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RADIATION AND CONVECTION HEAT TRANSFER
IN PARTICLE-LADEN FLUID FLOW

by

Peter Douglas Jones

ABSTRACT
Combined radiation, convection, and conduction heat transfer are studied in a

dispersed two phase flow of gray, laminar, axisymmetric media, where both phases are
radiatively participating. The radiative transfer equation in curvilinear coordinates is
coupled with an interpenetrating continua energy and momentum formulation for the
two phase flow. The radiative transfer equation is set in a novel coordinate system
which allows full variation of the radiation intensity in the plane of symmetry and
expression of symmetric boundary conditions, without resort to the frequent
assumption of azimuthal symmetry. The radiative transfer equation is solved using the
discrete ordinates method, chosen for its relative accuracy and ability to numerically
complement a differential energy formulation. An appropriate discrete ordinates
quadrature is derived for the novel coordinate system.

The heat transfer model is used to study a proposed arrangement in which heated
particles are seeded into heat exchange tubes running through a furnace in order to
enhance heat transfer to a gas flowing in the tubes. It is found that with particles heated
to temperatures approaching the furnace temperature, and mass loading ratios (seeded
particle specific mass to carrying gas specific mass) up to the order of 10, significant
enhancement in heat transfer to the gas is achieved. Such enhancement has the effect of
reducing the required heat exchange tube length, thereby reducing the furnace size.

Interphase heat transfer between the dispersed particles and the semi-continuous
gas is studied in detail by formally modeling combined radiation, conduction, and
convection heat transfer between a particle and a semi-infinite medium. Results of this
study demonstrate that in the seeding particle case, simple correlations for combined
mode heat transfer are accurate. It is also found that the critical particle spacing at
which interphase heat transfer is interfered with by neighboring particles is smaller for
radiation dominated cases than for conduction dominated cases.



ACKNOWLEDGEMENT

Of the many who I must thank, there are just a few whose contribution has been
vital in bringing this thesis out of the realm of dreams and into the light of completion.
First, I am grateful to my wife, Elizabeth, who saw the dream before I did, had the
vision to see that it was right, and had the tenacity and trust to see it through. There
could be no greater inspiration than my advisor, Professor Yildiz Bayazitoglu, that
consummate teacher of heat transfer, who knew when to save the day with a good idea,
and also when to let me thrash it out for myself. No less important has been the
steadfast support of the Department of Mechanical Engineering and Materials Science at
Rice University, and its chairman, Professor J. Ed Akin. Finally, I take great pleasure
in thanking my parents, Nancy F. and Dr. Paul S. Jones, whose lessons I am often
slow to see, but find to be true nonetheless.



TABLE OF CONTENTS

Introduction
Enhanced heat transfer to gas flowing in ducts via particle seeding
Two phase flow models as applied to gas/particle flow
Radiation heat transfer in cylindrical media
Radiation heat transfer in particulate systems
Objectives
General Formulation
Interpenetrating continua model for dispersed gas/particle flow
Spatially axisymmetric directional coordinate system
Interphase heat transfer
Governing equations and boundary conditions
Numerical Solution Methodology
Discrete ordinates method
Quadrature
Discretized energy equations
Computational algorithm
Results and Discussion
Non-dimensional parameters
Verification
Behavior of a base case
Variation of individual parameters
Example calculation
Conclusions
References
Appendix A - Spatially axisymmetric directional coordinate system
Appendix B - Interphase heat transfer by combined
radiation, conduction, and convection

10
14

16
22
25
35

39
42
45
46

52
56
57
61
70
74
76
82

93



APPENDIX A -

Spatially Axisymmetric Directional Coordinate System
Introduction 82
Spatially Spherical Coordinates 84
Spatially Cylindrical Coordinates 90

APPENDIX B -
Interphase Heat Transfer by Combined
Radiation, Conduction, and Convection

Introduction 93
Analysis
Governing equations 96
Coordinate system 97
Boundary conditions 97
Numerical procedure 99

Results and Discussion 102



LIST OF FIGURES

1.
2.

10.

11.

12.

13.

14.

15.

16.

Gas heat exchange tube seeded with hot particles.

Coordinate system for combined radiation and convection in
axisymmetric cylindrical coordinates.

Critical radius ratio, beyond which heat flux from black inner shell
of a gray spherical annulus is within 5% of heat flux from a

black sphere in an infinite medium, for Ty¢/T.=1.5.

Combined radiation and conduction heat flux from a hot,

black sphere in a gray infinite medium.

Combined radiation and conduction heat flux from a diffusely
emitting and reflecting sphere in a gray infinite medium, with TyT=1.5.
Combined radiation and convection heat flux from a hot, black
sphere in a gray infinite medium at low Peclet numbers, for Ty/T_=1.5.
Computational algorithm

Temperature profiles at different cross-sections downstream for

a gas/particle flow with the base case parameters.

Heat flux parameters as functions of downstream distance for

a gas/particle flow with the base case parameters.

Heat exchange effectivity for the gas: all base case parameters
constant except for mass loading ratio, M.

Heat exchange effectivity for the gas: all base case parameters
constant except for tube to particle radius ratio, r*.

Heat exchange effectivity for the gas: all base case parameters

constant except for gas optical thickness, T_.

Heat exchange effectivity for the gas: all base case parameters
constant except for conduction to radiation ratio, Nr.
Heat exchange effectivity for the gas: all base case parameters

constant except for particle injection temperature, 0,0

Heat exchange effectivity for the gas: example case with no
seeding particles, with M =1, and with M} =10,

Heat exchange effectivity for the gas: example case comparison
between present model and model neglecting radiative participation
of the gas.

26

31

32

33

48

58

62

63

65

66

67

68

72

73



Al

A2

A3

A4

A5

B.1

B.2

Spatially axisymmetric directional coordinate system for
representation of radiation intensity in spatially spherical coordinates.
Correlation between differential spatial angles

and differential directional angles - first kind.

Projection of spatial azimuthal differential angle (dy) on

plane of directional polar differential angle (dcx).

Correlation between differential spatial angles

and differential directional angles - second kind.

Spatially axisymmetric directional coordinate system for
representation of radiation intensity in spatially cylindrical coordinates.
Spherical body in motion through a

gray, absorbing, emitting, conducting medium.

Temperature profiles for a black sphere in an infinite medium;

for radiation alone, conduction alone, and for combined

radiation and conduction, with Tg/T,=1.5 and xr4=1.

83

86

87

89

91

95

105



INTRODUCTION

Enhanced Heat Transfer to Gas Flowing in Ducts via Particle Seeding

In instances where heat is transferred through the walls of a duct to a gas flowing
in the duct, heat transfer to the gas may be enhanced if the gas is seeded with small
particles, particularly if the particles are at a higher temperature than the gas. This effect
is important in cases where gases, which have low heat carrying capacity, must be used
in favor of high heat capacity liquids, due to high temperature or other practical
constraints. A problem then exists in transferring as much heat as possible to the gas,
in order to limit the necessary size of the heat transfer surfaces. Solving this problem
by seeding the gas with particles has been proposed for general purposes (Gat, 1987),
as well as for specific devices such as solar collectors (Hruby, et al, 1988).

In the case of gas flowing in a tube without particles, heat is transferred by
convection from the hot tube walls to the cold gas. If the gas is radiatively
participating, surface emission from the interior tube walls is also effective in heating
the gas. The presence of particles contributes to heat transfer by a third mechanism:
heat is transfered from the particles to the gas by radiation, conduction, and convection.
In addition, heat is transferred directly from the walls to the particles by radiation,
especially if the radiative absorption coefficient of the gas is low. This heat is then
passed on to the gas from the heated particles.

In order to focus this study of combined mode heat transfer in gas/particle flows,
an arrangement consisting of heat exchange tubes passing through a fluidized bed
combustor is proposed. Fluidized bed combustors are the object of much current
research due to their promise for efficient combustion of coal, and are characterized by
high heat transfer to immersed surfaces (see Brewster and Tien, 1982b, Flamant and

Menigault, 1987, Glicksman and Decker, 1982, Glicksman, et al, 1988, Goshayeshi,
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et al, 1986, and Qian, et al, 1987, among others). The usual arrangement for extracting
the heat of combustion is to pass heat exchange tubes directly through the combusting
bed, which may be at a temperature on the order of 1000 K. Heat is transferred to a
gas flowing in the tubes, from which it is then exchanged to a power generating loop,
or used directly in a turbine or other device. Clearly, it is advantageous to transfer heat
from the bed to the gas over as short a tube length as possible, in order to reduce the
necessary combustion bed size and hence the amount of fuel burned in the bed. In
order to enhance heat transfer to the gas, the flow is seeded with particles as illustrated
in fig.1. These particles may be separated from the gas downstream of the combustion
bed and re-injected upstream, possibly passing through the bed again for reheating.

The purpose of this study is to develop a model for calculating the heat
transferred to a flowing gas seeded with hot particles. This model will serve both as a
tool for comparative and absolute design studies, as well as serving as a framework for
further refinements. Radiation heat transfer plays a primary role in high temperature
combustors and in incident intensity cases such as an enhanced solar collector.
However, radiation heat transfer calculations are particularly difficult, and efficient
computational techniques for combined mode heat transfer are not yet fully developed.
Therefore, the bulk of this research centers on radiative heat transfer methods which
may be integrated with numerical methods for heat transfer by convection and
conduction. As the gas and particles are not constrained to be either at the same
temperature or flowing with the same velocity, the resulting model combines a radiative
transfer formulation with a two phase flow momentum and energy formulation.

In addition to the direct applications of this research, there are also applications to
more general areas of heat transfer in gas/particle flows. These areas are primarily
associated with combustion; for instance: the thermal characteristics and propagation of

solid combustion products; combustion of particulates such as ground coal (in the bed
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external to the tubes considered here); or the temperature and concentration distributions
leading to dust explosions of volatile materials. Radiation, conduction/convection, and
particle motion are important in each of these cases. In a review of current analytical
techniques for radiation heat transfer in combustion systems, Viskanta and Menguc
(1987) identified needs for improved numerical modeling of multi-dimensional
radiation and combined mode heat transfer, and for improved modeling of interphase

(gas/particle) temperature differences. This study attempts to address these needs.

Two Phase Flow Models as Applied to Gas/Particle Flow

In multiphase flow theory, an accepted general formulation (Boure and Delhaye,
1982) is to write conservation equations for each distinct phase, and couple these
equations through interphase transfer terms. Thus, for momentum, one would write a
momentum equation for the gas, containing terms for momentum flux and rate of
change, and including pressure, viscous, and external force terms. Similarly, the
momentum equation for the particle phase might include external forces and the effects
of particle collisions. The coupling interphase transfer term, for momentum exchange
between the phases, would be drag on the particles. Momentum would be given up in
the form of drag by the particles, and an equivalent momentum would be gained by the
gas. For the energy formulation, the equations for each phase would include energy
flux and rate of change, intraphase transfer terms such as conduction and heat
generation, and an interphase term corresponding to the local heat exchange between
the gas and the particles. An important conceptual feature of such formulations is that
the local velocity and thermal boundary layers near each phase boundary are neglected.
This is not so much that the phase boundary is considered to be a step change in
velocity or temperature, but rather that the velocities and temperatures for each phase

are considered to be local bulk properties which respond only in an averaged way to
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micro-distributions of higher or lower value. The phases are coupled by the interphase
transfer terms, which account for the physical presence of a boundary layer through the
resulting flux of momentum or energy.

The situation considered here is a dispersed two phase flow, in which elements
of a dispersed phase (particles) are widely separated within a continuous phase (gas).
The dispersed assumption allows several simplifications in the general two phase flow
formulation. In the energy formulation, conduction is represented by Fourier's law in
the continuous phase, using the thermal conductivity of this phase unmodified by the
presence of particles. Conduction in the dispersed phase is neglected, which denotes
neglect of heat transfer in interparticle and particle/wall collisions. These assumptions
are justified (Soo, 1989) for rigid particles separated by a mean of ten particle
diameters, which is the nominal separation considered here. The particles are also
considered to be of small Biot number, so that temperature non-uniformity across an
individual particle may be neglected. The heat transfer mechanisms considered in this
study are: conduction within the continuous phase and between the walls and the
continuous phase; radiation within the combined continuous and discrete phases and
between the walls and the combined phases; and combined radiation, conduction, and
convection between the discrete and continuous phases.

Two overall approaches have been applied to dispersed two phase flow: the
Lagrangian/ Eulerian and interpenetrating continua formulations. In the
Lagrangian/Eulerian approach, the continuous phase is formulated as an Eulerian fluid,
while the dispersed phase is modeled by a Lagrangian formulation for individual
particles (Faeth, 1983). The computational approach is to solve the continuous phase
without particles, use the continuous solution to predict particle behavior, and alternate
between continuous and dispersed solutions until convergence is achieved. Generally,

the dispersed solution is computed for representative particles, approximating the



dispersed phase to be made up of packets of similarly behaving particles. The
Lagrangian/Eulerian formulation is particularly useful in large scale turbulent flows,
such as free sheer flows, where particle number density at the edge of the flow
becomes very small.

The interpenetrating continua formulation treats the dispersed phase as
pseudo-continuous, in that the number density (concentration) of particles is treated as a
flow variable, and the dispersed phase is described in a compressible Eulerian sense
(see Crowder, et al, 1984, Faeth, 1983, and Sharma and Crowe, 1979, Tien, 1961).
This approach looses the accuracy of describing individual particle tracks and
temperatures, but gains in relative computational simplicity by requiring simulation of
two sets of continuous equations, as opposed to thousands of representative discrete
sets. The interpenetrating continua formulation refers to the general two phase flow
approach of mass, momentum, and energy conservation equations for each phase,
interconnected (penetrated) by interphase transfer terms. This formulation is accurate

for enclosed flows, and is used in this study for that reason.

Radiation Heat Transfer in Cylindrical Media

Radiation contributions to heat transfer are governed by the distribution of
radiation intensity throughout the medium. The radiation intensity is the intensity of the
infrared range electromagnetic waves emanating from all points in the medium and from
its boundaries (walls). These waves are directional; thus, the radiation intensity is a
quantity that varies with direction in addition to spatial location. This is fundamentally
different than, for instance, the components of a vector. A vector is a single quantity
which has magnitude and direction, both of which may vary with location. Thus, a
vector is comprised of three components in three dimensional space: either a magnitude

and two variables which define direction, or three orthogonal components. However,



intensity varies continuously with direction. Put another way, there is a unique
radiation intensity for each of the infinite number of discrete directions at a single point
in space. Heat flux by radiation is a vector, however. At a single point, the integral
over all directions of the component of radiation intensity projected in a particular
direction defines the radiation heat flux in that direction.

The radiation intensity is governed in a radiatively participating medium by the
radiative transfer equation. This is an integro-differential equation which relates the
change in intensity along an arbitrary differential path to: the intensity scattered out of
the path; the intensity scattered into the path; the intensity absorbed along the path; and
the intensity emitted by the medium along the path. The radiative transfer equation may
be solved analytically only for very simple geometries, generally for geometries which
vary with only one dimension in space and are azimuthally symmetric (and therefore
one-dimensional in direction). Even for these geometries, the distribution function of
the in-scattering term, which is an integral, might necessarily be restricted in order to
allow solution. Often, analytical solutions to the radiative transfer equation depend
upon special integral functions, whose value must be numerically simulated. Hence,
many analytical solutions to the radiative transfer equation are ultimately numerical.

The present problem is expressed in cylindrical coordinates. Solution to the
radiative transfer equation in cylindrical coordinates is much more challenging than in
Cartesian coordinates; however, one-dimensional solutions have been derived usin ga
variety of exact and approximate techniques. Many of these methods are reviewed by
Howell (1988), in a general way. Heaslet and Warming (1966) have demonstrated an
exact analysis based on the simplifying assumptions of spatial variation only in the
radial direction, azimuthal symmetry, and isotropic scattering. Heaslet and Warming
were able to reduce the radiative transfer equation from an integro-differential equation

to an exact integral equation. This equation was transformed to an integral equation for
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the radiation heat flux, combined with an energy equation with only radiation heat flux
contributions, solved numerically for general cases, and solved analytically for special
cases. Azad and Modest (1981a) derived a similar formulation which allows inclusion
of conductive/convective modes of heat transfer.

Another approach to solution of the radiative transfer equation is to express the

radiation intensity as a spherical harmonic series. In this method, also called Py, the
radiation intensity is expressed as a series of order N of Legendre polynomials of the
cosine of the intensity's directional polar angle. The radiative transfer equation based

on this approximation is a set of ordinary differential equations which are much simpler

than the integral equation resulting from exact analysis. The Py method has been
applied to azimuthally symmetric cylindrical geometries by Bayazitoglu and Higenyi
(1979) for higher order N's, showing good accuracy as compared to Heaslet and
Warming's results, and with considerably lower computational effort. Solution of the
approximate equations may be achieved in closed form in simple cases (Bayazitoglu
and Jones, 1990, Bayazitoglu and Suryanarayana, 1989).

An assumption common to these works on solution of the radiative transfer
equation in cylindrical coordinates is that spatial variation is allowed only in the radial
direction, and azimuthal symmetry is assumed in the directional variation, with the
polar angle aligned in the radial direction. In this study, full axisymmetry is allowed
for flow in the heat exchanger tube, with variation in axial and radial coordinates. This
allows accurate representation of short tubes, in addition to allowing eventual
application to combustion chambers, which are typically short. Exact (integral)
analysis solutions to the radiative transfer equation are not available in multiple
dimensions. Spherical harmonics solutions in multiple spatial dimensions and
Cartesian coordinates are given by Ratzel and Howell (1982), and by Menguc and

Viskanta (1985a), all at the cost of a considerable increase in complexity over spatially
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single dimensioned problems. Further, due to a lack of boundary conditions for the
directional partial derivative terms which appear in curvilinear expressions of the
radiative transfer equation, these multi-dimensioned Py formulations may not be
rigorously applied to the present axisymmetric problem, regardless of one's willingness
to contend with their computational complexity.

Having considered exact analysis brought to the point of numerical solution of an
integral equation, and functional approximation brought to the point of numerical
solution of a set of differential equations, a direct numerical solution of the radiative
transfer equation is now considered. This is known as the method of discrete
ordinates. The discrete ordinates method amounts to a finite difference representation
of the radiative transfer equation in up to five dimensions (three spatial and two
directional), where the directional mesh is a quadrature derived from some criteria, and
each point in the directional mesh has an associated integration weight. One of the
earliest workers to set out the discrete ordinates method was Chandrasekhar (1950),
and the method was extensively developed in the 1960's by Carlson and Lathrop (see
Carlson, 1970, Carlson and Lathrop, 1968) for application to neutron transport
problems. The mathematical foundation of the discrete ordinates method is treated in
several texts, notably Lewis and Miller (1984). More recent application to radiation
heat transfer problems has come in papers by Fiveland (1984, 1987, 1988), Truelove
(1987, 1988), Kumar, et al (1988), and Yucel, et al (1988), among others, who have
addressed radiation problems in up to three dimensions in Cartesian media. Again, it is
important to note that while in Cartesian geometries the directional terms appear only as
parameters in the radiative transfer equation, in curvilinear coordinate systems the
equation includes partial derivatives in the directional variables as well. This makes the
application of the discrete ordinates method to curved coordinate systems considerably

more complex than its application to Cartesian coordinate systems. Yucel and Williams
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(1987, 1988) studied combined radiation and conduction in cylindrical media, although
they made the assumption of azimuthal symmetry for the radiative transfer equation.

The radiative transfer equation is coupled through temperature to the energy
conservation equation. Radiative transfer equation solutions, as they appear in the
literature, are often given for a specified .temperature profile or for an energy
equilibrium accounting only for radiative transfer. By expressing a more complete
energy equation, including conduction and convection effects within the medium,
combined mode heat transfer problems may be solved (see Bayazitoglu and Jones,
1990, Chawla and Chan, 1980, Desoto, 1968, Harris, 1989, Lee and Buckius, 1986,
Lee et al, 1988, Ratzel and Howell, 1982, Razzaque, et al, 1984, and Yener and
Ozisik, 1986). The usual solution algorithm is to estimate temperature, solve the
radiative transfer equation for this estimate, use the intensity solution to solve the
energy equation, make a new temperature estimate from the result, and continue until
convergence is achieved. Much of the attractiveness of the discrete ordinates method
results from the ease with which it may be integrated into numerical solution algorithms
for the energy equation (Howell, 1988).

In the foregoing discussion, the assumption of grayness has been made.
Electromagnetic intensity is a quantity which varies with wave frequency, in addition to
spatial location and direction. Grayness refers to the simplifying assumption that
intensity is uniform with frequency. Gray solution methods may be generalized to
non-gray cases using techniques which are analytically straightforward, but

computer-intensive (see Ozisik, 1973, also Siegel and Howell, 1981).

Radiation Heat Transfer in Particulate Systems

Treatment of radiation heat transfer in particulate or gas/particle systems involves

determination of: radiation properties of the medium; independence from the
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geometrical arrangement of particles in the medium; and interphase heat transfer
between the gas and particle phases.

In determining medium properties, particular concern has been directed toward
scattering by non-spherical particles, and toward categorizing particle shape and size
distributions in ground coal and coal combustion products (Buckius and Hwang, 1980,
Menguc and Viskanta, 1985b). More general studies are directed toward liquid
droplets and liquid fuel combustion products, as a means of calculating medium
absorption as a function of pressure and radiation pathlength (Skocypec and Buckius,
1984, 1987, Goodwin and Ebert, 1987, Self, 1987). In the present study, the shape,
distribution, and other properties of the seeding particles may be controlled. The
seeding particles may be considered to be spherical, opaque, diffuse, and of known
size distribution, in which case their radiative properties may be approximated simply,
as described by Siegel and Howell (1981). However, application of the results of this
study to noncontrolled media would require more careful consideration of irregular
characteristics for the gas/particle medium.

In a dispersed two phase flow, intensity scattering may generally be assumed to
be independent. In the study of packed and fluidized beds, it is recognized that in a
packed or dense fluidized bed, a scattered ray will reflect off many other particles, and
hence scattering for the medium is as much a function of particle arrangement as of the
individual particle properties. For a dispersed particle field, however, the arrival of a
scattered ray at a second scattering particle surface is a more random event, and overall
scattering is independent, similar to scattering in a homogeneous material. Drolen and
Tien (1987) have compared scattering models appropriate to either extreme in order to
define a demarcation between independent and dependent scattering. Their results are
given in terms of volume fraction of particles in the flow and the ratio of particle

diameter to radiation wavelength. For particles of the size and concentrations
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considered in the present study, Drolen and Tien define scattering to be clearly
independent. Their work supports the experimental conclusions of Brewster and Tien
(1982a).

In cases where interphase heat transfer is very rapid and interphase temperature
differences are small, the gas/particle medium is often considered to be a single
homogeneous phase. This is the case for very small particles, on the micron scale,
especially when the initial temperatures of the phases are the same. Due to the fine
particle sizes, studies of such cases tend to concentrate on turbulent particle transport
and the effect on the total medium radiative properties of the distribution of particle
number density and size (see Menguc and Viskanta, 1986, Modest, 1981, Smith, et al,
1987, Tabanfar and Modest, 1983, 1987).

In dispersed particle flows with significant interphase temperature difference,
interphase heat transfer is generally approximated as the heat transfer between a particle
of assumed shape and an infinite medium. In a medium where neither phase is
radiatively participating, this heat transfer is simply the Nusselt number, which is well
known for spherical particles. Sirignano (1983) presents results of a numerical
convection study of one sphere aligned in the wake of a second sphere, and examines
the effect on heat transfer from both spheres as a result of their interaction. At the low
interphase Peclet numbers typical of particles in the millimeter and below size range, at
separations on the order of ten diameters as considered here, even alignment directly in
a wake does very little to change the heat transfer from that calculated for an infinite
medium. Crowe (1979) has suggested a simple addition to the Nusselt number in cases
where radiation is significant, consisting of the blackbody radiation between the particle
surface and the local gas bulk temperature. This is only correct for an optically thin

gas.

One of the earlier studies of radiation and conduction/convection heat transfer in
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dispersed gas/particle flows with interphase temperature difference is reported by
Echigo and Hasegawa (1972) and Echigo, et al (1972). This study employed an
interpenetrating continua formulation with laminar flow and no interphase velocity
interference (zero drag). The continuous phase was considered to be radiatively
non-participating, with a high Peclet number based on the total flow (one-dimensional
conduction). An exponential integral solution for the radiation heat flux was used with
negligible axial variation and no scattering. Interphase heat transfer, as appropriate for
a non-participating continuous phase, was by conduction/convection alone. Inlet
temperatures for mixture flow in a tube were equal. By varying the mass loading ratio
of the dispersed phase to the continuous phase, the optical thickness of the dispersed
phase, and the conduction to radiation ratio, temperature profiles were computed with a
finite difference scheme. The phases were found to develop little temperature
difference. The effect of the particles on the heat transfer at the walls of the tube was
found to be very significant, especially at very low conduction to radiation ratios. Azad
and Modest (1981a) produced a similar analysis, with the addition of flow turbulence
and linear radiation scattering. Forward scattering was shown to increase heat transfer
at the tube walls.

In a major study sponsored by the U.S. Department of Energy, Smith, et al
(1981, 1985) developed a model for ground coal combustion in cylindrical combustion
chambers. Their model employed a turbulent, Lagrangian/Eulerian formulation for
detailed study of particle motion. Radiation was represented by a four-flux model for
intensity, using linearly anisotropic scattering and participation by both phases.
Multi-flux methods were examined by Brewster and Tien (1982b) for plane parallel
media, and found to be reasonably accurate for optically thin media and isotropic
scattering. Multi-flux methods are less accurate in cylindrical media. Smith, et al used

Crowe's (1979) radiative addition to conductive/convective interphase heat transfer.
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This model is weak in many details of radiation heat transfer, as Smith, et al sought
primarily to study combustion's chemical effects. Lee and Humphrey (1986) produced
a similar model, oriented more particularly toward particle transport in pipelines, which
employs only a two-flux radiation model. Lee and Humphreys noted the effect on
dispersed and continuous phase temperature profiles of the augmented heat source/sink

action of the particles which results from an accounting for radiation.

Objectives
The objectives of the present work are to study heat transfer to a radiatively

participating gas flowing in a tube with hot walls and injected with particles with
interphase differences in temperature and velocity. The goal of such study is to
determine techniques and parameters for enhancing heat transfer to the gas. As
compared to previous studies which established models which might be used to study
these phenomena, improvements will be offered in the area of interphase heat transfer
between the particles and gas, and in the area of overall radiation heat transfer
modeling.

When both phases are radiatively participating, current interphase heat transfer
techniques accounting for radiation heat transfer ignore the combined mode nature of
this phenomenon by simply summing a conductive/convective correlation with a
radiative correlation. A combined analysis must be performed to determine the total
heat flux resulting from the combined temperature profile in the thermal boundary layer
around an individual particle. This analysis will yield the heat transfer correlation
information to more accurately express combined mode interphase heat transfer. This
will help to meet the need, noted by Viskanta and Menguc (1987), for more accurate
assessment of interphase temperature differences in gas/particle flows.

Improved radiation heat transfer methods are needed by the current models



15
which could be used to study these phenomena (Echigo, et al, 1972, Azad and Modest,
1981a, Smith, et al, 1985). More accurate radiation heat transfer methods are available,
and have been applied to single or homogeneous phase cylindrical problems, although
they have not been extended to cases of arbitrary (nonlinear) scattering and axial
intensity variation. Howell (1988) has pointed out the flexibility and simplicity of the
discrete ordinates method for use in combined mode heat transfer problems. However,
this method has not been extended to problems without azimuthal symmetry in spatial
curvilinear coordinate problems. This extension will be made in order to accurately
express combined mode heat transfer in the fully axisymmetric problem of gas/particle
flow in cylinders of finite length.

It should be emphasized that the present analysis assumes a gray medium. Most
practical applications of this analysis involve media which are particularly non-gray.
The objective of this paper is to outline an analytical technique for solving combined
energy/intensity problems in axisymmetric cylindrical media. However, practically
applicable results of this analysis must await a computationally intensive but analytically
straightforward extension to non-gray media. Furthermore, it should be noted that the
intent of this analysis is to focus on aspects of heat transfer, and on radiation heat
transfer in particular. Therefore, the present study has been limited to laminar flow.
Using the following formulation, the methods of this study could easily incorporate a

turbulent or otherwise more sophisticated flow model.
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GENERAL FORMULATION

Interpenetrating Continua Model for Dispersed Gas/Particle Flow

The general formulation used in this study allows one-dimensional flow in a
circular duct with two phases: a widely dispersed particle phase and a nearly continuous
gas phase. The phases may have unequal velocities, and these velocities may also vary
across the duct. Momentum exchange is by fluid dynamic drag on the particles, where
each particle is unaffected by any other particle (Sirignano, 1983), and collisions
between walls and particles and between particles are assumed to be random and of
short duration, and therefore their effect is neglected (Soo, 1967). The continuity

equations for the two phases are:

i[pc[l ) %“T3N)uc] =0 (12)

for the continuous phase, where x is the tube axial coordinate, p, is the continuous
phase density, ry is the particle radius, assumed constant in this study, N is the particle

number density, and u, is the local continuous phase velocity; and:
0 ( 0. Anr3Nu ) -
AL Pa 3 T Y 0 (1b)

for the dispersed phase, where p, is the dispersed phase material density and uy is the

local dispersed phase velocity. Equation 1b reduces to:

2 (Nuyy) = 0 (Ic)

For this dispersed gas/particle flow, a low volume fraction of particles is assumed, so
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that:

1 > gngiN @)

We also assume that p,, is constant, with the result that eq.1a reduces to:

— =0 (3a)

so u, is assumed unchanged from its initial distribution, for which we impose the fully

developed laminar profile:

u @) = 2Uc[1 i (—ﬁ—ﬂ (3b)

where U, is the mean continuous phase velocity and r is the radial coordinate in the
tube, and R is the tube radius.

The assumption is made that although the continuous phase has an effect on the
momentum of the dispersed phase, the particles are not numerous enough to
significantly affect the bulk continuous phase momentum. The equation for momentum
conservation in the dispersed phase is:

du 2
Py %nr:N—dti = N%—CD(nrj) pclu-uy) (4a)

Where the assumption is made that the Reynolds number based on the particle radius

and the relative interphase velocity is less than 1, so for Stoke's flow:

24 24 1,
= = s — 4b
% Re 21,pc (1c-uy) (4b)

where L is the continuous phase viscosity. Equation 4a may be simplified using eq.4b
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to give:
ou
d He
U= = (u.-u) (4c)
d ox 32p, rj ¢ d
With an initial condition:
u,(r, x=0) = f u, @) ©)

where £, is the local ratio between the dispersed phase and continuous phase velocities,

and f,0 is its initial value, the two phase velocity field is completely described. Note
that gravity and other body forces have been neglected, implying that the particles are
small and primarily carried along with the flow.

Energy conservation is expressed similarly to the formulations of Tien (1961),
Echigo, et al (1972), and Smith, et al (1981). Neglecting heat generation by

combustion or other reactions, the continuous phase energy equation is:

Poe) e+ (o) (o, - @)

where cp,; is the continuous phase specific heat, T, is the local continuous phase bulk
temperature, g€ is conduction heat flux though the continuous phase, gR is radiation

heat flux though the two phase medium, q.4 is the local interphase heat transfer by
combined radiation, conduction, and convection, and the substantial derivative form is

employed. The dispersed phase energy equation is expressed:
403N | DTy (yegR)
{PcpsnrdN}dF“f\V‘q Jg = " 9q (6b)

where cp is the dispersed phase specific heat and Ty is the local particle temperature.
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Small Biot number is assumed, so that T4 may be taken to be constant over the
individual particle (Bayazitoglu and Ozisik, 1988). Note that the right side of eq.6a,
which is the heat given to the continuous phase by the dispersed phase, is the opposite
of the corresponding term in eq.6b, so that the sum of egs.6 is the total energy equation
for the gas/particle mixture. The effect of the dispersed phase on conduction through

the continuous phase is neglected, and Fourier's law is assumed:

(veqd] .= kVT, 0]
where k is the thermal conductivity of the continuous phase. The usual substitution for
the radiation heat flux gradient for gray media, when combining radiative transfer with
an energy formulation, is (Ozisik, 1973):

n2n

(VOqR) = 4nKB - KJszin o dydo (8a)
00

which is derived from the radiative transfer equation, discussed below. B is the

blackbody term:
B = bt 8b)

where o, is Boltzmann's constant, K is the absorption coefficient of the medium, and
the index of refraction has been assumed to be 1. The angular terms in eq.8a may be
understood to imply integration over the entire unit directional sphere, and the specific
directional coordinate system will be described later. Iis the radiation intensity, a
function of all spatial and directional coordinates. The radiation intensity is taken to be

common to the total two phase medium. However, its heating effects must be

distributed into the distinct phases. Note that k is a coefficient for the entire right hand
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side of eq.8a. The total absorption coefficient for the gas/particle medium is the sum of
the absorption coefficients for the individual phases. Therefore, the suggestion of
Smith, et al (1981) is followed in order to distribute the heat flux gradient from the

intensity into the energy relations for the two phases:

[

U

Isin o dydo 8c)

T
(V'QR)C 4nx B, - KCJ
0

e,

2n
J' I'sin o dy doc @®d)
0

T
( VoqR)d = 4nk B, - KdJ.
0
In this formulation, buoyancy effects are neglected so that the energy equations are
uncoupled from the momentum and continuity equations. Thus, the continuous and
dispersed phase velocity fields and the particle number density may be solved
independently of the phase temperatures, and the velocity results may be used directly
in the energy equations.

The radiation intensity is solved as a single quantity, as opposed to considering
the intensity to be separated between phases. A useful visualization is that the intensity
exists primarily within the continuous phase, which is an absorbing, emitting,
non-scattering gas. The particles dispersed within the gas are then considered to be
point absorbers, emitters, and scatterers of radiation. Hence, variations in radiation
intensity within each individual particle are not considered. Radiation intensity is

governed by the integro-differential radiative transfer equation for gray media,

expressed after Smith, et al (1981):

n2n

dl _ 4 = AUE D <in & A7 AF
a—s—+(1<c+1c ol = KBtk B d+ZEJJp(a’Y’a’Y) I(&,¥) sin edydae  9)
00
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where ds is a differential pathlength expressed in a spatial-directional coordinate

system, 0, is the scattering coefficient due to the dispersed phase, and p is a scattering
function, integrated over all angles which scatter into a single direction. Scattering in
any medium is generally a function of particles distributed in that medium. Since in this
case the pure gas and the particles are considered separately, there is no scattering
coefficient associated with the gas alone. Also note the separation of the blackbody
term into dispersed phase and continuous phase contributions.

For solution, the differential pathlength ds must be expanded into its scalar

components for a spatially axisymmetric, cylindrical coordinate system:

dl _ drdl, dxodl , daol 9ol (10)

ds ds or ds ox  ds oo ds dy

In Cartesian coordinate representations, the coefficients of the directional partial

derivatives (do/ds, dy/ds) are zero. However, in curvilinear coordinates( spherical and
cylindrical), these are nonzero, and hence it is necessary to have directional boundary
conditions in order to solve the angular partial derivatives. This issue will be addressed

later in more detail.
For a dispersion of particles, radiative properties may be expressed (Buckius and

Hwang, 1980, Menguc and Viskanta, 1985b, Ozisik, 1973):

| 7rr§NQa (11a)

A
]

o, = RrNQ, (11b)

d

where Q, and Q; are termed absorption and scattering efficiencies, respectively. As the

particles seeded into the tube are of controlled size, shape, material, and initial

concentration, the conditions of Siegel and Howell (1981) may be met, in which for
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spherical, diffuse, opaque, and disperse particles, which are large compared to the

wavelength of radiation (wavelength parameter x about 5 or more, particle volume

fraction of about 10-3). These assumptions allow the following:

|

Q. g (12a)

Q = 1-g (12b)

where g is the surface emissivity of the particle material. For a diffuse, opaque

spherical particle, the scattering function may be calculated rigorously as (Siegel and

Howell, 1981):
p©) = ggf(sine-ecose) (132)

where 0 is the scattering angle:

cos@ = cosacos @ + sin o sin & cos(y - 7) (13b)

Equation 13a strongly favors backscattering from individual particles.

ially Axisymmetric Directional rdin
At a given point in space, the direction of radiation intensity is defined by a
location on a unit sphere which is centered at that point in space. To imagine the effect
of the geometry of the unit directional sphere, it is helpful to make analogy to location
on the surface of the earth, were the earth of unit radius. This location is defined by
two independent angles, a polar angle and an azimuthal angle. The polar angle is
measured relative to a defined polar axis, analogous to the earth's axis through the

north and south poles. The polar angle would then be analogous to latitude, with a
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range from -7/2 to 7t/2. The azimuthal angle refers to rotation about the polar axis,
analogous to longitude, and has a range from 0 to 2x. In the coordinate system used in

egs.8, 9, and 10, o is the latitude (although its range has been transformed to O to 1),

and v is the longitude.

The directional portion of a spatial directional coordinate system generally moves,
changing origin and orientation, with the spatial location. Imagine the spatial location
of the center of the earth defined in a coordinate system based on the center of the sun.
Further imagine radiative intensity to be analogous to any property in space, say
electromagnetic flux. Expressing the electromagnetic flux at any point on earth in a
solar system based coordinate system (or the value of radiation intensity in the
analogous problem considered here) would then depend upon the location of the center
of the earth in a sun-centered spatial coordinate system, and also on the point's location
on the earth's surface relative to the spatial coordinate system. In a similar way,
expression of radiation intensity requires location in a spatial coordinate system, and
specification of a direction at that spatial location.

In most expressions of the radiative transfer equation, the directional portion of
the spatial-directional coordinate system is based on a polar axis which is
instantaneously aligned with the radial vector in the spatial portion of the coordinate
system (Ozisik, 1973, Viskanta and Menguc, 1987). In other words, for most
published solutions of the radiative transfer equation, the direction of the radiation
intensity is taken relative to an axis which is an extension of the line from the origin (the
center of the sun) to the spatial location (the center of the earth). (This represents
divergence from the earth-sun example, as the earth's polar axis is roughly

perpendicular to the radial vector). Generally, azimuthal symmetry is assumed
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(invariance with relative longitude). The polar boundary condition then results, either
explicitly stated or implicitly included in a functional approximation (Menguc and
Viskanta, 1986), that the intensity's partial derivative with respect to polar angle
(relative latitude) is zero at the polar axis (now aligned with the earth-sun radial vector),
regardless of the azimuthal angle. This symmetry condition is crucial to earlier
solutions of the radiative transfer equation in curvilinear coordinates. For a one spatial
dimension problem, the azimuthal symmetry assumption is quite justified.

In a spatially axisymmetric problem, rather than one which is radially symmetric,
symmetry is relative to a plane hinged along the axis of symmetry. The zero slope
condition only applies to path variations, ds, which are normal to this plane of
symmetry. If the polar axis which defines the directional coordinate system is an
extension of the radial vector, then that axis lies in the plane of symmetry. In such a
case, the zero slope condition will only hold as a polar partial derivative boundary
condition for azimuthal directions which are normal to the plane. In other words, the
zero slope condition becomes a function of two variables, polar and azimuthal angle,
rather than one. Therefore, the zero slope condition fails to function as a partial
derivative boundary condition for the traditional spatial directional coordinate system
(polar axis as a radial extension) when applied to fully axisymmetric problems.

In order to regain the use of the zero slope condition as a single variable boundary
condition, it is necessary to employ a directional coordinate system in which paths
normal to the plane of symmetry, at the plane of symmetry, are excursions in one
variable. Such a coordinate system, designated the Spatially Axisymmetric Directional
coordinate system, is derived in Appendix A. In this coordinate system, the polar axis
is oriented normal to the plane of symmetry. When the polar angle is such that the

direction lies in the plane of symmetry, excursion normal to the plane of symmetry is a

function only of the polar angle, o, and not of the azimuthal angle, Y. Therefore, the
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zero slope condition may be applied as a partial derivative boundary condition in the

polar angle, ., at the point where ai=nt/2. The axisymmetric problem is directionally

symmetric about the spatial plane of symmetry, in addition to spatially symmetric.

Therefore, only the range 0<o<r/2 must be solved. Using the Spatially Axisymmetric
Directional coordinate system in the cylindrical spatial coordinates of the present

problem, we may express the intensity pathlength derivative (see Appendix A):

N d a1
=< smoccosyar (Ir) - sin o sin y == o cos’ya (Icos o) 14

o.la.
7. 0 L]

Note that the azimuthal partial derivative (y) is not used in spatially cylindrical

coordinates, as dy/ds=0 uniquely.
The complete Spatially Axisymmetric Directional coordinate system as applied to

spatially cylindrical media is illustrated in fig.2

Interphase Heat Transfer

One reason for using the interpenetrating continua model is to avoid solving the
microstructure of temperature and velocity detail surrounding each particle in a

gas/particle flow. As regards temperature, of course there can physically be only one
temperature at a single point. If that point is in the gas, then this temperature is T,. If

the point is on a particle, then the temperature is T4. If the point is in the gas but close

to the particle, then the temperature is in the thermal boundary layer of the particle. An

essential assumption of the interpenetrating media model is that only the bulk phase

temperatures T, and T are treated, and the thermal boundary layer, the transition zone

between the dispersed and continuous phases, is neglected. This is a computational



Figure 2 - Coordinate system for combined radiation
and convection heat transfer in
axisymmetric cylindrical coordinates
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device, necessary because with dispersed phase concentrations up to the order of tens
of billions (1x1011) per cubic meter, it could never be possible to model the details of
each thermal boundary layer.

Still, those boundary layers exist. The thermal gradient in the boundary layer
gives rise to a heat flux from the particle to the gas nearby, which the gas spreads
within itself by its own heat transfer mechanisms to elevate the local bulk temperature
of the continuous phase. Hence, the particles act as heat sources (or sinks) distributed
throughout the continuous phase. The particles have their own initial temperature and
heat storage capability, which acts to meter out heat to the gas. In cases of low
radiative participation by the gas, the particles even have a mechanism (radiation) for
receiving heat directly from the duct walls, and then passing it on to the gas. Thus, a
crucial element in modeling a gas/particle flow is accurate expression of the heat
exchange between the particle and gas phases.

In radiatively non-participating gases, the interphase heat transfer mechanism is
only by conduction and convection. In this case, it is common (Faeth, 1983) to use
conduction/convection correlations for a single sphere (if this is an approximately
correct shape) in an infinite medium. The medium surrounding a single particle is not
infinite, of course, but for small particles, say less than 1mm diameter, separated from
other particles by ten diameters on the average, the approximation is fairly good
(Sirignano, 1983). (Most dispersed gas/particle flows meet this level of separation,
while most fluidized beds, for instance, do not).

The infinite medium conduction/convection correlations are derived by writing an
energy equation in a spherical annulus between the constant temperature sphere surface
and a constant temperature outer boundary. This is the diffusion equation in the case of
conduction (Bayazitoglu and Ozisik, 1989). The equation is solved with the outer

boundary expanded to infinity. The heat flux result is non-dimensionalized by the



28
temperature difference between the sphere and the outer boundary. In dispersed two
phase flow, this temperature difference is the temperature difference between the
constant temperature particle (low Biot number), or more precisely the local bulk
temperature of the dispersed phase, and the local bulk temperature of the continuous
phase. For the low interphase Peclet numbers typical of gas/particle flows, where the
Peclet number is derived from the very small particle diameter and the very low
interphase velocity difference, the interphase heat flux is expressed by the Nusselt

number correlation (Clift, et al, 1978):
2149, 13
Nu = —34°¢d_ = 14(1+Pe 15
T (1+Pe) 15)

where Nu is the Nusselt number, and Pe is the Peclet number, Pe=RePr (Reynolds

number times Prandtl number), or Pe=2r4(ug-u.)(pcp)/k. Although the flow field from

which eq.15 is derived is only strictly accurate up to Re=1 (Re= 2Zrg(ug-uc)p /i
Pr=0.7), €q.15 gives a fairly accurate description of Nu up to Pe=10 (Clift, et al,

1978).
In cases where radiation from the particles is important as well, Crowe (1979) has
suggested the following correction:

k(T,-T,)

qu = u 2 rd

+ edcb(Tg-T‘c‘) (16)

This can only be correct in gases where K, is not too large, because as the gas becomes
more radiatively participating, the temperature profile in the particle boundary layer is
alteredfrom the diffusion equation solution, and eq.15 no longer holds (to say nothing

of the second term on the right hand side of eq.16, which expresses radiation heat
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transfer).

In order to find a heat transfer correlation between a spherical particle and the
surrounding gas where radiation, conduction, and convection are all significant, an
analysis analogous to that which produced eq.15 was carried out, as described in
Appendix B. In this analysis, a combined mode energy equation, similar to eq.6a, was
written in a spherical annulus between a particle and an outer boundary. The annular
medium was considered to be absorbing, emitting, conducting, and in low Re motion.
As noted above, scattering is a feature of interparticle radiative transfer, hence the pure
gas annulus considered for the purpose of calculating heat transfer between the gas and
the particles is considered to be non-scattering. The equation was solved by methods
similar to those described in the following sections. As an outer boundary condition,
the continuous medium was considered to radiate a blackbody intensity at the bulk
temperature of the gas toward the particle. The thickness of the annulus was extended
until the magnitude of the heat flux leaving the particle ceased to change significantly,
and this heat flux was considered to be the infinite medium result. It is interesting to
note that the annular thickness required to achieve infinite medium results is
considerably less in the cases where radiation is a greater part of the total heat flux.

Figure 3 demonstrates the necessary annular thickness as a function of the parameter

Kk.Iq for a range of Planck numbers, Pl (Pl=k/4ry6, T 43, high PI for mostly conduction
heat transfer, low PI for mostly radiation heat transfer). The results of this study were
non-dimensionalized by a composite of radiation and conduction terms, in order to
provide regular movement between mostly radiating cases and mostly conducting
cases. Thus:

f 4 4 k -I
Qg = q | Gb(Td'Tc)*'z_rd(Td'Tc)J 17)



30
where q.4' is a function of Pl, K_ry, €3, T4/T,, and Pe. Results for &; =1 and Pe=0 are

shown in fig.4. Results for a range of &, are shown in fig.5, and for a range of Pe in

fig.6. In fig.6, note that the effect of convection is reduced in cases with more

significant radiation heat flux contribution. Comparing eq.16 to figs.4 and 5, it is

found that for small x_r4, less than about 0.1, eq.16 is reasonably accurate. However,
€q.16 has no capacity for variation with K_r4, and so eq.16 results in overestimates of

the interphase heat transfer rate as k_ry is increased.

For purposes of automating the study of heat transfer in the whole gas/particle

mixture, q.4' was fit with the following approximation:

Qeq

) 1/31
'L1+(l+nge) J' (18a)

———

a+btanh (010805, ] e

where:

a = 1.5633 + 0.6850 log(Pl) - 0.4245 -,}:—csech [0.4796 - 1.4565 log(PD)]
d

05 <a<192 (18b)

b=-0.14 + 0.21 log(P]) +%£( :0.1511 - 0.0111 P))
d

0.5 <b <-0.05 (18c)
c=2 (18d)

d = -0.05 +0.15 log(PI) (18e)
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Figure 3 - Critical radius ratio, beyond which heat flux from black inner shell
of a gray spherical annulus is within 5% of heat flux from a
black sphere in a gray infinite medium, for Ty /T, =1.5.
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e=1-008(1-g) Pl““{ 1 - tanh | 10806%,)]) (18)
£ %[1 - tanh ( 1.0651 - 0.7196 log(P1) )] (18g)
g = 1-tanh [ 13336 log(xiz,)) (18h)

Equations 18 provide a reasonably accurate fit of the data in figs.4, 5, and 6; however,
caution should be used in applying these equations, as they were derived for a gray
medium.

It should be emphasized that the effort in Appendix B to determine q_4 is not an
attempt to calculate the detailed micro-distribution of radiation intensity within a
dispersed gas/particle system. This would be analogous to attempting to calculate the
exact temperature at all points within the local thermal boundary layers around each
individual particle, abandoning the assumptions of the interpenetrating continua
approximation. Further, the goal of Appendix B is not to quantify the entire exchange
of radiation between the tube boundaries and the particle, or between the particles
themselves. These exchanges are accounted for by the system radiative transfer
equation for the entire dispersed two phase flow. What is attempted is to calculate an
exchange of heat between a single particle and the surrounding gas, so that interphase
heat transfer may be treated by an approximation which accounts for radiation in
addition to convection and conduction. This heat exchange may not be calculated by
simply adding pure radiation results to pure convection results because heat transfer in
either mode depends on the detailed distribution of temperature in the thermal boundary
layer. Inclusion of additional modes modifies this distribution, and makes correlations
for either mode alone invalid in a combined mode setting. Therefore, in order to

estimate the heat transfer between a particle and the surrounding gas, a single,
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isothermal sphere in motion through a conducting, absorbing, emitting, non-scattering

fluid is analyzed in Appendix B at a given far field temperature.

Governing Equations and Boundary Conditions

With the coordinate system for radiative transfer and the interphase heat transfer
terms complete, the governing energy equations may be written in scalar form.
Expanding eq.6a into scalar form, using egs.7, 8b, 8c, and 17, and neglecting

transience, the continuous phase energy equation is written:

oT a?_r T 2R
(pcpu)c%% - k[%g—r(r_é'rg]*'ﬁ] + 4|ccch: - KCJ‘J.Isinocdydoz
0

4.4,k
= q, 4N |L°b(Td' Te) ""Z_rd(rd' T )_II (19a)

where q.4' may be defined by eqs.18 or through a look-up table based on figs.4, 5, and
6. Expanding eq.6b by using eqs.8b, 8d, 11, 12, and 17, the dispersed phase energy

equation is written:

I'daTd 4 Ed o ]
(pcpu)dg-—ax— + g0, T, - ZJIISlnocd'ydoc
0

[k o]
= g, | W Ta T+ 5Ty Te )Jl (19b)

The velocity fields represented in eqs.19 may be solved completely with egs.3b, 3c,

4c, and 5. Equations 19 are solved using the methods described below, with the initial

conditions:

T,(r, x=0) = T (20a)

]
-

T, (r, x=0) ! (20b)
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and the boundary condition:

T.=R,x) = T, @1)

where Ty, is the tube wall temperature, which might be taken to be the combustion bed
temperature. The constant temperature boundary condition of eq.21 suggests a high
level of heat transfer from the combustion bed exterior to the tube. This may be
reasonable considering the relatively high heat transfer coefficients typically transmitted
to such tubes (Goshayeshi, et al, 1986) in comparison to heat transfer to a gas flowing
through the tube's interior.

The radiative transfer equation, eq.9, may be combined with eqgs.11, 12, 13, and

14 to form:

1 9 (1) - sin o sin v-OL + L cos v-2— 2
Tsmacosyar(lr) smocsm'yax+rcosyaa(lcosoc)+(lcc+m'dN)I

nr

4N o
= (1'8d)‘4—IJP(a,'Y’a,'Y) I(avY) Sin adyda‘
00
G, .4 4
+ KT + gy NG, T 22)

The boundary conditions for radiation intensity are:

ol(r, x, a=m/2,7) _

o 0 (23a)
representing directional axisymmetry,
aI(r---O,a ;(, o, ) -0 23b)

representing spatial axisymmetry, and
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n 1:/2 2n
J+ J I sin% cos y dy dot (23c)
0 0 3n2

which represents diffuse emission and reflection from the tube walls. The integral over
Yin eq.23c is split, as 0<y<n/2 and 3w/2<y<2x face toward the tube wall, while

m/2<y<3x/2 faces away from the wall.
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NUMERICAL SOLUTION METHODOLOGY

Discrete Ordinates Method

The radiative transfer equation is solved using the method of discrete ordinates
(Carlson and Lathrop, 1968, Duderstadt and Martin, 1978, Lewis and Miller, 1984,
Fiveland, 1984, 1987, 1988). This is an entirely numerical method in which the
radiative transfer equation is integrated over a differential cell of spatial volume and
directional solid angle. The cell intensity is then solved over the computational mesh
using a marching solution algorithm. The integral scattering term is estimated prior to
solution, updated after solution, and iteratively updated until it has converged. The
spatial mesh is chosen to suit the problem, both for the energy equations and the
radiative transfer equation. The directional mesh, however, is chosen to suit a
quadrature. Resulting from that quadrature are the directional mesh points (the
ordinates) and associated integration weights. In this formulation, the suggestion of

Abu-Shumays (1977) is applied to split the integration weights at a single ordinate point

(04Yp): Wem=wwn,. In applying the discrete ordinates method to curvilinear

coordinates, the partial derivatives for the directional angles must be treated specially.

This will be illustrated by the discretized form of the radiative transfer equation.

Multiplying by a differential element of volume, (2xtrdr)(dx)(sinado)(dy), integrating

over the ranges 1.1/ 10 Tj,/ and Xy t0 Xy, and recognizing that the integral of

(sinadar)(dy) over a cell about an ordinate (0.,Y,,) is Wy, results approximately in:
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27 (X, 1 - K1) I O W, COS Y wm[Ij+1/z.umrj+1/z‘Ij-mum’j-m]
r12+1/z 12 12 ) SIN 0, W SIN Yy wm[Ij.k+m,am'Ij,k-1/z,gm]
+ 21r(rj RV vz)(xk 12 % 1/2) cos ymwm[lj. k £+ 1/2.mA1+ 12 Ii k12, me. 1/2]

ORI NT @, o D X DL

= Gn(rjzwz rzllzxxkn/z'xk 12V ¥m [_T +ed"§NT)

2
+_(1 e JIaNG? i+ 12T 1/2)("k+1/z k- 12W) WmZZPamtm Lem™ (24)

{=1m=1
Note that in the scattering term, summing to &L corresponds to half of the o range,
O<o<m/2, as only half of the range 0<o<r need be considered due to symmetry. In

€q.24 some approximations have been made in the o integrations in order to retain the

relative simplicity of the ordinate and weight interactions. In order to retain the balance

of the equation, the coefficients inside the brackets in the 9I/da term (third line of
€q.24) have been altered. The criterion is applied that for I equal to a constant, dI/ds
should be zero (Carlson and Lathrop, 1968, Duderstadt and Martin, 1978, Lewis and
Miller, 1984; in other words, for constant I, the first three lines of eq.24 should sum to

zero). This results in a recursion equation for these altered coefficients:

-sino,w, = A[+1/2'A(-1/2 (25)

By analogy to the analytical coefficient in eq.14, cos a, the recursion is started with a

value Ap =0, where o ., ,=1/2, the angle just beyond the last ordinate point, and

the recursion of €q.25 proceeds backwards in £ This stratagem (use of balanced
coefficients) is found to be vital to the numerical stability of eq.24.

Equation 14, the radiative transfer equation, is a first order equation in several
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variables. As a consequence, only single point boundary values may be considered in a
general numerical solution; i.e., marching methods must be employed. In order to
improve the accuracy of this scheme, the linear cell assumption is employed (an
extension of the technique of Carlson and Lathrop, 1968, Duderstadt and Martin, 1978,

and Lewis and Miller, 1984):

= wt -
Lkom = % Goiem® %l i tm (263)

= wt -
Lim = Yehozom® Yelikan tm (26b)
= wt -
Ijk.Lm— Wy Ij.k.[+1/2,m+w[lj.k.[-1/2,m (26¢)
where, for instance:
I.-T,
wh= 1 12 (27a)
oo Yee e
L, .,,-T.
- + 12
W= (27b)
i+ Tj-12
and the intermediate mesh points are evenly spaced:
r = -l-(r +T1.) (28)
j+12 2 Vij+l j

At the boundaries, r=0 and ry,; p=R.

The discrete ordinates method is a fairly direct, roughly finite difference,
numerical solution to the radiative transfer equation. The method is not as intensive in
computer time as one might suppose for this four dimensional problem, due to the
reduction by quadrature to a fairly coarse directional mesh. The method is reasonably

straightforward to program, although care must be taken to preserve its stability.
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Prior applications of the discrete ordinates method in curvilinear coordinates have
been expressed in the traditional directional coordinate system, based on a polar axis
extended from the spatial radius vector. This study introduces the Spatially
Axisymmetric Directional coordinate system, and also establishes the differencing
method, eq.24, the directional coefficients, eq.25, and the quadrature, in the following

section, for discrete ordinates method applications to spatially axisymmetric problems.

Quadrature

While the spatial mesh for numerical solution is chosen in a non-deterministic
manner to suit the problem, the directional mesh is derived as a structured set of
directions (ordinates) and their associated integration weights. The set of ordinates and
weights is referred to collectively as a quadrature. Standard mathematical quadratures
are available, such as Gauss, Chebyshev-Gauss, or Gauss-Legendre. However, these
are generally spatially one-dimensional and Cartesian, and their use in the spherical
directional distribution of radiation heat transfer calculations does not seem to impart
any special accuracy (Abu-Shumays, 1977). More suitable quadratures have been
proposed by Carlson and Lathrop (1968), and by Fiveland (1987) for spatially
Cartesian geometries. Carlson and Lathrop's quadrature involves substitution of
direction cosines for the directional angles in the radiative transfer equation, and
construction of an ordered, symmetric set consistent for each Cartesian axis. A further
condition is that the zeroth (area) and first (flux) moments of the direction cosines,
summed with their weights over the unit directional sphere, equal the corresponding
analytical integral over a symmetric octant of the directional unit sphere. Carlson and
Lathrop's quadrature is not suitable for the present problem as the cosine formulation
will not fit the axisymmetric boundary condition, and this quadrature has a tendency to

favor the Cartesian coordinate directions; r and x in the plane of symmetry. Fiveland's
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quadrature is suitable for one-dimensional problems, and extends the moment condition
of Carlson and Lathrop to include the first n moments for an n-point quadrature.
Fiveland noted that this quadrature produces very accurate results; however, the higher
ranges of moments (n>2) only have solutions which are consistent with the n=0,1
solutions if the moments are taken about the polar axis of the directional coordinate
system. In the present case, this would result in a quadrature optimized for the

direction normal to the plane of symmetry, which is not of particular concern here. For

the present problem, the relevant moments are about an axis in the equatorial (0=r/2)
plane. Thus, an alternate quadrature to Carlson and Lathrop's or Fiveland's must be

developed.
In the present two-dimensional case (as opposed to one-dimensional
quadratures), each ordinate is specified by a pair (0p ¥,p)» where 1<KL and 1<m<M.

Here the [range represents a quarter circle (half of the half circle range of a polar

angle), while the m range represents an entire circle, together covering a symmetric

hemisphere. In specification of the associated weight, Wm» the suggestion of

Abu-Shumays (1977) is followed, letting Wm=WWn. Thus, the task of identifying a

quadrature may potentially extend to 2(L+M) discrete values (0t W5 Vs Wpn)-

However, some simplifications may be made. Carlson (1971) and Fiveland (1987)
noted that numerical stability of the radiation intensity computation was enhanced if all

of the weights are equal, and the moment conditions are satisfied by the ordinates
alone. Thus, w=wy is allowed for all £ and likewise w,,=w) (therefore all

W(m=WWn, are equal). It may be considered that the purpose of a quadrature is to



44

improve the accuracy of a particular quantity, at the expense of complete information on
the distribution of other quantities. For instance, in a one-dimensional problem, the
quadrature is chosen to enhance the accuracy of the radial direction heat flux calculation

at the expense of information in non-radial directions. In the present problem, we are
willing to sacrifice information on the distribution of intensity over o, which are

rotations out of the plane of symmetry, except as the o ordinates impact on the

computation of the distributions in the other coordinates. Thus, we chose a quadrature

distribution for o.. However, we do not wish to sacrifice the accuracy of distributions

which lie in the plane of symmetry, and so we choose a problem-suited distribution of

Y. Here, we choose an even distribution y_=(m-1/2)Ay and w,=Ay, where Ay=21/M.

The remaining L+1 elements of our quadrature are wy and o, 1SKL. Since Fiveland's

higher moments are insoluble in this coordinate system, only the first two moments

(zeroth and first) are specified, and an even cosine distribution for the remaining o/s is

chosen, thus favoring directions near a=n/2. Thus oc,=(L+1/2-t)[A(cos o.)], and:

T
27 M
stinadady -z 2 W, Win (292)
00 m=1{=1
TT
72 M
JJ.sinza cosydody = %— = iisin 0L COS Yy W, Wy (29b)
00 m=1(=1

serve to complete the quadrature. Equations 29 are solved to yield w=1/L and a value
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for A(cos o). Although the n-moment accuracy of Fiveland's one-dimensional
quadrature could not be recreated in this two-dimensional coordinate system, it should
be noted that the derived quadrature has a similar philosophy to Carlson and Lathrop's
quadrature for multi-dimensional spatially Cartesian problems, which is in standard use
(Duderstadt and Martin, 1978, Lewis and Miller, 1984). In both quadratures, the
zeroth (area) and first (flux) moments in the unit directional sphere are satisfied, and the

remaining quadrature points are distributed to suit geometrical convenience.

Discretized Energy Equations

The continuous phase energy equation, €q.19a, is expressed in discretized form

by multiplying by a differential element of volume, 2nrdrdx, and rearranging:

7 (pep)e (7, 1 12 1/2)[ ciier 2 lajk 1/2]
r Tc,j+1,k'Tc,j.k - Tc.;»k'Tc.j-l.k
- 21rk(xk+m-xk_v2) s R j- 12 oL

+ Tc,- [40- T - k(41( +41rr§qu) + 27r Nk]n(r r2 m)(xk+1/2 . ,/2)

= 3T”k 0, (4K, +47rrqucd)nglr+m 12 2K R 1)

k
+ q 47rr2N| b1, ikt 2r dJ.kJn:(rH/z 2 1/1)(xk+1/z - 1/2)

+ [K 2221 k(mVY m:,n(r+]/2 7 I/ZXXkH/Z 12 (302)

[=1m=

where the linearization T4=4TT*3-3T* has been used, and T* is the best prior estimate

of T. Note that the downstream conduction has been neglected as insignificant

compared to the cross-stream conduction (Pe=2U_Rp cp ,/k>100, Kays and Crawford,

1980). This improves the stability of a downstream marching algorithm. For a
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cylindrical chamber with Pe<100, the downstream conduction would have to be

included.

The dispersed phase energy equation is left in derivative form, rather than cell

difference form:

T, Td.j,k+ I/Z'Td,j.k-llz

u)
(Pept3 X 12" Xe-12
4T, (g0, +q 'csb)+L
+ Ty | ik &% T a1,
= 3T, '6)+T". g ' +T. . X
= 3Ty ; &Py + 94O + T 5 194 Cp + &3 82r;
e, M
+ 223N Ly W (30b)
(=1m=1

In eqs.30, a linear cell form similar to egs.26 is used to put the value at xy,;,, in terms

of the values at x and X, .

m ional Algorithm
The general algorithm for numerical solution is as follows: continuous and
dispersed phase temperatures are estimated as the temperature at the last x (or the initial

condition); the dispersed phase velocity is solved (the continuous phase velocity is set,
as specified by eq.3b for a given U_.); (¥) the radiative transfer equation is solved for

the temperature estimates, producing the integrated intensity terms for the energy
equations; the dispersed energy equation is solved using the most recent intensity
solution and the continuous phase temperature estimate to yield the dispersed phase
temperature; the continuous phase energy equation is solved using the most recent
intensity and dispersed phase temperature solutions to yield the continuous phase

temperature; the continuous and dispersed phase temperatures are compared to their
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estimates; if the temperatures have all converged, the solution proceeds to the next x; if
the temperatures have not all converged, both temperature fields are over relaxed to
form new estimates and iteration is continued from *. This process is illustrated in
fig.7. The iterative solution accomplishes two purposes: convergence in the nonlinear
energy equations; and convergence between the energy equations and the radiative

transfer equation.
The dispersed phase velocity, for a given u,, is the solution to eq.4c with the

initial condition eq.5; however, this results in an implicit equation:

0 fo - —“'c X -u
u; = uc+uc(f, -1)exp ™ 32pd!§ d (31a)
Instead, the explicit equation for x is used:
32 P, 1(21 1- ud/uc
X = L fﬁuc-ud-ucln - (31b)

with a Newton searching algorithm. The algorithm starts from uy(r, X ;), uses duy/ox

from eq.4c to make the initial guess of uy(r,x,), uses eq.31b to test for convergence,

and uses eq.31a to update the guess. The solution proceeds point by point across the

stream. With the solution for uy, N follows from eq. 1c.

The radiative transfer solution (for given temperature) is also iterative. As an
initial estimate, radiation intensity is set equal to blackbody intensity for a local mixture
temperature, which is the absorption coefficient weighted average of the continuous and
dispersed phase temperatures. This estimate is used to form the scattering term in the
radiative transfer equation. The solution proceeds by spatial and directional marching
procedures. (**) The spatial procedure is an outer loop, and starts at the first spatial

point inside the tube wall, marching backwards, using eq.23c to provide the starting
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advance x [-#———— given initial conditions
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Figure 7 - Computational algorithm
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Li41/2,x,m» @nd covering all inward facing . In applying eq.23c, the most recent

intensity estimate is used to determine the reflection part. The directional marching

procedure is an inner loop, and first solves the radiative transfer equation at oi=n/2,

where 01/0at=0. Using this solution to establish Ly 1/ ,,, marching is completed

over the range of £ When the range of [has been completed, the directional march
(inner loop) at a spatial point is complete, and the algorithm proceeds to the next step of

the spatial march (outer loop). This outer/inner routine proceeds to the centerline of the

tube. At this point, the solution is complete for all r and o, inwards facing ¥, and the

current x. At the centerline, eq.23b (symmetry) is applied by making each I, L2.x.tm for

outward facing y equal to the intensity for the complementary 7, which was solved on

the inward spatial march. This ensures that there is no radiation heat flux across the

centerline, and provides I 1 i m for the second spatial/directional marching

procedure, which is for all outwards facing y. From the centerline, the outer/inner

routine continues, using backwards marching for fas before, but now using forward

marching for r. In this way, the solution of intensity for all r, ¢, and ¥, and the current
X, is completed. Now a convergence criterion is applied, but only to the integrated
intensity term which appears in the energy equations. If not converged, a new
scattering term is formed, and a new wall intensity is determined from eq.23c. The
point ** is returned to, and the process continues until convergence is achieved. This

process is also illustrated in fig.7.

In cases of low continuous phase absorption coefficient, the inner (o) marching
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procedure can be unstable in backwards marching if the outer (r) procedure coefficients
are increasing; i.e., for marching out from the center after having marched in. For
decreasing spatial coefficients (decreasing radius) this does not occur. This effect is

magnified at the very small radii near the tube centerline. This instability may be
avoided by using the inward marching results to extrapolate an intensity for =0,
which, being on the polar axis, is common for y. The a=0 direction corresponds to

£=1/2, and this value may be used to start a stable forward o marching procedure for
outward marching inr.
The radiative intensity solution requires known intensity at the last x, Lx1p,6m:

However, there is no initial condition in x for intensity. The intensity solution is made

by solving the intensity at x=0, where the temperatures are known (initial conditions).

This initial intensity is solved by neglecting 01/0x in favor of 91/dr and 9I/da.. A last x
intensity is then available for intensity solutions downstream. The discretization of

d1/ox can be destabilizing, and in some cases it is necessary to suppress oI/0x

(neglecting it in favor of dI/dr and 91/da) for the first several steps downstream, before
reintroducing it to the formulation.
Since there is no cross-stream dependence in the dispersed phase energy solution

for Ty, other than indirectly through T,, T, may be solved explicitly from eq.30b within

the main iteration loop. T, is solved using an implicit formulation from eq.30a, which
is tridiagonal, and may be solved with the efficient Thomas algorithm for tridiagonal
matrix solution (Carnahan, et al, 1969). In both the continuous and dispersed energy
formulations, it is important to include the temperature dependence of the

redimensionalized interphase heat transfer terms on the left side of the equations;



51

instability results otherwise, indicating the important role played by interphase heat

transfer. For the correct correlation of the coefficient q 4" itself, it has been found to be

sufficient to base q.4' on the temperature estimate (T*).

All discrete formulations in this study have been made to accommodate an
irregular mesh. Inr, it is important to have a fine mesh near the tube walls, as
temperature varies rapidly here in combined mode heat transfer problems (Jones and
Bayazitoglu, 1990). Variation with x is very rapid near the inlet, as the medium strives
to meet the boundary conditions, but much less so further downstream. Generally, a

logrithmicly based x mesh is most useful (Bayazitoglu and Jones, 1990).
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RESULTS AND DISCUSSION

Non-Dimensional Parameters

There are 18 dimensional parameters with an impact on the solution of the
governing equations for continuous phase energy, dispersed phase momentum and
energy, and radiation intensity. These are:

» Continuous phase properties

p.  gasdensity
Cp. gas specific heat
k  gas thermal conductivity

K,  gas viscosity

K, gasradiative absorption coefficient
u,  gas velocity
T, gas temperature
* Dispersed phase properties
Pg particle material density
Cpg particle material specific heat

ry  particle radius

€;  particle material surface emissivity
N  particle number density

uy particle velocity
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particle temperature

* Boundary properties

R

X

TW

€,

tube radius

axial length coordinate

tube wall temperature

tube wall emissivity

Of the 18 dimensional parameters, four are variables (ug, N, T, and Ty), while the rest

are kept constant (or of constant distribution). By the Buckingham IT theory (Roberson

and Crowe, 1975), given the four point basis of mass, length, time, and temperature,

the 18 dimensional parameters may be reduced to 14 non-dimensional groups. The

reference basis chosen for non-dimensionalization is: R, Ty, p,, and U, (as u (r)/U, is

given, u.(r) may be represented by U,). ' The dimensionless parameters chosen are

relatively standard to combined mode heat transfer problems (Echigo, et al, 1972,

Ozisik, 1973, Azad and Modest, 1981):

Bo

Nr

=pCpUc/0, T3 Boltzmann number

=(x,+71r42N)k/46, T,,3 conduction to radiation ratio

=L Ccpsk Prandtl number

=4np rg3N/3p, mass loading ratio

=ug/u, phase velocity ratio

=p4/P. phase material density ratio
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fr  =cpy/cp. phase specific heat ratio

*  =R/ry particle size parameter

T. =KR continuous phase optical radius

o, =l-g dispersed phase scattering albedo
d d P g

€, =t, wall emissivity

0, =TT, dimensionless continuous phase temperature
0, =TT, dimensionless dispersed phase temperature
€ =x/(RBo) dimensionless axial length

Further, the mesh over R is represented by {=1/R, the dimensionless continuous phase

velocity is represented by u *=u /U, and the shorthand t,=nr2N is used, where T is

the dispersed phase optical thickness.
Rewriting the governing equations in dimensionless form, the dispersed phase

momentum equation is expressed:
of PrNrt,r*

u:f_u =

"3 m(l -£y) (32)
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The dispersed phase energy is expressed:

[ no 1

u; f, aed + (l'md)l O:- J‘J-I*Sin adyda l

373 00
|r(e4-e“l-)+——NL(e-e)| :
= -ch'L d 7€ ot +y) 9 °J (33)

where I*=I/c, T4 and the governing parameters for q4' are:

- Nrr
oy (34a)
KTy = = (34b)
T, 8
.—d - __(_i
ol (34c)
Bo(t+7
Pe = 207 (1 1) ool (34d)

Nrr*
Note in eq.34b the effect of tube to particle radius ratio, r*. This parameter is unlikely
to have a value much less than 100. The continuous phase optical thickness for most

gases, for the tube diameters considered here, will be unlikely to exceed 10. Therefore,

the parameter K ry will probably be less than 0.1 for particle-seeded furnace tubes,

meaning, from fig.4, that eq.16 can be employed without loss of accuracy.
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The continuous phase energy equation is expressed in dimensionless form:

2
E D £ z): 57 52 | *%| % OJ st‘"“‘”d“
:

0 0+ =L ©9.-6,)| 35)

= qucd'}_ 2(c+ d) _,

The radiative transfer equation is expressed in dimensionless form:

lsmacosyac(lt;)-—o-smocsmyal+ 008 Y=~ (I*cosa)+('cd+¢c)l*

4 & ¢

nn

4 T, 4 O,T o e
- %ec+(1-md)ﬁded+7@;t—d _[ fp(a,y,oc,y) Ia,jsin e dyde.  (36)
00

Verification

In order to verify the numerical algorithm, tests were run against the results of
Heaslet and Warming (1966, as presented in Azad and Modest, 1981b) for radiation
heat flux in scattering media with prescribed temperature profile, and also against the
results of Echigo, et al, 1972 for a laminar gas/particle flow with non-scattering
particles, a non-radiatively participating gas, and no initial interphase temperature
difference. Both of these analyses are for non-axially varying intensity. In addition to
verifying the solution for these cases, this procedure allowed the development of

suitable mesh sizes and distributions. The previous results were met using a quadraiure
of four points in the half range of o (a A(cos o) of 0.2545 meets the moment criteria)
and 16 points in the full range of v. An irregular radial mesh of 25 points was used,
with A varying from 0.05 at the tube centerline to 0.01 at the tube wall. A logarithmic

mesh of 30 points was used in §, covering four decades up to E=1. This mesh gave
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results within 1% of all the studied results of the previous investigations. For a given

X, five to ten iteration cycles are generally necessary to converge the energy equations

to within 0.1%. Convergence of the radiative transfer equation depends on w, and €.
For g,=1 and w,=0, the intensity is solved directly. For w;=0.5, on the order of ten

iterations are required. For €,=1, 0;=0, and the mesh given above, run times have

been approximately 30 minutes on an 8 megabit super-minicomputer.

Behavior of a Base Case

In figs.8a, b, and c, temperature profiles for both phases are shown at £=0.001,
0.01, and 0.1, respectively, for a base case where 9,,=0.5, 8,,,=0.8 (initial
temperatures), T.=1, Nr=1, r*=100, My =1, f,=1000, f, ,=1, Pr=1, fr=1, €,=1 (black
walls), w4=0, and Bo=100. In fig.8a, the initial temperature profiles are beginning to
alter to meet the boundary condition 8,,=1. Note that there is no cross-stream boundary
condition for 6, as a temperature jump is allowed between the dispersed phase and the
wall. O, alters to meet the temperature boundary condition, while 0, is affected by the

wall intensity boundary condition. The slight dip in 8, at the edge of the developing

boundary layer is due to the higher relative effect of the interphase heat transfer terms in
the dispersed phase energy equation where the velocity, and hence convective heat

transfer, is low. In fig.8b, further downstream, the core temperatures continue to



1 :l T T L) l T 1 T ¥ ' L) T T L] :‘
0.8 | 3
0.6 £ =

¢ 0.4 | E
0.2 L 3
O :l 1 1 1 I 1 i L 1 ' 1 1 1 II' 1 1 1 1 I 1 1 11
05 06 0.7 0.8 0.9 1
ec’ed
fig.8a - £=0.001

1 _l L) T L] I T T 1 T I ) ) T L) l L) II’I I T T :

0.8 | e 3
‘ 0.6 [ ' 3

0.4 | || E
0.2 [ } ]

o [ L1t FETEETERTTEN | SRR S SN AN DA TS RS |:

0.5 0.6 O 0.8 0.9 1
c’ed
fig.8b - £=0.01

1 :l T T ] l T T T T I ] 1 L L) ' L} T 1 T l T T T I_
0.8 | 3
0.6 | y 3
g - y ]
04 P 3
0.2 f /5 -

< F / E

—I 1 1 3 l 1 1 1 1 I 1 l'l IIIIIIIIII
0.5 0.6 0.9 1

0. 0.8
gc’ ed
fig.8¢c - £=0.1

58

Figure 8 - Temperature profiles at different cross-sections downstream for
a gas/particle flow with the base case parameters.



59
approach each other, responding to interphase heat transfer, while boundary layers
along the wall continue to develop. The dispersed phase temperatures lag behind the
continuous phase temperatures in the boundary layer because of the value of the
conduction to radiation ratio, Nr=1. Nr is a ratio of conduction like terms to radiation
like terms, and does not necessarily correlate the magnitude of the respective modes of
heat transfer. Generally, Nr=1 is high enough to favor conduction over radiation
(Ozisik, 1973). In fig.8c, the boundary layers are fully developed. The dispersed
phase temperature in the core, which started off hot, has been cooled by the continuous
phase and is now lagging behind the continuous phase due to relatively lower radiative
transfer from the walls, but not divergently lower, due to interphase heat transfer.
Similar effects were demonstrated by Echigo, et al, (1972).

The remaining results are given in terms of the tube's function as a heat exchange
tube in a furnace (the combustion bed). Heat exchange parameters are defined by the

continuous phase, as it is the gas which is to benefit from introduction of the particles.

Heat exchange effectiveness is defined at a given cross-section (given value of &) by the
wall temperature (assumed to remain constant) and the mean continuous phase

temperature across the cross-section:

1
2I§9cdc - ec,o
€ = 0

G 1-6,,

G7

where @, , is the initial dimensionless temperature. The number of transfer units to the

continuous phase, Ntu, is defined in dimensional terms by:
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[Prmle e

PCO

Nux) =

where Q' and Qpanicies' are the heat input to the continuous phase per unit length

from, respectively, the wall and the particles, T, is the cross-sectional mean
continuous phase temperature, and the expression is non-dimensionalized by the heat

capacity rate. Equation 38a may be written in dimensionless form:

=1
4NI' aec(c ) _ Qw ch

3
Ntu() = 2 | I 1 dt (38b)
0 1-2[¢6,d¢
0
where:
T T2
_ c * 1Y cin2
= Tc”dJJI(C 1) sin“ct cos y dydo (38c)
1 |(e -0+ Y6, )
= j ‘T, CdC (38d)
0

The fraction of Ntu which comes from the particles, as opposed to the wall, is of

interest. This fraction may be determined from the ratio of eq.38d to the numerator of

€q.38b, integrated over €. Also of interest is the heat flux at the tube wall,

Qw*=qu/0y T4, which is being carried away by the combined gas/particle mixture, and

which is necessary to maintain the boundary condition T,

n2n

« _ 4Nr 81 J' Jf@:l)sinzoccosvdvda 39)
00

qW - TC ac
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Figures 9a, b, and ¢ show the downstream heat transfer properties associated

with figs.8. Figure 9a shows the number of transfer units, Ntu, to the continuous

phase as a function of . Ntu increases steadily up to a & of about 0.01, and then
increases at a lower rate. Figure 9b shows the fraction of Ntu which is due to the
particles, as opposed to heat transfer to the continuous phase from the walls.
Correlating with figs.8, the particle contribution is between 30% and 50% while there
is a large temperature difference between the phases. As the continuous phase
temperature comes up to the particle temperature and exceeds it, this fraction reduces
and eventually becomes negative as the cooled particles remove heat from the
continuous phase. The base parameters considered here do not lead to a case where
additional heat flows from the walls to the particles by radiation, and thence to the gas.

Here, heating of the gas by the particles is due to the initial temperature difference, and

the advantage of injecting heated particles is spent once the tube length exceeds £=0.01.
Figure 9c shows the wall heat flux necessary to keep up the temperature boundary
condition. This is very high at the outset, due to the initial temperature differences with

the wall, and declines as the gas/particle mixture is heated.

Variation of Individual Parameters

Starting from the same base set of parameters as figs.8 and 9, fig.10 shows the

effect on heat exchange effectivity of varying the mass loading ratio of particle mass to

gas mass. Low M|, <0.1, has little effect on the heat exchange tube's effectivity. For

M =1, for low &, effectivity is improved. For & beyond the point at which the particles

are no longer heating the gas, effectivity is impaired. As M, is increased, this effect of

initial improvement followed by impairment is emphasized. Qualitatively, this might be
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expected as a result of the effect of seeding the gas with more and more hot material.
Figure 11 shows the effect of increasing the tube to particle radius ratio, r*. As

r* is increased, the optical thickness of the dispersed phase increases as a result of the

greater total surface area of the dispersed phase at constant M;. Also, for constant Nr,

increasing T4 decreases k. These effects combine to make dispersed phase radiation the

dominant mode of heat transfer in the gas/particle medium. However, for high optical
thickness, heat flux at the edges of a medium is low (Bayazitoglu and Jones, 1990).
Thus, for high r*, the phase temperatures quickly come to equilibrium as a result of the
large interphase area, but gain heat from the walls at a slow rate, due to the insulating

effect of high optical thickness. This behavior is illustrated in fig.11, where as r* is

increased, effectivity is enhanced for short &, but impaired for longer tubes.

Figure 12 illustrates the effect of increased optical thickness directly, by varying

the optical thickness of the continuous medium, T, Again, it must be noted that for

constant Nr, as T, is increased, k is reduced. As a result, optical insulation and reduced

conduction are imposed on the medium simultaneously, with a predictable effect on
heat exchange effectivity.

Figure 13 demonstrates the effect of varying the conduction to radiation ratio, Nr,
with all other parameters held constant. Since optical thickness is constant, varying Nr
in effect translates directly to variation of k.

Figure 14 shows the effect of varying the particle inlet temperature; in effect, it
shows the value of reheating the particles and reinjecting them into the heat exchange
tube. With reference to fig.10, the phenomenon demonstrated here is to delay the

transition point at which the gas passes from being heated by the particles to where the
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particles are being heated by the gas. For extremely short tubes, £<0.0001, injection
temperature has little effect, as the rate of interphase heat transfer lags briefly behind the

immediate effect of the wall temperature conductive boundary condition. For very long

tubes, £>1 (for the base set of other parameters), it can be seen that the gas will be

heated to the wall temperature eventually regardless of particle temperature. For

intermediate &, the impact of increased particle inlet temperature on heat exchange

effectivity can be significant.

Most other parameters have only a minor effect on the heat exchange effectivity,

or mirror the effects of other parameters. The material density ratio fo, for constant

mass loading ratio, in effect varies the optical thickness downwards with the same
effect as for other parameters which accomplish this. The initial velocity ratio between
particles and gas had very little effect on heat transfer. Higher particle velocities
persisted well into the tube, but considering the inverse effect of r* on the interphase

Peclet number, eq.344d, there is little increased interphase heat transfer, and the

convective effect on the overall flow of u, at, say, twice u,, is found to be minor. The
specific heat ratio, fr, was not varied, nor was the wall emissivity, €, or the gas inlet
temperature. The dispersed phase scattering albedo was varied over the range 0<w<1.

High scattering was found to reduce heat exchange effectivity by about 10% for the

base parameters tested, fairly uniformly over €. The effect of Prandtl number, Pr, is
only reflected in the drag on the particles at unequal interphase velocity. Since the

effect of velocity ratio is small, Pr was not varied. The effect of Boltzmann number,

Bo, is mostly reflected in the non-dimensionalization E=x/(R Bo). Direct effects of Bo
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for constant & are small.

Example Calculation

As a means of demonstrating the enhancement of heat transfer in a tube as a result
of particle seeding, the following situation is considered: Steam at 500 K and about 10
atmospheres pressure enters a 2 cm diameter tube with a mean velocity of 1 m/s, which

passes through a fluidized coal combustion bed at 1000 K. It is desired that the steam

be heated to 800 K (effectivity €,,=0.6). Constant properties are assumed, with: p_=3

kg/m3, cp=2000 J/kgK, k=0.06 W/mK, 1 =0.00003 kg/ms, and =70 /m (Oxzisik,

1973, using a Planck mean coefficient). It is assumed that the seeding particles are
some ceramic or stone like material, with ry=100 pm, p=2500 kg/m3, cp,=800 J/kgK,
and €,~1, injected into the tube at the gas speed and at 800 K. The dimensionless
parameters for this example are: 6, ,=0.5, 64,=0.8, ©.=0.7, r*=100, £,=833, f, ,=1,

Pr=1, fr=0.4, €,,=1 (black walls), w3=0 (black particles), and Bo=106. The mass
loading ratio and conduction to radiation ratio are related to N, the particle number

density, by M; =3.49x10°m3N and Nr=0.0185+8.31x10-12m3N (or
Nr=0.0185+0.00238M_).
Figure 15 shows the effectivity for the example case at My =0, 1, and 10. M;=0

corresponds to a radiatively participating gas with no particles. For M =0, the heat

exchange tube must be §=0.212 in length (x=225 mm) to achieve the effectivity
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requirement. For M; =1, £€=0.189 is sufficient (x=200 mm), an 11% reduction. For

M, =10, £=0.089 (x=94 mm) will allow €,;=0.6, a 58% reduction in tube length. At

M; =10, the volume fraction of the particles is 1.2% and the average interparticle

separation is 8.73 times the particle radius.

Figure 16 shows effectivity for the example case at M =1 and 10, with =0 and

0.7. The t =0 result corresponds to a model similar to Echigo, et al (1972) or Azad
and Modest (1981b), where radiative participation by the gas is not considered. At

M, =1, a considerable part of the overall absorption coefficient is due to the continuous
phase, and neglecting it can lead to significant errors. For M; =10, the absorption

coefficient of the particles is high enough to essentially mask neglect of the gas

absorption.
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CONCLUSIONS

In this study, a model is developed for combined radiation, conduction and
convection heat transfer in dispersed two phase flow of gray, laminar, axisymmetric
media with significant interphase temperature differences. The model extends treatment
of such flows by considering radiative participation of the continuous phase using an
accurate numerical model for solution of the radiative transfer equation. The model is
formed of discrete parts expressing radiation intensity, energy conservation in each
phase, and dispersed phase momentum. As such, the model may readily be extended
to treat non-gray and turbulent cases.

In order to treat fully spatially axisymmetric problems, in which the frequent
assumption of azimuthal symmetry for the radiation intensity directional dependence
does not hold, a new coordinate system is developed. The Spatially Axisymmetric
Directional coordinate system allows unrestrained variation of intensity parallel to the
plane of symmetry, and provides a correct boundary condition for directional rotations
out of the plane of symmetry. Expressions for the path derivative of radiation intensity
in the new coordinate system are provided for spatially cylindrical and spatially
spherical coordinates.

The discrete ordinates method is used for solution of the radiative transfer
equation. This method is highly adaptable to combined mode heat transfer calculations
due to its differential nature, straightforward concepts, and adaptability to variable
properties, scattering functions, and boundary conditions. The discrete ordinates
method has been extended to the Spatially Axisymmetric Directional coordinate system
by deriving balanced discretized expressions of the radiative transfer equation in
spherical and cylindrical coordinate systems; also, a quadrature of comparable accuracy
to other widely used quadratures has been developed for the new coordinate system.

It is proposed that heat transfer in furnace tubes could be enhanced by injection of
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heated particles into the gas stream. This method is shown to significantly reduce the
necessary tube length in cases of high particle mass loading and high initial interphase
temperature difference. The later indicates the value of reheating and recycling the
seeding particles in a closed cycle. Mass loading ratios for the flow of seeding particle
mass to carrying fluid mass must generally be greater than one, and as high as ten, for
heat exchange enhancement to be significant. Decreasing the size of the seeding
particles relative to the tube radius is also advantageous, especially for short tubes.

In order to verify interphase heat transfer correlations for combined radiation,
conduction, and convection acting between the dispersed and continuous phases,
combined mode heat transfer is formally modeled for a sphere in motion in an infinite
fluid. Itis found that in radiation dominant cases, the required practical extent of the
“infinite" medium is considerably less than in conduction dominated cases. In cases

with small particles and a low continuous medium absorption coefficient, so that the

product K1y is less than 0.1, a simplified correlation for combined mode heat transfer is

found to be accurate. For higher x 1, heat transfer is overestimated by the simple

correlation. However, the case of heated particle seeding of gas filled furnace tubes

corresponds to relatively low K ry.
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APPENDIX A - SPATIALLY AXISYMMETRIC DIRECTIONAL
COORDINATE SYSTEM

INTRODUCTION

The objective of this appendix is to demonstrate the form of the radiative
pathlength derivative, dI/ds, in the coordinate system designated Spatially
Axisymmetric Directional, for both spatially spherical and spatially cylindrical
coordinates.

The Spatially Axisymmetric Directional coordinate system, illustrated in fig.A.1
for spatially spherical coordinates, is a spatial-directional coordinate system based on a
polar axis which is normal to the spatial plane of symmetry, and is therefore
perpendicular to the spatial location vector. This is different from the spatial-directional
coordinate system generally used to express radiative intensity (see Lewis and Miller,
1984), in which the polar vector is an extension of the radial spatial component vector
in spatially spherical and cylindrical coordinate systems. In the traditional coordinate
system, differential paths ds normal to the plane of symmetry, at the plane of
symmetry, are not functions of one directional coordinate. This leads to difficulty in
expressing boundary conditions for the directional variable partial derivatives, which
appear in the radiative transfer equation in curvilinear spatial coordinates.

The approach taken in this appendix is to derive the pathlength derivative in
spatially spherical coordinates, and derive the spatially cylindrical expression from that

result.



Figure A.1 - Spatially axisymmetric directional coordinate system
for representation of radiation intensity
in spatially spherical coordinates
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SPATIALLY SPHERICAL COORDINATES

The Spatially Axisymmetric Directional coordinate system for spatial spherical

coordinates is shown in fig.A.1. The spatial location is defined by r,0, and y, where y

is the rotation out of the x-y plane (plane 1), about the x axis, out to the plane of

symmetry (plane 2), and r and ¢ define the location in the plane of symmetry. The
direction of the radiation intensity at the spatial location is defined by a second spherical
coordinate system with its origin at the spatial location. The polar axis is normal to the
axisymmetric plane (plane 2). The corresponding azimuthal angle lies in a plane

parallel to the plane of symmetry. The azimuthal angle is the rotation about the polar
axis defined by 7; the polar angle o is defined in a plane (plane 3) which is hinged on
the polar axis and rotated through y away from the radial vector extension (the

arbitrarily defined y branch cut); directions with oi=n/2 and any ¥ lie in the plane of

symmetry (plane 2).

Using the coordinate system of fig.A.1, we may expand the intensity pathlength

derivative into scalar form:

ﬂ= g.a_l.'. @.a_l.f.d_w_a.l_.*.daiq. ﬂgl_ A1)

ds ~ dsor dsap ds oy ds oo ds oy

where the spatial coordinate coefficients may be derived from projections of the path

length element ds onto the radial, binormal, and normal unit vectors (for, respectively,

the r, ¢, and y coefficients):

ar g
ds sin oL cos Y (A.2a)
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do _ 1 . .

a = '-I,—Sln osiny (A.2b)
dy _ cosa
ds ~ rsin¢ (A-20)

The directional coordinate coefficients are derived by noting the correlation
between the differentials of the spatial and directional angles. If the change in a
directional angle with the differential path ds lies in a plane parallel to the plane in which

the change in a spatial angle lies, then these two differential angles may be related as
shown in fig.A.2 (see also Ozisik (1973), p.262). Since changes in y are always in a
plane parallel to the plane of symmetry, which contains changes in the spatial angle ¢,

through the identity that the sum of interior angles of a triangle sum to =, it is easily

shown:

) (A.3a)

dy

and therefore:

dy 1

5 = -y sinasiny (A.3b)
The change in polar angle do. may be related to the change in the spatial angle out

of the plane of symmetry dy by projecting dy into the plane of de, as shown in
fig.A.3. Figure A.3 shows the spatial plane of symmetry in the plane of the page; note

that the vertical axis is y", as defined in fig.A.1. By the definition of the polar axis in
the Spatially Axisymmetric Directional coordinate system, the plane of dot must be

normal to the plane of symmetry, rotated through an angle 7y from the radial vector's



Figure A.2 - Correlation between differential spatial angles
and differential directional angles - first kind
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plane of do

Figure A.3 - Projection of spatial azimuthal differential angle (dy)
on plane of directional polar differential angle (dot)
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extension. If the plane of dy is projected onto the instantaneous plane of do, in which

dy is transformed to d\yp, then the analytical relationship may be expressed:

do _ 9y 9% do
&~ ds dy dy, (A48)
in which:
dwp
W = cos (A.4b)
where:
B=72-0-v (Adc)

Figure A.4 shows both d\;ip and dot in the plane of the page, where the vertical axis is

y" as defined by fig.A.3. Solving the angles of the triangle results in:

do = d\yp (A.4d)

By applying trigonometric identities, the result is achieved:

da COSOL (i :

ao + .

ds rsin 6 (sinycos ¢ + cosy sin¢) (Ade)
Substituting eqs.A.2, 3b, and 4e into eq.A.1, and applying conservative form, gives

the final result for spatially spherical coordinates:

a _ 1 ra sinasiny g . cosa A
ds rzsmacosYararz)+ rSin¢ a¢asm¢)+ I'Sin¢a\l[
1 siny | 5 ino 9 .
+ -F[Cosa+tan¢]5&-(ICOS(x) -%—a—y-(lsm'w (A-S)

which reduces properly to simple form (only I in the derivatives). In axisymmetric



Figure A.4 - Correlation between differential spatial angles
and differential directional angles - second kind
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problems, d1/oy=0.

SPATIALLY CYLINDRICAL COORDINATES

The coordinate system for spatially cylindrical coordinates is shown in fig.A.5.

In this coordinate system, the intensity pathlength derivative is:

dl _ drdl, &k, Woa  dauor , dar
ds = dsor  dsox | ds dy | ds 9o T ds ay (A.6)

and the spatial derivative coefficients may be seen from fig.A.5 to be:

a_ g
ds sin oL cos ¥ (A.72)
% = -sinosiny (A.7b)
dy _ coso
— = e (A.7c)

The directional derivative coefficients in the spatially spherical coordinates case resulted
from the new direction of I with respect to the directional coordinate system as defined
with its origin in a new location, following the spatial relocation ds. In other words,
since the location had moved by ds, the directional coordinate system was reoriented
based on a repositioned polar axis and azimuthal branch cut, and the direction
coordinates as defined by this new directional coordinate system were different than the
directional coordinates defined by the old directional coordinate system, before the
spatial relocation ds. Put more succinctly, the directional derivative coefficients are the
directional bookkeeping resulting from a spatial move ds. The absolute direction of

intensity remained constant throughout the spatial move ds. In spatially cylindrical

coordinates, because vy is defined with respect to the radial vector, and because the



Figure A.5 - Spatially axisymmetric directional coordinate system
for representation of radiation intensity
in spatially cylindrical coordinates
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radial vector never changes its orientation with respect to the plane in which yis

defined, for a constant absolute direction and a spatial change ds:

dy _

Fralie 0 (A.8)
This can be shown mechanically by starting from the spatially spherical directional
derivatives and imposing d¢=0, with the result dy=0.

For o, the construction is similar to that for spatially spherical coordinates, with

the exception that B=y, resulting in:

daa _ 1
% = Teosocosy ) (A9)

which could be shown mechanically by starting from the spatially spherical directional

derivatives and imposing ¢=m/2.

Combining egs.A.6, 7, 8, and 9 and putting the result in conservative form:

d. _ 1. d o . Ol
Frile rsmo;cosy—ar (Ir) asmocsmy—ax
1 o 1 9
+ rcosocaw + rcos’yam(lcos o) (A.10)

which reduces properly to simple form. In axisymmetric problems, dI/oy=0.
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APPENDIX B- INTERPHASE HEAT TRANSFER BY COMBINED
RADIATION, CONDUCTION, AND CONVECTION

INTRODUCTION

Although heat transfer by convection from a sphere in motion through an infinite
medium has been extensively addressed in the literature, there has been little attention
given to the case in which radiation heat transfer through participation of the medium is
also significant. In a medium which is both radiatively participating and conducting,
the existence of these two modes of heat transfer gives rise to temperature profiles
distinct from those corresponding to either radiation, conduction, or convection acting
alone. As aresult, it is necessary to perform a combined analysis to determine the heat
flux from a sphere in such a medium, and it may not be accurate to simply add heat flux
correlations taken from independent analyses of either heat transfer mode.

Correlations for heat transfer from a sphere in motion in non-radiatively
participating media are derived by considering the sphere to be a constant temperature
inner surface in a spherical annulus, where the outer surface is expanded to infinity and
is also held at a constant temperature. In the case of zero velocity, the analysis reduces
to solution of a second order differential equation. In the present radiatively
participating case, a spherical annulus is similarly addressed. However, radiation heat
transfer terms in the energy equation are governed by the continuous radiation intensity,
which is the solution of the radiative transfer equation. Therefore, in the present
analysis, it is necessary to solve a coupled formulation for the temperature and the
radiation intensity in the thermal boundary layer around the particle in order to express
the overall heat transfer between the particle and the continuous medium. The results of
this analysis, either in graphical or correlation equation form, may be used to express

heat transfer between a dispersed spherical phase in motion through a continuous
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phase, developed in a manner analogous to the widely used correlations for the special
case of a radiatively non-participating medium (Nusselt number).

One-dimensional heat transfer by radiation alone in a spherical annulus has been
solved by a variety of methods. Ryhming (1966) and Viskanta and Crosbie (1967)
presented coupled temperature and intensity solutions using an exponential integral
solution for the radiative transfer, set out by Kuznetsov in a 1951 Russian language
paper. Viskanta and Merriam (1968) included conduction in the medium in a similar
analysis. Bayazitoglu and Suryanarayana (1989) developed closed form solutions to
the pure radiation problem using the spherical harmonics method for the radiative
transfer, as developed in Bayazitoglu and Higenyi (1979). Tsai, et al. (1989)
addressed the radiative transfer for a given temperature profile using the discrete
ordinates method. These analyses are all one-dimensional in that there is only radial
variation in the temperature, and are thus spatially radially symmetric. As a result, the
variation of intensity with direction may be expressed in a single angular coordinate,
being directionally radially symmetric as well. The present problem, involving flow
over a sphere, is spatially two-dimensional and axisymmetric. The resulting radiative
transfer expression must involve two angular coordinates. Therefore, none of the

previous solutions for radiative transfer in a spherical annulus apply directly to the

present problem.



Medium

Figure B.1 - Spherical body in motion through a
gray, absorbing, emitting, conducting medium
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ANALYSIS
Governing Equations

The geometry of the problem is illustrated in fig.B.1 as an axisymmetric slice of a

spherical annulus. The energy equation in this region may be written:

pcp% + Veoq€ + VeqR = 0 @B.1)

Assuming steady state, constant properties, an index of refraction of unity, Kirchoff's

law, and making substitutions for each term, we have:

T 2%

c, VoVT - kVT + 4xoT* - x | | Isinodyda = 0 (B.2)
PCp
00

where the radiation intensity I is integrated over a directional element of solid angle. It

is assumed that the medium is gray, with radiation intensity not varying with radiation
frequency, so that x is a spectrally averaged quantity. The velocity field is assumed to

be known. Equation B.2 may be written in scalar form in r and ¢ in the normal way.

It is assumed that the medium is non-scattering, A possible application for the
results of this analysis is as an expression of the interphase heat transfer term in a
particle or droplet flow. In such a flow, the principal scattering mode is scattering from
the particles or droplets themselves. The present problem, as applied to such a flow,
represents only a single particle or droplet, surrounded by the continuous medium in
pure (non-particle laden) form. Therefore, scattering has been neglected for the present
analysis of interphase heat transfer. This might be regarded as an inner, single-particle
problem, where the outer, multi-particle problem would involve both interparticle

scattering as well as the inner problem heat transfer results. The non-scattering, gray,
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constant properties form of the radiative transfer equation, assuming Kirchoff's law,
and with an index of refraction of unity is:

Ll = kg1 B.3)
where the radiation intensity I and the differential path length ds are functions of both
spatial variables and the two angular variables necessary to define the direction.

Intensity is therefore a four-dimensional quantity in this problem.

rdin m
For one-dimensional problems, a suitable and frequently used coordinate system
is based on a polar axis which is a unit extension of the radial vector. The two
components of direction are then the polar angle, rotated out from the radial extension,
and the azimuthal angle, rotated about the radial extension. This system is
advantageous for one-dimensional problems because these problems are symmetric in
the azimuthal angle, and there is a zero-slope boundary condition at each end of the

polar angle excursion. However, neither of these advantages apply to the

two-dimensional problem considered here. Since the temperature varies with ¢, the
radiation intensity cannot be symmetric with an azimuthal angle about the radial
extension. Further, for this (spatially) two-dimensional problem, the symmetric
zero-slope boundary condition for the polar angle holds only in special cases.
Therefore, the coordinate system established in Appendix A is applied, using the

expression for dI/ds from eq.A.5.

Boundary Conditions

The sphere is assumed to have a constant surface temperature, which is known,
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and the medium bulk temperature outside the thermal boundary layer is also assumed to

be known. Thus:

T(ry,¢) = T, (B.4a)

T(Tp,0) = T, (B.4b)
where d denotes the dispersed phase (the droplet or particle), ¢ denotes the continuous
phase (the medium), and r,,, is the computational outer boundary. Due to the

axisymmetry of the problem, leading and trailing edge boundary conditions may be

written:

g;%(r,m =0 (®.5a)
M Ty - g (B.5b)
o -2 '

The radiation intensity at either boundary facing into the annulus is assumed to be
known. Here a boundary condition is used at the inner surface which is consistent with

diffuse emission and reflection from the solid surface of a particle:

Kr,0,0,7,,) = (B.6a)
3n
2 %

ot 1 .2
ed&—Td + (l-ed)EJ‘ JI(r ,0,0,Y) sin“o. cos ydo dy
T 0

2
where v, , on the left hand side denotes that I, is given only for those ¥'s facing away

from the sphere's surface, and the integration range for v on the right hand side

includes only those ¥'s facing in towards the surface. As alternatives to eq.B.6a, a



99
specular surface reflection or any other non-diffuse surface intensity distribution could

be substituted. At the outer boundary, a black, diffuse boundary condition is assumed:

s » 02 0 ¥,) = I, = ST (B.6b)

A leading edge boundary condition also applies to the radiation intensity:

aaTI>(r’ 0,0,7) = 0 ®.7)

The radiation intensity is symmetric in &, so only half of the range O<o<n/2 is

considered. Normal to the plane of symmetry:

Lo, y) =

o @, 9, 2,7) 0 B8.8)
The radiation intensity is continuous in y. Parallel to the axisymmetric plane, for all o

I(1,¢,0,0) = I, ¢, o, 21) ®.9)

Numerical Procedure

To summarize, the problem is a non-linear, second order, two-dimensional
energy equation coupled to a linear, first order, four-dimensional radiative transfer
equation. The overall numerical scheme is to estimate temperature, solve the radiative
transfer equation for the given temperature, and use the resulting intensity to solve a
linearized form of the energy equation. The temperature solution is then compared to
the temperature estimate, a new estimate is formed by over-relaxing the estimation

error, and the loop is repeated until convergence is achieved. The energy equation is

multiplied by an element of volume, 27tr2 sin ¢ d¢ dr, and integrated between Ij.1/2 and
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Tjs172, and between ¢, ;» and ¢y, , to reach the final form of the finite difference

equation. A variable mesh is used in r to provide very fine spacing near the sphere's

surface, and provide the ability to expand to very large values for the outer boundary.

A uniform mesh is used in the ¢ direction. The energy equation is block tridiagonal and
could have been solved with a specialized block matrix version of the Thomas
algorithm; however, since iteration is already required for the linearized terms, the more

rapid, iterative solution method of alternating direction implicit (ADI, see Anderson, et

al (1984), p.136) is used to solve the energy equation in the r and ¢ directions.

For the numerical simulation of the radiative transfer equation, the conservative
form for the path length derivative is used, eq.A.5. The conservative form is generally
necessary for numerical stability in spherical coordinate systems, although it is not

mathematically necessary in this case. Equation A.5 is multiplied by an element of

volume and solid angle, 2nr2 sin ¢ d¢ dr sin o do dy, and integrated over Ar, A, w,,

and wy,. The final form of the difference equation is:

: : : )| r2 -1 12
4 sin 01,08 Yy sin 8¢, sin ¢, w,wy | G+12 %412~ YnTie

Lo1psing, 1/2]

+ 27 sin 8¢, 5rj2 Win(COS Yipsin ¢, + sin y,cos ¢k)[I[+ s e 1/).]

Im- 12 rm- 1/2]

: : I sin -
+ T sin oztsmymﬁrj2 W[Wm[ k+12 509, 1p

+ 21 sin o sin 89, sin ¢, 87w, Ine12 Tms1r2 -
4n . .
+ Ik~ 8rj3' sin 8¢, sin ¢, w,wp,

= T% 43—6 8rij sin 8¢, sin ¢, W, W, B.10)
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where:

8¢, = %(¢k+1/2 ) ¢k-1/2)

Equation B.10 uses the linear cell-center relations:

L= 25,0+ §pp) (B.11a)
I = %(Ikﬂfl + Lp) (B.11b)
I = %:(IHIIZ + 1) B.11¢)
I = %(Im“,z +1.1) B.11d)

These are termed the "diamond difference" relations by Lewis and Miller (1984). In

eq.B.10, the coefficients A and I" replace the analytical coefficients of eq.A.5 as a
means of satisfying the condition that for constant I, dI/ds=0. This condition is
non-trivial because while the derivatives of the coefficients inside the partials in eq.A.5
cancel in the sum over all four terms, the same is not necessarily true for the finite
difference form of the derivatives. In order for the condition dI/ds=0 for constant I to

hold for the discretized form, it can be shown that the spatial and directional meshes

must be uniform. Rather than allow this restriction and loose the o quadrature and the
variable r mesh, the coefficients in the discretized form of the equation are altered
specifically to satisfy the condition dI/ds=0 for constant I. This condition is discussed
more fully by Lewis and Miller (1984). Applying the condition directly to solve for the

discrete coefficients gives the recursion equations:
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Apip - Apqp = -wsino (B.12a)
I‘m“/2 - I‘m_v2 = - Wp COS VY B.12b)

By analogy to the analytical coefficients, with oy |, ,=nt/2 and 7, ,=0, Ap ,;,=0 and

I, =0 are taken as starting values for the recursions.

RESULTS AND DISCUSSION
In order to determine the parameters important to the solution, the energy equation

is written in non-dimensional form, substituting dI/ds for the radiation terms:

sinosiny g

Fong 3 (sin ¢ D) sin o dox dy

cosy + ——lJé%‘_(cosocdﬂsinadady

w
J‘ sinoc%(sinyfb)sinad:xdy
0

12 cza—@) 1 3 [sing 2
'[zac{ ok )* sm¢a¢( a¢]

V¢J 90
(’ﬁ’?q}' = 0 B.13)
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where:
©@ = T/T,
® = 1/40T,
£ = r/r

The first group of four terms in eq.B.13 is the radiation part, the second group is the
conduction part, and the third group is the convection part. The importance of the

radiation term relative to the conduction term is governed by the Planck number,

Pl=k/(4r40T43), and that of the convection term by the Peclet number, Pe=(2Urgpcp)/k.

Similarly, we may rewrite the radiative transfer equation:

1. _;;_(Czq))+sinasiny (sin ¢ ®)

Smosnyd
sing o0

+ %[cosv + Eﬂl]_a_(cos a®)  sino

9 | si
= ¢ _a_y[snyd))

(B.14)

to illustrate the governing parameter Kry; the importance of &, is indicated by the

boundary conditions. Note that kr is the non-dimensionalized radius of the sphere,
rather than any physically meaningful optical thickness, as the region inside r4 is not
part of the medium. Further, due to the nonlinear influence of 6 upon @, the

temperature ratio Ty/T; is also a governing parameter. Summarizing, the important

parameters in this problem are P}, Pe, kry, €, and Ty/T,. These are the only parameters
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which affect a suitably non-dimensionalized result. The rather large number of
controlling parameters, as compared to conduction/convection alone without radiation,

is a result of the combined mode nature of the problem. In pure radiation, for instance,

it may be possible to non-dimensionalize heat flux in such a way as to remove kr4 from

the parameter list. However, with combined modes, this is not justifiable.

Figure B.2 shows temperature profiles near the sphere's surface at Pe=0, a very

large 1,44, and a variety of PL. For Pl large, the energy equation is dominated by
conduction, and the temperature profile is the solution of the one-dimensional spherical
diffusion equation. For Pl near zero, radiation heat transfer dominates the energy
equation. The resulting temperature profile shows a temperature jump at the boundary,
as it should for pure radiation. As Pl is varied down towards zero, the temperature
profile moves from the conduction solution to the radiation solution, although
temperature continuity at the boundary is maintained. The steep gradients near the
sphere's surface for moderate Pl dictate a fairly fine radial mesh. The results used for
interphase heat transfer in gas/particle flows were generated using a non-uniform radial

mesh of 72 points, a uniform spatial angular mesh of 9 points, a quadrature directional

polar angular mesh of 4 points (not including o=n/2, which is calculated as a special
point without weight), and a uniform directional azimuthal angular mesh of 16 points.
This directional mesh represents the level of discretization necessary to match the
results of Viskanta and Crosbie (1967) and of Tsai, et al (1989) within 1%. The radial
mesh is finer than required to meet this criterion, in order to track the continuous
temperature distribution near the sphere surface, and was chosen to meet 0.1% self
convergence. The angular mesh was also chosen for a 0.1% self convergence
criterion, as applied to the heat flux results.

An important issue in applying the results of this analysis to interphase heat
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Figure B.2 - Temperature profiles for a black sphere in an infinite medium;
for radiation alone, conduction alone, and for combined

radiation and conduction, with Ty4/T; =1.5 and x1,;=1.
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transfer in particle and droplet flow is the extent to which infinite medium results apply

to non-infinite particle separation. In fig.3 (main text), the finite radius ratio r,,,,,, /r4 for
which the heat flux from the sphere's surface is within 5% of the heat flux leaving the
surface in an infinite medium, is shown as a function of the non-dimensionalized
sphere radius. This is somewhat analogous to a thermal boundary layer thickness.
Figure 3 shows that for high Pl, corresponding to a conduction dominated heat
transfer, errors due to non-infinite dispersed phase separation will be incurred at a
much larger radius ratio than for low P, radiation dominated heat transfer. Therefore,
use of the present results in the limited context of local heat transfer between a droplet
or particle and the proximate gas is at least as accurate as using an infinite-medium
Nusselt number in a radiatively non-participating continuous phase. These results were

computed for Pe=0. Note that for Pe#0 there will be an increasing thermal wake,

which will have an effect on the critical r,,/ry.

Pure radiation heat flux is often non-dimensionalized by 6(T44-T4), while

conduction/convection results are usually non-dimensionalized by k(T4-T,)/2ry. These

two non-dimensionalizations are consistent with the approximate magnitudes of each

mode of heat transfer, but have little meaning when applied to the opposite mode.

Therefore, choosing to non-dimensionalize by, say, o(T44-T4) will give rational
results for low Pl, radiation dominated cases, but as Pl is increased and the significance
of conduction/convection is increased, the non-dimensionalized result grows without

bound. A similar effect is obtained for non-dimensionalization of combined mode heat

transfer by by k(T4-T,)/2ry. Therefore, we have normalized our results by using the

combined non-dimensionalizing factor [6(Ty3-TA)+k(T4-T)/2r4].
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For presentation of heat flux results, results for Pe=0 are shown first, varying the
parameters P, xry4, and Ty/T,. Computation of these Pe=0 results is simplified by

setting variations with ¢ to zero, reducing the size of the problem. These results, for
radiation combined with conduction and without convection, could also have been
computed using the one-dimensional analysis (one spatial dimension, and
correspondingly one directional dimension) of Jones and Bayazitoglu (1990). The
following results are given for a different set of non-dimensional parameters and a
different non-dimensionalized heat flux than those used in the earlier analysis, in order
to provide a basis for extension to Pe#0 results. Radiation/conduction results are

presented to illustrate the basic variation of the heat flux leaving the sphere's surface

with P, kry, €, and T4/T,, while the variation with Pe is considered to be an additional

effect. This is appropriate for low Pe flow, as would be expected in a dispersed

gas/particle flow with low relative phase velocities.

Figure 4 (main text) shows the non-dimensionalized heat flux leaving the surface

of a sphere hotter than the surrounding medium for a variety of Pl and Ty/T,, as a

function of xry, for Pe=0, where the heat flux is given by:

r
2n 2
dT(r,,
= -k#)— + 2". J. I(r,,0,0¢,7) sinc: cos y do dy B.15)
00

For high P], the result is dominated by conduction, and approximates the familiar result

Nu=2. As Kr, increases, radiation begins to have an effect. At low Pl, a radiation

dominated case, the pure radiation result of q/c(Ty4-T,4) vs. K is nearly recovered.
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At PI=1, clearly a combined mode case, variation with T4/T, is more apparent. With
reference to movement from a conduction dominated to a combined mode case, note
that while the non-dimensionalized heat flux is reduced, the non-dimensionalizing
factor has been altered as well. The perception that the inclusion of radiation effects has

reduced the total heat flux is, of course, erroneous.

Figure 4 was computed for a black (€4=1) sphere. In fig.5 (main text), the
reflection coefficient py=1-g, is varied. For low P], the effect of p, on the radiation
heat flux dominates the total heat flux, especially in surface radiation (low Kr,)

dominated regimes. For moderate Pl, in combined mode cases, the effect of p, is less

pronounced. For high Pl, the heat flux is dominated by conduction, and the effect of

P4 is negligible.

As noted previously, the energy equation is decoupled from the momentum
equation, and so any descriptive velocity field may be used. In particle or droplet flow,
the velocity of the dispersed phase relative to the continuous phase is generally very
small. Therefore, the velocity field of Stokes flow is used in the following results (see

Panton (1984), p.644):

=<
Il

3
-sz-cos ¢[ [-rrﬂ) . 3[-?} + 2] (B.16a)

3
v, —E}sincp[-[;—d] -3[%)+4J (B.16b)

This velocity field is valid for Reynolds numbers less than one. However, for slightly
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higher Reynolds numbers, the deviation of the velocity field from eqs.B16 due to
separation in the wake has only a minor effect on heat transfer.

Figure 6 (main text) shows the effect of low Peclet numbers on combined
radiation and convection heat flux from the surface of a black sphere in a gray,
non-scattering infinite medium, for hot and cold spheres, respectively. Also shown is
the convection-only result Nu=1+(1+Pe)!/3, which is valid up to a Peclet number of
about 10 (Clift, et al, 1978). At high Planck numbers the heat flux is dominated by
conduction and convection, and variation with Pe is similar to variation for convection
alone. At low PI, the radiation terms in eq.B.13 dominate the conduction and
convection, and the effect of Pe is insignificant. Presumably, at higher Pe, outside the
range of Stokes flow, low PI cases will show greater variation with Pe. Although the
objective of this study has focused on low Pe flow for use in interphase heat transfer in
gas/particle flows, the formulation given is quite general, and results for higher Pe

could easily be developed.



