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1 Introduction 

In this paper we consider the large time behaviour of solutions of the convection­
dispersion equation with nonlinear capacity 

o ou o2u 
-{u + uP} + - - D- = 0 with (x,t) ER x R+, 
ot ox ox 2 ' 

( 1.1) 

subject to the initial condition 

u(x,O) = u0(x) for x ER. ( 1.2) 

Here p and D are positive constants and u0 is a nonnegative function satisfying the 
finite mass property 

( 1.3) 

Problem (1.1)-(1.2) arises as a model for the one-dimensional transport of a solute. 
with scaled concentration u ~ 0, through a porous medium. In this model it is as­
sumed that the solute undergoes equilibrium adsorption with the porous matrix. In 
equation ( 1. 1) the term uP denotes the scaled adsorbed concentration. The integrabil­
ity condition (1.3) implies that initially the total mass, both in solution and adsorbed. 
is finite. 
This work is organised as follows. 
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A .1. Error analysis for p = 3 and p = 2 
A.2. Solutions to a boundary value problem 
A.3. The solution for D = 0 when p = 1/2 and p = 3/2 

In Section 2 we discuss the physical background of the problem and derive equation 
( 1. 1). In Section 3 some analytical properties of solutions are given, such as the oc­
currence of free boundaries when p E (0, 1) and the large time behaviour when the 
initial distribution satisfies either u0 ( -oo) = 1, u0 ( +oo) = 0 ( convergence towards 
a traveling wave) or u0 ( -oo) = 0, u0 ( +oo) = 1 ( convergence towards a rarefunction 
wave). We also compare our findings with the analytical results of Escabedo, Vazquez 
& Zuazua [1]. Next, in Section 4, the asymptotic form for pulse type solutions satis­
fying 

(u + uP)(·, t) E L1(R) for all t > 0 ( 1.4) 

is considered. We discuss first the outer solutions in Section 4.1 and thereafter, in 
Section 4.2, the boundary layer solutions which occur for O < p < 1 and 1 < p < 2. 
We also compare the asymptotic profiles with the numerical solution of problem 
(1.1)-(1.2). The algorithm which is discussed in Section 5, is based on a higher-order 
Godunov approach, which makes it possible to compute solutions of (1.1) with D 
small, or even with D = O.Some concluding remarks are given in Section 6. 
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2 The model 

In this Section we formulate a model for the one-dimensional transport of a one­
species contaminant through a porous medium. To begin with, we consider the flow 
of an incompressible fluid through a homogeneous and saturated porous medium. \:Ve 
shall assume that the flow is steady, macroscopically one dimensional and directed 
along what is chosen to be the positive x-axis. It is characterized by the volumetric 
flux, also known as specific discharge, which will be denoted by q( m / s). 

In the fluid a one-species solute is present at tracer level concentration C(mol/m3
). 

This means that the flow is independent of the solute distribution. We shall therefore 
take q to be a known positive constant. 

If no adsorption reactions occur between the solute and the surrounding solid part 
of the porous medium, then the transport is determined by convection, molecular 
diffusion and mechanical dispersion, see for instance Bear [2] or Freeze & Cherry [3]. 
However, if adsorption reactions do take place, this has to be taken into account 
when describing the transport process. In this reactive case we denote by S (mol/kg. 
porous material) the adsorbed concentrations. If the boundary and flow conditions 
are such that both C and S can be assumed to be constant in planes perpendicular 
to the x-axis, implying C = C(x, t) and S = S(x, t), then mass conservation yields 
the expression (see for example Bolt [4]). 

a a ac 
-{0C + pS} + -{qC- D-} = 0, ot ax ax (2.1) 

where t and x denote, respectively, time and space coordinates. Here 0( - ) is the 
porosity of the porous material, p (kg/m3

) its bulk mass density and D(m2/s) the 
coefficient of hydrodynamic dispersion, which is the sum of molecular diffusion and 
mechanical dispersion. 
All coefficients in (2.1) can be considered as being constant and positive. The term 
p~; in (2.1) represents the rate of change of concentration on the porous matrix due 
to adsorption or desorption. 

Now we consider the adsorption process. In general, the relation between the con­
centration in the fluid and the adsorbed concentration is described by a first order 
ordinary differential equation of the form 

as at= kf(C, S), (2.2) 
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where k > 0( s-1
) is the rate parameter and f ( mol/kg. porous material) the reaction 

rate function. In Van Duijn & Knabner [5] general rate functions are considered some 
of which are discussed below together with some of their properties. 
If we can solve the equation 

J(C, S) = 0 (2.3a) 

in the form 
(2.3b) 

then we call '1/J the adsorption isotherm. In many cases, rate functions and isotherms 
satisfy the following monotonicity properties 

f(C,S) > (<)0 iff S < (>)'1/J(C), (2.4b) 

'1/J(O) = 0, 
and 'ljJ strictly increasing and smooth for C > 0 } 

(2.4b) 

The isotherms 'ljJ are sometimes classified according to their behaviour near C = 0. 
We say 

1. 'ljJ is of Langmuir ( L-type) if 

'ljJ is strictly concave near C = 0 and '1/J'(O+) < oo; 

2. 'ljJ is of Freundlich (F-type) if 

'ljJ is strictly concave near C = 0 and '1/J'(O+) = oo; 

3. 'ljJ is of convex (5-type) if 

'ljJ is strictly convex near C = 0. 

The distinction between these classes is of importance, because different isotherms 
may give different transport behaviours for the solutes. In mathematical terms, the 
regularity and global behaviour of the solutions may be different if '1/J is taken from 
these different classes. This is clearly the case when considering the asymptotic 
profiles in Sections 4 and 5. 
Well-known examples of isotherms are 

1. the Langmuir isotherm where 

(2.5) 

and 
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2. the Freundlich isotherm where 

(2.6) 

In (2.6) the isotherm is of F-type if O < p < l and of S-type if p > 1. The case 
0 < p < l occurs in many practical situations, although values for which p > l have 
been used, (see for example Van Genuchten & Cleary [6] ). 

In this paper we restrict ourselves to the case of fast reactions or equivalently equi­
librium adsorption. Mathematically this is achieved by letting k ---t oo in (2.2). As 
as result we have 

S = 1/J(C) (2.7) 

see also (2.3). The convergence process in which k ---t oo, is discussed in detail 
by Knabner [7] and Van Duijn & Knabner [8]. From a physical view point this 
limit implies that the adsorption reactions are very rapid in comparson with the flow 
velocity, so that the adsorbed concentration instantaneonsly follows the variations of 
the solute concentration. 
We also restrict ourselves with respect to the choice of the isotherm. To be specific we 

shall consider the case of Freundlich isotherms only , whence the transport equation 
(2.1) becomes 

o o oc 
ot{0C + pK3CP} + ox {qC- D ox}= 0. (2.8) 

We shall consider solutions of this equation in the half space 

Q = {(x.t): -oo < x < oo,t > O}, 

and impose the initial condition 

C(x,O) = Co(x) 

at t = 0. To eliminate the constants from (2.8) we apply the following scaling and 
redefinition: 

= 1 : { u : = C t : = 2 t (1 + p~ 3 tit 
p X := X D := -

q 

{ 
U ·-(PK)P.:_1 C t·-'lt 

p =I= 1 : .- 0 .- 0 
X := X D = !2 

q 

This leads to the initial value problem ( for all p > 0) 

(IV P) Bt u u Bx - Bx2 - or x, E 
{ 

B { + P} + Bu DB
2

u _ 0 f ( t) Q 

u(x,O) = u0(x) for x ER 
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(2.10) 

(2.11) 
(2.12) 



where 

{ 
Co(x) 

Uo(x) = (P~a)/-1co(x) 
for p = 1, 

for p-/= 1. 

We shall consider the large time behaviour of solutions of Problem (IVP) for the case 
where u0 is a pulse satisfying 

u0 (±oo) = 0, uo ~ 0(¢ 0) on R. 

In particular we shall require that 

(2.13) 

so that the total mass of adsorbed and dissolved concentration is finite. 

We note that we could have chosen a scaling which also eliminates the constant D 
from equation (2.11). To be be specific 

to give 

X 
x·- -.- D 

t 
t ·- -.- D (2.14) 

(2.15) 

However, keeping Din front of the second derivative allows us to consider the hyper­
bolic limit D l 0. We come back to this point in the concluding remarks of Section 
6. 

We finally observe that in many cases of practical interest P~3 > > 1. This means 
that the implication of the scaling is quite different for p < 1, p = 1 and p > 1. One 
has to bear this in mind when comparing solutions of Problem (IVP) for different 
values of p. 
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3 Some analytical remarks 

We first set 
/3(u) = u + uP for u 2". 0, (3.1) 

and write equation (2.11) as 

a au a2u 
at/3(u)+ ax - ax2 =O. (3.2) 

We have put D = 1 in (3.2) which, as we note from (2.19), can be done without loss 
of generality. Equation (3.2) is a nonlinear second order equation of parabolic type. 
Since /3'( u) may tend to infinity when u tends to zero (p < 1) , equation (3.2) can 
degenerate at points where its solution vanishes. Therefore we cannot expect Problem 
(IVP) to have classical solutions for values of p belonging to the interval (0, 1). 
Writing 

w = /3(u) and u = 'P(w) (3.3) 

where 'P = ;3-1 denotes the inverse of the function /3, we obtain for w the transformed 
problem 

{ 

8w + o<p(w) - 82 cp(w) - 0 
at ox 8x2 -

(IV P') 

w(x,0) = wo(x) := uo(x) + ub(x) 

for (x, t) E Q 

for x ER 

( 3.4) 

(3.5) 

The existence and uniqueness theory for Problem ( IV P') is well-known and can be 
found in Gilding [9]. We can therefore use these results to make some statements 
about the solvability of Problem (IVP) for u. If we assume u0 , and hence w0 , is such 
that 

uo E C(R) : 

there exist numbers -oo < a 1 < a2 < oo such that 

{ 

0 -OO < X :::; a1 , 

uo( x) = > 0 a1 < x < a2 

0 a2:::; X < 00. 

Then we can make the following statements. 

(3.6a) 

(3.6b) 

If p 2". 1 then Problem (IVP) has a unique classical solution u E C00
( Q) n C( Q) which 

satisfies u > 0 in Q; 
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If p E (0, 1) then Problem (IVP) has a unique weak ( distributional) solution u E C( Q). 
At points where u > 0, the solution is smooth (i.e. u E C 00

( { u > 0} )) and satisfies 
the equation classically. Moreover, there exist functions (for i = 1, 2) s; E C([0, oo) ), 
satisfying si(0) = ai and -oo < s1(t) < oo for all t > 0, which form the support of 
u in the x, t plane; i.e. u(x, t) > 0 if and only if x E (s 1(t), s2 (t)), for every t 2: 0. 
The function s; are called interfaces or free boundaries and they occur only in the 
degenerate case p E (0, 1 ). 

In this paper we are interested in the large time behaviour of solutions of Problem 
(IVP). First we make some statements about previous work on equation (3.2) which, 
to the authors' knowledge has dealt exclusively with initial data satisfying 

uo(±oo) = U± (3.7) 

where either 
0 :S u_ < U+ < 00 (3.8a) 

or 
00 > u_ > U+ ~ 0. (3.9b) 

We note that (3.2) has travelling waves solutions u(x, t) = f(x - ct), which satisfy 
f(±oo) = U±, where u+ and u_ satisfy (3.8a) if p > 1 and (3.86) if p E (0, 1) and 
where the wave speed c is given by 

U+ - U-
c - ------

- j3(u+) - j3(u_)' 
( 3.10) 

The stability of these travelling waves follows from a result of Osher & Ralston [10]. 
They employ a contraction property of the semigroup associated with the transformed 
problem (IV P') to prove convergence, as t --t oo in L1 ( R), towards a suitably shifted 
travelling wave. 

The large time behaviour for the cases where no travelling waves exist, i.e. 

p > 1 and (3.8b) (3. lla) 

or 
p E (0, 1 and (3.8a) (3.llb) 

was considered by Van Duijn & De Graaf [11]. For this parameter choice, the con­
taminant profiles become flatter as time increases. In fact it was shown that /3 ( u(-, t)) 
converges to the transformed solution u* of the reduced hyperbolic problem 

8 8u 
ot /3( u) + OX = 0 for ( x · t) E Q (3.12a) 
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u(x 0) = { u_ x < 0 
' U+ X > 0 

(3.12b) 

The function u* is a rarefaction wave with u* = u*(x/t). Since /3 is given by (3.1), 
it is easy to obtain explicit expressions for u*. The convergence analysis gives an 
estimate for decay rate of ll/3(u(-,t))- /3(u*(-,t))IIL""(R) as t----+ oo. 

We now make some remarks about the solution to Problem (IVP) and the procedures 
used to find the asymptotic solutions. We first note that the solutions have mass 
conservation, that is for all t > 0 

l{u + uP}(x,t)dx = l_(u0 + ug)(x)dx =: M. 

This property, together with scaling arguments, plays a crucial role in establishing 
the asymptotic solutions. The existence of a second integral invariant 

(3.13) 

was pointed out by us by Dr. J.R. King. We refer to this later in the paper. 

In constructing the asymptotic solutions we use the following intuitive ideas. In the 
degenerate case, p E (0, 1 ), fort----+ oo we may write 

and consider the simplified equation 

o(uP) OU o2u 
fit + ox - ox 2 = O (3.14) 

to obtain the asymptotic limit. This procedure is formalized in detail m Section 
(4.1.3). 

When p = I, we have the linear equation 

OU OU 82 u 
2 ot + OX - 8x 2 = 0 (3.15) 

which has the asymptotic profile 

M { 1 t 2 } u(x · t)----+ --exp --(x - -) as t----+ oo. .../2iri 2t 2 
(3.16) 

When p > I the situation becomes more subtle. Here we first transform to the moving 
coordinates 

t = t and e = X - t ( 3 .1 7) 
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which gives the equation, now with nonlinear convection, 

(3.18) 

Next we write 

as t ---+ oo and obtain the nonlinear convection equation 

(3.19) 

whence we distinguish the following cases. 

1 < p < 2. Here convection dominates with respect to diffusion and the asymptotic 
profile will result in half an N-wave, see Section 4.1.2. 
p = 2. Here convection and diffusion balance and (3.19) is in fact Burgers' equation 
for which a limit profile exists in the form of a self-similar solution. It is also given 
in Section 4.1.2. 
p > 2. Here the diffusion term dominates convection. This fact is reflected in the 
asymptotic profiles which now are symmetrical self-similar solutions of the heat equa­
tion, see Section 4.1.1. 

The asymptotic forms discussed above are called outer solutions. We note here that 
convergence (in the L1 sense) of solutions of (3.19) towards these outer solutions for 
p > l was proved by Escabedo, Vasquez & Zuazua [1] and Escabedo & Zuazua[12 
]. For 1 < p < 2 there are two defects associated with the outer solutions. Firstly 
they are not continuous and secondly do not have unbounded support. It is necessary 
therefore to supplement the outer solutions by boundary layer solutions which are 
valid in thin regions near points of discontinuous behaviour of the outer solution. 
Except for one case, we can solve the boundary layer equations explicitly. These 
solutions can be used to do two things: first to render the the outer solution continuous 
and secondly to give the solution unbounded support. Boundary layers have also to 
be inserted when O < p < l to smooth out the outer solution and locate the position 
of the free boundaries which occur since the outer solution predicts, erroneously, a 
stationary interface at one end of its support. 
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4 The asymptotic solution 

4.1 The outer solutions 
In this Section we construct the large time solution of the scaled equation 

8 2u OU 
fJx2 - 8x' p > O,(x,t) E Q ( 4.1) 

with pulse type initial conditions satisfying (2.13). Our approach is to a large extent 
intuitive in the sense that we postulate an analytic form for the solution and then 
deduce for what range of values of p this type of solution is expected to occur. This 
idea has been successfully used in a number of papers devoted to large time asymp­
totics for nonlinear diffusion and related equations, particularly for pul~e type initial 
data with either bounded or unbounded support. See for example Grundy [13,14,15]. 

The nature of the limiting solution depends on the value of the parameter p and 
reflects the relative importance of thevarious terms in ( 4.1) as t becomes large.As will 
become apparent later on it is natural to take the cases O < p < l, 1 < p :S 2 and 
p > 2 separately. Let us take p > 2 first. 

4.1.1 The case p > 2 
We start off by transforming equation ( 4.1), using the moving coordinate sytem 

(t, e = X - t). ( 4.2) 

with u = u(t, t), giving 

( 4.3) 

We would now expect the spread of the solution to be incorporated by using the 
similarity variable 

e X - t 
1J = t6 = -t6- ( 4.4) 

where 8 > 0, together with the change of dependent variable 

u(t,t) = r:xv(17,t) ( 4.5) 

with a < 0 to simulate temporal decay. In the new variables ( 4.3) now becomes 

{ 
av av} ( i){ a(vP) a(vP)} t- + av - 817- + tO/ p- t-- + apvP - 817--
ot CD 017 at ® a71 
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CD 0 
EJ2v a(vP) = tl-28_ + t':,(p-1)+(1-8) __ 
ary2 ary 

( 4.6) 

The immediate aim of the analysis is to determine the unknown indices a and 8. To 
assist us in this task we turn to the time invariant, (3.13) namely 

which, in terms of ry and v, can be written as 

M = 1-: { t 0 +6v + t 0 P+6vP} dry 

Thus, for p > 1 
M,...., t0 +6 as 

' 
t-+ 00 

and hence for M to be invariant in time 

8 = -0'. 

( 4.7) 

( 4.8) 

( 4.9) 

Remembering that we are seeking solutions in the limit t -+ oo, ry = 0( 1), we now 
assume that v and its derivatives with respect to ry together with t :~ are bounded in 
this limit. With this assumption it is clear that for p > 1 and a < 0 the term ( 1) 
dominates the left hand side of ( 4.6) as t -+ oo. Two possibilities now emerge; either 
(3) dominates (4) on the right hand side and balances with (1), or (4) dominates (3) 
and balances with (1 ). By the term balancing we mean asymptotically equivalent as 
t-+ 00. 

The first possibility requires that 

and 

8=~ 
2 

a(p - 1) + 1 - 8 < 0 

With a=-½ from (4.9), the condition (4.11) is simply 

p>2 

whence ( 4.6) becomes 

av 1 ( OV) -(p-l)/2 { o(vP) pp rya(vP)} t- - - V + ry- + t t-- - -v - ---
at 2 ary at 2 2 ary 
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We now expand 
v(17, t) = vo(17) + o(l), (4.14) 

such that t~~ = o(l), in the limit t - oo, 77 = 0(1) and substitute into (4.13). 
Collecting leading order terms gives 

// 1 / 
Vo + 2(11vo + vo) = 0 

where primes denote differentiation with respect to 77. The general solution of this 
equation is 

where A and B are arbitrary constants. Bearing in mind that mass invariance, for 
p > 2, in the form ( 4.8) requires v0 ( 17) be integrable on ( -oo, oo) then we must put 
B = 0 to give 

Substituting (4.14) into (4.8), with (4.15), the leading order result gives 

or 

Thus we have shown that for p > 2, 

M 
A=-. 

2y'7r" 

u(x, t) = 
2
~c½ e-(x-t)

2
/

4 t {l + o(l)} 

as t - oo, (x - t)/2,Jt = 0(1). This result is uniform in x. 

( 4.15) 

(4.16) 

It is instructive at this stage to compare the leading order behaviour of ( 4.16) with 
the numerical computations. In Figure 1 we plot v(17, t) = t 112u(x, t) as a function of 
1] for p = 3 and the initial data 

u0 ( x) = H ( x + 1 ) - H ( x - I ) ( 4.1 7) 

for various values oft. Here H(x) is the Heaviside function. So with M = 4 from 
( 4. 7) the results show a slow but evident convergence to the asymptotic profile 

2 -ri2 /4 -e 
y7r 
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the slowness due presumably to the neglect of the dominant convective error term 
t-(p- 2)/ 2 a~v:) in (4.13). If we include this in a first order error analysis then we show 
in Appendix 1 that for p = 3 and t - oo 

or, equivalently, that 

where 

4t-1l 2 log t 
v(ry,t) = vo(TJ) + y3 v~(TJ) + o(t-112

) 
7r 3 

v(ry, t) = vo(TJ1) + o(t-112 ) 

4t- 112 log t 
T/1 = T/ + 1rv3 

(4.18) 

( 4.19) 

(4.20) 

The utility of this device is shown in Figure 2 where the numerical solution is repre­
sented as a function of ry1 . The accelerated convergence to 

2 -ri2/4 -e i 

y'i 

is clearly evident. 
We recall here the results of Escobedo at al [1] and Escabedo & Zuazua[l 2] who proved 
that for p > 2 the finite mass solutions of ( 4.3), after neglecting the time derivative 
of uP, converge in the L1 sense to the solution of the heat equation, obtained by 
disregarding the derivative a~~) in (3.18). Our analysis includes this term as t - oo 
and enables us to improve the convergence to the asymptotic profile. 

4. 1.2 The case 1 < p s; 2 We now turn to the second possibility in ( 4.6) namely 
that (4) dominates (3) and balances with (1). By a similar token as before this implies 
that 

a(p - 1) + 1 - 8 = 0 (4.21) 

and 
1 - 28 < 0. (4.22) 

Hence, using ( 4.9), ( 4.21) yields 

1 
a=--, 

p 
( 4.23) 

and the inequality ( 4.22) becomes 
p<2 (4.24) 

15 



With these values of a and 8 ( 4.6) can be written as 

OV 1 ( OV) -(p-l)/p { a( vP) p 17 0( vP)} t- - - V + 17- + t t-- - V - ---
{)t P 011 at P a11 

( 4.2.S) 

We now expand 
v = vo(11) + o(l) ( 4.26) 

as t---+ 00,17 = 0(1), with t~~ = o(l),which we call the outer expansion. Leading 
order terms in ( 4.25) now give 

(vo + 17vo ') + p(vb)' = 0 

where again primes denote differentiation with respect to 17. The general solution of 
this equation is 

p 17 C Vo+ -vo = 
p 

where C is an arbitrary constant. In order to fix the value of C in this solution we use 
I 

the following argument. For C < 0 vo( 17) is double valued with 17 ~ -p2
( -crp I (p -

1 )(p-l)/P; a solution which we reject. On the other hand for C > 0 v0 ( 17) is single 

valued on -oo < 17 < oo but as 17 ---+ +oo 

pC 
Vo,..._, -

17 

Since mass invariance requires v0 ( 17) be integrable on ( -oo, oo), then C cannot be 
positive. Thus we must take C = 0 and solution for v0 is simply 

_ ( 17)1/p-1 
Vo - --

p + 
( 4.27) 

Now ( 4.27) is defined for all 17 E R. The non trivial part of the asymptotic solution 
however is confined to the finite interval 171 ~ 17 < 0 by appealing to the mass 
invariance condition ( 4.8). Substituting ( 4.26) into ( 4.8), with ( 4.27), gives to leading 
order 

and hence 

10 (-17) /- 1 

M = - d17 
1/1 p 

E.::.!. 

171 = -p (~) p < 0 
p-1 

16 

( 4.28) 



In terms of x and t therefore we have shown that for 1 < p < 2 

(
t - X) P.:_1 

u(x, t) = c 1fp ptl/p {1 + o(l)} 

as t-+ oo, ~ = 0(1). The condition T/l :ST/ :SO requiring in (4.29) that 

T/1tlfp :S X - i < 0. 

(4.29) 

It is convenient now to consider the borderline case p = 2. In this event the terms 
(1) (3) and (4) are asymptotically equivalent as t-+ oo, T/ = 0(1) whence 

1 
0: = -8 = -2· 

Expanding 
v = vo( T/) + o( 1) 

with t ~~ = o( 1) as before, yields a second order ordinary differential equation for v0 

which has the solution 
-1)2/4 e 

vo(rt)= A+JJrerf(rt/2) (4.30) 

where A is an arbitrary constant given by the asymptotic mass invariance condition 

M = 1-: vo(T/) drt 

This condition gives 
A= ~(eM + 1)/(eM - 1) 

Again we can compare this asymptotic result with the full numerical solution. With 
u0 given by ( 4.17), v( T/, t) = t 11Pu( x, t) converges rather slowly to ( 4.26) due to the ne­
glected term of 0(t- 1/ 2 ) in ( 4.13). To include this term we can go through a procedure 
similar to the one for p > 2. In Appendix 1 we expand 

v(T/, t) = v0 (rt) - 0.0639r 1l2 Iog tv~(T/) + O(t112
) 

suggesting that we may write 

v(T/, t) = vo(T/1) + 0(t112
) 

(4.31) 

(4.32) 

where T/l = T/ - 0.0639t-112 log t. The numerical solution is represented.as a function 
of T/1 in Figure 3 where a somewhat faster convergence to the asymptotic profile is 
evident. 
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Finally we note that ( 4.26) agrees with the convergence result of Escabedo et al [l] 
for these cases. This can be understood if one disregards the time derivative of uP in 
equation ( 4.3). Also note that the function v0 in ( 4.26) is a self similar solution of 
Burgers' equation ((3.19) with p = 2). 

4.1.3 The case p < l 
Leaving aside the linear case p = l, we now come on to discuss the parameter range 
0 < p < l. Here we adopt a different strategy by considering a similarity variable 
with no translation. So this time we put 

X 

f/ = t" , V > 0 ( 4.33) 

with 
u(x, t) = tf3v(ry, t), /3 < 0 ( 4.34) 

Making the change of variable in (1.1) gives 

tf3(l-p t- + f3v - vry- + t-- + f3pvP - vry-- · ) 
{ 

av av} { a(vP) a(vP)} 
m ~ m ~ 

= tf3(1-p)+l-2v a2v - tf3(1-p)+l-v av (4 3~) .• 0 ar,2 ar, 
Clearly since /3 < 0 and p < l, (2) dominates the left hand side of (4.35) as t-+ x. 
The question is with which term on the right hand does (2) balance. It turns out that 
the only consistent possibility is that ( 4) dominates (3) and takes up the asymptotic 
balance with (2). This requires 

,8(1 - p) + 1 - V = 0 ( 4.36) 

and 
/3(1-p) + 1-2v < 0 ( 4.37) 

The second equation relating /3 and v in addition to ( 4.36) is obtained from the mass 
invariance result ( 4. 7). Writing this in terms of ry and v from ( 4.33) and ( 4.34) we 
have 

and, for p < l with ,8 < 0, 
M ,....,, tf3p+v as t -+ oo 

Hence the invariance of M requires that 

V = -/3p 
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which, along with ( 4.36) gives, 

/3 = -1 and v = p 

With these values of /3 and v, ( 4.35) becomes 

t-- - p VP+ TJ-- + t p t- - V - pTJ- = t p_ - -
(fJvP) { 8(vP)} -(l- ){ av av} _ 82v av 

at aTJ at aTJ a77
2 aTJ 

We now expand 
v(TJ,t) = vo(TJ) + o(l) 

( 4.40) 

(4.41) 

such that t~~ = o(l), as t--+ oo, TJ = 0(1). Substitution into (4.40) gives to leading 
order 

p { Vb + TJ( vb)'} = v~ 

where again primes denote differentiation with respect to T/· The general solution is 
given by 

PTJVb - Vo= C 

with C constant. A similar argument to that of Section (4.2.1) leads to C = 0 and 
the solution for v0 is then 

( )
1/1-p 

Vo= PT/ + ( 4.42) 

The nontrivial part of the asymptotic solution is confined to the interval 0 < TJ < TJ 2 by 
the mass invariance condition (4.38), which using (4.41) with (4.42), gives to leading 
order 

Thus 

{ 
M }1

-p 
T/2 = -- p-p 

l-p 
( 4.43) 

In terms of x and t and for 0 < p < l we have now shown that 

( 
x)1/1-p 

u(x, t) = C 1 
~P {1 + o(l)} ( 4.44) 

as t --+ oo, f,; = 0( 1). The condition 0 < TJ < T/2 requires 

We call ( 4.38) the outer solution. 
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4.2 The uniformity of the outer solutions:the boundary layer solutions 
We now consider the question of uniformity in x of the outer solutions for u( x, t) in 
the limit t -+ oo. In the case p ~ 2 it is clear that the asymptotic representations 
( 4.16) and ( 4.30) are uniformly valid for all x. For other values of p the situation is 
not so straightforward. For instance when 1 < p < 2 we must first ask how ( 4.25) 
represent the zero order asymptotic solution on -oo < x < oo. Since this has to 
satisfy u = 0 at x = ±oo then we would expect the structure 

{ 

0, -OO < X < t + T/1 tifp 

u(x, t) = t-l/p (:t--;IP r/p-l, t + TJ1t 1IP ::; X < t 

0, X > t 
( 4.45) 

There are however two objections to this representation. Firstly u(x, t) is not contin­
uous while in the second place, contrary to what we know, the support is bounded. 
Both these objections to ( 4.45) can be met by including boundary layers at the trail­
ing and leading edges of the pulse where T/ = ry 1 and r, = 0 respectively. As t -+ oo 
these will be thin on the scale of r, but since we include the diffusion term within 
them, they have the effect of smoothing out the solution and at the same time ren­
dering the support unbounded. We note that this approach has been successfully 
used to uniformise asymptotic solutions to diffusion-convection equations by Grundy 
[13,14,15] . 

A similar situation presents itself in the case O < p < l where, in principle, the 
uniformisation can be carried out in the same way. In this case the zero order outer 
representation is 

{ 

Q I/l-p X < 0 
u(x,t)= t- 1

(~) 0<x<ry2 tP 

0 X > TJ2tP 

( 4.46) 

Once again this situation is at variance with what we expect since tp.e solution is 
discontinuous at x = r,2tP and there is no moving interface to the left. As in the case 
p > 1, these difficulties can be removed by including boundary layers. 
Having set out our reasons for seeking boundary layer solutions we devote the re­
mainder of this Section to constructing them. 

4.2.1 The case 1 < p < 2 

(a) The trailing edge layer at T/ = ry 1 

Near T/ = ry1 we make the change of variable 

20 

µ>0 ( 4.4 7) 



where ( = 0(1), t --+ oo. This defines a thin layer, on the T/ scale, of thickness Cµ 

where µ has to be found. In this layer we look for a solution which varies on the ( 
scale so we put 

v(TJ,t) = w((,t) ( 4.48) 

in ( 4.25) which now becomes 

µ{ &w w ( 1) &w} 11 { &(wP) &(wP} C f- - - + µ - - (- + C p f-- + WP + µ(--
Of P P o( at a( 

T/I OW µ- (2-p) 02W 0( wP) 
---=t p --+--

p &( 8(2 &( 
( 4.49) 

An essential feature of the boundary layer is that the diffusion term becomes impor­
tant there. Assuming all ( derivatives are bounded within the boundary layer we 
therefore put 

and expand 

2-p 
µ=-->0 

p 

w(e,t) = wo(e) + o(l) 

(4.50) 

( 4.51) 

with t~7 = o(l), as t--+ oo, ( = 0(1) in (4.49) . Collecting leading order terms gives 

II + ( p)/ + T/1 I _ 0 Wo wo Wo -
p 

(4.52) 

with primes denoting differentiation with respect to (. The matching condition re-
qmres 

( ) 

1/p-1 
-TJ1 

Wo= --
p 

as ( --+ oo 

while the boundary conditions are 

Wo = Wo ' = 0 as ( --+ - oo 

Equation ( 4.46) admits the solution 

{ 

-(p-l)TJ1((-(o)/p }l/p-1 T/1 e 
Wo = p [1 _ e-(p-1)1)1((-(0)/P] 

(4.53) 

( 4.54) 

( 4.5.5) 

which satisfies the conditions ( 4.53) and ( 4.54) but is only unique to within the 
arbitrary translational shift (0 . Unfortunately there appears to be no way of finding 
( 0 to this order of approximation. 
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(b) The leading edge layer near T/ = 0 

Near T/ = 0 we make the change of variable 

( 4.56) 

where E > 0 will be chosen so that the diffusion term in ( 4.25) becomes important in 
the region where the variable x is 0( 1). To see how to scale the independent variable 
v within the trailing edge layer we have the outer expansion 

v(TJ,t) = vo(TJ) + o(l) 

( ) 

1/p-l 

= ~T/ + o(l) 

( ) 

1/p-l 

,...., ce/p-1 -/ 

in terms of X · This suggests we put 

v(TJ, t) = ce/p-i W(x, t) 

and expand 
W(x, t) = Wa(x) + o(l) 

with t 8
8~ = o(l) as t - oo, X = 0(1 ), using 

Wo(x),...., (-x/p) 1
/p-l as X - -oo 

(4.57) 

(4.58) 

( 4.59) 

as a matching condition. Making the above changes of variables in ( 4.25) gives 

taw - (-€- + ~) w + (E - ~) x aw at P - 1 P P ax 

+c112 {t a(WP) + (1 -~) WP+ (E - ~) x a(WP)} 
at p- 1 P ax 

= t2e-(2-p)/pa2w + ac:;P). 
ax2 

We now invoke the condition that the second derivative becomes important in the 
limit t - oo, x = 0(1 ). This demands that 

(2 - p) 
c=---

2p 
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and the equation for W(x, t) then becomes 

taw _ w -~aw +c 112 {to(Wp) + 2WP-~8(Wi>)} 
ot 2(p - 1) 2 ox ot 2 ox 

a2w o(WP) 
= 8x 2 + ox ( 4.60) 

Substituting ( 4.58) into ( 4.60) and equating leading order terms gives 

w; ,, + ( tt,';P) , + ! w; , + Wo = 0 o o 2x o 2(p-l) (4.61) 

with primes indicating x-derivatives, which has to be solved subject to ( 4.59) and the 
boundary conditions 

Wo = 0 ,x- 00. (4.62) 

This boundary value problem could not be solved by the authors and its resolution is 
left as an open question. However some partial results are known. If W0 is a solution 
then one can show that W~(x) < 0 for all -oo < x < oo. Hence the function 

w.p-1 
w = 0 

is strictly monotone. This allows us to consider the inverse 

X = x(w) for 0 < w < oo 

and the positive function 

y(w) = -(WJ'- 1 )'(x(w )), w > 0. 

This results in the following problem for y on w > 0 

p-l w 2y 2y 
{ 

y' - pw + !=E.1L + .!=:..}' = _..1.... 

y(O) = 0,y(oo) = ! ( 4.63b) 

Whenever a solution y exists it satisfies y'(w) > 0 and consequently O < y(w) < 1/p 
for all w > 0. Further we can establish that a solution y approaches the origin 
according to either 

( 4.64a) 

or 
y(w)"' Aw2 ( 4.64b) 
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where A > 0 is an unknown constant. A decay as in ( 4.64a) implies an exponential 
behaviour as X ---+ oo for W0 (x), while ( 4.646) would imply algebraic behaviour. 
Based on what we know of the original partial differential equation, we expect and 
conjecture that the solution y of ( 4.63) behaves as in ( 4.64a). Finally we note that 
every numerical approach we have tried has been thwarted by some pathological 
property of the equations or lack of analytic knowledge of the problem. 

4.2.2 The case O < p < I 

(a) The leading edge layer near T/ = TJ 2 

We now go through a similar procedure for the case O < 1 < p where we expect 
interfaces to appear within the support of the solution. We put 

,p > 0 ( 4.65) 

where ( = 0(1) as t ---+ oo, defining a thin layer on the scale of T/ of thickness t-P 
where p is to be found. In this layer we look for solutions of ( 4.35) where 

v(x, t) = z((, t) 

which, in the new variables, becomes 

r(µ+l-p) t- - z + (p - p)(- - PT/2r l-p -{ 
az az} ( )az 
at a( a( 

+CP {t8(zP) - pzP - (p + p)e8(zP) }- PT/2 8(zP) 
at a( a( 

Choosing p = p has the effect of making the diffusion term 0( 1) so the equation for 
z( e' t) becomes 

Expanding 

r
1 

{ t ~: - z }- PT/2r(l-p) :~ 

+rp {ta(z)P - pzP - 2p(8(zP)} 
at 8( 

82z 8z 8(zP) 
= 8(2 - 8( + PT/28( 

Z ( (, f) = Zo ( () + 0 ( 1 ) 
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such that t!; = o(l) as t---+ oo, ( = 0(1), yields the equation 

z~ ' - z~ + PT/2 ( Zb) ' = 0 ( 4.67) 

for z0 with prime denoting differentiation with respect to (. This has to be solved 
subject to the matching condition 

zo---+ (PT/2) 111 -p 

and the boundary condition 

zo = z~ = 0 

' ( ---+ -oo 

,(---+ 00. 

The problem ( 4.67)-( 4.69) admits the solution 

zo = { [PT/2 - e(l-p)((-(o)] 1/1-p' ( < (o + 10~(~;2) 

0, e > (o + 10~~;2) 

(4.68) 

(4.69) 

( 4. 70) 

which is unique to within the arbitrary shift ( 0 which is not determined to this order 
of approximation. Clearly ( 4.64) has an interface at 

e = (o + log(PT/2) 
(1 - p) 

(b) The trailing edge layer near T/ = 0 

( 4. 71) 

In order to work out the structure of the asymptotic solution near T/ = 0 we have to 
look in a little more detail at the outer expansion ( 4.41 ). To be specific we write 

v(77,t) = (p77) 111 -p + CPlogtv1(T/) + CPv2(TJ) + r(I-p)v3(77) + · · · 
Substituting this into ( 4.40) we find that 

and 

V1 = /{ (PT/ )PII-p 

(PT/ )PII-p { p2 } 
v2 = (l _ p) log T/ (l _ p)2 - I{ + C2(TJp)PII-p 

!..'.:£ 
(77p)l-p 

V3 = p(l _ p) + C377p 

( 4. 72) 

( 4.73) 

( 4. 7 4) 

( 4. 75) 

where K, C2 and C3 are arbitrary constants. Comparing the first two terms in ( 4. 72), 
with (4.73), reveals that the outer expansion is nonuniformly valid when x = O(logt), 
suggesting the inner independent variable 

X TJfP e----- log t - log t 
(4.76) 
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together with the dependent variable 

(
l t) 1/1-p 

u = 0
; Z(c, t) (4.77) 

where we have reverted to the original independent variable u. Making these changes 
of variables in ( 4.1) and expanding 

yields the equation 

with solution 

Z(c, t) = Zo(() + o(l) 

Z~ = ( P ) Zo l-p 

Zo = {p(( - (0))}1/l-p 

giving an interface at ( = (0 which is, at the moment, unknown. 

( 4.78) 

( 4. 79) 

To match the inner and outer expansions we first recast (4.72) with (4.73)-(4.75) in 
terms of ( and u to give 

u = (logt)1/1-p {(p()1/1-p + (p() p/1-p [K - p2 l + 0 (log(logt))}. 
t ( 1 - p) ( 1 - p )2 log t 

(4.80) 
This must match with ( 4. 71) and ( 4. 73) expanded as ( ~ oo, namely 

u = (logt)l/l-p {(p()l/l-p _ p(o (p()Pfl-p + -} . 
t (l - p 

Thus for a successful match we require 

( 4.81) 

To proceed further we note that the diffusion term has yet to be taken into account 
in the inner region. In order to do this we make a further scaling near ( = (0 , namely 

together with 

c 
( = (o + log t 

u = c 111 -PU(c, t). 

We observe in passing that in terms of x the scaling ( 4.82) can be written as 

X = (o log t + C, 
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Making these changes of variable the equation for U ( t, t) becomes 

-1 { au u au} a(UP) 
t tat - (l _ p) - (o B( + t~ 

P p a(UP) _ a2u au 
( 1 - p) u + (o ~ - ae2 - ae . ( 4.85) 

Expanding 
U(t, t) = Uo(e) + o(l) 

such that t ~~ = o( 1) as t --. oo, t = 0(1) gives the ordinary differential equation 

U" - U' + p UP+ i (TJ.P)' = 0 
0 0 ( l _ p) 0 ',O 0 

(4.86) 

for U0 with primes denoting differentiation with respect to ( The matching condition 
with the inner solution requires that 

( 4.87) 

while the boundary condition demands that 

Uo = 0 , t--. -oo (4.88) 

The problem is to find (0 and U0 subject to ( 4.86)-( 4.88). 
We show in Appendix 2 that a unique solution to this problem exists if and only if 

(o = -p/1 - p ( 4.89) 

and in that event 

Uo = { 
[p(e - ti)J111

-p , e 2: e1 
o , e < e1 

(4.90) 

for some e1 which can actually be found using the second integral invariant L defined 
by (3.13). So, returning to ( 4.81) we find that 

2 

K= P 
(l-p)2 

We note that ( 4.90) is actually uniformly valid throughout the inner region and can 
be matched to zero order with the outer expansion . We use this observation in the 
next Section where we construct uniformly valid solutions for all x. 
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Finally from ( 4.90) we observe that the trailing edge interface is located at l = l1 or 
in view of ( 4.89) and ( 4.84) at 

x= 
-p 

( ) 
log t + 6-

l - p 

4.3 Construction of uniformly valid solution for O < p < 2 
In this section we make some remarks about the construction of uniformly valid large 
time solutions for the parameter range 0 < p < 2. In contrast to the situation for 
p 2 2, for O < p < 2 the asymptotic analysis does not yield a single formula which 
approximates u(x, t) uniformly in x as t --+ oo. To see how such a formula may be 
constructed we note that the asymptotic solution for both O < p < l and 1 < p < 2 
can be regarded as an outer expansion linked by two boundary layers to the conditions 
at infinity. Although this picture is not entirely straightforward for O < p < 1 the 
interpretation can still be made since, as noted above, equation ( 4.90) is uniformly 
valid in the trailing edge layer. 
If we denote the zero order outer solution by U0 , the zero order leading edge boundary 
layer solution by U1 and the zero order trailing edge boundary layer solution by U2 

then for 0 < p < l we have from ( 4.46) 

u. = { 

and from ( 4.90) 

u, = { [ ]
1/1-p 

t -1 (l-p)(x-112tP-(o) PT/2 - e 

0 

X < T/ tP + ( + log(p112) 
, 2 0 (1-p) 

X > T/ tP + 1 + log(p112) 
2 ',O 1-p 

while from (4.90) with (4.84) 

{ 
0 , X < 6 - ~ log t 

U2 = t-1/1-P{p(x + ~logt -l1)}1/I-p x 2 l1 - ,Blogt 

For 1 < p < 2, the corresponding expressions and domains are from ( 4.45) 

0 X < t + TJ1tl/p 

Uo = t-1/p-1 e~x )1 /p-1 ' t + T/1 tI/p ::; X < t 

0 x>t 
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from (4.55) 

U1 = c 11p T/i , -oo < x < oo 
{ }

l/p-1 

p { e(p-l)771(x-t-771t1/P-(ot(P-l)/p)/pt(P-l)/p _ 1} 

and from (4.58) 

U2 = cl/Z(p-l)Wo (X - t) -oo < X < 00 
tl/2 ' ' 

The next step in the process is to construct the inner limits of the outer solution, 
expressions which have to reflect the failure of analyticity of U0 at the leading and 
trailing edges. For O < p < 1 we write the leading edge inner limit of U0 as 

and the trailing edge inner limit of U0 as 

{ 

c1/1-p(px )1/1-p , 

(Uoh = 
0 

For 1 < p < 2, corresponding expressions are 

x>O 

x<O 

, X < t + T/1 tl/p 

and 

(Uo),~ { 

t-1/p-l ( t~x) l/p-l 
, X < t. 

0 X ?:_ t 

The idea now is to construct what, in the language of matched expansions, are called 
composite solutions and which are uniformly valid for all x. In this case we use multi­
plicative composition; for a number of reasons the more familiar additive composition 
is not applicable here. In a more straightforward situation a leading order composite 
approximation would be of the form 

( 4.91) 
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(See for example Van Dyke [16]). However this rule cannot be applied directly since 
U0 , (U0 )i and (U0 )2 are zero over certain domains of x. Nevertheless the multiplicative 
nature of Uc makes it a straightforward matter to modify ( 4.91) to take this into 
account. In the case O < p < 1 we write 

0 X < 6 - logt 

U1U2 6 - logt < X < 0 (Uoh 

Uc(x, t) = U1U2 Q < X < T72tP (Uoh 

U1U2 T/ tP < X < T/ tP + ~ + log(p1J2) 
(Uoh 1 2 0 1-p 

0 X > T/ tP + ~ + log(p1J2) 
2 0 1-p 

This is adapted from (4.91) by omitting U0 = (U0 )2 = 0 from both numerator and 
denominator in the second domain. In the third domain U0 = ( U0 )2 which cancel while 
in the fourth domain U0 = ( U0 )i = 0 which can again be omitted. The corresponding 
result for 1 < p < 2 is 

U1U2 X < t + T72tlfp (Uoh 

Uc(x,t) = U1U2 t + 7]1 tI/p < X < t 
(Uo)i 

U1U2 X > t (Uo)i 

Although these uniformly valid composite expansions are continuous, they accept 
discontinuities in their x-derivatives ; namely of o(t-(P+l)) at x = 772 tP for O < p < 1 
and of 0( C 2IP) at x = t + 711 t 1IP for 1 < p < 2. However this is not a high price to 
pay since in each case the formula for Uc is simple and in the case O < p < 1 very 
easy to compute. For 1 < p < 2 the procedure is complicated by the need to evaluate 
W0 (%,n at prescribed values of its argument. 
The main problem with using the composite solutions is that they are indeterminate to 
within the two arbitrary constants occurring in each of the boundary layer solutions. 
In principal these cannot be determined from the zero order analysis, although for 
0 < p < 1 6 can be found from the second integral invariant. However it is possible 
to simulate the convergence to the asymptotic solution by adjusting these constants 
so that the composite solution fits, in some adhoc way, the numerical solution at a 
suitable value of time. From a practical computational point of view the use of such 
a formula would reduce the excessive computing time required to calculate the slowly 
converging large time solution using the scheme of Section 5. 
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5 The numerical method 

The method used to generate the numerical solutions was developed and analysed 
by Dawson [1 7] for nonlinear parabolic equations in one space dimension. Here, we 
discuss the application of the method to Problem (IVP). 
Again we make transformation (3.3) and use the transformed equation as a starting 
point for the discussion. However here we want to keep the diffusion coefficient D 
in the analysis, because this will allow us to do computations for problems in which 
convection dominates diffusion. Therefore we consider, with w = (3(u) and u = 'P(w), 

aw+ a'P(w) - Daz'P(w) = 0 (x, t)'E Q 
at ax ax 2 

( 5.1) 

Let -oo < · · · < X-J-I/z < X_J+I/Z < oo be a partition of R into grid blocks 
Bj = [xj-I/Z, Xj+1;2], and let Xj be the midpoint of Bj. For simplicity, assume the 
partition is uniform with mesh spacing h > 0. Let f:::.t > 0 denote a time-stepping 
parameter, and let tn = n 6 t and tn+I/Z = (tn + tn+ 1 )/2. For functions g(x, t), let 

n _ ( . in) n+l/2 _ ( . tn+l/2) t 9j - g xJ, '9j+1/2 - g xJ+1/2, 'e c. 
On each grid block Bj, approximate wJ and u1J by constants wJ and UJ, respectively, 
where 

w'J = u; + (U;)P. ( 5.2) 

Discretizing ( 5.1) by finite differences in space and time, we find 

n+l n ( n+l/2) ( n+l/2) 
wj - wj 'P wj+1/2 - 'P wj-1/2 

f:::.t + h 

'P(wn+l) _ 2'P(wn+l) + <p(wn+l) 
-D 1+1 1 1-1 ~ O 

h2 . (5.3) 

The term 'P( wJ:N;) is approximated using a higher-order Godunov approach, see van 
Leer [18]. Assume the time step satisfies the CFL constraint 

sup'P'(w) 6 t ~ h. ( 5.4) 
w 

Expanding in a Taylor series about the point (xj, tn), 

n+l/2 h f:::.i 2 2 
Wj+l/Z = W + 2wx + 2 wt + O(h +6th+ f:::.t ), ( 5.5) 

where the right side of (5.5) is evaluated at (xj, tn). Using the differential equation 
(5.1 ), we find 

(5.6) 
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Emulating (5.6), define 

-n+l/2 n (h '( )n)L::.t 8 n wj+I/Z = wj + 2 - 'f' w j 2 xWj, 

where 8xw"J is calculated by a slope-limiting procedure. In particular 

where 
if 6+ wJ · L._w"J > 0, 
otherwise. 

(5.7) 

( 5.8) 

( 5.9) 

Here 6.+wi is the forward difference (wj+I - w3)/h, and L._wj = (wj - Wj_ 1)/h. 

A . . n-1/2 b -n+l/2 b · h l' f · pprox1matmg wj+I/z y wj+I/Z, we o tam t e non mear system o equations 

n+l n (-n+l/2) (-n+l/2) 
wj - wj 'P wj+t/2 - 'P wj-1/2 

Lt + h 

-Dc.p(wr;tl) - 2c.p(wr;+l) + c.p(w1Jii1) = 
0 h2 . (5.10) 

Initially, set UJ = u0(xi) and w0 = UJ + (UJ)P. Note that, given w] at some time 

level tn, the term c.p(c/;:1
1/;) is calculated explicity. Thus, we are left with a symmetric 

system of nonlinear equations to determine w1J+ 1
, which we solve by a fixed point 

iteration. 
Let 

( -n+l/2) (-n+l/2) 
n 'P wj-1/2 - 'P wj-1/2 

rj = - h . 

Then. substituting the definition of w7+ 1 into (5.10) we find 

un+1 _ un (U
1
n+1)P _ (U

1
n)p un+1 _ 2un+1 + un+1 

1 1 + -'-----..a..,_-_ D 1+1 1 1-1 n 
Lt L.t h2 = rj · ( 5.11) 

Let UJ'+ 1·0 be an initial guess for u;-+1. Then, given UJ'+1·\ define 

if u;+i,k -f. u;-, 
(5.12) 

otherwise, 

and determine the k + 1-st iterate u;+t,k+t by solving 

un+l.k+l _ un un+I,k+l _ 2un+1,k+1 + un+l,k+l 
[l + /3n,k] 1 1 _ D 1+1 J J-1 n 

1 Lt h2 = rj. (5.13) 
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This procedure give iterates which satisfy a maximum principle; that is 

min un < un+l,k < max un 
j J- J - j J' 

therefore, /31J"k well-defined. 
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6 Conclusions 

When considering the large time behaviour of nonnegative solutions of the nonlinear 
transport equation ( 1. 1), the value of p in the nonlinearity plays a crucial role in 
relation to the large time development of the initial value problem. For pulse type 
solutions satisfying 

(u + uP)(·, t) E L'(R) for all t 2: 0. ( 6.1) 

the results of the paper distinguish the following cases. 

p > 2: The limit profile is given by the leading order term in ( 4.16) Note that it is 
symmetric with respect to the moving coordinate x = t and that it decays as r 1/ 2 . 

In fact the limiting profile is a solution of equation ( 1. 1), with D = L if we ignore 
the nonlinearity uP. Numerical solutions of the initial value problem for p = 3 are 
displayed in Figures 1 and 2. Figure 1 shows t112u as a function of TJ = ( x - t) /t 1!2 

for increasing values of t. Because of the slow convergence, a first order analysis 
was undertaken from which a new independent variable ry 1 was constructed given by 
( 4.21 ). This is used in Figure 2, which clearly reveals the accelerated convergence to 
the final profile. 

p = 2: The limit profile now becomes asymmetric with respect to x = t. It is given 
by the expression (4.26), which is in fact a similarity solution of Burgers' equation 
obtained by disregarding u2 with respect to u in the time derivative in ( 4.3). The 
numerical convergence to the limit profile is illustrated in Figure 3 where again a 
modified independent variable is used to accelerate the convergence to the limiting 
form. 

1 < p < 2: The limit profile is left-asymmetric with respect to x = t and with a 
discontinuity along the curve (x - t)/t1IP = ry1 , with ry1 given by (4.29). The outer 
expansion, valid as t -too, (x - t)/t 1IP = 0(1), is given by (4.25) with the leading 
order term as the limiting solution. In Section 4.2 boundary layer solutions are 
constructed near the leading and trailing edges of the limit profile. These resolve the 
non-analytic behaviour of the outer solution near TJ = 0 and TJ = ry 1 respectively. The 
boundary layer solution near TJ = 0 poses an interesting but unsolved boundary value 
problem ( 4.55) with ( 4.53) and ( 4.56). Figure 4 presents sample numerical solutions 
for the case p = 3/2. In order to minimise the effect of the diffusion boundary 
layers on the large time solution we carry out the computations for D = 10-2

. To 
check the convergence properties of this numerical solution and, since it is dominated 
by convection in this parameter regime, the large time solution itself, we compare 
the results with the solution of the initial value problem for D = 0. This solution 
is written down for p = 3/2 in Appendix 3 and presented in Figure 5. The slow 
convergence to the outer limit, shared by both sets of results, is clearly evident. 
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0 < p < 1: In this case the relevant outer variable is T/ = x / tP and the limit profile 
becomes right-asymmetric with respect to x = 0 with a discontinuity along the curve 
x = ry 2t P where the constant 712 is determined by ( 4.43). Again we have to construct 
boundary layer solutions near T/ = 0, where the profile vanishes, and near T/ = ry 2 • 

In both cases this leads to solvable boundary layer problems. Figure 6 shows results 
of the computations for the initial value problem (2.11) with D = 10-2 which, as a 
check on the convergence, can be compared with the exact solution for D = 0 given 
in Appendix 3 and displayed in Figure 7.In both cases the slow convergence to the 
zero order outer solution is clearly apparent. 
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A.1. Error Analysis for p = 3 and p = 2 

In the first part of this Appendix we compute the leading error term in the expansion 
(4.14) for v(17, t) when p = 3. It turns out that we must consider an expansion of the 
form. 

(A.1.1) 

where v0 (17) = 
2
)':;e-112 14

• With a few modification the analysis can be extended to all 

values of p > 2. Substituting (A.1.1) into (4.13) and equating terms of O(r1l'2 logt) 
gives 

,v1(±oo)=O. (A.1.2) 
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If we require v1 to have exponential decay as T/-+ ±oo, then (A.1.2) has the solution 

(A.1.3) 

where A is an arbitrary constant. The equation for v2 can now be written as 

with solution 

where 
I Be112/4 3M2 e112/41oo 2 

W2 = ---+ ---- S2e-3s /4ds 
T/2 41r T/2 7) 

A 112/4 
- e loo 2 -s2/4d 

2 
s e s 

T/ 1) 

and B is an arbitrary constant. We now require that v2 decays exponentially to zero 
as T/ -+ ±oo. This demands that the exponentially growing terms in w~ be suppressed. 
which, as T/ -+ +oo, requires B to be zero. The same condition as T/ -+ -oo gives 

A= 3M2 Joo s2e-3s2/4ds/ Joo s2e-s2/4ds = Af2 
47r -oo -oo 41rv3 

and hence (A.1.1) can be written as 

Af2 
v(17,t) = vo(TJ) + r,;r 112(logt)v~(TJ) + o(t-1

/
2

) 
41rv3 

or, equivalently 
Af2 

v(TJ,t)=vo{TJ+ r,;r1l2 logt}+O(r112
) 

41ry3 
(A.1.4) 

which gives the representation (4.18) with (4.20). 

The case p = 2 can be dealt with in a similar way.With this value of p, ( 4.13) becomes 

tav -~(v+/jv)+rl/2{t8(v2) _E.v2_:2_8(v2)} 
at 2 aTJ at 2 2 aTJ 

8 2 v 8( v 2
) =-+--

aT/2 aTJ 
(A.l.5) 

Again we have to expand 

(A.1.6) 
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where this time v0 (17) is given by (4.30). Substituting (A.1.6) into (A.1.5), equating 
terms 0(t- 1l 2 logt) and requiring exponential decay on v1 as 77-+ ±oo gives 

A similar procedure for terms of 0(t-1!2 ) gives the condition on B for exponential 
decay of v2 as 77 -+ ±oo as 

Numerical evaluation gives B = -0.0630 to four decimal places. 

A.2. Solution to a boundary value problem 

In this appendix we construct the solution to the boundary value problem represented 
by (4.86)-(4.88) in Section 4.2.2. 
We first show that Uo(e) is monotonically increasing for -oo < e < oo. To see this we 
suppose fo is a stationary point of Uo(O so that from ( 4.86) we have, with Uo(eo) > 0. 

ui = - ( 1 ~ P) ug ( fo) < o 

so fo is a maximum. This implies that Uo(O < Uo(fo) for all e so the boundary 
condition ( 4.87) cannot be satisfied, hence U0 cannot have a stationary point and 
thus the monotonicity condition must hold. This result now enables us to change the 
independent variable from e to U0 • Putting U0 = u we write 

u'(e)=y(u) (A.2.1) 

regarding u as the independent variable with 0 < u < oo. This reduces ( 4.86) to the 
first order equation 

dy - p-1 p uP 
du - 1 + (opu - ( 1 - p) y (A.2.2) 

Since we are assuming that u = Uo( e) has a continuous derivative for all e then we 
must have u '(e) -+ 0 as e -+ oo and we must solve (A.2.2) subject to the initial 
condition y(O) = 0. Now near u = 0 

y(u)"' (ouP + ...... 
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and hence from (A.2.1) we see that the support of u(O must be finite since with 
0 < p < l 

r· ds 
lo y( s) 

is bounded. Thus u(O 2: 0 fore 2: e1 and u(O = 0 for -oo < e ::; 6 where we may 
take 6 = 0 since ( 4.86) is translationally invariant. To see what conditions hold at 
e = 0 we integrate ( 4.86) between zero and e > 0 with u(O) = u '(0) = 0 to give 

u'(O = (ouP(O + u(O - ( p ) re uP(s)ds 
1 - p lo 

whence dividing by uP(O > 0 we have 

U '(e) _ ( + 1-P(t) p re P( )d 
uP ( e) - 0 U I, - ( 1 - p) uP ( 0 10 U S S 

Since uP(O is monotonically increasing then 

so . {u'(O} ~~ uP(O = (o 

or 
{ u1-P(l) }' = (o(l - p) 

ate= 0. 
We are now in a position to construct the solution. First we put 

in (A.2.2) to give 

where from (A.2.3) 

and from ( 4.87) 

v = u1
-P and v'(O = Y(v) 

dY Y - p p - = --+--{(o(l-p)-Y} 
dv Y (l-p)v 

Y(O) = (1 - p)(o 

Y(oo)=p 

(A.2.3) 

(A.2.4) 

(A.2.5) 

(A.2.6) 

To determine (0 and Y ( v) we proceed as follows. First if we suppose that (0 > p / ( 1-p) 
then Y(0) > p and, from (A.2.4), Y'(0) > 0. Now in order for the condition (A.2.6) 
to be satisfied there must be a value of v > 0 for which Y = (0 ( 1 - p) and Y' < 0. 
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Clearly from (A.2.4) such a condition cannot hold for (0 > p/(1 - p). A similar 
argument holds if (0 < p/(1 - p) and so we conclude that 

(o = p/(1 - p) ( A.2. 7) 

whence the problem becomes 

dY (Y - p){(l - p)v - pY} 
dv vY(l - p) 

Y(O) = p 

Now there are no solutions which increase from Y(0) = p since ~~ < 0 for Y > p and 
Y > (l-p)v. Similarly there are no solutions which decrease from Y(0) = p. Thus 

p 

Y =pis the only solution satisfying Y(0) = p and hence with (A.2.7) constitutes the 
unique solution. In the original variables this becomes 

Uo = { {p(e - 6)}1/i-p , e 2: 6 
o , e < 6 

(A.2.8) 

which together with ( A.2. 7) is the unique solution, to within the arbitrary translation 
e1, of the boundary value problem (4.86) - (4.88). 

A.3. The solution of the initial value problem for 
D = 0. 

In this Appendix we write down the solution of the equation (2.11) with D = 0 and 
initial data ( 4.17) for p = 1 /2 and p = 3 /2. 
1. p = 1 /2 In this case the point x = - l, where u = 0, does not move so there is 

an expansion wave which connects u = 0 to u = 1. In addition a shock initiated at 
x = l moves to the right with a speed determined by the mass invariance condition. 
So we have 

u(x,t) = 1 
0 X < -1 

4(~~:~~)2 ' -1 ::S (2t/3) - 1 
1 , (2t/3) - 1 ::S (t/2) + 1 
0 x>(t/2)+1 

(A.3.1) 
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This persists until the head of the expansion wave coalesces with the shock at t = 12 
and x = 7. Fort > 12 we then have 

where 

- (l+x)2 

{ 

0 ' 
u(x, t) - 4(t-o-1)2 ' 

X < -1 

-1 :S x :S S(t) 
X > S(t) 

S(t) = 4(t + 4)1!2 
- 9, t 2: 12 

In terms of the outer variable of Section 4.1.3. , namely 

v(q,t) = { 

with 

'f/ = X jtl/2 

4(1-7)t-l/2_t-l )2 

0 

,,, < -r112 

, -r1/2 '.S X '.S 'f/2(t) 

X 2: 'f/2 ( t) 

(A.3.2) 

( A.3.3) 

(A.3.4) 

(A.3.5) 

2. p = 3/2 Here the point x = I translates to the right with unit speed so we put 

X = x-t 

so the leading edge of the wave,where u = 0, is located at X = 1. There is an 
expansion wave which links u = 0 and u = 1, together with a shock which moves to 
the left in the (X,t) plane from X = -1 according to mass conservation in the wave. 
Hence the solution can be written 

u(X,t) = l X < -1 - (t/5) 0 
1 , -1 - (t/5) :S X < 1 - (3t)/5 

1 - (3t)/5 < X :S 1 4(1-X)2 

9(t-l+X)2 ' 

0 X 2: 1 

(A.3.6) 

This solution persists until t 20 at which time the shock and expansion wave 
coalesce. For t 2: 20 we then have 

u(X,t) = { 
0 , X<X1(t) 

X 1(t) :S 1 4(1-X)2 

9(X+t-1)2 1 

0 X > 1 
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where X1 ( t) is given by the solution of a cubic. In terms of the outer variable of 
Section 4.1.2., namely 

we have 

where 

and 

v(~,t) = { 

1J = X/t2f3 

0 
4( t-2/3 -11 )2 

9(1+71t-1/3 -t-1 )2 l 

0 

1J < T/l ( t) 
1J1(t) ~ 77 ~ r2/3 

1J > t-2/3 

1J1(t) = c 213(12(u + v) - 8) 

U = (-q + Jq2 + p3)lf3 

V = -p/u 

p = t/8 - 9/16 

q = t2 /128 - (9t)/64 + 27 /64. 
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Figure 1: Convergence of the numerical solution to the limiting profile for the case 
p = 3. ut 1!2 plotted as a function of T/ for --- t = 80, - - - t = 320, + + + t = 1000 

, * * * t = 2000. 

0.8 

0.6 

0.4 

0.2 

-8 -6 -4 -2 0 2 4 6 8 10 

Figure 2: Convergence of the numerical solution to the limiting profile for the case 
p = 3. ut 112 plotted as a function of the modified variable T/I for -- t = 200, - - -
t = 500. + + + t = 1000 * * * t = 1500. 
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Figure 3: Convergence of the numerical solution to the limiting profile for the case 
p = 2. ut 112 plotted as a function of the modified variable 711 for - t = 500,- - -
t = 1000, + + + t = 1500, * * * t = 3000. 
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Figure 4: Convergence of the numerical solution to the zero order outer solution for 
p = 1.5. ut2!3 plotted as a function of T/ for - t = 1000, - - - t = 2000 with D = 10- 2

. 
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Figure 5: Convergence of the exact solution of the initial value problem to the zero or­
der outer solution for D = 0 and p = 1.5. The values of time are 1000, 2000, 5000, 10. 000 
and 20,000. 
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Figure 6: Convergence of the numerical solution to the zero order outer solution for 
p = .5. ut plotted as a function of TJ for --- t = 1000 ,- - - t = 2000 with D = 10-2 . 



5 

-4 -2 

Figure 7: Convergence of the exact solution to the initial value problem for D = 0 
and p = .5. The values of time are 1000, 2000, 5000, 10,000 and 20,000. 
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