This dissertation has been 65=10,362
microfilmed exactly as received

WOOD, Donald Bayne, 1936=
INCIPIENT MOTION OF A SPHERICAL BODY
SUSPENDED IN A BINGHAM MATERIAL.

Rice University, Ph.D., 1965
Engineering Mechanics

University Microfilms, Inc., Ann Arbor, Michigan




RICE UNIVERSITY

INCIPIENT MOTION OF A SPHERICAL BODY
SUSPENDED IN A BINGHAM MATERIAL

by

Donald Bayne Wood

A THESIS SUBMITTED
IN PARTIAL FULFILLMENT OF THE
REQUIREMENTS FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

Thesis Director's Signature:

Qa»n <. an&\

Houston, Texas

May, 1965




Table of Contents

Acknowledgement ! i
Nomenclature ii
Introduction 1
I. Incipient Flow of a Bingham Material 6
I.1 The Boundary Value Problem 6
I.2 Basic Relations 6
I.3 The State of Incipient Flow 8
1.4 Limit Analysis Theorems 11
I.5 Discontinuous Velocity Fields 13

II. Incipient Motion of a Spherical Body Suspended

in a Bingham Material 20
II.1 The Problem 20
I1.2 Lower Bound 21
I1.3 Upper Bound 23
II.4 Comparison with Other Results 25
Conclusions 27
Appendix A
Proofs of the Limit Analysis Theorems 28
Appendix B
Obtaining the Lower Bound 37
Appendix c -

Obtaining the Upper Bound 41



Table of Contents (continued)

Appendix D

Other Stress Fields and Velocity Fields
Investigated

Figures 1 through 4, consecutively

References

46

50

56



Acknowledgement

The author wishes to express his appreciation to
Profeséor Paul R, Paslay, who suggested this problem,

for his interest and advice during the course of this

research.

This work was financially supported by a National

Science Foundation Fellowship Grant.



ii

Nomenclature

rate of eneréy dissipation

deformation rate tensor

force acting on the rigid sphere

i th component of the body force

acceleration of gravity

second invariant of Ehe deformation rate tensor

gecond invariant of the stress deviation tensor

i th component of the unit normal to the surface

i th component of the unitary surface traction

|

i th component of the unitary velocity

radius of the sphere

radial component of spherical coordinates
surface bounding a transition layer
surface bounding a transition layer
median surface of a transition layer
stress boundary

velocity boundary

stress deviation tensor

time, thickness of transition layer

speed of falling sphere

i th component of the velocity

i th Cartesian coordinate



ij

ij

small positive constaht

Kronecker delta

unitary deformation rate tensor
latitude angle of spherical coordinates
yield parameter

viscosity

density of the sphere

density of the Bingham material
stress tensor

c.ritical value of the shear stress
shear stress in polar coordinates

azimuth angle of spherical coordinates

iii



;ntroduction.

The research leading to this thesis has been directed
toward a study of the use of limit analysis theorems for
bounding the yield load of a body composed of a Bingham
material, and toward applying these theorems to the problem
of the incipient motion of a sphere suspended in a Bingham
material.

The Bingham material is the incompressible visco-
plastic material, which is also often referred to as a rigid
viscous material. Tﬁis material can be best understood by
considering its behavior in a simple experiment. If a
layer of Bingham material of thickness h is placed between
two rigid plates, one plate being rigidly fixed and the
other having a force F applied to it as illustrated in
Figure la, then the upper plate will remain stationary until
the value of the shear stress in the Bingham material ex-
ceeds the critical value 1,. After the value of the shear
stress has exceeded r,, then the velocity of the upper
plate v increases linearly with the shear stress ¢ as
shown ' in Figure lb. The slope of the line in Figure lb, ..
is the viscosity of the Bingham material. Figure lc shows
the result of performing this same experiment on a rigid-

ideally plastic material or Mises material.
|



In general the physical behavior of the Bingham material
is such that it remains rigid under loading until the yield
value of the stress is exceeded. After yielding, it flows
in the following way. Let a differential volume of Newtonian
fluid, a differential volume of Mises plastic solid, and a
differential volume of Bingham material be subjected to the
same deformation rate. Then the stress in the Bingham mater-
ial is the sum of the stress in the Newtonian fluid and the
Mises solid.

Limit analysis theorems are widely discussed in the
literaturei.of plasticity. These theorems provide a very
useful means for determining upper and lower bounds on the
yield load of a plastic body. The attractiveness of limit
analysis in the theory of plasticity stems from the fact
that boundary value problems of the mathematical theory of
plasticity are very difficult to solve, and determining
yield loads by solving the boundary value problems is pro-
hibitively difficult, if not impossible. The boundary
value problems for Bingham materials are even more difficult
to solve than those for plastic materials; thus, it was con-
sidered to be of interest to determine how the limit analysis

theorems of plasticity might be applied to Bingham materials.



General interest in the yeilding of Bingham materials
arose from interest in the following problem in oil well
drilling technology. The drilling fluid used in oil well
drilling may be characterized to a first approximation as
being a Bingham material. One function of this drilling
fluid is to ﬁold the rock chips or cuttings in suspension
when circulation of the fluid is stopped. Since these
cuttings are more dense than the fluid in which they are
suspended, there is a force, due to gravity, acting to pull
them downward. Due to the nature of the Bingham material,
the particles will remain in suspension unless the gravity
force is sufficient to cause the Bingham material to yield,
then they will fall toward the bottom of the hole.

Having this practical problem in mind, it is of interest
to determine the value of the gravity force, acting on a
rigid sphere suspended in a Bingham material, which will
cause yielding of the Bingham material; resulting in incipient
motion of the sphere.

The following is a brief review of publications per-
taining to the subject of this thesis. Binghaml*developed

* Super-scrip numbers refer to the references at the end

of the thesis



the one dimensional stress-deformation rate relations for
the visco-plastic material. Prager and Hohenemser2 formu-
lated the three dimensional constitutive equations for the

Bingham material, Oldroyd3' 4, 5, 6

solved several specific
boundary value problems of the rectilinear flows of a
Bingham material and developed boundary layer equations for
the Bingham material. Limit analysis theorems for ideal
plastics were developed by Drucker, Prager, and Greenburg7;
Prager8 established extremum principles for the boundary
value problem of the slow flow of a Bingham maferial. Paslay
and Slibarg' 10, 11, 12 have solved several boundary problems
for the visco-plastic and made practical applicetions of the
results. Also Paslay and Slibarl3’ 14, 15 have developed
constitutive equations for the gelling Bingham materia}.
In the Russian Literature, Tybin16 and Andres17 have given
approximate solutions to the problem of the sphere falling
in a Bingham material,.

In performing limit analysis on: plastics, it is a
common and useful practice to employ discontinuous velocity
fields. It has been stated by Paslay and Slibarl3 that in

limit analysis of Bingham materials, the use of discontinuous

velocity fields is not permissible. This thesis will show



that it is not necessary to exclude discontinuous velocity
fields in limit analysis of Bingham materials. It will be
shown here also that the yield force for the sphere in the
Bingham material obtained by both Tybin16 and Andres17 is

lower than the actual value of the yield load.



I. Incipient Flow of a Bingham Material

I.1. The Boundary Value Problem

In a system of rectangular Cartesian coordinates X,
an incompressible Bingham body occupying the three di-
mentional region V is bounded by the surface 8. ‘The
body force Fi is specified throughout V. The surface
traction Ti is prescribed on the portion ST of S and the
velocity is prescribed to vanish on the portion SV of s.

The current values of the surface tractions are con-
sidered to have been reached in proportional loading.

That is, as the values of Ti have increased, they have done

so such that
Ti(xllx21x3lt) = x(t) ° pi(xllx2Ix3) (I'l)

where 3 (t) is a scalar function of time, and pi(xl,xz,x3)

is the component of a vector.

I.2. Basic Relations

The deformation rate tensor dij is defined in

Cartesian coordinates as

oV, v -
., =+ [—* 4+ —d (1.2)
1] 2 Bx_l o0X i

The incompressibility of the Bingham material requires

that d i
d,, = - = 0 (1.3)




7
(The summation convention that repeated indices are to be
summed is used here.) .
Since the inertia forces will be zero in all of the
problems considered here, the stresses 034 must satisfy

the equilibrium equations

o0 =

i, =0 (I.4)
Dy i

x3J

The stress deviation tensor is given by

1
S = O. —3‘6

i i (z.5)

ij 9%k

where éij is the Kronecker Delta.
/f; = ‘/Zdijdij (1.6)
and /55 =,(% Sij Sij (.7)

are the positive square roots of the second invariants of
the deformation rate and stress deviation tensors respec-
tively.

The constitutive equations for the Bingham material

are
zudij = 0 if /J2 < To (1.8)
,/Jz -T 4
2,4, , = —=—— &, if /T x> 1, (1.9)

ij ﬁT; ij



w and T, are the viscosity and critical shear stress
respectively. (See Figure 1l.)
In order to invert Equation‘(1.9), multiply each side
of this equation by itself, and sumon i and 3j obtaining
2 _ (,/J - To)z .
4y dijdij = 2 sij sij if /T> ., (1.10)

Ja

which according to Equations (I.6) and (I.7) is

2 .
w I, = (,/J2 - TJ if /Jz > To (I.11)
ox
V] /12 = |/J2 - To if /J2 2 To (1.1.2)

From the substitution of Equation (I.l2) into Equation

(I.9), there results

3} VIz
u '/12 + T
or
S 2 o a if VT (1.14)
L. = + 1 -
ij T VT, ) i 22T,

I.3. The State of Incipient Flow

Incipient flow is the state that exists in the body

when it first yields. 1In the case of incipient flow of an
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ideal plastic due to proportional loading, if is easy to
see what the proper analytical description of the state of
incipient flow should be since it is precisely the same
state which persists in the body for all time unless the
loads are reduced below the yield value. However, due to
the presence of the viscous effect in the Bingham material
the velocity and stress yields will change with any increase
of the loads, the stresses and velocities, in general,
increasing. This behavior. makes the proper description of
the state of incipient flow for a Bingham material less
obvious. The analytical description of incipient flow is
developed as follows:

As the surface tractions Ti applied to the body are
increased in proportional loading, a state of impending
visco-plastic flow will be reached such that any further
increase of the surface tractions will cause the body to
yield, producing regions of the body where the deformation
rate is non-zero.

The state of incipient motion may be considered to be
steady state visco-plastic flow at vanishingly small velocity.
If § is a small positive number, the steady state velocity

field may be expressed as

Vi (Xl' x2, x3) = § qi(xl,xz,x3) (1.15)
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and the resulting deformation rate field may be expressed

as

X = X X X
diy (¥ ®3) 8 ey (¥11%50%3)

Then by Equation (I.1l4)

27, 8 €y (I.16)
Si. = 2u§'ei. +
J J 5 3 e €. .
1) 1) ‘
and
2 1, di'
Lim s, = —l (1.17)
vad, .d, .
§—0 . V2 ij7ij

Equation (I.12) may be written:

H.é V2 Gij eij = /’J? = To (1.18)

then it is seen that as 5-—+On'/ﬁ;__$¢°.

Then at incipient flow

- 27,
iy = 45 ! (I.19)
P
and
,/J2 = T, {I.20)

in the regions of the body where the impending flow is
occurring. In the remainder of the body

/Jz < To (1.21)

d,. = 0, (1.22)
and the stress deviation tensor is not expressible in terms

of the deformation rate tensor.
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Equations (I.19), (I.20), (I.2l), and (I.22) show that
for.incipient flow, the viscous effect vanishes and that
flow of a Bingham body at vanishingly small velocities is
governed by the same relations as the flow of a Mises body,
which is discussed extensively by Prager and Hodge in their

book, 'Theory of Perfectly Plastic Solidsla.

1.4 Limit Analysis Theorems

A velocity field which satisfies the equation of in-
compressibility, the velocity boundary condition, and
which yields a stress field from the constitutive equations
which satisfies equilibrium and the stress boundary condition,
constitutes an exact solution to the boundary value problem
of Section I.l. From the exact solution for‘vanishingly
small velocities, the yield load could be determined.
Obtaining an exact solution to a boundary problem for a
Bingham body is, in general, a formidable task. However,
with the understanding of incipient flow developed above,
the limit analysis theorems of Drucker, Prager, and
Greenburg7, may be applied to the boundary value problem
of the Bingham material, giving a means of calculating
upper and lower bounds on the yield loads, which is

reasonably simple to carry out. These limit analysis
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theorems which are proved in Appendix A may be stated as

follows:

Statistically Admissible Stress Field:

A continuous stress field with piecewise continuous
first partial derivatives is statically admissible if it

satisfies the boundary condition

g¥..n. = Tg = \*p, (1.23)

on ST’ where nj is the unit normal to the surface, the

|
equilibrium Equations (I.17) throughout V, and the yield
inequality

Vi% < T,

(I.24)

Lower Bound Theorem:

The load parameter )* associated with any statically
admissible stress field is a lower bound on the yield load
parameter,

‘The upper bound theorem will be stated here for con-
tinuous velocity fields, and then section I.5 will be
devoted to extending this theorem to discontinuous velocity
fields.

Kinematically Admissible Velocity Field

A continuous velocity field V? having piecewise
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continuous first partial derivatives is kinematicallg ad-
missible if it vanishes on Sv' satisfies the equation of

incompressibility.

‘ii -_— (I.25)

and is such that
* as e d 0 26

Equation (I.26) requires that the velocity field be such

that the external forces do positive work.

Upper Bound Theorem

A load parameter )* may be associated with any kine-

matically admissible velocity field through the relatfon
* *d: * =
A invids + JFi v av = 1, J,/I*zdv (1.27)
The load parameter )\* associated with any kinematically

admissible velocity field gives an upper bound on the yield

load parameter.

I.5 Discontinuous Velocity:Fields

In performing limit analysis with plastic materials,
it is found to be very convenient to employ discontinuous

velocity fields. Due to the fact that velocity discontinuities
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cannot occur in a Bingham material during actual flow, it
has been thought (see Paslay and Slibarl3, page 108) that
discontinuous velocity fields are not permissible for
limit analysis of Bingham materials. The possibility of
velocity discontinuities occurring in either of these
materials can best be understood by considering their
constitutive relations. During actual flow an ideally

plastic or Mises material has the constitutive relation

5;5 = 27, a5 = 27, 4. (I.28)
Vs T“’lzdijdij

At a velocity discontinuity, one of the shear components
of the deformation rate tensor becomes infinite while all
other components become zero. By inspection of equation
(1.28), it is seen that at sudh a discontinuity the stress
will remain finite in an ideal plastic. In fact, in a
Mises material the shear stress transmitted across the
discontinuity is 7, (see Prager and Hodgels, page 163).
Inspection of Equation (I.l4) reveals that in a Bingham
material an infinite shear stress will occur across a
velocity discontinuity, should one exist during actual
flow. Since an infinite shear stress is obviously not

possible, then the conclusion is that the velocity fields



. 15
of Bingham materials are never discontinuous during actual
flow. However, it will be shown in the following that
because the velocities are vanishingly small, the stress
can be considered to remain finite across a velocity dis-
continuity during incipient flow, and that discontinuous
velocity fields may be used in performing limit analysis
for Bingham materials.

Since the Bingham material is not elastic, the stress
power (Sijdij) is entirely dissipative, and the rate at
which energy is being dissipated in a differential volume
of Bingham material, during deformation, is given by

db = Sijdijdv (I.29)

|

During incipient flow Sij is given by Equation (I.19)

and the energy dissipation rate is

27,4,.d..dv = /T _av
D = eeid i3 2 (1.30)
/24,49, 5

Then from Equation (I.30) it is recognized that the term
on the right hand side of Equation (I.27) is the rate at
which energy is being dissipated by the fictitous velocity
field, v;, duriné incipient flow. The upper bound theorem
simply equates the rate at which work is done by the ex-

ternal forces to the rate at which energy is dissipated
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for the fictitous velocity field v;. Thus it is the rate
of energy dissipation that needs to be examined at dis-
continuities occurring in a velocity field during incipient
flow.

The type of discontinuity to be considered in the
following is simply an idealization of a continuous velocity
distribution in which the tangential component of the ve-
locity changes very rapidly across a thin transition layer.
Let the transition layer be bounded by the surfaces Sh and
Sk (see Figure 2). Let Sm by the median surfaces of S, and

h
Sk' At a generic point P on the median surface Sm' let
there be a system of Cartesian coordinates such that xl
is tangent to the median surface and in the direction of
the tangential velocity component at P, X, is normal to the
median surface, and x

3 has the customary right hand relation

to xl and x2.

Across the transition layer the tangential velocity

component changes quite rapidly. That is to say

1 i o
3% >> -y i, 3 # 1,2 (I.31)
2 3
Accordingly
d12 5> dij i, 3 # 1,2 (1.32)
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The energy dissipation rate in the differential volume
dv at the generic point P is

dp = 8,.d,.tds (I.33)
ij i3 |

where t 1is the thickness of the transition layer at P
and dS is the differential area of the median surface Sm
at P. Considering the constitutive Equation (I.14), Equ-

ation (I.29) becomes

TO
dp = 24,.4d,. + = tds I.34
13743 (“ /‘Q) (1.34)
As t becomes small, d12 remains finite and is given
by
1 (v h k)
- = - v
d12 = 3\ 1 1 (1.35)
t 1
h k .
v, and vy being the values of v, at the surfaces Sh

and Sk respectively. Also as t Dbecomes small, the

squares of the deformation rates .(dij)2 for i,5 # 1,2

becomes negligibly small compared to (d12)2'
2 ——
ijdij — 2(d;,) (I.36)
and
I. — 4 (d,.)° (1.37)
2 12 )

such that Equation (I.34) becomes
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dD = T T + 7,1 tds (1.38)

As was done in Section I.3, let v, = 89 then

(q,"-q, )
us | (ay -a;7)

: h k
a = |(q; - a )|
At incipient flow &8 is vanishingly small, and the expres-
sion

h k
£ + T | /> To (1.40)

Thus the energy dissipation rate in the very thin but

finite transition layer is given by

D = r, J\sl Avm | ds where Avm= (Vlh-vlk) (I.41)
m

Avh represents the velocity "jump" occurring across
the thin transition layer. The thin transition layer may
then be represented by a velocity discontinuity Avm and
the dissipation in the transition layer is determined by
integrating Avm over the surface of discontinuity.

With this understanding of a velocity discontinuity,

the upper bound theorem may be restated as follows:
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Upper Bound Theorem for Discontinuous
Velocity Fields

. -

A piecewise continuous velocity field v{ having
piecewise continuous first partial derivatives is kinemat-
ically admissible if it vanishes on Sv’ satisfies the equa-

tion of incompressibility
dii = _a—x_ = 0] (1.42)
and is such that
*d *
[RAACCE: [pov,’av » o (I.43)

A loadparameter 3)* may be associated with any kine-

matically admissible velocity field through the relation

X*invi*ds + JFivi*dV = TOJ/Tz av + ; TP'|AvaldSn (I.44)
n
where the sum in the last term of Equation (I.44) is ex-
tended over all surfaces of discontinuity. The load param-
*

etér . ) associated with any kinematically admissible

velocity field gives an upper bound yield load parameter,
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II. Incipient Motion of a Spherical Body Suspended in a
Bingham Material

II.1. The Problem

An infinite region of Bingham material having a density
Pp and a critical shear stress ., has suspended in it a
rigid, spheriéal body whose density is pg > Pg’ and whose
radius is R. Due to the presence of a gravity field and

the density difference (pS - pB) there is a downward

force F,
4 3 _
F = 3 TR (pg=-pg) 9 (11.1)

acting on the sphere. (See Figure 3). Up to the point of
yielding, the Bingham material resists this force and the
sphere remains suspended. The force, Fy,

Bingham material to yield is proportional to TORZ, thus it

which causes the

is the dimensionless ratio

R{pg = pPpl9
3F - - S B (II.2)
4t To R To

which determines yielding. When the ratio

R (pg - pg) 9 (11.3)

To

reaches the critical value, the sphere will be in a state
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of incipient motion. That is, for given values of the
material constant there is some maximum size sphere which
can be suspended, or for a given size sphere there is some
maximum density difference (pS - pB) for which the sphere
will not fall. During incipient falling, the Bingham
material is considered to adhere to the surface of the
sphere.

In the following, upper and lower bounds will be

placed on

R (pg = pg) 9

(11.4)
To

by using the limit analysis theorems discussed in Section I.

II.2. Lower Bound

In the present problem, the partion of the boundary
S is the surface of the sphere, and the stress boundary
condition is

F = [ T, ds (11.5)
T

J Tas
T o Sp

[}
—
3
N

Q
[6)]
]
(@]

(11.6)
]
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where T3 is the vertical component of the surface traction

and Tl and T2 are horizontal components. (See Figure 3).

Since gravity and bouyancy forces have been accounted
for through the density difference (PS-PB) the body forces

are zero and the equilibrium Equations I.4 become

2053 = o0
axj

(11.7)

According to the lower bound theorem, any continuous
stress field which satisfies the equilibrium Equations II.7,
the boundary conditions II.5 and II.6, and the yield in-
equality I.19 is statically admissible and will give a
lower bound on F.

0f those stress fields investigated, the greatest

lower bound is given by

om0y mop ~H0EFS(2) ] reom e
ree = 35 [83)- 6(2) %] v, sing (11.9)
rfg = g = O (11.10)

where the stresses given above are the physical components
of the stress tensor referred to a system of spherical

coordinates. (See Figure 4).



In Appendix B it is shown that the stress field given

!

above is statically admissible and that it yields the

lower bound '

3F . Rlpgpg)d 2 5.75 (11.11)
2 ———————————

4T R To

II.3 Upper Bound

For the sphere falling at speed U,

FU, = i T, v¥ ds (II.12)
T

and Fi = 0, thus inequality I.43 is satisfied by any
velocity field which is consistent with the adherence of
the Bingham material to the falling sphere.

Then according to the upper bound theorem, any velocity
field which satisfies the equation of incompressibility
I.42 and satisfies the adherence boundary condition on the

surface of the sphere will give an upper bound on the ratio

_3r __ Rlegegld through
4WT°R2 To

Equation I.44 which in this application becomes

* * .
FU, = 7o /T, a4 ) 1, i lav | as; (11.13)
n
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Among the velocity fields investigated, the one giving

the least upper bound is

vk = -U, cosp (33 - 1) |
r X

R <r < 2R (II.14)
v: = U, sing (% - l) |

where the velocities given above are the physical components
of the velocity vector referred to spherical coordinates.
(See Figure 4). Since the Bingham material adheres to the

sphere, the boundary condition at r = R is

*
V.. (R) = =U, cosg (11.15)
*
Ve (R)y = U, sing (11.16)

Both velocity components must vanish at the outer flow

boundary r = 2R, thus the boundary condition there is
*
v, (2R) = ve (2R) = O (I1.17)

Then Equations II.l4 represent a velocity field which has

two finite discontinuities in the component ve, i.e.
v% (R-0) = U, sing
at r = R (I1.18)
vk (R+0) = O
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Uo
ve (2R -0) = 3= sing
at r = 2R (I1.19)
v% (2R + 0) = 0

It is shown in Appendix C that the velocity field above
is kinematically admissible, and that it yields the upper
bound )

3F R (pg - pg) 9

5 = < 12,25 (II.20)
4 TR To

I1.4 Comparison with other Results

It has been shown in the two preceeding sections that
Rlpg - pg)

To

5.75 <«

12,25 (1II.21)

Ty-bin16 gives an approximate solution of the boundary value
problem of the slow viscoplastic flow of a Bingham material
about a sphere in which he obtains the value

To

(II.22)

for the yield ratio.

Andresl7 applies dimensional analysis to the problem

of a sphere falling in a Bingham material and obtains

Rlpg = Pg) 9 _ 5 36 (£1,23)

To
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Since limit analysis places rigorous bounds on the
yield load of a body, the results obtained here show that
both these values are lower than the actual value of the

yield ratio.
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Conclusions

From this research the following conclusions may be
drawn:s
1. The limit analysis theorems of plasticity may be
usefully applied to Bingham materials.
i 2. Discontinuous velocity fields may be employed in
performing limit analysis of Bingham materials.
3. Since the state of incipient flow of a Bingham
material is identical to the state of steady flow
of a rigid-ideally plastic or Mises material, and
since 2. above is true, then limit analysis for a
body composed of Bingham material is exactly the
same as limit analysis for a body composed of a
Mises plastic.
4 R(DS-pB)g
4, The value of the dimensionless ratio ———::————
for which incipient motion of a sphere suspended

in a Bingham material will occur is

R(ps = 0m)9
5.75 < ST B 12.25.
-]
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Appendix A

Proofs of the Limit Analysis Theorems

The proofs given here for the Bingham material are
essentially the same as the proofs given by Prager and
Hodgele, pages 247 to 251, for the elastic-plastic or

Prandtl-Reuss material.

A.l Lower Bound Theorem

Statically Admissible Stress Field:

A continuous stress field with piecewise continuous
first partial derivatives is statically admissible if it

satisfies the boundary condition
g:..n. = T, = 1\ p, (A.1.1)

on ST’ the equilibrium equation

90.
—1 + r, = o0, (A.1.2)
3X.. 1
J
throughout Vv, and the yield inequality /3; < Te (A.1.3)

throughout V.

Lower .Bound Theorem:

-

*
The load parameter ) associated with any statically
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admissible stress field is a lower bound on the yield load
parameter.

In order to prove the lower bound theorem, it is
necessary to first prove two auxiliary theorems, theorem I

and the theorem of virtual work.

*

Theorem I: Let oij be a statically admissible stress field
% *

for the surface tractions Ti = A P, and let 0, and

dij be the actual stress and deformation rate tields that

exist during incipient flow, then

(054 = 034) %45 2 O (A.1.4)

Proof I: From the definition of the stress deviation tensor

1
Sij = Glj = 6ij 3 O'kk (A.l.S)
then
1
- * = -— * -_ -k
(o545 = of5)835 = (5545 = 8%y) iy + 655 3 (Oofy) 945
(A.1.6)
- &% = -— *
613%15 (opac ~ ofad) iy loxx = ok (A.1.7)
but dii = 0 due to incompressibility so that
- = - S*
(oij °ij) dij (Sij Sij) dij (A.1.8)
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At incipient flow the Bingham body consists of two types
of regions, those where /Jz < 17, and those where

/J2 = 7,. In Section I.3 it was shown that where /3, < 1,

2
dij = 0, and where JJZ = T,
a,. = Y12 s, (A.1.9)
1] — 1]
2T,
Then in the regions where ‘/J2 < To
(A.1.10)
(s,. - 8*,) 4,. = 0,
i) 1] i3
and where ,/Jz = T
* »  YIz g .
(s - 8,.)4d4,. = (8 - 8..) ij (A.1l.11)
ij ij ij ij ij 2
To
=—Iglss -t s*—12 2 Lg s> (A.1.12)
2 "13%i3 T 2 Pi3%i3 ) T+, (T° 2 ij°ig i
o

5
N -

is a positive quantity, and by the Schwartzian inequality

3
(-]

%S, <\/s. . 8., K A.1.13
5148, 5\/313513 \/sljslJ (A.1.13)
Since gig is statically admissible

1

= *S.* < .1.14
> Sijsij < T, (A.1l )



3l

-

and since 0y is the actual stress field existing in the‘

body during incipient flow

1 .
\V& 5;48;5 = o (A.1.15)

Then

2
*

showing that the right hand side of (A.l1.12) is positive

definite and Theorem I is proved.

The Theorem of Virtual Work

Let cij denote a stress field which satistfies the
equilibrium Equations (I.4) and Ti denote the surface
tractions in equilibrium with these stresses. Let A be
a velocity field which'is entirely independent of the
stress field, i.e., the stress and velocities are not
related through any particular constitutive equation, then

the following equation holds

fo,.8,5av = [r,v.as + [ F.vav (A.1.17)
ij 1] i1 ii

Proof of the Theorem of Virtual Work

By Equation (I.2)

1 ov, 3X. .
.d,.. .= T O,. i+ j A.1.18
clj ij 2 ij ( 3;—- e ) ( )
j i



and since i and Jj are both summed

13713 T %ig axy
0. v,
- (0..v.) = 1, 4 O —_
X, ijgi dX. i iy ax.
J ] ]
Since ¢ satisfies the equilibrium mquations (I.4)
90, .
I I
oxX . 1
J
so that
- |0
0,449V = Lx. (o;5v;)av +|F;v,dv
] J
By Green's Theorem
2 logv) av = | (oy,vp) nyas
axj ij i ij i j
but cijnj = Ti .
Then

[o;.,.8v = [r,v.as + [ F v av
ij ij ii i'i
and the theorem of virtual work is proved.

Proof of the Lower Bound Theorem

According to Theorem I

*
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(A.1.19)

(A.1.20)

(A.1.21)

(A.1.22)

(A.1.23)

(A.1.24)

(A.1.25)
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The principle of virtual work (A.l.24) transforms (A.l.25)
into

) N ) o
fTividS + JFiVidv - Jfri v,ds - IFividv s 0 (A.1.26)

the same body force Fi being associated with either of
the two equilibrium states of stress. Since Ti= xpi and

*
* =
Ti xpi then

*
(x=2) [ pvav » 0 (A.1.27)

The integral ijividv represents rate which the applied
loads do work. during incipient flow and is therefore
positive. Since )\ 1is a positive constant fpividv is

positive and therefore

*
A2 A .. (A.1.28)

concluding the proof of the Lower Bound Theorem.

A.2 Upper Bound Theorem

Since it is shown in Section 1.5 that a discontinuous
velocity field is only a limiting case of a continuous
velocity field, the Upper Bound Theorem is proved here for

continuous velocity fields.
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Kinematically Admissible Velocity Field

A continupus velocity field vz having piece-wise con-
tinuous first partial derivatives is Kinematically admissible
if it vanishes on Sv’ satisfies the equation of incompres-
sibility

dii = =, - 0 (A.2.1)

and is such that

* *
JT.v.dS +JF.v.dV > 0 (A.2.2)
1l 1 1l 1 -

*
A load parameter ) may be associated with any kinematically

admissible velocity field through the relation

~

*
: * = %*
A invids + JFivi av To I/izdv (A.2.3)

Upper Bound Theorem

*
The load parameter ) associated with any kinematically

admissible velocity field gives an upper bound on the yield
load parameter.
In order to prove the Upper Bound Theorem, it is first

necessary to prove an auxiliary theorem, Theorem II.

*

Theorem II: Let dij be the deformation rate field derived
*

from the kinematically admissible velocity field vi and let

*
01488 < ro /T, (A.2.4)
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Proof II: As was shown in the preceding section of this

appendix
* *
- . . bility.
oijdij Sijdij due to incompressibility

According to Schwarz' inequality

<\/S (A.2.5)
lJ lJ ij 13 lJ lJ

* %
or s,.d.* <« /1 s,..8.. \/24,.4,. (A.2.6)
ijij = 2 131 ij 1]
By definition \/2d and
ij 1]
during incipient flow l1s,.8,. =/T,< 7,
, 3 13 1]
so that
* / . 2.
Sljdlj < To 12 (A 7)

which concludes the proof of Theorem II.

Proof of the Upper Bound Theorem

According to (A.2.4)

~ *
/ A.2.8
fcijdi' av. < 71, J\ 12 av ( )

J

The principle of virtual work (A.l.24) transforms (A.1.25)

into
* *
‘ . 2 L ]
JTivi das + Ifivi av < T, J /12 dav (A 9)

Since Ti = xpi then

" * * .
A f P, Vi as + J FVv. < 7o J/Tz av (A.2.10)
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where ) is the load parameter associated with the actual
yield load. From (A.2.10) it follows that for any load
parameter )* which is associated with a kinematically

*
admissible velocity field A through Equation (A.2.3)
*
A > ) (A.2.11)

and the upper bound theorem is proved.



Appendix B

Obtaining the Lower Bound

The stress field given in Section II.2 is

2
co =y =2, (108 5)
0. = oe = g¢ =55 To 10 r 6 r2 cose (B.1)
24 R R2 ;
Tre = Eg Te (5 ; - 6';2) sS1ne . (B.2)
rd = "ed = 0 (B.3)

In spherical coordinates the equilibrium equations are

(see Hill 19, page 344.)

aor 3

1 <Ir9 1 aTrg 1

3, +2 30 + T sino Y + r(2°r'°e'°¢+Trg°°t° =0 (B.4)
T 90 DT

re 1_8 1 og . 1 e N

S tITe T g ' [ (0g-0g)cote 4 *rg}~‘ 0 (B.5)
AT DT~ : 30

g 1 °%6g ., L o 1 )

3r  r 238 r sino af + r(3Trﬂ+zTg¢c°tg) =0 (B.6)

In the present case Equation (B.6) is identically zero and

(B.4) and (B.5) reduce to

Yo} oT
r 1 re 1
3T + - ) + - Tro cote = 0 (B.7)
3 T r-Yej
ro 1 ) 3
ax T r e TT e = O (B.8)
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The necessary derivatives of the stresses are

30 ' 2
r 24 R R
3 - 25 TO[-IO o) + 12 ;3'] cosé (B.9)
[-]e; 2
— = === . [10= -6 —5| sine@ (B.10)
3 T 2
ro 24 R R .
v = 33'70[—5 ;2 + 12 ;3 ] sin@ (B'll)
orT 2
re 24 R R
- = = 7T 5 = - 6 — cos®o (B.lZ)
20 25 ° [ r2 ]

and it i$ seen that the equilibrium equations are satisfied.

Since
0, = 0g = Gﬂ (B.13)

the normal components of the stress deviation tensor

1

Sij = gij -3 éij O)k (B.14)
vanish
Srr - Sgg = Sﬂﬂ = 0 (B.15)

and the only non-vanishing component is
SrQ = Tre (B.16)

In spherical coordinates the second invariant of the

stress deviation tensor,

1

J2 = 3 Sijsij (B.17)



is _ 1y 2 ) 2 2 2
J =3 \Srr+s + sﬁﬂ + Se¢+ Srﬂ
For this case
{ J = 2
2~ Tre

At the surface of the sphere r = R and

24 .
/T3 = |el =35 7o sine <2 7,

dr 2
ro _ 24 5R RZ 7 o
ar - 25 To [- L2 + 12 ;g ] sin@
\
Then L has a maximum at
r = 12R e = mw/2
5
24 24 25
/Iy = 25 Tela2 T 2a ] T Te
For
12R
r s e /Jz < T,
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(B.18)

(B.19)

(B.20)

(B.21)

where

(B.22)

Thus it is seen that the yield inequality is satisfied,

and that the stress represented by Equations (B.l),

and (B.3) is statically admissible.

(B.2),

The force F associated with the stress field is ob-

tained by integrating the vertical components of the surface

tractions over the surface of the sphere.

is seen that

From Figure 4 it
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aF = (o‘ cos® - r_o sinO) aa (B.23)
r=R =R
The differential area dA is
2 .
dA = R sin@ dg de (B.24)
Then the force F is
2T T 2
F = I l (o cos@-1 sine) sino R® dedg (B. 25)
r re
r=R r=R

Integrating (B.25) with respect to g yields

cos8 - 7

T
F = ZWRzl (cr
r=R

sinG) sinode (B. 26)

re r=R

Then for the stress field given by Equations (B.l), (B.2),

and(B. 3)

T
——23-= 481 I (4c0529 + sinZG) sin@ de (B.27)
ToR 25

Upon performing the integration in Equation (B.27) there

results
E - 2.2 (B. 28)
2
T R
which gives
R(p Pn) 9
3F s " "
—— = = 5,75 B. 29
47T"|'°R To ( )
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Appendix C

Obtaining the Upper Bound

The velocity field given in Section II.3 is

v, =-U, cose (—2-13—1)T
r r
= u,_sine (B2- 1 (c.1)
Vg_ o S1n r >R’ﬁ]ﬁ'ﬁzR .
v = 0
g

-

Vo Vg and Vﬂ being the components of the velocity

vector. (See Figure 4.)

-lin - linn
v=v e + vVv.e + VvV e

f*r e 0 g g

In spherical coordinates the elements of the deformation

rate tensor are (See Hilllg.)
av
r
., =T (C.2)
r\'4
1L 2]
dog = T <ae + vr> (C.3)
1 (av¢ \
dﬂﬂ = T 7 + v, sin® + Vo cose (C.4)
v v v >
. X (-8 _ 8 1 ¢
er T2 <'ar r Tt 30 (c.5)
v LAY v
4 - 1 l. r + g-_g (C.6)
rd 2 r sin@ 36 3 r

A4 v
I S ing —& - ]
dgg = 57 sine <31n9 >0 Vﬂ coso + a¢‘> (C.7)
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For the velocity field given by Equations (C.1l).

v
2R

Ef" = =U, cos@ (-—;_7 > (c.8)
L\
_a—é£ = U° sin® (? -1) (C'g)
v

°) -R
— = U, sin® (C.10)
ar ° (?)
\4

e R
vl U, coso (r'_ l> (c.11)

Then the non-zero elements of the deformation rate tensor .

are

2
a =Y coso (5> (C.12)
rr -_— r

u,(nz
dee = dﬂﬂ =-%x \T cos@ (C.13)

In order for the velocity field to be kinematically
admissible, the deformation rate tensor must satisfy the

equation of incompressibility.

dii’~= drr + dQg + dﬂﬂ = 0 (Cc.14)

It is easy to determine by inspection that this is satisfied.
Since the Bingham material is considered to adhere to

the surface of the sphere, the boundary condition at r = R is



\4 = =U, cos@

v = U 8ine@
o

thus there is a discontinuity at r = R, i.e.,

Vg (R-0) Uo sin®

Vo (R+0)

i
o

producing a velocity jump

Av = U sin® at r = R,
1 o

At the outer boundary of the region of flow r = 2R,
both velocity components should vanish, but
1 .
vy = -3 Uo sin®
r=2R
producing a velocity jump

- l '
sz = 3 Uo sin@ at r = 2 R,
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(C.15)

(C.16)

(C.17)

(C.18)

(C.19)

After including these discontinuities in the velocity

field, it is seen that this velocity field satisfies the
boundary conditions. The condition given by inequality

(I.40) may be satisfied simply by choosing the proper
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direction for the force acting on the sphere!. Then since
i
the velocity field being considered satisfies incompres-

sibility, the boundary conditions, and inequality (I.40),

it is kinematically admissible.
The second invariant of the deformation rate tensor is

12 = 2 dij dij (C.20)

for this case I. is

2
.2 2 2 "
I, = 2 (drr gy + dm) (C.21)
2
12 U
o 2 R
1, = ® cos“e (r) (C.22)

As is shown in Section II.3, that for this problem the
force associated with a velocity field is given by Equation

(II.13) which is
FU_ = 1, J /T,av + Z T JS \Avnl ds (C.23)
n

Then for the velocity field being considered

2r T 2R UO 2 R 2 2
FUo = T, l . /12 cos”d (;) r sin®e drdgdg
R

2r T 2
+ T, l I (UosinG) R” sineo dgdg
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2T T ’Uo 2
+ o [ 5> sin@| (2R)” sine dedp (C:24)

After integrating with respect @ and dividing through by
2

Uo¢6R Equation (C.24) becomes

o 2/Tor " IZR

T = I |cose|  sine drde
T °R R R
Ul
+6r | sin%e ae (C.25)

which yields

5 = 2 /127 + 3W2 = 51.4 (C.26)

TR

giving an upper bound of

To ’

2
4T TR



Other Velocity Fields
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Appendix D

and Stress Fields Investigated

Stress Fields

A stress field o

f the general form

o, = £(r) cose (D.1)
og = oy = £(xr) cose (D.2)
T,o = h(r) sine (D.3)
g = Tog " O (D.4)

will satisfy the equi

g(r) h(r) =

and

f(r)

(1- /3)

Choosing the constant

the lower bound for a

= 11.42
ToR

The stresses

O, = f(r) coso

]

Tio g(r) sine

Og = Oy = Tyg =

iibrium equation if

A

— (D.5)
r
A

> (D.6)
r

A = -1-°R2 gives the largest value of

solution of this form giving

(D.7)

(D.8)
(D.9)

ng = 0 ? (D.10)



satisfy the equilibrium equations for

27 B
f(r) = 3 * >
r o
A
g(r) = =3
r
. 3
Letting A = - 1.,R

2
and B (V3 + 2) T1,R

47

(D.11)

(D.12)

(D.13)

(D.14)

giving the largest value of the yield force for a solution

of this form yielding

= 15.7

A stress field of the fom

f(r) cosé

Q

i

Q
O

i

Q
=

I

Tro = g(r) sing
"re og = ©

satisfies the equilibrium equations if

- A B
f(r) = r 2

(r) - l. éq_-B—

g = 2 2

r ko

Setting

240 ., R

A = —

144 2

S L

(D.15)

(D.16)

(B:17)
(D.18)

(D.19)

(D.20)

(D.21)

(D. 22)
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gives the stress field which is investigated in detail in
Appendix B. This choice of constants maximizes the lower

bound for a stress field of this form.

Velocity Fields

Considerable time and effort was devoted to obtaining
upper bounds from velocity fields which are continuous
functions of r and © in spherical coordinates. The
lowest bound ever obtained from a continuous velocity field

was

F

5= = 56.45 (D.23)
TR

After discontinuous velocity fields were shown to be
kinematically admissible, the first calculation made for a
discontinuous velocity field is that shown in detail in
Appendix C which gives a lower upper bound than is given by
Equation (D.23).

Other discontinuous velocity fields and the bounds
associated with then are:

4

A4 = U

r o cosé (D. 24)

sin® (D.25)
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which yields

£~ = 59.58 (D. 26)
ToR
and P
_ 2R )
v, = -Uo " -1 cosé (D.27)
2R .
Vg = _Uo(r -l) sin@ (D.28)
which yields
T~ 5 e5.1 (D. 29)

T oR
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‘FIGURE | (a)-GEOMETRY OF LAYER OF
MATERIAL BETWEEN FLAT

PLATES
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FIGURE I(b) - SHEAR STRESS VERSUS
DEFORMATION RATE FOR
A BINGHAM MATERIAL
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FIGURE I(c) - SHEAR STRESS VERSUS
DEFORMATION RATE FOR
A MISES MATERIAL



FIGURE 2- GEOMETRY OF THIN
TRANSITION LAYER
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Bingham
Material

- FIGURE 3

GEOMETRY OF SPHERE SUSPENDED IN A
BINGHAM MATERIAL
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FIGURE 4
SPERICAL COORDINATES
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