT;,To C Tyt (T1 — T2) C T3 — T4 By hypothesis for this
case, and inductive hypothesis,
TeNTs]v C Te[T]v, T[]y C Te[Tu]v
By definition 2.22, and definition 4.13
TN = L]y = {f [/(T [T]v) C T[]y U F

But since Te[T5]v C Te[Ti]v, any f with f(T°[Ti]v) C T[T:]v is
also an f

HTeTslv) € TA T2y
Likewise, since Te[Ta]v C Te[T4]v, any f such that f(T°[T5]v) C
Te[T2]v is also an f

HTeTslv) € TA[Talv

Consequently,

Fedglg(TNTEv) € TO[Tu]v}
And obviously,
WCcw

So
TN(Ty — To)w CT[(Ts — Ty)]v

152

Case fix x.T = T[x « fix x.T| By definition 4.13,
Telfix . Ty = pFrv U F
Similarly,

TNz + fix 2Ty = T[Tv[z « T[fix «.T]]
= Frv(pFrv)UF
= wuFrv U F by definition of fixed point

Case F1X2 The hypotheses for this rule is
t1 Cty b Ti[x + 1] C Tola + 5]
So, let Iy C I, Since Ty C Ty, the induction hypothesis yields
Te[Nvlz + L] CTL)vze «]
By definition 2.27
I, C Iy rmimplies Fr,(I) C Fr,(1>)

This implies
Fr,(I) € Fr,(12)

Consequently,
MFT1 C /“LFT2

Or,
Telfix . Ty]v C Te[fix . T3]

4.5.3 Theorem 4.4 (Extended soundness of type inference)

Let AF e: o be any inference from definition 2.30. Let p be an environ-

ment respecting A, and let v be any valuation. Then E[e]p : T¢[o]v

Proof By structural induction on the last step of the inference.

153

Case TAUT By hypothesis, p respects A, so
£l : TIA()

Case INST By rule requirements, A - ¢ : . So E[e]p : T°[e]v by in-
ductive hypothesis. Write o = Va.t,o’ = Va.t'. This is possible by

renaming bound variables. Then lemma 2.2 establishes that
Tetlvy = Te[t]v

Consequently, v : T¢[o]v implies v : T°[o']v.
Case GEN By inductive hypothesis,

Elelp : T [o]v

for all valuations v. Since « is not free in A, any valuation v]a +]

also maintains the theorem. In particular, let ¢ be a regular mono-
type, and [; the ideal T*[t]v. Then

Elelp : T [olv]a + 1]
But ¢ was arbitrary, so
Elelp : T [Vao]v
Case SUB By inductive hypothesis
Elelp - T [r]v
By theorem 4.3, if 7 C 7/
Telrv C T v

Thus,
Elelp : T[' v
by transitivity of set inclusion.
Case ABST For any v € T[], plx + v : T[7]v] respects A[x : 7'].
So, by inductive hypothesis,

Eler]plx < v : T[] € Te[r]v

154

By definition 2.5
E[N z.ex]p(v) = Eler] p[x + v]

Consequently
E[N x.ex]p(v) € Te[r]v

whenever v € T¢[7']v. By definition 2.22, this means
E[N x.ex]p € TO[7" — 7]v
Case APP By inductive hypothesis,

Elflp € Te[nlv — T [r]v
Elelp € Tnl

By definition 2.22, any element F' € T[n]v — T [tauy]v with
f # wrong has the property

F(T[n]v) € T [m]v
Since if E[f]p is one such element
ELfIp(ELe]) € TA7]
If £[f]p = wrong, then definition 2.5 insures that
wrong(p(Ee]) = wrong € T°[r]
Case LET By the inductive hypothesis,
Eled]p : T ol
From definition 2.5
Elet x = €1 in €3] = Efex]p[r + E]er]p]
So plz < E[e1]p] respects the assumption

AU{x: o}

Consequently, the inductive hypothesis applies to the second condi-

tion for this inference rule, and we have
Elealole « o] - 7
Putting this together yields

E[let x =€) in ey : 7

155

156

Chapter 5

Perspectives: Related Work and Future Work

To put this thesis in perspective, we must compare it to related work and identify
directions for future research. The analysis of related work appears in section 5.1.
Following that, section 5.2 explores some avenues for future research based on the

thesis results. Finally, section 5.3 summarizes the research contribution of the thesis.

5.1 Related Work

At the inception of this research, in January of 1987, there was virtually no literature
seeking to integrate the benefits of static typing into a dynamically typed language.
In early 1989, however, the static typing community began to investigate language
constructs that incorporated some dynamic typing ideas into statically typed lan-
guages. These results are philosophically similar to the viewpoint espoused in this
thesis. These philosophically similar investigations are the subject of section 5.1.1.
Even though philosophically similar work now exists, the primary work forming
the basis for this thesis came from the enormous body of static typing literature.
The static typing literature that had the most influence on the thesis are analyzed in

section H.1.2

5.1.1 Philosophically Similar Work

In 1989, Abadi, Cardelli, Pierce, and Plotkin [1] devised a statically typed language
containing two new language elements, typecase, and dynamic and a new type,
Dynamic. These purpose of these new elements was to add dynamic typing features
to a statically typed language. The typecase construct is analogous the suite of case
functions introduced as part of the first order specification. That is, typecase checks
the type tag of its argument, and performs subsequent computation based on that

tag. The selector value, however, must have type Dynamic.

157

The dynamic feature converts static values to type Dynamic by explicitly tagging
them with a given type. That is, dynamic x : T' creates a value of type Dynamic with
tag T'. The user, however, must supply the T'.

While the addition of these features increases the expressiveness of a language
having only static typing, these features do not accommodate the soft typing paradigm

for the following reasons:

1. The system is declarative. That is, types must be supplied by the user both as

declarations, and for the dynamic construct.

2. There are no unions, or recursive types. That is, all union and recursive phe-

nomena must be accommodated via explicit use of dynamic and typecase.

3. The specific order of tagging makes a difference. That is, dynamic 5 : int, and
dynamic (dynamic 5 : int) are different values. Consequently, a programmer

must not only know the underlying types, but also the tagging pattern.

In contrast, a value in a dynamically typed language has only one type tag, so

alternative “tagging patterns” cannot arise.

4. The language is still statically typed. That is, certain programs are still rejected.

In retrospect, the design goal for this language was to incorporate a dynamically
typed sublanguage in a statically typed host language. To maintain the integrity of
the static typing, the system must include a wall to separate the dynamic capabilities
from the static ones. As such, the properties of the type Dynamic language differ
significantly from the desired properties of a softly typed language.

Thatte [49] considers a system he calls “Quasi-static typing” to accommodate a

merger of static and dynamic typing. The salient features of his system are:

1. A type , such that any type 7 < €. Furthermore, the < relation extends
monotonically over all type constructors, except for the usual antimonotonic
behavior of the arrow constructor’s first argument. The type is intended to

simulate dynamic types.

2. The use of coercion functions both of the form 1% and | to implement run-time

checking.

Thatte’s system resembles our soft typing system in three important ways. First,

the € type introduces a notion of subtyping into the type system. Furthermore, the

158

subtype relation is structural. This means that the “tagging pattern” anomaly of
the dynamic is eliminated. Second, the coercion functions | operate as narrowers
for a quasi-static system. The other coercions appear to be injections, or “tagging”
functions. Third, Thatte automatically inserts the run-time checks (coercions) in such
a way as to insure a type correct program. So, Thatte does not reject any programs.
These similarities make quasi-static typing a close cousin of soft typing.

There are a few significant differences separating soft typing and quasi-static typ-
ing. Most importantly, the quasi-static type discipline requires argument type decla-

ration. The program

(Ax :Int.z 5)

is fundamentally different from

(A : Q. b)

in that the declaration affects whether or not a run-time coercion is inserted. The

former program has no coercions, whereas the latter program is implemented as:
Q
(Az - Q.z Tyt D)

Furthermore, argument type declarations preclude parametric polymorphism.
Another distinction between quasi-static typing and soft typing is, again, the
absence of unions and recursive types. The types are included in soft typing systems

to avoid excessive false error reporting. Thatte himself states

...interaction may become tedious if intended checks are numerous

These limitations mean a quasi-static system will almost certainly “cry wolf” more
often than a soft typing system. An additional advantage derived from union types is
the spectrum of coercions is much wider. As in example 4.1, the function in question

can be made safe with a narrower whose type is
z + suc + true + false — z + suc

where the difference between the source and target has cardinality 2. In a quasi-static
system, the only coercion available has € as its source, so all possible types in the
system must be checked, not merely the 4 listed above.

In essence, a quasi-static system is almost a soft typing system. The quasi-static
systems, however emphasize the static aspect too heavily to be a viable soft typing

system.

159

5.1.2 Related Static Type Systems

In the course of this research, a significant number of type systems and analysis
methods came under scrutiny. All systems considered had some potential relevance
to the soft typing problem. The following remarks indicate the salient features of a

good cross section of the systems scrutinized during the course of this thesis.

Systems with similar constructs

Mishra and Reddy [35] develop a type system for Prolog programs that includes
both union types and recursive types. Since the intended programming language is
Prolog, however, there are no function types. The type assignment method used
for this system, however, also recognizes the usefulness of restricting types to be
discriminative.

Similarly, Amadio and Cardelli [2] describe an inference system accommodating
both recursive types and subtypes. Their system makes use of rational trees in the
inference process.

By using intersection (conjunctions) instead of unions, Coppo,Dezani-Ciancaglini,
and Venneri [13] develop a type system that assigns a type to all lambda calculus

normal forms. The system, however, is undecidable.

Systems with general subtyping

By viewing subtyping as coercion application, Mitchell [36] introduced a type system
with an extremely liberal view of subtyping. He was the first to note that systems
with subtypes cannot have principal types in the Milner sense. Consequently, the

type expressions in his system included the inequalities as part of the type as in:
tL{a C B (a— B)CttlE vt

Fuh and Mishra [22, 23] improve on Mitchell’s methods, and Fuh’s thesis [21] addresses
the problem of the actual insertion of the coercions necessary to support the supplied
typing. These systems have three problem drawbacks when considered as possible

soft typing systems

1. The type expressions are unintuitive and somewhat unwieldy. In spite of some

success in reducing the number of constraints, types are still overly complicated

2. There is no parametric polymorphism

160

3. The decidable portion of this theory does not support functions as elements of

types that may include non-functional objects

Pavel Curtis’s thesis [15] develops a similar idea that he calls “constrained quantifi-
cation”. He retains the constraints as part of the type. In contrast to the Fuh-Mishra
system, Curtis allows parametric polymorphism. The decidability of the system in
its general form, however, is still an open question. Furthermore, the presence of
constraints as part of the type still manifests the overcomplex expression objection
to the Fuh-Mishra systems.

In conclusion, we note that solving the constraint systems generated is the subject

of chapter 3.

“Object” oriented systems

One exceptionally populated area of type research literature involves the notion of
“object-oriented” programming. These systems are especially interesting for soft typ-
ing considerations because the object oriented data, namely “records” and “variants”,
possess a property greatly resembling subtyping. This property is called inheritance
in that body of literature.

The first discernable “object-oriented” type system originates with Cardelli [9].
This work introduces the notions of records and variants, and provides a type-checking
algorithm for a simple language including the new constructs. Researchers building
on this work include Stansifer [44], Wand [53, 55, 56], Jategaonkar-Mitchell [29] and
Rémy [39]. As evidenced in chapters 3 and 4, the Rémy work provided a clear basis
for the research in this thesis. The Rémy work provided two attractive features in

comparison to others:

1. The technique encoded inheritance as standard parametric polymorphism, so

that a standard Milner technique was applicable
2. The use of circular unification provided the needed mechanism for recursive

types

5.2 Future Work

Research on extensions to any type discipline typically proceeds independently along

two different directions. One direction involves handling more programming con-

161

structs. The other direction concerns strengthening the discipline to accommodate
more programs.

Language extensions of interest include assignment, and advanced control con-
structs, such as call/cc. All of these constructs are present in Standard ML of New
Jersey, as well as Scheme. Consequently, we would like to extend our type system
to accommodate these programming language features, in much the same way as
Tofte [50] for statically typed languages. In addition, the module constructs of ML
are worthy of some attention.

As for improving the type methods, we see at least two interesting avenues for
exploration. First, the inferior type assigned to the deep function merits attention.
Some preliminary analysis indicates that the typing can be improved by inserting
some special coercions. It remains to be seen if the method can be automated and
generalized. Another promising area of research involves adding some conjunctive
typing to the type system. One must be careful, as Coppo [13] has shown that
conjunctive typing is, in general, undecidable. Perhaps some compromise along the
lines proposed by Ghosh-Roy [26].

Concerning the coercion insertion method of chapter 4, we need to determine the
“optimality” of the method. We need to determine if the number of coercions inserted
can be made smaller or not. If it cannot, we should show this. If some other method
produces a lesser number of these coercions, then it should be adopted. We conjecture
that our method is optimal.

Finally, but perhaps most importantly, we need to produce a good quality imple-
mentation of these ideas so that reasonable comparisons with other systems can be
made. One interesting experiment to run would compare the number of programs
from some elementary scheme text that type check without coercions in the soft type

system.

5.3 Conclusions

In broad terms, the contribution of this research is the development of the necessary

technical tools to support the soft typing paradigm. The tools developed include:

1. A type system specifically designed to accommodate a large percentage of pro-
grams in dynamically typed languages. In particular, the type system incorpo-

rates union types, recursive types, and parametric polymorphism. Additionally,

162

a sound type inference system for annotating program expressions with these

types is provided

2. A simple, well understood method for automatically assigning types to pro-

grams, without the need for any extraneous declarations.

3. A method for explicitly inserting run-time checks into programs for which the
type assignment method fails. Consequently, any program may be safely exe-

cuted.

In conclusion this research supports the following thesis:

Soft typing is viable. Programmers may derive the verification benefits
and optimization opportunities of static typing while retaining all the
expressiveness of dynamic typing.

163

Bibliography

[1] Martin Abadi, Luca Cardelli, Benjamin Pierce, and Gordon Plotkin. Dynamic
typing in a statically typed language. In Proceedings of the Sizteenth POPL
Symposium, 1989.

[2] Roberto M. Amadio and Luca Cardelli. Subtyping recursive types. In Conference
Record of the Fighteenth Annual ACM Symposium on Principles of Programming
Languages, August 1990.

[3] M.A. Arbib and Y. Give’on. Algebra automata i: Parallel programming as a

prolegomena to the categorical approach. Information and Control, 12, 1968.

[4] Henk Barendregt and Kees Hemerik. Types in lambda calculi and programming
languages. In 3rd ESOP, 1990.

[5] Walter S. Brainerd. The minimalization of tree automata. Information and

Control, 13, 1968.

[6] Stan Burris and H. P. Sankappanavar. A Course in Universal Algebra. Springer-
Verlag, 1981.

[7] Burstall, MacQueen, and Sannella. Hope: An experimental applicative language.
In Proceedings of the first international LISP conference, 1980.

[8] W. Biittner. Unification in the data structure sets. In Proceedings of the 8th
International Conference on Automated Deduction, July 1986.

[9] Luca Cardelli. A semantics of multipleinheritance. In G. Kahn, D. B. MacQueen,
and G. Plotkin, editors, Semantics of Data Types, volume 173 of Lecture Notes
in Computer Science. Springer-Verlag, 1984.

[10] Robert Cartwright. A constructive alternative to axiomatic data type definitions.

In Proceedings of 1980 LISP Conference, 1980.

[11]

[12]

[13]

[14]

[15]

[16]

[18]

[19]

[20]

[21]

[22]

23]

164

Robert Cartwright. Types as intervals. Technical report, Rice Univesity, 1984-
1985.

Alain Colmerauer. Prolog and infinite trees. In K. L. Clark and S. A. Tarnlund,
editors, Logic Programming, pages 231-251. Academic Press, 1982.

M. Coppo, M. Dezani, and B. Venneri. Principal type scheme and A-calculus
semantics. In J. P. Hindley and J. R. Seldin, editors, To H. B. Curry. Essays on
Combinatory Logic, \-Calculus and Formalism. Academic Press, 1980.

B. Courcelle. Fundamental properties of infinite trees. Theoretical Computer

Secience, 25(2):95-169, March 1983.

Pavel Curtis. Constrained quantification in polymorphic type analysis. Technical

Report CSI.-90-1, Xerox PARC, 1990.

O. J. Dahl, C. A. R. Hoare, and E. W. Dijkstra. Structured Programming.
Academic Press, 1972.

Luis Damas and Robin Milner. Principal type-schemes for functional programs.
In Conference Record of the Ninth Annual ACM Symposium on Principles of
Programming Languages, 1982.

Luis Manuel Martins Damas. Type Assignment in Programming Languages. PhD
thesis, University of Edinburgh, 1985.

Bruce F. Duba, Robert Harper, and David MacQueen. Typing first-class contin-
uations in ML. In Conference Record of the Kighteenth Annual ACM Symposium
on Principles of Programming Languages, 1991.

James Dugundji. Topoloy. Allyn and Bacon, 1966.

You-Chin Fuh. Design and Implementation of a Functional Language with Sub-
types. PhD thesis, State University of New York at Stony Brook, 1989.

You-Chin Fuh and Prateek Mishra. Type inference with subtypes. In Conference
Record of the Furopean Symposium on Programming, 1988.

You-Chin Fuh and Prateek Mishra. Polymorphic subtype inference: Closing the
theory-practice gap. In TAPSOFT, 1989.

[24]

[25]

[26]

28]

[29]

[30]

31]

32]

33]

[34]

[35]

165

Gannon. An experimental evaluation of data type conventions. Communications

of ACM, August 1977.

Ferenc Géceg and Magnus Steinby. Tree Automata. Akadémiai Kiado, Budapest,
1984.

R. Ghosh-Roy. Conjunction type standard ml polymorphism. Lisp and Symbolic
Computation, 3(IV):381-410, December 1990.

John Hopcroft and Jeffrey Ullman. Introduction to Automata Theory, Languages,
and Computation. Addison-Wesley, 1979.

Gérard Huet. Résolution d’équations dans les langages d’ordre 1,2,...,w. PhD
thesis, Université Paris, 7 1976.

Lalita A. Jategaonkar and John C. Mitchell. Type inference with subtypes. In
Proceedings of the 1988 Conference on LISP and Functional Programming, 1988.

Patrick Lincoln and Jim Christian. Adventures in associative-commutative uni-
fication. In Proceedings of the 9th International Conference on Automated De-
duction, May 1988.

D. MacQueen, G. Plotkin, and R. Sethi. An ideal model for recursive polymor-
phic types. In Conference Record of the Eleventh Annual ACM Symposium on
Principles of Programming Languages, 1983.

D. B. MacQueen and Ravi Sethi. A semantic model of types for applicative lan-
guages. In Conference Record of the Tenth Annual ACM Symposium on Princi-
ples of Programming Languages, 1982.

Michael Maher. Complete axiomatizations of finite, rational, and infinite trees.

In 3rd Logic In Computer Science Conference, 1988.

Robin Milner. A theory of type polymorphism in programming. Journal of
Computer and System Sciences, 1978.

Prateek Mishra and Uday S. Reddy. Declaration-free type checking. In Confer-
ence Record of the Twelfth Annual ACM Symposium on Principles of Program-
ming Languages, 1984.

[36]

[38]

[39]

[40]

[41]
[42]

[43]

[44]

[45]

[46]

[47]

166

John C. Mitchell. Coercion and type inference. In Conference Record of the
Eleventh Annual ACM Symposium on Principles of Programming Languages,
1983.

A. M. Morshedi and R. A. Tapia. Karmarkar as a classical method. Mathematical
Sciences 87-7, Rice University, Aug 1987.

Neal Nelson. Primitive recursive functionals with dependent types. Private

communication, Feb 1990.

Dider Rémy. Typechecking records and variants in a natural extension of ml.
In Conference Record of the Sixteenth Annual ACM Symposium on Principles of
Programming Languages, 1989.

J. A. Robinson. A machine oriented logic based on the resolution principle.

Journal of ACM, December 1965.
David A Schmidt. Denotational Semantics. Allyn and Bacon,Inc, 1986.
Dana Scott. Data types as lattices. Siam Journal of Computing, 1976.

Jorg H Siekmann. Unification theory. Journal of Symbolic Computation, 7(3 and
4), 1989.

Ryan Stansifer. Type inference with subtypes. In Conference Record of the
Fifteenth Annual ACM Symposium on Principles of Programming Languages,
1988.

Joseph Stoy. Denotational Semantics: The Scott-Strachey Approach to Program-
ming Language Theory. The MIT Press, 1979.

R. A. Tapia. On the role of slack variables in quasi-newton methods for con-
strained optimization. In L.C.W. Dixon and G. P. Szego, editors, Numerical
Optimization of Dynamic Systems, pages 235-246. North-Holland Publishing
Company, 1980.

J. W. Thatcher. Characterizing derivation trees of context free grammars

through a generalization of finite automata theory. Journal of Computer and
System Sciences, 1, 1967.

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

167

J.W. Thatcher and J.B. Wright. Generalized finite automata theory with an
application to a decision problem of second-order logic. Mathematical Systems

Theory, 2(1), 1966.

Sattish Thatte. Quasi-static typing. In Proceedings of the Seventeenth POPL
Symposium, 1990.

Mads Tofte. Operational Semantics and Polymorphic Type Inference. PhD thesis,
University of Edinburgh, 1987.

David A. Turner. Miranda — a non-strict functional language with polymorphic
types. In Proceedings of the Conference on Functional Programming Languages
and Computer Architecture, 1985.

Mitchell Wand. A types-as-sets semantics for milner-style polymorphism. In
11th POPL, 1984.

Mitchell Wand. Complete type inference for simple objects. In Proceedings of
the Second Symposium on Logic in Computer Science, 1987.

Mitchell Wand. A simple algorithm and proof for type inference. Fundamenta
Informatica, X:115-122, 1987.

Mitchell Wand. Corrigendum:complete type inference for simple objects. In

Proceedings of the Third Symposium on Logic in Computer Science, 1988.

Mitchell Wand. Type inference for record concatenation and multiple inheri-

tance. In 4th Annual Symposium on Logic in Computer Science, 1989.

