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ABSTRACT

Automatic Data Aggregation for Software
Distributed Shared Memory Systems

by

Karthick Rajamani

Software Distributed Shared Memory (DSM) provides a shared-memory abstrac-
tion on distributed memory hardware, making a parallel programmer’s task easier.
Unfortunately, software DSM is less efficient than the direct use of the underlying
message-passing hardware. The chief reason for this is that hand-coded and compiler-
generated message-passing programs typically achieve better data aggregation in their
messages than programs using software DSM. Software DSM has poorer data aggre-
gation because the system lacks the knowledge of the application's behavior that a
programmer or compiler analysis can provide.

We propose four new techniques to perform automatic data aggregation in soft-
ware DSM. Our techniques use run-time analysis of past data-fetch accesses made by
a processor, to aggregate data movement for future accesses. They do not need any

additional compiler support.

We implemented our techniques in the TreadMarks software DSM system. We
used a test suite of four applications - 3D-FFT, Barnes-Hut, [link and Shallow. For
these applications we obtained 40% to 66% reduction in message counts which resulted
in 6% to 19% improvement in execution times.
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Chapter 1

Introduction

In recent years, networked workstation have gained importance as a cost-effective
platform for parallel computing. They are more affordable than dedicated parallel
machines or supercomputers. With the advent of high-speed general-purpose net-
works and extremely versatile processors, networked workstations have increasingly
become more powerful. Soon, they could prove a viable alternative for supercomput-
ers.

In the absence of specialized hardware for providing shared memory, such clus-
ters were running parallel programs chiefly through message-passing libraries such
as PVM (8], TCGMSG [9] and Express [16]. But writing parallel programs with
a message-passing model is much less intuitive than with a shared-memory model.
With the message-passing model the programmer has to decide on when to initiate
communication, between whom to perform the communication and what needs to be
communicated. This burden on the programmer with message passing has spurred the
interest in software Distributed Shared Memory (DSM) systems like TreadMarks [12]
[11], which provide a shared memory abstraction over a distributed memory hardware.

However, software DSM systems generally incur greater communication overheads
than message-passing systems. As the DSM system operates with little or no knowl-
edge of the application, it is not able to optimize communication. In contrast, a
programmer in a message-passing environment has complete knowledge of the data
access patterns (which is required for correctness) and so can effectively optimize
communication.

The larger communication overhead for DSM systems can be reduced if the num-
ber of messages exchanged for maintaining coherency between the workstations is
reduced. This can be achieved through the aggregation of data into fewer messages.
Reducing the message count results in reduced number of processor interrupts and
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reduced number of calls that invoke the network support system.

In this thesis, we present some techniques for doing automatic aggregation of data
that is transferred between processors. Our aggregation techniques are based on the
run-time analysis of data-fetch patterns. Based on the patterns observed in the past,
future access patterns are predicted. The system uses these predictions to aggregate
data transfers in order to reduce message overheads.

1.1 Automatic Aggregation based on run-time history of
access patterns

DSM systems encounter a large variety of programs with quite different behaviors.
This prevents a generalized static approach to aggregation of data that can be applied
to all programs. Program-specific approaches to data aggregation, using compiler
analysis or the programmer’s knowledge of the application, may also not prove very
useful when the data movements depend on the program inputs, or are of a dynamic
nature. Thus we require a flexible approach to aggregation that can adapt to the
application’s behavior.

In DSM systems messages are exchanged between processors for maintaining a
coherent picture of the different copies of shared memory. For better efficiency and
ease of implementation, there is a minimum size or granularity at which the memory
units are made coherent with one another. Memory units of this size are referred
to as coherence units. When a processor requires the current data for a location
in the shared space from remote memory, the current data for the entire coherence
unit containing that location is obtained. Thus, a simple approach to reduce message
counts, that does not require run-time analysis, is to have a larger coherence unit. We
present the large coherence unit method as a case study for showing the difficulties
in adopting a static approach to reducing message traffic.

1.1.1 Case Study - Large Coherence Units

The size of the coherence unit is a critical factor in the performance of a DS)M system.
A direct effect would be on the number of messages sent. As the data for the shared



regions is obtained through message exchanges that take place at one exchange per
coherence unit, a larger coherence unit could potentially cut down the number of
messages sent for maintaining consistency. Also, larger coherence units could provide
the effect of prefetching, bringing in the data for shared locations before they are
required, if the locations happen to lie within the same coherence unit.

However, a potential problem with large coherence units is false-sharing. Locations
sharing the same coherence unit are invalidated together and the data for them ob-
tained together. Even if only part of the coherence unit is truly shared, the program
would incur the penalties for making the rest of the coherence unit consistent. The
penalties would be the extra bandwidth consumed by the data movement for the
falsely-shared portions in the coherence unit, and the extra faults encountered by
the program when the invalidated falsely-shared portions are accessed. In systems
that use sequential consistency, there is the additional overhead of extra invalidation
messages (with relaxed consistency models, invalidations are sent together at synchro-

nization accesses and the problem of invalidations that ping-pong is vastly reduced).

Different applications require coherence units of different sizes for optimal perfor-
mance. Typically, the requirement is governed by the shared data structures, their
location in the shared memory and the pattern of accesses made to them. Figure 1.1
shows the difference in performance with the size of coherence unit for four applica-
tions run on the TreadMarks DSM system. TreadMarks has the virtual memory page
as the coherence unit. The programs were run on 8 SparcStation20s connected by
a 135Mbps ATM network. The figure shows a clear difference in performance with
respect to page size for most of the applications. It also shows a lot of variation
in the preferred page size for an application. The figure illustrates how crucial the
correct coherence-unit size is for the performance of a program, and how dependent
the optimal value for the size of the coherence unit could be on the actual application.

1.2 The Need for Dynamic Analysis

In some cases it could be possible to identify the optimal size for the coherence units
with some static analysis but that would imply extra effort on part of the programmer
or the availability of a superior compiler. Some of the factors favoring a particular
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value for the size of the coherence unit are also affected by the input to the appli-
cation. As an example of this the four processor execution time for the Quicksort
algorithm on the TreadMarks system is given in Figure 1.1. It can be seen that for the
input parameter Bubble Threshold, a value of 4096 shows the 8K page giving better
performance, while a value of 1024 shows the 4K page giving better performance.
Hence, the optimal size for the coherence unit is potentially difficult to ascertain stat-
ically and sometimes variable for even a particular application.

It is also possible that the optimal page size changes over the execution of an
application. It could also vary with different regions in the shared address space. In
such cases, a statically determined coherence-unit-size that is uniform over the ad-
dress space cannot not be the optimal solution to obtain the best performance from
the DSM system.

1.2.1 Solution to the Communication Overhead Problem

In order to do the data aggregation without increasing the burden on the programmer
and without the need for specialized compilers, we incorporated automatic aggrega-
tion techniques into the run-time system implementing the DSM. Because of the large
variety of applications run on DSM systems many of whose data-sharing patterns may
not be easily predictable, we decided to implement the aggregation based on facts ob-
tained by studying the actual execution of the application. We believe that a large
class of applications exhibit a regular data access pattern for a significant part of the
execution. In such a case, the knowledge of the access patterns at an earlier phase of
the execution could be used to correctly predict the accesses at later phases, which

would aid in reducing the data-transfer messages for the later phases.

| Bubble threshold [ 1024 [ 1024 | 4096 | 4096 |

Page size 4K 8K 4K | 8K
Exec. time (sec) | 15.29 | 16.40 8.37 | 8.07

Table 1.1 4 processor Execution Time for Quicksort, 1M elements



In the next section we introduce our techniques for doing automatic aggregation.

1.3 Techniques for Automatic Aggregation

The size of the data transfer unit has a significant effect on the overheads due to data
transfers in a software DSM. To optimize these transfers we designed techniques that
change the size of the transfer unit to adapt to the run-time requirements. These
techniques are called the Dynamic Resizing of Pages (DRP) techniques. We refer
to the coherence unit as seen by the data-fetch operations, as a fetch-unit. With
DRP, the fetch-unit for a region of shared-memory is changed from a single page to
a group of contiguous pages. By grouping the contiguous pages in different ways for
that region of memory, different size requirements for the fetch-unit can be met. The
grouping of pages is changed depending on the requirements of the program execu-
tion. which is indicated by the data-fetch patterns of previous phases of the execution.
The other set of techniques, History Dependent Prefetching (HDP), while sharing the
principle of using past data-fetch patterns to create page groups that will be used as
fetch-units, do not have the restriction of requiring only contiguous pages to form a

group.

Aggregation is achieved by fetching data for all the pages within a group by com-
bining all the individual messages for each page within the group. Our techniques
are further divided on the basis of the scope of the page-groups, which can be global
(NCM) or local (CM). Thus we have four techniques resulting from the different
groupings and their scopes - DRP_.NCM, DRP_.CM, HDP_NCM and HDP_CM.

1.4 Results

The test suite for our techniques consisted of four applications - 3Dfft, Barnes-Hut,
Ilink and Shallow. In the presence of some predictable access pattern in the applica-
tion all our techniques showed a significant performance enhancement over the regular
TreadMarks implementation. This was the case with 3D-FFT, Barnes-Hut and Ilink.
Our techniques obtained a reduction in execution time from 6% to 19% depending
on the implementation and the application, and provided a reduction in message
count that ranged from 40% to 66%. Even in the case of Shallow where the potential



for combining requests was much smaller, we obtained a 6% reduction in execution
time with a 40% reduction in message count with some of our techniques. For the
set of applications we considered, we found that HDP_NCM, which was the least re-
strictive in its criteria for group formation, performed the best for all the applications.

1.5 Overview

The rest of the thesis is organized in the following manner. Chapter 2 discusses the
aggregation techniques in detail, going into the algorithmic details and their imple-
mentation. In chapter 3 we discuss the set of experiments performed for analyzing
the techniques, present the four applications in our test suite and discuss the results
of our experiments in detail. In chapter 4 we present the related work in this area. In
chapter 5 we present the conclusions and future directions for our continuing research.



Chapter 2

Techniques for Automatic Aggregation

We present our techniques for automatic aggregation in this chapter. There were two
orthogonal parameters that affected the behavior and performance of our implemen-
tations. In section 2.1, we discuss these two parameters and classify each of our
techniques according to these parameters. In section 2.2 we present a brief overview
of the underlying TreadMarks DSM system. In section 2.3 we give a detailed pre-
sentation of our four techniques for automatic aggregation with a description of their
algorithms and implementations. We also discuss the implementation of a contem-
porary technique, proposed for cache-coherent multi-processing environments, in the
context of a software DSM system. We present some of the issues involved in the
implementation of the aggregation techniques in section 2.4 of this chapter.

2.1 Classification of Automatic Aggregation Techniques

The run-time analysis incorporated in the DSM system identifies the set of pages
requests for whose data can be sent together. The DSM system groups pages in each
set into page-groups. When sending the request for the data of a page, the page-group
that the page belongs to (if any) is identified, and combined requests are sent for all
the pages in that group for which the most recent data is not available. We classify
our techniques for automatic aggregation according to two parameters - a) the do-
main for page-groups, and b) the scope of page-groups. Each of our four techniques
is a distinct implementation arising out of the different combinations of the choices
for these parameters.

While considering the domain for forming page-groups, we explored two options -
a) consider only adjacent pages for forming page-groups, or b) have any set of pages
form a group. The first option is a natural extension of the idea of large coherence
units. Since contemporary research [6] [19] [15] has found an application-dependent



performance variation with the size of coherence units we explored the benefit of
dynamically aggregating requests for adjacent pages, under the first option. As a
group formed from adjacent pages grows or shrinks in size, depending on program
requirements, the contiguous region of memory mapped to the pages in the group
correspondingly grows or shrinks. We termed the techniques for managing groups of
adjacent pages as techniques for Dynamic Resizing of Pages (DRP).

The second option eliminates the restriction of grouping only adjacent pages to
create page-groups. If the program’s data-fetch patterns indicate a preference for
larger page sizes (i.e they favor larger groups of adjacent pages), we felt this option
could subsume the benefits from grouping together just adjacent pages (as it does not
prevent adjacent pages from being part of the same group). As these techniques use
past accesses as the only criterion for combining requests for different pages (forming
page-groups) we refer to them as History Dependent Prefetching (HDP) techniques.

The second parameter that we use to classify our techniques is the scope of page-
groups. Pages that require remote-data fetch, due to accesses within the same critical
section, are grouped together. Once a group is thus formed, its scope can be extended
to all critical sections or for just the one in which it was created. The first option yields
the global scope of page-groups and the second yields the local scope of page-groups.
The techniques where the scope is restricted to being local, imply a affinity between
the instructions within the concerned critical section and the memory accessed by
them. We refer to this affinity as Code-Memory locality (CM). The techniques that
attribute a local scope for page-groups operate under the assumption of CM locality,
while those that attribute a global scope to page-groups assume a form of spatial
locality, that we term simply as NCM (non-CM).

To better illustrate this point, consider the execution of a critical section Sy, in
which accesses to both pages A and B required remote data-fetch operations resulting
in both A and B being put together in a page-group PG. Then under the local-scope
for page-groups, in a later execution of the same critical section (same piece of code)
when either of the pages require remote data-fetch, the most recent data for the other
page would also be obtained (implying an affinity between the memory region con-
sisting of pages A and B and the code executed in section Sp). But, if during a later
execution of another critical section S;, data was required for either A or B, then
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data for the other page need not be obtained. Whereas, under the global scope of
page-groups, PG would be a valid page-group even for S, and so when data is fetched
for either page A or B during S;’s execution, data for the other page would also be
obtained (if it was invalid).

Thus based on these two page-group parameters we obtain four techniques :

e Dynamic Resizing of Pages without CM - DRP_NCM.

o Dynamic Resizing of Pages with CM - DRP_CM.

History Dependent Prefetching without CM - HDP_NCM.

History Dependent Prefetching with CM - HDP_CM.

2.2 TreadMarks

We implement all our techniques as part of the TreadMarks distributed shared mem-
ory (DSM) system. In this section we discuss some aspects of the TreadMarks system
that are required to understand the implementation of our techniques.

TreadMarks [11] is a software DSM system that provides a shared-memory
abstraction on a workstation cluster connected by any general-purpose network.
TreadMarks is based on a relaxed consistency model, Lazy Release Consistency (LRC)
(10] [12], and implements a multiple-writer protocol. With a multiple-writer protocol
the distinct locations in the same coherence unit can be simultaneously written to by
more than one processor. The system uses the virtual memory page as the default
coherence unit. It uses the virtual memory support provided by the hardware and
operating system for write-detection.

The TreadMarks system has an invalidation-based coherence protocol. Processors
that write to a page send invalidations to other copies of that page at appropriate
times. On receiving the invalidations, the other processors prevent accesses to those
copies by using the Unix mprotect system call. When the program on another pro-
cessor accesses one of those copies, it faults. The fault-handler then brings in the
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data for the accessed page, updates it, unprotects it and then permits the continua-
tion of the program. The invalidations are referred to as write-notices in TreadMarks

terminology.

TreadMarks has two types of synchronization objects - barriers and locks. The syn-
chronization operations are Tmk_lock_acquire, Tmk.lock release and Tmk_barrier.
All three help in making the entire shared memory on a processor consistent. In the
LRC model, the basic synchronization primitives are releases and acquires. Tmk_lock release
is modeled as a release, Tmk lock_acquire is modeled as an acquire and Tmk_barrier
is modeled as a release followed by an acquire. A release and the corresponding acquire
provide synchronization between the processors making either call. Tmk barrier syn-

chronizes all the processors used by an application.

As TreadMarks uses a multiple-writer protocol, there could be many writers for
a single page at any one time. In order to make a page consistent, a processor has
to fetch all the previous modifications to the page made by the other processors and
apply them in the correct order. The modifications to page that a processor makes
are stored in a special structure known as a diff. For making a page consistent, a
processor has to fetch all the diffs for that page created by the other processors and
apply them in the correct order. In order to provide this order, TreadMarks divides
the execution of each process into intervals. A new interval is begun on a processor
every time an acquire or release is executed by it. Intervals on the same processor
are totally ordered by program order, while those on different processors are partially
ordered. An interval on processor p precedes an interval on processor q if the interval
on q began with the acquire corresponding to the release that concluded the interval
on processor p. Release consistency requires that before a processor p continues past
an acquire the modifications made in all the intervals that precede it (including those
of the other processors) must be visible at p.

With Lazy Release Consistency, the propagation of the modifications is postponed
till the time of an acquire. It is only at an acquire, that the processor performing
theacquire obtains the write_notices from the releasing processor. On a subsequent
access to a page for which the processor has obtained a writenotice, the processor
fetches the diffs for that page from the processors that wrote to it earlier, makes
the page consistent by applving those diffs to that page, and then proceeds with the
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program execution.

2.3 Aggregation Techniques

In this section, we present four new techniques for performing data aggregation. Each
of these techniques is a unique combination of the domain for page-groups and the
scope of page-groups. For comparison, we also present the implementation of a fifth
technique that is the adaptation of a technique proposed for a cache-coherent multi-
processing environment. We first present the algorithmic framework for all of our
techniques and then describe each of the individual techniques.

2.3.1 Creation and Usage of Page-groups

For all our techniques, page-grouping is done on the basis of information recorded
about the accesses that required remote-data fetch in previous phases of execution.
The system preserves the history of accesses in the form of a list of those pages which
require remote data-fetch during the current execution interval. This list is referred
to as a fetch-list.

During the execution of every interval, a fetch-list is built up. Under the TreadMarks
system, all invalidations take place only at acquires. Hence, the information (list)
collected since the last acquire would not be useful until the pages in that list get
invalidated again, which cannot happen until the next acquire. Hence, we initiate
the creation of new lists at every acquire. Thus, the interval for which a list of pages
requiring remote data-fetch is created, spans the code between one acquire to another.

This interval bounded by two acquires is termed as an acquire-to-acquire interval.

During the execution of an acquire-to-acquire interval, a corresponding fetch-list
is created. For the pages in the fetch-list, data was obtained from remote memory
when the code in the acquire-to-acquire interval was previously executed. This is
the history of data-fetch accesses that the system uses to create, modify and destroy
page-groups. Every time an acquire-to-acquire interval is executed a new fetch-list is
created.
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Under the adjacent-page grouping scheme (DRP) any set of pages that form
a contiguous region in the shared memory and occur in the fetch-list created for
an acquire-to-acquire interval would be considered as a page-group. Under the no-
restriction grouping scheme, HDP, all the pages that occur in the fetch-list created
for an acquire-to-acquire interval form a single page-group. Under both the schemes.
requests for the data of all the invalidated pages within a page-group are sent to-
gether, combining the requests for multiple-pages whenever possible.

Under the techniques that attribute a global scope (NCM) to page-groups, the
pages of a page-group are recognized as a group when remote-data fetch is required
for any of those pages anywhere during the execution. For the techniques that at-
tribute only a local scope (CM) to the page-groups, the pages are identified as a
group only for the particular acquire-to-acquire interval in the code, from whose past
fetch-list the group was created.

All requests for data that might be needed in shared-memory accesses between one
acquire to another are sent out in an aggregated manner only after the first acquire.
This ensures that the maximum number of invalidations for the concerned group are
obtained before combined requests for the invalidated pages in the group are sent out.
This increases the potential for combining requests compared to when the requests
are sent at any time before the first acquire.

2.3.2 Algorithm

The algorithm for the techniques work in two phases. The first one is the History-
collection-and-fetch phase. that begins at an acquire and ends in the next acquire
occurring in the execution (during the execution of an acquire-to-acquire interval).
During this phase the fetch-list for the acquire-to-acquire interval bounded by the two
acquires is built up. The system utilizes the page-group information to send requests
and obtain data in an aggregated manner during this phase. This phase is common
to all our techniques and is outlined in Figure 2.1.

The second phase is the Group-creation phase. This occurs just after the comple-
tion of an acquire. During this phase the fetch-list created during the execution of the
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for Faulting page P
Add P to the Fetch-list of acquire-to-acquire interval A

if P is invalid then
Determine X, the page-group that P belongs to;
for every page p in X
if p is invalid add p to set Y;
for all the pages in Y
Send out requests for data, combining them whenever
possible;

Figure 2.1 History-collection-and-fetch phase

acquire-to-acquire interval preceding the acquire is used to modify the set of page-
groups in the system. This phase is dependent on the way the individual techniques
maintain each of their page-groups and is discussed separately for each technique in
the following sections.

2.3.3 Dynamic Resizing of Pages with Code-Memory locality (DRP_CM)

The DRP_CM technique allows only pages that are mapped to contiguous portions
of the shared-memory address space to be part of the same page-group. The scope
of a page-group is restricted to the acquire-to-acquire interval from whose fetch-list
that group was created.

As the groupings are specific to each acquire-to-acquire interval, theyv are con-
tained in a list specific to each acquire-to-acquire interval. After the execution of the
interval, the fetch-list is examined for pages mapped to contiguous memory regions.
All such pages are grouped together and the groups are added to the list for that
acquire-to-acquire interval. When pages are common between a new group and a
group already in the list, the old group is discarded. Thus, the most recent remote-
data-fetch information is considered to be representative of future requests for that
region of shared-memory.
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2.3.4 Dynamic Resizing of Pages with No-Code-Memory locality

Like DRP_CM, the dynamic page-resizing technique with no-code-memory locality
(DRP_NCM) allows only the grouping of pages which are mapped to contiguous por-
tions of the shared-memory address space. However, the scope of the page-groups is
not restricted to just that acquire-to-acquire interval from whose fetch-list the groups
were created. So, a single list contains all the groupings. The groupings, as in the
case of DRP_CM, are stored in ordered structures containing the page ids of the first
and last pages in the group.

2.3.5 History Dependent Prefetching with Code-Memory locality

Unlike the DRP techniques, history dependent prefetching (HDP) techniques allow
the grouping of any set of pages that are present in the fetch-list of an acquire-to-
acquire interval. Thus all the pages in the fetch-list of an acquire-to-acquire interval
are considered as a part of a single group. Since the groups are specific to the partic-
ular acquire-to-acquire interval with code-memory locality (CM), each such interval
has its own list of groups. The entire fetch-list for such an interval is added as a
new group to the list of groups attached to that interval. Within a list, a page can
exist in only one group, while it could be present in different groups in the lists of
different acquire-to-acquire intervals. Just as in the case of the DRP techniques, the
new group is added to the acquire-to-acquire interval’s group-list at the execution of
the acquire following that interval.

2.3.6 History Dependent Prefetching with No-Code-Memory locality

Under history dependent prefetching with no-code-memory locality (HDP_NCM), all
the pages in a fetch-list are part of the same page-group. With NCM, the scope of
the groupings is global. Hence, there is no list of groupings that is specific to any par-
ticular acquire-to-acquire interval. Instead, the groupings are kept track of by linking
all the pages in a fetch-list to form a doubly-linked list, so that all the members in a
group can be identified given any one member of that group. This arrangement also
ensures that no page can exist in more than one group, which is necessary under the
global scope of page-groups.
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2.3.7 Dynamic Resizing of Pages under the buddy-system

Dynamic resizing of pages under the buddy-system (DRP.B) is a version of the
DRP_NCM technique. Its implementation for cache-coherent multi-processing sys-
tems had been described by Dubnicki and LeBlanc in their work on adjustable block
sizes for coherent caches [3]. Their idea for adjustable-sized cache blocks was adapted
to work for the shared-memory pages in TreadMarks.

DRP_B follows a buddy-system style of page-groupings. The groups are mod-
ified through a pair of operations - merge and split. A merge operation increases
the size of a page-group by combining two adjacent page-groups (pages) of the same
size into one larger group. A split operation partitions a larger page-group into two
equal-sized smaller page-groups which would be adjacent in the shared-memory space.

DRP B also has a history-collection-and-fetch phase that functions in exactly the
same way as in our techniques. After the fetch-list has been created during an acquire-
to-acquire interval the list is utilized in a similar manner as in the case of the other
DRP techniques. Adjacent page-groups, all of whose constituent pages required the
obtaining of data from across the network in the past interval, are considered as good
candidates for merging by the algorithm, as data for both of them could have been
obtained together. A page-group, only some of whose constituent pages required data
from other processors’ memory, is considered a good candidate for splitting, so that
unnecessary movement of data for the non-accessed pages of the page-group could be
avoided if the access pattern was to repeat itself. The details of DRP_B are outlined
in the following sections.

Algorithm for grouping

The algorithm allows the combining of two adjacent virtual memory pages into a
dual or two adjacent duals into a quad. Both the dual and quad are also called as
Mega-pages. Hence every page-group (virtual memory page or mega-page) can be
one of three types - single, dual or quad - only; and so every virtual memory page
can be in one of three states - single, part of a dual, or part of a quad. The virtual
memory pages making up a mega-page, whether a dual or a quad are termed the
Components of the mega-page. Any merging involves only two equal-sized adjacent
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Single
Single
(2]
§ Dual
3
S
§ Quad
S
]
: A and B - Partners
S
§ {P1, P2, P3} - Complement
of PO
{PO, P1, P2, P3} - Components
of the Quad
{Q0, Q1} - Components of
the Dual

Figure 2.2 DRP_B Algorithm - Terminology

page-groups. A page-group B that is being considered for merging with a page-group
A, is called the Partner of A. At any one time, a page-group A would have only
one unique partner B i.e if A has to merge and become part of a larger mega-page.
then it can do so only by combining with B. For every page-group A, its partner B
is fixed by the nature of the algorithm. If a page-group P is part of a mega-page
M, the Complement of P is the partner of P, merging P with which would yield M.
Figure 2.2 contains an illustration of these definitions.

Each virtual memory page has some count fields associated with it. The value in
a count field is a measure of the tendency for the page to move from a certain state to
another. Logically there need to be two count fields for every state, one to indicate the
tendency to change state to become part a smaller page-group (split) and another to
indicate the tendency to change state to become part of a larger page-group (merge).
But the states at the extremes. i.e the single and quad need only one count field, a
merge-count field for the single state and a split-count field for the quad state.
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All the virtual memory pages in a mega-page have the same split-count value and
all the virtual memory pages in both the page-groups that are being considered for
merging have the same merge-count value. The count values are changed only at
grouping time. At that time, the corresponding fetch-list is examined and the count
values are modified. The modifications would be an increment of the split-count val-
ues for all the pages in the mega-page if only some of the pages in the mega-page were
found in the fetch-list, and an increment of the merge-count values of all the pages
in the relevant (determined under buddy-system restrictions) page-groups if all the
pages in both page-groups were found in the fetch-list. When the split count value
exceeds a certain Split-Threshold then the decision is made to split the mega-page.
Similarly when the merge count value exceeds a certain Merge-Threshold then the
decision is made to merge the page-group with its Partner.

A pseudo-code representation of the algorithm for grouping pages is presented in
Figure 2.3.

Implementation

In the TreadMarks system every processor maintains a directory of the shared pages
which has an entry for every page in shared memory. An accessed field is added to
every entry in the directory structure for the virtual memory pages. This is set if the
page happens to be in the fetch-list. This field is maintained for making the grouping
algorithm more efficient.

Each directory entry has a state field that specifies whether a page is single, or
part of a dual, or part of a quad. In case the page is part of a dual or quad, the
state field also specifies which one of the dual-set (first or second) or quad-set (first,
second. third, or fourth) the page is. There are two count fields for every directory
entry. Only one field is used if the page is single or part of a quad. Both the fields
are used if the page is a dual (one for merge-count, the other for split-count).

Our implementation differs from the adjustable cache block idea because of the
multiple-writer protocol associated with the TreadMarks DSM system as opposed to
single-writer protocols assumed by Dubnicki and LeBlanc. Because of this we need

to allow for different groupings of pages for the same region of shared-memory on



for every page P in Fetch-list
if all pages in the Complement of P are also in the list then

else

Decrement appropriate split-count values for pages in mega-page S
containing P;
if the Components of Partner S’ of S are also in Accessed list then
Increment appropriate merge-count values for S and S’;
if the merge-count values of S and S’ are greater than the
corresponding Merge- Threshold then
Merge S and §';

Reset their counters;

Increment the appropriate split-count values of P and those of the
pages in its Complement;
if the split-count value is greater than the corresponding
Split-Threshold then

Split S;

Figure 2.3 DRP_B Algorithm for Grouping
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different processors. Also we provide for the ability to get the data for the different
pages of a page-group from different processors. In the hardware implementation,
obtaining data from different processors for the different blocks in a cache-line is not
required because of the single-writer protocol.

2.4 Implementation issues for the Aggregation Techniques
2.4.1 Granularity of diffs for DRP schemes

The diffs are maintained at the granularity of a virtual memory page and not at one
per page-group, even though such an arrangement could reduce the costs associated
in the creation and maintenance of diffs. This is essential to allow different groupings
of the pages on different nodes while having a simple means of identifying the data
to be sent to the requester.

Maintaining diffs at one-per-page also helps in reducing false-sharing and in re-
ducing data movement when the page-groups are larger than the trivial case of a
single-page page-group. Memory is invalidated at the granularity of the virtual mem-
ory pages and so data is sent for just those pages of the page-group that are actually
invalid. For example, if at node ¥;, A and B are two virtual memory pages making
up a page-group D, and A alone was invalid, then B could still be accessed at N,
without requiring any new data from another node. On the other hand, if B was also

invalid, then an access to either A or B would result in the system obtaining the data
for both A and B.

In the case of the HDP schemes, since the page-groups can be made of any arbi-
trary collection of pages, diffs can be maintained for no larger a memory region than
that of a page.

2.4.2 Window of Combining

Due to system constraints, we were restricted to sending combined requests for at
the most four pages (each of size 4K) at a time. In order to reduce the complexity
of implementation, for all our techniques we pick the pages whose requests would be
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combined by examining a page-group through a window of size four i.e for combin-
ing requests we look at four pages from a group at a time. For these four pages all
requests that can be combined are sent through a single message, the rest are sent
through separate messages. Then the next four pages in the group are handled and so
on. Though this reduced the complexity of the implementation it could also reduce
the benefit that can be obtained from combining requests.

2.4.3 Optimistic Schemes

With optimistic implementations when the set of page-groups do not change in two
successive acquire-to-acquire intervals, the system assumes the same set of page-
groups for the rest of the execution. The History-collection part of the first phase
of the algorithm and the Group-creation phase are both eliminated for the rest of
the execution. These schemes encounter a comparably much smaller (about 40%
to 50% reduction) number of faults as compared to the non-optimistic techniques.
They could be quite beneficial in a system where the memory faults are costly. On
the down-side they can be more inaccurate when compared to the regular implemen-
tations. We present the results for the implementation of an optimistic HDP_.CM
scheme in chapter 3.



Chapter 3

Experiments and Results

In this chapter, we present the set of experiments we performed to evaluate our ag-
gregation techniques. We then present the application suite that we used to test the
techniques. Finally, we discuss the results of the experiments for each technique and
the conclusions we drew from them.

3.1 Experiments

We outline the set of experiments we performed to evaluate our techniques in this
section.

3.1.1 Performance evaluation

Our first set of experiments were common to all the techniques and were concerned
with overall performance evaluation. The experiments compared the performance
of the regular TreadMarks implementation and the implementations with our aggre-
gation techniques. The metrics for the comparison consisted of three fundamental
execution statistics ~ execution time, data traffic (in terms of the total number of
bytes transferred over the network) and the message count (total number of mes-
sages exchanged over the network). The last two metrics directly reflect the the
aggregation of data-transfers obtained with our techniques, and the execution time is

a measure of the net benefit the program gets from that aggregation of data transfers.

In addition to the fundamental statistics, we also obtained information like the
break-up of data traffic and message count into those for diff movement, page move-
ment and synchronization operations (for barriers and locks). The number of faults

as seen by the system and its break-up into different categories were other available
statistics.
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In the case of the regular TreadMarks implementation, we ran the applications
with 3 different page sizes ~ 4K, 8K and 16K - to provide a static form of aggregation
through increase in size of the coherence unit. We compared the dynamic aggregation
provided by our techniques to the static aggregation obtained with larger page sizes.

3.1.2 Overhead measurement

Our techniques utilize the memory protection calls to keep track of the page-access
patterns. This adds an overhead to the performance of the system. We enumerate
the memory-fault counts for all our executions to get a measure of this overhead. We
also take up the HDP_CM scheme as a case-study to judge whether we can reduce
this overhead by limiting the history-collection phase through optimistic schemes.

3.1.3 Analysis of thresholds in DRP-buddy-system

In this experiment we studied the effect of thresholds on the DRP technique. We
collected statistics from many executions of DRP_B with different starting sizes and
different set of threshold values for each execution and analyzed the relationship
between the thresholds, starting size of page-groups and program behavior.

3.2 Applications

We used four applications ~ 3D-FFT, Barnes-Hut, Ilink and Shallow - to evaluate
the performance of all the techniques.

3.2.1 3D-FFT

3D-FFT is a program from the NAS benchmark suite {1]. It numerically solves cer-
tain partial differential equations using three-dimensional forward and inverse Fast
Fourier Transforms (FFTs). For an input array A of complex numbers organized in
row-major order with dimensions Ny x N; x N3, 3D-FFT first performs a N3-point
one-dimensional FFT on each of the N; x N, vectors. Then it performs a N,-point
1-D FFT on each of the V; x N3 vectors. The resulting array is transposed into a N; x
N3 x NV} array Band a .V;-point 1-D FFT is applied to each one of the V, x .V; vectors.
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The computation is distributed along the first dimension of A, such that for any
i, all elements of the matrix A;;x, 0 <7< N2, 0 < k< N; are assigned to a single
processor. So no communication is needed in the first two 1-D FFT phases. There is
communication during the transpose. After this the processors access a different set

of elements. Synchronization between processors is through barriers.

3.2.2 Barnes-Hut

Barnes-Hut is an application from the SPLASH [17] benchmark suite. It is an N-body
simulation, in which every body is modeled as a point mass and exerts gravitational
force on all other bodies in the system. The physical space is represented by a
tree-structure, each leaf of the tree representing a body. Each internal node of the
tree represents a cell, a collection of bodies in close proximity. Two arrays. one
representing the bodies and another the cells, are the two main data structures. The
array of bodies is shared and the array of cells is private. The simulation proceeds
over time-steps, each step computing the net force on every body and then updating
the body’s position and other attributes.

The code for each time step is broken into five phases :

e MakeTree: Construct the Barnes-Hut tree.
o GetMyBodies: Partition the bodies among the processors.

o Compute Forces: Compute the forces on the bodies (each processor does it for
its own set of bodies).

¢ Update facts : Update positions and velocities of bodies (each processor in-
charge of its set).

¢ Compute new dimensions : Compute dimensions for next iteration.

MakeTree is sequential, as its parallel version is slower. In MakeTree each pro-
cessor goes over the entire shared array for the bodies and reads the data for each
body and then makes the tree. So each processor accesses the entire list of shared
pages during this process. This is the main communication phase for the program. In
GetMyBodies, dynamic load balance is achieved by use of the cost-zone method, in
which each processor collects a set of logically consecutive leaves by doing a tree-walk.



25

The force computation segment is the compute intensive phase. There are barriers
after GetMyBodies, Update and the new dimensions’ computation.

3.2.3 Hink

llink is a genetic linkage analysis program that locates specific disease genes on chro-
mosomes. The program traverses the input family trees and visits each nuclear family.
The main data structure in Ilink is a pool of genarrays. A genarray contains the prob-
ability of each genotype for an individual. The genarray is sparse and an array of
pointers to nonzero values in the genarray is associated with each one of them. A
pool of genarrays large enough to accommodate the biggest nuclear family is allocated
at the beginning of the program, and is reused for each nuclear family. For a new
nuclear family, the pool is reinitialized for each person in the current family. The
computation either updates a parent’s genarray conditioned on the spouse and all
children, or updates one child’s conditioned on both parents and all siblings.

The parallel algorithm described in Dwarkadas et al. [5] is used. Updates to each
individual’s genarray are parallelized. A master processor assigns the nonzero ele-
ments in the parent’s genarray to all processors in a round robin fashion. After each
processor has worked on its share of nonzero values and updated the genarray ac-
cordingly, the master processor sums up the contributions. The pool of genarrays is
in shared memory and barriers are used for synchronization.

3.2.4 Shallow

Shallow is a benchmark from the National Center for Atmospheric Research. It is a
code in Fortran that solves difference equations on a two dimensional grid, for weather
prediction. Each processor is allocated a particular band, the sharing is only at the
edges of the bands. Barriers are used for synchronization.
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Application input

3D-FFT 64 x 64 x 64 -~ size of input vector, 100 iterations
Barnes-Hut | 16384 bodies, 20 iterations (21, with timing after 1st iteration)
[link CLP data set, with allele product of 2 x 4 x 4 x 4
Shallow 1024 x 256, 20 timesteps, 50 iterations

Table 3.1 Inputs for the Test Suite

3.3 Performance Evaluation

The experimental setup consisted of 8 SparcStation20s running SunOS 4.1.3 con-
nected by an 155Mbps ATM network. All applications were run on 8 processors.

The results for the performance evaluation of our techniques are presented application-
wise. In the discussion of the results, any reference to an application includes an
implied reference to the input for the application (Table 3.1). This is because the
same application can show a variation in behavior with change in the input due to

change in false sharing and data access patterns with respect to the input.

In the rest of this section we present the results of the comparisons between
regular TreadMarks and our techniques on the basis of execution time, data traffic
and message count. In the following discussion, Tmk-XK indicates figures for regular
TreadMarks with the page size of XK.

3.3.1 3D-FFT

3D-FFT was run for an input of size 64X64X64 for 100 iterations. Figures 3.1, 3.2
and 3.3 contain the relevant statistics.

The execution time and message count graphs show that SK is the best fixed
page size for 3D-FFT. This is primarily because of increased false sharing with a 16K
page size. This causes a large increase in data traffic and allows only an insignificant
decrease in the message count. In contrast, on moving from the 4K to 8K page size
there is no false sharing. This results in a significant reduction in message count.
This accounts for the reduction in execution time when moving from 4K to 8K pages.
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3D-FFT has a well-defined and fixed access pattern. So all our techniques are
able to quickly determine the page groupings, which remain the same from the be-
ginning of the execution until the end. Because of the ability of the HDP schemes to
combine requests for even non-adjacent pages, they provide a much bigger reduction
in the message count than static 8K page size or any of the DRP schemes. All DRP
schemes form page groups of size two and so their message count total is similar to
that of Tmk-8K. The slightly larger message count for the DRP schemes is because
of the initial single-page iterations — one for DRP_.CM and DRP_NCM or two for
DRP_B, with a merge threshold of one ~ when the page groups are still being formed,
while Tmk-8K begins execution with the pages already in groups of two. The page
groupings do not vary between critical sections, hence the performance of the NCM
techniques is similar to that of the CM techniques.

The HDP techniques provide around 10% reduction in execution time through a
66% reduction in message count while the DRP techniques provide a 4% reduction in
execution time through a 44% reduction in message count. All of them avoid the in-
crease in data traffic which Tmk-16K exhibits. The automatic aggregation techniques
could yield even better execution times in the absence of any overhead for the excess
memory faults (resulting in a fault-count greater than Tmk-8K’s, and the same as for
Tmk-4K) that they incur to track the access patterns.

3.3.2 Barnes-Hut

Barnes-Hut was run for 21 iterations with statistics collected for the last 20 iterations
with 16384 bodies. The first iteration was skipped to avoid the effect of cold-start
misses. The execution statistics are presented in Figures 3.4, 3.5 and 3.6.

16K is the best fixed page size for Barnes-Hut. There appears to be no increase
in false sharing when the page size is increased from 4K to 16K. So the reduction in
message count with increase in page size brings the expected benefits in the case of
Barnes-Hut.

The MakeTree phase of Barnes-Hut is instrumental for initiating the grouping of
pages for the aggregation techniques. This is because almost all of the shared pages
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are accessed within MakeTree. Unfortunately, the accesses in later phases are not very
consistent from one iteration to another. This is because the shared tree structure
is divided up between the processors in different ways in each iteration. Thus, each
processor could potentially access a different set of shared pages in the post-MakeTree
phases in each iteration. But, since the set of pages which are accessed together is rel-
atively stable, the NCM techniques which assume a global scope of groupings perform
better than the CM techniques that assume the association of groups with critical
sections. The restrictive nature of the buddy-grouping system causes it to perform

the poorest among the automatic aggregation techniques.

An implementation characteristic of TreadMarks is further responsible for the
performance difference between Tmk-16K and our techniques. TreadMarks has a
memory reclamation phase called Tmk_repo. This is executed when the memory used
for maintaining the consistency information has grown too large. At this point, this
memory is reclaimed by ensuring that just a single copy of every shared page exists in
the system. In such a situation, very little information needs to be stored for ensuring
consistency. At this stage, there is considerable data-movement all of which can be
made only at the granularity of a page. Tmk-16K, with its much larger page, sends
only about one-fourth of the messages sent by our techniques during this phase. This

is almost entirely responsible for the difference in message count between HDP _NCM

and Tmk-16K.

The automatic aggregation techniques obtain a 12% to 19% reduction in execu-
tion time through a 44% to 62% reduction in message count, compared to the regular
Tmk-4K execution.

3.3.3 Iink

[link was run with the Cleft-Lip and Palette (CLP) data set and its execution statis-
tics are presented in Figures 3.7, 3.8 and 3.9.

Tmk-16K gives the best performance for Ilink among the fixed-page-size execu-
tions. This is because there is no increase in false sharing when the page size goes

from 4K to 16K. So the reduction in message count with larger page size directly
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results in a reduced execution time.

The performance of the automatic aggregation techniques with Ilink is very sim-
ilar to their performance in the case of Barnes-Hut. In [link the reuse of the shared
data-structures, genarrays, for different data sets cause varying access patterns to
the shared pages resulting in non-optimal aggregation with our techniques. The ac-
cess patterns are dependent on the data contained in the structures. The reuse of
memory for different data reduces the correlation between the access-history and the
future accesses, resulting in poorer aggregation with the history-based techniques.
The NCM techniques again perform slightly better than the CM techniques because

the groupings are more relevant in a global scope than to particular critical sections.

Just as in the case of Barnes-Hut, the difference in the message count between
HDP_NCM, the automatic technique with the lowest message count, and Tmk-16K
is due to the data-movement at page-granularity during the Tmk-repo phase.

The automatic aggregation techniques provide a 6% to 9% reduction in execution
time through a 40% to 60% reduction in message count in the case of Ilink.

3.3.4 Shallow

Shallow is run with a size of 1024X256 for the 3 input arrays, for 50 iterations.
Figures 3.12, 3.10 and 3.11 contain the execution statistics.

Shallow exhibits an increase in false sharing with the increase in page size. The
benefits due to reduction in message count with the increase in page size is more
than offset by the increase in data traffic due to false sharing, with the result that
Tmk-16K has a slightly larger execution time compared to Tmk-8K or Tmk-4K.

With the current problem size, there is not much opportunity for combining re-
quests, with the result that the benefits from the aggregation techniques are quite
small. Again, HDP_NCM provides the maximum reduction in message count. There
is not much benefit in grouping only adjacent pages (because of the small size of the
problem) and the groupings are relevant on a global range and not restricted to any
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particular critical section. In our current implementation, HDP_.CM has only one
grouping per acquire-to-acquire interval which is recreated with every pass through
that interval. This could explain the poorer performance of HDP_CM compared to
DRP_CM, which can retain multiple-groupings (of different pages) per acquire-to-

acquire interval).

The maximum improvement that our techniques can achieve on Shallow is a 6%
reduction in execution time with a 40% reduction in message count which happens
in the case of HDP_NCM.

3.4 Overhead Measurement

We present the results for the comparison between the performances of the regular
HDP_CM implementation and its optimistic counterpart in this section. We also
present the statistics for regular Tmk-4K and the best fixed size implementation for
a measure of the overhead of our aggregation techniques due to tracking the access
patterns using memory protection calls. The results are again application dependent.
and are therefore presented separately for each application. We give just the figures
for execution time (in seconds), total message count, and total number of memory
protection faults seen for each application. The data totals for both optimistic and
regular implementations do not vary significantly.

3.4.1 3D-FFT

Tmk-8K is the best fixed-page-size implementation for regular TreadMarks. The
number of faults seen by Tmk-8K is around half of that seen by Tmk-4K. HDP_CM
encounters the same number of faults as Tmk-4K as it tracks all data-fetch accesses
at the granularity of a 4K page. HDP_CM-Opt has only 50% of the number of faults
that HDP_CM has. This is almost the same as those seen by Tmk-8K. This brings
down the execution time for the HDP implementation by another 1.6%.

Thus 3D-FFT illustrates that optimistic approaches are profitable when the access
pattern is quite fixed and determined by the early stages of execution.



Implementation | Tmk-4K | Tmk-8K | HDP_.CM | HDP_CM-Opt.
Time (sec) 144.17 134.09 129.30 127.01
Message Count | 201677 | 108045 68621 68621
Faults 182755 91811 182755 95731
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Table 3.2 Overhead Statistics for 3D-FFT, 64x64x64, 100 iterations

3.4.2 Barnes-Hut

With Barnes-Hut, Tmk-16K is the best fixed-page-size implementation. Compared
to Tmk-4K, we see a 75% reduction in the number of faults encountered (Figure
3.3). In the case of HDP_CM, the optimistic approach obtains a 50% reduction in
the number of faults seen by the execution. As can be seen from the Figure 3.3,
the reduction in fault count with the optimistic approach is roughly proportional to
the reduction in message count obtained by the non-optimistic aggregation technique.

In addition, the optimistic technique also brings a reduction in the message count.
For Barnes-Hut the optimistic approach seems a better predictor of future access pat-
terns than the regular approach, i.e, a repeated fetch list for an acquire-to-acquire
interval is a better indicator of future data-fetch patterns than the fetch list of the
immediately preceding execution of that interval.

3.4.3 Iink

Tmk-16K is the best fixed-page-size implementation for Ilink. It brings a 69% reduc-
tion in the number of faults seen by the execution. The optimistic approach, on the
other hand, brings almost no reduction to the number of faults seen by the HDP_CM

Implementation | Tmk-4K | Tmk-16K | HDP_.CM | HDP_CM-Opt.
Time (sec) 118.12 87.38 99.34 93.89
Message Count | 572452 164304 278196 238417
Faults 101758 26853 101758 50624

Table 3.3 Overhead Statistics for Barnes-Hut, 16384 bodies, 20 iterations
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execution. This is because in our optimistic approach the scheme turns optimistic
only after identifying an exact repetition in the fetch list corresponding to the par-
ticular acquire-to-acquire interval. With Ilink, such a situation does not arise until
almost the end of the execution. So, the optimistic implementation also functions
as a regular implementation for the most part of the execution. Hence, it does not

obtain any reduction in fault count for Ilink.

3.4.4 Shallow

Tmk-8K is the best fixed-page-size implementation for Shallow. But, because of
false sharing, the reduction in both message count and fault count is much less than
50% of the values for Tmk-4K. HDP_CM obtains no improvement in performance for
Shallow, because of the low availability of combinable requests as detected by this
technique. As in the case of Ilink, the fetch lists do not repeat themselves, so the
optimistic scheme functions just like a regular HDP_.CM implementation.

3.5 Analysis of thresholds in DRP-buddy-system

In this section, we analyze the DRP_B scheme separately, as it is somewhat differ-
ent in its approach to aggregation, when compared to our other techniques. The
existence of hysteresis in making the grouping or splitting decisions is what makes
DRP_B different from the DRP_CM technique. As far as the implementation aspects
are concerned, DRP_B is restricted to grouping adjacent pages following a buddy-
style approach, while DRP_.CM can group together any set of adjacent pages. The
benefits of this freedom in DRP_CM can be seen from the better execution figures it
obtained for all the applications as presented in the section 3.1.1. In this section we

Implementation | Tmk-4K | Tmk-16K | HDP_.CM | HDP_CM-Opt.
Time (sec) 277.84 252.60 259.30 260.39
Message Count | 255054 86204 132085 132062
Faults 130836 40830 131277 130069

Table 3.4 Overhead Statistics for Ilink, CLP data set
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Implementation | Tmk-4K | Tmk-8K | HDP_CM | HDP_CM-Opt.
Time (sec) 34.72 34.42 35.10 35.18
Message Count 39114 32243 39044 39045
Faults 29766 24914 29766 29766

Table 3.5 Overhead Statistics for Shallow, 50 iterations

present the result of our study on the variation of DRP_B performance with change

in the threshold values.

[n DRP_B, with three possible sizes for the Mega-page - 4K, 8K and 16K - there
are four possible transitions of page-states - by splitting from 16K to 8K or from
8K to 4K and by merging from 4K to 8K or from 8K to 16K. Hence we have four
different threshold values - split thresholds for splitting from 16K to 8K and from
8K to 4K and merge thresholds for merging from 4K to 8K and from 8K to 16K. We
studied the effect of threshold values by running all four applications with the three
different initial sizes for the Mega-pages, with different settings for the 4 threshold
values. Setting the merge threshold to zero results in merging being performed if the
accesses in the last interval favor merging. With higher merge thresholds, merging
would be performed only when accesses made in more than one interval in the im-
mediate past favor merging. A similar relation is true for the split thresholds with
respect to splitting.

The results showed that the threshold settings that yielded best performance, were
found to be not only dependent on the application but also on the initial size for the
Mega-pages. For applications that favored larger Mega-pages, we found that setting
the merge thresholds to zero for smaller initial sizes gave some improvement in the ex-
ecution statistics. For example in the case of Barnes-Hut we obtained a 3% reduction
in execution time and 22% reduction in message count with a starting size of 4K for
the Mega-pages and a zero value for both the merge thresholds. The optimal values
for the split thresholds were dependent on the initial Mega-page size. Applications
that favored a 8K Mega-page favored a large split threshold for the transition from
8K to 4K and a smaller one for the transition from 16K to 8K. Applications that
favored a 16K Mega-page favored large split thresholds for both the transitions, this
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was because only 8K Mega-pages could merge to 16K, so discouraging splitting from
8K state was also required to attain 16K state.

Our results for these threshold tests led us to conclude that there is no optimal
set of threshold values that is common to all applications independent of the initial
state of the pages. Our default settings of a value of one for all thresholds were found
to be adequate to obtain reasonable improvement in performance with the DRP_B
technique. But a knowledge of the optimal page size for an application could be used
to guide the setting of the threshold values in such a way as to favor transitions to

that size.

3.6 Summary

Our automatic aggregation techniques based on the history of data-transfer patterns
were found to obtain improvements in performance for all the four applications in
our test suite. They obtained reductions in execution time that ranged from 6%
to 19%, and reductions in message count that ranged from 40% to 66%, without
having any adverse effects on the amount of data-transferred across the network.
Among the aggregation techniques the HDP schemes were found to perform better
than our DRP techniques which in turn performed better than the DRP_B technique.

With the optimistic implementation of HDP_CM, HDP_CM_Opt, we obtained a
50% reduction in fault counts for 3D-FFT without any adverse effect on the mes-
sage count or data traffic as seen by the execution. In the case of Barnes-Hut, in
addition to a 50% reduction in the fault count, the HDP_CM_Opt also obtained a
14.3% reduction in message count resulting in a 5.5% reduction in execution time.
With both Shallow and Ilink there was no significant gain or loss with the optimistic

implementation.

The experiments analysing the effectiveness of thresholds in the DRP_B imple-
mentation proved inconclusive. No particular set of threshold values yielded the best
performance consistent across all the applications or the intial states of the Mega-

pages.
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Chapter 4

Related Work

Each section of this chapter concentrates on a set of work that is similar to ours in
one particular aspect. In the section 4.1, we look at work that addresses the message
overhead problems in software Distributed Shared Memory (DSM) systems. The two
groups in section 4.2 show the variation in application behavior with size of coher-
ence unit in cache-coherent shared memory systems. In the section 4.3, we look at
an implementation for dynamically resizing the coherence unit for a cache-coherent
multiprocessor system. The work in section 4.4 presents coherence protocols that

adapt themselves depending on the data-sharing patterns of the application.

The problem with software Distributed Shared Memory systems (DSMs) that
our techniques address is message overheads for maintaining coherence. In the work
presented in the first section other people address the same problems of message
overheads, with similar approaches such as bulk-fetching and prefetching, but with-

out run-time analysis of the sharing patterns.

The coherence unit for cache-coherent shared memory multiprocessing systems is
the cache block size. Both the groups we look at in the second section show that per-
formance is affected by the relationship between cache block size and sharing patterns
exhibited by a program. This is similar to our results for page-size dependent appli-
cation performance page-based software DSMs. The work in section three looks at
an implementation of a cache-coherent multi-processing system with the cache-block
size adjustable according to the application’s requirements, predicted using previous

access patterns.

In the fourth section we look at work that present on-line algorithms based on
run-time data-sharing patterns where the algorithms adapt the system behavior to
meet application requirements. Both the papers presented, look specifically at adap-

tive protocols that optimize coherence actions for migratory data in cache-coherent
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multiprocessor environment. They are similar to our work, in that we too utilize
the history of data-fetch accesses made by the program in order to reduce coherence

overhead and optimize performance.

4.1 Messaging Overheads

Honghui Lu [15] et al. look at the performance difference between Parallel Virtual
Machine (PVM), a message passing system, and TreadMarks for parallel programming
on a network of workstations. They identify four factors that slow down TreadMarks
- (1) extra messages due to separation of synchronization and data transfer, (2) extra
messages to handle access misses caused by the use of an invalidate protocol, (3) false
sharing, and (4) diff accumulation for migratory data. Their results show that the
problem of extra messages could be mitigated by the use of bulk-transfer or data ag-
gregation. This has a significant improvement for TreadMarks, obtaining a 3% - 28%
improvement in the relative speedups (as a percentage of PVM’s speedup) obtained
for different applications in their test suite. For applications where data aggregation
was significantly beneficial they found a 40% - 72% reduction in message count.

In [4], Dwarkadas et al. present the results of integrating compile-time and run-
time support for software DSM. Their compiler computes the data access patterns
in individual processes of an explicitly parallel shared memory program. It then in-
serts calls in the program to inform the run-time system of the computed data access
patterns. The run-time system uses this information to aggregate communication,
to aggregate data and synchronization into a single message and to replace global
synchronization with cheaper point-to-point synchronization whenever possible. The
authors find a significant improvement in performance due to communication aggre-
gation for three of the four applications in their test suite. The improvements in
program speedup range from 3% - 45% due to communication aggregation.

4.2 Variation in Performance with Size of Coherence Unit

Eggers and Katz showed in [6] and [7] that the performance of coherent caches de-
pend on the relationship between the cache block size and the granularity of sharing
and locality exhibited by a program, for bus-based shared memory multiprocessors.
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They show that large cache blocks improve performance for applications with sub-
stantial processor and spatial locality, and cause an increase in the miss ratio for
applications with fine-grain sharing patterns. Their results indicate that the optimal

cache block size varies for different sets of applications.

In [19] Gupta and Weber examined the effect of cache block size on the num-
ber and size of invalidations in a multiprocessor system with a directory-based cache
coherency protocol. They too noticed that different applications gave their best per-
formances for different cache block sizes. The source for this variation in performance
with cache block size was traced to the different sharing patterns among the applica-

tions.

Both the groups conclude that the different sharing patterns among applications
require different sizes for the coherence unit to give their best performance. That
provided some of the motivation for our attempting a dynamic page resizing scheme

to reduce message overheads.

4.3 Dynamic Resizing of Coherence Unit

In [3] Dubnicki and LeBlanc proposed a scheme to reduce the impact on performance
due to a mismatch between the cache block size and the sharing patterns exhibited
by a given application. Their idea was to adjust the amount of data stored in a cache
block according to recent reference patterns. In their scheme cache blocks were split
across cache lines when false sharing was suspected and merged back into a single
cache line otherwise, to exploit spatial locality. They quantified the performance
benefits of adjustable cache block size by running traces of some parallel benchmarks
on a simulated scalable multiprocessor with a write-invalidate ownership protocol for
maintaining cache coherency. They used the average waiting time per memory ref-
erence and the number of 4-byte word transfers per memory reference as parameters
for performance evaluation. They compared the adjustable block size implementation
with various fixed size cache line organizations with the sizes ranging from 1 byte to
32 bytes.
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Dubnicki and LeBlanc found that the adjustable cache-block-size implementation
did better than the best fixed-size implementations for most of the program traces.
They found that for every fixed block size, at least one program incurred a 33%
increase in the average waiting time per reference. and a doubling of the average
number of words transferred (over the network) per reference. when compared to the
adjustable block size cache. They found only two fixed block sizes (4 bytes and 8
bytes) that were comparable in performance to the adjustable block size for most
program traces. In the few cases where the fixed-block-size caches did better, the
adjustable-block-size cache was within 7% of their performance.

We based our DRP-buddy-style implementation on this adjustable-block-size scheme.

4.4 Adapting based on data-sharing patterns

Cox and Fowler [2] presented an adaptive protocol for optimizing coherence actions
for migratory data in cache-coherent shared memory architectures. Their implemen-
tations do not require any run-time or compile-time software support, but need minor
modifications to the coherence unit part of the hardware. They advocate a migrate-
on-read-miss policy instead of a copy-on-read-miss policy for migratory data. This
moves the migratory block from one cache to another on a read-miss at the second
cache, in one transaction as opposed to two transactions required with a copy-on-
read-miss policy. As this could give poor performance for non-migratory data, it is
necessary to use this policy only for migratory data.

The coherence protocol keeps track of the data access pattern to detect migra-
tory data. For bus-based multiprocessors the implementation adds two new states -
Migratory-Clean and Migratory-Dirty - to the states of the MESI protocol. The tran-
sitions among the Invalid. Migratory-Clean and Migratory-Dirty states implement
the migrate-on-read-miss policy. The protocol adaptively switches between replicate-
on-read-miss and migrate-on-read-miss as the detected data access pattern changes.
An implementation of the protocol for directory-based Cache-Coherent Non-Uniform

Memory Access (CC-NUMA) machines is also given in their paper.
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Their work uses both trace and execution driven simulations to compare the adap-
tive protocols with standard write-invalidate protocols. Their simulations indicated
that adaptive protocols could almost halve the inter-node communication compared
to conventional protocols for the applications that had a larger portion of data-sharing
as migratory, and reduce execution time by almost 19% for some applications.

Stenstrom et al. [18] also looked at adaptive protocols for optimizing coherence ac-
tions for migratory sharing. Their idea is very similar to that of Cox and Fowler. They
suggest an implementation scheme for extending a protocol similar to the directory-
based protocol of Stanford DASH [13] to include the adaptive capability. To evaluate
its performance they use program-driven simulation of a DASH-like architecture [14]
and a set of four benchmarks, three of which were from the SPLASH suite [17].

They concluded that by reducing the number of read-exclusive requests and by
contention reduction (by reducing number of messages), their protocol could reduce
the read-stall time under both sequential and relaxed consistency models. They also
found a 20% reduction in network traffic for applications that exhibited migratory
sharing. With reduced cache size (when replacement misses become significant) they
found that the gain from the adaptive protocol decreased, but was still effective in
detecting migratory sharing. They also performed a quantitative evaluation of the
stability of their protocol - from this they found that the migratory sharing that their
protocol detected was quite stable at least for the set of applications that they con-
sidered.

Thus both the papers prove the viability of on-line algorithms that guide the co-
herence actions to match application requirements. that are detected by examining
data-sharing patters during run-time.



Chapter 5

Conclusions

5.1 Goal

Our goal in this thesis, was to develop effective automatic data aggregation tech-
niques to reduce message overheads in software Distributed Shared Memory systems.
We used the history of accesses requiring remote data-fetch operations as a guide for
predicting future data movement. Based on this prediction, we developed heuristics
to combine the requests for remote data. The combining of requests reduces the mes-
sage overhead by amortizing message costs over larger data-packets and by reducing
the message count.

Our techniques varied in their approaches to aggregation on two parameters. The
first was the domain of pages that can be grouped together. While the HDP tech-
niques allowed any set of pages that required remote data fetch within the same
acquire-follow-segment to be grouped together, the DRP restricted the set of combin-
able pages to those mapped to contiguous regions in the shared-address space. The
second dimension was the scope of the page-groups once they were created. Under the
CM classification, techniques allowed groups to have only a local scope (restricting
it to just the acquire-to-acquire interval from whose access patterns the group was

created), while the NCM techniques allowed a global scope for the page-groups.

In addition to the four techniques that we developed, we also implemented a
technique proposed in the hardware DSM literature, DRP-buddy-style (DRP_B). All
techniques were implemented on the TreadMarks DSM system. Our experimental
setup consisted of 8 SparcStation20 workstations connected by a 135Mbps Fore ATM
network. We demonstrated the effectiveness of our aggregation techniques by run-
ning many sets of experiments. using the code for four popular parallel applications
- 3Dftt, Barnes-Hut, [link and Shallow. We had significant improvements for 3Dfft,
Barnes-Hut and Iink with all our techniques and a moderate improvement for Shallow
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with some of our techniques. There was no significant degradation in performance
for any of the applications in our test suite. Thus, we achieved our goal of develop-
ing automatic message-aggregation techniques through the design, development and
verification of our implementations.

5.2 Conclusions

The success of our techniques indicate that automatic message aggregation is a vi-
able idea for reducing message overheads in software DSM systems. From the detailed
analysis of the results for each application (chapter 3), we can see the wide variation
in behavior among the applications. The improvement in performance that our tech-
niques bring to this varied set of applications indicate the suitability of our techniques
for a wide set of applications that are run on software DSMs.

The usage of run-time analysis of the past access patterns to predict future ac-
cesses has also been demonstrated to be profitable over a range of applications. The
success with Barnes-Hut and Ilink with only limited correlation between past and
future accesses shows that a coarse indication from the access history is adequate to
provide improvement in performance, when a large part of the memory sections get
repeatedly accessed. The performance improvement with 3D-FFT shows the extent
to which our techniques can benefit from a fixed well-defined access pattern even if it
1s not too straight-forward.

The dominance of the HDP techniques over the DRP techniques suggest that re-
stricting the groupings to only adjacent pages may not be a good idea atleast for
applications similar to those in our test suite. For applications where program ex-
hibits group accesses to adjacent pages, the HDP techniques can extract the same
benefit as the DRP applications as shown in the case of 3D-FFT. Under the DRP
schemes, the better performance of both DRP_CM and DRP_NCM over DRP_B again
suggest that restrictions on the grouping of pages hurt performance. The usage of
thresholds for grouping might still be an idea worth exploring for our techniques.

The better performance of the NCM techniques over the CM techniques suggest
that for the application we have seen, page-groups have a wider scope than a scope
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restricted to just the regions whose access patterns led to their creation. This explains
HDP_NCM getting the best results for almost all the applications.

We also found the HDP techniques easier to implement, as they avoided the checks
for adjacency of pages and their ordering. So, both in terms of performance and ease
of implementation, the HDP techniques seem to win over the DRP techniques.

5.3 Future Work

As we had mentioned earlier in chapter 4, there are ongoing efforts for integrating
compiler-directives with run-time support for issuing combined requests for data. We
could attempt to combine such work with the run-time information that we obtain
for our techniques to get the best of both static and run-time analysis. This would.
though, remove a major thrust for run-time analysis - that of using commercially
available compilers without requiring any modifications in them. But a significant
performance improvement when combining both could be sufficient to justify such an
idea.
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