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Abstract

Current microprocessors incorporate techniques to ex-
ploit instruction-level parallelism (ILP). However, previous
work has shown that these ILP techniques are less effective
in removing memory stall time than CPU time, making the
memory system a greater bottleneck in ILP-based systems
than previous-generation systems. These deficiencies arise
largely because applications present limited opportunities
for an out-of-order issue processor to overlap multiple read
misses, the dominant source of memory stalls.

This work proposes code transformations to increase
parallelism in the memory system by overlapping multiple
read misses within the same instruction window, while pre-
serving cache locality. We present an analysis and trans-
formation framework suitable for compiler implementation.
Our simulation experiments show substantial increases in
memory parallelism, leading to execution time reductions
averaging 23% in a multiprocessor and 30% in a unipro-
cessor. We see similar benefits on a Convex Exemplar.

1. Introduction

Current commodity microprocessors improve perfor-
mance through aggressive techniques to exploit high lev-
els of instruction-level parallelism (ILP). These techniques
include multiple instruction issue, out-of-order (dynamic)
issue, non-blocking reads, and speculative execution.

Our previous work characterized the effectiveness of ILP
processors in a shared-memory multiprocessor [14]. Al-
though ILP techniques successfully and consistently re-
duced the CPU component of execution time, their im-
pact on the memory (read) stall component was lower and
more application-dependent, making read stall time a larger
bottleneck in ILP-based multiprocessors than in previous-
generation systems. In particular, current and future read

�
This work is supported in part by an IBM Partnership award, Intel Cor-

poration, the National Science Foundation under Grant No. CCR-9410457,
CCR-9502500, CDA-9502791, and CDA-9617383, and the Texas Ad-
vanced Technology Program under Grant No. 003604-025. Sarita Adve
is also supported by an Alfred P. Sloan Research Fellowship. Vijay S. Pai
was also supported by a Fannie and John Hertz Foundation Fellowship.

miss latencies are too long to overlap with other instruction
types. Thus, an ILP processor needs to overlap multiple
read misses with each other to hide a significant portion of
their latencies. An out-of-order processor can only overlap
those reads held together within its instruction window. In-
dependent read misses must therefore be clustered together
within a single instruction window to effectively hide their
latencies (read miss clustering). The applications in our
study typically did not exhibit much read miss clustering,
leading to poor parallelism in the memory system.

This paper presents code transformations to improve
memory parallelism for systems with out-of-order proces-
sors, while preserving cache locality. We exploit code trans-
formations already known and implemented in compilers
for other purposes, providing the analysis needed to relate
them to memory parallelism. The key transformation we
use is unroll-and-jam, which was originally proposed for
improving floating-point pipelining and for scalar replace-
ment [1, 2, 4, 11]. We develop an analysis that maps the
memory parallelism problem to floating-point pipelining.

We evaluate these transformations applied by hand to
a latency-detection microbenchmark and five scientific ap-
plications running on simulated and real uniprocessor and
multiprocessor systems. Our clustering transformations re-
duce exposed latency by over 80% for the latency-detection
microbenchmark. For the scientific applications, the trans-
formations reduce execution time by 9–39% (averaging
23%) in the simulated multiprocessor and 11–48% (aver-
aging 30%) in the simulated uniprocessor. A substantial
part of these execution-time reductions arise from improv-
ing memory parallelism, particularly as memory stall time
becomes more significant. We confirm the benefits of our
transformations on a real system (Convex Exemplar), where
they reduce application execution time by 9–34%.

An alternative latency tolerating technique is software
prefetching, which has been shown to be effective for sys-
tems built with simple processors [10]. However, prefetch-
ing can be less effective in ILP systems because of increased
late prefetches and resource contention [14]. We only con-
sider read miss clustering in this work; our ongoing inves-
tigations indicate ways in which clustering transformations
can also improve the effectiveness of prefetching [13].
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(c) Exploits both

Figure 1. Impact of matrix traversal order on miss clustering. Crosses represent matrix elements,
and shaded blocks represent cache lines. The matrix is shown in row-major order.

2. Motivation for Read Miss Clustering

This section discusses the need for read miss clustering,
the sources of poor clustering, and code transformations to
improve clustering.

2.1. Latency Tolerance in ILP Processors

Instructions in an out-of-order processor’s instruction
window (reorder buffer) can issue and complete out-of-
order. To maintain precise interrupts, however, instructions
commit their results and retire from the window in-order af-
ter completion [17]. The only exception is for writes, which
can use write-buffering to retire before completion.

Because of the growing gap in processor and memory
speeds, external cache misses can take hundreds of proces-
sor cycles. However, current out-of-order processors typi-
cally have only 32–80 element instruction windows. Con-
sider an outstanding read miss that reaches the head of the
window. If all other instructions in the window are fast (e.g.,
typical computation and read hits) or can be buffered aside
(e.g., writes), the independent instructions may not overlap
enough latency to keep the processor busy throughout the
cache miss. Since the later instructions wait to retire in-
order, the instruction window will fill up and block the pro-
cessor. Thus, this miss remains exposed despite such ILP
features as out-of-order issue and non-blocking reads.

Suppose that independent misses from elsewhere in the
application could be scheduled into the instruction window
behind the outstanding read miss. Then, the later misses are
hidden behind the stall time of the first miss. Thus, read
miss latencies can typically be effectively overlapped only
behind other read misses, and such overlap only occurs if
read misses to multiple cache lines appear clustered within
the same instruction window. We refer to this phenomenon
as read miss clustering, or simply clustering.

2.2. Increasing Read Miss Clustering

To understand the sources of poor read miss clustering in
typical code, we consider a loop nest traversing a 2-D ma-
trix. Figure 1 graphically represents three different matrix

for( ����� j++) for( ����� i++)
for( ����� i++) for( ����� j++)
����� A[j,i] ����� A[j,i]

(a) Base code (b) Interchange

for( ����� jj+=N) for( ����� j+=N)
for( ����� i++) for( ����� i++) �

for(j=jj;j<jj+N;j++)
����� A[j,i] ����� A[j,i]

����� A[j+1,i]
�����������
����� A[j+N-1,i]

(c) Strip-mine and interchange ( ��� ) Unroll-and-jam

Figure 2. Pseudocode for Figure 1 matrix
traversals (row-major notation).

traversals. The matrix is shown in row-major order, with
crosses for data elements and shaded blocks for cache lines.
Figure 2 relates these matrix traversals to code generation,
with pseudocode shown in row-major notation.

Figures 1(a) and 2(a) show a matrix traversal optimized
for spatial locality, following much compiler research. In
this row-wise traversal, � successive loop iterations access
each cache line, where � is the number of data elements per
cache line. While this traversal maximizes spatial locality, it
minimizes clustering. For example, an instruction window
that holds � or fewer iterations never holds read misses to
multiple cache lines, preventing clustering. This problem is
exacerbated by larger cache lines or larger loop bodies.

Read miss clustering can be maximized by a column-
wise traversal, since successive iterations held in
the instruction window access different cache lines.
Figures 1(b) and 2(b) show such a column-wise traversal,
obtained by applying loop interchange to the code in
Figure 2(a). Each cache line is now accessed on multiple
successive outer-loop iterations. However, the traversal
passes through every row before revisiting an older cache
line. If there are more rows than cache lines, this traversal
could lose all cache locality, potentially overwhelming any
performance benefits from clustering.

The above example suggests a tradeoff between spa-
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tial locality (favored by current code-generation schemes)
and miss clustering. We seek a solution that achieves the
benefits of clustering while preserving spatial locality. A
column-wise traversal can maximize clustering; however, it
must stop before losing locality. In particular, the column-
wise traversal can stop as soon as the miss clustering re-
sources are fully utilized. For example, a processor that
allows ten simultaneous cache misses sees the maximum
memory parallelism when ten independent miss references
are clustered. The traversal could then continue in a row-
wise fashion to preserve locality. Figure 1(c) shows a ma-
trix traversal that exploits clustering and locality in this way.
Figure 2(c) expresses this traversal by applying strip-mine
and interchange to Figure 2(a).

Since the column-wise traversal length (
�

) of
Figure 2(c) is based on the hardware resources for overlap
( ����� today), the strip size is small, and the innermost
loop can be fully unrolled. Figure 2( ��� ) shows the result of
that unrolling. Now, the code reflects the transformation of
unroll-and-jam applied to Figure 2(a). This transformation
unrolls an outer loop and fuses (jams) the resulting inner
loop copies into a single inner loop. Previous work has
used unroll-and-jam for scalar replacement (replacing
array memory operations with register accesses), better
floating-point pipelining, or cache locality [1, 2, 3, 4, 11].
Using unroll-and-jam for read miss clustering requires
different heuristics, and may help even when the previously
studied benefits are unavailable.

We prefer to use unroll-and-jam instead of strip-mine
and interchange for two reasons. First, unroll-and-jam al-
lows us to exploit benefits from scalar replacement. Sec-
ond, unroll-and-jam does not change the inner-loop itera-
tion count. The shorter inner loops of strip-mining can neg-
atively impact techniques that target inner loops, such as
dynamic branch prediction. By increasing inner-loop com-
putation without changing the iteration count, unroll-and-
jam can also help software prefetching [13].

Unroll-and-jam creates an
�

-way unrolled steady-state,
followed by an untransformed postlude of leftover itera-
tions. To enable clustering in the postlude, we simply inter-
change the postlude when possible. This should not degrade
locality, since the postlude originally has fewer outer-loop
iterations than the unroll-and-jam degree.

3. Analysis and Transformation Framework

This section provides a formal framework to apply mem-
ory parallelism transformations in a compiler.

3.1. Dependences that Limit Memory Parallelism

We first describe a dependence framework to represent
limitations to memory parallelism. As in other domains,
dependences here indicate reasons why one operation will

not issue in parallel with another. However, these depen-
dences are not ordinary data dependences, since memory
operations can be serialized for different reasons. We build
this framework to gauge performance potential, not to spec-
ify legality. Thus, we optimistically estimate memory par-
allelism and specify dependences only when their presence
is known. The transformation stages must then use more
conventional (and conservative) dependence analysis for le-
gality. For simplicity, we only consider memory parallelism
dependences that are either loop-independent or carried on
the innermost loop. We can then exploit previous work with
the same simplification [2].

Since we focus on parallelism among read misses, we
first require locality analysis to determine which static ref-
erences can miss in the external cache (leading references),
and which leading references are known to exhibit spatial
locality across successive iterations of the innermost loop
(inner-loop self-spatial locality). Known locality analysis
techniques can provide the needed information [19]. Cur-
rently, we do not consider cache conflicts in our analysis
and transformations.

We use the above information to identify limitations to
read miss parallelism. We focus on three kinds of limita-
tions, which we call cache-line dependences, address de-
pendences, and window constraints.

Cache-line dependences. If a read miss is outstanding,
then another reference to the same cache line simply coa-
lesces with the outstanding miss, adding no read miss par-
allelism. Thus, we say that there is a cache-line dependence
from memory operation A to B if A is a leading reference
and a miss on A brings in the data of B. The cache-line
dependence is a new resource dependence class, extending
input dependences to support multi-word cache lines.

The following code illustrates cache-line dependences.
In all examples, leading references known to have inner-
loop self-spatial locality will be italicized, while other lead-
ing references will be boldfaced. The accompanying graph
shows static memory references as nodes and dependences
as edges. Each edge is marked with the inner-loop depen-
dence distance, the minimum number of inner-loop itera-
tions separating the dependent operations specified.

for( ����� j++)
for( ����� i++)
b[j,2*i] = b[j,2*i] + a[j,i]

+ a[j,i-1]

a[j,i] 0

1

1

b[j,2i]

a[j,i−1]

Note that there are no cache-line dependences from one
leading reference to another; such a dependence would
make the second node a non-leading reference. Addition-
ally, any leading reference with inner-loop self-spatial lo-
cality has a cache-line dependence onto itself. That depen-
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dence has distance 1 for any stride, since the address of the
miss reference will be closer to the instance 1 iteration later
than to an instance farther away.

Address dependences. There is an address dependence
from memory operation A to B if the result of A is used
in computing the address of B, serializing B behind A.
Address dependences typically arise for irregular accesses,
such as indirect addressing or pointer-chasing. The follow-
ing code segments show address dependences. The graphs
show address dependences as solid lines and cache-line de-
pendences as dotted lines. The first example shows the in-
direct addressing typical of sparse-matrix applications.

for( ����� j++)
for( ����� i++) �

ind = a[j,i]
sum[j] = sum[j] + b[ind]

b[ind]0

1

a[j,i]

The above shows one leading reference that exhibits cache-
line dependences, connected through an address depen-
dence to another leading reference. The following code
shows address dependences from pointer dereferencing.

for( ����� i++) �

l = list[i]
for( ����� l=l � next)
sum[i] += l � data

1
1

0
l  data l  next

The above assumes that the data and next fields always
lie on the same cache line and that separate instances of l
are not known to share cache lines. Even though l � next
is a non-leading reference, it is important since a depen-
dence flows from this node to the leading reference.

Window constraints. Even without other dependences,
read miss parallelism is limited to the number of indepen-
dent read misses in the loop iterations simultaneously held
in the instruction window. We do not include these resource
limitations in our dependence graphs, since they can change
at each stage of transformation. We will, however, consider
these constraints in our transformations.

Control-flow and memory consistency requirements may
also restrict read miss parallelism. We do not consider these
constraints, since their performance impact can be mitigated
through well-known static or dynamic techniques such as
speculation. However, these dependences may still affect
the legality of any code transformations.

Of the three dependence classes that we consider (cache-
line, address, and window), only address dependences are
true data-flow dependences. Window constraints can be
eliminated through careful scheduling of the loop body,
possibly enhanced by inner-loop unrolling. Such schedul-
ing would aim to cluster together misses spread over a long
loop body. Loop-carried cache line dependences can be
converted to loop-invariant dependences through inner-loop
unrolling by a multiple of � , where � iterations share each

cache line. Then, no cache line is shared across unrolled
loop iterations. The inner-loop unrolling degree may need
to go as high as

���
� to provide clustered misses to

�

separate cache lines. This can be excessive, particularly
with long cache lines. We therefore leave these loop-carried
cache-line dependences in place and seek to extract read
miss parallelism with less code expansion through outer-
loop unroll-and-jam.

We will address memory parallelism limitations in loop
nests by first resolving recurrences (cycles in the depen-
dence graph), and then handling window constraints. A
loop nest may suffer from one or both problems, and re-
currence resolution may create new window constraints.

3.2. Resolving Memory Parallelism Recurrences

Unroll-and-jam has previously been used to improve
floating-point pipelining in the presence of inner-loop
floating-point recurrences [2, 11]. We seek to use unroll-
and-jam to target loop nests with memory-parallelism re-
currences, which arise for such common access patterns as
self-spatial or pointer-chasing leading references. We map
memory parallelism to floating-point pipelining, exposing
several key similarities and differences between these prob-
lems. This section thus shows how to automate the process
described in Section 2.2, which used unroll-and-jam to in-
crease miss clustering without degrading locality.

3.2.1. Background on Floating-point Pipelining

Consider an inner loop that carries a floating-point recur-
rence (a cycle of true dependences). The operations of later
iterations can stall for the results of earlier iterations, pre-
venting maximum pipeline throughput. Further, inner-loop
unrolling and scheduling cannot help, as later inner-loop it-
erations are also in the cycle. The following pseudocode
has an inner-loop recurrence between statements � and

�
.

The graph shows floating-point true dependences and de-
pendence distances.

for( ����� j++)
for( ����� i++) ���� b[j,i] = a[j,i-1] + c[i]	 � a[j,i] = b[j,i] + d[i]

α

β
0 1

The above recurrence has two floating-point operations, and
needs 1 iteration for a complete cycle (the sum of the de-
pendence distances). Thus, the system must serialize 2
floating-point operations (the number in the recurrence) to
complete 1 iteration (the length of the cycle), regardless of
the pipelining supported. Callahan et al. described floating-
point recurrences as follows [2]1:

1Their notation was slightly different, with 
�� , 
������ , ������� , and ���
instead of � , 
 , � , and � , respectively.

150



����� : number of stages in the floating-point pipeline��� : ratio of the number of nodes (static floating-point
operations) in the inner-loop recurrence ( � ) to the
number of iterations to traverse the cycle ( � )�
	 : static count of floating-point operations in the in-
nermost loop

Since � floating point operations must be serialized in� iterations, the recurrence requires at least � pipeline la-
tencies ( � � � � � pipeline stages) per iteration. Without
dependences, each iteration would require only the time
of 	 pipeline stages. Thus, the recurrence limits pipeline
utilization to �
������ . Unroll-and-jam introduces independent
copies of the recurrence from separate outer loop iterations,
increasing 	 without affecting � [2]. To fill the pipeline,
unroll-and-jam must be applied until 	������ � � . (The max-
imum � should be used for a loop with multiple recurrences,
since each recurrence limits pipeline utilization.)

Certain dependences can prevent unroll-and-jam, but
they are not directly related to the recurrences targeted.
Previous work more thoroughly discusses legality and the
choice of outer loops to unroll for deeper nests [2, 4, 11].

3.2.2. Mapping to Memory Parallelism

Above, unroll-and-jam used only the number of pipeline
stages, not the latency. The pipeline simply represents the
number of floating-point operations that can be processed
in parallel. Thus, we can map this algorithm to memory
parallelism: the goal is to fully utilize the miss clustering
resources, not to schedule for some specific miss latencies.
Here, ��� corresponds to the maximum number of simulta-
neous outstanding misses supported by the processor. The
rest of the mapping is more difficult, as not all memory op-
erations utilize the resources for miss parallelism — only
those instances of leading references that miss at run-time
do. This difference affects � and 	 .

Characterizing recurrences ( � ). We refer to recur-
rences with only cache-line dependences as cache-line re-
currences and recurrences with at least one address depen-
dence as address recurrences. Recurrences with no leading
miss references are irrelevant here and can be ignored, since
they do not impact read miss parallelism.

As discussed in Section 3.2.1, � is computed from two
values: � and � . We count only leading references in � ,
as only these nodes can lead to serialization for a miss. We
count � as in Section 3.2.1, since this specifies the number
of iterations after a miss instance before serialization. Al-
though our discussion has focused on tolerating read miss
latencies, our algorithm must count both read and write miss
references in � and 	 , since writes also require resources.
Nevertheless, we will not apply unroll-and-jam on an outer
loop if it only adds write misses, since write latencies can
be hidden through write-buffering.

Counting memory parallelism candidates ( 	 ). For
floating-point pipelines, the 	 parameter counts the static
instructions in the innermost loop. We cannot use this same
definition here for two key reasons, described below.

Dynamic inner-loop unrolling. An out-of-order instruc-
tion window of � instructions dynamically unrolls a loop
body of � instructions by ��� � � . (For simplicity, we assume
no outer-loop unrolling, although this could arise if the in-
ner loop had fewer than � � � � iterations). Such unrolling ex-
poses no additional steady-state parallelism for loops with
address recurrences, since these are analogous to the recur-
rences of floating-point pipelining. However, this unrolling
can actually break cache-line recurrences. In particular, if
�"! successive iterations share a cache line for leading refer-
ence # , dynamic inner-loop unrolling creates � ���$&% � inde-
pendent misses from the original recurrence. Leading refer-
ences outside recurrences can also contribute multiple out-
standing misses ( � ! � � , since no cache-line sharing is
known). Thus, we define ' ! , the number of copies of #
that can contribute overlapped misses:

' ! �
( � ���$&% � loop with no address recurrences
� otherwise

(1)

Miss patterns. A simple count of leading references can
overestimate memory parallelism, since not all leading ref-
erence instances miss in the cache. To determine which
leading reference instances miss together, we must know the
miss patterns (sequences of hits and misses) for the differ-
ent leading references and their correlation with each other.
Such measures can be difficult to determine in general. In
this work, we make some simple assumptions, described
below.

We split the leading references into two types: regular
(arrays indexed with affine functions of the loop indices)
and irregular (all others). For regular references, we assume
that at least some passes through the inner loop experience
misses on each cache line accessed, and that different regu-
lar leading references experience misses together. These as-
sumptions lead to maximum estimated parallelism for reg-
ular leading references.

For irregulars, the miss pattern is not typically analyz-
able. We assume no correlation, either among instances of
the same reference or across multiple references. Thus, we
only need to know the overall miss rate, )*! , for each refer-
ence # . )+! can be measured through cache simulation or
profiling. These assumptions allow more aggressive trans-
formation than the more common assumption of no locality
for irregulars.

We can now estimate the 	 parameter, accounting for
both dynamic inner-loop unrolling and miss patterns:	 � 	-,/.1032�	 � ,/,/.10 (2)	-,4.50 � 6!87:9 $ 9 '3! (3)
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	 � ,/,/.50 � � 6!87 � $ 9 ) !
� ' ! � (4)

We split 	 into regular and irregular components, with � �"�
and

�
�"� the sets of regular and irregular leading references

respectively. The terms ' ! in Equation 3 and ) ! � ' ! in
Equation 4 give the maximum expected number of misses
to separate cache lines contributed by leading reference # .
We round up 	 � ,/,/.50 to insure that some resources are held
for irregular references when they are present.

The floating-point pipelining algorithm applied unroll-
and-jam until 	 � ��� � � . We should be more conserva-
tive for memory parallelism, as the cache can see extra con-
tention when the resources for outstanding misses (MSHRs)
fill up. Thus, we aim to apply unroll-and-jam as much as
possible while maintaining 	 � ��� � � (using the maximum� for the loop).

After applying unroll-and-jam, we must recompute 	 for
two reasons. First, unroll-and-jam can introduce new lead-
ing references and increase the iteration size. On the other
hand, some leading reference copies may become non-
leading references because of scalar replacement or group
locality. For similar reasons, we must repeat the locality
and dependence analysis passes.

Since 	 varies as described above, we may need to
attempt unroll-and-jam multiple times with different un-
rolling degrees to reach our desired 	 . We can limit
the number of invocations by choosing a maximum un-
rolling degree � based on the resources for memory paral-
lelism, code expansion, register pressure, and potential for
cache conflicts. If we unroll only one outer loop, we can
choose the unrolling degree by binary search, using at most�������
	�� � passes [4]. Generalized searching for unrolling
multiple outer loops can follow the strategies described in
previous work [4]. We also refer to previous work for le-
gality issues [2, 4, 11]. We add only that we prefer not to
unroll-and-jam loops that only expose additional write miss
references, since buffering can hide write latencies.

To revisit the motivating example of Section 2.2, note
that the matrix traversal of Figure 2(a) has a cache-line re-
currence with � � � . � ! typically ranges from 4 to 16
for stride-1 double-word accesses, so � ���$&% � is most likely
1 for a loop body with a moderate amount of computation
and current instruction window sizes. Thus, 	 � 	�,/.50 � �
initially. This example has no scalar replacement opportu-
nities, so each recurrence copy created by unroll-and-jam
contributes a leading reference to the calculation of 	 . As-
suming � is chosen to be at least � � , the search algorithm
will find that unroll-and-jam by � � leads to 	 � � � � � .

3.3. Resolving Window Constraints

We now address memory parallelism limitations from
window constraints. These can arise for loops with or with-
out recurrences. Further, recurrence resolution can actually

create new window constraints, since unroll-and-jam can
spread its candidates for read miss parallelism over a span
of instructions larger than a single instruction window. We
proceed in two stages: first using loop unrolling to resolve
any inter-iteration window constraints, then using local in-
struction scheduling to resolve intra-iteration constraints.

As discussed in Section 3.2.2, an instruction window
of � instructions dynamically unrolls an inner-loop body
of � instructions by ��� �"� . Inter-iteration window con-
straints arise when the independent read misses in �-� � �
iterations do not fill the resources for memory parallelism
(typically because of large loop bodies). Since any recur-
rences have already been resolved, we can now use inner-
loop unrolling to better expose independent misses to the
instruction scheduler. We can directly count the maximum
expected number of independent misses in � � � � iterations,
using the miss rate )+! to weight the irregular leading refer-
ences. We then unroll until the resources for memory paral-
lelism are filled, recomputing the exposed independent miss
count after each invocation of unrolling.

Now we resolve any intra-iteration window constraints
stemming from loop bodies larger than a single instruction
window (possibly because of unroll-and-jam or inner-loop
unrolling). In such cases, the instruction scheduler should
pack independent miss references in the loop body close to
each other. The technique of balanced scheduling can pro-
vide some of these benefits [6, 7], but may also miss some
opportunities since it does not explicitly consider window
size. Nevertheless, this heuristic worked well for the code
sequences we examined. More appropriate local scheduling
algorithms remain the subject of future research.

4. Experimental Methodology

4.1. Evaluation Environments

We perform most of our experiments using RSIM, the
Rice Simulator for ILP Multiprocessors [15]. We model
both an ILP uniprocessor and an ILP-based CC-NUMA
multiprocessor with release consistency. Table 1 summa-
rizes the base configuration. The cache sizes are scaled
based on application input sizes according to the methodol-
ogy of Woo et al. [20]. The memory banks use permutation-
based interleaving on a cache-line granularity to support
a variety of strides [18]. The simulated system latencies
without contention are 1 cycle for L1 hits, 10 cycles for L2
hits, 85 cycles for local memory, 180–260 cycles for remote
memory, and 210–310 cycles for cache-to-cache transfers.
We also briefly summarize experimental results using a real
machine (Convex Exemplar), with more detail in our ex-
tended report [12].
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Processor parameters
Clock rate 500 MHz
Fetch rate 4 instructions/cycle
Instruction window 64 instructions in-flight
Memory queue size 32
Outstanding branches 16
Functional unit count 2 ALUs, 2 FPUs, 2 address units
Functional unit laten-
cies (cycles)

1 (addr. gen., most ALU),
3 (most FPU), 7 (int. mult./div.),
16 (FP div.), 33 (FP sqrt.)

Memory hierarchy and network parameters
L1 D-cache 16 KB, direct-mapped, 2 ports,

10 MSHRs, 64-byte line
L1 I-cache 16 KB, direct-mapped, 64-byte line
L2 cache 64 KB (1 MB for Em3d), 4-way as-

sociative, 1 port, 10 MSHRs,
64-byte line, pipelined

Memory banks 4-way, permutation interleaving
Bus 167 MHz, 256 bits, split transaction
Network 2D mesh, 250MHz, 64 bits, flit de-

lay of 2 network cycles per hop

Table 1. Base simulated configuration.

4.2. Evaluation Workload

We evaluate our clustering transformations using a
latency-detection microbenchmark and five scientific appli-
cations. Table 2 summarizes the evaluation workload for
the simulated system. The number of processors used for
the simulated multiprocessor experiments is based on ap-
plication scalability, with a limit of 16. The input sizes and
processor counts for experiments on the real machine are re-
ported in [12]. Each code is compiled with the Sun SPARC
SC4.2 compiler, using the -xO4 optimization level. We in-
corporate miss clustering transformations by hand, follow-
ing the algorithms presented.

Latbench is based on the lat mem rd kernel of lm-
bench [8]. lat mem rd sees inner-loop address recur-
rences from pointer-chasing. Latbench wraps this loop in an
outer loop that iterates over different pointer chains, with no
locality in or across chains. The pseudocode, given below,
shows code added for Latbench in sans-serif.

for (j=0;j � N;j++)
�

p = A[j];
for(i=0;i

�
I;i++)

p = p � next // serialized misses
USE(p) // keeps p live

Latbench is clustered with unroll-and-jam. As in
lat mem rd, looping overhead is minimized by unrolling
the innermost loops to include 1000 pointer dereferences in
each loop body, for both the base and clustered versions.

Em3d is a shared-memory adaptation of a Split-C ap-
plication [5], and is clustered using unroll-and-jam. This
code has both cache-line and address dependences, but only
cache-line recurrences. The dominant loop nest has variable

Microbenchmark Input Size Procs.
Latbench 6.4M data size 1

Application Input Size Procs.
Em3d 32K nodes, deg. 20, 20% rem. 1,16
Erlebacher 64x64x64 cube, block 8 1,16
FFT 64K points 1,16
LU 256x256 matrix, block 16 1,8
Mp3d 100K particles 1,8

Table 2. Data set sizes and number of proces-
sors for simulation experiments.

inner-loop length, so only the minimum length seen in the
unrolled copies is fused. Each copy completes its remain-
ing length separately. We assumed that the outer loop was
explicitly identified as parallel to enable transformation de-
spite Em3d’s pointer references. Because of its larger work-
ing set, Em3d is simulated with 1 MB L2 caches.

Erlebacher is a shared-memory port of a program by
Thomas Eidson at the Institute for Computer Applications
in Science and Engineering (ICASE). FFT and LU are from
SPLASH-2 [20]. For better load balance, LU is modified
slightly to use flags instead of barriers. These three regu-
lar codes see only cache-line recurrences. Each is clustered
with unroll-and-jam and postlude interchanging.

Mp3d is an irregular, asynchronous, communication-
intensive SPLASH code [16]. To eliminate false-sharing,
key data structures were padded to a multiple of the cache
line size. To reduce true-sharing and improve locality, the
data elements were sorted by position in the modeled phys-
ical world [9]. Mp3d has no recurrences, but sees poor miss
clustering because of large loop bodies. Thus, inner-loop
unrolling and aggressive scheduling can provide clustering
here, as discussed in Section 3.3. We assumed that the dom-
inant move loop was explicitly marked parallel.

5. Experimental Results

5.1. Performance of Latbench

The base Latbench of Section 4.2 exposes an average
miss latency of 171 ns on the simulated system (identical
to lat mem rd). Clustering drops the average exposed la-
tency to 32 ns, a speedup of 5.34X. On the Convex Exem-
plar, clustering reduces the average exposed latency from
502 ns to 87 ns, for a speedup of 5.77X.

These results indicate the potential gains from memory
parallelism transformations, but also indicate some bottle-
necks, since the speedups are less than 10 (the number of si-
multaneous misses supported by each processor). Our more
detailed statistics for the simulated system show that clus-
tering increases contention, increasing average total latency
to 316 ns (from address generation to completion). Fur-
ther, bus and memory bank utilization both exceed 85% af-
ter clustering. Thus, a further increase in speedup would
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Figure 3. Impact of clustering transformations on application execution time.

require greater bandwidth at both the bus and the memory.

5.2. Impact on Application Performance

Figure 3 shows the impact of the clustering transfor-
mations on application execution time for the base simu-
lated system. The graph shows multiprocessor and unipro-
cessor experiments (MP/UP) before and after clustering
(Base/Clust), normalized to the given application and sys-
tem size without clustering. For analysis, execution time is
categorized into data memory stall, CPU, synchronization
stall, and instruction memory stall times, following the con-
ventions of previous work (e.g., [14]). Since writes can re-
tire before completing and read hits are fast, nearly all data
memory stalls stem from reads that miss in the L2 cache.

Overall, the clustering transformations studied provide
from 9–39% reduction in multiprocessor execution time for
these applications, averaging 23%. The multiprocessor ben-
efits in Erlebacher and Mp3d come almost entirely from
reducing the memory stall time. (Mp3d sees some CPU
degradation because of no scalar replacement or pipeline
improvement and slightly worse return-address prediction.)
Em3d, FFT, and LU see benefits split between memory stall
time and CPU time; unroll-and-jam helps the CPU compo-
nent through better functional unit utilization and through
scalar replacement (in FFT and LU). By speeding up the
data producers in LU, the clustering transformations also
reduce the synchronization time for data consumers. Our
more detailed statistics show that the L2 miss count is nearly
unchanged in all applications, indicating that locality is pre-
served and that scalar replacement primarily affects cache
hits. All applications see more multiprocessor execution
time reduction from the newly exposed benefits in read miss
clustering than the previously studied benefits in CPU time.

The uniprocessor sees slightly larger overall benefits
from the clustering transformations, ranging from 11–48%
(average 30%). The speedup of data memory stalls is
greater in the uniprocessor than in the multiprocessor, as
the uniform latency and bandwidth characteristics of the
uniprocessor better facilitate overlap. However, since the
uniprocessor typically spends a smaller fraction of time in
data memory stalls, the transformations’ benefits for FFT
and LU are predominantly in the CPU component.
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Figure 4. Factors shaping memory paral-
lelism (read L2 MSHR utilization) and con-
tention (total L2 MSHR utilization).

To represent the growing processor-memory speed gap,
we simulated a system with 1 GHz processors and all mem-
ory and interconnect parameters identical (in ns or MHz)
to the base. The total execution time reductions are similar
(10–36% in the multiprocessor, averaging 24%; 12–47% in
the uniprocessor, averaging 34%). However, the larger frac-
tion of memory stall time in these systems allows memory
parallelism to provide more of the total benefits than in the
base. Thus, targeting memory parallelism becomes more
important for such potential future configurations.

All simulation experiments show few instruction mem-
ory stalls. Thus, the code added by our transformations
does not significantly impact I-cache locality for these loop-
intensive codes.

We also performed experiments on a Convex Exem-
plar, using larger input sizes appropriate for the real ma-
chine [12]. Each HP PA-8000 processor in the Exemplar
supports 10 simultaneous misses. The clustering transfor-
mations give the Exemplar 9–34% reductions in application
execution time for the multiprocessor and uniprocessor ex-
periments. Our extended report provides more details [12].

5.3. Memory Parallelism and Contention

The MSHR utilization graphs of Figure 4 depict the
sources of memory parallelism and contention for the mul-
tiprocessor runs of Em3d and LU, the two extreme appli-
cations with regard to improvement from the transforma-
tions. Figure 4(a) indicates read miss parallelism, showing
the fraction of total time for which at least

�
L2 MSHRs are
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occupied by read misses for each possible
�

on the X axis.
The clustering transformations only slightly improve read
miss parallelism for Em3d, since Em3d’s irregular accesses
give even the base version some clustering. In contrast, the
transformations convert LU from a code that almost never
had more than 1 outstanding read miss to one with 2 or more
outstanding read misses 20% of the time and up to 9 out-
standing read misses at times.

Figure 4(b) shows the total L2 MSHR utilization, in-
cluding both reads and writes. This indicates contention,
measuring how many requests use the memory system at
once. Both Em3d and LU see curves similar to their read
miss curves, indicating that contention in these applications
comes primarily from reads. Thus, for these applications,
any negative impact from increased contention is offset by
the performance benefits of read miss parallelism.

6. Conclusions and Future Work

This study finds that code transformations can improve
memory parallelism in systems with out-of-order proces-
sors. We adapt compiler transformations known for other
purposes to the new goal of memory parallelism. Our ex-
perimental results show substantial improvements in mem-
ory parallelism, thus hiding more memory stall time and
reducing execution time significantly. As memory stalls be-
come more important (e.g., multiprocessors or future sys-
tems with greater processor-memory speed gaps), more ex-
ecution time reductions come from the transformations’
newly exposed benefits in memory stall time than their pre-
viously studied benefits in CPU time.

We can extend this work in several ways. For example,
we can seek to resolve memory-parallelism recurrences for
unnested loops by fusing otherwise unrelated loops. We are
also investigating the interactions of miss clustering with
software prefetching, as their different approaches to la-
tency tolerance allow each to provide distinct benefits.
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