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Abstract

A Nonlinear Differential Semblance Algorithm for Waveform

Inversion

by

Dong Sun

This thesis proposes a nonlinear differential semblance approach to full waveform in-

version as an alternative to standard least squares inversion, which cannot guarantee

a reliable solution, because of the existence of many spurious local minima of the

objective function for typical data that lacks low-frequency energy. Nonlinear dif-

ferential semblance optimization combines the ability of full waveform inversion to

account for nonlinear physical effects, such as multiple reflections, with the tendency

of differential semblance migration velocity analysis to avoid local minima. It borrows

the gather-flattening concept from migration velocity analysis, and updates the veloc-

ity by flattening primaries-only gathers obtained via nonlinear inversion. I describe a

general formulation of this algorithm, its main components and implementation. Nu-

merical experiments show for simple layered models, standard least squares inversion

fails, whereas nonlinear differential semblance succeeds in constructing a kinemati-

cally correct model and fitting the data rather precisely.
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Chapter 1

Introduction

In a reflection seismic experiment, a controlled source (such as dynamites, air guns or

seismic vibrators) initiates mechanical vibrations at points on (or near) the surface

of the earth, which propagate within the earth; the mechanical response of the earth

to the excitation is measured and recorded by receivers on (or near) the surface.

A common objective of reflection seismology is to make inferences about physical

features (model) of subsurface (e.g., velocity distribution, impedance profile, etc.)

from data (seismogram) recorded on or near the surface.

In general, with reasonably idealized setting 1, the laws of physics provide the

governing equations for computing the data values given a model. This is called the

forward problem.

The inverse problem is to reconstruct the physical properties (model) from a

set of measurements (data). Usually, this problem does not have unique solutions,

because: (1) the amount of data is finite and cannot carry sufficient information to

1A common idealized setting in reflection seismology is based on the assumption that the earth is
a linearly elastic isotropic body supporting wave propagation governed by acoustic wave equations.

1
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determine the model uniquely (underdetermination), or, (2) the data has more degrees

of freedom than those of the desired model (overdetermination) and are inconsistent

(because of measurement errors).

Fortunately, it is possible to construct a type of inverse through minimization of an

objective function that measures the difference between two points in the data space.

Thus, the inversion becomes a model-based data-fitting process that provides a “best

fit” solution to the inverse problem, which is often formulated as a PDE-constrained

nonlinear least-squares optimization, aiming to minimize the mean squared difference

between predicted and observed data via updating the model on which the prediction

is based. This nonlinear least squares approach to the inverse problem of reflection

seismology has been studied extensively over 30 years. As simulation of acoustic

and elastic wave-fields has become more computationally feasible, this approach has

enjoyed a robust revival of interest in this decade, under the name full waveform

inversion (FWI).

It has been well demonstrated that FWI is capable of reconstructing remark-

ably detailed models of subsurface structure (Cao et al., 1990; Bunks et al., 1995;

Minkoff and Symes, 1997; Plessix et al., 1999; Shin and Min, 2006; Brenders and

Pratt, 2007c,d; Vigh and Starr, 2008; Sirgue et al., 2009; Vigh et al., 2010, just to

name a few); however, the direct application of FWI in reflection seismology has

been strictly restricted by a fundamental obstacle, i.e., its objective functional is very

ill-conditioned and has many spurious local minima for typical seismic data which

lacks low-frequency energy. Because of this so-called local minima issue, FWI doesn’t

work with any descent method (mandatory because of problem size) unless the initial

model provides an accurate long scale estimate of the true model, see (Gauthier et al.,

1986; Santosa and Symes, 1989; Tarantola et al., 1990; Symes and Carazzone, 1991;
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Bunks et al., 1995; Shin and Min, 2006,for example).

The proximal cause of FWI misbehavior is the spectral incompleteness of typical

field data, especially the lack of low frequencies. Low-frequency data appear to contain

information about the macro trend of the true model. It has been shown that the

impedance as a function of vertical travel time in a layered acoustic medium could be

reconstructed from the impulse response, which contains all frequency components

down to 0 Hz (Bamberger et al., 1979; Symes, 1981; Bube and Burridge, 1983; Symes,

1986; Sacks and Santosa, 1987). For several dimensional problem, numerical examples

indicate that impulse responses may determine constant-density acoustic models via

least-squares inversion (Bunks et al., 1995; Shin and Min, 2006).

This thesis presents a differential semblance strategy with nonlinear modeling for

waveform inversion to recover the missing low-frequency information and address the

local minima issue. Among all the attempts tried to address this local minima issue,

differential semblance strategy is based on a modified objective functional which may

avoid the non-convexity of the least-squares (LS) seismic inversion, hence lead to a

well-behaved inversion. Differential semblance optimization based on linearized scat-

tering theory (Born modeling) has been investigated by a number of authors (Symes

and Carazzone, 1991; Symes, 1993, 1999; Chauris and Noble, 2001; Mulder and ten

Kroode, 2002; Shen et al., 2003, 2005; De Hoop et al., 2005; Albertin et al., 2006; Shen

and Symes, 2008). For these approaches, all the nonlinear effects (such as multiple

reflections) must be taken off the data so that only the primary reflections remain.

Obviously, whenever multiple reflections are non-neglectable, the primaries-only ap-

proximation cannot lead to plausible results. The proposed nonlinear differential

semblance strategy intends to achieve two main goals: to address the local minima

issues associated with the LS inversion as all the other differential semblance variants
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do; and, to account in a natural way for nonlinear effects (such as multiple reflections)

frequently encountered in actual data.

The thesis reviews my research, which aims to construct, to implement and to

evaluate a nonlinear differential semblance algorithm, and at the same time to build

some basic components towards forming a general inversion framework (Sun, 2008;

Sun and Symes, 2010b,a; Symes et al., 2011). The introduction chapter is intended

to provide a historical and scientific base for the work presented and put the thesis

into context. The first section presents an overview for waveform inversion via least-

squares optimization and its intrinsic difficulties. The second section reviews various

strategies aiming to address those impediments preventing successful applications of

waveform inversion. As the literature on this topic is extensive, the rest of this chapter

only presents a review of selected works and motivates this work.

1.1 WAVEFORM INVERSION

Waveform inversion is an important model-based data-fitting approach to reflection

seismology. The most familiar objective function for waveform inversion is the least

squares functional measuring the mean squared difference between predicted and

observed data. It is popular because: (1) it is very simple and corresponds to the

maximum likelihood criterion if experimental errors have Gaussian distributions; (2)

it does not require picked travel time and can take into account essentially any physics

of seismic wave propagation and reconstruct detailed features of subsurface structure.

In the late 70s, Banberger, Chavent, and Lailly applied data fitting inversion to re-

flection seismology and presented the pioneering work (Bamberger et al., 1977, 1979)

on the one-dimensional model problem, which illustrates the physical and mathemat-



5

ical consequences of model space metric definition.

Tarantola and Valette (1982) states a general definition of the nonlinear least

squares inversion, which is valid for various kinds of problems (including discrete and

continuous, overdetermined and underdetermined, linear and nonlinear problems).

Lines and Treitel (1984), Tarantola (1987) and Virieux and Operto (2009) provide

excellent overviews of theory of least squares inversion and its applications in ex-

ploration geophysics. Here comes an abstract setting for the least-squares inverse

problem over a constant density acoustics media: The model space M is a set of

possible velocity distributions m, and usually of rather large degrees of freedom on

the order of 104 – 106 in 2D, one or more orders of magnitude greater for 3D; the data

space D consists of samples of reflection response (data) on or near the surface over a

time interval; do stands for the observed reflection response (reflection seismogram),

which are band-limited in practice for various physical limitations. D is regarded as

a Hilbert space with norm ‖.‖. The forward map F : M → D is a function of the

input velocity model m, denoted by F [m], which builds a nonlinear relation between

M and D. The simplest version of data fitting inversion is an Output Least Squares

optimization:

min
m∈M

JLS :=
1

2
‖F [m]− do‖

2.

Because the huge orders of magnitude, most attempts to minimize JLS are to

compute the gradient of JLS with respect to m and search in the descent direction

related to this gradient for an update. The gradient vanishes at a stationary point,

which could be a minimum of JLS. Gauss-Newton and nonlinear conjugate gradient

are examples of these kinds of methods. With some version of the L2 norm in M ,

the gradient can be computed through standard adjoint state method and written

as ∇mJLS = DF [m]T (F [m]− do), where DF [m]T is the adjoint of the linearized
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forward map DF [m] of F at the point m. In Gauss-Newton algorithm, the searching

direction can be expressed as
(
−(DF TDF )†∇mJLS

)
, which is the solution of the

linearized least squares problem

min
δm

1

2
‖DF [m]δm− (do − F [m])‖2 .

Lailly (1983) applies the adjoint state method to seismic inverse problem and

found that DF T is equivalent to a migration operator. The linearized inversion can

be computed through conjugate gradient method. Tarantola (1984a) discusses solv-

ing the linearized problem using iterative algorithms, and showed that the rigorous

solution of the linearized seismic inversion can be achieved using the classical meth-

ods of migration. As a generalization, Tarantola (1984b) develops a gradient-related

iterative approach to solve the nonlinear least-squares inverse problem in the acous-

tic approximation for seismic reflection data with nonlinear effects (such as multiple

reflection). Gauthier et al. (1986) presents the first published exploration of iterative

acoustic FWI with a 2-D model and multi-offset data, and brought out some key

observations on the applications of this approach, which will be reviewed in the next

section.

These kinds of methods are called gradient-related iterative approaches (Nocedal

and Wright, 1999), which only use local information of a current iterate v and yield

local convergence. Extensive numerical studies (Cao et al., 1990; Bunks et al., 1995;

Minkoff and Symes, 1997; Plessix et al., 1999; Shin and Min, 2006; Brenders and

Pratt, 2007b,a; Vigh and Starr, 2008; Sirgue et al., 2009; Vigh et al., 2010) have

demonstrated that waveform inversion with gradient-related approaches can recon-

struct detailed models of subsurface structure, provided either very low-frequency
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components (e.g., less than 1 Hz) or sufficiently good initial model whose kinematics

are sufficiently close to those of the data.

On the other hand, there are some attempts to use global optimization methods

to minimize JLS such as genetic (Sen and Stoffa, 1991b) and simulated annealing (Sen

and Stoffa, 1991a) methods. These methods use some random search strategies to

traverse the model space in order to find the global minimum which corresponds to

the smallest objective value. Though global methods don’t need a good start model

and gradient, they require a great many of evaluations of the objective function (for-

ward problem) before they converge. Considering that a model space in reflection

seismology usually has millions or even billions degrees of freedom, global methods

are currently infeasible. Accordingly only iterative optimization methods with conver-

gence rates more or less independent of model space dimension are computationally

feasible, such as, gradient-related methods.

1.2 CHALLENGES AND MODIFICATIONS OF THE LS

INVERSION

Though the LS inversion with gradient-related approaches is conceptually attrac-

tive and proved feasible, its applications in reflection seismology have been strictly

restricted by two major obstacles (Symes, 2007). The first is the computational in-

tensity of wave field modeling and various computation required by the LS inversion,

especially in 3D. This computational obstacle is weakening with continuous advances

in computer hardware and simulation techniques. For instance, there is an rapid in-

creasing interests in building computational kernels via GPUs to accelerate common

computations such as wave propagation and migration, etc.. On the other side, sev-
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eral authors demonstrated various strategies, such as phase encoding, source batching,

etc. (Krebs et al., 2009; Ali et al., 2009a,b; van Leeuwen and Herrmann, 2012, just to

name a few), that significantly reduce the computational cost of waveform inversion.

The second obstacle is more fundamental. The LS objective function is very ill-

conditioned and has many spurious local minima for typical seismic data which lacks

low-frequency energy. Those local minima will trap any gradient-related iteration.

Therefore this inversion doesn’t work with any gradient-related optimization method

unless the starting velocity model is so accurate that it has the same velocity trend

(long scale structure) as the true velocity model. This fact is well observed and

discussed in literature. Gauthier et al. (1986) shows that the LS problem is strongly

nonlinear and has secondary minima, and concludes that gradient methods fail to

converge to the target if the starting model does not contain the long wavelengths

of the true model. Also, this paper demonstrates that iterative FWI is good for

estimating short scale structure but cannot recover the long scale structure, and

is easier to be successful with the presence of transmitted energy than only with

the reflected energy. Santosa and Symes (1989) explores in detail the success and

limitations of the LS inversion in the context of the layered velocity model. They

partly released the obstacle by redefining the least-squares problem to match only

the precritical part of the data. But their approach still suffered from the same

impediment discussed above. Symes and Carazzone (1992) illustrates the high non-

convexity of the LS objective function clearly via a plot of the mean square error over

a line segment connecting constant back ground velocity with the reference velocity. I

present similar plots in Chapter 2 for both the LS inversion and the proposed method.

These plots demonstrate the proposed method is superior to the LS inversion for

layered media.
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The main factor appears to drive the above behavior of least squares inversion

is the band-limitation of typical field data, especially the lack of low frequencies,

which leads to the reconstruction ambiguous (Santosa and Symes, 1989). Lots of

work has shown that the impedance as a function of vertical travel time in a layered

acoustic medium could be reconstructed from the impulse response, which contains

all frequency components down to 0 Hz, (Bamberger et al., 1979; Symes, 1981, 1986;

Sacks and Santosa, 1987). For several dimensional problem, numerical examples

indicate that impulse responses may determine constant-density acoustic models via

the LS inversion (Bunks et al., 1995; Shin and Min, 2006). Low-frequency data appear

to contain information about the trend of the true model. Only from band-limited

reflection data, the nonlinear least squares inversion cannot infer the velocity trend.

Appendix B demonstrates this well known fact in 1D.

Many attempts have been tried to deal with the local minima issue associated

with the LS inversion.

A number of papers tried to diminish the problem of local minima by a decomposi-

tion of the seismic inversion problem by scale. Kolb et al. (1986) suggests a pre-stack

continuum inversion algorithm for 1D acoustic medium. This algorithm first recovers

the low-frequency trend of the velocity model via inversion of the low-frequency part

of the data. Next, a progressive downward determination process is employed to infer

the velocity distribution layer by layer. The numerical results demonstrate the effi-

ciency of this continuum inversion process only for data with the very low-frequency

components. For 2D pre-stack seismic inversion, Bunks et al. (1995) shows that a

multi-scale approach is effective in releasing the difficulty of local minima only for

data with much lower frequencies than is normally available in realistic seismic data

sets. This kind of approaches inspires me with the continuum low-frequency inver-
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sion strategy for data with low-frequency components down to 0 Hz, which leads to

a much more efficient approach than the conventional inversion approach. I use this

strategy to solve the least-squares subproblem embedded in the proposed algorithm.

Shin and Min (2006) introduces a logarithm objective function to take into account

phase and amplitude separately or simultaneously, and then yield three different

inversions. Some tests showed that this approach could lead to a better result than the

conventional least-squares inversion for some synthetic data with very low-frequencies

down to 0.3121 Hz. While the inversion results were not good for data without

frequencies below 5 Hz.

Better results were then obtained with the logarithm of the Laplace transform

(Shin and Cha, 2008). Numerical experiments show that starting from a rough initial

model, the Laplace domain inversion could provide very smooth models that would be

good starting models for standard FWI. This approach updates model via minimizing

the difference between the DC components of exponentially damped seismogram and

predicted data, which are zero for undamped data. Also, the logarithm difference

between the DC components of a damped signal and a time-shifted version of itself

actually indicates the time shift, which can be seen from a simple derivation as follows:

given

d(t) = f(t)χ0(t),

u(t) = f(t− τ)χτ (t),

where χa(t) is a characteristic function such that

χa(t) =





0, if t ≤ a

1, otherwise

.
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Then

d̄(s) =

∫ ∞

0

f(t)e−stdt,

ū(s) =

∫ ∞

τ

f(t− τ)e−stdt = e−sτ d̄(s),

and
(
ln|ū(s)| − ln|d̄(s)|

)2
=

(
ln

∣∣∣∣
ū(s)

d̄(s)

∣∣∣∣
)2

= (−sτ )2 .

Give appropriate damping constants and first break times, the damping procedure

helps Laplace inversion focus on the early arrivals. But it is tricky to choose appro-

priate damping constants and pick out the first break times to set up the exponential

damping. And, all numerical examples on Laplace inversion seem to suggest the ne-

cessity of transmitted energy, which usually only presents in wide-aperture data at

very large offsets. This approach shares similar underlying concept of the precondi-

tioning strategies discussed in (Sirgue, 2003) in order to focus the inversion on the

early arrivals to mitigate the nonlinearity, which requires wide-aperture data.

The starting model for FWI can also be built by the first arrival traveltime to-

mography (FATT), which produces smooth models of the subsurface via nonlinear

inversions of first-arrival traveltimes (Nolet, 1987; Hole, 1992; Zelt and Barton, 1998).

Brenders and Pratt (2007c,d,e) show successful results for joint FATT and FWI on

several blind tests at the oil-exploration scale and at the lithospheric scale, and sug-

gest that very low frequencies and very large offsets are required to gain reliable FWI

results. Also, reliable picking of first-arrival times is a difficult task when low-velocity

zones exist. Based on the same principle, phase-only inversion estimates subsurface

model via minimizing the phase difference of the first arrivals with a frequency-domain

waveform-inversion algorithm (Min and Shin, 2006; Ellefsen, 2009). Together with

phase-unwrapping strategy, phase-only inversion may release the cycle-skipping re-
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striction and improve starting models for standard FWI (Shah et al., 2012b). More-

over, the phase difference of the first arrivals may be used as an indicator of the

accuracy of starting models (Shah et al., 2012a). This strategy can be adopted in

time-domain and worth of further investigating. For instance, a notorious difficulty

needs to be addressed for phase-related strategies is how to handle noisy data.

All the above approaches aim to mitigate the obstacles of FWI by either adopting

special strategies to solve LS inversion or relying on the presence of transmitted

energy. But none resolve the local minima issue that has been the main impediment

to full waveform inversion with reflection.

In contrast, the differential semblance approach is based on a modified least-

squares principle which may avoid the non-convexity of the LS inversion, hence lead

to a well-behaved inversion. Differential semblance optimization based on linearized

scattering theory (Born modeling) has been investigated by a number of authors

(Symes and Carazzone, 1991; Symes, 1993; Symes and Versteeg, 1993; Verm and

Symes, 2006; Li and Symes, 2007; Symes, 1999; Chauris and Noble, 2001; Mulder and

ten Kroode, 2002; Shen et al., 2003, 2005; De Hoop et al., 2005; Albertin et al., 2006;

Shen and Symes, 2008). These work suggests that the differential semblance objec-

tive is stable against high-frequency data perturbation and essentially monomodal:

the only stationary points are physically significant solutions of the waveform inver-

sion problem. Some theoretical evidence exists that a similar algorithm based on

(nonlinear) scattering might be feasible, and account in a natural way for nonlinear

effects (such as multiple reflection) frequently encountered in actual data (Symes,

1991). This paper describes such a differential semblance strategy with nonlinear

modeling for waveform inversion to recover the missing low-frequency information

and address the local minima issue. It is an application of the extended modeling
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concept introduced in Symes (2008).

The next chapter presents the underlying idea and a general formulation of the

proposed strategy via the extended modeling concept, reviews a specific version of this

strategy proposed in my MS thesis for 1D constant-density acoustic model, elaborates

the main components and computational flow of this algorithm and briefly describes

their implementation.
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Chapter 2

Theory and Method

This chapter consists of three sections. In the first section, I present the underlying

idea and general formulation of a nonlinear differential semblance algorithm. Then,

the second section reviews a special case of this algorithm for plane wave propagation

in layered media and demonstrates the convexity of the proposed objective via scan

experiments. Finally, I elaborate the fundamental components of this algorithm and

its computational flow, and briefly describes their implementations.

2.1 NONLINEAR DIFFERENTIAL SEMBLANCE

OPTIMIZATION: IDEA AND FORMULATION

In this section, I first review the extended modeling concept introduced by Symes

(2008), which provides a basis for the nonlinear generalization of migration velocity

analysis; then, based on this unifying concept, I formulate waveform inversion as a

nonlinear differential semblance optimization problem.

15
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Extended Modeling

As described in chapter 1, an abstract setting for waveform inversion consists of:

• the model space M, a set of possible models of Earth structure;

• the data space D, a set of samples d of reflection response over a time interval;

• the forward map F : M → D .

The traditional waveform inversion (least square inversion) is to minimize the mean

square data misfit between the forward map output F [m] and an observed datum

do ∈ D, i.e.,

min
m∈M

JLS :=
1

2
‖F [m]− do‖

2
D
. (2.1)

An extension of model F : M → D consists of

• an extended model space M,

• an extension operator E : M −→ M,

• an extended modeling operator F : M → D,

so that F [m] = F [E [m]] for any m ∈ M. The diagram (2.2) gives a simple illustra-

tion of this concept:

M

E
��

F // D

M

F

>>
}

}
}

}
}

}
}

. (2.2)

Symes (2008) discusses two types of extensions: surface oriented extensions and

depth oriented extensions. For surface-oriented extensions, the extended model simply
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amounts to permitting the coefficients in the wave equation to depend on a surface

acquisition parameter, and simulation is independent for each value of the param-

eter. Thus the computational complexity of the extended modeling operator is no

greater than that of the basic modeling operator. For depth oriented extensions, the

coefficients in the wave equation are positive definite symmetric operators. The com-

putational complexity of modeling via time stepping is potentially enormous. This

work only considers the type of surface oriented extensions. The construction in the

next section makes a good example for this type of extensions.

Notice that the extension map E should be one to one, hence enable one to

view the model space M as a subset of the extended model space, i.e., E[M] ⊂ M.

Often, E [M] is referred to as the “physical models”, since the extended models not

belonging to E [M] may be in some sense unphysical. This fact will become obvious

in the specific application discussed in the next section.

The extended inverse problem then becomes:

given do ∈ D, find m̄ ∈ M such that F [m̄] ≃ do.

A solution m̄ is physically meaningful only if m̄ = E [m] for somem ∈ M. In that case

m becomes a solution of the original inverse problem, i.e., F [m] = F [E [m]] ≃ do.

That is, solving the original inverse problem is equivalent to find a solution to the

extended inverse problem that belongs to E[M]. (Generally, “≃” is in the least-squares

sense.)

To turn this inversion into an optimization procedure, one needs an objective to

measure the extent to which a solution to the extended inverse problem is physically

meaningful. Since the range of E is a linear subspace of M, any linear operator
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vanishing on this subspace gives rise to a quadratic form which can serve as such an

objective. An annihilator of the range of E is a map A from M to some Hilbert space

H so that

m̄ ∈ E[M] ⇐⇒ Am̄ = 0.

Symes (2008) reviewed and compared different types of annihilators, among which

differential semblance is the most appropriate one for building such an objective. This

work adopts a differential semblance type of annihilator.

The original waveform inversion (2.1) has the same solution(s) as the the follow-

ing constrained optimization problem, which however may have much better global

behavior than waveform inversion:

min
m̄∈M

JA[m̄ ] := 1
2
‖Am̄‖2

M

s.t.
∥∥F [ m̄ ]− d

∥∥2

D
≈ 0.

(2.3)

Note: if there exists a model m ∈ M with ‖F [m]− do‖D ≈ 0, then m̄ = Em is a

solution to problem (2.3). Conversely, if the objective value of problem (2.3) is near

zero, then there exists a model m ∈ M with Em ≃ m̄, hence ‖F [m]− do‖D ≈ 0.

That is, the solution m̄ fits the data and is close to the range of E in the sense that

its image under A is small.

When it comes to solve the problem (2.3), the major issue arise from the very

irregular geometry of the feasible model set F =
{
m̄ ∈ M :

∥∥F − d
∥∥2

≃ 0
}
: how to

parametrize the feasible model set F ? Since the Lagrangian function of problem (2.3)

is just as irregular as the least squares objective, a reparametrization is essential to

turn the problem (2.3) into a smooth one amenable to Newton-like methods.
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An answer to this critical question comes from the important observation that

impulse responses may determine acoustic models via least-squares inversions. In

the next part of this section, I present a way to reparametrizing the model space

via missing low-frequency data components, and formulate the generalized waveform

inversion (2.3) into a nonlinear differential semblance optimization.

Nonlinear Differential Semblance Optimization

In this work, I consider the following extension of model:

• the model space M := {m(x)}, a set of possible models of Earth structure;

• an extended model space of models depending on a surface acquisition param-

eter p, i.e., M := m̄(x, p);

• a surface oriented extension operator E : M −→ M;

• the data space D := {d(xr, t; p)}, a set of samples of reflection response over a

time interval at receiver xr with surface acquisition parameter p;

• an extended data space of data with very low-frequency components, i.e., D =

D
⊕

Dl, where Dl stands for the complimentary low-frequency data space that

making up the missing low-frequency band;

• a shrink operator φ : D −→ D, i.e., band-pass filter;

• the forward map F : M → D ;

• an extended modeling map F : M → D defined as F [m̄](x, t, p) := F [m̄(·, p)](x, t, p);
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• a forward map Fl : M → Dl, defined by solving the original wave equations

with a complementary low frequency source designed to make up the missing

low frequency band of the original source;

• an extended modeling map F l : M → Dl defined as F l[m̄](x, t, p) := Fl[m̄(·, p)](x, t, p).

This extension obeys the fact that F [m] = F [E [m]], Fl [m] = F l [E [m]], and

F [m] = φ
[ (
F + F l

)
[E [m]]

]
for any m ∈ M. The diagram (2.4) gives a simple

illustration of this concept:

M

E
��

F // D

M
F+F l

// D

φ

OO

. (2.4)

In this work, a differential semblance type annihilator A : M −→ M is defined as

Am̄ := ∂
∂p
m̄. Obviously, Am̄ = 0 ⇐⇒ m̄ ∈ E [M].

Based on the solvability of least squares inversion for impulsive response1, the

solution to the least squares problem ((2.5)) converges to a global minimizer

min
m̄∈M

E [m̄, do + dl ] :=
1
2

{∥∥(F + F l

)
[ m̄ ]− do − dl

∥∥2
+ α2 ‖Am̄‖2

}
, (2.5)

i.e., the extension
(
F + F l

)
has approximate inverse operator G in least squares sense,

such that

G
[ (
F + F l

)
[m̄∗]

]
:= argmin

m̄∈M

E
[
m̄,

(
F + F l

)
[m̄∗]

]
for all m̄∗ ∈ M.

1Though no theoretical proof exists (except for 1D and layered media (Symes, 1986)), considerable
numerical evidence strongly suggests the solvability of the impulsive nonlinear inversion (Bamberger
et al., 1979; Symes, 1981; Sacks and Santosa, 1987; Bunks et al., 1995; Shin and Min, 2006).
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In the rest of this section, I reformulate waveform inversion as two differential

semblance optimization (DSO) problems respectively over Dl and M.

Nonlinear DSO over Dl

If we define Ad : Dl −→ M as

A [do + dl ] := A G [ do + dl ] for any dl ∈ Dl,

then

Ad [ dl ] = 0 =⇒ ∃ m ∈ M s.t. G [ do + dl ] = E [m]

=⇒ F [m] = φ
[
F [E [m]]

]
= φ [ do + dl ] = do.

Thus, waveform inversion (2.3) is equivalent to a nonlinear differential semblance

optimization (nDSO): finding dl ∈ Dl to minimize ‖Ad [ do + dl ]‖, which can be

stated in constrained form as

min
dl∈Dl

JDS [ dl ] :=
1
2
‖Am̄[dl]‖

2 (2.6)

s.t. m̄[dl] = argmin
m̄∈M

1
2

{∥∥F [ m̄ ] + F l [ m̄ ]− do − dl
∥∥2

+ α2 ‖Am̄‖2
}
. (2.7)

Nonlinear DSO over M

If we define A : M −→ M as

A [ml] := A G [Fl[ml] + do ] for any ml ∈ M,
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then

A [ml ] = 0 =⇒ ∃ m ∈ M s.t. G [Fl[ml] + do ] = E [m]

=⇒ F [m] = φ
[ (
F + F l

)
[E [m]]

]
= φ [Fl[ml] + do] = do.

Thus, waveform inversion (2.3) is equivalent to a nonlinear differential semblance

optimization (nDSO): finding ml ∈ M to minimize ‖A [ml ]‖, which can be stated in

constrained form as

min
ml∈M

JDS [ml ] :=
1
2
‖Am̄[ml]‖

2 (2.8)

s.t. m̄[ml] = argmin
m̄∈M

1
2

{∥∥F [ m̄ ] + F l [ m̄ ]− do − Fl[ml]
∥∥2

+α2 ‖Am̄‖2
}
.

(2.9)

As a summary, Form (2.6) is based on the key innovative idea of reparametrizing

the control space via artificial low-frequency components that complement the missing

low-frequency bands. In the next section, I will demonstrate the convexity of the

objective of problem (2.6) via scan tests for plane wave propagation in layered media,

which suggests that one may solve (2.6) successfully via gradient-related methods even

starting from rough initial guesses. As Form (2.6) puts no constraints on dl, in some

sense this relaxes the inversion; but, there is no way to ensure low-frequency control

dl to be consistent with a physical model. To guarantee a physically meaningful

solution, Form (2.8) employs extra constraints on add-in low-frequency controls. For

Forms (2.6) and (2.8) share most of the main components and the key reparametrizing

strategy, we expect to observe similar objective behaviors. The third section presents

the gradient derivation and algorithm flow for solving problem (2.8). And, Chapter 3
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demonstrate this algorithm with inversion experiments, which confirm the successful

applications of gradient-related methods in solving problem (2.8) even starting from

rough initial guesses.
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2.2 NONLINEAR DIFFERENTIAL SEMBLANCE

OPTIMIZATION FOR LAYERED MEDIA

This section reviews my master’s work (Sun, 2008) on developing the nonlinear differ-

ential semblance optimization with Form (2.6) for plane-wave propagation in layered

constant-density acoustic model and demonstrating via some primary numerical ex-

periments the smoothness and convexity of the DS objective.

In the layered constant-density acoustic model, the wave field potential u(x, z, t)

(x, z ∈ IR) is governed by the wave equation

(
1

m2(z)

∂2

∂t2
−∇2

)
u(x, z, t) = wb(t)δ(x, z),

u(x, z, t) = ut(x, z, t) ≡ 0, t < 0,

(2.10)

where m(z) is the acoustic velocity field depending only on the depth z, and the right-

hand side is an isotropic point energy source with the source wavelet wb(t). Notice

that wb(t) is chosen to be band-limited, as is required by observations of the spectra

of seismograms: for various physical limitations, real reflection seismograms don’t

have Fourier components at very low (< ωl Hz) and very high (> ωh Hz) temporal

frequencies 2.

Regarding the source (i.e., wb(t)) as known, the pressure field ∂u
∂t
, hence the seis-

mogram, becomes a function of the acoustic velocity:

p[m](x, t) :=
∂u

∂t
(x, 0, t), 0 ≤ t ≤ tmax.

The goal is to find m(z) for 0 ≤ z ≤ zmax from the observed seismogram po such that

2The positive numbers ωl and ωh depend on specific physical settings of real experiments. For
example, ωl = 5, ωh = 60.
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p[m] ≃ po.

The first step of constructing the proposed approach is the introduction of the

Radon transformed field

U(z, p, t) =

∫
dx u(x, z, t+ px), p ∈ IR.

A straightforward calculation shows that the original problem becomes a set of 1-D

plane-wave problems

(
1

v2(z, p)

∂2

∂t2
−

∂2

∂z2

)
U(z, p, t) = wb(t)δ(z),

U(z, p, t) = Ut(z, p, t) ≡ 0, t < 0,

(2.11)

for suitably small p ≥ 0 so that mp < 1, where the vertical velocity

v(z, p) := m(z)
/√

1−m2(z)p2 , for p < pmax = 1 /mmax ,

and p denotes the ray parameter (slowness).

The plane-wave seismogram is then defined as

Fwb
[m](p, t) :=

∂U

∂t
(p, 0, t)

for (p, t) ∈ P := {(p, t) : |p| ≤ pmax, 0 ≤ t ≤ tmax} ,

(2.12)

which presents a forward map Fwb
: M −→ D, where D is the data space, and the

model space M denotes a set of possible velocity models, incorporating bounds on

values and other regularity constraints.

Given the plane-wave seismogram do ∈ D (i.e., do = Uo
3), this chapter focuses

3Uo can be computed from uo by Radon transform. To focus on the principal algorithm, I leave
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on the inverse problem:

Find m(z) ∈ M

such that Fwb
[m] ≃ d.

(2.13)

Take for the extended model space M as the set of positive functions m̄(z, p) of

depth z and slowness p. The extension map E simply views a physical velocity m(z)

(positive function of z) as a function of z and p, i.e. as constant in p: E[m](z, p) ≡

m(z). Then, the corresponding vertical velocity to m̄(z, p) is

v(z, p) := m̄(z, p)
/√

1− m̄2(z, p) p2 ,

and the extended forward map Fwb
: M −→ D is defined as

Fwb
[m̄](p, t) :=

∂U

∂t
(p, 0, t) for all (p, t) ∈ P, (2.14)

where U(z, p, t) satisfies (2.11) with m replaced by m̄. Hence, the extended modeling

operator Fwb
satisfies the prerequisite: Fwb

[m] = Fwb
[E[m]] for any m ∈ M.

Notice that the extension map E is one-to-one, hence enables one to view the

model space M as a subset of the extended model space, i.e., E[M] ⊂ M. Since the

extended models will be “unphysical” in the sense that m̄(z, p) ∈ M could vary in p,

E[M] consists of the “physical models”.

The extended inverse problem becomes:

given do ∈ D, find m̄(z, p) ∈ M such that Fwb
[m̄] ≃ do.

out this computation and assume that Uo is known.
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A solution m̄ is physically meaningful only if m̄ = E[m] for some m ∈ M. In that case

m becomes a solution of the original inverse problem (2.13), i.e. Fwb
[m] = Fwb

[m̄] ≃

do. That is, solving the inverse problem (2.13) is equivalent to find a solution to the

extended inverse problem that belongs to E[M]. (Generally, “≃” is in the least-squares

sense.)

To turn this inversion into an optimization procedure, one needs an objective to

measure the extent to which a solution to the extended inverse problem is physically

meaningful. Here, I choose the linear map A[m̄] := ∂m̄
∂p

, which satisfies the equivalence

condition :

m̄ ∈ E[M] ⇐⇒ A[m̄] = 0 (coherency condition). (2.15)

With the above notations, a differential semblance form of the inverse problem is:

min
m̄∈M

JA[m̄, do] :=
1

2
‖A[m̄]‖2

such that
∥∥Fwb

[m̄]− do
∥∥2

≃ 0.

(2.16)

The major issue arise in formulating any approach to the solution of problem (2.16):

how to parametrize the feasible set F =
{
m̄ ∈ M :

∥∥Fwb
− do

∥∥2

D
≃ 0

}
?

An answer to this question comes from the solvability of the impulsive inverse

problem. Recall that problem (2.10) is reduced to a set of 1D plane-wave problems

(2.11) via Radon Transform. The solvability of 1D impulsive inverse problems tells

us that with the very-low frequency information, a 1D LS problem is solvable, i.e.

the inversion could recover the long-scale structure.
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For each fixed slowness p, given the source time function

wb(t) =

∫

ωl<|ω|≤ωh

dω e2πiωtg(ω)

and the corresponding reflection response

do(p, t) =

∫

ωl<|ω|≤ωh

dω e2πiωtη(p, ω),

take

w(t) = wl(t) + wb(t),

where

wl(t) =

∫

|ω|≤ωl

dω e2πiωtg(ω).

One can associate a vertical velocity v(z, p) for each p with d̄(p, t) via the 1-D LS

inversion, where

d̄(p, t) = do(p, t) + dl(p, t)

and

dl(p, t) =

∫

|ω|≤ωl

dω e2πiωtη(p, ω).

Then, m̄(z, p) is computed through m̄ = v
/√

1 + v2p2 .

As a summary, fixing the source wavelet w(t) with low-frequency components wl(t)

down to 0 Hz and band-limited data do(p, t), the extended velocity m̄(z, p) becomes

a function of the very low-frequency data dl(p, t) (or η(p, ω) for |ω| ≤ ωl).
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Recalling Form (2.6), I state the DS problem as:

min
η(p,ω)

(p,ω)∈Ω

JDS :=
1

2
‖A[m̄]‖2

such that
p∈[0,pmax]

∥∥Fw[m̄](p, t)− do(p, t)− dl[η](p, t)
∥∥ ≃ 0,

(2.17)

where A[m̄] := ∂m̄
∂p

, D̃l := {(p, ω) : 0 ≤ p ≤ pmax, |ω| ≤ ωl}.

Actually, JDS is continuously differentiable with respect to η; and, a standard

adjoint state derivation leads to a gradient expression for the DS objective:

∇JDS = φ DFw[m̄]
(
DFw[m̄]T DFw[m̄]

)† ∂2m̄
∂p2

,

where φ is a projector from data space onto low-frequency data controls, DFw is Born

extended modeling and DF
T

w is its adjoint, computed by the adjoint state method.

Please refer to Appendix A for a detailed derivation of this gradient computation.

Scan Tests

In the rest of this section, I present some primary numerical experiments (“scan”

tests) for a four-layer model (Figure 2.1(a)) with the fixed impulsive source time

function (plotted in frequency domain in Figure 2.1(b)).

These tests illustrate the smoothness and convexity of the DS function, as well

as some issues in its construction which are the subject of future research. The task

is to evaluate the proposed DS objective along line segments in the space of low-

frequency controls, i.e., compute the DS objective function at a series of data points
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Figure 2.1: (a) Four-layer velocity model; (b) Normalized source wavelet in frequency domain
(frequency 0 to 25 Hz)).

Dµ(for some µ ∈ [0, 1.5]) defined by

Dµ = {(1− µ)Dlpert(pi) + µDobv(pi)}
Np

i=1, (2.18)

where data Dlpert(pi) at slowness pi (i = 1, 2, · · · , Np) differ from the observed data

Dobv(pi) only by their low-frequency components. The low-frequency components (0

to 5Hz) of Dlpert are the corresponding low-frequency components of the seismogram

derived from the homogeneous velocity model mhom(z) = 2.

Choose Np = 50 and discretize the slowness field p in the way that p2 is sampled

evenly.

Experiments with absorbing boundaries

To evaluate the DS objective at a data point, I solve at each slowness the corre-

sponding 1-D least squares problem for v(z, p), then compute m̄(z, p) from m̄ =

v
/√

1 + v2p2 , and finally compute the DS objective JDS = 1
2

∥∥∥∂m̄
∂p

∥∥∥
2

. Please refer to
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Appendix B for a detailed description of a frequency continuation solution to the 1-D

LS inversions.
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Figure 2.2: With absorbing surface: (a) 1-D scan through the DS objective; (b) 1-D scan through
LS objective

The curve in Figure 2.2(a) interpolates samples of the DS objective at data points

Dµ defined by (2.18) with µ = 0, 0.1, · · · , 1.5. This 1-D slice through the DS ob-

jective exhibits the smoothness (at least at the sample scale) and convexity. Also,

the minimum is achieved at the data point with correct low-frequency components

(µ = 1).

As a contrast, Figure 2.2(b) presents a similar “scan” experiment, which evaluates

LS objective function at velocity models mµ chosen as

mµ(z) = (1− µ)mhom + µm∗(z)

with µ = 0.0, 0.1, · · · , 1.5, where mhome and m
∗ stand for the homogeneous and true

models respectively. This 1-D scan clearly demonstrates the multi-modality of LS

objective, which badly jeopardizes the application of gradient-related methods.
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Experiments with free surface

An important objective of the proposed algorithm is to account for nonlinear effects

of wave propagation such as multiple reflections. Hence, it is desired to know how

this DS objective behaves for problems with free surface, which is an important cause

of multiple reflections. In the following test, the free surface boundary condition is

adopted.
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Figure 2.3: With free surface: (a) 1-D scan through the DS objective without post-processing; (b)
1-D scan through the DS objective with m̄(z, p) smoothed in p

The curves in Figure 2.3(a) samples the DS objective at data points Dµ with

µ = 0.0, 0.05, · · · , 1.2. Though this scan exhibits the convexity near the minimum, it

appears to be flat near µ = 1 and possess some bumps. This adverse behavior may

come from the numerical errors accumulated during all the approximating computa-

tions. Especially, since the 1D LS inversions are done independently and yield dif-

ferent accuracy, the extended models m̄(z, p) become inconsistent in slowness, which

leads to the noisy behavior of the DS objective.

To improve the behavior of the DS objective, one can adopt a number of strate-

gies to reduce numerical errors, such as using smaller tolerance for 1-D inversions,
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choosing different expressions of DS objective, and employing some regularization

techniques to smooth m̄(z, p) in p and z, etc.. I have considered some of these strate-

gies. Figure 2.3(b) presents the same scan of the DS objective except that m̄(z, p) is

smoothed in p via minimizing the Total Variation of m̄(z, p) with respect to p at each

z. Now, the scan exhibits the desired smoothness and convexity.

This section briefly reviews the first step of my work towards developing a nonlin-

ear differential semblance approach to waveform inversion. Numerical examples show

that this nonlinear DS objective is convex and achieves an extremum at the target

model. Thus, gradient-related methods seem promising to solve the proposed DSO

problem. In the next section, I start to discuss the algorithm flow and main compo-

nents of this nonlinear differential semblance strategy based on a general formulation

(2.8).

2.3 NONLINEAR DIFFERENTIAL SEMBLANCE

OPTIMIZATION: ALGORITHM FLOW, MAIN

COMPONENTS AND IMPLEMENTATION

Recall that waveform inversion can be formulate as a nonlinear differential semblance

optimization problem (2.8), i.e.,

min
ml∈M

JDS [ml ] :=
1
2
‖Am̄[ml]‖

2

s.t. m̄[ml] = argmin
m̄∈M

1
2

{∥∥F [ m̄ ] + F l [ m̄ ]− do − Fl[ml]
∥∥2

+α2 ‖Am̄‖2
}
.
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This section describes the algorithm flow of this approach and elaborates its main

components, i.e., the extended sub least squares inversion, the gradient computation

for the nonlinear DS objective, and the step-length calculation.

I will consider the above nonlinear DSO problem in inner-product spaces. The

numerical solution is the discrete approximation of the continuum problem. Roughly

speaking, the inner products involved in this problem are

〈m1, m2〉M :=

∫

Ω

m1 (x) m2 (x) dx,

〈m̄1, m̄2〉M :=

∫

Θ

∫

Ω

m̄1 (x, p) m̄2 (x, p) dx dp =

∫

Θ

〈m̄1(·, p), m̄2(·, p)〉M dp,

〈d1, d2〉 :=

∫

T

∫

ΩR

d1 (x, t) d2 (x, t) dx dt

〈d̄1, d̄2〉D :=

∫

Θ

∫

T

∫

ΩR

d̄1 (x, t, p) d̄2 (x, t, p) dx dt dp =

∫

Θ

〈d̄1(·, ·, p), d̄2(·, ·, p)〉 dp,

where Θ denotes the set of acquisition parameters chosen to extend the model space,

Ω ⊂ IRdim stands for the spacial region under concern, ΩR ⊂ Ω denotes the set of

sampling point in space, and T denotes the recording time range.

Assume all derivatives exist for the following derivation.

Sub-LS problem

The constraint of problem (2.8) is fulfilled via solving the sub-LS problem for some

fixed ml ∈ M:

min
m̄∈M

JLS [ m̄ ] := 1
2

{∥∥(F + F l

)
[ m̄ ]− d̄

∥∥2
+ α2 ‖Am̄‖2 +R(m̄)

}
, (2.19)
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where d̄ = do+Fl[ml], R(m) stands for some regularization term (e.g., for Tikohonov

term R(m̄) := β2‖m̄‖2). Often, (2.19) is ill conditioned and one might have to use

regularization term(s) to enforce available prior information, which I omit in the

following derivation for simplicity.

Since

JLS [ m̄ ] = 1
2

∫

Θ

〈(F + Fl) [ m̄(·, p)]− d̄ (·, ·, p) , (F + Fl) [ m̄(·, p)]− d̄ (·, ·, p)〉 dp

+ 1
2
α2〈Am̄,Am̄〉

M

and

(F + Fl) [ m̄(·, p) + δm̄(·, p)] ≃ (F + Fl) [ m̄(·, p)] +D (F + Fl) [ m̄(·, p)] δm̄(·, p)

+ 1
2
D2 (F + Fl) [ m̄(·, p)] · (δm̄(·, p), δm̄(·, p))

= (F + Fl) [ m̄(·, p)] + (DF +DFl) [ m̄(·, p)] δm̄(·, p)

+ 1
2

(
D2F +D2Fl

)
[ m̄(·, p)] · (δm̄(·, p), δm̄(·, p)) ,

then

DJLS [ m̄ ] δm̄ =

∫

Θ

〈(DF +DFl) [ m̄(·, p)]T
(
(F + Fl) [ m̄(·, p)]− d̄ (·, ·, p)

)
, δm̄(·, p)〉M dp

+ α2〈ATAm̄, δm̄〉
M
,

(2.20)
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i.e.,

∇JLS [ m̄ ] (·, p) = (DF +DFl) [ m̄(·, p)]T
(
(F + Fl) [ m̄(·, p)]− d̄ (·, ·, p)

)

+ α2ATAm̄(·, p)

(2.21)

And, the first order necessary condition for the sub-LS problem (2.19) is:

(DF +DFl) [ m̄(·, p)]T
(
(F + Fl) [ m̄(·, p)]− d̄ (·, ·, p)

)
+α2ATAm̄(·, p) = 0 , for any p ∈ Θ.

(2.22)

Computation of DS Gradient and Initial Step-length

Here, I sketch a brief derivation of the gradient of JDS[ml] respect to ml.

Define

J
[
d̄
]
:= 1

2

∥∥Am̄
[
d̄
]∥∥2

M
,

where m̄
[
d̄
]
solves the following extended least squares problem (2.19) for fixed

d̄ ∈ D, i.e.,

m̄
[
d̄
]
= argmin

m̄∈M

1
2

{∥∥(F + Fl

)
[ m̄ ]− d̄

∥∥2
+ α2 ‖Am̄‖2

}
.

Then,

JDS [ml] = J [do + Fl [ml]] , (2.23)
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and by the chain rule

∇ml
JDS [ml] = DFl [ml]

T ∇Jd̄ [do + Fl [ml]] . (2.24)

Let δm̄
[
d̄, δd̄

]
:= m̄

[
d̄+ δd̄

]
− m̄

[
d̄
]
. For simplicity, denote δm̄

[
d̄, δd̄

]
, m̄

[
d̄
]

by δm̄ and m̄ respectively. Then,

J
[
d̄+ δd̄

]
− J

[
d̄
]
= 〈Am̄,A δm̄〉

M
+ 1

2
〈Aδm̄, A δm̄〉

M

= 〈AT Am̄, δm̄〉
M

+ 1
2
〈AT Aδm̄, δm̄〉

M

=

∫

Θ

〈AT Am̄(·, p), δm̄(·, p)〉Mdp

+ 1
2

∫

Θ

〈AT Aδm̄(·, p), δm̄(·, p)〉Mdp.

(2.25)

The first order necessary condition (2.22) tells us that

(DF +DFl) [ m̄(·, p)]T
(
(F + Fl) [ m̄(·, p)]− d̄ (·, ·, p)

)
+α2ATAm̄(·, p) = 0 , for any p ∈ Θ.

which leads to: for any p ∈ Θ

(DF +DFl) [ m̄(·, p) + δm̄(·, p)]T
(
(F + Fl) [ m̄(·, p) + δm̄(·, p)]− d̄ (·, ·, p)− δd̄ (·, ·, p)

)

+ α2ATAδm̄(·, p) = 0
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=⇒ 0 ≃ (DF +DFl) [ m̄(·, p)]T
(
(F + Fl) [ m̄(·, p)]− d̄ (·, ·, p)

)

+ (DF +DFl) [ m̄(·, p)]T
(
(DF +DFl) [ m̄(·, p)] δm̄(·, p)− δd̄ (·, ·, p)

)

+
((
D2F +D2Fl

)
[ m̄(·, p)] δm̄

)T (
(F + Fl) [ m̄(·, p)]− d̄ (·, ·, p)

)

+
((
D2F +D2Fl

)
[ m̄(·, p)] δm̄

)T (
(DF +DFl) [ m̄(·, p)] δm̄(·, p)− δd̄ (·, ·, p)

)

+ α2ATAδm̄(·, p)

Based on first order perturbation theory and the fact that m̄ solves (2.19), I have

H [ m̄(·, p) ] δm̄(·, p) ≃ (DF +DFl) [ m̄(·, p)]T δd̄ (·, ·, p) , (2.26)

where

H [ m̄(·, p) ] = (DF +DFl) [ m̄(·, p)]T (DF +DFl) [ m̄(·, p)] + α2ATA.

Hence,

δm̄(·, p) ≃ H [ m̄(·, p) ]−1 (DF +DFl) [ m̄(·, p)]T δd̄ (·, ·, p) . (2.27)

Plugging (2.27) into (2.25) and neglecting higher order perturbations, I have

J
[
d̄+ δd̄

]
− J

[
d̄
]

≃

∫

Θ

〈(DF +DFl) [ m̄(·, p)] H [ m̄(·, p)]−1AT Am̄(·, p), δd̄ (·, ·, p)〉dp.
(2.28)

Then,

∇J
[
d̄
]
(·, ·, p) ≃ (DF +DFl) [ m̄(·, p)] H [ m̄(·, p)]−1 AT Am̄(·, p). (2.29)
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Thus, with (2.24), the gradient of the DS objective of problem (2.8) can be approxi-

mately written as

∇ml
JDS [ml ] ≃ DFl[ml]

T
(
DF +DF l

)
[ m̄[ml]] H[ml]

−1AT Am̄[ml], (2.30)

where H[ml] = H [ m̄ [do + Fl [ml ] ] ], and m̄ [ml ] is a simplified representation of

m̄ [do + Fl [ml ] ].

Given an updating direction φ,

JDS[ml + ξφ] = 1
2
〈Am̄[ml + ξφ], A m̄[ml + ξφ]〉

M

≈ 1
2
〈Am̄[ml] + ξDml

m̄[ml] φ,A m̄[ml] + ξDml
m̄[ml] φ〉M

= JDS[ml] + ξ〈ADml
m̄[ml] φ,A m̄[ml]〉M + 1

2
ξ2〈ADml

m̄[ml] φ,ADml
m̄[ml] φ〉M.

Let

Q(ξ) := JDS[ml] + ξ〈ψ,A m̄[ml]〉M + 1
2
ξ2〈ψ, ψ〉

M

, where

ψ = ADml
m̄[ml] φ = AH[ml]

−1
(
DF +DF l

)
[ m̄[ml]]

T DFl[ml]φ.

The ‘optimal’ step length ξ∗ that minimizes Q(ξ) is

ξ∗ = −
〈ψ,A m̄[ml]〉

〈ψ, ψ〉
,

which satisfies

dQ

dξ
(ξ∗) = 0.

In this work, ξ∗ is computed in each DS iteration as the initial step length for updating
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ml.

Algorithm Flow and Implementation

The proposed nonlinear differential semblance optimization (nDSO) proceeds as:

Nonlinear DSO:

• Initialization: set m̄0(x, ·) = m0
l (x), ǫ1, ǫ2, etc.

• DS Inversion Loop: for k = 0, 1, 2, . . .

1. Solve the extended sub-LS problem (2.19) for m̄k = m̄
[
mk

l

]
with

mk
l as starting model;

2. Compute Jk
DS = JDS

[
m̄k

]
.

If Jk
DS ≤ ǫ1J

0
DS, stop; else, continue;

3. Perform gradient computation and get an approximate gradient φk

as the updating direction. If ‖φk‖ ≤ ǫ2 ‖φ0‖, stop; else, continue;

4. Compute step length βk and let mk+1
l = mk

l + βkφk.

The above procedure mainly consists of two computational blocks:

1. Evaluation of JDS[ml].

This computation requires solution of the extended sub-LS problem (2.19) for

m̄[ml], and then computation of the value JDS[ml] = 1
2
‖Am̄[ml]‖

2, where

A := ∂m̄[ml]
∂p

in this work. Since this extended sub-LS problem is to fit data

(do+Fl[ml]), which contains the very low-frequency components down to 0 Hz,

one can use a homogeneous starting model and adopt the standard frequency

continuation strategy to solve the problem via a sequence of LS inversions for
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data with increasing frequency bands. Also, one can use ml as the starting

model and solve this problem with one least-squares inversion. Based on my

tests, both approaches lead to kinematically same results, due to the fact that

Fl[ml] is computed based on ml and thus has kinematics consistent with it.

For the sake of efficiency, the second approach is adopted in all the numerical

experiments shown later.

2. Calculation of the gradient ∇JDS[ml]. Given m̄[ml] = argminm̄∈M JLS[m̄], com-

putation of the gradient ∇JDS[ml] requires to:

(a) compute q1 = ATAm̄;

(b) solve a normal equation H[ml]q
2 = q1;

(c) compute ∇JDS[ml] ≈ DF [ml]
T
(
DF +DF l

)
[ m̄[ml] ] q

2.

Clearly, solving the normal equation

H[ml]q
2 = q1 (2.31)

takes the most amount of computing effort. An efficient preconditioner would

be of great value.
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Chapter 3

Numerical Experiments

This chapter consists of four sections. The first three sections present three numeri-

cal experiments to demonstrate nonlinear differential semblance inversion and make

comparisons with the traditional least squares approach. The last section presents

three extended LS inversions on different models with free surface to elaborate the

multiple suppression phenomena during LS inversion.

All the numerical tests in this chapter adopt the following two dimensional acoustic

model

1

κ

∂u

∂t
+∇ · v = f(x, z, t), (3.1)

1

b(x, z)

∂v

∂t
+∇u = 0, (3.2)

u ≡ 0, v ≡ 0, t < 0,

where u(x, z, t),v(x, z, t), b(x, z), κ(x, z), f(x, z, t) respectively stand for pressure, par-

ticle velocity, buoyancy, bulk modulus, and plane wave source. Let m := (κ, b) denote

43
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the model (parameter vector).

The above equation system defines the forward map

Ff [m] := Su, (3.3)

where S is a sampling operator, such as Su := {u(xr, zr, t)} in which (xr, zr) denotes

the coordinates of selected receivers.

This chapter adopts two types of plane wave source functions fl and fh, both of

which consist of thirty one plane-wave shots (shown in Figure 3.2) whose slownesses

are chosen so that their square values are evenly spaced. fh is the band-limited

source used to define F (i.e., F [m] := Ffh[m]) and generate the target data, and its

spectrum is like a band-pass filter with 5Hz and 45Hz respectively as the lower and

upper cutoff frequencies. fl is the complementary low-frequency source used to define

Fl (i.e., Fl[m] := Ffl[m]) and generate low-frequency data add-in for the extended

least squares inversion. The spectrum of fl is like a low-pass filter with 6Hz as the

upper cutoff frequency.

All the numerical experiments in this study were conducted with the inversion

package IWAVE++, a collection of C++ classes expressing a wrapper of IWAVE 1,

providing the fundamental computations (simulation, Born simulation and its adjoint

action), and accommodating both standard and extended inversions. Please refer to

Symes et al. (2011) for a detailed description of the design principles and a concrete

implementation of IWAVE++.

1IWAVE is a software framework for construction of regular grid finite difference and finite
element methods for time-dependents partial differential equations.
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3.1 DAM-LIKE THREE LAYERED MODEL WITH

ABSORBING SURFACE

This section shows a nonlinear differential semblance based inversion exercise on a

two-dimensional acoustic model with absorbing surface, constant density 2 g/cm3 and

three layer bulk modulus plotted in Figure 3.1. The acoustic velocities of the three

layers are respectively 1.5, 2.5 and 2 km/s. This experiment adopts the two plane

wave sources fl and fh shown in Figure 3.2.

0

0.2

0.4

z 
(k

m
)

0 2
x (km)

0.6 0.8 1.0 1.2
x104

KPa

Figure 3.1: Three-layer bulk modulus model (4500, 12500, 8000KPa) with constant
density(2 g/cm3) – the acoustic velocities: 1.5, 2.5, and 2.0 km/s

This inversion starts from the homogeneous model (4500KPa) and updates the

initial model via 10 differential semblance iterations, each of which contains an ex-

tended least-squares inversion via limited memory BFGS (LBFGS) method (Nocedal

and Wright, 1999) starting from the newly updated initial model. As described in the

previous chapter, in each differential semblance iteration, one can compute the differ-

ential semblance gradient via form (2.30). The most expensive and time consuming
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Figure 3.2: Band-limited and low-frequency plane wave sources with 31 slowness panels
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step of this computation is to solve a normal equation (2.31) to scale AT A ¯m[ml]

(i.e., ∇m̄JDS). After computing the gradient, one can adopt a line search strategy to

get searching steps and update the initial model, which is expensive because of the

necessity of extra evaluations of the differential semblance objective at trial models.

To reduce the computational cost, this experiment makes use of

g = −DF [ml]
T
(
DF +DF l

)
[ m̄[ml]] A

T Am̄[ml]

as the searching direction and adopts fixed searching step 0.5 in each differential

semblance iteration instead of performing line search along −∇ml
JDS. Note that this

kind of simplifications is just an initial effort towards reducing the computational

cost; to use this kind of simplifications for other models, one needs to make further

theoretical or numerical justifications to check if each searching direction is descent.

Figure 3.3 shows the final bulk-modulus model computed in the 1st differential

semblance iteration, the corresponding model-gather at the middle offset (1500(m),

and the updated initial model m2
l that will be used in the next differential semblance

iteration. Figure 3.4 plot the initial model m6
l used in the 6th differential semblance

iteration, the final bulk-modulus model computed in this iteration and the corre-

sponding model-gather at the middle offset. Figure 3.5 consists of the same set of

plots for the 10th differential semblance iteration. As shown, this differential sem-

blance inversion recovers the long scale structure and flattens model gathers. Figure

3.6 plots the vertical slices of all the initial and final models at the middle offset

(1500(m)). Figures 3.7 presents the target data, final predicted data and data resid-

ual after 10 differential semblance iterations. As a comparison, Figure 3.8 shows the

solution to a standard least squares inversion starting from the homogeneous model.
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As shown, in this experiment the proposed approach yields both a small data residual

and a good estimate of the long scale structure, which could not be achieved at the

same time via standard least squares inversion.
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Figure 3.3: Final model, its gather at middle offset, and updated initial model in the 1st DS-
iteration
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(a) Final model computed in the 1st DS-iteration
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(b) Gather of final model at the middle offset (1500(m)) in the 1st DS-iteration
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(c) Updated initial model in the 1st DS-iteration
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Figure 3.4: Initial model, final model and its gather at middle offset in the 6th DS-iteration
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(a) Initial model used in the 6th DS-iteration
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(b) Final model computed in the 6th DS-iteration
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(c) Gather of final model at the middle offset (1500(m)) in the 6th DS-iteration
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0

0.2

0.4

z (
km

)
0 2

x (km)

0.2 0.4 0.6 0.8 1.0 1.2 1.4
x104

KPa

(a) Initial model used in the 10th DS-iteration
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(b) Final model computed in the 10th DS-iteration

0

0.2

0.4

z (
km

)

-0.07 -0.05 -0.03 -0.01 0.01 0.03 0.05 0.07
sign(p)p^2  (s^2/km^2)

0.4 0.6 0.8 1.0 1.2 1.4
x104

KPa

(c) Gather of final model at the middle offset (1500(m)) in the 10th DS-iteration
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Figure 3.6: Vertical slices of initial and final models at x = 1500(m)
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Figure 3.7: Target data, final predicted data and data residual in the 10th DS-iteration
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Figure 3.8: Final model of LS inv starting from homogeneous model after 30 LBFGS iterations

3.2 DAM-LIKE THREE LAYERED MODEL WITH FREE

SURFACE

This section shows a nonlinear differential semblance based inversion with the same

problem setups as used in the previous section except that free surface is adopted in

this experiment. This inversion starts also from the homogeneous model (4500KPa)

and updates the initial model via three nonlinear differential semblance iterations,

each of which mainly consists of an extended least squares inversion starting from

the newly updated initial model, and the computation of updating direction and

step-length.

Figure 3.9 plots the gradient computed in the 1st extended least squares itera-

tion and the solution to the first extended least squares inversion after 60 LBFGS

iterations, which exhibits clearly moveouts due to the wrong kinematic information

provided by the current initial model m0
l . Also, this figure demonstrates that least
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squares inversion somehow is capable of suppressing multiple reflections, which make

it possible to measure primaries-only moveouts but multiple ghosts. Later, I will

present more numerical experiments to demonstrate that it is in fact general that

multiple reflections are suppressed via least squares inversion.

Figure 3.10 plots the initial model m2
l computed from the 2nd differential sem-

blance iteration, the solution m̄[m2
l ] to the extended least squares inversion in the

3rd differential semblance iteration starting from m2
l , and a gather of this solution at

the middle surface location x = 1.5 km. As one could see, long-scale model update is

achieved and the model gather is almost flat.

Figure 3.11 shows the middle slices at x = 1.5km of each ml computed during the

first three nonlinear differential semblance iterations. Figure 3.12 demonstrates the

data fitting performance of the extended least squares inversion in the 3rd differential

semblance iteration, whose relative root mean square error is about 15%. As shown,

the big chunk of anomaly has been recovered after three nonlinear differential sem-

blance iterations. Even with the occurrence of multiple reflections due to free surface,

the proposed approach yields a good estimate of the long scale structure as reducing

the data misfit and flattening the model gathers, which could not be achieved via ei-

ther standard least squares inversion or differential semblance variants based on Born

assumption.

Figure 3.13(a) is the stack of m̄[m2
l ], which could be viewed as a improved starting

model for standard FWI. To demonstrate this point, I did a standard FWI with

band-limited source fh and starting from the stacked model shown in Figure 3.13(a).

After 153 LBFGS iterations, this inversion stopped due to the satisfaction of one

of our minimization criteria, i.e., the relative gradient reduction is less than 1%.

Figure 3.13(b) shows the solution to this inversion, whose the relative root mean
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square error is about 6%. As a comparison, I run another FWI starting from the

homogeneous model (4500KPa). Figure 3.13(c) shows its solution after 30 LBFGS

iterations. Comparing to the previous one, this inversion only reduced the root mean

square residual to about 27% and hung there. Figure 3.14 presents a comparison of

their data fitting performance, where only the panels with slowness 0 are plotted for

the sake of clarity. Clearly, since the first FWI starts from a more accurate model, it

outperforms the second one in all aspects.

With the occurrence of multiple reflections due to free surface, this experiment

poses much more difficulties than the one shown in the previous section does. As

a result, in this experiment I have to compute the approximate gradient ∇ml
J via

solving the normal equation. The more complex the model, the more accurate solution

to the normal equation is necessary to guarantee the decency of searching direction. It

is an important future topic to investigate how the inexact solutions to the extended

least-squares inversion and normal equation affect the whole minimization procedure.

Until achieving at least a rough estimate of the accuracies one needs for solving

the extended least-squares inversion and the normal equation, one has to take the

cost of overly solve the two sub problems, which are so expensive that prevents the

application of this algorithm in more complex models.
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Figure 3.9: Migrated and Inverted bulk-modulus in the 1st DS-iteration
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Figure 3.10: Initial and final models in the 3rd DS iteration
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Figure 3.11: Middle slices of mk

l
(k = 0, 1, 2, 3)
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Figure 3.12: Top, target data; Middle, predicted data from m̄[m2

l
]; Bottom, data residual (0

slowness panels)
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Figure 3.13: Initial and final models of the LS inversion based on the final model generated by DS
inversion
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Figure 3.14: Top, target data; Middle, data residual for LS inv from m̄[m2

l
] stack; Bottom, residual

for LS inv from m0

l
(0 slowness panels)
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3.3 STEP-LIKE THREE LAYERED MODEL WITH

FREE SURFACE

This section shows another nonlinear differential semblance based inversion on the

three-layer model shown in Figure 3.15 with free surface. The acoustic velocities for

the three layers are respectively 1.5, 2.5 and 3.0 km/s. The same source time functions

fl and fh are used (plotted in Figure 3.2).
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Figure 3.15: Three-layer bulk modulus model (4500, 12500, 18000KPa) with constant
density(2 g/cm3) – the acoustic velocities: 1.5, 2.5, and 3.0 km/s

This inversion starts from the homogeneous model (4500KPa) and updates the ini-

tial model via three nonlinear differential semblance iterations, each of which mainly

consists of an extended least squares inversion starting from the newly updated initial

model, and the computation of updating direction and step-length. Figure 3.16 plots

the gradient computed in the 1st extended least squares iteration and the solution to

the first extended least squares inversion after 60 LBFGS iterations, which exhibits

clearly moveouts due to the wrong kinematic information provided by the current
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initial model m0
l . Figure 3.16 also demonstrates that least squares inversion some-

how is capable of suppressing multiple reflections, which make it possible to measure

primaries-only moveouts but multiple ghosts.

Figure 3.17 plots the initial model m2
l used in the 3rd differential semblance it-

eration, the solution m̄[m2
l ] to the extended least squares inversion in the third dif-

ferential semblance iteration starting from m2
l , and a gather of this solution at the

middle surface location x = 1.5 km, which is almost flat. Figure 3.18 shows the middle

slices at x = 1.5km of each ml computed during the first three nonlinear differen-

tial semblance iterations. As one could see, long-scale model updates are achieved.

Figure 3.19 demonstrates the data fitting performance of the extended least squares

inversion in the 3rd differential semblance iteration, whose relative root mean square

error is about 11.4%. Figure 3.20(a) is the stack of m̄[m2
l ]. As shown, the big chunk

of anomaly has been recovered after three nonlinear differential semblance iterations.

Starting from the stacked model shown in Figure 3.20(a) , I run a standard FWI

with band-limited source fh. Figure 3.20(b) shows the solution to this inversion after

60 LBFGS iterations, whose the relative root mean square error is about 14%. As

a comparison, I run another FWI starting from the homogeneous model (4500KPa).

Figure 3.20(c) shows its solution after 60 LBFGS iterations. Comparing to the pre-

vious one, this inversion only reduced the root mean square residual to about 27%

and hung there. Figure 3.21 presents a comparison of their data fitting performance,

where only the panels with slowness 0 are plotted for the sake of clarity. Clearly,

since the first FWI starts from a more accurate model, it outperforms the second one

in all aspects.

In contemporary imaging or inversion practices, multiple reflections are treated as

noises and have to suppressed during pre-processing procedure. While in the previous
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Figure 3.16: Migrated and Inverted bulk-modulus in the 1st DS-iteration
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(b) Inverted bulk-modulus in 1st DS-iteration
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Figure 3.17: Initial and final models in the 3rd DS iteration
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Figure 3.18: Middle slices of mk

l
(k = 0, 1, 2, 3)
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two experiments, the proposed algorithm treats multiple reflections as meaningful

information as other data. This owes to the fact that least squares inversion is capable

of suppressing multiple reflections. I will demonstrate this fact in the next section.
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Figure 3.19: Top, target data; Middle, predicted data from m̄[m2

l
]; Bottom, data residual (0

slowness panels)
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Figure 3.20: Initial and final models of the LS inversion based on the final model generated by DS
inversion
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(c) Final model of LS inv starting from homogeneous model
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Figure 3.21: Top, target data; Middle, data residual for LS inv from m̄[m2

l
] stack; Bottom, residual

for LS inv from m0

l
(0 slowness panels)
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3.4 SUPPRESSING MULTIPLE REFLECTIONS WITH

LEAST-SQUARES INVERSION

This section shows three inversion experiments with free surface and different models

to demonstrate that the extended least squares inversion is capable of suppressing

multiple reflections.

The first inversion experiment employs a 2D acoustic model with free surface,

constant density 2 g/cm3 and four layer bulk modulus plotted in Figure 3.22. The

acoustic velocities of the four layers are respectively 1.5, 2.5, 3.0 and 3.5 km/s. This

inversion starts from the homogeneous model (4500KPa) and consists of 30 LBFGS

iterations. Clear multiple reflections are observed in the first LS gradient (i.e., the mi-

grated image with respect to homogeneous background) and its middle offset (3000m)

gather shown in Figure 3.23. Those multiple reflections are substantially suppressed

during this extended LS inversion, which is shown in the final LS solution and its

middle offset gather plotted in Figure 3.24.

The second inversion experiment employs a 2D acoustic model with free surface,

constant density 2 g/cm3 and three dipped-layer bulk modulus plotted in Figure 3.25.

The acoustic velocities of the three zones are respectively 1.5, 2.5 and 2.0 km/s. This

inversion starts from the homogeneous model (4500KPa) and consists of 30 LBFGS

iterations. Similar phenomena of multiple suppression is observed. Clear multiple

reflections are observed in the first LS gradient (i.e., the migrated image with respect

to homogeneous background) and its middle offset (3000m) gather shown in Figure

3.26. Those multiple reflections are substantially suppressed during this extended LS

inversion, which is shown in the final LS solution and its middle offset gather plotted

in Figure 3.27.
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Figure 3.22: Four-layer bulk modulus model (4500, 12500, 18000, and 245000KPa) with constant
density(2 g/cm3) – the acoustic velocities: 1.5, 2.5, 3.0 and 3.5 km/s

0

0.2

0.4

0.6

0.8

1.0

z (
km

)

0 2 4 6
x (km)

0.5 1.0 1.5 2.0
x104

KPa



73

Figure 3.23: Gradient in 1st LS iteration and its gather at the middle offset
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Figure 3.24: LS solution after 30 LBFGS iterations and its gather at the middle offset

0

0.2

0.4

0.6

0.8

1.0

z (
km

)

0 0.03 0.05
slowness square  (s^2/km^2)

3000 4000 5000 6000
KPa

(a) LS solution after 30 iterations

0

0.2

0.4

0.6

0.8

1.0

z 
(k

m
)

-0.05 -0.03 -0.01 0.01 0.03 0.05
sign(p)p^2  (s^2/km^2)

3000 4000 5000 6000
KPa

(b) Gather of the final inverted model at the middle offset
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Figure 3.25: Dipping-layer bulk modulus model (4500, 12500, and 8000KPa) with constant
density(2 g/cm3) – the acoustic velocities: 1.5, 2.5, and 2.0 km/s
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Figure 3.26: Gradient in 1st LS iteration and its gather at the middle offset
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Figure 3.27: LS solution after 30 LBFGS iterations and its gather at the middle offset
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The third inversion experiment employs a 2D acoustic model with free surface, con-

stant density 2 g/cm3 and dome bulk modulus model plotted in Figure 3.28. Starting

from the homogeneous model (4500KPa), this inversion consists of 30 LBFGS itera-

tions. Clear multiple reflections are observed in the first LS gradient (i.e., the migrated

image with respect to homogeneous background) and its middle offset (3000m) gather

shown in Figure 3.29. Those multiple reflections are substantially suppressed during

this extended LS inversion, which is shown in the final LS solution and its middle

offset gather plotted in Figure 3.30.

As a summary, the inversion experiments seem to suggest that it is in fact general

that extended LS inversion is capable of suppressing multiple reflections. This feature

of LS inversion makes it possible to measure primaries-only moveouts of the solution to

an extended least-squares inversion but multiple ghosts, which definitely contributes

to the working of proposed algorithm.
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Figure 3.28: Dome bulk modulus model
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Figure 3.29: Gradient in 1st LS iteration and its gather at the middle offset
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Figure 3.30: LS solution after 30 LBFGS iterations and its gather at the middle offset
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Chapter 4

Discussion and Conclusion

In this thesis, I described and examined a nonlinear differential semblance optimiza-

tion approach to waveform inversion for reconstructing the subsurface velocity model

from reflection recordings. Usually, this type of data does not contain the very low

frequency content, nor transmitted energy that is often present in large offset data

acquired in wide-angle seismic surveys. Due to the high computational cost of gener-

ating the synthetic data, waveform inverse problem dictates the use of local methods

based on the calculation of gradient-related descent direction of the misfit functional.

The traditional nonlinear least squares approach can’t recover either the long or

the medium scale structures, because of the local minima issue due to the interaction

of the data spectrum incompleteness and the non-linearity of the least squares misfit

functional with respect to model (especially to the low wavenumber content).

On the other hand, Migration velocity analysis, a widely adopted approach in

industry, is capable of correcting velocity model at long scales. It uses prestack

depth migration to produce an image volume depending on redundant acquisition

83
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parameters and corrects the velocity via analyzing the coherence (semblance) condi-

tion of image volumes. With appropriate choice of coherence measurement objective

functional, differential semblance strategy turns migration velocity analysis into an

automated optimization procedure, for which local methods exhibit little tendency to

stagnate at non-global minima. Since prestack depth migration is based on Born or

single-scattering approximation (linearization assumption), migration velocity analy-

sis could not account for nonlinear effects, such as multiple reflections.

Based on the extended modeling concept, this work provides a nonlinear gener-

alization of migration velocity analysis that combines the ability of full waveform

inversion to account for nonlinear physical effects, such as multiple reflections, with

the tendency of differential semblance based migration velocity analysis to avoid lo-

cal minima. In Chapter 2, I elaborate the reformulation of waveform inversion via

the extended modeling concept as a constrained optimization problem aiming to find

an extended model from the feasible set of models that satisfy data fitting criterion

to minimize the coherence condition. Without reparametrizing the feasible set, the

new problem is as difficult as the original one. The main contribution of this work

is to re-parametrize the extended model space with the very low-frequency data dl

and associate the low-frequency data add-in with a controlling model ml ∈ M via

an extra constraint dl = Fl [ml ]. Thus, such a reformulation of waveform inversion

adopts both the gather-flattening concept from MVA and the data-fitting concept

from FWI. In this approach, ml plays the same role as the macro model in migration

velocity analysis; but no linearization and scale separation assumptions are required

by formulation.

In Section 2.2, I examined such a reparametrization with scan tests, which show

that the proposed differential semblance objective is convex along the scanning lines
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in the low-frequency data space Dl. Further, the numerical experiments in Chapter 4

demonstrate that starting form a crude initial guess, the proposed algorithm success-

fully infers long scale updates and converges to a global minimizer or at least provides

an excellent initial estimate for standard FWI. As I have mentioned in Chapter 1, be-

sides addressing the local minima issue, the proposed approach also aims to account

for multiple reflections. The numerical experiments in Section 4.2 and 4.3 show that

even with the present of multiple reflections due to free surface, the proposed ap-

proach successfully recover long scale structures and produce excellent initial models

for standard FWI. On one hand, the successful experiments with free surface should

thank to the fact that the formulation of this approach doesn’t make any lineariza-

tion assumption so that it is capable to account in a natural way for nonlinear effects.

On the other hand, the suppression of multiple reflections during LS inversion is an

important factor in the working experiments. In Section 4.4, I present three extended

least squares inversion exercises on increasingly complex models, which suggest that

it is in fact general that the extended least squares inversion is capable of scrub-

bing multiple reflections given enough iterations. This facilitates the measurement of

primaries-only moveouts and contribute the most to the success of this strategy for

the experiments with free surface. Hence, this algorithm in fact updates the velocity

by flattening primaries-only gathers obtained via nonlinear inversion.

When it comes to the cost of this algorithm, it is expensive. Fortunately, there

are strategies to reduce the computational cost. More specifically, this nonlinear

differential semblance optimization consists of a few differential semblance iterations

(3 to 7 DS-iterations computed in the presented experiments), in which the main

computations are one extended least-squares inversion, gradient computation, and

step-length computation. Various strategies exist or need to be studied in the future
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to improve the efficiency of this approach. For example, as shown in the numerical

experiments, the larger the incidence angle of the plane wave shot, the more detectable

the moveouts are. Thus, to reduce the cost of extended least-squares inversion, one

could only select a small subset of the acquisition parameter to extend the model and

do inversion or sample the parameter in a more efficient way. During the gradient and

step-length computation, one needs to solve a normal equation or a linear least-squares

problem. To reduce the cost, one may refer to various approaches, such as, pre-

conditioning, optimal scaling, etc., all of which are active research topics and worth

of further effort. As contrast to reduce the computational cost, some of my other

experiments observe that the more complex the model, the more accurate solutions

to the extended LS problem and normal equation are needed to get descent directions.

This leads to an important question: how accurately the extended LS problem and

Normal equation need to be solved to guarantee decency? It is an critical future

topic to investigate how the inexact solutions to the extended least-squares inversion

and normal equation affect the whole minimization procedure. Until achieving at

least a rough estimate of the accuracies needed for solving the extended least-squares

inversion and the normal equation, one would have to overly solve those two expensive

sub problems, which is another reason besides the limited computational resource that

preventing the application of this algorithm to more complex models.

Another limitation of this algorithm is more fundamental. As this algorithm is

based on surface oriented extension, it suffers from the common defect shared by

all the surface-oriented image volume constructions, in that kinematic artifacts may

occur when the velocity model is sufficiently complex such that there are multiple

paths in wavefieds that connecting source, receiver, and scattering points. The pres-

ence of these artifact can easily be as strong as the events corresponding to actual
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reflectors, and thus restrict the use of this type of extensions in complex model.

Hence, depth-oriented extension may be more appropriate in complex areas and thus

in formulating the nonlinear differential semblance optimization for waveform inver-

sion, which is discussed in Symes (2008). But, due to the enormous computational

complexity of modeling for depth oriented extension, this work adopts surface ori-

ented extension in order to examine the key low-frequency based reparametrization

strategy, which is a general concept that will be used in a nonlinear DSO based on

depth-oriented extension in future.
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APPENDIX A

CALCULATION OF DS GRADIENT VIA ADJOINT

STATE METHOD

Recall that the proposed DS optimization problem is

min
η(p,ω)

(p,ω)∈D̃l

JDS :=
1

2
‖A[m̄]‖2

such that
p∈[0,pmax]

∥∥Fw[m̄](p, t)− do(p, t)− dl[η](p, t)
∥∥ ≃ 0,

where A[m̄] := ∂m̄
∂p

, D̃l := {(p, ω) : 0 ≤ p ≤ pmax, |ω| ≤ ωl}, p is slowness, dl are the

artificial low-frequency controls that make up the missing very low-frequency data.

Now let’s compute the gradient ∇ηJDS. Assume all the derivatives in the following

computation exist. The computation consists of three steps.

Step 1. Compute δηdl

Recall that

dl(p, t) =

∫

|ω|≤ωl

dω e2πiωtη(p, ω).

Applying regular perturbation to the above equation, we have

δdl(p, t) ≈

∫

|ω|≤ωl

dω e2πiωtδη(p, ω) = Y δη(p, ω) (A-1)

Step 2. Compute δdlm̄

Let

E[m̄, dl] :=
1

2

∥∥Fw[m̄](p, t)− do(p, t)− dl[η](p, t)
∥∥
D
.
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The first order development of E gives:

δE =
1

2

{∥∥Fw[m̄+ δm̄]− do − dl
∥∥2

D
−

∥∥Fw[m̄]− do − dl
∥∥2

D

}

≈ 〈Fw[m̄]− do − dl, DFw[m̄]δm̄〉D

= 〈DFw[m̄]T
(
Fw[m̄]− do − dl

)
, δm̄〉M.

The first order necessity of the least-squares subproblem gives:

DFw[m̄]T
(
Fw[m̄]− do − dl

)
= 0.

Applying regular perturbation to the above equation, we have

DFw[m̄]T
(
DFw[m̄]δm̄− δdl

)
≈ 0,

i.e.,

DFw[m̄]TDFw[m̄]δm̄ ≈ DFw[m̄]T δdl.

Thus,

Ddlm̄ =
(
DFw[m̄]TDFw[m̄]

)†
DFw[m̄]T (A-2)

δdlm̄ = Ddlm̄δdl (A-3)

Step 3. Compute δm̄JDS
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The first order development of JDS gives:

δm̄JDS =
1

2

{∥∥∥∥
∂m̄ + δm̄

∂p

∥∥∥∥
2

M

−

∥∥∥∥
∂m̄

∂p

∥∥∥∥
2

M

}

≈ 〈
∂m̄

∂p
,
∂δm̄

∂p
〉M

= −〈
∂2m̄

∂p2
, δm̄〉M +

∫
dz

(
∂m̄

∂p
δm̄

)∣∣∣∣
pmax

0

= −〈
∂2m̄

∂p2
, δm̄〉M.

Thus,

δηJDS = −〈
∂2m̄

∂p2
, δm̄〉M

= −〈
∂2m̄

∂p2
, Ddlm̄δdl〉M

= −〈(Ddlm̄)T
∂2m̄

∂p2
, δdl〉D

= −〈(Ddlm̄)T
∂2m̄

∂p2
, Y δη〉D

= −

∫

|ω|≤ωl

dω Y T (Ddlm̄)T
∂2m̄

∂p2
δη

Since

δηJDS =

∫

|ω|≤ωl

dω∇ηJDSδη,

∇ηJDS = Y T (Ddlm̄)T
∂2m̄

∂p2
. (A-4)
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APPENDIX B

ONE-DIMENSIONAL LEAST-SQUARES INVERSION

In this appendix, I demonstrates the continuum low-frequency inversion procedure

used in Section 2.2 to solve one-dimensional least-squares problems.

Recall that the 1-D wave equation

1

v(z)2
∂2U

∂t2
−
∂2U

∂z2
= ω(t)δ(z),

together with appropriate initial and boundary conditions defines a forward map

Fω[v] :=
∂U
∂t
.

The least-squares problem is

min
v

1

2
‖Fω[v]− d‖2 ,

where ω(t) and d are known, and both of them have the very low-frequency infor-

mation down to 0 Hz. Hence, I adopt the following procedure to solve the above

least-squares problem.

Continuum Low-Frequency Inversion:

• Split the whole inversion into multiple runs for source and data with increasing

frequency bands , which is achieved by applying appropriate low-pass filters to

both source and data;

• Regard the final estimate for the current run as the initial guess for the next

run.
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The following inversion for a four-layer model demonstrates the above procedure.

The figure Figure B-1 shows the spectra of the given source and data. I applied four

low-pass filters to the source and data, and generate four pairs of source and data with

increasing frequency bands. The spectra of those four filters are shown in Figure B-2.

The spectra of the four data with increasing frequency bands are shown in Figure B-3.

Figure B-4 presents the models got from the four continuum low-frequency inversions.

Figure B-5 is the model got from the final inversion, which used the whole band of

the given source and data. Using only one inversion for the given data and source, I

got the model shown in Figure B-6, which took much more computing time than the

continuum low-frequency procedure, but led to much worse result. The data fitting

performance for the two different inversion procedures is provided in Figure B-7.
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Figure B-1: Source Spectra (left one) and Data Spectra (right one)
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Figure B-2: Four low-pass filters used to filter the given source and data to
provide the source and data with increasing frequency bands, which were used in the
four continuum low-frequency inversions).
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Figure B-3: Spectra of the data used in the four continuum low-frequency inversions
(Left-top: first run, Right-top: run 2, Left-bottom: run3, Right-bottom: run4)
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Figure B-4: Velocity models resulting from the four continuum low-frequency in-
versions (Left-top: first run, Right-top: run 2, Left-bottom: run3, Right-bottom:
run4)

0 0.5 1 1.5 2 2.5 3 3.5 4
1.5

2

2.5

3

3.5

4

Depth z (km)

V
el

oc
ity

 (
km

/s
)

Velocity Models (OLS Final Inv) 

 

 v
true

v
init

v
inv

Figure B-5: Velocity model resulting from the final inversion, which used the source
and data with the whole band
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Figure B-6: Velocity Models resulting from the one-inversion procedure, which con-
sists of only one inversion that used the source and data with the whole band.
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figure is for the continuum low-frequency inversion procedure, the right one is for the
one-inversion procedure.
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