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Abstract 

A Study of Reactive Transport Phenomena in 
Porous Media 

by 

Fredrik Saa£ 

The numerical modeling of reactive transport in a porous medium has im­

portant applications in hydrology, the earth sciences and in numerous industrial 

processes. However, realistic simulations involving a large number of chemical 

species undergoing simultaneous transport and chemical transformation present 

a significant computational challenge, particularly in multiple spatial dimensions. 

A framework for ana.lyzing the chemical batch problem is first introduced, which 

is sufficiently general to allow for reactions of both equilibrium and kinetic type. 

The governing equations for reactive transport of a single flowing phase through 

a porous medium are presented next, and a classification based on the nature of 

the reactive system is established. A computer module for the equilibrium prob­

lem is developed, based on a novel application of the interior-point a.lgorithm for 

nonlinear programming. Among its advantages are good global convergence and 

automatic selection of mineral phases. To handle kinetic reactions, the equilib­

rium module is embedded in a time-integration framework using explicit ODE 

integrators. Reactive transport of species is achieved through operator-splitting, 

which ena.bles a straightforwa.rd incorpora.tion of the batch module into the Pxisting 



parallel, three-dimensional, single-phase flow and transport simulator PARSiml. 

Numerical results are presented which demonstrate the correctness of the computer 

program for major classes of geochemistry problems, including ion-exchange, pre­

cipitation/ dissolution, adsorption, aqueous complexation and redox reactions. 
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Chapter 1 

Introduction 

1.1 Motivation 

A recurring issue in the management of water resources is the transport of chemi­

ca.l and biological species through soil and aquifers. The problem of predicting the 

fate of such species as they undergo advectipn, diffusion and reactions arises in a 

number of important applications, a few of which are bioremediation of contami­

nated aquifers [9], the simulation of geologic processes, such as the deposition of 

ores [4 7], and the practice of acidizing [36], used to enhance the permeability of 

the formation around wells. 

The simulation of such processes, especially in three space dimensions and with 

complicated chernical interactions, is a computationally intensive task. Efficient, 

parallel computer implementations are needed to meet the challenge posed by these 

problems. 

1.2 Previous Work 

Much work has been done related to computer algorithms for calculating the state 

of chemical equilibrium of closed, reactive systems, beginning as early as the 1940s. 

A historical account of the development of this field, as well as an excellent survey 

allCl classification of a large number of existing algorithms, can be found in [41]. 

The field of reactive transport modeling, a.lthough considerably younger, has 

a.lso reached a fairly mature state, and a uurnber of simulators of va.rying corn plexity 

arnl generality are already in existence. Many of these simulators incorporate 
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sophisticated chemistry [36], but lack flexibility with regard to transport, and are 

frequently limited to one space dimension. Often, the reactions considered have 

been solely of equilibrium type, neglecting the case of kinetic interactions. 

Rubin [30] presents some general observations regarding the interplay between 

the type of reactions occurring in the system, and the appropriate mathematical 

formulation of the transport problem. A key paper by Yeh and Tripathi [.SO] 

critically examines many of the known algorithms, and classifies them based on 

the choice of primary dependent variables and basic algorithm type. Three main 

algorithmic types are identified: mixed differential and algebraic (DAE), direct 

substitution (DSA), and seq1tential iteration approach (SIA). The DAE approach 

essentially consists of discretizing spatially the partial differential equations (PDE) 

governing the transport of species, and simultaneously imposing, at each point, the 

nonlinear conditions of equilibrium. This procedure leads to a very large system 

of mixed algebraic-differential type. In the DSA formulation, the conditions of 

equilibrium are instead substituted into the transport field equations, producing a 

set of highly nonlinear PDEs to be approximated. In either case, a large nonlinear 

problern arises for the unknowns at all grid-points. 

By contrast, the SIA formulation, also known as operator-splitting, enables a 

decoupling of field equations (transport) from local constraints (chemistry). To 

quote Yeh and Tripathi, the SIA approach 

... provides perhaps the best hope for realistic, practical two- and three­
dimensional applications in terms of CPU memory and CPU time re­
quirement. 

1.3 Objectives 

Our aims in this dissertation are to give a detailed exposition of the governing 

equations perta,ining to the reactive flow through a porous medium of a single, 
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flowing phase, and to implement a corresponding numerical model in a general 

computer simulator. The simulator will be based upon the code PARSiml [2], 

a parallel, three-dimensional simulator for single-phase flow and transport with 

limited reaction capabilities. An operator-splitting approach akin to the SIA ap­

proach mentioned above will be used in accomplishing this extension of the existing 

simulator. 

A subproblem that arises in such a formulation is the computation of chemical 

thermodynamic equilibrium, and much of our effort will be concentrated on efficient 

and robust algorithms for the chemical batch calculation. Both these issues are of 

paramount important when the batch calculation is part of a reactive transport 

simulation; efficiency, because a large number of these problems must bE' solved 

at each time-step, and robustness, since failure to converge at any point in our 

domain of interest can jeopardize the entire simulation. 

There are two fundamental difficulties associated with this problem. The first 

is an inherent ill-conditioning that is due to widely varying scales. For example, 

species can be present at trace amounts, and equilibrium constants and other 

parameters can vary over perhaps 50-100 orders of magnitude. 

The second difficulty is related to the appearance and disappearance of phases. 

In certain cases [40], this can lead to singularities and loss of uniqueness of solution. 

Even when singularities do not occur, the selection of the correct sequence of phases 

at equilibrium typically requires the application of some kind of testing criteria 

related to phase stability [8, 19, 21]. 

Although we do not pursue this problem for the most genera.I cases, we consider 

in detail the important problem of determining the correct mineral assemblage in 

equilibrium with an aqueous solution. This problem ( and, in general, the problem 

of computing equilibria in any system in which the phases present at equilibrium 
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are unknown) motivates a study of the chemical equilibrium problem in terms of 

a general, constrained minimization problem. 

We propose algorithms based on the interio1'-pohit method for nonlinear pro­

gramming [15] for solving these problems. The resulting algorithms have excellent 

stability properties, and they eliminate the need for special "selection strategies" 

for finding the correct set of equilibrium minerals. 

Based on these algorithms, we extend the framework to include kinetic reac­

tions. 

1.4 An Outline of the Thesis 

In Chapter 2 we attempt to give a reasonably complete description of the chemical 

batch system, a closed, reactive chemica.l system without any spatial variation in 

the dependent variables. The primary motivation for such a study is the fact that 

our reactivP transport algorithms will be based on the idea of operator-splitting, 

a procedure which in effect transforms the continuum system, in which we are 

interested, into a large number of connected batch-reactors. Another reason to 

devote time to the chemical batch system is pedagogical: it is the most natural 

setting in which to define the concepts of elements, species and chemical reactions. 

The chapter naturally divides into three parts: stoichiometry. thermodynamics 

and kinetics. Stoichiometry describes the laws of mass conservation that apply in 

any closed, chemical system, regardless of its nature. T'hermoclynamics. of which 

we only introduce some fundamenta.l concepts, applies to systems which attain 

equilibrium, and gives conditions that must be satisfied at such equilibria. The 

main assumption is that the system under consideration is closPd and at fixPd 

tPmpera.ture and prPssure. Then, WP give a brief iutroduction to kinetic systPrns, 

in which not only the final equilibrium composition of the system under study is 



5 

of interest, but also the variation with time of the composition. The chapter is 

concluded by formal, mathematical formulations of the chemical batch problem, 

as it applies to different types of systems. 

In Chapter 3 we leave the batch system to undertake a study of the reactive 

transport problem. At this point we abandon some of the generality of the previous 

chapter, and introduce a set of assumptions suitable for our target application, 

namely transport and geochemistry in a porous medium. The most important of 

these assumptions are: 

1. The system consists of an aqueous (flowing) phase, and an arbitrary number 

of solid (immobile) phases; 

2. The system is at isothermal conditions; 

J. Transport occurs in a single, incompressible aqueous ( flowing) phase which 

completely saturates the porous medium. 

Under the above conditions, we introduce the advection-diffusion-reaction equation 

for a chemical species undergoing advection, diffusion and reaction. Using the 

concepts developed in Chapter 2, we derive the governing equations for three main 

classes of reactive transport systems, namely local eq1Lilibri-um (LE), partial local 

non-eq-uilibrium (PLNE) and local non-equilibrium (LNE) systems. 

Numerical algorithms for approximating the governing equations of reactive 

transport are the topic of Chapter 4. First, we introduce the overall operator­

splitting technique used to treat separately the processes of advection, diffusion and 

reaction. We then present new formulations for approximating the reaction step 

in the case of LE, PLNE and LNE systems. The algorithms for the minimization 

problems that arise for the classes LE and PLNE arf' based on the interior-point 

method for nonlinear programming. Kinetic reactions are also included in a flexible 
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implementation that allows the use of explicit integrators of varying order, and 

within which non-negativity of species is enforced via an adaptive time-stepping 

strategy. 

In Chapter 5, numerical results are presented. A large part of the chapter is 

devoted to verifying the correctness of the code for lD problems of varying complex­

ity, either with respect to known analytic solutions, or by comparing with results 

reported in the literature. The classes LE, PLNE and LNE are all represented. 

In addition to serving as a verification, this section a.lso showcases the ability of 

our codes to handle a wide variety of geochemical reactions. A 2D problem is also 

presented and a 3D parallel scale-up study is conducted 

Finally, in Chapter 6, we make conclusions and propose some future directions. 
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Chapter 2 

The Chemical Batch Problem 

Chapter Synopsis 

In this chapter we will be concerned with the chemical batch problem, that is, the 

computation of the composition of a chemical system, possibly comprised of several 

phases and multiple species. The treatment of this subject is classical, and divides 

itself naturally into three categories: stoichiometry, which applies to any chemical 

system, thermodynamics, which determines the final equilibrium states attained by 

a system, and kinetics which describes time-dependent chemical transformations. 

2.1 Introduction 

In what follows, we describe the mathematical model of a batch system, which is an 

abstract, thermodynamic system devoid of any spatial gradients in the dependent 

variables. Such a system is analogous to the concept of a closed, well-stirred tank 

from chemical engineering. In a batch system, all dependent variables have the 

same value independently of position, which is a necessary requirement for the 

classical equations of thermodynamics to apply. We restrict our attention to a 

closed system, i.e., one in which no transfer of matter is permitted between the 

system and its surroundings (however, work and heat transfers are allowed). The 

system may consist of several separate phases, which are regions of distinct physical 

properties, such as solid, gaseous and liquid phases, as well as a variety of species. 

Reactions lead to internal transformations of the system mass. They fall into two 

main categories depending on the time-scale on which they occur: equilibrium 
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or kinetic. There are further classification depending on whether the reactions 

involve species in more than one phase (heterogeneous reactions), or only in one 

phase (homogeneous). These considerations are made clearer by the classifications 

scheme of Figure 2.1, found in Rubin [30]. In addition to the aforementioned 

LEVEL A 

LEVEL B 

LEVEL C 

CLASS 

CHEMICAL REACTIONS 

SUFFICIENTLY FAST 
AND REVERSIBLE 

HOMOGENEOUS HETEROGENEOUS 

0 II 

INSUFFICIENTLY FAST 
AND/OR IRREVERSIBLE 

HOMOGENEOUS 

IV 

HETEROGENEOUS 

\ 
CLASSICAL 

Figure 2.1 Classification of chemica.l reactions. 

divisions, there is also a classification that pertains to the nature of heterogeneous 

reactions, creating a total of six fundamental reaction classes. 

Obviously, the concept of a batch system is directly applicable to a laboratory 

sf'tting, where different compounds are a.llowed to react in a beaker, and the state 

of the system is recorded. Perhaps less obviously, such an abstraction can be quite 
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useful in a more general setting, such as a continuum model for reactive transport. 

This is the topic of Chapter 3. 

2.2 Chemical Stoichiometry 

2.2.1 Terminology and Definitions 

The subject of chemical stoichiometry* treats the conservation of mass principle 

for a closed system. This principle, although universally accepted and intuitively 

obvious, nonetheless requires us to carefully define some terminology before pro­

ceeding. To this end, we follow almost verbatim the treatment given in Smith and 

Missen [41], and define the chemical species as follows: 

Definition 2.1 A chemical species is a chemical entity distinguish­

able from other such entities by one of the following: 

1. Its molecular formula; 

2. Its molecular structure ( different isometric forms of the same molec­

ular formula); 

3. The phase in which it participates. 

From the above definition, it is clear tha.t the isomers propanol, CH3 CH 2CI-IiOH, 

and iso-propanol, CH3 CHOHCH3 , are different species. It is important to point 

out that species belonging to distinct phases are understood to be cornpletely 

independent species. Thus, gaseous carbon dioxide, C02 (g) is a distinct species 

from carbon dioxide dissolved in water, CO 2 ( aq). 

'From the Greek '·stoichion'' (element) and "metron'' (measure). 
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Definition 2.2 A chemical substance is a chemical entity distinguish­

able by either molecular formula or molecular structure, but not by 

phase. 

As pointed out in [41 ], this implies that the two species H20( aq) and H2 0(g) are 

the same substance: water. 

Definition 2.3 A chemical system is a collection of chemical species 

and the elements from which they are formed. It is represented by an 

ordered list of species and elements as follows: 

Here n.i is the molecular formula of species i and e1, denotes the kth 

element. The system is comprised of a total of Ns species, the molecular 

formulae of which require no more than JV E elements. The possibility 

of excluding some species from any physico-chemical change is provided 

for by the notion of inert species. We denote the number of inert species 

by N.~, and the remaining reactive species by N~ = Ns - N.~-

Definition 2.4 The fonmda vector ai is a vector of subscripts ( usu­

ally, but not necessarily integers) to the elements in the chemica.l for­

mula of the ith species. It follows that a; E IR.NE. 

Definition 2.5 The formula m.atri.,: A is the matrix formed using the 

formula vectors as colu1nns, A= (a 1 , ... ,aN
5

) E ffi_NExN,_ 

Definition 2.6 T The element-mole vector c = (e 1 , ... ,cNE) 1s the 

vector of total mole numbers of the elements ( as results from an ac­

counting of all the species in the system). 
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A few comments are in order regarding the above definitions. First, the notion 

of an "element" must be understood to mean an ''indestructible entity" for the 

purposes of computations. In particular, all attributes of an element, such as 

oxidation state and number of elementary particles, are preserved throughout the 

evolution of the system. This has the following two implications: 

• If several different oxidation-states of the same element are permitted, or, 

equivalently, if redox-reactions are allowed, we must include, in addition 

to periodic-table elements, a special "electron-element". For each element 

present in more than one oxidation-state, one then chooses (arbitrarily) one of 

its oxidation-states to be indestructible. We will choose that reference-state 

to be the highest oxidation-state of the element in question. An example of 

this procedure is given below. 

• If radioactive decay reactions occur within our system, we must include 

''elementary-particle" elements, e.g., a neutron "element". Proceeding as 

before, one then selects, for each element partaking in radio-nuclide reac­

tions, a reference isotope. Remaining isotopes are expressed in terms of the 

reference isotope and the elementary-particle elements. 

Although the concept of radioactive decay only represents a slight generalization 

of the framework already presented, we will not be concerned with such reactions 

in this thesis. 

Let us now illustrate the definitions 2.:3-2.5 with an example. We consider the 

hypothetical non-redox system 

{(Na2 O(s), CrCb, NaOH, NaCl, H2 O), (H,O,Na,Cr,Cl,e-)}, 

consisting of JV E = 6 elements and Ns = 5 species. The reference oxidation-states 

for the elements are given by Table 2.1 below. The first species in the list, N a2O( s ), 
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Element Reference oxidation state 

H +I 
0 -II 
Na +I 
Cr +III 
Cl -I 
e - -I (by definition) 

Table 2.1 Oxidation states for the elements in non-redox example. 

has the composition 

and its formula vector is therefore 

' T a1 = (0,1,2,0,0,0) . 

The formula matrix A E IR.6 x 5 for the entire system is simply 

0 0 1 0 2 

l 0 1 0 1 

2 0 l 1 0 
A= 

() 1 0 0 0 

() ;3 0 1 0 

0 0 0 0 0 

Clearly, the last row of A, corresponding to the const>rvation of tlw electron-

element, contributes no new information and must be omitted from tlw system. 

This is always the case for non-redox systems. 
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2.2.2 Mass Conservation 

We now explore in more detail the consequences of the closed-system constraint, 

or conservation of mass. Recalling the definition of the formula matrix, A = 

( a 1 , ... , aNs), we state more formally the species-identity relations which were en­

countered in the example above, 

(2.1) 

In vector form this succinctly expresses the species chemical identity in terms of 

the elements, 

(2.2) 

or, in the formalism of chemistry, 

(2.3) 

So far, we have clone little more than expressing chemical formulae in a system­

atic way. In describing conservation of mass we need two new variables that will 

play a fundamental role in later developments, namely the species mole vector, 

n = (n1, ... ,nN8 }'1', and the element-abundance vector, e = (e1, ... ,eNE)'l'. The 

ith component of n, n; denotes the number of moles of the chemical species i 

present in the system. The component e.i in contrast represents the total number 

of moles of the indestructible element j present in all species containing that ele­

ment. From the above definitions it is clear that conservation of the elements in a 

closed, batch system requires that the following linear equations be satisfied: 

An= e. (2.4) 

The above equations are usually referred to as the clement-abundance constraints 

(EAC). Note in particular that by taking a time derivative of the above relation 



14 

and using the constancy of e in a closed system, we immediately have 

Ari= 0. (2.5) 

In other words: the local rate of change of the species mole-number vector lies in 

the null-space of A. 

• The equations (2.4) have many important implications that will be elucidated 

in the following sections. 

Conservation of Total System. Mass 

It is easily demonstrated that the EAC directly imply conservation of the total 

system, mass. The derivation proceeds as follows. Define the element mole mass 

vector, mE E JRNE, entries of which a.re simply the atomic masses associated with 

ea.ch element in the system (in appropriate units, such as g/mole or atomic units). 

The species mole mass vector, rn E IR.Ns, can then be expressed in terms of tlw 

element mole masses as 

m = ATn1E. (2.6) 

The tota.l mass of the system, corresponding to a. given species mole vector n, is 

simply 

(2.7) 

Opera.ting on the EAC (2.4) from the left with m.E produces 

(m.Ef An (mEfe <==} 

(ATmE)1'n (mE)Te <==} 

where (2.6) was used in the la.st step. However, it is ckar that the quantity 

( m.E)Te is a constant (since 1nE is a constant vector and e is a. system invariant). 
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Consequently, using (2. 7), we arrive at 

t t E T m O = (m ) e = constant. (2.8) 

We have thus shown that in a closed system, the EAC (2.4) imply the conservation 

of the total system mass. 

Nomenclature For Phases 

In anticipation of later developn1ents, we now introduce some additional terrni­

nology that will enable the continued use of matrix-vector notation ( as opposed 

to a more cumbersome index-based notation) in situations when the distinction 

between phases becomes important. To be definite, suppose that the maximum 

number of phases that can co-exist in our system is designated by the symbol 1r. 

We point out that this constant is different from the achwl number of phases, a 

quantity which we designate II. 

Let us consider a phase designated a, where 1 -S a -S 1r. It is natural to define 

a species phase mole number vector, no: E IRNs such that 

a -{ ni n,. -
0 

if i participates in phase a, 

otherwise. 
(2.9) 

We can formalize this notion by introducing a set of phase identity matrices, 

{Po:}~=l' where each po: E IR.NsxNs has the form 

pa= diag ((\,,i3(1), .. · ,bn,/3(Ns))- (2.10) 

In the above definition, ;3 : JRNs -----+ lR" is the phase label function, 

(3( i) = phase in which species i participates. ( 2.11) 
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and the standard Kronecker's delta function is simply 

{ 

1 if i = j, 

DiJ = 0 if i -/- j. 
(2.12) 

Simply put, the phase identity matrix is a diagonal matrix of the same dimension 

as the number of species, and whose diagonal values are either 1, for a species that 

belongs to the phase in question, or O otherwise. Since by definition each species 

occurs in exactly one phase, it must hold that 

(2.13) 

where !Ns denotes the identity matrix in IRNsxNs. Using the phase identity matrix, 

we can now easily express the species phase mole vector na for a given phase n 

through the relationship 

n° = Pun. (2.14) 

2.2.3 Charge Conservation and Electroneutrality 

Conservation of Total System Charge 

A conservation principle governing the total system cha1,ge is i1nplicit in the EAC. 

To demonstrate this fact, we proceed along similar lines as in Section 2.2.2, and 

define the intrinsic element charge vector zE E IR.NE to be equal to the oxidation 

state specified for each indestructible element. This includes the electron element, 

for which the corresponding entry is a.lways -1, if redox reactions have to be ta.ken 

into account. 

As above, we then express the intl'insic species charge vector, "' E IRN 5 , rn 

terms of the charges of its elementa.l building-blocks thus: 

(2.15) 
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We carefully note that (2.15) only expresses charge in terms of elementary charges, 

and that z is a unit-less vector. By contrast, the total system charge, q, correspond­

ing to a given species mole vector n is an extensive quantity with units of charge. 

Analogously to (2.7), the total system charge is expressed as 

'.I' q = n z. (2.16) 

Operating on the EAC (2.4) from the left with zE and using (2.15) produces 

(2.17) 

or. 

q = (zEf e = constant. (2.18) 

Accordingly, in a closed system, the EAC (2.4) imply the conservation of total 

system charge. 

Phase Electroneutrality 

As was demonstrated above, the EAC imply the conservation of total charge, i.e., 

the equation (2.18) is satisfied by any species-mole vector n that satisfy the EAC. 

This is in accordance with the fact that any fixed attribute of the indestructible 

elements is conserved in a closed system. In general, however, we wish to impose 

the stronger condition of electroneutrality. More specifically, we must impose the 

condition of phase electroneutrality, namely that the net charge of any phase be 

zero. If the system is comprised of 7r phases, this poses another 1r linear constraints 

on the species mole-vector, in addition to the EAC. 

Thesf' constraints. the specics-m.ole constraints imposr.d by phase elcctroneu­

trnhty. are of the form. 

qa = Q o=l,.,.,1r, (2.19) 
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where q°' denotes the net charge of phase a. The above conditions can be easily 

linked to the species mole vector n by noting that 

0:=l, ... ,1r. (2.20) 

Using the definition of the phase mole vector, equation (2.14), the conditions of 

phase electroneutrality can be stated as 

zT P°'n = 0, 0:=l, ... ,1r, (2.21) 

or in matrix-vector form, 

n = 0. (2.22) 

The equation (2.22) clearly represents Tr linear constraints on the species mole 

vector, in addition to the NE linear constraints already posed by the EAC (2.4 ). 

These constraints are not all independent, however, as we now proceed to show. 

By summing the equations (2.21) over all phases, and using the definition of the 

phase identity matrices P°', we obtain 

K IT 

0 - ~ Jpet,1 _ ~T(~ P°') 0 _ ~T - L...., ~ ', - "" L...., r,, - "' n. 
c,=l et=l 

Remembering the definition of total system charge, (2.18), this is nothing but 

q = o. (2.23) 

In other words, the phase electroneutra.lity equations contain total system, elec­

tmneutrnlity as a special case. However, by considering a linear combination of 

the EAC, WP showed earlier tha.t it holds that 

(2.24) 
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Comparing equations (2.23) and (2.24), it is evident that for the combined system 

of constraints 

An e, 

0, a=l, ... ,71", 

to be consistent, we must require that the element-mole vector e satisfy 

(2.25) 

(2.26) 

(2.27) 

Thus, we can in general only specify some set of NE - 1 element-mole numbers 

independently (assuming that not all zf are zero). The remaining element-mole 

number is determined by the condition (2.27). 

We will not be concerned with the electroneutrality of phases in the remainder 

of this work. We note, however, that the development here, which was adapted 

from Sevougian [36], can in principle be used if phase electroneutrality is deemed 

an important issue. 

2.2.4 Example of a Redox Problem 

As pointed out in section 2.2. l, redox reactions necessitate the introduction of an 

electron element. To demonstrate the utility of this concept, let us return to our 

model system in section 2.2.1, and add the species Na2 CrO4 . With our previous 

choices of reference oxidation-states. i.e., -II for O and +I for Na, electroneutrality 

demands that Cr have oxidation-number+ VI in the compound Na2 CrO4 . This is 

accomplished using the electron component as follows: 

HowC'ver, wi thi u our framework it is not possible to have half-cell reactions, i.e .. 

it is not possible to have reactions in which a change of oxidation state of only 
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one element occurs. In other words, we tacitly make the assumption that the 

concentration of electrons in solution is negligible, and reactions which result in 

a net production ( or destruction) of electrons are therefore ruled out from the 

formulation. Equivalently, we say that redox reactions have to be balanced. For 

the purpose of illustration, let us include the species C]i(g), in which the oxidation 

state of chloride is clearly zero. The system is now 

{(Na2 O(s), CrCb, NaOH, NaCl, lhO, Na2 CrO4 , Cb(g) ), (H,O,Na,Cr,Cl,e-)}, 

with the formula matrix 

0 0 1 0 2 0 0 

1 0 l 0 1 4 0 

2 0 1 1 0 2 0 
A= 

0 0 0 0 1 0 

0 3 0 1 0 0 2 

0 0 0 0 b -3 -2 

In a later section, we will determine what reactions are possible in such a system. 

2.2.5 The Stoichiometric Space 

We now introduce some terminology that makes dea.ling with chemical reactions 

within a closed system more convenient. We begin with a very brief review of some 

well-known results from linear algebra that pertain to the development ( for details 

see Strang [43] or Stewart [42]). 
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Collected Results From Linear Algebra 

Consider a general, real matrix A E mmxn. The range , or column space, of A, is 

defined as the set 

R(A) = {y E IRm I Y = Ax, XE IRn}. (2.28) 

Analogously, the row-space of A is simply 

(2.29) 

Furthermore, the null-space of A, which we denote N(A), is the set of vectors that 

are mapped into zero by A, or formally, 

N(A) = {x E mn I A:i: = 0}. (2.30) 

A fundamental theorem of linear algebra [43] states that the row space is the 

orthogonal complement of the null-space; that is, that 

( 2.:31) 

In particular, it therefore holds that the dimensions satisfy 

dim R(AT) + dimN(A.) = n, (2.:32) 

and that any element ;1: E IRn can be expressed uniquely as 

:r = s + t, (2.:3:3) 

where s and t are orthogonal and belong to the subspaces R(AT) and N(A) re­

spectively. Alternatively, we may express (2.33) in terms of orthogonal bases 8 

and S'1- in terms of new coordinates ( and 17, namely 

(2.34) 
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A final definition concerns the row and column spaces of A. It is well known that 

dim R(AT) = dim R(A), (2.35) 

a fact which enables us to define the rank of A as simply the dimension of either 

the row or the column space, 

rank (A)= dim R(A). (2.36) 

The equation (2.32) can now be restated as follows: 

rank (A)+ dimN(A) = n. (•) ·3-) ~-· I 

The Composition Space and its Subspaces 

The starting point for the discussion is the formula matrix A E IR.NExNs, intro­

duced in Definition 2.5. We will refer to the space ffiNs as the composition space, 

and always make the assumption that NE < Ns. Next, introduce the definitions 

Ne rank (A), 

dimN(A). 

(2.38) 

(2.39) 

Applying the general result (2.37) to the matrix A tells us that the dimensions of 

its subspaces satisfy 

(2.40) 

We shall refer to Ne as the number of components of a given system. It represents 

the minimum number of "building blocks" necessary to represent any species in 

the system. In many applications, NE = Ne, but in general Ne S NE. Some 

examples will be presented in the section below. 

The quantity N R = N s - Ne is the number of indr,pendent clu-:mical reactions 

that can ta.ke place in the system. 
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If we let V E IRN 5 x N R be a matrix representation of a basis for N (A), the 

general result (2.34) tells us that any conceivable composition can be expressed in 

the form 

(2.41) 

The coordinates T/ E IR.Ne and l E JRNR in this representation are known as the 

reaction-invariants and the extents of reaction, or reaction coordinates, respec­

tively. 

For a closed system, only the coordinates l are of interest, and the most general 

representation becomes instead 

n = n° + Vt, (2.42) 

where n° E JRNs represents a particular solution to the EAC, 

An°= e. ( 2 .43) 

We summarize the results above in a few important definitions: 

Definition 2. 7 The reaction vector v; is a vector of stoichiometric 

coefficients ( usually, but not necessarily integers) of the species partic­

ipating in a chemical reaction. It follows that v; E IRNs lies in N(A). 

Definition 2.8 The stoichiometric matri1: Vis a matrix whose columns 

are made up from the smallest set ( N R) of reaction vectors necessary 

to span N(A), 

11 _ (· , . ) E IRNsxNR 
~ - V1, ... , 1, N R · • (2.44) 

In component form, we write V = ( Vi.1 ). The element Vij is the stoichio-

1netric coefficient of the ith species in the jth independent reaction. 
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Definition 2.9 The composition vector n for a closed system can be 

expressed as 

n = n° + Vt, (2.45) 

where n° E ffiNs is a particular solution satisfying the EAC, and t E 

IRNR is the vector of extents of reaction. 

Finally, note that from the species identity relations (2.1), 

Using the fact that AV= 0, we find 

or, for 1 :::; i :::; NR, 

T• 0 v1 n = . 

We may thus formally state: 

(2.46) 

(2.47) 

(2.48) 

Definition 2.10 A chemical reaction is given by its reaction vector 

11;, and has the general form 

T• Q vi n = . 

The Canonical Form of A and V 

(2.49) 

The results concerning the subspaces of A introduced in the previous section makes 

it simple to reduce both A and V to a more convenient form that reveals more 

about the structure of the system. Since the rank of A is Ne s; NE ( and NE < Ns ), 

it is always possible to perform a Gauss-Jordan reduction [42] on A to obtain the 

reduced form, A,., 

(2.50) 
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where A E IRNcxNR, and the number of zero rows present (if any) are NE - Ne. 

We note that the reduction process only requires elementary row operations and 

possibly a re-ordering of the species. As pointed out by Schneider et al. [35], the 

matrix A,. is therefore a representation of the closed system constraints that is 

completely equivalent to the original matrix A. We also make the observation that 

the species ordering is arbitrary, and that we therefore without any real loss of 

generality can assume that the formula matrix is already in the above format. If 

it is not, a Gauss-Jordan reduction accompanied by a reordering of the unknowns 

will result in this format. The zero rows of A,. contain no information and should 

be omitted. The resulting matrix, Ac E IR,NcxNs is then 

(2.51) 

For notational convenience, we will often omit the special designation and simply 

use the symbol A to represent the canonical form Ac. Using the canonical form 

of A, we can partition the species mole-vector n into sub-vectors 11/ E IR,Nc and 

nP E IRNR according to 

(2.52) 

and express the closed system constraints as 

nc + AnP = e. (2.5:3) 

The representation (2.52) emphasizes that the Ne component species nc have the 

intrinsic function as "building blocks" of the system. The N R product species 11P 

each have the property that they participate in exactly one reaction. 

Equation (2.51) makes it particularly easy to express the stoichiometric matrix 

\./. Recall tha.t the columns of V span the null-space of A, 

AV= 0. (2.54) 
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By making the ansatz 

(2.55) 

we see that satisfaction of (2.54) requires 

v = -A (2.56) 

We summarize this section with two definitions: 

Definition 2.11 The canonical form of the formul'a matrix is given 

by (2.51). 

Definition 2.12 The canonical form of the stoichi?metric matrix is 

given by (2.55) and (2.56). 

Examples 

In this section we demonstrate the utility and practical application of some of 

the tools introduced in the previous section. Consider first the simplest aqueous 

system: 

consisting of Ns = 3 species and NE = 2 elements. The formula matrix is 

Reducing A to its canonica.l form produces the matrix 

Evidently, Ne = NE = 2 for this case. The species-ordering was retained in the 

reduction process, so we immediately conclude that the species I-hO and H+ are 



27 

legitimate components for this system ( this, of course, is not a unique choice). 

Furthermore, using the relation (2.40), we see that the number of independent 

reactions is NR = 3 - 2 = 1, as would be expected. The reaction vector (which 

coincides with the stoichiometric matrix in this case) is 

v=(-1,1,lf. 

Using the relation (2.48), this corresponds to the chemical reaction 

-H2 0 + H+ + OH- 0 <=} 

H+ + OH- H20. 

The second example illustrates better the advantage of the component approach. 

We again turn to the redox example considered earlier, 

Performing reduction operations on the original matrix A generates the reduced 

formula matrix 

1 0 0 0 0 2 0 

0 l 0 0 0 -1 -8/:3 

0 0 1 0 0 0 4 
Ar= 

0 0 0 l 0 0 -2/3 

0 0 0 0 1 0 2/:3 

0 0 0 0 0 0 0 

where the species have been reordered according to 

Clearly, the rank of A in this case is Ne = 5, which is less than the number of 

clements, NE = 6. The components thus found are: 
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The number of possible reactions is N R = Ns - Ne = 2, and they are given by the 

reaction vectors 

( -2, 1, o, o, o, 1, of, 
8 2 2 T 

(0,3,-4,3,-3,0,1). 

Using again (2.48), this correponds to the reactions 

2NaOH, 

3Cb(g) + 8Na20 + 2CrCb 

where we have multiplied the second reaction by 3 to avoid fractions. Note in 

particular that no electrons are directly visible in any of the reactions. The second 

reaction is an example of a balanced redo:r reaction ~ a direct consequence of the 

reduction procedure. 

2.3 Chemical Thermodynamics 

2.3.1 Introduction 

Thermodynamics attempts to describe the state of a system that has reached 

fqmiibrium. It is therefore a useful tool in deciding what processes are possible 

within a given system, and for calculating the final .state of that system, but it is 

i11herently incapable of predicting the mte at which equilibrium is approached. 

For systems that will not attain equilibrium in the time during which they are 

studied, or if the actual approach to equilibrium is to be investigated, a diffen~nt 

type of formulation 11111st be employed. However, even in such circumstances tlwr­

modynamics has a role to play in that it specifies what the driving force of change 

is, and imposes a steady-state limit on the extents of processes in the system. 
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Let us begin this brief development with some terminology. A system is some 

portion of the universe that we have chosen to study. Everything outside of this 

(possible hypothetical) region is labeled the surroundings. Systems can be classified 

with regard to what kind of interactions with the surroundings are allowed. The 

following a.re comrnon. 

• Open systems can exchange matter, work and heat. 

• Closed systems exchange work and heat but not matter. 

• Isolated systems have no interactions with the surroundings. 

In addition, systems can be homogeneous or heterogeneous depending on their 

internal structure. Homogeneous systems have uniform properties throughout, 

whereas heterogeneous systems have spatially varying properties. An example of 

tlw former kind would lw an aqueous solution, a system of the latter type could be 

a. multi-phase mixture. The theory of thermodynamics can be described in terms 

of a. small number of fundamental stair variables, modes of energy transfer and 

characteristic state functions (see Stumm and Morgan [44]). State variables, as 

the name implies, are variables that determine the state of a system and can be 

of two kinds: extensive or intensive; the former kind depends upon the size of the 

system under consideration, the latter does not. Furthermore, state functions a.re 

functions of the state variables that possess exact differentials; that is, they depend 

only on the state of a system, but not 011 the path (through composition space) 

the system followed in getting there. Thus, these functions a.re properly thought of 

as thermodynamic potentials, and they can be shown to posses extrema. a.t points 

corresponding to equilibria.. The fundamenta.l variables of a system a.re: 

• T, Absolute Temperature; Intensive. 
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• S, Entropy; Intensive. 

• p, Pressure; Intensive. 

• V, Volume; Extensive. 

• n;, Mole Number of species i; Extensive. 

The Modes of Energy Transfer are: 

• q, Heat transferred from Surroundings to System. 

• w, Work done by Surroundings on System. 

Some commonly used State Functions are: 

• U(S, V, n;), The Internal Energy; Extensive. 

• H(S, p, ni), The Enthalpy; Extensive. 

• G(T, p, ni), The Gibbs Free Energy; Extensive. 

It should be noted that the functions U, Hand Gare not independent; starting 

from the internal energy the other potentials can be derived through a change of 

variables known as the Legendre transformation. They are introduced so that the 

conditions of equilibrium can be expressed succinctly for different kinds of systems. 

In this work, we sha.11 exclusively be concerned with the Gibbs free energy, G, 

which is the natural choice of state function if the system under consideration is 

held at fi:red temperature and pressurf. 

2.3.2 Conditions of Chemical Therm.odynamic Equilibrium 

The condition of equilibrium for a. closed chemical system with the standard ther­

modynamic constraints of constant temperature T and pressure p is that the 
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Gibbs free energy is a minimum with respect to all possible system configurations 

(Denbigh [13]), 

dG = 0. (2.57) 

Furthermore, any spontaneous process taking place at constant temperature and 

pressure must obey the inequality 

(2.58) 

If the system is comprised of several phases, it is understood that those phases have 

the same temperature ( thermal equilibrimn) and pressure ( mechanical equilibrium) 
. 

in addition to the satisfaction of chemical equihbrium conditions. A comprehensive 

treatment of thermodynamics is much beyond the scope of this thesis; instead, we 

refer the reader to [l, 17] for more details 011 thermodynamic state functions and 

the corresponding conditions of equilibrium. 

To proceed, information is needed regarding the functional form of the Gibbs 

free energy, G. Commonly, the starting point is the introduction of the chemical 

potential, /li, associated with species i, often referred to as the molar free energy 

of species i. It is defined to be the partial derivative of the Gibbs free energy at 

constant temperature, pressure and composition, with 1·espect to the mole-number 

of the ith species, 

8G 
/li = ( ~ h,p,nJ · 

uni 
(2.59) 

With the ahove definition, the differential dG can be expressed m terms of the 

differentials of mole-numbers, 
Ns 

dG = Lfl;dni. (2.60) 
i=l 

It can be shown [41] that the Gibbs function is a hom.ogeneous function of degreP 

one in the mole numbers. i.e., that 

G(kn, T,p) = kG(n, T,p), (2.61) 
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for any real number k > 0. This is of course reasonable, since we expect that 

merely changing the mass of the system will leave the equilibrium unchanged and 

only scale the total system energy. By Euler's theorem, therefore, an integrated 

form is readily obtained, namely 

Ns 

G = L µ;n;. 
i=l 

For convenience, we will often write (2.62) in vector form, 

G - T - n µ. 

(2.62) 

(2.63) 

Note that the definition of the chemical potential (2.59), combined with the con­

ditions of equilibrium, (2 .. 57), results in the following condition on the chemical 

potentials 
Ns 

Ln;dµ; = o. (2.64) 
i=l 

This relation is known as the Gibbs-Duhem equation, and it poses a thermody­

namic restriction on the possible functional form of the chemical potentials. As 

stated, this important relation applies to a homogeneous system, that is a system 

comprised of a single phase. In the general case of a heterogeneous system, it 

can be shown [28] that a Gibbs-Duhem equation applies to each phase. Using the 

notation developed iu Section 2.2.1, we can express this fact for each a = 1, ... , 7r 

as 
N5 

Y..:.nfdµf = 0. (2.65) 
i=l 

2.3.3 Composition Variables 

Before examining the functional forrn of the chemical potential, it is appropriate 

to consider some different ways of expressing the com.position of a batch system. 

So far, we have spoken mostly about e:rtensive quantities, i.e., variables that di­

rectly depend on the size of the system under consideration. Indeed, the primary 
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variable in describing the batch system has been the species mole vector n, which 

is clearly directly proportional to the system size. However, the very definition of 

the chemical potential as a partial derivative with respect to an extensive quantity 

tells us that µ must be an intensive variable, which by definition is independent of 

system size. Likewise, its functional dependence is on intensive variables, namely 

the chemical composition of the system. There are several ways of defining chem­

ical composition. The composition variable with the most theoretical significance 

is the mole-fraction, whereas applications often require a more practical measure, 

such as molar concentrations. For these reasons, our presentation will alternate be­

tween, and sometimes use interchangeably, practical and theoretical concentration 

scales. 

Let us begin by considering the mole-fractions. As described in Section 2.2.1, 

the phase mole vector no: is simply 

n(\' = P'"n. (2.66) 

The total phase moles in phase a, denoted 11,0:, is nothing but the algebraic sum of 

all the mole numbers in phase a. In vector form, this can be expressed as 

11" = IT pan, (2.67) 

where 1 here denotes a vector of only ones of length Ns. The total phase moles 

are conveniently represented by the vector of total phase moles, ii= (fi. 1
, ... , fi,rf. 

We can now define the vector of phase mole-fractions, io: E IRN 5 , as 

or 

no: 
:r(Y == -,-. l 

no 

ro -

(2.68) 

(2.69) 
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Equation (2.69) shows how the intensive variables (mole-fractions for each phase 

of the system) are computed from the extensive variables (the vector of species 

mole numbers). Note that if a phase has only one participant, i.e., if it is a single­

species phase, then necessarily the corresponding mole fraction is unity for that 

species. We also mention that if inert species are present in the system, we must 

nevertheless include those in the computation of mole fractions, that is (2.69) 

continues to hold. 

Next, let us consider a phase-volume based representation of the concentration 

of species. Assuming that the volume of the phase o is va, we express the vector 

of phase molar concentrations, ca, as 

(2. 70) 

As an example, the concentration of a species in an aqueous phase could be written 

as 

n; 
c- --

1 - vaq' (2.71) 

which we recognize as the familiar m.olar concentration scale. Other choices are 

also possible and in practical use. 

2.3.4 Functional Dependence of the Chernical Potential 

The chemical potential fl is in general a function of temperature, pressure and 

chemical composition. Depending on the application, different forms of this func­

tion are used. For an ideal gas in which, by definition, no interactions occur 

between particles, it can be shown that the chemical potential at pressure JJ and 

temperature T has the simple form 

fl = /lo + RT ln p, (2.72) 
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where R denotes the universal gas constant. The chemical reference potential µ 0 

is a quantity which is tabulated at a given temperature and pressure. Similarly, 

for an ideal gas mixture, the chemical potential of the ith gas can be expressed as 

µ = µ~ + RTlnpi, (2.73) 

where the partial pressure Pi is given in terms of the gas phase pressure p by 

Pi= :riP· (2.74) 

For an ideal solution, the chemical potential can be expressed similarly, either in 

terms of mole-fractions, 

fli = l + RT ln:ri, (2.75) 

or in terms of molar concentrations, 

µ .='lo+ RTlnc. l t 'l i (2.76) 

Note that the chemical reference potentials appearing 111 the expressions (2.75) 

and (2.76) are in genera.I different, as they depend on the choice of composition 

variables. 

As is evident from the expressions (2. 72) to (2. 76) above, the dependence of the 

chemical potential of a given species is limited to the concentration of that species 

alone. This is characteristic of ideal systems, in which the interactions between 

molecules in solution are neglected. In reality, most systems exhibit varying degrees 

of non-idea.lity as the effects of molecular interactions become more noticeable. 

For such systems, one typically defines a.n activity coeffic£ent or a fugacity which 

attempts to capture the non-ideal behavior while retaining the basic logarithmic 

form of the chemical potentials presented above. The chemical potential in this 

g<'neral case is then expressed as 

µ; = 1t? + RT ln ai, (2.77) 
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where the concentration term has been replaced by a species activity a;, that 

depends on the phase composition through an activity coefficient ti· This is cus­

tomarily written in the form 

_ ( 0) ,0 a; - ti X X;, (2. 78) 

where ti ~ 1 as the solution approaches ideality. In this thesis, only ideal systems 

are considered. 

In both ideal and non-ideal systems it holds that the chemical potential of a 

species at most depends on the entire composition vector for the phase in which it 

participates. If we therefore designate the vector of phase chemical potentials by 

p'', we can write 

o a(T o) fl = fl . 'P, X ' (2. 79) 

or, a.lternatively, we express this relation in terms of the composition variables c0 

as 

a °'(T . a) f.l = fl 'p, C . (2.80) 

Finally, we point out that single-species phases ( such as minerals) are customarily 

taken to have a constant chemical potentiaJ, 

0 
/li =fl;. (2.81) 

This is a logical extension of the fact that the chemica.l potential depends on the 

composition of thf' phase, since in this case the phase is only made up of one 

substance. It also follows from the remark made in Section 2.:1.:3, that the mole­

fraction is automatically equal to unity for such species. 
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2.3.5 Some Practicalities: Affinities, Free Energy Change and the Mass­

Action Expressions 

It can be shown that the gradient of the Gibbs free energy with respect to the 

extents of reaction has the form 

(2.82) 

where V E }R_,NsxNR is the stoichiometric matrix encountered m Section 2.2.5. 

This is a useful quantity, as it is intimately related to the minimization of the free 

energy. As such, there are two names associated with it, namely the Gibbs free 

energy change of reaction, 6.G, and the affinity of reaction, A, defined as 

6.G 

A 

or, written in component form for each reaction 

j, .. ,,NR, 
i=l 

A .1 -6.G .1 j, .. ,,NR, 

For many reactions, the condition of equilibrium is simply 

6.G; 

A; 

0, 

0. 

(2.83) 

(2.84) 

(2.85) 

(2.86) 

(2.87) 

(2.88) 

This is because G expressed in terms of ( is essentially unconstrained. However, 

because of the condition that species be non-negative, the following inequalities 

arf' also possible at equilibriur:n: 

6.G; > 0, 

A; < 0. 

(2.89) 

(2.90) 
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The above equations express the condition that a reaction that is not energetically 

favorable (in other words the reaction has a positive free energy change, or a 

negative affinity) will not take place at all. Let us consider a simple two-component 

example {(A,B), A2B} to illustrate the condition (2.87). We consider, then, the 

simple reaction 

(2.91) 

The convention used is that v;.i > 0 for products and Vij < 0 for reactants. Clearly, 

we have VA= -2, VB= -1 and VA 2 B = +l, and the equations (2.85) and (2.87) 

immediately imply 

(2.92) 

In words, since the chemical potential can be thought of as the Gibbs free energy 

per mole of a component, the above expression illustrates the intuitively appeal­

ing notion that the reactants be as energetic as the products at the composition 

prevailing at equilibrium. 

Finally, by using the conditions of equilibrium (2.87), the compositional depen­

dence of the chemical potential upon composition (2. 76) and the canonical form 

of the stoichiometric matrix V (2.55), it is an easy exercise to derive a set of non­

linear, algebraic conditions known as the mass-action expressions. Details of this 

derivation can be found in B. l. The result, in terms of molar variables, is 

Ne 

CNc+i = 1(; IJ(c.i) 11
J' 

j=l 

i=l, .. ,,NR, (2.9:3) 

In the above expression, ai.i = (A)ij, and K; is the equilibrimn constant for the ith 

reaction, given by 

t:,_QO 
J{ = eXJ)(- --' ) ' . · RT ' (2.94) 
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and ~Cf is the standard free-energy change, given by 

(2.95) 

2.4 Chemical Kinetics 

2.4.1 Introduction 

In this section, we give a brief introduction to the theory of chemical kinetics. The 

treatment of this large and complicated subject is extremely cursory, and omits 

many important aspects, such as reaction pathways and detailed reaction mecha­

nisms. For a comprehensive treatment in the case of aquatic chemistry, the reader 

may consult Morel and Hering [28]. Detailed physico-chemical considerations are 

tangential to our purpose here, which is to introduce as simply as possible the ba­

sic elements of the class of reactions governed by systems of Ordinary Differential 

Equations (ODE). 

2.4.2 The Kinetic Subspace 

The developments in Section 2.2.5 make it possible to separate the compositional 

changes that result from equilibrium-controlled processes from those changes that 

are kinetic in nature. This kind of decomposition is important, because these two 

classes are governed by different mathematical models, and we wish to separate 

them in order to better understand the underlying structure. 

Let us begin by examining the stoichiometric matrix Vas introduced in Definition 

2.8. Each column Vi of V represents a linearly independent reaction amongst the 

species. Now let us assume that out of the N R reactions we have N~ equilibrium­

controlled reactions and Nk rate-controlled reactions such that 

(2.96) 
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Since the ordering of such reactions is completely arbitrary, we may without any 

loss of generality assume that the columns of V have been organized into a set of 

kinetic reactions, followed by the set of equilibrium reactions, so that V has the 

form 

(2.97) 

We will refer to VK E IRNsxNk' and VQ E IR.NsxN2 as the stoichiomefric matrices 

of the kinetic and equilibrium reaction space, respectively. 

Clearly, if we partition the extent of reaction vector l according to reaction 

type, 

(2.98) 

and use the general representation of the composition vector for a closed sys­

tem, (2.45 ), we find that we can express the dependence of the composition on 

equilibrium and kinetic processes as 

(2.99) 

Finally, by taking advantage of the canonical form. of the stoichiometric matrix 

introduced in (2.55), we can introduce a convenient fully partitioned form of V. 

namely 

1/K frQ 

V= INI< 0 (2.100) 
R 

0 JN2 

Tlw sub-matrices fiK and frQ contain information about how the Ne components 

react to form Nt· kinetic products and 1V2 equilibrium products. They have 

1. · I\T I\TK d I\T I\TQ ' l c 1mens1ons nc x ,v R an nc x ;v R, respective y. 



Using (2.100) in the representation (2.99), we find 

v I{ e< + vQ ~Q 
n = n° + 
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(2.101) 

Now, let us specialize to the case of only kinetic reactions. It then holds that 

NJ{ = NR, ~K = ~' and we can write the composition vector as 

( ~') n = n° + " (2.102) 

Through differentiation with respect to time of the above equations, we find the 

following system of ODEs: 

n 
(2.10:3) 

n(O) = n°, 

were we use the notation 11. = dn/dt to denote a pure time derivative. The above 

equations constitute a system of Ns ODEs in the mole-numbers n. To close the 

system, we need an additional NR relations. We see that we can identify the rate 

of change of the extents of reaction ~ with the rates of change of the mole number 

of the product species, so that it is natural to define 

(2.104) 

where RI< (n) E IR.N R are some rate expressions that govern the formation of the 

product species in our system. With this definition, and using the fact that n 

n(~), we can re-write (2.103) as 

RI< ( n(O ), 

o. 
(2.105) 
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Here, we have used the fact that n(O) = nY to find the appropriate initial condition 

[(O) = 0 for the extents of reaction. Note that (2.105) are a system of NR ODEs 

for the unknowns f The specific form of the functions RK is the topic of the next 

section. 

2.4.3 Rate-Laws 

Our task is now to assign functional expressions in terms of composition variables 

for the NJ{ rate functions RK introduced in the previous section. Such expressions 

are commonly known as rate-laws. 

Rate-laws are normally given in intensive form, so we consider that the rate of 

change of kinetic product species i per bulk volume ~ V of the system, is 

r } . R \ 
\ ! 

ri = ~v· (2.106) 

As noted earlier, thermodynamics itself provides no information about the rate 

of chemical processes. This means in particular that the functional dependence 

of rK on composition must often be determined through experiments, and can in 

principle have quite a general compositional dependence. On the other hand, they 

are ultimately constrained by the equilibrium limit, i.e., if a sufficiently long time 

passes during which our system is undisturbed, we expect that the reaction ra.te 

eventua.lly reaches zero, and tha.t the final composition is that which would have 

been predicted based on a thermodynamic description. Under such circumstances. 

it can be justified to express the rate-law as a function of the affinity of the reaction, 

· l i\Tl\-
1 = ..... 1vn, (2.107) 

With this formulation, the requirement that the reaction ceases when the equilibrium­

limit has been reached is conveniently stated as rf,.-(Ai) = 0 when A 1. = 0. 
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Furthermore, A; 2:'. 0 implies that the reaction has ''an affinity to proceed", which 

corresponds in a natural way to r{< 2:'. 0. In practical concentration variables, the 

rate-law is often written 

Ne 
J{ - k1 II( ·)C!Ji - kb . 1 i - 'i CJ ;CNc+i 

. 1 NK 
Z = ' ... ' R . (2.108) 

. i=l 

The above form of the rate-law is referred to as the "Law of Association" for the 

reaction. Several comments are in order. First, the constants k{ 2:'. 0 and kf 2:: 0 are 

the forward and backward rate-constants fo1~ the ith kinetic reaction, respectively. 

By comparison with the mass-action expressions (2.93) derived earlier, we see that 

the limit rf = 0 corresponds to chemica.l equilibrium for this reaction, provided 

that the relationship 

(2.109) 

holds between the equilibrium constant and the rate-constants. 

2.5 The Mathematical Formulation of the Chemical Batch 

Problem 

In the final section of this chapter we give, in a concise form, the governing equa­

tions for the three major categories of reactive batch systems that we have en­

countered: equilibrium, kinetic and mi:red. The equations for the equilibrium case 

are the necessary conditions of equilibrium for the corresponding minimization 

problem, and we discuss different ways of solving those equations. The situation 

is quite different for a kinetic system, where a system of ODEs subject to linear 

constraints result. We then discuss the case of both equilibrium and kinetic reac­

tions. Here. the mathematica.l structure is a combination of the aforementioned 

two classes. Fina.Hy, we conclude this section with a brief survey of known existence 

aud uniqueness results for the equilibrium problem. 
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2.5.1 The Equilibrium Problem 

The equilibrium batch problem is the task of determining the equilibrium com­

position vector n of a closed system at fixed temperature T and pressure p, given 

the element or component abundance vector e. If the system is heterogeneous, the 

number of phases and their relative abundance must also be determined. 

Two equivalent formulations of the problem are the non-stoichiometric and the 

stoichiometric formulations both of which are given below. As before, A E IRNcxNs 

denotes the formula-matrix, and V E IR.NsxNR the stoichiometric matrix, the 

columns of which span the null-space of A. Furthermore, n° E IR,Ns denotes a 

generic composition vector satisfying mass-balance, and e E IRNc are the compo­

nent (sometimes element) abundances. Finally, the chemical potentialsµ are given 

by expressions such as equations (2.75) or (2.76), introduced in Section 2.;3.4. 

The Non-Stoichiometric Formulation 

The equilibrium composition n* is the solution to 

mm 
n 

G(n) 

s.t. An= e, 

n 2 0, 

(2.110) 

where G(n) = nT µ(n). Proceeding as in Appendix A, we introduce the Lagrangian, l, 

(2.111) 

where y E IR.Ne and z E IR.Ns are Lagrange multipliers corresponding to equalities 

and inequalities, respectively. We can express the first-order necessary Karush­

Kuhn-Tucker (KKT) conditions (see Karush [23] and Appendix A) as follows 

(2.112) 



An - t 

A(n)z 

0, 

0, 

(n,z) > 0. 
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(2.113) 

(2.114) 

(2.115) 

In the above equations A(n) denotes a diagonal matrix with the vector n on its 

rnain diagonal. Note that (2.112)-(2.11L1) represent Neq = 2Ns + Ne equations in 

the unknowns n, y and z. If all the inequality constraints are non-binding ( n > 0) 

at the solution, then z = 0 by virtue of the complementarity equations (2.114) and 

there results the following system of size Neq = Ns + Ne 

T µ+ A y 

An - e 

0, 

0, 

n > 0. 

(2.116) 

(2.117) 

(2.118) 

Srnith [40] and Smith and Missen [41] give a thorough review of the many different 

ways of manipulating the equations (2.112)-(2.114). Their presentation is based 

on a form of the Lagrangian that does not include the non-negativity multipliers, 

z, but similar results can be obtained in our case. 

The rnain conclusion regarding the non-stoichiometric formulation is that a 

substantial reduction in the number of variables can be realized in the case of 

an ideal system. In this case, the N 5 mole numbers n can be expressed in terms 

of y and z, and substituted into the mass-balance conditions (2.11:3) to yield an 

equivalent system of nonlinear equations of size Neq = Ne, for the case of a single, 

ideal phase. For the multiphase, ideal case, Smith and Missen [41] derive instead a 

systcrn of size Neq = Ne+ rr. where rr is the number of phases. Let us carry out the 

derivation for the ideal, single phase case. In this case, it ca,n be shown [41] that the 

mole numbers satisfy n, > 0, implying Zi = 0. Writing the KKT conditions (2.116 )--
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(2.117) in component form, we have 

Ne 

µ; + L ajiYj 

.i=l 

Ns 

0, i = 1, ... , Ns, 

La;1n1 -e; = 0, i=l, ... ,Nc. 
j=l 

Substituting the chemical potential appropriate for an ideal phase, 

o n; 
µ;=µ;+RT log(~), 

n 

into equation (2.119) and rearranging produces an expression for n;: 

-po l Ne 
n; = n° exp(--') exp(-- L rlkiYk) 

RT RT k=I 

Defining for convenience the quantities 

and 

-po 

a; = exp( Ri ), 

Yk 
Pk= exp(- RT), 

this can be written more compactly as 

Ne 
-o II akt n; = n a; Pk . 

k=l 

(2.119) 

(2.120) 

(2.121) 

(2.122) 

(2.123) 

(2.124) 

(2.12,5) 

Substituting this expression into the mass-balance equation (2.120), this produces 

the equation 
Ns Ne 

L a,.i11"'a1 IT p~k; = e;, i=l, ... ,Nc. (2.126) 
.i=l k=l 

The equations (2.126) and the definition of n°, 
Ns 

- 0 ~ n =L..,,ni, (2.127) 
i=l 

comprise a square system of size Neq = Ne + l in the variables p E IR:l\fc and the 

total moles 11."'. 

An important point about the non-stoichiometric forrnulation described, is that 

the reduction mentioned above is possible only for idml system.s. 
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The Stoichiometric Forrnulation 

Given n° satisfying An° = e, the equilibrium composition n* can be expressed as 

n* = n° + Vt*, (2.128) 

where the equilibrium extents of reaction C are the solutions to the constrained 

minimization problem 

mm G[n(t)] (2.129) 
e 

s.t. n(O ~ 0, 

where G[n(O] = n(tf µ(n(e)). It can be established easily that the KKT condi­

tions for this formulation are of the form 

A(n(t))z 0, 

(n((),z) > 0. 

(2.1:30) 

(2.131) 

(2.1:32) 

The equations (2.130)-(2.131) constitute NR + Ns equations in the unknowns ( 

and z. If it can be established that the constraints are non-binding, it is again 

clear that we rnust have z = 0 at the solution. The problem then reduces to the 

Ncq = N R equations 

l rT 
\I µ. 0, 

n(O > o. 

(2.133) 

(2.1:34) 

This is sometimes referred to the "classical" form of the equilibrium conditions. 

Simple substitution of the appropriate form of the chemica.1 potentia.l function 

( aucl using the canonical form of V) leads directly to the mass-action equations 

mentioned earlier. This derivation is included for completeness in Appendix B. 
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2.5.2 The Kinetic Problem 

Consider a system in which all reactions are governed by known rate-laws, rK E JRNR. 

Given a composition vector n° at time t = 0 that satisfies the closed-system con­

straints An°= e, the problem is to find the composition n(t) at some future time 

t, compatible with the set of rate-laws rK and the closed system constraints. 

The solution n(t) can be expressed as 

n(t) = n° + Vl(t), (2.135) 

where the extents of reaction satisfy the following system of NR ODEs 

(2.136) 

The rate-laws rh. are of the form given in Section 2.4.3, e.g., equation (2.108). 

Finally, it holds that R1~· = Ll V r1.;. 

2.5.3 The Mixed Kinetic/Equilibrium Problem 

We will refer to a system whose reactions are of both kinetic and equilibrium type 

as mixed. The number of equilibrium reactions is Nj and the number of kinetic 

reactions is Nf. Using the decomposition (2.99), and given some n° satisfying 

An° = e, we write the composition at time t as 

Here, the kinetic extents of reaction are governed by the system of ODEs 

RK[n(e\. tQ)], 

0, 

(2.1:37) 

(2.1:38) 
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where, as before, the rate-laws rK = RK / ~ V are given by (2.108). Before pro­

ceeding to impose the conditions of equilibrium, we must indicate how the kinetic 

species interact with the rest of the system. Recall that the expression (2.137) 

really embodies a decomposition into component species and two classes of product. 

species, equilibrium and kinetic. Writing this as n = (nC, nK, nQ?, it is clear from 

(2.101) that a change in eQ will affect nc and nQ, but leave nK unchanged. The 

kinetic species are therefore "inert" as far as the equilibrium step is concerned, 

but, recalling the definition of mole-fraction (2.69), they still have an impact on 

the overall composition. 

Using the notation n' = (nC, nQ) E IR.Nc+N~, we can express the equilibrium 

problem (for each e:) as follows: 

111111 G[n(eQ' eK )] (2.139) 
lQ 

s.t. n'(eQ, e:) 2'. 0, 

continues to depend on the entire species vector, n E IR.Ns, whereas the inequality 

constraints only affect n'. It is clear that the two systems (2.138) and (2.139) are 

co11pled, and that the problem, therefore, is of mixed algebraic/ differential type. 

Clearly, (2.139) represents the normal equilibrium calculation encountered ear­

lier, expressed in stoichiometric form. Therefore, the developments regarding the 

stoichiometric formulation of the equilibrium problem also apply to the prob­

lem (2.139). 

We could equally well have stated the equilibrium conditions in a non-stoichiornetric 

form, however. To demonstrate this, note that the non-stoichiometric forrn of the 

equations (2. 1:19) is nothing but 

mm 
n' 

G( n', nF.) (2.140) 
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s.t. An= e, 

n' 2 0. 

However, by defining a reduced formula matrix A' E ]RNcx(Nc+N~), 

A' = (I i!.Q) Ne , 

(2.141) 

(2.142) 

(2.143) 

(where, in fact, A_Q = -lfQ), and a reduced vector of component totals, e' E JRNc, 

(2.144) 

the mass-constraints An = e imply that n' must satisfy 

A'n' = e'. (2.145) 

With these definitions, the non-stoichiometric formulation for the mixed problem 

( corresponding to the kinetic vector nK), is 

mm 
n' 

G(n',nK) 

s.t. A'n' = e', 

n' 2'. 0, 

which is clearly <'quivalent to the form (2.110). 

(2.146) 

(2.147) 

(2.148) 

2.5.4 Existence and Uniqueness Issues for the Equilibriurn Problem 

V,/e turn our attention to the pure equilibrium problem in one of its equivalent 

forms (2.110) or (2.129). 

As pointed out by Smith [40] and Shapiro and Shapley [37], the existence of a 

solution to this problem is guaranteed in all circumstances, given some conditions 

of compatibility of A and r:. In particular, we must assume that the compo­

nent abundances satisfy e; 2 0, with at least one f; > 0. Furthermore. we must 
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assume a compatibility property of the system, i.e., the intersection of the non­

negativity constraints and the element-abundance constraints must be non-empty. 

Mathematically, we assume that the set 

8 = {n I An = e, n 2: O} (2.149) 

is non-empty. In order for this to hold m general, it 1s clearly necessary that 

rank (A)= rank ([A, el). 

Existence now follows from the fact that G(n) is a real-valued, continuous 

function of then; on a compact ( closed and bounded) domain. By the Weierstrass 

theorem, G attains a minimum and a maximum value on its domain of definition. 

As noted in [40], the continuity of G usually only poses a potential problem as 

some nj approaches zero. For an ideal solution, this is easily resolved by noting 

that the negative infinity tha.t thus arises in 111 is cancelled by the linear term l?j 

that multiplies it, that is 

(2.150) 

Using this convention, G 1s continuous as n:i ----+ 0 and everywhere else m the 

domain of definition. 

The question of uniqueness of solution to the problem (2.110) is more compli­

ca.tecl, and involves the a.dual functional form used for the chemical potentials in 

the case of non-ideality. 

Let us look at some cases of increasing complexity. For an ideal, single-phasF 

solution, it is easy to show [110] that the Gibbs free energy G is a strictly convcr 

function, subject to the ronve:r set of co!lstraints, i.e .. 

Ns cPG L ( 
0 0 

)8n/m1 > 0 
,,1=1 ni n.7 

(2.151) 
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for all allowable variations of the composition 8ni, bnj. For such a case, uniqueness 

is established, and the KKT conditions (2.112)~(2.115) are both necessary and 

sufficient. 

Considering next the case of an ideal, multi-phase system, it can be shown that 

G is still convex subject to the constraints on n. However, it is no longer in general 

strictly convex, and certain degenerate non-uniqueness can arise. As pointed out 

by Smith [40], only the relative amounts of phases are undetermined in such cases. 

He reports a simple example involving gaseous and liquid water at T and p on the 

vapor pressure line of H2 0( aq), and concludes that at a ratio of 2 : l for the total 

amounts of hydrogen and oxygen, the relative amounts of the liquid and gaseous 

phase can have any value. We note that since G is convex, non-uniqueness implies 

that the same value of the free energy is attained at nearby points, and therefore, 

by convexity, on all points along some line in composition space. The implication, 

as is well-known in the optimization literature, is that the Hessian of G must be 

singular at the solution, a fact that can cause numerical difficulties. 

Finally, for the most general case of non-ideal, m.ulti-phase systems, it is known 

that the Gibbs free energy may posses several loca.l minima, i.e., G is ( at least for 

certain chemical potential models) no longer convex (see Smith and Missen [41]). 
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Chapter 3 

Reactive Transport in a Porous Medium 

Chapter Synopsis 

This chapter is concerned with the transport of chemically reactive species through 

the subsurface. By transport, we mean the movement, both through an average 

velocity field (advection) and through the random motion about the average ve­

locity ( diffusion and dispersion). As species are transported through the medium, 

reactions occur simultaneously and change the speed of propagation of species by 

distributing the mass in the system between such phases that are stationary and 

such that are mobile. In general, transport could occur in several flowing phases. 

However, we restrict ourselves to a study of a single flowing phase (the aqueous 

phase) and several solid (immobile) phases. 

3.1 Introduction 

In this section, we will introduce the ma.jor simplifying assumptions made in our 

approach to reactive transport, and make some comments about the ramifications 

of those assumptions. 

1. The system is comprised of an aqueous (flowing) phase, and an arbitrary 

number of solid (immobile) phases. The solid phases can either be of surface 

type to accommodate adsorption, ion-exchange or a residual phase, or of 

single-species type for minerals. 

2. The system is at isothermal conditions. 
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3. Transport occurs in a single, incompressible aqueous (flowing) phase which 

completely saturates the porous medium. 

4. General reactions are allowed within the aqueous phase (homogeneous), as 

well as between phases (heterogeneous). 

,5. The ffow properties of the aqueous phase are unchanged by the chemical 

transformations that occur within the system. 

Assumptions 1 and 3 are possibly the most important. They imply that we do not 

have to concern ourselves with the a full multi-phase flow situation; in particular, 

there will be no need for equations of state relating phase properties (such as phase 

density or specific molar volume) to the composition of the phase. This assumption 

greatly simplifies the presentation here, but it also precludes the study of many 

important phenomena, such as compositional oil-simulation and unsaturated flow. 

The assumption 2 simply states that thermal effects will be left unaccounted for. 

If temperature variations within the reservoir were to be taken into consideration, 

a conservation of energy equation would have to be added to the field equations. 

Thermal effects are probably of limited importance for most ground-water studies, 

but could of course have a profound impact in other applications (geothermal flow, 

enhanced oil recovery). 

The commonly made assumption 5 states that ffow properties are unaffected by 

chemical transformations. Phrased differently, we assume that the flow equations 

( the field equations determining the distributions of pressure and the aqueous­

phase flux) can be solved independently of the transport equations. This is obvi­

ously an approximation, as bulk properties of the flowing phase could easily chauge 

due to reactions ( consider the increase in viscosity as a gel forms). Similarly, thf' 
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resistance to flow inherent in the porous matrix can be quite sensitive to, for ex­

ample, the formation or dissolution of minerals. 

3.2 Definitions and Nomenclature 

Let us begin the exposition by defining some terminology. We let the symbol V 

denote the bulk volume of a representative elementary volume (REV) (see Bear [4], 

Slattery [38] or Bird et al. [5]) of porous medium, and vvoid denote the volume of 

void space within V. Their ratio is commonly known as the porosity ¢, 

vvoid 

¢ = --y· (3.1) 

The various phases that comprise the system all have corresponding volumes V 0 

which make up the bulk volume V. As pointed out in Section 2.3.3, we can express 

the phase molar concentrntion of a species i, c;, as 

(3.2) 

where, /3( i) denotes the phase in which i participates. In the simplified case of one 

flowing phase that completely saturates the medium, we have vvoid = vaq 

For convenience, we define rnolar concentrations with respect to the aqueous 

phase volume even for species that do not participate in the aqueous phase. This 

is done strictly to facilitate writing the equations in a uniform fashion, and affects 

in no way the genera.lity of the approach. 

The vector of molar concentrations c = ( c1 , ... , CNs f has entries 

n­
' c- = --

! vaq. 
( :3_3) 

Iu making the transition to a continuum (as opposed to batch) description, the 

composition variables become functions of time and space, i.e., the symbol c is 
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henceforth taken to mean a vector-valued function c : JRd+l --+ JRNs. We note 

that point-wise va.lues of such functions must be interpreted as averages over the 

REV. For notational convenience, we will often suppress the explicit dependence 

on position and time. 

The species molar flux, .f,· = (f· J· f· ) expresses the flux of species z m ,,x, ,,y,. ,,z ' 

units of moles per bulk area and time. 

The rate of creation/ destruction of species i, resulting from all chemical trans­

formations (reactions), including phase-transfer and intra-phase reactions, is de­

noted ri. It has units of moles per bulk vol time and time. 

Finally, the rate of supply/withdrawal of species i, resulting from e~i:ternal 

sources, (such as wells) is denoted s;. Its units, like the reaction terms, a.re moles 

per bulk volume and time. 

Next, we re-examine the definition made in Section 2.2.1 of the phase-identity 

matrix po:, given by (2.10)-(2.12). Specializing to a single flowing phase, define 

a flowing phase-identity matrix paq_ By virtue of (2.13), we can also define a 

phase-identity matrix ps corresponding to immobile species as 

P-' = I - paq_ (:3.4) 

The form of the matrix paq is simply 

paq = diag (Daq,(i(l), .. - , Daq,(J(Ns))- (:3.5) 

3.3 General Remarks on Transport in a Single Flowing Phase 

3.3.1 The Single-Phase, Incornpressible Flow Equations 

vVe consider the conservation of the aqueous phase over some domain of interest 

fl <;;; IB_d, with boundary 8D equipped with an outward norma.l vector field 11. 
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The ffow of the aqueous phase is governed by the overall conservation of mass 

equation, 

( 3.6) 

where 1t E IRd is the Darcy velocity, i.e., the flux of water per unit area of porous 

medium, and qw = qw(x, t) is an external source distribution. In writing (3.6), we 

have made use of the assumption of incompressibility stated earlier. 

An empirical law known as Darcy's Law [4] relates the Darcy velocity 11 to the 

water pressure p as 

'U, = -k("vp - pg), ( '.3. 7) 

where the tensor coefficient k E IRdxd is the permeability of the medium, g E IRd 

is the gravitational vector, and p is the density of the fluid. Defining the potential 

Was 

W=p-pz, ( :3.8) 

where z denotes depth with respect to some reference level, the equations (3.6), 

( :3. 7) and ( 3.8) combine to form an elliptic partial differential equation for the 

potential, 

- "v · k"vW = </w, J_; E S1. (3.9) 

Typical boundary conditions for (:3.9) are of Neumann and Dirichlet type. By 

writing an= j\ u f 2, where 1\ n r 2 = 0, we can illustrate these conditions as they 

may apply to different segments of the boundary, e.g., 

(:3.10) 

and 

p=p*, :rEf2, t>O, (:3.11) 

where f* and p* denote prescribed norma.l flux and pressure, respectively. 
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3.3.2 The Advection-Diffusion-Reaction Equations (ADR) 

By performing a mass-balance over a representative elementary volume (REV) for 

each species in the system, as explained in more detail in [4, 38], there rt>sults the 

following system of Ns coupled, nonlinear partial differential equations (PDE): 

8( cpc;) , 
at + V · f; = r; + s; i=l, ... ,Ns, 

In vector form, these equations can be written 

8( cpc) 
--~ + V · f = r + .s. 

ut 

(3.12) 

(3.13) 

Here, the definition of the divergence operator has been extended in the obvious 

way, so that 

( V · f); = V · f;. (3.14) 

3.3.3 Constitutive Relations for the Species Flux 

In this section we make some assumptions regarding the form of the species flux­

terms f;. Many different possibilities exist, depending on the application and the 

level of sophistication of the mathematical model. 

Since the processes of advection and diffusion occur within the flowing phase, 

the phase identity of species must now be explicitly taken into account. 

For a species participating in the flowing phase, we express the molar flux of 

tlw species as a sum of two distinct processes, advection and diffusion. Denoting 

the advective flux by the symbol f 0 • and the diffusive flux by fr1, we express this 

simply as: 

t'-f" +fd· .1 - .cr,1 • ,z· (3.15) 

The advective flux of i is transport. of the species with the mean velocity of the 

phasf' in which the species participates, in this case exclusively the aquPous phase 
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velocity u, i.e., 

fa,i = UCi. (3.16) 

The diffusive flux is expressed via the standard Fick's Law, which is 

!d,i = -D(u)'vc;. (3.17) 

The tensor D E IRdxd is generally composition-dependent; however, we neglect to 

account for this complication here. As indicated, D is also generally dependent 

upon (phase) velocity, and hence on position. Possible forms of this dependence 

can be found in Bear [4] and Peaceman [29]. For convenience, we will often suppress 

this dependence in writing, although it is accounted for in our model. In summary, 

the species molar fluxes can now be expressed 

Ji= 6aq,{3(i) (uc; - D'vci), i=l, ... ,Ns, (3.18) 

or, equivalently in vector form 

(3.19) 

3.3.4 Species Source and Sink Terms 

The term s; appearing in the species ADR (3.12) accounts for an external supply 

of mass of the ith species, i.e., a source/sink that is in some sense "external" to 

the system we are modeling. There are at least two distinct scenarios in which 

such a term must appear: 

1. The supply or withdrawal of fluid by means of wells; 

2. Incomplete description of chemistry. 
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In the former case, the injected stream will typically contain a mixture of differ­

ent composition from that of the interior of the domain. Similarly, the withdrawal 

of fluid causes a depletion of the species that are present in that part of the domain. 

The second, perhaps less obvious, case is the use of an external source/sink 

terms as a means of modeling reactions whose end product are of no interest to 

us, or that we for reasons of efficiency choose to neglect. As an example, we may 

choose not to treat radioactive decay rigorously, but can still in some sense account 

for such processes by including a decay term as a sink in the species ADR. 

3.3.5 The Specification of Boundary and Initial Conditions 

The boundary conditions applied to the species ADR (3.12) fall into three cate­

gories: Dirichlet, Neumann or l\1ixed, also known as Robin or Danckwert 's bound­

ary condition. The Dirichlet condition is the specification of function value, i.e., 

c(:r,t) = c1(:r,t), :z: E an, t > 0. (3.20) 

A typical example of a Neumann boundary condition is the condition of no dis­

persive fi'u:i:, commonly imposed at an outflow boundary, namely, 

DVc(x, t) · 11 = 0, x E an, t > o. 0.21) 

Fina.lly, a Robin, or Danckwert's condition imposes a continuity of flux and 1s 

typically used at an inflow boundary, 

(uc(x, t) - DVc(x, t)) ·/I= uc1(x, t) · ll, J'. E an, t > 0. (3.22) 

Tlw specification of initiaJ conditions amounts to the prescription of a vector of 

concentration fields , 0 • 

c( :r. 0) = c0 
( .r), J: E n. 
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Additional comments on the prescription of initial and boundary conditions with 

regard to the conditions of electroneutrality are made in Section 3. 7. 

3.4 The Local Equilibrium System (LE) 

3.4.1 Derivation of the Component Based Form of the ADR 

In this section, we consider the important case of local chemical equilibrium (LE) 

for the reactive system. The assumption of LE, which has been amply discussed 

elsewhere [36], implies that all chemical reactions occur sufficiently fast in com­

parison with other processes ( advection, diffusion} that we can assume that a state 

of local equilibri1Lm exists everywhere in the domain. 

Let us begin by writing the species conservation equations (3.1:3) in the form 

(3.24) 

where we note that V = VQ E JRNsxNR, and rQ E IRNR, since the equilibrium 

reactions span the entire stoichiometric space. This form of the equations is not 

directly useful, however, because of the presence of the equilibrium reaction-rates 

rQ. The rates rQ are not known, but rather implicitly defined through the equilib­

rium conditions that apply pointwise throughout the domain. To proceed, these 

ra.tes must be eliminated. Operating on (3.24) from the left with the formula ma­

trix A, using the linearity of the differential operators, the constancy of A and the 

assumption that D be composition-independent, recalling that the columns of V 

span the null-space of A, we arrive at a set of conservation equa.tions where the 

unknown rates have been eliminated, 

(:3.2,5) 
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The form of the above equations motivates a few definitions. The total component 

concentration , T E IRNc, is given by the linear transformation 

T= Ac. (3.26) 

Ana.logously, the total flowing component concentrations, C E IRNc, are defined by 

C = APaqc. (3.27) 

·' Finally, the total external component source, 8 E IR.Ne, is written in terms of the 

individual species sources as 

S = As. (3.28) 

Using the definitions (3.26)-(3.28) we can ·state the conservation of component. 

equations thus: 

a(cpT) n. ( C - nnc) - ., at + V Zl V • - .'). ( :3.29) 

The above system of equations express the fundamental fact that the mass of a 

component in the REV, in whatever phases or chemfral species it may participate, 

only changes d1te to the net component fiux and external sources or sinks. 

3.4.2 A Complete Set of Equations for the LE Problem 

In this section we give the complete set of equations describing the case of loca.l 

equilibrium reactive transport. As demonstrated in the previous section, the overall 

1nass-balances for the system components are 

8( cpT) 
1 at + V · ( uC - DV C) = S, , x E n, t > O. (3.:30) 

These PDEs must be augrnented with the appropriate initial conditions 

T ( :c, 0) = T0 (,r), :c En, (3.:31) 
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and boundary conditions 

C(x, t) = C1(x, t), x E an, t > o. (3.32) 

We have chosen Dirichlet boundary conditions strictly for convenience of exposi­

tion; in genera.I, any of the other types introduced in Section 3.3.5 can be used. 

The total source/sink terms S are known in terms of the individual species 

source/sink terms s through (3.28), and the totals T and C are related to the 

individual species c by means of equations (3.26) and (3.27). 

By assumption of local chemical equilibrium, the species concentration vector 

c is furthermore constrained pointwise by the equations governing local equili b­

ri um. Using the non-stoichiometric form of the equilibrium conditions, developed 

in Section 2.5.1, these restrictions can be stated in the form of a nonlinear pro­

gramming problem 

c = argminG(c) 
C 

(3.33) 

s.t. Ac T 
' 

C > 0. 

3.5 The Local Non-Equilibrium System (LNE) 

We will refer to the reactive system as being of local non-equilibrium type (LNE) 

if it is stipulated that all reactions may fail to attain equilibrium locally during the 

course of transp01't. This is the continuum analogue of the kinetically controlled 

batch-system encountered in Section 2.,5.2. In the case of only kinetic rea.ctions. 

the state of the system is determined by the set of rate-laws rK and the species 

ADR. Since the entire stoichiometric space is now spanned by V = VK, we may 

express the species reaction vector r E IR!V 5 as 



64 

Using this result, along with the constitutive equations for the species flux (:3.19), 

the species ADR (3.13) can be written 

a~c) + V. (u(Paqc) - DV(Paqc)) = VrK + s, x E 0, t > 0. (3.35) 

The above equations constitute a system of Ns coupled, nonlinear PD Es ( or OD Es, 

if solid species are present) for the N s species concentrations c. The N R rate-laws 

rK are known functions of composition, i.e., 

(:3.36) 

as described in more detail in Section 2.4.3. To complete the description we must 

also prescribe initial conditions 

c(:r, 0) = c0 (x), x En, (3.37) 

and boundary conditions, 

c(:r, t) = c1 ( :r, t), :r E 80, t > 0. (:3.:38) 

3.6 The Partial Local Non-Equilibrium System (PLNE) 

In the most general case, the chemical reactions fall into two classes, namely those 

that are sufficiently fast with respect to other processes that they may be consid­

ered to be at equilibrium at every point (LE), and those that occur on a time-scale 

comparable with the time of transport, and which may therefore not attain equilib­

rium ( LNE), at least for some x E n and 0 s;: t s; T. This is the reactive- transport 

analogue of the rnixed batch system encountered in Section 2.5.3. The species 

reaction vector r now has the general representation 
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where ,K E IRNk' represent the known rate-laws corresponding to the kinetic 

subset of reactions, and rQ E IRN~ is a formal representation of the reaction rates 

by which equilibrium processes occur. The starting point is again the species ADR 

with the reactions now given by (3.39), that is 

o~c) + V. (u(Paqc) - DV(Paqc)) = VK,K + VQ,Q + s. (3.40) 

As explained in Section 3.4, the equilibrium reaction rates rQ are not known, 

and must therefore be eliminated to obtain a useful form of the transport equa­

tions. This goal can be accomplished by operating on (:3.40) with the standard 

formula matrix A, while retaining, in addition. those PDEs which correspond to 

the transport of kinetic product species. This procedure results in a set of Ne ADR 

equations, governing the total analytical concentrations, augmented by Nf{ species 

ADR for the kinetic product species. We have chosen instead the (mathematically) 

equivalent strategy of constructing a "pseudo formula matrix" M E JR(Nc+Nf)xNs 

(sec [:36, 41]), which has the property that it eliminates the equilibrium rates only, 

(:3.11) 

Such a matrix can always be found, since the Nj columns of VQ are linearly 

independent, and the rows of M, being orthogonal to the columns of VQ, are 

simply some basis for the (Ns - Ni)= (Ne+ Nf{) dimensional subspace in IR.Ns, 

perpendicular to the column-space of VQ. In fact, inspection shows that M has 

the explicit form 

( 

IN 
]\If= ' 

0 

0 
(:3.42) 

where we have used the fact that AQ = - f;Q. 

Operating on (3.40) from the left with 1\11, we find a set of Ne+ Nfi ADRs, 

8(¢Mc) r r 
7 

+ V · (u(M paqc) - D\7(1\lf paqc)) = J\![.s + ]\;JV 'r '. 
ct 
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In order to better understand the structure of these equations, we write the species 

vector c in the form 

(3.44) 

Expanding the matrix-vector product l\;f c, we see that 

(3.45) 

and that therefore the first Ne components of this vector corresponds to the tota.ls 

of each component excluding kinetic products. This motivates the definition of the 

total component concentrations excluding kinetic products T' E IRNc, 

(3.46) 

Similar considerations make it convenient to define the total flowing component 

concentrations excluding (flowing) kinetic products C' E ]RNc, 

( 3.4 7) 

and the totaJ component sources e.-ccluding kinetic products S' E IRNc, 

(3.48) 

With these definitions, the field equations take the form of a set of component 

ADRs for the part of the mass that is unaffected by equilibrium reactions, 

0(,1..T') ; + V. (uC' - DVC') = v1.:1J{ + S', XE n, t > 0, 
t 

(3.49) 

and a set of species AD Rs for kinetic product species i = l, ... , Nf, 

fJ( <P"Nc+i) K 
fJt + baq,(3(Nc+i) V. (ucNc+1 - DV CNc+i) = r, + SNc+i' J' E n. t > 0. 

(:3.50) 
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The above equations must be augmented with the appropriate initial conditions, 

T'(x, 0) 

and boundary conditions, 

C'(x, t) 

y 
c'(x,t) 

T',0 (x), xED, 

C',1(x,t) xEoD, t>0, 

CK,! (x, t), , :l'. E an, t > 0. 

(3.51) 

(3.52) 

(3.53) 

(3.,54) 

To close the system, we must express the conditions of local thermodynamic equi­

librium that apply to the species vector c. This can be done by requiring pointwise 

that c be expressed as 

( ~3.5,5) 

where c0 is a vector with non-negative entries, satisfying 

(:3.56) 

but otherwise arbitrary. The vector (Q, representing equilibrium restrictions, 1s 

the solution to the nonlinear programming problem 

(3.57) 

2: 0. 

3. 7 Overall Electroneutrality in Reactive Transport 

Ifore, we briefly look at the question of maintaining ckctronentraJity in a system 

undergoing reactiVE' transport. Our objective is to estahlish sufficient conditions 

resulting in overall electroneutrality of thf' reactive system at every J' E r2 and for 
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all t > 0. We are not interested in establishing the most general conditions for 

which electroneutrality holds, but rather in identifying some practically important 

situations in which this principle applies. For simplicity, we confine ourselves to the 

LE system described in Section 3.4 and the case of Dirichlet boundary conditions, 

although similar statements can be made about the LNE arid PLNE problems and 

more general boundary conditions. We start from the ADR in component form 

complete with boundary data C1 and initial conditions T 0 

fJ(:tT) + v' · ( uC - Dv'C) s, x En, t > 0, (3.58) 

T(x, O) T 0
( :r ), :r E 0, ( 3.59) 

C(x,t) C 1(x,t), x E.an, t > 0. (3.60) 

Recalling the definition of the intrinsic element and species charge vectors, zE E JRNc 

and z E JRNs, introduced in Section 2.2.3, we define the total charge concentration 

Q, as 

(3.61) 

Using the relation (2.15), z = AT zE, we have 

(3.62) 

However, the definition of total con1ponent concentration (3.26) a.llows us to ex­

press this relation as 

(3.63) 

By analogy, the total flowing charge concentration, Qaq, is given by 

Qaq = .,,Tpaq 
- C. (3.64) 

Invoking the definition of total flowing concentration (3.27), this is simply 

(3.65) 
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Operating on the PD Es (3.58)-(3.60) with zE, using the definitions ( 3.63) and 

(3.65), we arrive at a transport equation describing the variation of total system 

charge concentration, 

a( </>Q) + \7. ( uQaq - D\7Qaq) 
at 

Q(x, 0) 

(3.66) 

(3.67) 

Qaq(x, t) (zEfC 1(x,t), x E Dn, t > 0. (3.68) 

The right hand side clearly satisfies STzE = (AsfzE = sTATzE, or STzE = sTz 

so we can define the total e.1:ternal source of charge Q5 by 

Qs _ oT E 
- ,.J z . (:3.69) 

Similarly, the boundary data and the initial conditions are transformed into total 

injFcted charge Q1 and total initial charge Q0 , given by 

(:3. 70) 

and 

('.3.71) 

With the definitions ( 3.69)-(3. 71) the transport equations for Q become 

a(t;) + \7. (uQaq - D\7Qaq) Qs, J: E 0, t > 0, ( 3. 72) 

Q(x,0) Qo(x ), :r: E 0, (:3.73) 

Qaq( .T, t) Q 1(:c,t), x E Dn, t > 0. (3.74) 

We require that the system is initially electrically neutral, Q0 (:r) = 0, that the 

boundary is maintained at zero net charge, Q 1 ( :r, t) = 0 and that the external 

sourcct supplies a neutral mixture, Q5 (a;. t) = 0. Without such restrictions. it is 

t For a sink term, this condition is not necessary. 
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clearly not possible to achieve overall electroneutrality. However, even under the 

conditions stated, electroneutrality will not hold in general. This is easily seen 

by considering a non-reactive system initially comprised of an aqueous and a solid 

phase of equal and opposite charge, i.e., QO,aq = -Q0,solid, so that Q0(x) = 0 holds. 

As flow commences, with QI ( x, t) = 0, electroneutra.lity is clearly perturbed. 

A sufficient condition for electroneutrality, with some important practical ap­

plications, is however immediately apparent. If the charge concentration of all 

solid phases is zero, i.e., 

Qsolid = Q _ Qaq = 0, (3. 75) 

the governing equations (3. 72)-(3. 7 4) are homogeneous, and admit only the solu­

tion 

Qaq(x,t) = 0, :r E 0, t > 0, (:3.76) 

implying 

Q(:r,t):::::::;0, :rEO, t>O. (:3. 77) 

This applies to the important cases of aqueous complexation, precipitation/dissolution 

( uncharged minerals) and ion-exchange (since these surfaces are electrically neu­

tral). However, other mechanisms of mass-transfer, such as adsorption, will not in 

general result in electroneutrality. 

3.8 Summary 

In the preceding sections, we identified three classes of rea.ctive transport problems, 

namely Local Equilibrium (LE), Local Non-equilibrium (LNE) and Partial Local 

Non-Equilibrium (PLNE). In each case, we stated the governing field equations. 

In the LE casf:, they were given by the equations (3.:30)-(3.:3:3). for the LNE system 

they were (:3.:3.5)-(3.:38), and finally for the PLNE case they were (3.49)-(3 .. 57). 
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Chapter 4 

Numerical Formulation of Reactive Transport 
in a Porous Medium 

Chapter Synopsis 

Numerical methods are defined for solving the reactive transport problem described 

iu Chapter 3. An operator-splitting approach is introduced, and the individual 

steps (aclvection, diffusion and reaction) are treated, with emphasis on the reaction 

step. A truncation-error analysis of the operator-splitting formulation is given. 

Relative merits of different proposed schemes are discussed. 

4.1 Introduction 

We present numerical algorithms for the solution of the three classes of reactive 

transport problems encountered in Chapter 3, namely local equilibrium (LE), local 

non-equilibrium (LNE) and partial loca.l non-equilibrium (PLNE). 

The proposed a.lgorithms employ operator-splitting to separate the effects of 

continuum transport (field equations) from the effects of chemical transformation 

(loca.l equations). Consequently, we devote the first section to a description of 

the application of operator-splitting to these classes of problems. The following 

sections explain in detail how the individual steps are accomplished. First, some 

details are given regarding the transport algorithms. In the three subsequent 

sections, we give a detailed treatment on how the rea.ction step is handled for ea.ch 

of the classes LE, LNE and PLNE. In Section 11.7, we present a brief analysis of 

the a.symptotic accuracy of the opera.tor-splitting algorithm for this application. 
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Finally, a companson 1s made of the algorithms introduced and other possible 

choices. 

4.2 The Operator-Splitting (OS) Approach 

4.2.1 Motivation 

The notion of applying operator-splitting ( OS) to the ADR equations is not new; 

indeed, quite a few workers ( e.g., [12, 25, 45, 11]) have considered such algorithms 

in the past. As pointed out in [45], the OS technique has several attractive features, 

for example: 

• Each physical process can be approximated using a numerical method that 

best suits the underlying mathematical model. 

• The field equations describing the overall process are often nonlinear ( as in 

the case of the ADR). Direct discretization gives rise to a global system of 

nonlinear equations (i.e., a system involving unknowns at all spatial loca­

tions). By comparison, OS typically results in linear .field equations and 

algebraic-differential local equations. 

• The OS approach is more amenable to the development of modular software. 

4.2.2 Overall Algorithm Structure 

Our approach to OS is based on the species form of the ADR as introduced 

in Section :3,:3.2, regard!Pss of the type of reactive system in question (LE, LNE 

or PLNE). The justification for this choice, as well as a study of the accuracy of 

such an approximation, will be given below. The starting point is the systPm of 
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nonlinear PDEs 

8( qyc) fit+ V · (u(Paqc) - DV(Paqc)) = r + s, x En, t > 0, (4.1) 

augmented with suitable boundary conditions and initial conditions, as described 

in Section 3.3.5. At the moment, we refrain .from explicitly considering any spatial 

discretization of the above equations, and consider only the advancement of the 

solution from the discrete time-levels in to tn+l. Let us designate the solution at 

time tn by the symbol en. The OS strategy consists of a sequence of steps for 

advancing the solution to the new time-level. We perform first the advection step, 

followed by a reaction step, a diffusion step· and finally an equilibration step. 

Algorithm 4.1 Reactive Transport Operator-Splitting Framework. 

Advection step: 

(1.2) 

Reaction step: 

c*,n+i = R[ Jvfcn+i], :r E n, tn < t < tn+i, ( 4.3) 

Diffusion step: 

o(cpc) - V · DV(Paqc) 
fJt 

c(.' tn) 

Equilibration step: 

0, .r E 0, tn < t < tn+i, ( 4.4) 

c*,n+l (. ), 

(4.5) 
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The above algorithm can be summarized as follows. Given the solution en at 

time-level tn, we solve the set of linear, hyperbolic PDEs (4.2), using en as an 

initial condition. The solution are the advected, unreacted concentrations at the 

new time-level, a quantity we denote by cn+l. Next, we perform the reaction 

step (4.3). Depending on the problem class, this step can be of either algebraic, 

algebraic-differential or differential type; this is the topic of Sections 4.4-4.6. Here, 

we have represented the reaction step abstractly by a general reaction-operator 

R : IR,Nc+Nk' --------, IR,Ns, operating on the advected, unreacted vector cn+l. The 

matrix ME JR(Nc+Nk')xNs is the familiar pseudo formula matrix, defined in (3.42). 

Note that by definition, M = I and M = A for the LNE and the LE cases, 

respectively. The result of the reaction step is the vector of advected, reacted 

concentrations c*,n+l. The next segment in the OS procedure is the diffusion 

step, which consists of solving, with the initial conditions c*,n+l, the set of linear, 

parabolic PD Es ( 4.4). The final step is the eq1tilibration step, represented by the 

operator E : JRNc+Nj[ --------, JRNs. This step is only performed if the system under 

consideration is of LE or PLNE type; for the LNE case we have E = I. Finally, 

note that for an LE system, R, = E. 

We refer to the concentration fields cn+l obtained through (4.2)-(4.5) as the 

OS solution to the equations ( 4.1) over the time-step tn < t < tn+l. 

In practical applications, different time-scales are often associated with the 

individual steps (4.2), (4.3) and (4.4) in the OS hierarchy. To be specific let 

us introduce the time-step 6.ty = t"+1 - in applying to the overall procedure. 

This time-step should be representative of the resolution needed to capture the 

slowest processes in the system. Furthermore, introduce time-steps corresponding 

to aclvection. reaction and diffusion, 6.1.A, 6.tR, and 6.t.D, respectively. In this work, 

we will assume that thP time-scales of advection and diffusion arP of comparable 
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magnitude, and that they both occur more slowly than reactions. In other words, 

we assmne 

( 4.6) 

and 

(4.7) 

where we use the symbol tltT to denote the time-step for transport without main­

taining any distinction between advection and diffusion. 

The condition ( 4. 7) has implications when rate-controlled reactions are present. 

In these cases, a time-step smaller tha.n that used for transport is often needed to 

stably integrate the governing ODEs. 

4.3 The Transport Step 

We now give a brief description of the algorithms used for the spatial and tempora.l 

discretization of the transport step, that is, the movement of species due to advec­

tion and diffusion. These algorithms were developed mainly at Rice University, and 

the corresponding software, PARSiml (Parallel Aquifer and Reservoir Simulator, 

single phase), is described in the users manual [2]. The (species) ADR is a partial 

differential equation of parabolic type, which, in typica.l applications is advection 

dominated (high Peclet number), and therefore almost hyperbolic in nature. As 

a consequence, the solution develops sharp fronts, causing standard schemes for 

parabolic equations to work poorly. Some well-known problems are (see [26]): 

• Excessive numerical diffusion, causing smearing of fronts; 

• Numerical instability. resulting in oscillations and possible over/undershoots; 

• Lack of mass-conservation. 



76 

For these reasons, the transport step in PARSiml is divided into an advection 

step (hyperbolic) and a diffusion step (parabolic), enabling the use of suitable 

methods to approximate the different characteristics of the two processes. Spatial 

discretization is by a Mixed Finite-Element procedure, using the lowest-order 

Ravi art-Thomas spaces [ 6]. This has the distinct ad vantage of conserving mass 

on a cell-by-cell basis. Two options exist currently for the advection step, a 

Higher-order Godunov (HOG) procedure (Dawson [10]) and a Characleristics­

Mi.red Method (CMM) (see Arbogast and Wheeler [48] and Arbogast, Chilakapati 

and Wheeler [3]). The HOG algorithm requires a CFL-type time-step constraint, 

but reduces numerical diffusion, enforces the conservation law cell-by-cell and pro­

duces non-oscillatory solutions. The CMM approach does not require a time-step 

constraint, and shares the other attractive features of the HOG method. However, 

the tracing back of grid-points. and the integration over the trace-back 1·egion, 

makes this method more expensivf' than HOG for a large problem if time-steps of 

the same size are takf'n (if, for example accuracy dictates this). 

The diffusion step is handled by a standard technique for parabolic problems, 

i.e., a fully implicit discretization (based again on the Mixed Finite-Element dis­

cretization of the domain), which results in an easily solvable symmetric, positive 

definite linear system. 

4.4 The Reaction Step for the LE Problem 

4.4.1 Overview 

Consider the pure equilibrium problem, the rnathernatica.l structure of ,vhich was 

described in Section 2.:'i.l. The reaction operator R introduced in (4.:-n llOW coin­

cides with the equilibrium operator£= £[A1c]. Since for an LE system it follows 
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that M = A, we can express the equilibrium step 

c = £[Ac] = £[Tl, (4.8) 

where T are the familiar total molar concentrations. 

The operator £ represents the solution of the nonlinear programming problem 

(NLP) discussed in Section 2.5.1, applying locally at each point in the domain n. 

To make this more concise, recall that the input to the reaction step is the field 

of advected, unreacted concentrations, cn+l. For the fully discretized case (both 

temporally and spatially), let us use the symbol c~+l to denote the approximation 

to the composition vector at a discrete point in the grid. If we consider that the 

grid block has volume 6. V, we can express the species mole vector in this location 

as 

'Ylo = ,1-. ;\vc-n+1 
"'h - 'l'Ll 'h ' ( 4.9) 

where the superscript "O" emphasizes that this vector represents an initial approx­

imation to the vector of equilibrium mole-numbers. Similarly, the total component 

mass, eh E JRNc, associated with this grid block is simply 

(4.10) 

and the tota.l aqueous concentrations Th E IR,Nc are 

T _ A-n+1 
h - ch · 

Identical equations apply for each grid block in the discretization of n. The task 

at hand is to compute the equilibrium composition n*, based on the initial guess 

n~ and the constraints posed by the computed totals e1i. The vector so obtained is 

easil_y converted back to tlw desired mola,· variahles through the inversf' of (4.9), 

* *,n+l - n 
ch - </J6. v· 
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For convenience, we will omit the subscript "h" in the following, and it will be 

understood from the context when a discrete (local) value is intended. 

Our approach to the equilibrium problem is based on the interior-point method 

for nonlinear programming (NLP). Its application to a generic NLP is described 

in detail in Appendix A, and we will repeatedly refer to results contained there. 

A fundamental reference on this subject is El-Bakry et al. [15]. 

As pointed out in Section 2.5.1, there exist two basic strategies for the equi­

librium batch problem, namely the non-stoichiometric and stoichiometric formu­

lations. Sections 4.4.2 and 4.4.3 below describe the algorithms resulting from the 

application of the interior-point method to these two situations. 

4.4.2 The Non-Stoichiometric Forrn.ulation 

The Unreduced Formulation (UNSF) 

The non-stoichiometric formulation of the equilibrium problem is based on solving 

the NLP (2.110) introduced in Section 2.5.1. Letting y E JRNc and z E ffi_Ns de­

note the Lagrange multipliers corresponding to equality and inequality constraints, 

respectively, and introducing the vector of unknowns u = ( n, y, z) E IR. 2Ns+Nc, we 

can express the KKT conditions for this problem in the standard form ( A.25 )­

( A.26), i.e., 

where 

F(u) = 

F(v) 0, 

(n,z) > 0, 

IL(n) + ATy- z 

An - e 

A(z)ri 

(4.13) 

( 4.14) 

(4.15) 
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Since the inequalities are in the form of simple-bounds, there is no need to introduce 

slack-variables, and the algorithm presented in A.2.1 is clearly appropriate for this 

problem. Equation (4.13) is a square, nonlinear system in the Neq = 2Ns + Ne 

unknowns u = ( n, y, z). The corresponding Newton system (A. 29) has the form 

J(u)!:::,.u = _:_F(u), ( 4.16) 

whercj the .Jacobian J(u) is given by the general expression (A.33). In the case at 

hand, it simplifies to 

J(u) = A 0 0 (4.17) 

A(z) 0 A(n) 

The form of V;,,nG is given, for an ideal system, in B.2. 

When the general interior-point algorithm A.l is applied to the problem spec­

ified by (4.13)--(4.14) with F(u) given by (4.15), there results an algorithm which 

we call the unreduced, non-stoichiometric formulation (UNSF). 

The Reduced Formulation (RNSF) 

In this section, we describe an algorithm, based on the non-stoichiometric formu­

lation above, in which the number of unknowns is reduced. 

We begin the exposition from the KKT conditions for the non-stoichiometric 

formulation ( 4.15). Partitioning the species mole vector into component and prod­

uct species, 

n= 
( 

nc ) 
17,P ' 

( 4.18) 

thtc conditions of mass-balance become 

( 4.19) 
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In a completely analogous fashion, we subdivide the chemical potential vector 11 

and the vector of Lagrange multipliers z. This allows us to write the conditions of 

optimality above as 

( 4.20) 

(4.21) 

Next, we eliminate the multipliers y between ( 4.20) and ( 4.21 ). The result is 

( 4.22) 

To proceed, we make the assumption that the composition variable used is the 

molar concentration. We also explicitly introduce the assumption of ideali:ty at 

this stage. As pointed out in Section 2.5.1, a reduction of the number of equations 

in a non-stoichiometric formulation can always be carried out under the assump­

tion of ideality. Thus, the choice of composition variable is largely a matter of 

convenience; however, the ideality assumption is necessary. To reflect the choice 

of composition variables, we convert the mass-balance equations to apply in terms 

of molar concentrations, i.e., 

cc+ AcP = T, ( 4.2;3) 

where T denotes the total molar component concentration. Ideality enables us to 

express the chemical potentiaJs in the "decoupled" form 

Substituting these expressions into ( 4.22), the conditions of equilibrium are 

(4.24) 

(4.25) 

( 1. 26) 
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As noted in Section 2.5.1, mole numbers corresponding to species in a non-disappearing 

multi-species phase are strictly positive (see also [40]). In the framework of aque­

ous/rock chemistry that we are considering, the multi-species phases are either the 

aqileous phase or surface phases that represent sites for ion-exchange or adsorp­

tion, neither of which we allow to disappear as a result of reactions. Therefore, 

species in the aqueous phase or in a surface phase always satisfy c; > 0, and, by 

complementarity, have corresponding multipliers z; = 0. 

In our application, only single-species phases (minerals) can disappear com­

pletely. Let us denote the index set for minerals by the symbol IM, and the 

number of possible minerals by NM ::; NR. The result regarding the multipliers is 

that for any i = 1, ... , NR, 

z;=0, itf_h1, ( 4.27) 

and 

( 4.28) 

To summarize, we have obtained an equivalent set of KKT conditions given by 

cc+ AcP T 
' 

( 4.29) 

flP( cP) 1F1{(cc) + zP, ( 4.30) 

cf zf 0, i E h.-1, (4.:31) 

_p 
0, itf-JM, (4.32) ..:.,i 

( p _p) 
c,:' "'i > 0, i E fti1, ( 4.3:3) 

p 
> 0, I(/_ fr..1, ( 4.34) C I 

cc 
1 > 0, 1 = l, ... , Ne. (4.3,5) 
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By using the specific, ideal phase form of the chemical potential (2.76), we can 

transform ( 4.30) into a mass-action expression for the non-mineral species, 

(4.36) 

The form of 1/J; is given by equation (B.9). Recalling that mineral species have a. 

composition-independent chemical potential µP = flp,o, we arrive at the system 

cc+ AcP T, ( 4.37) 

cP 
! 

~)i( cc)' i {/. IM' ( 4.38) 

11;'0 (ATl,lc(cc))i + zf, iETrvr, (4.39) 

cP 'lP 
i ~, 0, iEIJv1, ( 4.40) 

( p ~P) Ci, "'i > 0, i E hv1, ( 4.41) 

C 
C 

1 > 0, i=l, ... ,Nc. (4.42) 

One practical difficulty with the above formulation is the requirement of strict 

positivity of the component species, cc > 0. It is critical that this issue be addressed 

if a solution is to be obtained with an iterative method. We have adopted the 

strategy of logardhrnic transformation of the component concentrations, that 1s, 

we introduce new computational va.riables Xe through the definition 

C _ 1 C Xi= nc;, i = 1, ... , Ne. ( 4.4:3) 

This obviously ensures c'f > 0 for i = 1, ... , Ne. T'he logarithrnic form may also 

ha.ve a computational advantage when large differences in magnitude exist, as is 

often the case in chemical batch systems. 

We can now express the non-m.inera.l product species in the sarne, logarithmic 

form as 

p - 1 {! x, = nc,, ( cl.44) 



Using the mass-action expression (B.12) produces 

Ne 
p 1 F "\"""'' C X; = n 11; + L., a.iiXj, 

j=l 
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( 4.45) 

By applying the definition of the equilibrium constant (B.10) to modify the mineral­

optimality equations, we arrive at the final form of the reduced KKT conditions 

(together with the definition (4.45)): 

exp(xD + I: a;jc!} + I: a;.i exp(x~) 
.iElJ,1 jrf.[M 

Ne 

lnl<; + Lll.iiXj 
.i=l 

T;, i=l, ... ,Nc, 

RT' 

0, 

(cf, zf) > 0, i E IM. 

(4.46) 

(4.47) 

( 4.48) 

(4.49) 

It is worth noting that the optimality condition for minerals ( 4.4 7) can be easily 

rearranged to the equivalent form, for i E IM, 

Ne _p 

ln(J<; Il(cL
1
'.)a 1') = _ __:j___ 

· · RT 
.7=l 

By complementarity, equation ( 4.48), this implies that, for i E IM, 

Ne 

K; IT(ci)a1 , = 1 if cf> 0, 
j=l 

Ne 

I<; IT ( cj)a1 , < 1 if cf = 0. 
j=l 

( 4.,50) 

(4.51) 

The equations ( 4.51) are the customary way of expressing the equilibrium condition 

for rninera.ls in terms of the solubility pmdud appearing on the left-hand side. 

When (,1.45) is used to substitute for the non-mineral product species in (4.46), 

the resulting system is of size Neq = Ne + 2N M · 

The primary unknowns are the logarithms of component concentration:(' E IR.Ne 

and the N1v1 mineral concentrations cf for i E IM. In addition, we must solve for 

tlw NM multipliers zf for i E IM, corresponding to minerals. 
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We will refer to the algorithm that arises when the interior-point algorithm A. l 

is applied to the reduced KKT conditions, equations ( 4.46)~( 4.49), using xf given 

by ( 4.45), as the reduced non-stoichiometric formulation (RNSF). 

4.4.3 The Stoichiometric Formulation 

This section describes the interior-point method as applied to the stoichiometric 

form of the equilibrium problem, that is, the NLP (2.129) introduced in Section 2.5.1. 

The primary variables are now l E IRN R, the extents of reaction, which are related 

to the vector of species mole-numbers n through (2.t±5 ), 

n(e) = n° + V( ( 4.52) 

Note that the vector n°, which was obtained from the advected, unreacted concen­

trations through an expression of the form ( 4.9), has more significance here than in 

the non-stoichiometric formulation. Taking (arbitrarily) as an initial guess for the 

extents of reaction l = 0, it is clear that n° not only serves a.s an effective initial 

guess for the fina.l composition vector, but that it also contains all information 

about the total component mass. 

Because of the affine relationship between l and n, this problem does not im­

mediately fit within the general simple-bounds formulation A.2.1 that was applied 

in the non-stoichiometric case. Of course, the slack-variable formulation (A.17) 

would be directly applicable, but the overhead incurred by the added number of 

variables would render such a formulation too costly. Instead, we have 
1
chosen to 

modify the n1ethod slightly to treat affine constraints similarly to simple bounds. 

As before, let the multipliers z E JRNs correspond to inequality constraints and 

let the vector of unknowns be denoted ll = ( ~, z) E IR.N R+N s. The KKT conditions 



are in this case 

F(u) 0, 

(n(O,z) > 0, 

where F has the form 

( 
vr µ ( n ( O) - vr z ) 

F(1t) = . 
A(z)n(e) 
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( 4.53) 

( 4.54) 

( 4.55) 

We note that F ( 'U) = 0 is a square, nonlinear system of dimension Neq = N s + N R 

in the unknowns u = ( l, z). The Jacobian J (u) for the corresponding Newton 

system ( A.29) is 

J(u) = ( Vt€G (0 
A(z)V A( n(I')) ) , 

( 4.56) 

where Vt(G is the Hessian of the Gibbs free energy in reaction-coordinate space. 

It is shown in Appendix B that Vt(G has the simple form 

( 4.,57) 

A procedure for evaluating this quantity efficiently is described in B.2. 

The algorithm resulting from the use of equations ( 4.54) and ( 4.55) within 

the interior-point framework will henceforth be referred to as the stoichiometric 

form1tlation (SF). 

4.5 The Reaction Step for the LNE Problem 

The LNE system was introduced in Section 2.5.2 and is characterized by NR = NJ{, 

i.e., only kinetic reactions occur. The grnera.l reaction step R = R[J\!lc] can in this 

case be stated more simply as R = R[c] (this follows from the definition (3.42) 

since JV[ = I when N~ = 0). Performing the reaction step from tn to tn+l therefore 
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requires knowledge of the entire composition vector, which we denote c0 . As before, 

this quantity should be thought of as an approximation to the advected, unreacted 

concentrations c,:+1
, local to some arbitrary grid-block in the discretization. 

The governing equations are the NR ODEs given by (2.136), 

0, 

subject to the side-conditions of non-negativity of species, 

c(fl 

c(~) > 0. 

(4.58) 

(4.59) 

(4.60) 

A wealth of different ODE integrators are'available for the solution of (4 .. 58). For 

an introduction to the subject, see any of [20, 24]. Our approach requires the use 

of explicit integrators, and we have implemented three algorithms of different level 

of accuracy: Forward Euler (FE), explicit second-order Runge-Kutta (RK-2) and 

explicit fourth-order Runge-Kutta (RK-4). The definitions of these integrators 

have been included for completeness in B.:3. 

To illustrate, let us consider the application of Forward Euler to the system 

( 4.,58). Introducing sub time-levels tlm] for m = 0, ... with tl0l = tn, we define a 

series of new approximations through 

{ 

~[m+l] = ~[m] + .6.tRrf{[c(~[ml)], 

~[O] = 0. 
(4.61) 

By defining the concentrations at the sub-time level tl111l, 

[m] = (dm]) C _ C ',, , (4.62) 

it is immediately clear that 



87 

We can therefore express ( 4.61) alternatively as 

{ 

c[m+l] = c[m] + 6tRVrK[c[ml)], 

clO] = Co. 
(4.63) 

The update ( 4.63) is convenient in that it allows the monitoring of the non­

negativity conditions ( 4.60) directly. Similar expressions apply to the other time­

stepping schemes defined in Appendix B. 

We now describe the time integration in more detail. For the purpose of illus­

tration, we employ RK-2 in this example. 

Algorithm 4.2 LNE Time Integration Framework (RK-2) 

Receive advected, unreacted composition c~+i 

(I) Predictor step 

(a) Compute reaction rates, rr = ,K(elml) 

(b) Compute largest time-step 6tP ~ 6tR, satisfying 

elm]+ 6tp Vr{" 2 0 

( c) Predict e~m] = elm] + 6.tP Vr{( 

(II) Corrector step 

(a) Compute reaction rates, ,r = ,K(etnl) 

(b) Compute largest time-step 6.tr. satisfying 

elm] + 6tc vrr 2 0 



88 

else llt = Clip 

(c) Correct c~m] = c[m] + ½lltV(r{< + rf) 

(III) Update iterates 

clm+l] = c~m]; rn +-- m + 1 

lliror +-- lliror + llt 
if Cliror 2". i:lty exit 

else goto I.a 

A crucial point in the implementation of this algorithm is the treatment of the 

non-negativity constraints (steps Lb and II.b above). In practice, a user-specified 

tolerance cE > 0 is used, i.e., we require that the time-step satisfies 

(4.64) 

Note in particular that (4.64) guarantees a feasible update, that is, 

( 4.65) 

It is easily seen that the same conclusion holds for RK-4 if a condition of type (,1.64) 

is satisfied for each raJ,e vector. 

A rate-limiting step is used to evaluate the rates ( r 1 and r 2 above), to ensure 

that reactions proceeding in a direction which would lead to the complete depletion 

of its reactants ( concentrations lower than c<) are sd to zero. It is important to 

point out that this step does not affect mass-balance; in fact, the procedure outlined 

above is completely rnas.s-conservat1ve. 
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4.6 The Reaction Step for the PLNE Problem 

We are now ready to describe the reaction step R in its most general form, as arises 

in a PLNE problem. The governing equations, introduced in Section 2.5.3, consist 

of a mixed system of ODEs and algebraic constraints, posed as a NLP problem. 

T'he ODEs have the form 

0, 

and are subject to the side-conditions 

a.nd the constraints of equilibrium. 

(4.66) 

( 4.67) 

(4.68) 

To properly illustrate the time-integration, we need some additional notation. 

ln keeping with the nomenclature of the previous section, we denote the approx­

imate solution at the sub time-level m by the superscript m in square brackets. 

For example, we write e<[ml for the kinetic extents of reaction at tlml. Recognizing 

that the equilibrium extents of reaction ~Q at time tlm] are implicitly determined 

by the conditions of equilibrium and the value of e<' we use the symbol ~Q[m] to 

represent the equilibrium extents of reaction corresponding to the kinetic extents 

of reactions, e<[ml. This results in the definition of two different concentration 

vectors for the time-level m, namely the vnequilibrated concentrations 

.[m] = (tI<[m] ;:Q[m-1]) 
C _ C <., ,<., , (4.69) 

and the equilibrated concentrations 

( 4.70) 
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For m = 0, i.e., at t = tn, we have the special case 

c(o] = c(0,0) = c0
, ( 4. 71) 

which again is equal to the advected, unreacted vector ch+i. By definition, c*l0l is 

nothing but the equilibrated initial conditions at the beginning of the reaction time­

step. As in Section 4.2.2, we denote the process of equilibrating the concentration 

vector at a given time-level by the symbol£, and write this formally as 

( 4. 72) 

This is the equilibrium sub-step which we elaborate on in Section 4.6.1. 

vVith the above definitions, we are ready to present a complete algorithm for the 

reaction step in the PLNE formulation. As in the preceding section, we illustrate 

the procedure using RK-2. The resulting algorithm is in some respects similar to 

one presented by Sevougian [36]. As in the LNE case, we have implen1ented, in 

addition to RK-2, the integrators FE and RK-4. 

Algorithm 4.3 PLNE Time Integration Framework (RK-2) 

Receive advectecl, unreacted composition ch+I 

rn = O; er ml = ch+i 

( 0) Top of reaction time-loop 

(a) Equilibration c*[m] = £[NJ c[ml] 

(b) Compute affinities A= A( c*[ml) 

(I) Predictor step 

(a) Compute reaction rates, Ti'= rK(c+11l) 



(b) Compute largest time-step 6ip ::::; 6tn, satisfying 

c*[m] + 6ipVKrf 2 0 

(c) Predict c~m] = c*[m] + 6tpVKrf 

(d) Equilibrate c;[m] = £[Mc\;nl] 

(II) Corrector step 

(a) Compute reaction rates, rf = rK(c;lml) 

(b) Compute largest time-step 6tc, satisfying 

c*[m] + 6t VK rK > 0 
C 2 -

if 6tc < 6tP then 6tP = 6tc; goto (Le) 

else 6t = 6tP 

(c) Correct c~m] = c*[m] + ½6tVK(r{< + rf) 

(d) Equilibrate <[m] = £[Mc~ml] 

(III) Update iterates 

if 6troT 2 6ty exit 

(IV) Strategy for next step 

Compute new affinities A+= A(c*lml) 

if AffinityViolation(Ai, At) then 

Switch species i 

goto O.a 

else goto I.a 

91 
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Several comments are in order. First, note that the cost of the algorithm is dom­

inated (for all but the simplest cases) by the need to equilibrate the mixture at 

each new composition; that is, to apply the operator£. In particular, equilibration 

occurs at the beginning of the time-stepping (O.a), after the prediction-step (I.cl) 

and after the corrector-step (II.cl), amounting to a total of 3 equilibrium calcula­

tions per time-step. However, if many reaction steps are taken per transport step 

( 6.t R ~ 6.ty), then the average number of evaluations of £ is only 2 per reaction 

step. This is assuming that the non-negativity constraints are not violated dur­

ing the integration. If a cutting of the time-step is required at the stage (II. b), 

additional equilibrations will be required. 

Similar comments apply when the predictor-corrector approach is replaced by 
' . 

other integrators. For FE and RK-4, the number of evaluations of £ a.re 2 and 5, 

respectively, which for the case 6.tR ~ 6.ty translates into 1 and 4 evaluations of 

£ on the average. 

Another comment regards the last stage of the algorithm, (IV). This is a user­

defined option that can be easily disabled if not desired. It was point.Pd out by 

Sevougian [:36] that a change in sign of the computed affinity of a kinetic reaction 

is non-physical; a numerical artifact rPsulting fron1 the use of too large a timP-step. 

His solution was to find the point where the affinity was ( approxirnately) zero, and 

switch the species for which the "violation" occurred to the equilibrium subset. We 

do not advocate such a strategy in general, since it is possible in some scenarios 

that the affinity of a given reaction c01tld undergo changes of sign during the 

a.pproach to equilibrium. However, we include the option of species-switching in 

our a.lgorithm to handle cases where practical difficulties could arise in integrating 

the system. For example, it might bf' reasonable to switch a product s1wcies that 

is completely consumed by a rapid kinetic reaction to an equilibrium description, 
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in order to avoid taking excessively small time-steps. Different heuristics can be 

used to determine when a species should be switched. 

One last point concerns the conservation properties of this scheme. As for 

the corresponding LNE algorithm, the formulation of the kinetic reactions is com­

pletely conservative, by virtue of the expansion ( 4.67). If the equilibrium sub­

step is based on a stoichiometric approach, then the overall integration process is 

component-mass conservative. 

4.6.1 The Equilibrium Sub-Step 

This section is devoted to a treatment of the equilibrium sub-step, £, which arises 

in the reaction step for the PLNE problem. In general, as explained in Section 4.4, 

algorithms for the computation of chemical equilibrium fall into the classes of non­

stoichiometric and stoichiometric procedures. These algorithms were treated at 

length in Section 4.4.2 and Section 4.4.3 for the case of equilibrium reactions only. 

Fortunately, the approaches presented there carry over to the case where kinetic 

reactions are also present with minor modifications. We first present the modified 

problem that must be solved in a non-stoichiometric approach, and finish the 

section by supplying the details for the stoichiometric case. 

Non-Stoichiometric Equilibrium Sub-Step 

The equilibrium step c*[m] = £[ NJ clml] can be defined in terms of the non-stoichiometric 

formulation, based on t.lw NLP (2.146). Let the equilibrated solution c*[m] and the 

nnequilibrated solution elm] at iteration-level m in the PLNE time-integration pro­

cedure both be represented in terms of component-species, kinetic products and 

equilibrium products. so that we may write c*[m] = (cc[ml, cK[ml, cQ[mlf and 
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c[m] = (cc[m-l], cK[ml, cQ[m-lJ?. Using the definition of M results in 

(4.73) 

As before, let T' denote component total concentrations excluding kinetic species, 

and let A' = (!Ne AQ) be the reduced formula matrix first introduced in (2.143). 

The equilibrium sub-step can now be written 

c*[m] = [ [ T' ] , 
CK[m] 

( 4. 7 4) 

where c*[m] is obtained through solving the reduced minimization problem 

mm G(c',cK[ml) 
c' 

s.t. A'c' = T' 

c' > 0 
- ' ( 4.75) 

for the unknowns c' = (cc[ml, cQ[m])T. 

When the RNSF, introduced in Section 4A.2, is applied to this particular, 

non-stoichiometric form of the NLP, the resulting system of nonlinear equations 

is of size Neq = Ne + 2N2r, where NS denotes the number of minerals that form 

through equilibrium reactions. 

Stoichiometric Equilibrium Sub-Step 

As we have seen, the equilibrium step c*[m] = E[J1;f c[ml] can also be expressed as 

(4.76) 

where the equilibrium extents of reaction ~Q[m] arc defined by 

~Q[ml = arg min G[c(e{[ml, tQ )] ( 4. 77) 
. ~Q 

s.t. c(~K[ml, (Q) > 0. 
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Application of the method outlined in Section 4.4.3 results in a nonlinear system 

of the form ( 4.53) of dimension Neq = Ne+ 2N2. With this choice of algorithm, 

Algorithm 4.3 is mass-conservative. 

4. 7 An Analysis of the Order of the OS Algorithm 

We now consider the question of accuracy of the overall OS procedure Algorithm 4.1 

when applied to the reactive transport problem. It is well known that standard OS 

procedures introduce errors that typically are proportional to the size of the time­

step employed. This error is inherent in the splitting procedure, and can not be 

improved upon by devising more accurate schemes for the sub-steps that comprise 

the algorithm (in our case a.dvection, reaction, diffusion and equilibration). We 

will therefore not consider any particular temporal or spatial discretiza.tions, but 

rather analyze the system of continuous field-equations directly. The main result 

of this analysis is 

Proposition 4.1 The opera.tor-splitting procedure, defined by the 

equations ( 4.2)-( 4.5 ), is formally first-order in time accurate when ap­

plied to problems of class LE or LNE. 

4.7.1 Order of Approximation for the LNE Problem 

The governing equations a.re the species ADR, given by (3.3,5)-(3.38). Note that 

in this case, the PDEs to which the OS is applied correspond directly to the actual 

governing equations. It therefore suffices to establish that Algorithm 4.1 results in 

a11 0(6t) procedure when applied to the species ADR, 

( 4. 78) 
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It is a simple exercise using Taylor expansions to demonstrate that Algorithm 4.1 

is a formally first order in time procedure for this class of problems. However, 

as more general error-estimates have already been established under reasonable 

assumptions on rK by Dawson and Wheeler [11], we will not comment further on 

the application of OS to the LNE problem type. 

4.7.2 Order of Approximation for the LE Problem 

Preliminaries 

We begin by establishing some properties of the reaction step in the LE formu­

lation. Because no kinetic reactions are present, it holds that R = £, where 

£: JRNc -----, JRNs_ As explained earlier, M = A in this case, so we are justified in 

writing 

c* = £[Mc] = £[Ac] = £[Tl, ( 4. 79) 

where c, c* denote unequilibrated and equilibrated composition vectors, respec­

tively. Since any change in the composition vector must lie in the null space of A, 

we have 

A(c- c*) = 0, ( 4.80) 

or, combining ( 4. 79) and ( 4.80), 

T =Ac= Ac*= AE[T]. (4.81) 

We can now formally state the mass conservation property of the combined opera­

tor A[. For any vector 17 E IR.Ne, for which the equilibrium problem has a solution, 

it holds that 

11 = A£[11]. ( 4.t,2) 



97 

Truncation-Error Analysis 

The analysis will proceed as follows. The species-based OS system, defined in 

Algorithm 4.1 for the LE case, is first manipulated into an equivalent, component­

based form, which is subsequently analyzed using the properties of£. The smooth­

ness of the concentration fields involved is not an issue here, and we tacitly assume 

the existence of the required number of derivatives. For notational convenience we 

assume that porosity is equal to one, and we disregard external source terms. The 

species-based system of OS equations is 

oc - + 'v · u(Paqc) at 
c(·,tn) 

oc - 'v. D'v(Paqc) 
at 

c( ·, tn) 

0, x E n, tn < t < tn+l, (4.83) 

c( ·, tn), 

( 4.84) 

0, x E n, tn < t < tn+l, ( 4.85) 

*(· tn+l) 
C ' ' 

(4.86) 

Note that we have designated the final solution obtained at tn+I by the superscript 

OS' to distinguish it from the true solution at tn+l, which we denote c( ·, tn+l ). 

Furthermore, note that c( ·, tn) designates the true solution at tn. By applying 

AP"q to equations (4.83) and (4.85) (noting that (Paq) 2 = P"q) and applying A 

to equations ( 4.84) and ( 4.86), there results the component-based form of the OS 

equations 

a(" -
at + 'v. uC 

C( ·, tn) 

( 4.87) 
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T*(·,tn+l) = A£[C(·,t'1+1 ) + 5(-,tn)], x En, 

ac , 
--\7-Dv'C at 

6(-,tn) C*( ·, tn+1 ), 

( 4.88) 

(4.89) 

( 4.90) 

Here, we have introduced the natural definitions of component totals, flowing com­

ponent totals and immobile component totals as they apply at different levels of 
.j 

the algorithm, such as T = Ac, C = APaqc and S = A(I - paq)c, respectively. 

In writing equations (4.88) and (4.90) we ha'.ve used the fact that the field S(·, t) 

remains unchanged by the advection and diffusion steps. This fact follows by 

applying the operator A(I - paq) to the PDEs (4.83) and (4.85). 

Using the mass-conservation property ( 4.82) of£, it directly follows that 

(4.91) 

and 

( 4.92) 

Our task is to relate T 08 (-, tn+I) to quantities at time tn, using ( 4.87)-( 4.90). In 

what follows, we let b1 , .•. , b.s denote constant vectors of length N c- A Taylor 

expansion about tn, under the assumption that C is smooth, gives 

C'( n+l) _ c''( 11) A ac( n) b A 2 ., t - .. -, t + u.t at ., t + 1u.t . (4.9'.3) 

Using the expression ( 4.89) to substitute for the derivative term in ( 4.9'.1) produces 

( 4.94) 

or, using the initial condition, 

( 1.9.5) 
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From ( 4.92) and the expansion ( 4.9,5), we find 

( 4.96) 

However, C(·,tn) = C*(.,tn+1
), which, using (4.91), implies that 

( 4.97) 

A Taylor expansion of C ( ·, tn+i) about tn, assuming sufficient smoothness and 

using (4.87) and the fact that C(-,tn) = C(-,tn), shows that 

( 4.98) 

Substituting (4.98) into (4.97), using T(·,tn) = C(·,tn) + S(-,tn), results in 

( 4.99) 

The local truncation error (LTE) 1' can now be estimated by comparing the true 

solution at time tn+1, T(·,tn+1
), with the solution obtained through the opera.tor-

1. . l ros( tn+l) . sp 1ttrng procec ure, ·, , 1.e., 

( 4.100) 

A Taylor expansion of the true solution about tn, using the governing equations, 

reveals that 

(4.101) 

Substituting (4.99) and (4.101) into the definition of the LTE (4.100) gives 

( 4.102) 

To estimate the difference between the flowing component totals attn, C( ·, t" ), and 

those obtained frorn aclvection and subsequent equilibration in the OS algorithrn, 

C*(-,t 11+1
), we begin by noting that 

C( ·, t") = APaqE[T( ·, t")], (4.10:3) 
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and 

( 4.104) 

In order to simplify notation, we introduce the definition 

(4.105) 

and write the LTE as 

(4.106) 

Neglecting higher-order terms, <I> has the form 

( 4.107) 

It is instructive to first consider the case paq = I, i.e., no immobile species. The 

mass-conservation property of£, equation ( 4.82), yields 

(4.108) 

or, using ( 4.105 ), 

<I>= -6t"v · D"v{"v · uC(·, tn)}. ( 4.109) 

This quantity is of order 0( 6t) since C ( ·, tn) is assumed smooth. In light of ( 4.106) 

the LTE is therefore of order 0(6t2
) which implies that the scheme is formally 

first order accurate. This proves the assertion for the case paq = I. t 

Consider now the general case paq =f I. It is sufficient for our purpose to 

show that each component of <I> is of order 0(6t). This is certainly true if we can 

demonstrate that for any 1 S i, j S cl and each 1 S k S N s\ it holds that 

(4.110) 

LThis case is, however, trivial as thl' reactive transport problPm can he solved without any equi­
librium calculation when ;,,Jl species arp mohilP. 

9It is sufficient if this is true for those indices k corresponding to mohile species. 
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Assuming for the moment that derivatives of the equilibrium operator are well­

defined, we expand Ek about T(·, tn) to find 

(4.111) 

where ( = T( ·, tn) + 0!:::.T( ·, tn) and 0 ~ 0 ~ 1. Using ( 4.111 ), the left-hand side of 

condition ( 4.110) is 

(4.112) 

or, from (4.105), 

!:::.ti [}2 {~ oEk[(] (V · uC(·, tn) )i} 1-
oxiox.i t=i 0T1 

(4.113) 

Assuming that higher derivatives on Ek are bounded and noting that u, C are by 

assumption smooth, this term is clearly of order O(t::.t). This shows that the LTE 

is 1' = O(!:::.t 2 ) for the case paq -/- I also. 

T'o complete the proof, we will briefly discuss the smoothness of E~,- We restrict 

our attention to ideal systems so that the smoothness of the nonlinear terms 11 

is known. For simplicity, we consider only the case when inequality constraints 

are non-binding in the NLP represented by E. As pointed out previously, this is 

satisfied for all species in our application, except (possibly) for minerals that are 

appearing/ disappearing; we will however ignore this complication. 

The equilibrium problem can now be expressed as the set of nonlinear equations 

F( c, T) = 0, where 

, ( vr. 11( c) ) F( c,1) = . 
Ac-T 

(4.114) 

It is easily verified that F is an infinitely differentiable function provided c > 0; 

henCE\ in particular, it is C1
. Let a solution pair (c*,T*) satisfy F(c*,T*) = 0. 

Furthermore, assume that VcF(c*,T*) is non-singular'. The conditions of tlw 

11 NotP that VcF is the Jacobian and that non-singularity is a standard Newton assumption. 
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implicit function theorem (Rudin [32]) are then satisfied, and we are guaranteed 

the existence of a functional relationship 

C = f(T) (4.11.5) 

such that F(.f(T), T) = 0 in a neighborhood of the point T*. Furthermore, f E C 1 

with derivative 

(4.116) 

Under the assumptions stated, we identify £k[T] = Jk(T) and conclude that the 

step (4.111) is valid. Furthermore, it is clear from the expression (4.116) and the 

smoothness of F( c, T) that the derivatives appearing in ( 4.113) are bounded. 

This completes the proof. 

4.8 Discussion 

We now give a summary of some of the salient features of the algorithms presented 

and discuss briefly the merits of this and other approaches. 

We introduced an operator-splitting approach based on the transport of species, 

Algorithm 4.1, to approximate the solution of the reactive transport problem. It 

was demonstrated in Section 4. 7 that this procedure has an associated first-order 

in time truncation error when applied to problems of LE or LNE type. Although 

we expect this result to remain true in the PLNE case, this has not been proven. 

It is instructive to compare the computational cost associated with the OS 

defined in Algorithm 4.1, to that of solving (using again OS) the original governing 

equations for the classes LE, PLNE and LNE. Using the notation N s, N2 and 1Vh' 
to denote the number of mobile species of arbitrary type, equilibrium product 

type and kinetic product type, respectively, and designating the number of mobile 
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componentsll Ne, we find that the total number of transported variables, solving 

the original equations, are those given in Table 4.1 below. It is clear that whenever 

Classification Balance Equations Number of PDEs 

LE Total Components Ne 

PLNE Eq. Components + Kinetic Species Ne+ NJ{ 

LNE Species Ns 

Table 4.1 Comparison of the smsi,llest number of transported 
variables for the three classes of reactive transport. 

' 

equilibrium reactions are present, that is, in the LE or PLNE scenarios, it is 

possible to achieve a more economica.l transport step than the one we actually 

implemented, by considering OS applied to the origina.l, defining equations, as 

presented in Sections 3.4, 3.5 and 3.6. In fact, for such a formulation, one has: 

l. Fewer transport equations to solve. 

2. Possible numerical advantage; in particular, if individual species are com­

pletely consumed by reactions, it is (often) the case tha.t component totals 

show a less drastic variation. 

:3_ An easier time extending to higher-order formulations, or incorporating iter­

ation between transport and chemistry modules (see Yeh and Tripathi [50]). 

However, some disadvantages with these formulations also exist, such as: 

I. More storage is required (global arrays). 

II A component is mobile as long as it participates in at least one mobile species. 
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2. The component approach produces an initial guess for the grid-block which 

is incompatible with using stoichiometric algorithms for the grid-block equi­

librium problem. 

The incompatibility with stoichiometric algorithms stems f.r;om the fact that the 

component totals give no indication as to how to chose the reference vector n° 

that appears in such algorithms. In addition, the initial guess for the grid block 

in question would have to be the vector of reacted concentrations at the previous 
' 

time-step, a vector which is not compatible with the transported component totals 

at the new time-level. 

Turning our attention to the local batch calculation, thr~e distinct algorithms 

were proposed, namely the unreduced non-stoichiometric (UNSF), the reduced 

non-stoichiometric (RNSF) and the stoichiometric (SF) formulations. The number 

of nonlinear equations to be solved for in each algorithm, for either the LE or PLNE 

problem, are shown in Table 4.2 below. It is evident that the UNSF will be quite 

Classification 
Equilibrium algorithm 

UNSF RNSF SF 

LE 2Ns + Ne Ne+ 2NM Ns+NR 

PLNE 2(Ni +Ne)+ Ne N +2NQ C M 2Ni + Ne 

Table 4.2 Comparison of the number of nonlinear equations 
solved in the reaction step for LE and PLNE problems. 

costly to use in a rea.listic reactive transport simulation. This was also found from 

nurnerica.l experiments with the UNSF implementation. Therefore. we will only 

critically compare the RNSF and the SF. 
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To put our remarks in the proper context, it should be kept in mind that 

for most applications of interest, the number of components is small (Ne < 10), 

whereas the number of species ( and the number of reactions) can be quite large 

(perhaps Ns = 50 to 100). 

First, it is clear that the number of equations to be solved in either an LE or 

a PLNE problem will always be smallest for the RNSF. The difference is most 

noticeable in the LE scenario, when many complexation reactions that do not 

produce minerals are present. On the other hand, in the extreme case when all 

reactions result in the formation of minerals (i.e., N21 = Ni, or NM= NR), the 

number of unknowns is the same for the two formulations. In addition, for a PLNE 

problem, the difference is insignificant if the number of kinetic reactions (NJ{) is 

high, and the number of equilibrium reactions small (Ni~ 0), in which case both 

algorithms require the solution of a little more than Ne equations. For such cases, 

the use of thf' SF algorithm is quite feasible. It must be pointed out that not only 

the number of unknowns, but also their type, is of importance in assessing the 

performance of the algorithms. In the SF, Ne+ Ni multipliers must be solved for, 

whereas the number of multipliers in the RNSF is only Ni. This is an advantage 

for the RNSF, as multiplier information is lost between consecutive time-steps in 

the course of simulation. Considerations of efficiency aside, it should be noted that 

the SF has two advantages over the RNSF: 

1. A stoichiometric algorithm, such as SF, has exact mass-balance, clue to the 

fact that all iterates are constrained to the closed-system constraint manifold. 

2. No assumptions of icleality were needed in defining the SF algorithm. 

Exact mass-conservation in the reaction step is obviously a.n a.ttractivP property, 

a.lthough thP samf' effect can often be accomplished with a nou-stoichionwtric 
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algorithm if the error-tolerance is chosen properly. On the other hand, we have 

seen that the reduction that lead to the RNSF could not be accomplished for a 

non-ideal system. The SF algorithm, on the other hand, can easily be extended to 

the non-ideal case. 
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Chapter 5 

Numerical Examples 

Chapter Synopsis 

Examples of the numerical solution of reactive transport problems are presented 

in this chapter. We have attempted to demonstrate the ability of the algorithms 

presented to solve broad classes of such problems. We demonstrate the flexibility 

in handling different types of chemistry by presenting problems involving aque­

ous complexation, acid-base interactions, adsorption, ion-exchange and precipita­

tion/ dissolution. Problems belonging to each of the reactive transport classes LE, 

LNE and PLNE are represented. 

5.1 Introduction 

The results presented in this chapter are organized in the following manner. We 

begin by considering a batch problem of mixed kinetic/equilibrium type for the 

purpose of validation. We then consider a series of lD reactive transport prob­

lems, or core problems, previously solved in the literature. First, a sequence of 

LE problems are solved to illustrate the capability of handling different types of 

reactions occurring in geochemistry and to verify the computer programs. Second, 

a11 LNE problern with known analytic solution is treated and first-order in time 

convergence is verified. We then present a PLNE problem, and compare it with 

the results obtained by previous workers. The chapter is concluded with a 2D 

problem of LE type and a pa.raJ!el speed-up study for a 3D problem. 
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5.2 Examples of Chemical Batch Systems 

This test case, reported by Yeh et al. [49], demonstrates the code's capability 

of handling mixed equilibrium/kinetic speciation problems in a batch setting. 

Note the presence of isomers in this system: the distinct species CaC03( aq) and 

Product species 
Stoichiometry 

log K 
H20 H+ ca+~ co-~ 3 

OH- 1 -1 0 0 -14.00 
CaC03(aq) 0 0 1 1 3.00 
CaHCOt 0 1 1 1 11.60 
CaOH+ 1 -1 1 0 -12.20 
Hco-3 0 1 0 1 10.20 

H2C03 0 2 0 1 16.50 
Ca(OH) 2(s) 2 -2 1 0 -21.90 
CaC03(s) 0 0 1 1 8.30 

Table 5.1 Stoichiometric and thermodynamic data for the 
Yeh et al. kinetic calcite precipitation problem. 

CaC:03( s) have identical chemical formulae. Using the SF, the equilibrium com­

position was computed in approxirnately :30 iterations from a "cold start", i.e., a 

completely random initial guess. The RNSF needed approximately 15 iterations to 

converge, reflecting the fact that a smaller set of variables is solved for. The sim­

ulated composition, tabulated below, was nearly identical for the two algorithms, 

since a high tolerance had been specified. They are in good agreement with the 

equilibrium composition reported in [49]. 



Species Computed concentrations [M] 

H+ l.23e-9 
H2O 55.1 
Ca-t-" l.22e-4 
co-:.c: 3 4.12e-5 
OH- 8.07e-5 
CaCO3(aq) 5.0le-6 
CaHCOf 2.4 7e-7 
CaOH+ 6.19e-6 
Hco-3 8.l0e-5 
H2CO3 ,2.00e-8 
Ca(OH)2(s) 5.0e-15 
CaCO3(s) 8. 73e-4 

Table 5.2 Simulated equilibrjum composition for the 
Yeh et al. kinetic calcite precipitation problem. 
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For the kinetic demonstration, we replace the equilibrium constant K for the 

formation of CaCO3(s) by the forward and backward rates log J<f = 3.30 and 

log J(b = -,5.00. Note that in general, I{ = I{ f / J(b, or, analogously, log I{ = 

log K f - log J<b, resulting in an equilibrium constant of log I< = 8.30 if this reac­

tion goes to completion. In order to perform a kinetic simulation, in addition to 

specifying the component totals, we need also fix an initial value for the kinetic 

product species. Following [49], we take the initial value of CaCO3 (s) to be 10 

percent of its final equilibrium value, or 8.73e-5 M. 

Thf' results of the simulation over a period of 100 hrs are presented in Figures 5.1 

and .1':i.2. As can be sf'cn, CaCO3(s) rapidly approaches its equilibrium value, and 

the system has attained complete equilibrium at t = 100 hrs. 



110 
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Figure 5.1 Time evolution of the kinetic precipitation of calcite. The 
concentration of three aqueous components and the kinetically controlled 

mineral as functions of time. 
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Figure 5.2 Time evolution of the kinetic precipitation of calcite. The 
concentration of three equilibrium controlled aqueous species as functions 

of time. 



111 

5.3 Reactive Transport in 1D 

We describe in this section the results obtained for a senes of lD simulations. 

The conceptual arrangement is the same for all these simulations, and involves 

the injection into a core of length L some injected composition that displaces 

and reacts with the initial composition. This is shown schematically below. At 

INFLOW 

NO FLOW 

INITIAL 
COMPOSITION 

0 L 

Figure 5.3 The l D core-flood arrangement. 

OUTFLOW 

X 

the boundary termed "inflow", we prescribe a Danckwert's boundary condition as 

discussed in Section 3.3.5, i.e., for each mobile species we require that 

oci(O,t) 
uc;(O, t) - D 

0 :r 
( 5.1) 

where c{ is the injected concentration of the ith species. At the "outflow" bound­

ary, we prescribe no diffusive flux, 

8ci(L,t) =O. 
EJ:r 

( ,- •)) D.-. 
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5.3.1 LE Problems 

Equilibrium Dissolution of a Mineral 

In this section we consider generic, so-called ABCD problems, involving the equi­

librium precipitation and dissolution of minerals. For a lD medium with constant 

initial and boundary conditions, these problems can be solved analytically ( see 

Walsh et al. [4 7] and Bryant et al. [7]). This class of problems often feature shock­

waves separating different states. For these reasons, they serve as excellent test 

problems for reactive transport simulators. From [4 7] we take a simple equilib­

rium precipitation/ dissolution problem with thermodynamic and stoichiometric 

data given in Table 5.3. The injected and initial compositions for this simulation 

Product species 
Stoichiometry 

I{ 
H20 A B C D 

AB(s) 0 1 1 0 0 1.00 
AC(s) 0 1 0 1 0 o .. so 
DB(s) 0 0 1 0 1 2.00 

Table 5.3 Stoichiometric and thermodynamic data 
for the Walsh et al. ABCD mineral problem. 

are collected in Table 5.4. As can be seen, the mineral AB( s) is initially present; 

however the injected stream is low in the species A and B, aud we thus expect the 

mincra.l to gradually dissolve. Simulation results based on n 1, = 100 grid-blocks 

and a CFL number of 0.5 are presented in Figures 5.4 and .5.5 at a time l = 0.5 

PVT (Pore Volumes Injected). They show the expected dissolution of AB(s). The 

dissolution front is a shock that moves with a retarded velocity cornparecl with the 

mean velocity of the fluid. The retarded velocity is close to the value 111 = 0.28 

predicted by theory ([47]). 



~ 
6 
C 
0 = 
~ 

Species Initial composition [M] Injected composition [M] 

A(aq) 1.0 0.5 
B(aq) 1.0 0.0 
C(aq) 0.0 2.0 
D(aq) 0.0 2.0 
H20 55.1 55.1 
AB(s) 2.0 -

Table 5.4 Boundary and initial conditions for 
the Walsh et al. ABCD mineral problem. 

2 ~ - - - - - - - - - - - - - . -. 

1.5 

~ 1 
I ~>----------------< 
:,, 

- - - - - - - - - - - - /~ 
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0.5 f------------' 

O'-------L-'---~----'-----'---~--~----'-----'---~--~ 
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

Dimensionless distance 

Figure 5.4 The Walsh et al. AB(s) dissolution problem. 
Concentration profiles of aqueous species at 0.5 PVI. 
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0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 
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Figure 5.5 The Walsh et al. AB( s) dissolution problem. Concentration 
profile at t = 0.5 PVI. Velocity of dissolution front is VJ= 0.28. 

Equilibrium Precipitation/Dissolution of Minerals 

Next, we consider a problem based on using the same stoichiometry as that 

in Table ,5.:3, but with different initial and boundary conditions. This case was 

studied by Sevougian [36]. The Riemann problem is here defined by the initial and 

boundary conditions given in Table 5.5 below. Again, we begin with the mineral 

AB(s) present, and inject a solution low in A and B. However, in this case we 

allow the precipitation of two new minerals AC(s) and DB(s). As in the previous 

example, the discretization uses n"' = 100 grid-blocks and the CFL number is 0.5. 

The result of the simulation can be found in Figures 5.6 and 5. 7, which show 

the aqueous and the solid species, respectively, at a time corresponding to 0.5 PVI. 

Tlw figures, which are in excellent agreement with those presented in [:36]. shmv 

the presence of precipitation/dissolution waves passing through the regions. The 

minerals show the expected shock-structure. 



~ 
.§ 

Species Initial composition [M] · Injected composition [M] 

A(aq) 
B(aq) 
C(aq) 
D(aq) 
H20 
AB(s) 
AC(s) 
DB(s) 

1.0 0.25 
1.0 0.0 
0.0 2.0 
0.0 '. 1.75 
55.1 55.1 
1.0 -

0.0 -

0.0 -

Table 5.5 Boundary and 'initial conditions for 
the Sevougian ABCD mineral problen1. 
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Figure 5.6 The Sevougian precipitation/dissolution problem. 
Concentration profiles of aqueous species at t = 0.5 PVI. 
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Figure 5. 7 The Sevougian precipitation/ dissolution problem. 
Concentration profiles of mineral species at t = 0.5 PVI. 

Ion-Exchange 

We consider next an example of homovalent, binary ion-exchange taken from Rubin 

and .James [31], featuring two generic aqueous, homovalent ions c1 and c2 , and 

their corresponding ion-exchanged species z1 and z2. The thermodynamic and 

stoichiometric data for this case is given in Table 5.6 below. 

Product species 
Stoichiometry 

I{ 
H20 C1 C2 z1(s) 

z2(s) 0 -1 1 1 1.0 

Table 5.6 Stoichiometric and thermodynamic data for 
the Rubin and .James ion-exchange problem. 



Species Initial composition [M] Injected composition 

C1 ( aq) 0.271 0.160 

c2( aq) 4.9le-2 l.0e-10 

z1(s) 8.22e-2 -

z2(s) l.49e-2 -

H2O 5.5lel 5.5lel 

Table 5. 7 Boundary and initial conditions for the 
Rubin and James ion-exchange problem. 
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Figure 5.8 The Rubin and James ion-exchange example. 
Total solution normality at four different tinies. 
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Figure 5.9 The Rubin and James ion-exchange 
example. Aqueous ion c1 at four different times. 
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Figure 5.10 The Rubin and .James ion-exchange 
example. Solid species z1 at four different times. 
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A First Realistic Core Example-Uranium Complexation and Adsorption 

In this section we consider a test case which illustrates the combined effects of 

aqueous complexation and surface adsorption, taken from Yeh and Tripathi [51]. 

The system is comprised of a total of 36 species, of which 30 are aqueous and six are 

surface species ( adsorbed species). Stoichiometric and thermodynamic information 

is listed in Table 5.8 below. The domain has a length of L = 100 m, and is 

discretized into 50 grid-blocks. The simulation proceeds for 600 days with a time­

step of 1 day. The initial conditions a.re nonuniform for pH and surface sites. The 

pH profile and the distribution of surface sites used can be seen in Figure 5.11 

below. Note that the zone extending from :r = 20 m to .'.l; = 60 m has a very high 

capacity for adsorbing aqueous species. Furthermore, the injected concentration of 

total carbonate exhibits a time-variation as illustrated in Figure 5.12. As is evident 

from that figure, the total amount of hydrogen was also set to vary with time. This 

has been done to ensure that the pH of the incoming stream is approximately 7 .60 

as stipulated in [51]. Remaining boundary and initial conditions for the component 

totals used in this simulation can be found in Table 5.9 below. 

The results are given in terms of total simulated dissolved carbonate, total 

adsorbed uranium and total dissolved uranium, Figures ,5.1:3, 5.14 and 5.15, re­

spectively. The results match well those presented in [51). Note in particular the 

sudden "peak" in dissolved uranium that develops in the interior of the domain at 

t = 530 days of injection. 

Finally, note the long-term behavior of the pH distribution in the domain, 

illustrated by Figure 5.] 6. Initially, the pH at the inlet is significantly higher 

than that of the injected composition. At approximately 1000 clays of injection, 

however, we see that the region of pH=7.6 is advancing through the core. 
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Product species 
Stoichiometry 

H2O HT CO3:. Ca'" uor:l NpOi so :l 4 
OH- 1 -1 0 0 0 0 0 

CaCO3 0 0 1 1 0 0 0 

CaHCOt 0 1 1 1 0 0 0 
CaSO4 0 0 0 1 0 0 0 
CaOH+ 1 -1 0 1 0 0 0 
UO2OH+ 1 -1 0 0 1 0 0 

(UO2)i(OH)t
1 

2 -2 0 0 2 0 0 

(UO2h(OH);2 4 -4 0 0 3 0 0 

(UO2)3(OH)i:l ,5 -5 0 0 ;3 0 0 

(UO2)4(OH)i:l 7 -7 0 0 4 0 0 

(UO2)3(OH)t 7 -7 0 0 3 0 0 

UO2CO3 0 0 1 0 1 0 0 

UO2(CO3)2
2 0 0 2 0 1 0 0 

UO2(CO3)3
4 0 0 3 0 1 0 0 

UO2CO3(OH)3 ;3 -3 1 0 2 0 0 

UO2SO,1 0 0 0 0 1 0 1 
UO2(SO4)2:l 0 0 0 0 ] 0 2 
HCO3 0 1 1 0 0 0 0 
H2CO:, 0 2 1 0 0 0 0 

HSOi 0 1 0 0 0 0 1 
NpO2OH 1 -1 0 0 0 1 0 
NpO 2CO3 0 0 l 0 0 1 0 

NpO2(COi)2 0 0 2 0 0 l 0 
so- 0 -1 0 0 0 0 0 

SOH! 0 1 0 0 0 0 0 
SO-UO 2OH+ 2 -2 0 0 1 0 0 
SOH!(UO2)3(OH)- 7 -6 0 0 ;3 0 0 
SOHNpO2OH 1 -1 0 0 0 l 0 

Table 5.8 Stoichiometric and thermodynamic data. for the 
Yeh and Tripathi uranium adsorption problem. 

SOH 
log]{ 

0 -14.00 

0 3.22 

0 11.43 

0 2.31 

0 -12.85 

0 -5.30 

0 -,5.68 

0 -11.88 

0 -1.5.82 

0 -21.90 

0 -28.34 

0 9.65 

0 17.08 

0 21.70 

0 -1.18 

0 2.95 
0 4.00 

0 10.32 

0 16.67 

0 1.99 

0 -8.85 

0 5.60 

0 7.75 
1 -10.30 
1 .5.40 
1 -7.10 
1 -:31.00 
l -3.50 
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~7.8 

7.7 

Species Initial Tota.ls [M] Injected Totals [M] 

H20 55.1 55.l 
H+ non-uniform time-varying 
co-L 

3 l.0e-4 time-varying 
ca+L l.0e-4 l.0e-3 
uo+i 

2 l.0e-8 l.0e-6 
NpO{ 1.0e-16 2.5e-10 
so-i 

4 1.0e-4 l.0e-4 
SOH non-uniform 

.,, 
-

Table 5.9 Boundary and initial conditions for the Yeh 
and Tripathi uranium adsorption problem. 
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Figure 5.11 Initial profiles for pH and distribution of surface sitf's 
for the Yf'h and Tripathi uranium adsorption problem. 
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Figure 5.12 Injected total concentrations of hydrogen and carbonate 
for the Yeh and Tripathi uranium adsorption problem. 
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Figure 5.13 Total dissolved carbonate concentrations at different tirnes 
for the Yeh and Tripathi uranium adsorption problem. 
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Figure 5.14 Total adsorbed uranium concentration at different times 
for the Yeh and Tripathi uranium adsorption problem. 
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Figure 5.15 The development of a peak in dissolved uranmm 
concentration for the Yeh and Tripathi uranium adsorption problem. 
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Figure 5.16 The pH profile within the core at early and very long 
times for the Yeh and Tripathi uranium adsorption problem. 

A Second Realistic Core Example-Redox Complexation and Precipitation 

This test case, taken from Engesgaard and Kipp [16], illustrates the combined pro­

cesses of complexation, precipitation/ dissolution and redox reactions. The original 

stoichiometric and thermodynamic information, given in terms of the components 

H+ c-·0- 2 c +2 N + M +2 F +3 s0-2 No- c·1- d tl z t , 3 , a , a , g , . e , 4 , 3 , . an 1e e .ec ran conipo-

nent e-, is listed in Table 5.10 and Table ,5.11. As discussed in Section 2.2, redox 

system are treated analogously to non-redox system by reduction of the formula 

matrix to find a proper set of components. In a pre-processing step, we therefore 

convert the system in Table 5.10-Table 5.11 to yield a formula matrix in canonical 

form. This automatic procedure results in the species 0 2 being added to the com­

ponent list to replace the electron ( which is not a component in the sense that we 

have adopted). The transformed system is given in Table 5.12 Table 5. Lt Note 

in particular that non-redox species (such as HCO~) are unaffected by this trans-
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formation. The equilibrium data is conveniently handled by computing a set of 

equivalent chemical reference potentials, and transforming them according to the 

changing stoichiometry (see [41]). It is worth pointing out that the equilibrium 

constants display an astounding variation of size of approximately 400 orders of 

magnitude. This feature, characteristic of many redox systems, make for a very 

challenging application of our algorithms. 

Next, the physical parameters for the simulation are described. The domain 

is of length L = 10 111, has a porosity of c/> = 0.3, and a dispersivity of 0.2 111. 

The prescribed (interstitial) velocity is v = 25 111 yr-1
. The porous medium has a 

bulk density of 1700 kg m-3
, and the density of water is taken to be 1000 kg m - 3

. 

To facilitate a comparison with the results reported in [16], units of mg liter- 1 

are used for all aqueous species, whereas minerals are given in mg (kg soilf 1-the 

simulator uses units of moles liter-1
, but for the sake of brevity we will not show 

the conversion here. 

Boundary and initial conditions were uniform in space and constant in time 

as given in Table ,5.14. A few comments are in order to explain the selection of 

boundary and inlet data. For both initia.l and boundary conditions, the component 

totals listed for CO32, Ca+2
, Na+, Mg+2

, NO3 and c1- were obtained directly 

from [16]. For the inital conditions we made the assumption that the mass of 

components Fe+3 and SO:;- 2 was dominated by the mineral form, pyrite (FeS 2 ), and 

the value 432.0 mg (kg soil)- 1 reported in [16] was used. The conditions of overall 

electroneutrality were used to establish the va.lue of the tota.l hydrogen component. 

Finally, the level of the 0 2 component was adjusted until an approximate match 

was rea.ched with the pH""' and pEtt values reported in [16]. The pE values reported 

**pH= 8.67 initially, pH= 5.70 at the inlet. 

ttpE = -4.30 initia.lly. pE = 16.5 at the inlet. 
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Products 
Stoichiometry 

H+ co-:t Ca-t-" Na+ Mg-t-" Fe-t-" e - so-:t No-3 4 3 
OH- -1 0 0 0 0 0 0 0 0 

02 -4 0 0 0 0 0 -4 0 0 

H2 2 0 0 0 0 0 2 0 0 
HCO3 1 1 0 0 0 0 0 0 0 

H2CO3 2 1 0 0 0 0 0 0 0 

CH4 10 1 0 0 0 0 8 0 0 
HSO4 1 0 0 0 0 0 0 1 0 
s-'.l 8 0 0 0 0 0 8 1 0 
HS- 9 0 0 0 0 0 8 1 0 

H2S 10 0 0 0 0 0 8 1 0 
NO-2 2 0 0 0 0 0 2 0 1 

N2 12 0 0 0 0 0 10 0 2 

NH3 9 0 0 0 0 0 8 0 1 
NH+ 4 10 0 0 0 0 0 8 0 1 

NI-l4SO1 10 0 0 0 0 0 8 l 1 
CaOH+ -1 0 1 0 0 0 0 0 0 
CaCO3 0 l 1 0 0 0 0 0 0 

CaHCO! 1 l 1 0 0 0 0 0 0 

CaSO4 0 0 1 0 0 0 0 1 0 
MgOH+ -1 0 0 0 1 0 0 0 0 
MgCO3 0 1 0 0 1 0 0 0 0 
MgHCOt 1 1 0 0 1 0 0 0 0 
MgSO4 0 0 0 0 1 0 0 1 0 

NaCOf 0 1 0 I 0 0 0 0 0 
Na.HCO3 1 1 0 1 0 0 0 0 0 
NaSO4 0 0 0 1 0 0 0 1 0 

Table 5.10 Stoichiometric and thermodynamic data for tllP 
Engesgaard and Kipp redox problem. Product species 1-34. 

c1- log I{ 

0 -14.0 

0 -86.00 

0 -3.15 

0 10.35 

0 16.68 

0 41.1 

0 l.99 

0 20.7 

0 33.7 

0 40.6 

0 28.6 

0 207.0 

0 110.0 

0 119.0 

0 120.0 

0 -12.6 

0 3.23 

0 11.4 

0 2.:30 

0 -11.8 

0 2.98 
0 11.4 
0 2.25 
0 1.27 
0 10.1 

0 0.70 



Products 
Stoichiometry 

H+ co ·L, CaT~ Na-r Mg-t-L, FeT.., e - so;, NO3 3 4 

Fe(OHt -1 0 0 0 0 1 1 0 0 
Fe(OH)2 -2 0 0 0 0 1 1 0 0 
Fe(OH); -3 0 0 0 0 1 1 0 0 
FeSO4 0 0 0 0 0 1 1 1 0 
Fe(HS) 2 18 0 0 0 0 1 17 2 0 
Fe(HS); 27 0 0 0 0 1 25 3 0 
Fe+:.i 0 0 0 0 0 1 1 0 0 
Fe(OHt~ -1 0 0 0 0 1 0 0 0 
Fe(OH); -2 0 0 0 0 1 0 0 0 
Fe(OH)3 -3 0 0 0 0 1 0 0 0 

Fe(OH); -4 0 0 0 0 1 0 0 0 

Fe2 (OH)t -2 0 0 0 0 2 0 0 0 

Fe3 (OH)t5 -4 0 0 0 0 3 0 0 0 
FeSOt 0 0 0 0 0 1 0 1 0 
Fe(SO4)~ 0 0 0 0 0 1 0 2 0 
Fe(OH)3 -3 0 0 0 0 1 0 0 0 
FeS2 16 0 0 0 0 1 15 2 0 

Table 5.11 Stoichiometric and thermodynamic data for the 
Engesgaard and Kipp redox problem. Product species 35-52. 
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Cl 
log K 

0 3.53 
0 -7.54 
0 -18.00 
0 15.3 
0 89.3 
0 125.0 
0 13.00 

0 -2.19 

0 -.5.67 

0 -13.60 

0 -21.60 

0 -2.95 

0 -6.:30 
0 3.92 
0 5.42 
0 -4.890 
0 -227. 7 
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Stoichiometry 
Products ff1-- co-:l ca+:l Na+ Mg•" Fe+0 02 so-:l N03 c1-3 4 
OH- -1 0 0 0 0 0 0 0 0 

H2 0 0 0 0 0 0 -0.5 0 0 
Hco-3 1 1 0 0 0 0 0 0 0 
H2C03 2 1 0 0 0 0 0 0 0 

CH4 2 1 0 0 0 0 -2 0 0 
HS04 1 0 0 0 0 0 0 l 0 
s-2 0 0 0 0 0 0 -2 1 0 
HS- 1 0 0 0 0 0 -2 1 0 
H2S 2 0 0 0 .0 0 -2 1 0 
No-2 0 0 0 0 {) 0 -0.5 0 1 

N2 2 0 0 0 0 0 -2.5 0 2 
NH3 1 0 0 0 0 0 -2 0 l 
NH+ 

4 2 0 0 0 0 0 -2 0 1 

NH4S04 2 0 0 0 0 0 -2 l 1 
CaOH+ -1 0 1 0 0 0 0 0 0 
CaC03 0 1 1 0 0 0 0 0 0 

CaHCOf l l 1 0 0 0 0 0 0 
CaS04 0 0 1 0 0 0 0 1 0 
MgOH+ -1 0 0 0 1 0 0 0 0 

MgC03 0 1 0 0 1 0 0 0 0 
MgHCOf 1 l 0 0 1 0 0 0 0 

MgS04 0 0 0 0 1 0 0 1 0 

NaCOf 0 1 0 1 0 0 0 0 0 
NaHC03 1 1 0 1 0 0 0 0 0 
NaS04 0 0 0 1 0 0 0 1 0 

Table 5.12 Transformed stoichiometric and thermodynamic data for 
the Engesgaard and Kipp redox problem. Product species 1--:34. 

0 
0 
0 
0 

0 

0 

0 
0 
0 
0 
0 
0 
0 

0 

0 
0 
0 
0 
0 

0 
0 

0 
0 

0 

0 

log K 

-14.0 
-46.1.5 
10.35 

16.68 

-130.9 

1.99 

-151.3 
-138.3 
-131.4 
-14.40 

-8.0 
-62.0 
-53.0 

-52.0 

-12.6 
3.23 
11.4 
2.30 
-11.8 

2.98 
11.4 

2.25 

1.27 

10.l 
0.70 



Products 
Stoichiometry 

ffl- co·~ CaT" Na-t- MgT" FeT" 02 so·~ NO3 3 4 

Fe(OHt -2 0 0 0 0 1 -0.25 0 0 
Fe(OH) 2 -3 0 0 0 0 1 -0.25 0 0 
Fe(OH); -4 0 0 0 0 1 -0.25 0 0 
FeSO4 -1 0 0 0 0 1 -0.25 1 0 
Fe(HS)2 1 0 0 0 0 1 -4.25 2 0 

Fe(HS); 2 0 0 0 0 1 -6.25 3 0 
FeT" -1 0 0 0 0 1 -0.25 0 0 
Fe(OHt~ -1 0 0 0 0 1 0 0 0 
Fe(OH); -2 0 0 0 0 1 0 0 0 
Fe(OH)3 -3 0 0 0 0 1 0 0 0 
Fe(OH); -4 0 0 0 0 1 0 0 0 

Fe2(OH):;-4 -2 0 0 0 0 2 0 0 0 

Fe3(OH)t
5 -4 0 0 0 0 3 0 0 0 

FeSOt 0 0 0 0 0 l 0 1 0 

Fe(SO4)~ 0 0 0 0 0 1 0 2 0 
Fe(OH)3 -3 0 0 0 0 1 0 0 0 
FeS2 1 0 0 0 0 l -3. 75 2 0 

Table 5.13 Transformed stoichiometric and thermodynamic data for 
the Engesgaard and Kipp redox problem. Product species 35~52. 
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Cl 
log J{ 

0 -17.97 
0 -29.04 

0 -39.50 
0 -39.50 
0 -276.3 

0 -412.5 
0 -8.50 

0 -2.19 
0 -5.67 
0 -13.60 

0 -21.60 

0 -2.95 

0 -6.30 

0 :3.92 

0 ,5.42 
0 -4.890 
0 -223.60 
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Species Initial conditions Injected composition 

co-1 
3 78.1 16.8 

ca+2 36.3 18.0 
Na+ 14.0 14.4 
Mg+2 2.0 10.0 
Fe+0 0.0 6.7e-3 
s0-2 

4 0.0 28.0 
No-

3 0.0 65.0 
c1- 19.0 24.0 
pH 9.03 ,5.57 
pE -4.98 15.1 
FeS2 432.0 -

Table 5.14 Boundary and initial conditions for the Engesgaard and 
Kipp redox problem. Aqueous concentrations are total component 

concentrations in mg liter-1 of aqueous phase. The mineral concentration 
is given in mg (kg soilr 1 . 

in Table ,5.14 were based on the half-cell reaction 

Manipulation of the corresponding mass-action expression ( using pE = log{ e-}) 

produces the defining relation 

pE = 13.0 + log CFe+~ - log CFe+2. (,5.3) 

Some uncertainty exists about the initial conditions of the Fe+3 component used in 

[16], as the authors claim to have had an "infinite supply" of the mineral Fe(OHh 

initially. With the component abundances specified above, we found that both 

minerals were present in the initia.l conditions, Fe(OH)3 at a comparatively small 

valm· and pyritf' close to its limiting va.lue of 432.0 mg (kg soil)- 1
. 

Prescribing inlet conditions was somewhat less involved. No minera.l phases 

were present and the tota.ls for components 1-8 given in [16] (Table 5.14) were used. 
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By invoking overall electroneutrality of the mixture, the level of total hydrogen was 

fixed. Furthermore, Engesgaard and Kipp [16] report an approximate value of 10 

mg liter- 1 of dissolved oxygen in the incoming stream and this value was matched 

by varying the level of the 0 2 component. The resulting pH and pE in Table 5.14 

agree fairly well with those reported in [16]. 

Following [16] a coarse discretization employing only 20 gridblocks was used. 

The simulation proceeded for 10 years (25 PVI) with a time-step of 1.8 days, 

corresponding to a CFL number of 0.25. A significantly larger time-step was used 

in [16]; however, their algorithm employed a costly iteration between transport 

and chemistry modules to correct for mass-transfer into the solid phase. 

The large number of equilibrium complexation reactions clearly favor the use of 

the RNSF in this application, which reduces the number of primary unknowns for 

the equilibrium calculation to Neq = 14. In addition, the need to accurately com­

pute extremely small concentrations renders the use of logarithmically transformed 

variables a necessity. 

ln discussing the results of the simulation, let us begin by considering the pyrite 

profile at 10 years, Figure 5.17. Engesgaard and Kipp report an average velocity 

of the retarded dissolution front of 0.58 m yr- 1
, which appears to be in good 

agreement with our result. We can substantiate this somewhat by considering the 

li1niting case of hyperbolic chromatography, in which case the relative shock-speed 

can be computed from a simple jump condition across the shock ([47]). Applying 

this condition to the sulfate component produces the relation 

2( c+ . - c- . ) 
_ ( 1 + pyrite pyrite )_ 1 

VJ - + - ' Cso4 - Cso4 
( 5.4) 

where CpyritP is the concentration of pyrite, Cso4 is the total aqueous concentra­

tion of sulfate and tl1f' :mptTscripts + and - designate downstream and upstrea.rn 
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concentrations. Obtaining the necessary concentrations from Figures 5.17 and 5.20 

(and converting to molar concentrations), the relation (5.4) gives the approximate 

value v1 = 0.0223, or, when multiplied by the interstitial velocity of 25 m yr-1
, a 

front speed of 0.56 m yr- 1 . 

The pH and pE profiles in Figure 5.18 agree well with those in [16]; in particular, 

the physically important local maximum/minimum of the pE and pH resulting 

from the consumption of first oxygen and then nitrate at the redox front are clearly 

visible. The rapid depletion of both oxygen and nitrate is evident from Figure .5.19. 

This is in excellent agreement with [16]. Finally, total concentration and some 

prominent species of the sulfate and iron components are shown in Figure ,5.20 

and Figure ,5.21. The agreement with the results in [16] are particularly good for 

the sulfate component, with slightly lower values predicted for the iron component. 
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Figure 5.17 Concentration profile of pyrite after 10 years 
for the Engesgaard and Kipp redox problem. 
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Figure 5.18 Profiles of pH and pE after 10 years for 
the Engesgaard and Kipp redox problem. 
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Figure 5.19 Concentration profiles of N03, N2 and O2(aq) after 
10 years for the Engesgaard and Kipp redox problem. 
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Figure 5.20 The distribution of total aqueous sulfate component and 
some major sulfate species after 10 years for the Engesgaard and Kipp 

redox problem. 
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5.3.2 LNE and PLNE Problems 

A First-Order Reaction with Analytic Solution 

We now present a convergence study for transport involving a first-order (kinetic) 

adsorption reaction, in which generic aqueous species A reacts with the solid phase, 

A(aq) + B(s) = AB(s). (5.5) 

By taking the concentration of surface site B sufficiently large as to remain ef­

fectively constant, and setting the backward rate constant e to zero, this can be 

written as the first-order reaction 

( 5.6) 

with kJ = kf CB ;:::::; constant. The linear reaction term allows for an analytical so­

lution (see [46]), both in the case of advection only and when both advection and 

dispersion are taken into account. To verify the expected first-order in time accu­

racy of our algorithm for this special case, we include dispersion in this simulation. 

The relevant parameters were u = 1.0, D = l.0e-3 and k1 = 1.0. Simulations were 

carried out for seven different time-step sizes up to a final time oft = 0.5 PVI. The 

spatial discretization was successively refined to maintain a constant CFL number 

of 0.5. 

The analytic solution, along with three numerical solutions corresponding to 

various refinement levels, are shown in Figure ,5.22. A fairly good agreement is 

obtained for all these discretizations, and the computed solutions clearly converge 

to the analytic one. The grid data and the corresponding estimated L 2 errors in 

the simulated results are given in Table .5.15. Linear regression applied to the 

tabulated data shows that the convergence rate is 2!..tm with nz ~ 1.00:3, a result 

very close to the predicted va.lue of l. 
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Figure 5.22 Convergence study for the kinetic first-order reaction 
problem. Comparison with the analytic solution for three successively 

finer temporal/ spatial discretizations, maintaining a fixed CFL number. 

time-step flt mesh-size fl:r L2 error 

0.05 0.1 0.0759 
0.02 0.04 0.0341 
0.01 0.02 0.0184 
0.0067 0.0133 0.0118 
0.005 0.01 0.0084 
0.0033 0.0067 0.0052 
0.0025 0.005 0.0038 

Table 5.15 Convergence study for the 
kinetic first-order reaction problem. 
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PLNE Problem with One Kinetic and Two Equilibrium Minerals 

To validate our algorithms for PLNE systems we consider a case of mineral precip­

itation/ dissolution with two equilibrium controlled processes and one kinetically 

forming species. This case was studied by Sevougian [36], and represents a simple 

modifica.tion of the LE case presented earlier. Specifically, we retain the initial and 

boundary conditions given in Table 5.5 and the stoichiometric and thermodynamic 

data in Table 5.3, with the sole exception that the dissolution of AB(s) is now con­

trolled by a kinetic process. Following [36], we replace its equilibrium constant 

with the forward and backward rates k1 = 7.4 and kb = 7.4, respectively (note 

that the corresponding equilibrium constant for a reaction that goes to completion 

remains /.,: = 1.0). 

Consider first the profiles of aqueous and solid species plotted at t = 0.5 PVI 

in Figures ,5.23 5.24, respectively. Comparing with the corresponding plots for the 

LE case, Figures 5.6 and 5. 7, we notice a marked difference in the solutions clue to 

kinetic effects. In particular, the AB(s) dissolution and AC(s), DB(s) precipitation 

fronts are no longer shocks. However, as would be expected, the AC(s) and DB(s) 

dissolution fronts are still shocks. Mineral concentrations at the times t = 0.25, 

t = 0 .. \ t = 0. 7.5 and t = 1.0 PVI, plotted in Figures 5.25-5.27, illustrate rnore 

clearly the behavior of these fronts. Excellent agreement was obtained with the 

results reported in [36]. 
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Figure 5.23 ABCD problem with one kinetically dissolving mineral 
AB( s). Concentration profiles of a.11 aqueous species at t = 0.,5 PVI. 
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Figure 5.25 ABCD problem with one kinetically dissolving mineral 
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Figure 5.26 ABCD problem with one kinetically dissolving mineral 
AB(s). Concentration profiles of mineral species AC(s) at four times. 
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AB(s). Concentration profiles of mineral species DB(s) at four times. 

5.4 Higher Dimensional Examples 

5.4.1 A 2D Study of the ABCD LE Problem 

To illustrate the multi-dimensional capabilities of the code, we revisit the ABCD 

equilibrium problem defined in Table 5.3, this time considering a two-dimensional, 

square domain with one injection well located in the lower left corner. The domain 

is discretized into a 40 x 40 grid, resulting in a total of 1600 grid-blocks. To generatt' 

some interesting flow patterns, we prescribe no-flow conditions on three faces and 

an outflow condition on the fourth (right) face. The initial concentrations are 

illustrated in Figure 5.28 below. The domain is everywhere saturated with respect 

to AB ( s), but the mineral itself is actually only present in a rectangular region in 

the interior of the domain. The concentration of the species C, D, AC(s) and DB(s) 

are everywhere zero initially. At the injection well wt> supply the aqueous species 
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C and D at concentrations 2.0 Mand l.75 M, respectively. No A or Bis injected. 

In addition to the species list from Section 5.3.l, we have added a non-reactive 

tracer, initially at zero concentration and injected at 1.0 M. The thermodynamic 

data. is otherwise the same as in Table 5.3. 

The simulation was carried out to a. time corresponding to l PVI using nt = 400 

time-steps. It was run on the Intel Paragon using 8 processors, and completed in 

approximately 30 minutes. 

To better understand the flow field before considering reactions, we first turn 

onr attention to Figures 5.29 and ,5.30. Note that most of the region has been 

swept by the injected fluid at t = l PVI. 

Similarly to the 1D experiment illustrated in Figure 5.6-Figure .5.7, we expect 

to see the dissolution of AB( s) as it is reached by the A and B depleted injected 

stream. Since the injected composition is rich in C and D, we also expect precipi­

tation of AC(s) and DB(s) to occur near the dissolution front for AB(s). 

It is evident from the Figures ,5.31 and 5.32 that significant dissolution of AB(s) 

has indeed occurred. Also, the Figures 5.33-.5.34 and 5.35-,5.36 verify the suspected 

precipitation of minerals AC(s) and DB(s ). As expected ( and indeed predicted by 

theory for the Riemann problem), the wave associated with DB(s) is significantly 

more retarded than the AC(s) wave. 
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Figure 5.28 2D ABCD equilibrium precipitation/dissolution 
problem. The initial conditions for simulation. 



0.9 

0.8 

0.7 

0.6 

>-0.5 

0.4 

0.3 

0.2 

WELL 

0.1 
+ 

0 
0 0.1 0.2 0.3 0.4 0.5 

X 

0.6 0.7 0.8 0.9 

Figure 5.29 2D ABCD equilibrium precipitation/dissolution problem. 
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Figure 5.30 2D ABCD equilibrium precipitation/dissolution problem. 
Concentration contours for the inert tracer at t = 1.0 PVI. 
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Figure 5.31 2D ABCD equilibrium precipitation/dissolution problem. 
Concentration contours for mineral AB( s) at t = 0.5 PVI. 
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Figure 5.32 2D ABCD equilibrium precipitation/dissolution problem. 
Concentration contours for mineral AB( s) at t = l .O PVI. 
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Figure 5.33 2D ABCD equilibrium precipitation/dissolution problem. 
Concentration contours for mineral AC(s) at t = 0.5 PVI. 
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Figure 5.34 2D ABCD equilibrium precipitation/dissolution problem. 
Concentration contours for mineral AC(s) at t = 1.0 PVT. 
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Figure 5.35 2D ABCD equilibrium precipitation/dissolution problem. 
Concentration contours for mineral DB(s) at t = 0.5 PVI. 
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Figure 5.36 2D ABCD equilibrium precipitation/dissolution problem. 
Concentration contours for mineral DB(s) at t = 1.0 PVI. 
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5.4.2 A Parallel Speedup Study for the 3D ABCD Problem 

We consider once more the mineral precipitation/dissolution problem defined in 

Table 5.3, this time with the intention of assessing the parallel efficiency of our 

algorithms. To generate a synthetic problem of realistic size, we extend the prob­

lem presented in Section .5.4.1 to three spatial dimensions. Initial and boundary 

conditions are exactly analogous to those described in Section 5.4.1. The injection 

well remains in the same position in the horizontal plane and is screened in the 

lower part of its vertical extent. As before, the only non-uniform initial condition 

is the mineral AB(s), which is saturated at concentration 1 in a parallelepiped in 

the interior of the domain. To investigate the computational cost and the parallel 

scale-up of the classes PLNE and LNE, we considered some variations of the LE 

problem defined in Table 5.3. Specifically, a PLNE scenario was realized by re­

quiring that the precipitation/dissolution of AB(s) be kinetic, with rate-constants 

kfi 8 = 7.4, k~48 = 7.4, i.e. the problem considered in lD in Section 5.3.2. The 

LNE system was obtained by taking all reactions to be of kinetic type ( with an 

unchanged equilibrium state). In addition to the rate constants for AB(s) above, 

we used k{c = :3.0, k~c = 6.0 and k£8 = 10.0, kJJ8 = 5.0. 

To establish a reasonable problem size for the scale-up companson, we per­

formed simulations of the LE problem defined above with the preliminary grids 

10 x 10 x 10 and 20 x 20 x 20, taking n 1 = 50 time-steps, corresponding to a 

final time of l = 0.125 PVI. The simulations were repeated using 2, 4, 8 and 16 

processors on the Intel Paragon, and timings were obtained. The resulting speed­

ups, normalized to 2 processors, are shown in Figure 5.:37. It is evident that the 

IO x 10 x 10 problem is too small to result in a satisfying speed-up for this problem; 

the 20 x 20 x 20 performs significantly better, but a decline in speed-up is sePn in 

incrC'asing from 8 to 16 processors. 
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An acceptable compromise between the wall-clock time needed to perform the 

experiments and the quality of the comparison was deemed to be a grid of size 

20 x 20 x 25, or 10000 grid-blocks. 

For the PLNE and the LNE cases, the second-order Runge-Kutta integrator was 

used with a target time-step equal to the transport-step. The RNSF equilibrium 

module was used in all cases. It is readily seen from Table 5.16 that the PLNE 

problem is significantly more costly than the LE and LNE cases, which complete in 

approximately the same time. Furthermore, a simulation of a non-reactive system 

with the same number of transported components indicates that the percentage of 

time devoted to the chemistry calculation ranged from as little a few percent for 

the LE and LNE problems, to as much as 40% for the PLNE case. 

The speed-up curves are given in Figure 5.38, along with the ideal curve for 

comparison. Very similar speed-ups are obtained for the three problem classes. 

Although the results are quite good, the trend is closer to the ideal curve for 4 

and 8 processors, indicating that the problem is still too small to realize the full 

potential of the para.llelism. 

Number of processors 
Time [s] 

LE PLNE LNE 
16(4x4xl) 2869 4860 2708 
8(4x2xl) 5522 9357 5260 
4(4xlxl) 10445 1760:3 9978 
2(2xlxl) 20503 34728 19745 

Table 5.16 Timing results for 3D ABCD problems of class LE, PLNE 
and LNE, using a 20 x 20 x 25 grid and n 1 = 50 time-steps. 
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Chapter 6 

Conclusions 

The results obtained m the prev10us chapters lend themselves to the following 

conclusions. 

1. A general framework for reactive transport of a single flowing aqueous phase 

in a porous medium has been presented. The interactions possible within 

this model include: 

• Both homogeneous and heterogeneous reactions; in particular, aqueous 

complexation, redox, ion-exchange, adsorption and precipitation/ dissolution 

reactions are included. 

• J{inetic and equdibrium reactions can both be accommodated. 

2. A geochemistry module for the solution of the chemical batch problem was 

developed. Some of its features are: 

• The equilibrium calculation is based on a novel application of the interior­

point method for nonlinear programming. Two different options are 

implemented, based on the stoichiometric and the non-stoichiometric 

formulations of the equilibrium problem. For most problems, the non­

stoichiometric formulation will be most efficient. However, the stoichio­

metric version has the advantage of exact mass-balance, and generalizes 

to the 11011-iclea.l case. 



152 

• Systems of kinetic reactions are handled in a mass-conservative time­

integration framework, using explicit ODE integrators over the trans­

port time-step. 

3. The geochemistry module was incorporated into the reactive transport sim­

ulator PARSiml [2]. Features of the overall computer program include: 

• The para.llel, reactive transport implementation is based on an operator­

splitting procedure (OS) applied to the species ADR, and consists of 

taking sequential advection, reaction and diffusion steps. 

• The OS approach was demonstrated to be formally first order in time 

accurate for the classes LE and LNE. 

4. A number of lD reactive transport problems found in the literature were 

solved and compared with published results or analytic solutions. In partic­

ular, we have successfully simulated the following types of problems: 

• Aqueous complexation; 

• Surface adsorption; 

• Ion-exchange; 

• Redox; 

• Precipitation/dissolution. 

The code has been tested on all three classes of reactive transport problems. 

i.e .. local equilibrium (LE), local non-equilibrium (LNE) and partial local 

non-equilibrium (PLNE). 
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.5. A 2D problem was solved to demonstrate the multi-dimensional capability of 

the code. A parallel speed-up study of a 3D problem with 10000 grid-blocks 

and eight concentration fields was conducted with close to linear speed-up. 

Some directions for future work in this area are: 

l. More efficient and/or accurate formulations for the reactive transport prob­

lem. In particular, implementation based on component transport should be 

compared with the species transport formulation used in this work. In such 

a setting, higher order splittings could be implemented with relative ease. 

2. The application of the interior-point minimization technique to genuine multi­

phase batch calculation should be investigated. It is conjectured that the 

"mole-fraction" and "phase-total" formulation presented in Appendix C, and 

used for a relatively simple problem in [34] could serve as a starting point for 

the development of such algorithms. However, it is critical that the number 

of unknowns be reduced before this approach can become truly competitive. 
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List of Symbols 

Most major symbols used in the thesis are explained below. Where appropriate, a 

reference to either the defining equation or the relevant section is given. 

Latin letters 

A formula matrix, A= (a 1, ... ,aN
5

) E JRNExNs; Definition 2.5. 

ai formula vector of species i, a; E JRNE; Definition 2.4. 

A principal part of canonical form of A. A E IR,NcxNR; Equation (2.51). 

A = - VTµ. Reaction affinities, A E IR_NR; Section 2.3.5. 

c species concentrations, c E JR_Ns; Equation (3.3). 

Cc lower bound on species concentration used in practice; Equation ( 4.64). 

C total flowing component concentrations, C E IR,Nc; Equation (3.27). 

d number of spatial dimensions. 

e element (component) abundance, c E JRNE; Section 2.2.1. 

c element symbol vector, e E IR,Ne; Section 2.2.1. 

£ symbolic representation of the equilibrium step; Section 4.2.2 . 

.fi species flux vector, f; = (J;,.n f;,y, f;,z) E IRd; Sections 3.2 and 3.3.3. 

g gravitational vector, g E IRd; Section 3.3.1. 

C Gibbs free energy function; Section 2.3.2. 

[
0 index set for phase a; Appendix C. 

l,~1 index set for minerals; page 81. 

f{i equilibrium constant for the ith reaction; Equation (B.10). 

k:1, backward rate-constant for the ith kinetic reaction; Section 2.4.J. 
I 

k{ forward rate-constant for the ith kinetic reaction; Section 2.4.3. 
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Lagrangian function; Appendix A (for general NLP). 

mE element mole mass vector, mE E JRNE; page 14. 

rn, = AT mE. Species mole mass vector, m E JRNs; page 14. 

rn,tot = nT m. Total system mass; page 14. 

NI pseudo formula matrix, ME JR(Nc+Nf{)xNs; Equation (:3.42). 

Ne = rank (A). The number of comp6nents; page 22. 

NE the number of elements; page 10. 

NM the maximum number of minerals,; page 81. 

NH = Ns - Ne. The number of independent reactions; page 22. 

NJ{ number of independent kinetic re~ctions; page 39. 

N~ number of independent equilibrium reactions; page 39. 

Ns total number of species; page 10. 

n species mole vector, n E JRNs; Section 2.2.2. 

n species symbol vector, 11, E IRN5 ; page 10. 

nc' = 1 T pan. Total number of moles in phase o. 

n° particular solution of the EAC; Equations (2.42)-(2.43). 

nc component-species mole vector, nc E JRNc; Equation (2.52). 

nP product-species mole vector, nP E IR.NR; Equation (2.52). 

n 1.; kinetic product-species mole vector, nK E IRNJ{; page 49. 

nQ equilibrium product-species mole vector, nQ E IRN2; page 49. 

p pressure; Section 2.3.1. 

P" phase identity matrix for phase o, pa E JRNsxNs; Equation (2.10). 

q"' = ::Tna. Total phase charge; Section 2.2.:3. 

qw source/ sink term in the flow equations; Section :L3.1. 

q = ::::Tn. Total system charge; Section 2.2.3. 

CJ = ::;Tc. Total charge concentration; Section :3. 7. 
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Qaq = zT paq c. Total flowing charge concentration; Section 3. 7. 

Q0 total initial charge concentration; Section 3. 7. 

Q1 total injected charge concentration; Section 3.7. 

Q5 = zrs. Total external source of charge; Section 3.7. 

r generic species rate vector, r E IB,Ns; Section 3.2. 

rK kinetic reaction rates, rK E IB,NJ[; Section 2.4.3. 

rQ (formal) equilibrium reaction rates, rQ E IR,N~; page 61. 

R universal gas constant; Section 2.3.4. 

R symbolic representation of the reaction step; Section 4.2.2 . 

. s species sources/sinks, s E IR,Ns; Section 3.2. 

S = As. Total component sources/sinks, S E IB,Nc; Equation (3.28). 

T absolute temperature; Section 2.3.1. 

T = Ac. Total component concentrations, T E IRNc; Equation (3.26). 

u Darcy velocity of the aqueous phase, 1l E fild; Section :3.3.1. 

1/ · l · · · T/ ( ) IRN xNR D fi · · 2 8 1 stoic l!ometnc matrix, ,, = v1 , ... , VNR E . 5 ; e mt10n .. 

v1 reaction vector for the ith reaction, Vi E IR,Ns; Definition 2.7. 

VQ equilibrium stoichiometric matrix, VQ E IB,NsxN~; Section 2.4.2. 

VQ principal equilibrium stoichiometric matrix, VQ E IB,NcxN~; Section 2.4.2. 

VI{ kinetic stoichiometric matrix, V1\ E IR,NsxNJ[; Section 2.4.2. 

f7K principal kinetic stoichiometric matrix, VK E IB,Nc xNh'; Section 2.4.2 . 

.1· species mole fraction vector, :TE IR.N5 ; Section 2.3.3. 

y Lagrange multipliers corresponding to equality constraints; 

Sections 2.5.1, 4.4 and Appendix A. 

intrinsic element charge vector, zE E IR.NE; Section 2.2.3. 

= AT zE_ Intrinsic species charge vector, z E JRNs; Section 2.2.:3. 
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Greek Symbols 

j3(i) phase label function. 1 S j3(i) S 7r for 1 Si S Ns; Equation (2.11). 

6.G = vr µ. Free-energy change; Section 2.3.5. 

6.G0 = vrft0 standard free-energy change; Section 2.3 .. 5. 

5 Kronecker's delta function; Equation (2.12) . 

A(·) diagonal matrix ( diagonal given by the vector argument). 

p chemical potential; Section 2.3.4 and Equation (2.59). 

v outward normal of domain, 11 E JRd_ 

X logarithms of molar concentration; Equations (4.43)~(4.44). 

¢ porosity of the porous medium; Equation (3.1). 

c, extent of reaction coordinates, c, E JRNn; Equation (2.41). 

t,Q extent of equilibrium reaction coordinates c,Q E IRN~; Section 2.4.2. 

e,· extent of kinetic reaction coordinates e< E IRNk'; Section 2.4.2. 

7r maximum number of phases possible at equilibrium; page 1.5. 

II number of phases present at equilibrium; page 15. 

\JJ pressure potential function; Equation (3.8). 

w Lagrange multipliers corresponding to the EAC; Appendix C. 

a- perturbation parameter in the interior-point procedure; Appendix A. 

i local truncation error (LTE); Section 4.7. 

( Lagrange multiplier corresponding to non-negativity of 

mole fractions; Appendix C. 

p Lagrange multiplier corresponding to non-negativity of 

phase mole-numbers; Appendix C. 

n physical domain, an c ]Rd. 

on boundary of the physical domain (sometimes ao = r1 LJ f 2). 



0 Lagrange multiplier corresponding to the definition of 

mole fractions; Appendix C. 

Superscripts 

a phase designation. 1 ::; a ::; 7r. 

(overbar) indicates a mobile quantity (e.g. !Vs mobile species). 
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(prime) indicates a reduced set of species that excludes kinetic products. 

Some examples are the reduced formula matrix A' E JRNcx(Nc+N~), 

introduced in (2.143), the reduced species vector n' E IR.Nc+N~ 

from page 49 and the total component concentrations excluding kinetic 

products, T', defined in Equation (3.46). 

T the transpose of a vector or matrix. 

* a quantity at equilibrium. 

Subscripts 

1 species index. 

J component index. 

h discrete (grid-block) quantity. 

Comrnonly Used Abbreviations 

ADR 

CMM 

DAE 

DSA 

EAC 

The Advection-Diffusion-Reaction equations. 

The Characteristics-Mixed Method. 

The Differential Algebraic Approach to solving the ADR. 

The Direct Substitution Approach to solving the ADR. 

Element Abundance Constraints. 
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FE 

HOG 

KKT 

LE 

LNE 

LTE 

NLP 

ODE 

OS 

PDE 

PKKT 

PLNE 

PVI 

REV 

RK-2 

RK-4 

RNSF 

SF 

SIA 

UNSF 

The Forward Euler scheme. 

The Higher-Order Godunov Method. 

The Karush-Kuhn-Tucker necessary conditions in NLP. 

Local Equilibrium system. 

Local Non-equilibrium system. 

Local Truncation Error. 

Nonlinear programming; Nonlinear programming problem. 

Ordinary Differential Equation. 

Operator-Splitting. 

Partial Differential Equation. 

Perturbed Karush-Kuhn-Tucker conditions. 

Partial Local Non-equilibrium system. 

Pore Volumes Injected. 

Representative Elementary Volume. 

Explicit, Second-order Runge-Kutta scheme. 

Explicit, Fourth-order Runge-Kutta scheme. 

Reduced Stoichiometric Formulation. 

Stoichion1etric Formulation. 

Sequential Iteration Approach to solving the ADR. 

Unreduced Stoichiometric Formulation. 

Glossary of Terms 

Component Itself a species, the component is a member of a smallest possible 

set of species that can be selected in order to represent any other species in 

the system. ThP choice of components is not unique. 
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Element A chemical entity whose main attributes, such as mass, charge/oxidation 

number are conserved. Unlike the component, it is not necessarily a species 

in the system under consideration. 

Product A species resulting from a chemical reaction. Given a choice of compo­

nents, there is a unique reaction ( combination of components) that results in 

the product. It follows that each product participates in exactly one reaction. 

Species A chemical entity distinguishable from other such entities by either chem­

ical formula, molecular structure or phase. 
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Appendix A 

Nonlinear Programming, Lagrange Multipliers 
and the Interior-Point Method 

This appendix describes the general interior-point method as applied to a generic 

nonlinear programming problem with general constraints of equality /inequality 

type. The presentation will follow closely that in [15] where more details can be 

found. First, the Lagrange-multiplier framework is presented, and the Karush­

Kuhn-Tucker (KKT) necessary conditions are stated. Next, we describe the ap­

plication of the standard Newton method to the nonlinear KKT conditions, and 

the resulting linear system. Finally, we discuss a globalized form of the algorithm, 

and a Fortran implementation that we have developed. 

A.1 The General Nonlinear Programming Problem and 

the Lagrange Multiplier Framework 

The nonlinear programming problem, which we will abbreviate NLP, in its most 

general form is the optimization of an objective function J( x) over some space 

.r E X subject to constraints on the variable :r. The literature on this subject is 

extensive (see for example [18, ,52]). For definiteness, let us consider the following 

form of the NLP for our exposition: 

rnm 
1.' 

f ( :r) (A.l) 

s.t. h( .r) = 0, 

g( J.:) 2: 0. 
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where the functions f, h, g are defined so that 

f : IRn -
h = (hl,···,hmef: JRn -
g = (g1 , · · · , gmi f : IRn -

IR, 

JRme 
' 

IRrn'. 

me< n, 

(A.2) 

(A.3) 

(A.4) 

In the these definitions, n denotes the dimension of the problem, me the number 

of equality constraints and mi the number of inequality constraints. 

A point x is called feasible if it satisfies the constraints. The solution ( if one 

exists) of the problem (A.l) is called optimal, and is denoted ;r*. 

In preparation for developing necessary conditions for a candidate point to be 

optimal for the NLP, we introduce Lagrange multipliers y E IRme and z E 

and the Lagrangian Junction l : JRn+me+mi --. IR defined thus: 

T T l(x,y,z)=f(x)+y h(x)-z g(x). 

Note the sign convention for the multipliers z, which will ensurE' Zi :2': 0. 

JRrni 
' 

(A.5) 

A.2 The Karush-Kuhn-Tucker (KKT) Necessary Conditions 

Under reasonable assumptions (i.e., if some con.straint qualification [52], [27] holds) 

the Karush-Kuhn-Tucker, or KKT, conditions [23] must necessarily hold at an 

optimal point for the NLP (A.l). Using the notation A(g) to denote a diagonal 

matrix with the vector g on its diagonal, we can express these conditions as follows 

v' xl (x, y, z) 0, (A.6) 

h(J_'.) o. (A.7) 

g(.T) > 0, (A.8) 

- > 0. (A.9) 

A(g )::: 0. (A.10) 
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The satisfaction of conditions ( A. 7)-( A.8) is obviously necessary for the feasibility 

of the candidate point. The equations (A.6) are referred to as optimality, and the 

relations (A.10) are known as complementarity. We note that the KKT conditions 

comprise a set of neq = n + me + mi nonlinear equations, subject to the 2mi 

inequality constraints (A.8), (A.9). 

In the interior-point method, iterates must stay feasible with respect to the 

inequality constraints. This is a difficult task for general, nonlinear functions 

g( :c ). For this reason, it is common practice to introduce a set of slack variables, 

s E JRrni and eliminate the need to be feasible with respect to nonlinear constraints 

at the expense of instead having to solve a larger nonlinear system. The resulting 

equivalent slack-variable form of the KKT conditions is 

V:rl (:r,y,z) 0, 

h( :_r) 0, 

g(:c) - s 0, 

z > 0, 

s > 0, 

A(.s )2 0. 

For convenience, we express the KKT conditions more compactly as 

F(.r,y,z,s) 0, 

(z,.s) > 0, 

(A.11) 

(A.12) 

(A.13) 

(A.14) 

(A.15) 

(A.16) 

(A.17) 

(A.18) 
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with 

F(x,y,z,s) = 

Vxl (x,y,z) 

h(x) 

g(x) - s 

A(s )z 

(A.19) 

vVe remark that the nonlinear system F( u) = 0 has dimension neq = n +me+ 2mi 

in the unknowns u = ( x, y, z, s) E JRneq. 

A.2.1 Simple Bounds 

Here we consider a specialization to the practically important case of simple bounds, 

i.e., g(x) = :r and consequently mi = n. The introduction of slack-variables is 

unnecessary in this case, and we can directly express the KKT conditions as 

or, in compact notation, 

with 

V") (x,y,z) 0, 

h(x) 0, 

J\(z):r 0, 

X > 0, 

/4, > 0, 

F(x,y,z) 0, 

(:r,z) > 0, 

P ( ;r' y' :: ) = 
"vxl (x,y,z) 

h(:r) 

J\(z):r 

(A.20) 

(A.21) 

(A.22) 

(A.23) 

( A.24) 

(A.25) 

(A.26) 

(A.27) 
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In this case, the nonlinear system has the dimension neq = 2n + rne equations in 

the unknowns u = ( ::c, y, z) E JRneq. 

A.3 The Interior-Point Method 

A.3.1 The Perturbed KKT Conditions 

A critically important concept in the interior-point method is the use of perturbed 

KKT conditions (PKKT), f:, which result from perturbing the last mi components 

of F by some a- > 0. The resulting expression is 

Fa(x,y,z,s) 0, 

(;r,z) > 0, 

with 

Fa(:r,y,z,s) = F(:c,y,z,s)- a-e, (A.28) 

and e = (0, ... , 0, 1, ... , 1 )1' has mi ones, 1.e., the perturbation only affects the 

complementarity conditions. 

A.3.2 Application of Newton's Method to the Perturbed KKT Conditions 

Au iterative method is in general necessary in order to obtain the solution of the 

perturbed KKT conditions, F,, = 0. We consider the standard Newton's method 

which consists of the iterative solution of the linear systems 

-Fa(uk), 

Uk+ DUk. 
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Here J denotes the Jacobian of Fer, i.e., the matrix of partial derivatives of F with 

respect to the independent variables given by 

J _ = d(Fcr )i 
'·1 - du· · 

J 

(A.29) 

A simple calculation shows that for the general slack-variable formulation (A.17), 

the Jacobian has the form 

J(u) = 

and the right-hand side is 

Vxh(x)T 

Vxg(xf 

0 

F~ ( X' y' z' s) = 

o~ 
0 

0 

0 

0 

A(s) 

Vxl (.r,y,z) 

h(x) 

g(:r) - .s 

A(z)s-(J"e 

0 

-[ 

A(z) 

We note that the Hessian of the Lagrangian has the general form 

rrie rni 

i=l i=l 

(A.30) 

(A.31) 

(A.32) 

For the less complex case of simple bounds ( A.25) the Jacobian has the form 

J(u) = V xh(:c)T 

A(z) 

and the right-hand side has the form 

F~(:r,y,z) = 

0 

0 

v.Tl (:r,y,z) 

h( :r) 

A(z)J: - (J"f 

0 

A(x) 

(A.3:3) 

(A.:34) 
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A.3.3 The Globalized Interior-Point Algorithm 

We are now in a position to define a globalized interior-point algorithm. In what 

follows, the symbol II· II denotes the Euclidean ( L2) norm of a vector, the subscript k 

denotes an iteration counter and the parameters >.l, A% are real numbers satisfying 

0 < >-1, >-t < 1. 

Algorithm A.1 The Globalized Newton Interior-Point Framework 

(0) Choose an initial guess uo = (xo, Yo, zo, s 0 ) satisfying (zo, so) > 0. 

Fork= O,l, ... do 

(1) Test for convergence: if IIF(uk) II < E exit. 

(2) Update perturbation parameter a-k. 

(4) Adjust step-length to ensure sk+1 > 0, Zk+l > 0. 

6uk s---- >-16 llk 

(.5) Adjust step-length for globalization. 

6uk - >.t6uk 

(6) Update unknowns: Hk+l =Uk+ 6uk. 

/,:s----k:+J 

Goto 1 

Wf' now give a more detailed description of each step of the algorithm. 
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The initialization of the algorithm, Step 0, requires us to fix an appropriate 

initial guess u0 for the primary unknowns and the Lagrange multipliers. Initial 

guesses for the slack-variables s and the corresponding multipliers z are required 

to be non-negative. 

Any appropriate termination criterion (Dennis and Schnabel [14]) can be used 

m Step 1; we have implemented a simple test on the (absolute) L2 error of the 

residuals ( the KKT conditions) versus the user-specified tolerance f. 

Several possibilities exist for the implementation of Step 2; the selection of the 

perturbation parameter er. Numerical experimenting shows that an appropriate, 

systematic means of decreasing er critically affects the convergence of the algorithm. 

Theoretical results are also known about "how fast" this parameter must be made 

to approach zero in order to ensure rapid local convergence of the algorithm [1.5]. 

Our implementation is based on the notion of the "central path", which is 

the locus of points that are solutions to the PKKT, Ji',, = 0, traced out as er is 

varied. In this approach, er remains fixed until the iterates are sufficiently close to 

satisfying the PKKT. The procedure is close in spirit to the logarithmic barrier 

function formulation, a class of methods with excellent globa.l behavior. However, 

rather than requiring that our iterates be within some tolerance of solving the 

PKKT before reducing er, we monitor only the satisfaction of the complementarity 

conditions, i.e., the condition used is 

erk = perk, 

where O < p < 1. This choice was motivated by a desire to avoid "oversolving" by 

converging each sub-problem F'a( v.) = 0 to a high accuracy before reducing er. 

Step :3 entails the solution of a linear system which, in general, is not sparse. 

Currently, standard direct solvers (Linpack) are used for this purpose. In cases 
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where no inequality constraints are present, the Jacobian matrix (A.30) is sym­

metric. For such cases the appropriate symmetric linear solvers are used. 

In Step 4 we adjust the step length to ensure the non-negativity of the variables 

s and z at the new iteration level. This is in principle straight-forward since the 

Newton update is linear. However, for reasons of numerical stability we do not 

allow a step that would extend the entire distance to the closest boundary, but 

choose instead to safeguard by requiring that we only move a certain fraction 

0 < Tk < 1 of the distance to the boundary. On the other hand, to retain the 

desired fast local convergence of the method, this fraction must approach unity at 

a certain rate as we converge to a KKT point. To be specific, we take the reduction 

of the step to be 

>.\ = { I 

Here, Kk is given by 

if Kk < 0, 

otherwise. 

and the fraction of movement to the boundary is 

(A.35) 

(A.36) 

(A.37) 

Directly following this reduction of the step length, another restriction on the 

step is imposed to satisfy the property of sufficient decrease in some appropriate 

measure. This is accomplished in Step .S using a line-search strategy (see Dennis 

and Schnabel [14]) on the merit-function c/>cr defined by 

(A.38) 

that is, the square of the L 2 norm of the residuals (the PKKT). This is a convenient 

choice of merit function, but many other are possible ( cf. [15] where the square of 

thE' L2 norm of the KKT, i.e., d{u) = FT(u)F(u) is used). 
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The line-search procedure attempts to satisfy the Armijo-Goldstein condition 

([14]), i.e., to find the largest (positive) ,\t < 1 such that 

(A.39) 

where the parameter a satisfies 0 < a < 1. Such a A~ can always be found ( as 

long as the Jacobian is non-singular) since it is readily shown that the perturbed 

Newton step is a descent-direction for the merit function c/>a, i.e., 

V¢;61l < 0. (A.40) 

(A trivial calculation shows that V¢;61l = -2¢a)- Two procedures for handling 

the backtracking line-search are implemented, namely interpolation and simple 1·e­

duction. The interpolation algorithm uses standard cubic/ quadratic interpolation 

as described in detail in Dennis and Schnabel [14]; the simple reduction scheme 

simply consists of shortening the step by a multiplicative factor. 

A.4 NIPSF: Nonlinear Interior-Point Solver, Fortran 

As a part of the effort to design an algorithm for solving the chemical equilibrium 

problem, a. Fortran implementation of the interior-point method for general non­

linear programming was developed. It is capable of handling general, nonlinear 

constraints of inequality and/or equality type, and has been tested using a suite 

of the Schittkowski test problerns [22]. For more details, the reader is referred to 

the NIPSF user's manual [33]. 


