
Hundred Digit Challenge Solutions

Eric Dussaud, Chris Husband, Hoang Nguyen,
Daniel Reynolds and Christiaan Stolk ∗

May 16, 2002

Our group was formed as a collection of graduate students and one post-doc from the Compu-
tational and Applied Math Department at Rice University. For nearly all the problems, we had at
least two distinct approaches that gave similar results. Our solutions are given in Table 1 to a level
we are confident of accuracy. For the problems marked with a † to the right of the second column,
the numerical methods described below may yield much greater accuracy; we give only 30 digits.

Problem Solution
1 0.323367431677778761399
2 0.995262919443354160890311809426 †
3 1.274224152821
4 −3.30686864747523728007611377089 †
5 0.2143352345
6 0.0619139544739909428481752164732 †
7 0.725078346268401167468687719251 †
8 0.424011387033688363797433668593 †
9 0.7859336743503714545652
10 3.83758797925122610340713318620× 10−7 †

Table 1: Rice solutions to the Hundred Digit Challenge

Problem 1

Solution Method 1 by Christiaan Stolk

Make a transformation of variables y = − log x. The integral becomes
∫ ∞

0

cos(yey) dy.

This integral can be evaluated by doing explicit numerical integration on shorter and shorter subin-
tervals, and then adding up the results. This yields 0.323367431677778. For higher precision this be-
comes very expensive. Averaging over one or a few oscillations, and then integrating the average func-
tion can yield improvement within reasonable time; we obtained the result 0.323367431677778761399.
Better results might also be obtained by transforming to z = x−1 log x, and then using a partial
integration trick for oscillatory integrals like in my solution to problem 9.

∗Department of Computational and Applied Mathematics, Rice University, Houston, TX, USA.
Email: dussaud@caam.rice.edu, chusband@caam.rice.edu, hnguy@caam.rice.edu, reynoldd@caam.rice.edu,
cstolk@caam.rice.edu.

1



Solution Method 2 by Hoang Nguyen

We used the transformation w = log(x) to turn the problem into

∫ 0

−∞
cos(w e−w) dw

The integrand is oscillatory with rapidly decreasing period as w approaches −∞. This was handled
by integrating over one cycle at a time. We first computed a list of points where the integrand reaches
a minimum of −1. This was done by solving the nonlinear equations using Newton’s method. The
integral was computed for each cycle using quadl in Matlab. By adding up enough cycles, we got
the answer of 0.3233674316.

Problem 2

Solution Method 1 by Hoang Nguyen

We computed the position where the photon hits each mirror surface. This involved solving a
quadratic equation and picking the correct root. The normal vector to the mirror surface at this
location was computed, then the new trajectory was found by reflecting the old trajectory across the
normal. These calculations were done using vector arithmetic (no angles or trigonometric functions
were used). This was done one mirror at a time until the total distance traveled by the photon
equaled 10. The final answer, obtained using Matlab variable precision arithmetic (128-digits), was
0.99526291944335416. A plot of this trajectory is given in Figure 1.

Solution Method 2 by Eric Dussaud

A photon moving at speed 1 in the x-y plane starts at t = 0 at (x, y) = (0.5, 0.1) heading due east.
Around every integer lattice point (i, j) in the plane, a circular mirror of radius 1

3 has been erected.
We wish to determine the distance of the photon to the origin of the lattice at time t = 10. Since the
photon has speed 1, the total distance traveled from its initial position at t = 10 is 10. Therefore, it
suffices to keep track both of the distance travelled by the photon, and of its position, to solve the
problem. The difficulty obviously resides in the fact that the photon is likely to reflect several times
between t = 0 and t = 10.
We solved this problem using the following procedure. Starting with the initial position and direction
of the photon, we determine an equation for its path, look for the mirror it will first reach (if any),
determine the coordinates of intersection of its path with the mirror’s surface (this includes choosing
the “right” intersection), compute the equation of its new (reflected) path (including direction), and
so on. The distance traveled is computed between any two reflections and the procedure is stopped
when we have reached d = 10. Note that the mirrors on which the photon is reflected during its course
are identified in a purely empirical manner (that is, taking a guess by plotting its trajectory in the
lattice, and checking that the quadratic equation used to compute the intersection coordinates does
indeed yield real roots). The different steps involved are summarized in the following paragraphs.
We use the following notation:

• y = k1x + p1 for the equation of the trajectory of the photon before it reflects on a mirror (k1

and p1 are the slope and y-intercept, respectively),

• y = k2x + p2 for the equation of the trajectory after reflection,

• (x − x0)2 + (y − y0)2 = r2 for the equation of the mirror’s surface (circle), with (x0, y0) the
coordinates of its center, and r = 1

3 its radius,

2



−1.5 −1 −0.5 0 0.5 1 1.5
−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

x

y

Problem 2

Figure 1: Photon trajectory for Problem 2

• (xi, yi) for the coordinates of the intersection of the trajectory with the mirror,

• a2x + b2y + c2 for the equation of the normal to the mirror at (xi, yi).

Intersection of a line with a circle

The x-coordinates of the two intersection points satisfy:

ax2 + bx + c = 0,

where

a = (1 + k2
1)

b = 2(k1p1 − k1y0 − x0)

c = x2
0 + y2

0 + p2
1 − r2 − 2y0p1.

To minimize both overflow and underflow of the floating point calculations, we used the following
procedure to compute the roots x1 and x2 of this quadratic equation:

∆ = b2 − 4ac, q =
−(b + sign(b)

√
∆)

2
x1 =

q

a
, x2 =

c

q
.

3

C) 

C) 

C) 



The “correct” x-coordinate xi is that for which the distance between the previous reflection point
and this new one is minimum . The corresponding y-coordinate yi is simply computed using yi =
k1xi + p1, the equation for the photon’s trajectory before reflection.

Equation for the reflected trajectory

To compute the slope of the reflected trajectory, the equation of the normal to the circle (mirror) at
(xi, yi) is used (note that the equation of the tangent could just as well be used). Using the above
notation, we have that:

a2 = yi − y0, b2 = x0 − xi.

Now, the angle α between the incident trajectory and the normal satisfies:

tan α =
−k1b2 − a2

−k1a2 + b2
.

We can compute tan 2α from the following trigonometric formula:

tan 2α =
2 tan α

1− tan α2
.

Thus, the slope k2 of the reflected trajectory may be computed as follows:

k2 =
k1 + tan 2α

1− k1 tan 2α
.

Its y-intercept is then computed using the (xi, yi) coordinates

p2 = yi − k2xi.

Note that the above computations do not require evaluating any trigonometric functions.

Distance

The distances between two points (x1, y1) and (x2, y2) is computed in the usual way:

d =
√

(x2 − x1)2 + (y2 − y1)2.

Numerics

All of the numerical computations were performed in MathematicaTM. We first attempted to obtain
each intermediate result in symbolic form; after the fourth reflection, the memory required by the
symbolic computations was just too large for MathematicaTM to handle. We started doing numerics
at this point. Using the symbolic (exact) expressions obtained thus far for the slopes, intersections,
and for the distance traveled, we used variable precision arithmetic (128-digits) to calculate that, at
time t = 10, the photon is at the following distance from the origin:

d = 0.995262919443354160890311809426.

Problem 3

Solution Method 1 by Christiaan Stolk

Let An be the n × n matrix obtained by taking the first n rows and columns of A. The operator
norm ‖An‖ of An is defined by

‖An‖2 = max
v∈Rn

‖Anv‖2
‖v‖2 . (1)

4



The problem can be solved by determining the operator norm of An (finding the maximum in (1))
for sufficiently large n, since ‖An‖ → ‖A‖ when n → ∞. It is easy to see that all components of
the maximizing v are positive (or all of them negative). Unfortunately, to get the norm to high
accuracy, n must be quite large. (It appears that n must be exponential in the number of digits, the
error is roughly polynomial in 1/n.)

To address this problem we compress the matrix. Let Q be an orthogonal matrix. Let

B = QT AnQ,

then ‖An‖ = ‖B‖. Now suppose some rows and columns of B only have very small entries. Let Q̃
be the matrix Q with columns omitted that lead to small entries in B. To be precise a column qk

is omitted if Anqk is very small and qt
kAn is also very small. Now let

C = Q̃T AnQ̃.

The matrix C is obtained from B by removing small rows and columns. Clearly ‖C‖ is close to
‖B‖. In the remainder we construct Q̃ so that the matrix C is relatively small (approximately 90 by
90 to get 11 digit accuracy for the norm), and the maximization (1) can be done using a standard
optimization algorithm.

Let V (n) be the matrix with i-th column given by

vi(n) =
(
0i−1, 1i−1, . . . , (n− 1)i−1

)T
.

Let W (n) be the matrix obtained by doing a Gram–Schmidt orthogonalization of the columns of
V (n), that is w1(n) = v1(n)/||v1(n)||, wk(n) is a linear combination of the v1(n), . . . , vk(n) that is
orthogonal to the v1(n), . . . , vk−1(n) and has unit length. Let W (n, k) be the n×k matrix containing
the first k columns of W (n).

The entries of the matrix A are given by

Ai,j =
(

1
2 (i + j − 2)(i + j − 1) + i

)−1
.

Let u be a part of a row u = (Ai,l+1, Ai,l+2, . . . , Ai,l+n) or of a column u = (Al+1,j , Al+2,j , . . . , Al+n,j)T

The vector wk(n) has k−1 vanishing moments. One can see that if l is not too small, then the inner
product u · wk(n) becomes small rapidly when k increases. This leads to the following definition of
Q̃

Q̃ =




Im 0 0 . . . 0
0 W (n1, k1) 0 . . . 0
0 0 W (n2, k2) . . . 0
...

...
...

. . .
...

0 0 0 . . . W (nK , kK)




.

We have chosen m = 24, and the (ki, ni) equal to (16, 40), (12, 64), (12, 128), (10, 256), (7, 512),
(5, 1024), (3, 2048), (2, 4096), (1, 8192) (in order of increasing i = 1, 2, . . . , 9). Thus we obtained
a compressed form of A16384, from which ‖A‖ could be computed to approximately 11 digits in
MathematicaTM. The result was 1.2742241528.

Solution Method 2 by Hoang Nguyen

The most straightforward approach is to build successively larger matrices in Matlab and use the
function normest with a very small tolerance parameter. Our hardware was able to handle these
dense matrices of order up to about 16000. By studying the convergence rate, we saw that this was
more than enough to give at least 10 digits (actually 13 correct digits: 1.274224152821). We could

5

-



also have modified the normest code to compute matrix-vector products without actually building
the matrix. This would allow much larger matrices in case it was necessary. We also tried the
Matlab function norm to compute the exact 2-norm for matrices of order 10000 or less. This was
enough to yield 11 correct digits.

A more elegant approach (by Dr. Yin Zhang, also at Rice University) used the power method
and worked on larger matrices. For a matrix of order 100000, we got 1.2742241528212 for the norm.
His code is included below.

function normA(n)

t0 = cputime;

a = ones(n,1); d = [1:2*n]’;

for j = 1:n-1 a(j+1) = a(j) + j; end

x = initialx(n); nrmA = inf;

for iter = 1:10

b = a; y = sum(x./b)./b;

for i = 2:n

b = b+d(i:i+n-1); y = y+sum(x./b)./b;

end

nrmA0 = nrmA; nrmA = sqrt(x’*y); x = y/norm(y);

fprintf(’ iter %i: norm(A) = %20.16f\n’,iter,nrmA)

if abs(nrmA0-nrmA) <= 1.e-13*nrmA break; end;

end

fprintf(’ CPU time = %g\n’,cputime-t0);

function x = initialx(n)

x = zeros(n,1); % make it a better initial guess ...

x(1:58) = [ 0.8440 0.4393 0.2330 0.1403 0.0933 0.0664 0.0497 0.0387...

0.0310 0.0254 0.0212 0.0179 0.0154 0.0134 0.0117 0.0104 0.0092 0.0083...

0.0075 0.0068 0.0062 0.0056 0.0052 0.0048 0.0044 0.0041 0.0038 0.0036...

0.0033 0.0031 0.0029 0.0028 0.0026 0.0024 0.0023 0.0022 0.0021 0.0020...

0.0019 0.0018 0.0017 0.0016 0.0016 0.0015 0.0014 0.0014 0.0013 0.0013...

0.0012 0.0012 0.0011 0.0011 0.0010 0.0010 0.0010 0.0009 0.0009 0.0009];

Problem 4

Solution Method 1 by Hoang Nguyen

We used a Newton method with line search and a grid of starting points for the global search. The
grid increment was 0.01 for both x and y directions, but the actual grid values were varied by 0.001
over several runs. For example, the starting point (x0, y0) nearest the origin could be (0.000, 0.000),
(0.001, 0.001), or (−0.001, 0.002), etc. We searched for the smallest local minimum within (x, y) ∈
[−1, 1]× [−1, 1]. We also searched outside this range using a coarser grid of starting points. The best
minimum that we found was−3.3068686474752 at (x∗, y∗) = (−0.024403079694375, 0.21061242715535).

Problem 5

Solution Method 1 by Eric Dussaud

Let f(z) = 1/Γ(z), where Γ(z) is the gamma function, and let p(z) be the cubic polynomial that best
approximates f(z) on the unit disk in the supremum norm ‖ · ‖∞. We wish to compute ‖f − p‖∞
to high accuracy.

The problem is two-fold: the computation of the inverse gamma function itself on one hand, and
its cubic approximation on the other hand. In this work, the inverse gamma function is computed via
a contour integral due to Hankel [2], [3], and its cubic approximant is taken to be linear combination
of Chebyshev polynomials and computed using the software package COCA (COmplex Chebyshev
Approximation) developed by Bernd Fischer and Jan Modersitzki [1]. It should be noted that none

6



of the following represents original work: the method for computing the inverse gamma function
was taken from the book by Trefethen [3], and the presentation of the mathematical theory behind
the COCA package is based entirely on the paper by Fischer and Modersitzki [1].

Representation of the inverse gamma function

The inverse gamma function may be defined by a contour integral formula due to Hermann Hankel
(1864) [2, pp. 234-235]. It takes the form

1
Γ(z)

=
1

2πi

∫

C

ett−zdt.

The t-plane is cut along the negative real axis, and we write

t−z = e−z log t

with the imaginary part of log t between −π and π. The contour of integration C follows the
lower edge of the cut from −∞ to −δ (δ > 0), winds around the origin in the positive sense
(counterclockwise) on the circle |t| = δ, and then follows the upper edge of the cut from −δ to −∞.

Since the integrand decays exponentially as Re(t) → −∞, we can approximate the function as
accurately as we like by replacing C by a bounded contour that begins and ends sufficiently far out
on the negative real axis [3]. More specifically, we will take C to be the circle centered at c of radius
r. Substituting t = c + reiθ in the above formula yields

1
Γ(z)

=
1
2π

∫ π

−π

ett−z(t− c) dt.

Numerically, the above integral is approximated using the periodic trapezoid rule

1
Γ(z)

≈ 1
N

N∑

j=1

1
Γ(θj)

,

with θj = jπ/N . Thus, the reciprocal gamma function is approximated by the mean value of
ett−z(t− c) over equispaced points on the contour C. For smooth integrands, it is known that the
periodic trapezoid rule converges extraordinarily fast [3].

We note that the inverse gamma function is analytic in the complex plane [2]. In particular, it
is analytic in the unit disk (a compact set), and continuous on its boundary (the unit circle). Thus
the maximum principle applies [2]: the reciprocal gamma function attains its maximum modulus on
the unit circle. We also note that 1/Γ(z) is symmetric with respect to the real axis.

Cubic approximation of 1/Γ(z) on the unit disk

We write Ω for the open unit disk. Let φj , j = 1, . . . , n be continuous complex-valued functions
defined on Ω. Then the problem of approximating f in the Chebyshev sense by a linear combination
of the functions φj may be formulated as follows: determine the coefficients cj ∈ IR (we know the
coefficients are real since 1/Γ(z) is symmetric with respect to the real axis) such as to minimize

∣∣∣∣∣∣
f −

n∑

j=1

cjφj

∣∣∣∣∣∣
= max

z∈Ω

∣∣∣∣∣∣
f(z)−

n∑

j=1

cjφj(z)

∣∣∣∣∣∣
.

We choose the functions φj to be the Chebyshev polynomials of the first kind. Note that these
polynomials are continuous in the closed region, and analytic in the open region Ω. Thus, the

7



maximum principle holds, and the minimization problem becomes

min
cj∈IR

∥∥∥f(z)−
n∑

j=1

cjφj(z)
∥∥∥

δΩ

The above problem was solved using the COCA package, a collection of Matlab functions for
computing the best Chebyshev approximation to a function in a setting precisely such as the one we
have here. The algorithm implemented in COCA is based on a reformulation of the approximation
problem as a semi-infinite optimization problem. The mathematical background of COCA (based
on [1]) is presented next.

Let γ, γ([0, 1]) = δΩ, denote a piecewise differentiable parametrization of δΩ. Writing

f̃(t) = f(γ(t)),
λj + iλj+n = cj , j = 1, . . . , n,

ψj(t) = −iψn+j(t) = φj(γ(t)), j = 1, . . . , n

we can formulate the approximation problem in terms of real coefficients over the (real) interval
[0, 1]:

find coefficients λ∗j ∈ IR2n such that

h∗ =
∥∥∥f̃(t)−

2n∑

j=1

λ∗jψj(t)
∥∥∥ = min

λj∈IR

∥∥∥f̃(t)−
2n∑

j=1

λjψj(t)
∥∥∥

[0,1]
.

Let us introduce the error function

ε(t; λ) = ε(t; λ1, λ2, . . . , λ2n) = f̃(t)−
2n∑

j=1

λjψj(t),

and the set of extremal points of ε(t; λ)

E(λ) = {t ∈ [0, 1] : |ε(t; λ)| = ∥∥ε(t;λ)
∥∥

[0,1]
}.

The Chebyshev problem is equivalent to the following nonlinear semi-infinite optimization problem:

find the coefficients λ∗j ∈ IR2n so as to

minimize hP

subject to hP ≥ |ε(t; λ)| for all t ∈ [0, 1].

Next, to obtain a linear problem, the complex modulus in the constraints is replaced by a set of
infinitely many linear restrictions

|ε(t;λ)| = max
α∈[−π,π]

Re
(
e−iαε(t;λ)

)

The constraints in the above NLP now read

hP ≥ Re
(
e−iαε(t;λ)

)
= Re

(
e−iαf̃(t)

)
−

2n∑

j=1

λjRe
(
e−iαψj(t)

)

for all t ∈ [0, 1], α ∈ [−π, π]. We introduce the following abbreviations:

a(t, α) =
[
1, Re(e−iαψ1(t), . . . , Re(e−iαψ2n(t))

]T ∈ IR2n,

A(t,a) = (a(t1, α1), . . . , a(t2n+1, α2n+1)) ∈ IR(2n+1)×(2n+1),

c(t, α) = Re
(
e−iαf̃(t)

)
∈ IR,

c(t,a) = (c(t1, α1), . . . , c(t2n+1, α2n+1))
T ∈ IR2n+1.

8



We can now write the linear semi-infinite problem as

find the coefficients λ∗j ∈ IR2n so as to

minimize hP

subject to: a(t, α) ·
(

hP

λ

)
≥ c(t, α) for all t ∈ [0, 1], α ∈ [−π, π].

The dual problem is given by

find points t ∈ [0, 1]2n+1, angles a ∈ [−π, π]2n+1 and weights r ∈ [0, 1]2n+1 so as to

maximize hD = c(t,a)T · r
subject to: A(t,a) · r = (1, 0, . . . , 0)T ,

where we used the fact that the best approximation is characterized by 2n + 1 points tj , αj , j =
1, 2, . . . , 2n + 1. The primal and dual problems are connected via the so-called characterization
theorem, which basically states that the components of the solution vector t∗ of the dual problem
are extremal points for the solution of the primal problem. More precisely, COCA solves the following
problem:

−1 0 1

−1

−0.5

0

0.5

1

boundary (actual points)

−0.2 0 0.2

−0.2

0

0.2

error curve (norm circle − extremal point)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.05

0.1

0.15

0.2

0.25

lower b.=0.21434  norm=0.21434

39 iter: error function (norm point(s) − actual points)

Figure 2: COCA output from Problem 5

9



find points t∗ ∈ [0, 1]2n+1, angles a∗ ∈ [−π, π]2n+1,
weights r∗ ∈ [0, 1]2n+1, coefficients λ∗ ∈ IR2n,

and a number h∗ > 0 such that

A(t∗,a∗) · r∗ = (1, 0, . . . , 0)T ,

A(t∗,a∗) ·
(

h∗

λ∗

)
= c(t∗,a∗),

t∗j ∈ E(λ∗) and α∗j = arg
(
ε(t∗j ;λ

∗
j )

)
, j = 1, 2, . . . , 2n + 1.

This can be viewd as the complex extension of the second algorithm of Remez for real Chebyshev
approximation. It should be noted that the Haar condition guarantees the existence of n + 1
extremal points with positive weights in the above expression. In the complex case, it is possible
that fewer than 2n + 1 points exist or that extremal points have a zero weight. Note that this
approach leads to a low-dimensional optimization problem and does not depend on the number of
extremal points. Moreover, upper and lower bounds for the minimal deviation are available, at no
extra cost, at any step of the algorithm. The linear semi-infinite optimization problem is solved by
means of the Simplex algorithm. In a second phase, the discrete solution is improved by solving a
nonlinear system of equations via Newton’s method. Note that the convergence of Newton’s method
depends on the correct number of extremal points and on a good starting point. In the case of the
inverse gamma function, this second phase was not used.

Results

We found that
‖f − p‖∞ = 0.2143352345.

We include as a plot some of the output generated by COCA in Figure 2, as well as a plot showing
the reciprocal gamma function on the unit disk, its cubic approximant, and the error in absolute
value between the two in Figure 3.

−1
0

1

−1

0

1
0

1

2

Inverse gamma function on unit disk

−1
0

1

−1

0

1
0

1

2

Cubic approximant on unit disk

−1
−0.5

0
0.5

1

−1
−0.5

0
0.5

1
0

0.1

0.2

0.3

Error between 1/Γ(z) and its cubic approximant

Figure 3: Plots from Problem 5

10



References

[1] Bernd Fischer and Jan Modersitzki, An algorithm for complex linear approximation based on
semi-infinite programming , Numerical Algorithms 5, 287-297, 1993.

[2] Einar Hille, Analytic Function Theory, Vol I , Chelsea, New York, 1962.

[3] Lloyd N. Trefethen, Spectral Methods in Matlab, SIAM, Philadelphia, 2000.

Solution Method 2 by Hoang Nguyen

We did a direct search for the coefficients of the cubic polynomial that minimizes the supremum
norm. The Matlab routine was fminsearch (Nelder–Mead method). The unit disk was discretized
in polar coordinates, and the inverse gamma function was approximated using Taylor series to 50
terms. This method yielded an answer that agrees to 9 digits with our other method that used
Chebyshev polynomials.

Problem 6

Solution Method 1 by Christiaan Stolk

Let An be the event that the flea returns to the origin after 2n steps for the first time after it left
the origin at time 0. (Note that it will never be at the origin after an odd number of steps.) The
total probability of the flea coming back to the origin is given by

∞∑
n=1

P (An). (2)

To derive an expression for P (An) we first need some notation. Let the random variable Xn

denote the east-west position after n steps, and Yn the north-south position of the flea after n steps.
Let Kk,n be the event that after 2n steps, the flea has taken 2k steps in the east-west direction.

The distribution of X2n, given there have been 2k steps in the east-west direction, is binomial,
and the probability for X2n = 0 is given by

P (X2n = 0|Kk,n) = ( 1
2 − 2ε)k( 1

2 + 2ε)k

(
2k
k

)
.

Similarly the probability that Y2n = 0, given that there have been 2k steps in the east-west direction
and hence 2(n− k) steps in the north-south direction, is given by

P (Y2n = 0|Kk,n) = ( 1
2 )2(n−k)

(
2(n− k)
n− k

)
.

The probability that Kk,n occurs also has a binomial distribution

P (Kk,n) = ( 1
2 )2n

(
2n
2k

)
.

Let Bn be the event that after 2n steps the flea is at (0, 0). If the number of steps in the east-west
direction is equal to 2k, then this chance is simply the product P (X2n = 0|Kk,n)P (Y2n = 0|Kk,n),

11



which is calculable from the expressions above. The total probability that Bn occurs is obtained by
adding such contributions for different k, multiplied by the probability that each of them occurs:

P (Bn) =
n∑

k=0

P (Bn|Kk,n)P (Kk,n)

=
n∑

k=0

P (X2n = 0|Kk,n)P (Y2n = 0|Kk,n)P (Kk,n).

This can easily be evaluated given the formulas above.
To get P (An) from P (Bn), the probability that the flea has been at the origin before must be

subtracted:

P (An) = P (Bn)−
n−1∑

k=1

P (Ak|Bn)P (Bn) = P (Bn)−
n−1∑

k=1

P (Bn|Ak)P (Ak).

It is not difficult to calculate the probability that the flea is at the origin after 2n steps, given that
it was at the origin after 2k steps, this is simply given by P (Bn−k). Thus we obtain

P (An) = P (Bn)−
n−1∑

k=1

P (Bn−k)P (Ak)

The probabilities P (An) can now be calculated in sequence.
The expected position of the flea after n steps is given by (2nε, 0). It follows by the law of large

numbers that the probility of the flea returning to zero becomes exponentially small for nonzero ε
and large time. Therefore the sum (2) has good convergence properties. The value of ε where (2)
is equal to 1/2 can now be calculated by a rootfinding algorithm. Using high precision calculus in
MathematicaTM, this gives the answer 0.0619139544739909428481752164732, and with a little more
computing time additional digits can easily be computed.

Solution Method 2 by Daniel Reynolds and Chris Husband

We may describe our problem as a Markov chain. For this, we need to build what is called a
transition matrix, and give it an initial state. The general idea is as follows.

Grid and Initial State: In order to be able to calculate anything, we must first reduce our
working grid so that it is no longer infinite. This will be a source of error, since by disregarding
possible points far from the origin, we lose some probability. To this end, we may calculate a few
distinct probabilities on whether the flea would make it to a certain point out and then back to
the origin. For instance, the probability that the flea will reach a position 40 to the north or south
and then make it back to the origin is much less than 10−20, so to be safe (since we must sum the
probabilities from many points) we extend the working grid 50 in those directions. We must further
consider that for ε > 0, the probability of heading east and returning to the origin is potentially
much higher, so we extend the grid 50 to the west and 100 to the right.

We must then think of a clever means of indexing each integer lattice point on this grid, so that
we have for instance

1 → (0, 0), 2 → (0, 1), 3 → (1, 0), 4 → (0,−1), . . .

Under a labeling such as this, our initial state may then be labeled as

X0 = [1, 0, 0, 0, . . .]T ,

12



meaning that the flea will be at the origin at the initial time with probability 1. This labeling is
actually reordered to yield a transition matrix that is banded with 9 diagonals.

Transition Matrix: For the transition matrix, we now write the entries as Pε(i, j) = the
probability that from position X(j), the flea will be in position X(i) after two jumps. We use two
jumps since it will take a multiple of two jumps for the flea to return to any spot. We also define
the augmented transition matrix P̄ε as Pε with the diagonal entry corresponding to the origin set to
one, and the rest of the column set to zero. This matrix will be used in order to ‘trap’ the flea at
the origin once it has landed there.

Probability Function: Once we have the transition matrices Pε and P̄ε and initial state X0,
we may then find the probability of the flea reaching any spot j at step 2n by first obtaining
X2 = Pε ∗X0, and then

P [flea in position j at step 2n] =
(
P̄n−1

ε X2
)
(j).

Thus if we want to find the probability that the flea reaches the origin again at the nth time step,
we merely calculate the entry Xn corresponding to the index of the origin. (This will converge as
n → ∞.) This is because in the calculation of X2 we calculate the exact probability that the flea
returns to the origin after the first two steps. Then by using the augmented transition matrix P̄ε

for the remaining iterations, we essentially sum up the probabilities that the flea will get back to
the origin and stay there from then on. Furthermore, we can do each of these multiplications very
quickly using sparse matrix multiplication.

Optimization: Standard optimization routines such as Newton’s method are infeasible for
finding the desired ε, since derivatives of the above routine are difficult. A more rudimentary
bisection method works well. We know that ε must be contained within the interval (0, 1/4), and
that P0 > 1

2 and P1/4 < 1
2 . We also know that the probability uniformly decreases as ε increases.

Thus on the first iteration we try ε = 1/8. Depending on the probability P1/8, we will then move
to either 1/16 or 3/16. In this manner we may narrow down the value of ε by a power of 2 at each
iteration. Thus after at least 32 overall iterations, the value of ε should be accurate to at least 10
digits of accuracy.

Results: The solution obtained using this method was 0.06191395447398. This computation did
not take long, however, so more digits could be found relatively simply until the numerical roundoff
error of floating point arithmetic takes control.

Solution Method 3 by Hoang Nguyen

The following code computes the probability of the flea having returned to the origin sometimes
within a number of steps nt, for a given bias parameter e. First, we use the multinomial distribution
to compute the probability that the flea is at the origin after exactly n steps (n is even, from 2 to
nt). For each possible step combination (iN , iS , iE , iW ), this is given by

P =
(iN + iS + iE + iW )!

iN ! iS ! iE ! iW !
(pN )iN (pS)iS (pE)iE (pW )iW ,

where iN is the number of North steps and pN is the probability of going North in one step, etc. To be
at the origin after n steps would require the constraints iN = iS , iE = iW and iN + iS + iE + iW = n.
These probabilities were summed up over all feasible step combinations for a given n. From these
probabilities, we next compute the probability that the flea has returned to the origin for the first
time after exactly n steps. We then sum up these ‘first-time’ probabilities to give the desired
probability p. It is a simple search to find the bias parameter that gives 0.5 for p. We found
0.06191395447399 for this bias parameter, using 3000 time steps. If more digits are desired then we
can use the variable precision arithmetic feature in Matlab.

function p = f6(e,nt)

13



% F6 Function to compute the probability of returning to the origin

% sometimes during a biased random walk.

%

% p = f6(e,nt)

%

% INPUT:

% e the bias parameter

% nt the maximum number of time steps (optional, even, defaults to 2000)

%

% OUTPUT:

% p probability of having returned to origin within nt time steps

if (nargin < 2 | nt > 100000 | nt < 2 | mod(nt,2) > 0)

nt = 2000; % default maximum number of steps to compute

end

pN = 0.25; % probability of jumping North

pS = 0.25; % probability of jumping South

pE = 0.25 + e; % probability of jumping East

pW = 0.25 - e; % probability of jumping West

logp = log([pN pS pE pW]); % natural log of probability

dprobn = zeros(nt/2,1); % probability that, after exactly n steps,

% the flea is currently at the origin

for n = 2:2:nt % for each even number of steps

nhalf = n/2; % maximum allowed steps in one direction

probn = 0; % cumulative probability of being at 0 for this n

for j = 0:nhalf % consider all feasible step combinations

iN = j; % number of North steps

iS = j; % number of South steps

iE = nhalf - j; % number of East steps

iW = iE; % number of West steps

logpdir = [iN iS iE iW] .* logp; % log([(pN^iN),(pS^iS),(pE^iE),(pW^iW)])

% compute coefficient of multinomial distribution using logarithms

num = [1:n]; % numerator of coef

den = [(1:iN) (1:iS) (1:iE) (1:iW)]; % denominator of coef

logratio = log(num./den); % avoid overflow by summing logarithms

logsum = sum(logpdir) + sum(logratio); % sum of logs = log of products

pj = exp(logsum); % probability for this step combo

probn = probn + pj; % sum over all possible step combo for this n

end

dprobn(nhalf) = probn; % save cumulative probability for this n

if (mod(n,100) == 0)

fprintf(’n = %d, probn = %22.16e\n’,n,probn); % display progress

end

end

pfirst = zeros(nt/2,1); % probability of returning to 0 for the first time

for i = 1:nt/2

pfirst(i) = dprobn(i);

for j = 1:i-1

pfirst(i) = pfirst(i) - dprobn(j)*pfirst(i-j);

end

end

ppos = find(pfirst>0); % skip negative probabilities due to rounding

p = sum(pfirst(ppos)); % probability of returning by this step

Problem 7

Solution Method 1 by Hoang Nguyen

We built the matrix A according to specifications, storing it in a sparse format. Using this matrix
we then solved the system Ax = e1, where e1 is the first column of the identity matrix having the

14



same dimension as A. The first element of x is the (1, 1) element of A−1. We first used the backslash
(\) command in Matlab to solve the system and obtained 7.25078346268401e − 01. We also used
the conjugate gradient method for verification and got the same answer to 15 digits. To check the
reliability of our answer, we computed the residual vector and estimated the condition number of
the A matrix. All evidence indicated that the answer is reliable. We also computed the answer
for smaller matrices with the same structure to check the stability of our answer. The sequence of
answers did approach the answer for size n = 20000. The following code computes the answer for a
given matrix order, using both sparse direct method and CG.
function t = f7cg(N)

P = primes(224737)’; % list of first 20000 prime numbers

n = min(N,length(P)); % order of matrix to use

e = ones(n,1); % off-diagonals elements

m = ceil(log2(n)); % number of sub-diagonals

A = spdiags(P(1:n),0,n,n); % put primes on diagonal

for i=0:m % build matrix according to specs

j = 2^i;

if (j < n)

A = spdiags(e, j, A); % put in super-diagonal elements

A = spdiags(e, -j, A); % put in sub-diagonal elements

end

end

e1 = sparse([1],[1],1,n,1,1); % right hand side of linear system

% direct method

x_direct = A \ e1; % sparse direct method

invA11_direct = x_direct(1) % (1,1) element of inv(A), direct method

% Conjugate Gradient

tol = 1e-16; % stopping tolerance

maxit = 2*N; % maximum number of iterations

x0 = zeros(n,1); % initial guess

[x,flag,relres,iter,resvec] = pcg(A,e1,tol,maxit,[],[],x0);

invA11_cg = x(1) % (1,1) element of inv(A), CG method

flag % exit flag

iter % number of iterations used

relres % relative residual

% check residual

res = A * x - e1; % residual

resNorm1 = norm(res,1) % 1-norm of residual

resNorm2 = norm(res,2) % 2-norm of residual

resNormInf = norm(res,Inf) % Inf-norm of residual

res_1_10 = res(1:10) % first 10 elements of residual

condA = condest(A) % condition number estimate

Solution Method 2 by Christiaan Stolk

It was already remarked in the previous approach to this problem that we must solve the system
Ax = e1, where e1 is the vector with first element equal to 1 and all other elements equal to 0. The
first element of x is the answer to the problem. Let D be the diagonal part of A, and let B = A−D
be the off-diagonal part. The inverse A−1 satisfies

A−1 = (D + B)−1 = (D(1 + D−1B))−1 = (1 + D−1B)−1D−1.

If the (operator) norm of D−1B is less than 1, then

(1 + D−1B)−1 =
∞∑

j=0

(−D−1B)j .

In that case x is given by the following expression

x =
∞∑

j=0

(D−1B)jD−1e1. (3)

15



We computed an approximation to x by taking a finite, but large sum to approximate (3). We did not
prove that the norm of D−1B is smaller than 1, but the vectors (D−1B)jD−1e1 became exponentially
small when j became large (with length ≈ 10−132 after 2000 steps). This is an indication that D−1B
has norm < 1. For the first component of x we found 0.725078346268401167468687719251.

Problem 8

Solution Method 1 by Christiaan Stolk

We define the domain Ω = [0, 2] × [−1, 1], and assume that the special side with temperature 5 is
the one given by x1 = 0. We transform this problem to a problem on the whole plane in a few steps.
Let u be a solution to the original problem. We define u1(x, t) for x in [−2, 2]× [−1, 1] by

u1(x, t) =
{

u(x, t) if x1 > 0
10− u(x, t) if x1 < 0.

Now u1 satisfies a heat equation on Ω1 = [−2, 2] × [−1, 1] with initial value equal to u1(x, 0) =
10− 10H(x1), where H(z) is the Heaviside function given by H(z) = 1, for z > 0, and by H(z) = 0
for z < 0. The boundary values are also equal to 10− 10H(x1) on ∂Ω1.

This problem can be transformed to a problem with 0 boundary data by defining

u2(x, t) = u1(x, t)− 10 + 10H(x1).

The function u2 solves a heat equation with a source

∂tu2 = ∆u2 − 10δ′(x1),

on Ω1, satisfies homogeneous Dirichlet boundary conditions on ∂Ω1, and has zero initial conditions.
Because we have zero Dirichlet conditions on a rectangle, we can do an odd periodic extension.

Then u2 is given by the solution of an equation on the whole plane R2. Denote by I[a,b](z) the
indicator function of an interval that is 1 inside the interval, and 0 outside the interval. The source
for the heat equation on the whole plane for u2 is given by the following distribution,

∞∑

i=−∞

∞∑

j=−∞
(−1)j+110δ′(x1 − 4i)I[2j−1,2j+1](x2).

The Green’s function for a heat equation on the whole plane is given by

1
4πt

e−
x2
1+x2

2
4t .

We thus find the following expression for the solution u2, and hence for u

u2(x, t) =
∞∑

i=−∞

∞∑

j=−∞
(−1)j

∫ 2j+1

2j−1

dz

∫ t

0

ds
5(x1 − 4i)
4π(t− s)2

e−
(x1−4i)2+(x2−z)2

4(t−s) .

Because the exponential decreases rapidly as the spatial variables increase, only a few terms of the
summation contribute in the range of times that is of interest. The time integration can be done
symbolically, so only a small number of 1D space integrations remains. The time when the u(1, 0) = 1
can now be computed using a root finding algorithm (such as FindRoot in MathematicaTM). This
gives the result 0.424011387033688363797433668593 (more digits can easily be computed).

16



Solution Method 2 by Daniel Reynolds

We may use Fourier series to solve the heat equation. For Dirichlet boundary conditions on this
domain and the operator −∆(·) , we have the eigenpairs

{
sin

(nπx

2

)
sin

(mπy

2

)
,
n2π2

4
+

m2π2

4

}
.

If we then construct a function p(x, y) that satisfies the inhomogeneous Dirichlet boundary conditions
(even only pointwise), we define v(x, y, t) = u(x, y, t) − p(x, y, t) where u(x, y, t) is the solution to
the original heat equation. Then the original differential equation may be written as

vt(x, y, t)−∆v(x, y, t) = ∆p(x, y)
v(x, y, 0) = −p(x, y)
v(x, y, t)|boundary = 0

(4)

We may then expand the functions v(x, y, t), ∆p(x, y), and −p(x, y) along the Fourier coefficients
amn(t), bmn, and cmn, respectively. We may solve for the coefficients amn(t) according to the linear
ODE

d

dt
amn(t) +

(
n2π2

4
+

m2π2

4

)
amn(t) = bmn

amn(0) = cmn.

(5)

This may be solved analytically in time for the coefficients amn(t).
Furthermore, the coefficients bmn result from the calculation

bmn =
1
4

∫ 1

−1

∫ 1

−1

∆p(x, y) sin
(nπx

2

)
sin

(mπy

2

)
dx dy. (6)

Although we have only a set of point values for p(x, y), we may use Green’s theorem (integration by
parts) to evaluate the integral. Using this, we find that the coefficients bmn may be written entirely
in terms of the coefficients cmn.

To improve computational efficiency, note that the temperature at the center of the plate will
only depend on the odd Fourier coefficients, since the even ones correspond to basis functions having
zero value at the center. Lastly, after examining the construction of amn from the coefficients bmn

and cmn, we see that we may write the temperature at the center of the plate at time t as the double
sum

u(t) =
Nx−1∑

m=1,3,...

Ny−1∑
n=1,3,...

(
40m

nπ2(m2 + n2)

)(
1− exp

(−tπ2(m2 + n2)
4

))
(−1)

m+3
2 (−1)

n+3
2 .

This is then put into a Newton’s method to determine the exact time that the temperature at
the center of the plate reaches 1. The major source of error from this method is the fact that Nx,
Ny must be very large in order to sufficiently approximate the boundary function p(x, y). Using this
method, along with the summation scheme discussed in problem 10, the time that the center of the
plate reaches value 1 was calculated to be t = 0.42401138703368824.

Solution Method 3 by Hoang Nguyen

We used the Matlab PDE Toolbox as a quick method to find a few digits for this problem and as a
check on the two more accurate methods. It was clear that a standard finite element method would
not be able to yield 10 digits of accuracy on our hardware. We used the Matlab function poimesh to
generate a regular mesh, then used parabolic to solve the heat equation. For triangular elements
of size 0.01 (nx = 200) and time increment of 0.0001, we obtained an answer of 0.4240.

17



Problem 9

Solution Method 1 by Christiaan Stolk

The main problem here is the accurate numerical evaluation of the integral I(α), because the inte-
grand is oscillatory near x = 2. To solve this we do a transformation of variables

y =
1

2− x
.

The integral becomes

I(α) =
∫ ∞

1/2

f(y)g(y) dy,

where

f(y) = (2 + sin(10α))
1
y2

(
2− 1

y

)α

,

g(y) = sin(αy).

We choose a number a between 1/2 and ∞, and write

I(α) =
∫ a

1/2

f(y)g(y) dy +
∫ ∞

a

f(y)g(y) dy.

The first term can be evaluated by straightforward numerical evaluation (such as NIntegrate in
MathematicaTM). To approximate the second part, let us called it I2(α), we do repeated partial
integration. After a single partial integration we have

I2(α) = −
∫ ∞

a

f ′(y)g(−1)(y) dy + f(y)g(−1)(y)
∣∣∣
∞

a
.

Here we denote by f (k) the kth derivative of f , for k positive, and the kth primitive of f for k
negative. After k repeated partial integrations we find

I2(α) = (−1)k

∫ ∞

a

f (k)g(−k)(y) dy +
k−1∑

j=0

(−1)j f (j)(y)g(−j−1)(y)
∣∣∣
∞

a
. (7)

The primitives g(−j) can easily be calculated explicitly. The derivatives f (j) can be computed
automatically using mathematical software. When a and k are sufficiently large, then the derivatives
f (k)(y), y ≥ a become very small. In addition the boundary terms at infinity in (7) are 0. For
sufficiently large a and k we therefore find the following approximation for I(α)

I(α) ≈
∫ a

1/2

f(y)g(y) dy −
k−1∑

j=0

(−1)jf (j)(a)g(−j−1)(a). (8)

The next step is to find the maximum of I(α) and the corresponding α. A plot of an ap-
proximation of I(α) (by taking the integral from x = 0 to x = 1.999) is given in Figure 4. The
maximum is assumed around α = 0.8. Using the command FindMinimum in MathematicaTM the
maximum of I(α) and the corresponding value of α are established to high accuracy. This yields
0.7859336743503714545652 for the answer.

18



1 2 3 4 5

-1

1

2

3

Figure 4: Plot of an approximation to I(α) as a function of α in problem 9

Solution Method 2 by Hoang Nguyen

We used the transformation z = 2− x to turn the objective function into

I(α) = (2 + sin(10α))
∫ 2

0

(2− z)α sin(α/z) dz.

The integral was computed using Maple, which was able to handle the singularity at z = 0. The
search for the optimal α was done using a for / do loop within Maple, gaining one digit of precision
for each loop. At first we used only 20 digits of precision to narrow down the search range (Maple
was able to do this quickly.) Near the optimal value we increased the precision to 48 digits. The
optimal α to 22 digits is

0.7859336743503714545652,

giving an objective function value of

3.0337325864854936325378726835128253682157215.

Problem 10

Solution Method 1 by Christiaan Stolk

Define the domain
Ω = [−5, 5]× [−1/2, 1/2].

Let u(x, t) be a probability density function for the particle. Assuming that the particle is absorbed
at the boundary, this probability density function satisfies a heat equation on Ω with Dirichlet
boundary condition, and initial value equal to a δ function

∂u

∂t
= ∆u on Ω,

u = 0 on ∂Ω,

u(x, 0) = δ(x).

19



Because the domain is rectangular, we can do an odd periodic extension, of u in x to the whole
of R2. The solution is equal to the solution of a heat equation on the whole plane, with initial value
equal to the odd periodic extension of δ(x)

g(x) =
∞∑

i=−∞

∞∑

j=−∞
(−1)i+jδ(x− (10i, j)).

The probability of the particle crossing a certain line interval is given by the time integral of the
particle flux across the line interval. This probability for a single δ source in the plane R2 is simply
given by α(i,j)

2π , where α(i, j) is the opening angle from which the line interval is seen from the source
point. This is due to the circular symmetry that is present for a single source in the plane. For the
line interval from (−5,−1/2) to (−5, 1/2), and a source at (10i, j), i ≥ 0 this is given by

1
2π

(
arctan

(
1/2 + j

5 + 10i

)
− arctan

(−1/2 + j

5 + 10i

))
.

For the total flux we obtain

φ = 2 · 2 1
2π

∞∑

i=0

∞∑

j=−∞
(−1)i+j

(
arctan

(
1/2 + j

5 + 10i

)
− arctan

(−1/2 + j

5 + 10i

))
.

There is one factor 2 because the contributions from sources i ≤ −1 which are equal to the contri-
butions for i ≥ 0. There is another factor 2 because there are two short sides of the rectangle that
give the same contribution.

We rewrite the sum over j as follows:

φ = 2 · 2 · 2 1
2π

∞∑

i=0

(−1)i

×

arctan

(
1/2

5 + 10i

)
+

∞∑

j=1

(−1)j

(
arctan

(
1/2 + j

5 + 10i

)
− arctan

(−1/2 + j

5 + 10i

))
 .

Now each of the contributions occurs twice, with the same sign (note that 1/2+ j = −1/2+(j +1)).
So this sum can be rewritten as

φ = 2 · 2 · 2 · 2 1
2π

∞∑

i=0

∞∑

j=0

(−1)i+j arctan
(

1/2 + j

5 + 10i

)

=
8
π

∞∑

i=0

∞∑

j=0

(−1)i+j arctan
(

1/2 + j

5 + 10i

)
. (9)

Expression (9) is an alternating sum in two dimensions. When a straightforward summation is
done the convergence is poor. We perform an additional trick to obtain better convergence. We
describe this here for a one dimensional alternating sum

∞∑

j=−∞
(−1)jf(j). (10)

We assume that the higher order derivatives dkf
dxk (x) of f(x) go to zero increasingly fast when k

increases.

20



Let

wi,k =
1

2k−1
(−1)i

(
k
i

)
.

We define gk(i) =
∑k

j=0 wj,kf(i + j), k ≥ 1. Observe that gk(i) is equal to a finite difference

approximation of (−1)k2−k+1 dkf
dxk (i + k/2), and that it therefore goes to zero increasingly fast when

k increases. Expression (10) is equal to

∞∑

j=−∞
gk(2j).

When k is large this sum converges fast, and can be used for numerical evaluation of (10) with high
accuracy. This yields the answer 3.83758797925122610340713318620 × 10−7; more digits are not
hard to compute.

Solution Method 2 by Chris Husband

At first, the magnitude of the solution to this problem appeared to be extreme and some of us
doubted the accuracy of the result. While obviously a simulation of the particle could never measure
this probability because of the convergence of 1/

√
n (it would take 1014 independent simulations to

get the first digit), a simulation could be applied to at least validate the first method by applying
simpler and more naive simulations to smaller problems that could be solved sufficiently accurately
with regards to the 1/

√
n convergence rate. This method considered plates of dimension 1× 2 and

1× 3 and a particle that chose a direction randomly (between 0 and 2π). The particle then took a
small step in that direction. The particle continued to take these steps until it went past a boundary.
The simulation ran multiple walks, tabulating which boundary the particle crossed and averaging
the results to obtain an estimated probability. While this method suffers serious drawbacks, such
as slow convergence rates and finite step size, it did help provide validation of the other method. In
both problems, with step sizes of .01 and .005 using 10, 000 iterations, we could roughly expect 2
digits of accuracy, and in both cases the results match those of the more thorough method. Further
refinement of the problem with a million iterations gave us more accuracy. Some of these results
encouraging the solution from method 1 are given in Table 2.

Domain Step Length Probability Method 1
0.01 0.1119

1× 2 0.005 0.1098 0.109769799

0.01 0.0249
1× 3 0.005 0.0225 0.0228733

Table 2: Brownian motion on two smaller domains with varying step size, all using 10, 000 iterations.

21

I I I I 


