OUTING IN LARGE-SCALE
D HOC NETWORKS BASED ON A

ELF-ORGANIZING COORDINATE
YSTEM

Shu Du

s

R

Thesis: Master of Science
Computer Science

Rice University, HOUSTON, TEXAS (APRIL 2004)

UMI Number: 1419069

INFORMATION TO USERS

The quality of this reproduction is dependent upon the quality of the copy
submitted. Broken or indistinct print, colored or poor quality illustrations and
photographs, print bleed-through, substandard margins, and improper
alignment can adversely affect reproduction.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if unauthorized

copyright material had to be removed, a note will indicate the deletion.

®

UMI

UMI Microform 1419069
Copyright 2004 by ProQuest Information and Learning Company.

All rights reserved. This microform edition is protected against

unauthorized copying under Title 17, United States Code.

ProQuest Information and Learning Company
300 North Zeeb Road
P.O. Box 1346
Ann Arbor, Ml 48106-1346

RICE UNIVERSITY

Routing in Large-Scale Ad Hoc Networks Based on a
Self-Organizing Coordinate System

by
Shu Du

A THESIS SUBMITTED
IN PARTIAL FULFILLMENT OF THE
REQUIREMENTS FOR THE DEGREE

Master of Science

APPROVED, THESIS COMMITTEE:

D d BBl

Dr. David B. Johnson, Chair
Associate Professor of Computer Science

/
f Fi
/)v [/

Dr. Pe{# D(ruschel

Wr of g\mputer Science

\ o\ \&»&—

Dr. Rudolf H. Riedi
Assistant Professor of Statistics

HOUSTON, TEXAS

APRIL, 2004

Routing in Large-Scale Ad Hoc Networks Based on a
Self-Organizing Coordinate System

Shu Du

Abstract

In this thesis, I present the design and evaluation of new techniques to solve the routing
problem in large-scale city-wide wireless ad hoc networks. With an upsurge of wireless
technologies, many routing protocols have been proposed for wireless ad hoc networks,
but none of them have been proven capable of handling the tasks in a large-scale network
that is composed of thousands of nodes. We propose a new routing scheme that is a hybrid
of the current proactive and reactive routing mechanisms. This scheme uses proactive
beaconing messages to build a virtual hierarchical coordinate system in an ad hoc network
and thereafter uses reactive routing maintenance techniques to bypass the stale information
between beacons. I implemented this new hybrid scheme in the network simulator ns-2.
The simulation results show that it performs well in a large-scale ad hoc network of one

thousand of nodes with low overhead.

Acknowledgments

I thank my advisor Dr. David B. Johnson for his guidance throughout the process of my
thesis work. His advice has been invaluable to get this work done. T also thank my commit-
tee members Dr. Peter Druschel and Dr. Rudolf Riedi, not just because of their presence
on the committee, but also because of the our close discussions during the past six months
in our Safari group meetings.

I am also grateful to our group seniors Amit Saha, Santashil Palchaudhuri for their
assists during the thesis work. I would also like to thank Ahamed Khan, Ansley Post and
Johnny Ngan for their discussions with me.

Finally, I want to thank my family and my girl friend Qiuyue for their continual encour-

agement. The support they have given is immeasurable!

Contents

Abstract
Acknowledgments

List of Hlustrations

Introduction
1.1 AdHocNetworking e
1.2 Thesis Contributions e

1.3 ThesisOrganization

Related Work

Safari Introduction

3.1 OVEIVIEW . . o o o e e e e e e e e e,

Buoy Protocol

4.1 Buoy’s Proactive Behavior: Sending Beacon Packets

4.2 Algorithm to Handle a Beacon Packet

4.3 AlgorithmtoDecide HID
4.3.1 Steppingupalgorithm
4.3.2 Stepping downalgorithm
433 Chooseaparent.

4.4 Techniques to Improve Stability

4.4.1 Hysteresis coefficient 4 requirements

1l
il

Vi

4.4.2 Decreasing the number of beacons

4.4.3 Get the shortest hop count path

5 SHARP: Scalable Hierarchical Ad Hoc Routing Protocol
5.1 Modifications to the Buoy Protocol to Support Routing

5.2 Inter-cell Routing Using Beacon’s Reverse Paths

5.2.1 Buoy ad hoc routing table (BART)

5.2.2 Inter-cell routing

5.2.3 A metaphor of inter-cell routing

5.3 Local Route Repair to Improve Inter-cell Routing Performance
5.3.1 Overview

5.3.2 The challenge of the local route repair
5.3.3 Localrouterepairalgorithm
5.4 Intra-cell Routing Using DSR,
54.1 DSRoverview

5.4.2 Modification of DSR for intra-cellrouting
5.5 Summary ...

6 Routing Performance Evaluation
6.1 Scalability Evaluation

6.2 Mobility
6.3 Traffic Load

7 Conclusion and Future Work

25
26

29
31
33
33
34
37
39
39
40
41
45
45
46
47

49
50
54
56

58

3.1

4.1

5.1
52
53

6.1
6.2
6.3
6.4
6.5
6.6
6.7

Illustrations

Safari hierarchy illustration, 12
Beacon initiating sequences of a three level buoy. Suppose B =2. 25
SHARP routing overviewo 30
Ilustration of the scope of abeaconflood 32
A metaphor of inter-cell routing 38
Packet delivery ratio vs. network size 51
Overhead packets per node vs. network size 52
Number of hops vs. network size 53
Packet delivery ratio vs. percentage of mobilenodes 54
Overhead packets per node vs. % mobilenodes 55
Packet delivery ratio vs. trafficload 0., 56

Overhead packets per node vs. trafficload 57

Chapter 1

Introduction

In the past twenty years, an upsurge in networking technologies and the Internet has greatly
changed our societies. Within the past ten years, wireless networking technologies and
cellular phone systems have taken huge leaps to expand our digital communication signifi-
cantly. Unfortunately, although we are now in a unique stage in history when information
exchanges can be achieved so conveniently, we are actually depending more and more on
information exchange infrastructures, such as wired network backbones and cellular base
stations. These infrastructure-based networks are vulnerable to natural disasters and mali-
cious attacks. Alleviating our dependence on networking infrastructures has attracted more

and more research attention recently, both in academia and in industry.

1.1 Ad Hoc Networking

Ad hoc networking is one of the hot research topics in the last few years because it promises
to provide us reliable network services with limited overhead and to eliminate completely
the dependence on network infrastructures. An ad hoc network is a group of wireless com-
munication nodes that forward packets for each other so that nodes which are out of direct
wireless transmission ranges can still communicate with each other. The big challenge,
as well as the research focus, in ad hoc networks is to solve the routing problem. Unlike
infrastructure-based networks, a wireless ad hoc network usually has a dynamic network

topology. This is not only because of the physical features of the environment-sensitive

wireless channels, but also due to the fact that the communication nodes within ad hoc
networks are generally able to move around.

In order to resolve the routing problem in ad hoc networks, many routing protocols
have been proposed in the past decade. Despite their differences, these routing protocols
can be classified into two major categories: proactive routing protocols and reactive routing
protocols.

Similar to routing protocols in wired networks, proactive routing protocols, like
DSDV [28], use periodically broadcasted maintenance packets in an attempt to make sure
that a node always has a route to all the destination nodes in the network. Although proac-
tive routing protocols are usually simpler to implement than reactive routing protocols, they
are sensitive to the dynamic topology of network nodes and therefore have difficulties in
achieving high performance in the networks composed of nodes with high mobility. On
the other hand, reactive routing protocols, such as DSR [16] and AODV [30}, do not use
periodic broadcasted maintenance packets. For reactive routing protocols, routing infor-
mation is collected by the communicating nodes only when it is necessary to do so. In
other words, only when a node wants to communicate with another node does this node
broadcast its routing request packets and collect the path information to the destination.
Reactive routing protocols have been shown to perform well in medium- or small-scale ad
hoc networks.

Although many routing protocols have been proposed, extensively studied and fine-
tuned in the last decade, none of the current routing protocols have shown convincing
capabilities of handling the routing task in a large-scale ad hoc network. This is basically
due to the unscalable network bandwidth of ad hoc networks [21], as well as due to the
lack of scalability in the protocol designs. The scalability problem in ad hoc networks is

difficult to solve for the current routing protocols in the sense of both bandwidth overhead

and storage requirement.

Given the problems of the current routing protocols and the increasing demand to have
a reliable networking system in a large-scale ad hoc network, our research group recently
proposed a series of solutions in ad hoc networks to provide dependable connectivities
as well as traditional Internet services in a city-wide large-scale ad hoc network. The
project is called Safari, a scalable architecture for ad hoc networking and services[12, 19,
33]. Safari provides a self-organizing network hierarchy, scalable ad hoc network routing,
self-organizing network services and an integrated ad hoc network architecture. Safari is
composed of a series of protocols to achieve the above goals, but the basis of all these
protocols is a self-organizing proximity-related hierarchical address assignment protocol.
Generally speaking, we use proactive, periodic, distance-limited broadcasted packets to
help the nodes in an ad hoc network compose clusters with the nodes that are topologically
pearby. After the fundamental clusters are generated, the same clustering aigorithm is
applied to the lead node of each fundamental cell to generate a higher level cell. Continual
applications of the same algorithm to the network will generate further higher level cells.
Finally, a cell which covers the whole network will be generated. By this proactive address
assignment protocol, each node in the ad hoc network will get a unique hierarchical address.
More importantly, topologically proximate nodes will be assigned similar addresses. This
hierarchical address assignment protocol is called the buoy protocol.

Based upon the hierarchical addresses assigned, routing in Safari networks becomes
similar to the routing schemes in wired networks. The routing scheme we designed to sup-
port Safari is called SHARP (Scalable Hierarchical Ad hoc Routing Protocol). Generally
speaking, the source node looks at the hierarchical address of the destination node, and
then delivers the packet towards the lowest common cell in their hierarchical tree. As the

packet travels through the network, intermediate forwarding nodes will share a longer and

longer common prefix in their hierarchical addresses with the destination node, until finally,
the packet reaches a node in the same fundamental cell where the destination node is lo-
cated. From there, the packet is delivered through DSR, an existing medium-scale efficient
reactive routing mechanism, to the destination node.

If we consider the hierarchical address assignment protocol and the above routing
mechanism as a integrated new routing mechanism, this new mechanism acts like a hy-
brid of proactive routing and reactive routing. SHARP uses a proactive periodic routing
scheme to set up a virtual coordinate system in the ad hoc network and to provide the
high-level, coarse-grained topology information. At the same time, SHARP uses a reac-
tive routing mechanism to handle high mobility and to provide the low-level, fine-grained
topology information. In this way, SHARP takes advantages of both proactive and reactive

techniques and avoids the disadvantages of both.

1.2 Thesis Contributions

I made the following contributions in this thesis: First, I developed Safari’s buoy protocol
from its rough design guidelines and proposed several techniques to improve its structural
stability. Second, I proposed a reactive local route repair strategy which can significantly
improve SHARP’s routing performance. Finally, I evaluated SHARP’s performance based

on my simulation implementation.

1.3 Thesis Organization

This thesis presents the design details of the Safari buoy and SHARP protocols, as well
as the simulation results for its routing performance evaluation. In Chapter 2, I introduce

the background for this thesis, focusing on the previous work that has been done in this

field. In Chapter 3, a general introduction of the Safari architecture is given. In Chapter 4,
I describe the design details of the Safari hierarchical address assignment protocol as the
background material for Chapter 5, which presents the Safari routing mechanism in detail.
In Chapter 6, the evaluation of Safari routing is discussed. Finally, I draw the conclusions

and describe my future work in Chapter 7.

Chapter 2

Related Work

Routing protocols in ad hoc networks can be generally divided into two classes: proactive
routing protocols and reactive routing protocols. Proactive routing protocols, also called
periodic routing protocols, are named because each node tries to maintain routes to all
destinations at all times [26, 28, 29]. DSDV [28], a typical example of proactive routing
protocols, requires every node to broadcast periodically its own routing table to its direct
neighbors. At the same time every node listens to its neighbors’ broadcasting and updates
its own routing table. One major problem of proactive routing protocols is that they suffer
from high overhead of the periodic broadcasting packets. More importantly, for large-scale
or highly mobile networks, proactive routing protocols have a slow rate to converge and
therefore have not performed well. On the other hand, reactive routing protocols, also
called on-demand protocols, do not try to get or maintain routing information until it is
necessary [16, 30]. For example, in DSR [16], the first well-known reactive routing proto-
col, routing information is collected only when a node has a data packet to send. In DSR,
broken links are detected and repaired only when a packet needs to be forwarded. Because
of this flexibility of reactive routing protocols, they are more adaptive than proactive ones
in ad hoc networks with high mobility. However, as the scale of the network grows and
the mobility of nodes increases, the performance of reactive routing protocols also drops
quickly as their maintenance overhead increases rapidly.

In order to solve the scalability problem in ad hoc networks, many routing protocols

have been recently proposed by different research groups. Geographic routing schemes,

use the geographic information of the nodes provided by GPS-like devices to guide routing
in ad hoc networks[4, 18, 20, 22, 23]. They usually require the node to have the geographic
coordinates of the destination and of the node’s direct neighbors. Based on the above in-
formation, greedy rules or other heuristic rules can be applied to guide the node to forward
the packet towards the direction of the destination. Compared with the traditional proactive
and reactive routing protocols, geographic routing protocols are much simpler, but the re-
quirement of GPS-like devices for every node and the mandatory service of the geographic
information distribution to the whole network greatly limit the scope of their usage.

Recently, new techniques of gathering geographic information without GPS devices
have been proposed to empower the geographic routing protocols [31]. The key idea of
these techniques is to derive virtual coordinate information based on connectivity infor-
mation in networks. Therefore, like proactive routing mechanisms, they need extensive
exchange of local connectivity information to converge the view of the global topology.
Because of this, their ability to solve the problem of mobility in ad hoc networks is still
under investigation.

Another popular technique introduced into ad hoc networks is cluster routing[1, 2, 3,
8, 13, 24, 25, 36, 39]. Protocols of cluster routing use periodic broadcasting around the
nodes’ neighborhood to divide the network into clusters. Some protocols use the concept
of the nested clusters to build a cluster hierarchy in ad hoc networks. Similar to proactive
routing schemes, these cluster routing protocols suffer from the fast growing overhead of
the periodic broadcasting packets as the network size increases. Some of these cluster
protocols depend on fixed cluster heads to solve the mobility problem, but these special
requirements greatly limit the scope of their deployment[5, 6, 38].

Landmark routing is another proposed routing technique in ad hoc networks to achieve

high scalability. Borrowed from the landmark routing protocol in wired networks, land-

mark routing protocols in ad hoc networks, such as LANMAR [27] and L+ [9], try to for-
ward packets through some key way points. Since they try to keep the way points equally
apart and also allow the use of hierarchical landmarks, these routing protocols can greatly
reduce the routing overhead. LANMAR specifically assumes their ad hoc networks consist
of groups of nodes related in functionality and mobility. L+, on the other hand, uses a
purely proactive approach for routing and is in fact based on DSDV [28]. SHARP, on the

other hand, i1s a hybrid of proactive and reactive routing.

Chapter 3

Safari Introduction

In order to eliminate our dependence on wired aﬁd wireless infrastructures and to provide
connectivity and traditional Internet services, our research group has recently proposed a
novel architecture, called Safari, in ad hoc networks. The Safari architecture can not only
support scalable routing in city-wide ad hoc networks that may be composed of tens of
thousands of nodes, but also it can make the everyday Internet services, such as the DNS,
email and web services, available to the participant nodes. Realizing that ad hoc networks
and infrastructure networks can be integrated to capture the advantages of both, the Safari
group also plans to build an architecture in integrated networks so that infrastructure-based

Internet services can be accessed by the ad hoc network users.

3.1 Overview

Safari 1s composed of the following five inter-dependent modules:

o Self-organizing network hierarchy:
The basis of the Safari architecture is a nested cellular architecture that is self-
organized by the nodes in the network. Based on a buoy protocol that allows the
nodes to periodically send out hop-limited beaconing packets, the nested cellular ar-
chitecture can be generated according to the proximity in the topology of the wireless
transmission connectivity. With this hierarchical architecture, scalable routing in ad

hoc networks can be implemented efficiently and be capable of handling high mobil-

10

ity. Additionally, because this hierarchical architecture is formed based on proximity-
based criteria, it can naturally support the proximity-based overlay networks that are

usually used to provide efficient and reliable Internet services.

Distributed address storage and updating:

After the hierarchical architecture is generated for the network, every node will have
a hierarchical address, which can locate itself in the nested cellular structure. The
hierarchical address of a node needs to be known by other nodes in the network when
they want to communicate with that node. Therefore, hierarchical addresses should
be stored and updated in the network. They should also be available for retrieval by
the other nodes in the network in a reliable and efficient way. Safari uses a distributed

hash table (DHT) to provide this service.

Scalable ad hoc network routing:

SHARP, the routing protocol we have designed to support Safari hierarchical archi-
tecture, can be divided into two phases. The goal of the first phase, called inter-cell
routing, is to use the hierarchical address of a destination node to deliver the packet
to any node in the fundamental cell where the destination node is located. Routing
in this phrase is based on the destination’s hierarchical address and the records of
beacons stored in the routing tables of the intermediate forwarding nodes. The task
of the second phase, called intra-cell routing, is to deliver the packet to the specific
destination node within that fundamental cell. We use a modified version of the
DSR routing protocol [16] for intra-cell routing. Because the size of the inter-cell
routing table in each node grows logarithmically with the size of the network, the
scalability requirement is achieved. In addition, because the beacon records in the

inter-cell routing table are passively received from the buoy protocol, the overhead

11

of the routing protocol itself is limited.

Self-organizing network services:

One important function of the Safari architecture is to provide the basic Internet
services to ad hoc network users. Because ad hoc networks are without infrastructure,
traditional client-server service models in the Intemet are hard to deploy in ad hoc
networks. Recently, peer-to-peer (P2P) technologies have brought a new server-less
model into the Internet to provide the traditional Internet services, such as hostname,
storage, and instant messages [10, 32, 34, 35, 37, 40]. Because Safari can provide
a self-organizing hierarchical structure, it is natural to deploy the P2P service model
into Safari. In addition, because Safari’s cellular structure is proximity-based, the

traditional location-aware Internet services can benefit from it.

Integrated ad hoc network architecture:

In the situation where wired or wireless infrastructure networks and ad hoc networks
are integrally deployed, ad hoc networks can extend digital communication services
to areas where the infrastructure networks cannot reach. At the same time, infrastruc-
ture networks can support high bandwidth and highly reliable network services that
ad hoc networks find difficult to achieve. Moreover, in situations such as disaster re-
covery or military operations, only isolated infrastructure networks may be available
in the area. Therefore, it is beneficial to use ad hoc networks to bridge these infras-
tructure networks into one unified digital communication platform. Due to the ease
in merging and partitioning in Safari’s hierarchical structures, the Safari architecture

can efficiently support for such integrated networks.

12
3.2 Hierarchical Address and Nested Cellular Structure

In a Safari network, a distributed self-organizing buoy protocol assigns every node in the
network a hierarchical address, with which a nested cellular structure is generated. The
unique hierarchical address assigned to each node can locate that node’s position in the
nested cellular structure. Figure 3.1 illustrates an example cellular structure formed by

Safari.

3000

2500

20001

1500 °

1000} -°

500}

T LA .)
[¢] 500 1000 1500 2000 2500 3000

Figure 3.1: Safari hierarchy illustration: a visualization of the hierarchy generated in a net-
work of 500 nodes in a 3000 m x 3000 m area. The small, thin-edged polygons represent
the fundamental (level 1) cells, and the big, thick-edged polygons represent the higher level

(level 2) cells. The X and Y axis are the geographic coordinates of the area.

I will present the six definitions of the Safari structure as follows:

1. Hierarchical level:

In a Safari network, a non-negative integer number Hy,,,; is assigned to every single

13

node to stand for its current hierarchical level. A buoy node (also called an anchor
node) is defined as a node with Hy,,.; > 1. A normal node is defined as a node with
Hieyer = 0. The king node is the node which has the maximum H,,.; in the network.
If a node has Hy,,.; of n, it is also considered to be at Hy,,.; of 0,...,n— 1. Hj,e is

also simplified as level in the rest of the thesis.

. Stable state:

When a network gets started, every node is a normal node. Then a self-organizing
distributed algorithm is deployed to organize the system into a dynamically stabilized
state and to keep the system in that state thereafter, as for example, node move or
wireless propagation conditions change. In an absolute stable state, there should be
only one king node and its Hy,,.; should be kept the same. If there are no topology
changes in the network, there should be no hierarchical address changes in the stable

state.

. Direct association:
For a node A with Hy,,.; equal to n, it associates with one single node B with H,. =
n+ 1 at any given time and considers B as its parent. Node A is then called a child of

B. In this thesis, the association relationship between A and B is denoted as
A:n—B:n+1 .

Moreover, we define that A:n — A :n+1if A’s Hy,,,; > n-+ 1, which means that a
buoy always associates with itself since we previously defined that a level n+ 1 node
is also a level n node. A level n node can only have at most one level n -+ 1 parent at
any given time. In a stable state, every node has its parent except for the king node

at the highest level.

14

4. Indirect association:
IfA:n—B:n+land B:n+1— C:n+2, we say node A is a descendant
of node C, and node C is called an ancestor of node A. In this thesis, this indirect

association relationship between A and C is denoted as
An=C:n+2 .

Also, we define that if A : n; — B : ny, A: ny = B : ny, which means that a direct
association is always an indirect association. If A:ny = B:nyand B: np = C:
nz, we have A : ny = C : n3, which means the indirect association relationship is

transitive.
From the above definitions, we also getthatA:n=—=A:n+1sinceA:n—A:n+1,
if A is alevel n+ 1 buoy.

5. Cell:

We can define cells in the Safari architecture with the indirect association relation-
ship. A cell is identified by the head of the cell, which 1s a buoy node. In other words,
for a buoy node A, node A also defines a cell with itself as the cell head. A level n

buoy X defines the cell Cy : n as the set of the nodes
{x|x:ny=X:nn,>0andn, <n} .

Because buoy nodes are associated with each other, cells in Safari are naturally nested

within each other. We can derive from the previous definitions that

o IfA:n,=—B:ny, thenCy:n,CCp:ny

e In the stable state, the whole network is a cell, and the head of that cell is the

king node.

15
We define a fundamental cell as a cell with a head node of level 1.

. Hierarchical address:

A hierarchical address assigned to a Safari node can be defined as a series of the
ID names, which identifies all the current buoys with which this node is indirectly
associated. A node A with the hierarchical address of AgA1A» ... A, 14, implys that
Ag=A,40:0—A1:1,A: 1 —Ay:2,...,A,_1:n—1— A, :n. Because a
buoy node also defines a cell in Safari architectures, the hierarchical address actually

gives the node’s position in the Safari structure of the nested cells.

The ID of a node is a number that can distinguish itself from its siblings that have
the same parent. Therefore, the ID can be the globally unique identifier of the node,
such as an IP address, a MAC address, or a product sequence number, but it will be
more efficient if it 1s just a dynamically randomly selected number, which could be
much shorter in bits than the node’s global identifier. However, in this thesis, I use

the ID as a global identifier for convenience.

We have defined that a level n 4+ 1 buoy is also a buoy with level n, and iteratively, it
is also a buoy of level n — 1, n —2, ..., 1. Therefore, we can derive the node’s level
from its hierarchical address: If a node is of level k, then in its hierarchical address,

Ag=A1=---=Ar 1 =A;.

16

Chapter 4

Buoy Protocol

After the Safari hierarchical structure is defined, we now need an algorithm to generate
the structure in an ad hoc network. Because ad hoc networks are without centralized ad-
ministration, it is necessary to have a self-organizing, distributed algorithm to finish the
task of generating structure. The buoy protocol in Safari satisfies the above requirement.
Generally speaking, the buoy protocol requires every buoy node to periodically broadcast
the information of its own existence to the encompassing neighborhood within limited dis-
tance. Also, every node in the network keeps a beacon cache to record all the recent beacon
packets the node has heard, so that it can choose the nearest buoy node as its parent. The
goal of the buoy protocol is not just an algorithm to get “a” structure; instead, it tries to get

to an ideal equilibrium state, which means:

o All the buoys of the same level are evenly distributed with an equal distance among
them; in other words, the generated cells are of equal size and parents have the same

number of children.
e The number of the buoys in the work is as small as possible.
e The hierarchical level of the system is as low as possible.

In summary, the buoy protocol is designed in general to approximate a perfect Safari struc-

ture.

17
4.1 Buoy’s Proactive Behavior: Sending Beacon Packets

Every buoy node with a level n > 1 sends out a beacon packet every T, seconds. The beacon
packets are forwarded to all the nodes in its neighborhood within D, hops. The series of T,

and D, are given by geometric progression:
Dp=axD,_1=a"'xDy ,

and

Tn:BXTn—l:ﬁn_IXTI y

in which o and f8 are predefined system parameters. Likewise, D and T, the broadcast
range and cycle of the fundamental cell, should also be specified in advance according to
the requirements of different systems.

Since D, gives the beacons broadcasting range, it actually determines the maximum
distance between a buoy and its children. Therefore, we can derive the maximum radius of

a level n cell as

= Dyx (e a4 41)
W —1
h—1 ~

= D1><

The size of the cells grows as an exponential function of the level; that is, as the scale of
networks grows, the level of the Safari hierarchy will only grow at a logarithmic rate.

The beacon packets broadcasted by buoy nodes include the following fields:

e HID, the hierarchical address of the buoy:
The hierarchical address is used to identify the unique hierarchical position of the

beaconing source in the Safari nested cellular structure.

18

e N, the sequence number of the beacon packet:
Every buoy node keeps an incremental counter and marks every beacon packet that it
originates with a unique sequence number so that a receiving node can identify a du-
plicate packet. The sequence number in a beacon packet also allows nodes receiving
beacons to know which beacon is the freshest one, since complicated wireless chan-
nel conditions and jitter timers may cause sequential packets to arrive at a receiving
node out of order. The jitter timer is used in wireless communication to reduce packet
loss due to collisions. In wireless broadcasting, several nodes may receive the packet
simultaneously, and if they broadcast it at the same time, their transmissions will
collide. Therefore, instead of sending out the packet immediately after receiving it, a

node can add a random delay to the packet processing. This technique is called jitter.

o [, the beacon level:
A buoy of level n+ 1 is also of a buoy of level n,n—1,...,1, and different levels
require different frequency for sending beacon packets. Therefore, the beacons com-
ing from the same buoy may not be of the same level, which means that the beacons
may have different transmission ranges even if they are from the same buoy. With
the timer controlling the beacon origination, a beacon packet can be marked with the

cotrect level.

e D, the accumulated hop count of the beacon:
Receiving nodes need to know the length of the path to determine how far away the
originating buoy is in order to choose the nearest higher level buoy as its parent. This

hop count number is incremented at every hop during packet forwarding.

¢ R, the maximum hop count of the beacon:

As stated earlier, this value is equal to Dy, where L is the beacon level of the packet.

19

Every intermediate forwarding node compares the packet’s accumulated hop count
D with this maximum hop count R. If R > D, the beacon packet will not be discarded

and forwarded further.

4.2 Algorithm to Handle a Beacon Packet
When a node receives a beacon packet, it will do the following things in order:

1. Check to see if the received packet is a duplicate or stale one by its HID and N. If
it is, the node will discard the packet. The packet is stale if the node has already

received a beacon packet with a higher N from the same buoy.

2. Store the information of the beacon packet into its beacon cache, which records the
beacon’s hierarchical address HID, the beacon’s sequence number N, the beacon
level L, and the hop count from the beacon’s initiator D. The node also calculates
the expiration time for the entry of the beacon cache. The higher the beacon level
of the packet, the longer its expiration timer will be set, proportional to the beacon

Initiation timer T,,.

3. Increment L, the accumulated hop count of the beacon packet, and check if L < R.
If not, the node will discard the beacon packet. Otherwise, the node will rebroadcast

the beacon packet.

4.3 Algorithm to Decide HID

After the received beacon packet has been stored into the node’s beacon cache, the node
can go through its beacon cache to check the recent history of the nearby buoys in order to

decide with which buoy it should associate. If there are no appropriate buoys to be selected

20

as a parent, the node will “step up” to become a higher level buoy. Moreover, if a node finds
out another buoy is too near to itself, it will decide whether or not it should “step down” to
avoid the overhead of having too many buoys.

In the following, I present the algorithm in three inter-dependent parts: the algorithm
to decide to step up, the algortithm to decide to step down, and the algorithm to decide the

parent.

4.3.1 Stepping up algorithm

In the previous section, I have introduced the maximum hop count broadcast limit D,, of the
buoys in level n. A level n buoy uses D, to decide the maximum hop count it wants to keep
away from its direct children, which are level n — 1 buoys.* Likewise, a level n — 1 buoy
does not want to have a level n buoy more than D,, hops away from itself. Therefore, if a
level n buoy cannot hear any higher level buoys within D, hops, it will consider stepping
up to become a level n+ 1 buoy. However, if all the beacons the node has heard are from
lower level buoys, it can identify itself as a king buoy; therefore, it will not step up although
it can not hear any higher level beacons.

This stepping up checking algorithm will be applied periodically. The checking fre-
quency is in accordance with the origination rate of the level n+ 1 beacons. More specifi-

cally, the checking cycle is set as

TstepUpCheck =axTy1 ,

in which T, is the originating cycle of level n+ 1 beacons and a is a positive integer.
Preferably, a should be bigger than 1 because in unreliable wireless broadcasting transmis-

sion, some packets may get lost due to congestion or poor channel conditions.

*In Chapter 5, we will see that in order to support scalable routing, a buoy’s actual broadcast range will

be expanded beyond D,,.

21

In addition, in order to avoid several nearby nodes stepping up at the same time, a small
random variance o is added when resetting the Tepupcheck-

Summary: When Ty, upcheck Of a level n non-king node expires, if the node finds
that no entry in its beacon cache with a higher level (N > n) is within the required limit
(D < Dy41), the node will step up one level. If a node steps up, it will then emit a new

beacon packet immediately to notify the neighborhood about this change.

4.3.2 Stepping down algorithm

Because we want buoys to be evenly distributed and as few as possible, we try to avoid
a crowd of buoys. Two buoys could be too near to each other either by node mobility
or by occasionally dropped packets, which may lead to a wrong decision of stepping up.
Therefore, we need to have a mechanism to help buoys decide when to step down in order
to keep the dynamic equilibrium.

First we need to define the criteria of crowd. A stepping-down distance limit G, is
introduced to judge when two buoys are too close to each other. If a level n buoy hears
another buoy with the same or a higher level within the distance G,,, it either thinks that
they are too near to each other and will step down, or it assumes the other node will step

down. The value of G,, is defined as
G,=[hxD,] ,

in which D,, is the maximum hop count of the level n buoy, and & is called the hysteresis
coefficient. The value of h defines the generousness limit of sustaining nearby buoys. If
h is smaller, the node is more generous with nearby buoys, and the maximum permitted
distance between two buoys becomes smaller.

Theoretically, 2 could be set as any non-negative real number, but it is only meaningful

22

in practice if h € [Din, 2) , which sets G, within [1,2 x D,). G, should be equal to or greater
than one, because the distance between two buoys could never be smaller than one hop. G,
should be smaller than 2 x D,,, because when two buoys are at a distance of 2 x D,, hops, the
coverage ranges of their transmission circles are cotangent. In that case there is no reason
to assume that the buoys are too crowded. We will discuss a more precise range of h later
in Section 4.4.

In contrast to the algorithm of stepping up, the algorithm of stepping down does not
need to be applied periodically. Instead, only when a node receives a beacon from the same
level or a higher level buoy does this stepping down checking function need to be applied.

Summary: If a level #n node A receives a beacon from node B which is d hops away

and d < Gy, then node A steps down a level if
e Levely < Levelg, or
e Levely = Levelg and ID4 < IDg.

If a node steps down and if its level is still greater than one, it will emit a new beacon packet

immediately to notify the neighborhood about this change.

4.3.3 Choose a parent

Most of the time, a node does not need to step up or step down, as it can find an appropriate
higher level buoy with which to associate. A node can check all the nearby higher level
buoys in its beacon cache to pick the nearest one to be its parent.

The status of a beacon cache gets changed when a new entry is added or when a stale
entry is deleted. In either of these two cases, the node needs to check if the change affects
its decision on the best appropriate parent. In other words, this algorithm of choosing a

parent needs to be applied whenever

23

¢ anew beacon packet has just arrived, or
e an entry has just expired and was removed from the beacon cache.

Summary: A level n node goes through all the n+ 1 level beacons it heard recently and
then picks out the ones with a distance less than its stepping up limit D, 1 and greater than
its step down limit G, = [h x D, |. Among these qualified potential parents, it chooses the
one nearest to itself as its direct associated parent and changes its own hierarchical address
accordingly. If a node changes its parent and if its level is still greater than one, it emits a

new beacon packet immediately to notify the neighborhood about this change.

4.4 Techniques to Improve Stability
4.4.1 Hysteresis coefficient /& requirements

The buoy protocol requires a node of level n to have its parent within the limit of D,,
and at the same time, the node should be no closer than & x D,, to any node of the same or
higher level. In this way, all the buoys can be evenly distributed in the network and remain
in a dynamic equilibrium state even if the wireless transmission is unreliable and nodes are
moving.

It is necessary to have the conditions of stepping up and stepping down to be coherent
with each other. For example, we do not want a node to step up because it thinks it is too far
away from the higher level buoys, and, after stepping up, it immediately has to step down
because it finds itself too near to the other buoys of the same level.

In order to satisfy the above requirement, the hysteresis coefficient needs to have a
more precise range than the one given in the previous subsection. In the last subsection, we
showed that % should be in the range of [Din,2>. Now we consider the following two cases

to further limit its range:

24

1. A node A of level n steps up:
If node A steps up, it means there is no level n+ 1 node within D, | hops. Therefore,
if d stands for the minimum distance between A and any level n+ 1 node, we must
have d > D,+;. When A steps up and becomes a level n+ 1 node, we then need to
make sure that all the level n+ 1 nodes are beyond G, ; hops away to prevent A
from stepping down. Hence, we need to have d > G,4+1 = h x D, 1. Consequently,

in order to satisfy the above conditions, we get

hXDn+l <Dn+1 <d >

that is,

h<1.

2. A node A of level n steps down:
If node A steps down, it means the nearest buoy B of the same or a higher level
is within G, hops. Therefore, if d is the distance between A and B, we must have
d < G, = h x D,. When A steps down and becomes a level n — 1 node, we then need
to make sure that there is at least one level n node within D,, hops to prevent A from

stepping up. Hence, we need to have d < D,. Consequently, in order to satisfy the

above conditions, we have

d<hxD,<D,,

that is

h<l .

In summary, in order to prevent oscillation of the buoy’s stepping up and stepping down,
it is necessary to have h < 1.
In the original Safan design, the meaning of /4 slightly differs from the definition here.

In the original Safari’s proposal [33], the stepping down limit G, is defined as G, = h x U,,,

25

in which Uj, is the stepping up limit for the level n buoys and equals D, in our case. With

the original definition, we can derive i’s requirement as
h<D,/Dpiy=a ! |

if we have the condition that D, .1 = o x D,,.

4.4.2 Decreasing the number of beacons

DZ

DZ }? Dz Dl ﬁ\ Dl
. S W
! T f f T T !
0 T 21, 0 T, 2T, 3T, 4T,

D3

|
0 T,

Figure 4.1: Beacon initiating sequences of a three level buoy. Suppose 8 = 2.

As mentioned earlier, a level n buoy A needs to broadcast its beacon every T}, seconds,
where T, = 8 x T,,_1 for n > 1. We also know that if A is of level n, it is also a level
n—1,n—2,...,1 buoy. As illustrated in the left column of the Figure 4.1, suppose we
start at time 0. At time 73, a level 1 beacon needs to be initiated by A with the hop limit
of D1. At time 277, another level 1 beacon is sent out. At time 877, a level 1 beacon

needs to be sent out as well as the first level 2 beacon. At time ﬁ”“lTl, beacons need to

26

be sent out for all the levels of 1,2,...,n — 1, respectively. Furthermore, the first level n
beacon should be sent at the same time. Because high level beacons are always required
to be transmitted with a larger range, we can suppress the initiation of the lower level
beacons when there is a higher level beacon initiated at the same time. As illustrated in
the right column of Figure 4.1, at time BT}, only one beacon of level 2 with the range of
D, needs to be originated. At time "~ !T;, only one beacon of level n with the range of
D,, needs to be originated. When a node receives a beacon of level n, it also treats this
as if the beacons of the level 2,3,...,n— 1 are also received from the same buoy. Beacon
packets can be marked with the correct level with the same timer which controls the beacon
origination. For every T} seconds, only one beacon is originated, although the transmission
ranges varies according to the level of the beacon.

As a result of this optimization, % of the level 1 beacons are omitted, and it is the same
for every level of the beacons. Therefore, in summary, this strategy can reduce the beacon

overhead by % of all packets.

4.4.3 Get the shortest hop count path

Because simultaneous wireless transmissions may collide with each other, a jitter delay
needs to be added on each individual node when a node in a network is forwarding a
beacon packet, Although the jitter delay can increase the reliability of the beacon packet
distribution, it does introduce a distance estimation error. A node may receive a beacon
packet first through a longer path because jitter delays chosen by the intermediate nodes
are smaller. When the same beacon packet coming through a shorter path arrives, the node
will discard the packet since it is considered as duplicated. Also, if upstream nodes discard
beacon packets which have better path information, a further downstream node may never

know the shorter path and may make a wrong decision on choosing its associated parent,

27

which is supposed to be the nearest higher level buoy.

To solve this problem, I devised a new rebroadcasting mechanism to let packets with
shorter hop count information get distributed. A distance ratio threshold ¥ is introduced to
help make the rebroadcast decision when a node receives a duplicated beacon packet. If
‘fi’;——;—:— < v, then the node rebroadcasts the new beacon packet; otherwise the node discards
the new packet. The values d,.,, and d,;; are hop counts of the paths of the new beacon
packet and the old beacon packet, respectively. The value v is a real number within [0, 1].
When y equals 0, all the duplicate packets will be discarded. The node cannot get better
path information, but the overhead of rebroadcasting is low. When y equals 1, as long as
the newly received duplicate packet has a shorter path, it will be broadcasted again. The
node can get the best path information, but the overhead of rebroadcasting is higher.

With an appropriately chosen y, overhead can be limited to a reasonable magnitude.
Additionally, the stability of the Safari structure can be greatly improved, because nodes
are getting much more accurate distance information.

We use jitter to mitigate packet loss in broadcasting, and by using the above technique,
beacon packets usually carry optimized topology information. Nevertheless, sometimes
beacon packets can still get dropped due to congestion or to poor channel conditions.
Therefore, we need some further mechanisms to bypass the fluctuation of the collected
topology information. The easiest way to do this is to add a low frequency filter to the
collected information. In my simulation implementation, I used an integer f, called history
factor, to specify how many continuous packets from the same buoy are needed to be heard
before the node decides to choose the buoy as its new parent or decides to step down if the
buoy is too close. History factor f alleviates the impact on the structure from fluctuations

in the wireless transmission.

Shorter paths recorded in beacon caches can not only increase stability of the Safari

28

architecture, but can also improve routing quality, as it provides shorter, low latency paths.

I will discuss the details of routing quality in the following chapters.

29

Chapter 5

SHARP: Scalable Hierarchical Ad Hoc Routing Protocol

The SHARP protocol can be divided into two phases. Given the hierarchical address of a
destination node, the first phase, called inter-cell routing, is to deliver the packet to a node
in the fundamental cell in which the destination node is located. Once the packet reaches
the fundamental cell of the destination, the second phase, called intra-cell routing, delivers
the packet to the destination node within that fundamental cell.

Inter-cell routing is based on the destination’s hierarchical address and on the beacon
records stored in the intermediate forwarding nodes. We assume that all wireless links in
the network operate bidirectionally. With that assumption, inter-cell routing can be sup-
ported by the reverse paths of the beacons that were previously originated by the buoys
with which the destination node is associated. For intra-cell routing, any state of the art
on-demand routing protocol can be used because the size of a fundamental cell is limited.
We choose DSR [15, 16] as the intra-cell routing protocol for its demonstrated stability
with high performance in small scale ad hoc networks [7].

When a source node S with HID [S,,S,_1 ---S1] has a packet to send to node D, S re-
trieves the HID [D,D,,_; ---D1] of D using a distributed hash table (DHT) address lookup
service*. We claim that there must exist an integer k,1 < k < n, so that S; = D; for all
k <i <n, where n is the number of levels in the hierarchy. If k = 1, then S and D belong to

the same fundamental cell and intra-cell routing is invoked. Otherwise, inter-cell routing

*The Safari architecture uses the DHT to store and look up a node’s hierarchical address. Detailed DHT

operations are beyond the scope of this thesis.

30

is invoked. If inter-cell routing is applied, the source S adds the HID of D to the packet
header before sending the packet, so that the forwarding intermediate nodes can get the
HID of the destination from the packet instead of having to do a separate address lookup.
When a node has a packet to forward, it uses the same logic to decide whether to continue

inter-cell routing or to apply intra-cell routing.

Figure 5.1: SHARP routing overview

Consider the example shown in Figure 5.1, in which a packet is sent from the source
node S to the destination node D in SHARP. First, S uses inter-cell routing, along the route
labeled with a and b, to reach the fundamental cell of the destination node D. Within the
destination fundamental cell, intra-cell routing delivers the packet to the destination, along
the route labeled with c. The route marked with a is the reverse path of a beacon originated
by the level 2 buoy A, with which D is indirectly associated. The route marked with b is
the reverse path of a beacon originated by the level 1 buoy B, with which D is directly

associated.

31
5.1 Modifications to the Buoy Protocol to Support Routing

With the assumption of bidirectional wireless links, a data packet can traverse reverse paths
of beacon packets toward the target cells. Some modifications need to be applied to the

buoy protocol to support using the reverse paths of beacon packets.

1. The ID of the previous hop:
We need to add to a beacon packet the ID of the immediate previous hop node, be-
cause a receiving node needs to know which node is the previous upstream node of
the beacon packet. A field called previous hop 1s added to the header of a beacon
packet. Before a forwarding node rebroadcasts the beacon packet, the node updates
this field with the node’s own ID. Hence, the next downstream node of the bea-
con packet can know from which node the packet directly was received. When the
downstream node wants to send a data packet through the reverse path of the beacon
packet, it uses the previous hop of the beacon packet as the next direct hop. The ID
can be an IP or MAC address of the node. If a MAC protocol like IEEE 802.11 is
used, the previous hop may not be an extra field of the packet header because 802.11-
like MAC protocols require the transmitting node to attach its own MAC address into
the packet header during a wireless transmission. In that case, a beacon forwarding
node only needs to examine the MAC header of the beacon packet to get the ID of

the previous hop.

2. Expanded beacon broadcast range:
In the previously introduced buoy protocol, beacons have a broadcasting range of
D,, hops, which is designed to let the buoys cover their own cell. However, SHARP
requires that all the nodes in peer cells (the cells which share the same parent, 1.e.,

the cells in the same super cell) should know how to route to each other. Therefore,

32

a node should also know reverse paths to the buoys of its peer cells. In order to

Level 1 cell

Y

S

\ -
fr__,/

Level 2 cell

Figure 5.2: Illustration of the scope of a beacon flood

satisfy this requirement, beacon broadcasting ranges need to expand to peer cells. As
illustrated in Figure 5.2, the beacon broadcasting range of a buoy A is the union of
two sets: the nodes within the circle with a radius of D, and the nodes within the
same super cell. In summary, a node B forwards a level n buoy A’s beacon packet as

long as either of the following two conditions is satisfied:

(a) The distance between B and A is less than D,,, or

(b) HIDu[n+ 1] = HIDg[n + 1], which means the (n+ 1)th entries in their hierar-
chical addresses are the same. In other words, A and B have their level n + 1

cell in common.

If the second condition is satisfied, the beacon packets of A are forwarded all the
nodes in peer cells, allowing these nodes to learn routing information toward A’s

cell.

33
5.2 Inter-cell Routing Using Beacon’s Reverse Paths

Inter-cell routing is the first phase of the SHARP routing protocol. Given the HID of a
destination node, the task of inter-cell routing is to deliver a packet to the fundamental
cell where the destination node is located. The basic strategy of inter-cell routing is to send
packets along the reverse paths of some beacons that were heard previously. These beacons
were originated by the buoys with which the destination is associated. Specifically, a packet
1s first delivered toward a high level buoy with which the destination node is associated, and
then it 1s delivered toward a lower level buoy with which the destination node is associated.
Repeating this procedure, traversing toward a lower and lower level buoy, the packet will

finally reach the fundamental cell of the destination node.

5.2.1 Buoy ad hoc routing table (BART)

Buoy ad hoc routing table (BART) is the inter-cell routing table that stores the paths to
buoys. The data structure of the table entry is the same as the entry in the beacon cache

mentioned in Chapter 4. An entry in a BART records

o the buoy’s HID,

the beacon level,

the sequence number,

the distance in hop count away from the buoy, and

the node ID of the previous hop in the path of the beacon packet.

The node ID of the previous hop will be used as the direct next hop if the node has a

packet to deliver toward the buoy’s cell.

34

Unlike a beacon cache, which keeps a history of the beacons, a BART keeps only the
most recent beacon for any given buoy. This is because the membership decision concerns
the hysteresis of the beacons while routing only concerns the freshest information. In my
simulation implementation, the beacon cache and BART share the same memory space in
a node, and a look up algorithm is used to find the newest entry in a beacon cache for any

given buoy.

5.2.2 Inter-cell routing
Packet initialization

During inter-cell routing, a data packet contains the following fields in its header until the

packet reaches the fundamental cell of the destination:

e HID of the destination:

The hierarchical address of the destination node is initialized by the packet source.

e Length (prefix match length):
The prefix match length is the length of the common IDs between the HIDs of the des-
tination node and of the BART entry that is currently used to forward the packet. We
define the prefix match length between two HIDs [B,B,,—; - --By] and [C,C,-; - -- Cy]

as the largest integer k so that B; = C;,Vi,n > i > n—k.

¢ Sequence number:
The sequence number of the packet is initialized to the sequence number from the

BART entry that is currently used to forward the packet.

e Hop count:

The hop count records the distance from the BART entry that is currently used to

35

forward the packet. This field, together with the prefix match length and the sequence
number, 1s called the 3-ruple, and they are updated at every intermediate hop after the

node finds a BART entry to route the packet.

The HID of the destination is attached to the packet so that the forwarding nodes do not
have to do separate DHT address retrieving operations. The 3-tuple is used by the forward-
ing nodes to determine the quality of their current routing information for forwarding the
packet. The prefix match length determines toward which target cell the packet 1s currently
being forwarded. The sequence number indicates the freshness of the entry, and the hop
count describes the distance of the target cell. All the forwarding nodes need to know the
quality of the current routing information because they have to use information of equal or
higher quality to forward the packet. I will show in the next subsection that this requirement
is designed to avoid routing loops.

When a node has a packet to send to a destination, it first uses an address look up
protocol to get the destination’s hierarchical address. The source node then attaches the
destination’s hierarchical address to the packet. The source node also needs to set the values
of the 3-tuple at zeros. Thereafter, the node applies the following algorithm to deliver the

packet.

Packet forwarding algorithm

When a node receives a packet or has a packet to send, it retrieves the destination’s hierar-
chical address from the packet and checks if the destination is within the same fundamental
cell. If so, the node invokes the intra-cell routing algorithm to deliver the packet. Other-

wise, it applies the following algorithm:

1. The node searches its BART to find the entry with the longest matched prefix with

the destination’s HID.

36

2. If the prefix match length of the entry is greater than the prefix match length contained
in the packet, then the node updates the values of the length, sequence number, and
hop count in the packet with the BART entry. The packet is then forwarded to the

node indicated by the previous hop in the BART entry.

3. If the maximum prefix match length is equal to the prefix match length contained in
the packet and if an entry’s sequence number is no less than the sequence number in
the packet, the node uses that BART entry to forward the packet after updating the

sequence number and hop count in the packet.

4. If neither of the above two conditions is satisfied, then the node invokes local route

repair as described in Section 5.3.

Every forwarding node applies the above algorithm. The value of the prefix match
length attached in the packet never decreases as the packet traverses toward the destination,
and the HID of the forwarding node also shares longer and longer matched prefix with the
destination’s HID. Finally, the packet reaches a node that is in the same fundamental cell
with the destination. From there, the packet will be applied intra-cell routing to reach the
destination, and the extra header carried for inter-cell routing will be removed.

Inter-cell routing is loop free. For any given time a node can only use only one unique
BART entry to forward a packet. Moreover, BART entries give the reverse paths recorded
from the beacons, which are always trees and hence loop-free. The paths traversed by data
packets are composed of branch segments from different trees. When a packet is delivered
toward a buoy, the packet always travels upward toward the root along the branches of
the corresponding tree, which must be loop free. Finally, when the prefix match length
increases during the packet delivery, it means that the packet has jumped to another tree

since now the packet is delivered toward a different buoy. Because the forwarding algorithm

37

requires that the packet can traverse from a node with some prefix match length only to a
node with greater than or equal to prefix match length, the packet will never jump back to
the trees that have been traversed before. Therefore, the entire traversed path of a packet is

loop free.

5.2.3 A metaphor of inter-cell routing

Inter-cell routing in SHARP can be considered as water flowing in nature. Water always
flows from a place of high altitude to a place of low altitude. For any single place, there is
only one altitude. As long as the law of gravity is the only determining factor, water flows
do not generate loops: Water flows out of a place and will never come back.

Our inter-cell routing shares the same attribute as water flows. When a packet is routed
from the source to the destination, hop by hop, the intermediate forwarding nodes are
becoming nearer and nearer to the destination, not just in the sense of geographical or
topological distance, but also in the sense of the distance in Safari’s hierarchical structure:
Forwarding nodes share a longer and longer common prefix with the destination in their
hierarchical addresses as the packet moves toward the destination.

We can define this hierarchical distance between a forwarding node and a destination
node as the “altitude” relative to the destination. Since the altitude only matters in the
context of comparison, the altitude should be defined as a comparative order rather than
an absolute value. Additionally, a node may have a high altitude relative to a destination
node that is far away, but it may have a low altitude relative to a nearby destination node.
Finally, because the altitude is defined for routing, it is useful only when the high node
knows which nearby node is low, so that it can send the packet to the low node. Therefore,
a node should not use its own HID to get its altitude; instead, a node should use its BART

entries to get the altitude relative to the destination. For example, if a hierarchically remote

38

node has a BART entry of the fundamental buoy of the destination, this node has a very low
altitude relative to the destination, and its routing information is good. In summary, like the
3-tuple, altitude can be conceptually used to measure the quality of the routing information.

Figure 5.3 illustrates the conceptual relationship between altitude and routing in SHARP.
Here, a source node S is sending a data packet to a destination node D. The altitude de-

creases along the path from S to D.

Figure 5.3: A metaphor of inter-cell routing

Given a destination B, we can define the altitude as a comparative relationship between

two given BART entries x and y:

e When x shares shorter prefix match in the hierarchical address with B than does y,

then Alt, > Alt,.

e When x and y have the same length of prefix match with B and when x’s sequence

number is smaller than y’s, then Alt, > Alt,.

39

e When x and y have the same length of prefix match with B, their sequence numbers

are equal, and x’s distance in hop count from the buoy is greater than y’s, Alt, > Alz,.

The altitude of a node A can be defined as the minimum altitude of its BART entries:
Alty = min(Alty),x € BART(A) .

With the above definitions, inter-cell routing behaves like water flowing. Every node
has only one unique altitude. A packet is allowed to flow only from a higher altitude node
toward a lower altitude node. Therefore, once a packet flows out of a node, it will never

come back.

5.3 Local Route Repair to Improve Inter-cell Routing Performance
5.3.1 Overview

The SHARP inter-cell routing scheme requires a node to forward a packet along reverse
paths of buoy beacons, and it requires the packet to be forwarded by a node that has a
BART entry of an equal or longer matched prefix than the previous hop. Unfortunately,
the above requirements cannot always be satisfied during packet deliveries. The following

situations may happen to thwart relaying a packet:

1. Because of the asynchrony of the distributed nodes, when a node receives a packet
which 1s following the reverse path of a given buoy’s beacon, the corresponding
beacon entry may have already expired. It is also possible that the corresponding
beacon entry has been deleted because the node found that the next hop moved away.

We can say that the routing information has been forgotten in this situation.

2. Because of a partition of the network or poor conditions of the wireless channels,

some buoy packets may not be able to cover their designed scope. When this happens,

40

a packet may not be able to be forwarded by a node because the node cannot find a
beacon entry with an equal or longer matched prefix. We can say that the routing

information is unavailable in this situation.

3. Because of the mobility of nodes or poor conditions of the wireless channels, when a
forwarding node tries to send a packet to the next hop, the transmission may fail in the
MAC or physical layer. This failure can be detected by the MAC layer if the MAC
protocol uses an IEEE 802.11-like send-and-acknowledgment mechanism [14]. In

this situation, we can say the routing information is stale.

When the above situations happen, if the forwarding node does not do anything but
discards the packet silently, it will significantly hurt the inter-cell routing performance.

In the traditional DSR scheme, stale routing information can also stop a packet from
being relayed to the next hop. A mechanism called local route repair helps a DSR for-
warding node find an alternate route by initiating a range-limited route discovery packet in
the forwarding node.

Although SHARP’s inter-cell routing is very different from the purely on-demand DSR

routing, we still get inspired by the DSR’s local route repair strategy.

5.3.2 The challenge of the local route repair

A naive way to adapt the DSR’s local route repair strategy into the SHARP inter-cell rout-
ing is to cause the failed node to originate a route request around its neighborhood. If
some node has a BART entry to the destination, it can reply the request. Then the failed
node records the reply into its BART table and uses the entry to forward the failed packet.
However, this may lead to routing loops.

Different from DSR, which mandates the packet initiator to attache the whole path into

41

the packet header to guarantee loop freedom, SHARP inter-cell routing is basically a hop-
by-hop forwarding scheme. During the local route repair, it is possible that packets may
get trapped 1n a loop if a repair initiator blindly accepts any routing information around it.

In order to guarantee loop freedom of the packet, we still need the altitude information
to guide our local route repair.

5.3.3 Local route repair algorithm

Triggered by a failed search in the BART or by an unsuccessful wireless transmission,
Local Route Repair is invoked by the forwarding node to find an alternate route for the

packet.

Route requesting and forwarding

The repair initiator sends out a LOCAL ROUTE REQUEST packet to its neighborhood af-
ter the node buffers the failed packet. A LOCAL ROUTE REQUEST packet contains the

following five fields:
o HID of the final destination
o prefix match length of the beacon that is currently being followed
¢ sequence number of the beacon that is currently being followed
¢ hop count of the beacon that is currently being followed
e transmission hop count of the LOCAL ROUTE REQUEST packet.

The first four fields are already attached in the data packet during inter-cell routing, and
they are updated hop by hop during the delivery. The route repair packet should copy their

values from the data packet. If the data packet forwarding fails because the node cannot

42

find a valid entry in its BART, those fields of the data packet were lastly updated by the
previous hop. If the data packet forwarding fails due to a MAC transmission failure, those
fields of the data packet were lastly updated by the current node.

If anode receiving the LOCAL ROUTE REQUEST can find a BART entry that has better
values of the 3-tuple than the values in the request packet, the node replies to the request
initiator. Otherwise, the node increases the packet’s transmission hop count by one and
rebroadcasts the packet. If the transmission hop count is greater than the pre-configured
threshold, the node drops the packet.

Similar to DSR, a LOCAL ROUTE REQUEST packet also records its traversed path in
the packet header so that a replying node can use source routing to send back its reply along
the reverse path of the request packet.

The send buffer in the request initiator stores all the undeliverable packets, and it keeps
a timer for every entry. If an entry expires, the node initiates another local route request for
the packet. If there is no new routing information to send a packet, the packet will finally
get dropped after several times of local route repairs.

There is also a ROUTE REQUEST TABLE in the request initiator recording all the
outstanding route request packets. It records when and for which node a route request
packet was originated. This table prevents sending route request packets too often for the
same target node. If a node wants to send a route request for a target, the node should
first check its ROUTE REQUEST TABLE to make sure there are no outstanding request

packets for the same target in the recent history.

Route replying and forwarding

After a node receives a local route repair request, it replies to the requester if it can find a

BART entry to satisfy one of the following conditions:

43

1. The maximum prefix match length of the BART entry is greater than the value in the

request packet header.

2. The maximum prefix match length of the BART entry is equal to the value in the

request packet, but the BART entry has a higher sequence number.

3. Both the prefix match length and the sequence number are equal to the values in
the request packet, but the BART entry indicates a smaller hop count away from the

referred buoy.

If one of the above conditions is satisfied, the node generates a LOCAL ROUTE REPLY
packet and uses the reverse route in the request packet to send the reply packet back to
the requester. The node also attaches the 3-tuple of the BART entry to the reply packet
so that the intermediate forwarding nodes can know the quality of the replying routing
information.

Each node that receives a LOCAL ROUTE REPLY packet builds an entry in its own
BART using the values of the 3-tuple (prefix match length, the sequence number, and the
hop count) in the corresponding LOCAL ROUTE REQUEST packet. The node also records
the node ID of the previous hop into the BART entry. Thus, when a salvaged data packet
later is received for forwarding, the node can use this BART entry to send the packet toward
the node that replied to the request, and the forwarding functions like the normal inter-cell
routing behavior.

A forwarding node of a reply packet may potentially forward multiple reply packets
for the same request. The forwarding node should not forward a reply packet if it has
already forwarded another reply packet that provides better routing information. Therefore,
a forwarding node of the reply packet records the 3-tuple in the LOCAL ROUTE REPLY

packet. When another route reply packet is received, the node compares those stored values

44

against the ones in the new request packet. if the new packet provides better information,
it updates the stored record and forwards the new reply packet. Otherwise, the new reply
packet is dropped.

When an initiator of a LOCAL ROUTE REQUEST packet finally receives a reply packet,
it builds a new BART entry using the 3-tuple in the corresponding route request packet.
The node also records the node ID of the reply packet’s previous hop into that BART entry.
Finally, the node examines its send buffer to transmit the corresponding packets using the
new updated BART entry. The packet is delivered thereafter by normal inter-cell routing
functions since all the nodes along the salvaged path have a valid BART entry to deliver

the node.

Optimization to local route repair

The basic scheme described above for local route repair can work well, depending on the
pre-configured threshold limit on hop count for forwarding a LOCAL ROUTE REQUEST
packet. However, this forwarding of the local REQUEST can be optimized by attempting to
forward the REQUEST only in the direction towards the destination cell, avoiding the over-
head of searching for a local repair to the route in the wrong direction. In this optimization,
we use the concept of altitude as defined in Section 5.2.3. A hop in forwarding the local
REQUEST is considered a “downhill” hop if the node receiving it is at a lower altitude than
the node from which it received it, and a hop is considered an “uphill” hop if it is at a higher
altitude; we currently count hops at equal altitude as downhill hops. Rather than limiting
the REQUEST flood to a pre-configured number of hops in all directions, we limit it to a
number of downhill hops.

However, there are two reasons not to strictly limit the forwarding of the REQUEST to

only downhill hops. The locations of the nodes may be such that no path currently exists

45

composed only of downhill hops, but by allowing a small number of uphill hops, the flood
may be able to reach other downhill hops; this is similar to the use of lateral routing in the
DARPA PRNET routing protocol [17]. In addition, the altitude of a node is determined by
the beacons it has received, but beacons are sent only periodically. It is possible that a node
has moved such that it is now entirely surrounded by nodes whose altitude is higher than
its own. Without allowing some uphill hops, such a node would be unable to find any path
through local repair. In my simulations of SHARP, I limited the local REQUEST flood to

no more than 1 uphill and no more than 4 total hops.

5.4 Intra-cell Routing Using DSR

Every time an intermediate forwarding node receives a packet, it checks if it is in the same
fundamental cell with the destination. If it is, it will set an intra-cell routing bit in the packet
header, marking that from now on, all the forwarding nodes can apply only the intra-cell

routing scheme.

5.4.1 DSR overview

Theoretically, any state-of-the-art ad hoc network routing protocol can be used as an intra-
cell routing scheme. Once a packet reaches the same fundamental cell as the destination,
the distance between the current forwarding node and the destination is less than five or six
hops, for example, which can be handled by any of the traditional ad hoc network routing
protocols. We chose DSR to be our basic routing scheme as the intra-cell strategy because
previous studies [7, 11] show that DSR performs well against some other popular protocols
in small-scale ad hoc networks.

DSR is a totally reactive routing protocol for mobile ad hoc networks. It is based on

source routing, which means the originator of a packet decides the whole path of the packet

46

and the intermediate forwarding nodes just follow the path in the packet header.

DSR uses route discovery to find a path for a packet. When the packet originator finds
that it does not have any paths in its route cache to the packet destination, it broadcasts a
ROUTE REQUEST packet to its neighboring nodes. The packet header includes the des-
tination’s address as well as a list of the addresses which is initialized as the originator.
The receiving node rebroadcasts this ROUTE REQUEST packet locally and also adds its
own address to the end of the address list in the packet header. Therefore, the address list
records the path traversed by the ROUTE REQUEST packet. When the destination node re-
ceives this packet, it uses the address list from the ROUTE REQUEST packet to get the path
from the originator to the destination. The node then puts the path into a ROUTE REPLY
packet. The destination then uses the reverse path if the network has bidirectional links, or
it uses a path from its route cache to deliver the ROUTE REPLY packet back to the ROUTE
REQUEST originator.

DSR also uses route maintenance to maintain the validness of paths that it uses from
its route cache. If a forwarding node finds that it cannot successfully deliver a packet to the
next hop specified in the source routing header, it sends a ROUTE ERROR packet back to
the packet originator to notify it about the broken link. The originator removes the invalid
link from the route cache when it receives the ROUTE ERROR packet.

Studies in both simulations and testbeds have shown that DSR can perform well in a

small-scale ad hoc network.

5.4.2 Modification of DSR for intra-cell routing

In traditional DSR, the route discovery range is usually predefined as the diameter of the
whole network. Because of this, route discovery becomes more and more expensive as

the network size scales up. In intra-cell routing, we know that the destination node is

47

located in the same fundamental cell, so it is appropriate to limit the route discovery range
to be within the fundamental cell. Moreover, since different fundamental cells may have
different shapes and sizes, it is efficient to decide the route discovery range based on the
membership of nodes, instead of on a predefined hop count. More specifically, whenever
a node receives a DSR ROUTE REQUEST, it compares its own HID against the initiator’s
HID attached in the request packet’s header. If they belong to the same fundamental cell,
the node forwards the packet. Otherwise, the node drops the packet. In this way, we can
limit the route discovery range only within the fundamental cell where the destination node
is located.

Sometimes the packet originator may get the wrong HID of the destination because the
destination changed its own membership before this change reached the packet originator.
It 1s highly possible that the destination node is still not far from its previous cell when
the packet reaches the destination fundamental cell. In order to improve the possibility
of finding the destination, I added a BEYOND_CELL hop count in the DSR ROUTE RE-
QUEST packet, defining how many hops a ROUTE REQUEST packet can go out of the
route requestor’s fundamental cell. During a route forwarding of a ROUTE REQUEST,
every forwarding node increases the BEYOND _CELL hop count by one if the node is in
a different cell from the originator. If this BEYOND _CELL hop count is still lower than a
pre-defined threshold, it forwards the ROUTE REQUEST packet. Otherwise, it drops the
packet. This mechanism can help a DSR route discovery reach the destination node even if

the destination node has moved outside its previous fundamental cell.

5.5 Summary

In general, routing in SHARP is divided into two phases: inter-cell routing and intra-cell

routing. For inter-cell routing, the data packet follows reverse paths of the beacons. There-

48

fore, its own routing overhead is trivial. Since the number of levels in the Safari hierarchi-
cal structure grows logarithmically as the size of the network grows, the number of beacon
packets also grows logarithmically. As to intra-cell routing, SHARP uses a modified ver-
sion of DSR as the basic strategy. Because the average diameter of a fundamental cell is
fixed once the network is configured, overhead of intra-cell routing is fixed as the network
size grows. Therefore, we claim that our routing protocol is scalable, both in the sense
of the number of routing packets and in the sense of storage space of routing tables. The

following chapter evaluates the performance of SHARP through detailed simulations.

49

Chapter 6

Routing Performance Evaluation

In order to evaluate the performance of the SHARP routing protocol, I implemented the
buoy protocol and the routing protocol in the ns-2 network simulator. I used the default
parameters in ns-2 for the wireless MAC and physical layers settings, with a IEEE 802.11-
based 2 Mbps data rate and a nominal transmission range of 250 m.

The beacon broadcasting limit was set to be 3 hops (i.e., D1 = 3), thus allowing the
diameter of the fundamental cell to be up to 6 hops. The decision is due to the fact that
DSR performs well, without significant overhead, in a network with this diameter. The
value of o (D,,/D,_1) was chosen to be 2. The lowest level buoys broadcasted their beacon
packets every 1 second, i.e., T} = 1 second. The value of B (T,,/T,-1) was also set as 2.

Simulations were done in various network topologies with size ranging from 50 nodes
to 1000 nodes randomly distributed in a two dimensional topology. The X and Y dimen-
sions of the network varied with the number of nodes in the network so that the network
density was kept the same as for a network of 50 nodes in a 1000mx 1000m area, which
gives the average node per transmission area to be TO@O%?IW x (7 x 250%) ~ 10 nodes. Due

to the very large memory consumption of ns-2, I had to limit the simulations to a maximum

of 1000 network nodes.

I used the random waypoint model to simulate the mobility of the network nodes [16].
In this mobility model, a node randomly picks a waypoint within the whole area and moves
toward it at a randomly picked speed between O m/sec and 10 m/sec. Once the node reaches

the waypoint, it repeats the same pattern of motion again toward a new waypoint at a new

50

speed.

The objective of the Safari architecture is to provide a city-wide ad hoc network service
platform. Thus it is highly unlikely that all nodes in the network are mobile simultaneously.
Nevertheless, I studied the performance of SHARP in the worst case scenarios of all nodes
being mobile.

I used constant bit rate (CBR) flows to generate the traffic loads on the networks. Each
flow consisted of a randomly chosen pair of source and destination nodes. Each flow lasted
90 seconds and generated 64-byte packets at a constant rate of 4 packets per second. This
traffic patterns is more challenging than the typical continuous long lifetime CBR flows,
as flows in the latter setting can use the same cache information for a long time. It is also
realistic to have multiple short flows instead of a few long flows.

During the simulation, I allowed 350 seconds of simulation time for purely running the
buoy protocol in order to get the network stabilized, and thereafter the flows started arriving
according to a Poisson distribution. Each simulation ran for 900 seconds of simulation time.

In the simulations in Section 6.1, two different traffic patterns and four different mo-
bility patterns were used to provide an average of eight runs for each data point. In the
simulations in Section 6.2 and Section 6.3, two different traffic patterns and two different
mobility patterns were used to provide an average of four runs for each data point. The

error bar is also shown with the standard deviation of the runs for each point.

6.1 Scalability Evaluation

The most important goal of SHARP is to scale to a large-scale ad hoc network. I show
that the design meets this goal by evaluating the Packet Delivery Ratio (PDR) and routing
overhead across different network sizes.

PDR is defined as the fraction of application data packets originated that are success-

51

fully received by the application layer at the respective destination node. Routing overhead
is measured by the number of control (non-data) packets transmitted per node. Overhead
packets include the beacon packets, local route request packets, local route reply packets,
and the DSR routing packets. Every overhead packet, whether it is generated or forwarded,
contributes to this overhead. For example, a single beacon packet forwarded by two nodes
1s counted as two overhead packets. All the graphs in this section are for networks in which

all nodes are mobile and the traffic in the network is 100 CBR flows.

T T T T T T T T T
-3~ Sharp
, - X7 DSR
09 V i
.9 l"'%
— .,
Sosl .
Py
]
2
@
To7r]
- ‘s
) .
X
5}
@ 4
o %""'
06f i
05} .
0.4 1 1 11 1 1] 1 1 1 L
0 100 200 300 400 500 600 700 800 900 1000 1100

Number of nodes

Figure 6.1: Packet delivery ratio vs. network size

Figure 6.1 shows the comparative performance of a popular ad hoc routing protocol,
DSR with SHARP. Both routing protocols perform equally well until network size reaches
around 100 nodes. After that, the PDR of DSR drops sharply, going down to about 60%

for a network consisting of 1000 nodes. SHARP routing, on the other hand, performs very

52

well, with the PDR slowly falling only to about 95% for 1000 nodes. This suggests that

SHARP can scale up to much larger networks.

5000 ¥ T T T T T T

T I T
-~ Total overhead
'N/' Beacon overhead
4500 .

D
Qo
o
(=]
T
1

[

[6))

(@]

Q
T

[\

[}

[@]

o
T

n

o

o

o
T

Overhead packets transmitted per node
8
(o]
(=)

1500} N

1 i 1

0 100 200 300 400 500 600 700 800 900 1000 1100
Number of nodes

1000

Figure 6.2: Overhead packets per node vs. network size

Figure 6.2 shows the packet overhead versus network size. The total overhead 1s dom-
inated by the beacon overhead. Local route request, local route reply, and DSR routing
packets account for the rest. In the previous work on Safari, Khan et al. [19] proved that
in theory the number of beacon packets transmitted per node is constant bounded. In other
words, the complexity of beacon overhead is O(1). The simulation results here show that
the beacon overhead does appear to approach a constant value, as the curve becomes flatter
and flatter when the network size goes to 1000. However, in order to fully confirm our
theoretic prediction, simulations in larger networks need to be done, which is now unfor-

tunately limited by the large memory consumption of ns-2. Nevertheless, with our current

53

results, it is still encouraging to see that the curve for beacon overhead closely follows the
curve for total overhead. In other words, with increasing network size, the overhead per
node is likely to be bounded, thus allowing our routing architecture to scale essentially to

arbitrary size.

20 T T T T T T I I T I

-~ Total path length
18t ‘X7 Inter—cell routing path length
161 .

'y
i
T

—-
N
T

Length of the packet path
®» 3

(2]
T

1 3 1

0 | 1 1 1 1
0 100 200 300 400 500 600 700 800 900 1000 1100
Number of nodes

Figure 6.3: Number of hops vs. network size

Figure 6.3 shows the average path length used, in number of hops, with increasing
network size. The top line shows the total number of hops to the destination, whereas the
bottom line shows only the hops taken by the inter-cell routing. The difference between
the two lines shows the number of hops within a fundamental cell; this is almost constant,
indicating that the size of the fundamental cell is fixed regardless of the size of the network.
The exact value of the difference is 2.9, which is the average number of hops required to

traverse a fundamental cell.

54

6.2 Mobility

In this section, I show that SHARP is able to handle efficiently various degrees of mobality.
I fixed the number of nodes in the network at 1000 nodes and the number of CBR flows
at 100, and then varied the mobility from 0% nodes being mobile to 100% nodes being

mobile.

102 T T T T T T T T T ¥

Packet delivery ratio

o
©
=S
T
1

0.92+- 4

0-9 1] L I 1 L) 1 1 1 !
0 10 20 30 40 50 60 70 80 90 100

Percentage of the mobile nodes

Figure 6.4: Packet delivery ratio vs. percentage of mobile nodes

Figure 6.4 shows the change of PDR with the number of mobile nodes varying from

0% to 100%. The PDR is over 95% even for 100% mobile nodes, showing that the protocol
reacts very well to mobility. The packet delivery ratio in the static scenarios (0% mobile
nodes) is not 100%, though. This is mainly due to the existence of a permanent network
partition in one of the four mobility scenarios I used. In that scenario, three nodes are par-

titioned from the rest of the network due to the random distribution and stationary position

55

of the nodes. Since there are packets generated from and packets destined to those three

nodes, the packet delivery ratio drops due to these undeliverable packets.

4000 T T T T T T T

T T I
~#~ Total overhead
'X7' Beacon overhead

3900

Overhead packets transmitted per node
g 8 £ &8 8 49 8
[=) (@) [o o o (@

O (=) (=] o o o o

3100 i

3000 1 | | 1 1 1] It]]
0 10 20 30 40 50 60 70 80 90 100

Percentage of the mobile nodes

Figure 6.5: Overhead packets per node vs. % mobile nodes

Figure 6.5 shows the packet overhead with the increase of mobility. The beacon over-
head shown by the bottom curve varies little. Due to the lack of any reactive overhead,
the total overhead is almost the same as beacon overhead in a static network (0% mobile
nodes). As the percentage of mobile nodes increases, the reactive component increases,
which makes the total overhead diverge from the beacon overhead. For networks with
low mobility, there is a small fluctuation with large error bars in the curve of the beacon
overhead. This is basically because beacon overhead is much more sensitive to the nodes’
initial distribution in a network with low mobility than in a network with high mobility,

since mobile nodes can randomly change the topology of networks.

56

6.3 Traffic Load

I show the SHARP routing performance with varying traffic loads. The number of nodes is

constant at 1000, and all the nodes are mobile.

0.98+

o

©

(<]
T

o

(o]

.h
T

e
©
N
T
1

Packet delivery ratio
S o
@ o

o

[o.o]

D
T

1

0.84[7

0.82r 4

08 1 t 1 1 1 3 L 1 1 I
0 10 20 30 40 50 60 70 80 90 100 110

Nubmer of flows

Figure 6.6: Packet delivery ratio vs. traffic load

Figure 6.6 shows the PDR versus number of flows. The PDR changes little with this
increase of load. The error bars are smaller for larger number of flows because the total
number of packets being sent is more for larger number of flows, thus they smooth the
statistical variabilities in the results.

The total overhead increases slightly with the increase of traffic load from 10 to 100
CBR flows, as is shown in Figure 6.7. This increase is from higher reactive component
because of the increased number of flows. The beacon overhead remains almost constant.

There 1s a small fluctuation in the curve of beacon overhead. This is because traffic loads

57

4000 T T T T T T T

I I I
~#~ Total overhead
X/ Beacon overhead

3900

w w
s 8
[&] [«
T
1

T

W

£

Q

o
T

3300

Overhead packets transmitted per node
g g
o (o]
o o

w

=

Q

o
T

L

3000 1 1 I} 1 I 1] 1 1 1
0 10 20 30 40 50 60 70 80 90 100

Nubmer of flows

Figure 6.7: Overhead packets per node vs. traffic load

can interact with the forwarding of beacon packets. When the traffic in an area is high, it
may cause some beacon packets to traverse longer paths to bypass the area or may cause

some other beacon packets to get dropped inside the area.

58

Chapter 7

Conclusion and Future Work

In this thesis, I presented the design and evaluation of new techniques to solve the routing
problem in large-scale city-wide wireless ad hoc networks. Safari [12, 33], composed of
a proximity-based hierarchical address allocation protocol and a scalable hybrid routing
protocol, can provide a supportive platform in ad hoc networks for Internet services. In
order to evaluate the performance of the Safari architecture, I implemented Safari’s buoy
and SHARP routing protocols in the ns-2 network simulator. During the process of imple-
mentation, I also developed its implementation from rough design guidelines and proposed
several techniques to improve its routing performance and the stability of the hierarchical
structure. The simulation results show that SHARP’s hybrid routing is capable of han-
dling a large-scale ad hoc network of thousands of nodes. In the future, I plan to eval-
uate SHARP’s performance in networks of 10,000 nodes to have a better understanding
of SHARP’s feature of scalability. Because the large memory consumption of ns-2, I can
only simulate up to 1000 nodes in this thesis. Some of the SHARP features, such as the
slow overhead growth and limit, still need future investigation to confirm our theoretical
analysis. With the simulations of much larger networks, theses features can be better ob-
served. I also plan to try to continue improving SHARP’s inter-cell routing performance by
delivering packets cell-by-cell, instead of hop-by-hop. Compared to the dynamic topology
of nodes, the topology of cells in a Safari architecture is much more stable. Therefore, the
cell topology information should provide us more precise information for routing than the

currently used node topology information.

59

Bibliography

[1] Suman Banerjee and Samir Khuller. A clustering scheme for hierarchical control in

multi-hop wireless networks. IEEE Infocom 2001, April 2001.

[2] S. Basagni. Distributed and mobility-adaptive clustering for multimedia support in
multi-hop wireless networks. In Proceedings of Vehicular Technology Conference,

1999.

[3] S. Basagni, I. Chlamtac, and A. Farago. A generalized clustering algorithm for peer-

to-peer networks. In Workshop on Algorithmic Aspects of Communication, 1997.

[4] S. Basagni, I. Chlamtac, V. Syrotiuk, and B. Woodward. A distance routing effect
algorithm for mobility (DREAM). In Proceedings of the Fourth International Con-

ference on Mobile Computing and Networking (MobiCom’98), October 1998.

[5] L. Blazevic, S. Giordano, and J.-Y. Le Boudec. Self organized terminode routing.

Cluster Computing, April 2002.

[6] Ljubica Blazevic, Silvia Giordano, and Jean-Yves Le Boudec. Anchored path dis-
covery in terminode routing. In Proc. of the 2nd IFIP-TC6 Networking conference

(Networking 2002), May 2002.

[7] Josh Broch, David A. Maltz, David B. Johnson, Yih-Chun Hu, and Jorjeta G.
Jetcheva. A Performance Comparison of Multi-Hop Wireless Ad Hoc Network

Routing Protocols. In Proceedings of the Fourth Annual ACM/IEEE International

[8]

[9]

[10]

[11]

[12]

[13]

60

Conference on Mobile Computing and Networking (MobiCom’98), pages 85-97.
ACM/IEEE, October 1998.

M. Chatterjee, S. Das, and D. Turgut. WCA: A weighted clustering algorithm for

mobile ad hoc networks. Journal of Cluster Computing (Special Issue on Mobile Ad

hoc Networks), 2002.

Benjie Chen and Robert Morris. L+: Scalable landmark routing and address lookup
for multi-hop wireless network. Technical Report MIT-LCS-TR-837, Laboratory for

Computer Science Massechusetts Institute for Technology, 2002.

Frank Dabek, M. Frans Kaashoek, David Karger, Robert Morris, and Ion Stoica.
Wide-area cooperative storage with CFS. In Proc. ACM SOSP’01, Banff, Canada,
October 2001.

Samir R. Das, Charles E. Perkins, and Elizabeth M. Royer. Performance comparison
of two on-demand routing protocols for ad hoc networks. In Proceedings of the Nine-

teenth Annual Joint Conference of the IEEE Computer and Communications Societies

(INFOCOM 2000), pages 3-12, 2000.

Shu Du, Muhammed Khan, Santashil PalChaudhuri, Ansley Post, Amit Saha, Rudolf
Riedi, Peter Druschel, and David B. Johnson. Self-organizing hierarchical routing for
scalable ad hoc networking. Technical Report TR04-433, Computer Science Depart-

ment, Rice University, 2004.

Zygmunt J. Haas and Marc R. Pearlman. The performance of query control schemes
for the zone routing protocol. In Proceedings of the ACM SIGCOMM ’98 conference
on Applications, technologies, architectures, and protocols for computer communica-

tion, pages 167-177, August 1998.

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

61

IEEE Computer Society LAN MAN Standards Committee. Wireless LAN Medium
Access Control (MAC) and Physical Layer (PHY) Specifications, IEEE Std
802.11-1997. The Institute of Electrical and Electronics Engineers, New York,

New York, 1997.

David B. Johnson. Routing in ad hoc networks of mobile hosts. In Proceedings of
the IEEE Workshop on Mobile Computing Systems and Applications (WMCSA’94),

pages 158-163. IEEE Computer Society, December 1994.

David B. Johnson and David A. Maltz. Dynamic Source Routing in Ad Hoc Wire-
less Networks. In Tomasz Imielinski and Hank Korth, editors, Mobile Computing,

chapter 5, pages 153-181. Kluwer Academic Publishers, 1996.

John Jubin and Janet D. Tornow. The DARPA packet radio network protocols. Pro-

ceedings of the IEEE, 75(1):21-32, January 1987.

Brad Karp and H. T. Kung. GPSR: Greedy perimeter stateless routing for wireless

networks. In Mobile Computing and Networking, pages 243-254, 2000.

Muhammed Khan, Rudolf Riedi, David B. Johnson Peter Druschel, and Richard Bara-
niuk. Analysis of safari: An architecture for scalable ad hoc networking and services.
Technical Report Master Thesis, Electrical and Computer Engineering Department,

Rice University, December 2003.

Y.-B. Ko and N.H. Vaidya. Location-Aided Routing (LAR) in mobile ad hoc net-

works. Proc. of MOBICOM98, October 1998.

Jinyang Li, Charles Blake, Douglas S. J. De Couto, Hu Imm Lee, and Robert Morris.

Capacity of ad hoc wireless networks. In Proceedings of the 7th Annual ACM/IEEE

[22]

[23]

[24]

[25]

[26]

[27]

[28]

62

International Conference on Mobile Computing and Networking (MobiCom 01), July

2001.

Jinyang Li, John Jannotti, Douglas S. J. De Couto, David R. Karger, and Robert
Morris. A scalable location service for geographical ad hoc routing. In Proc. of ACM

MOBICOM 2000, Boston, MA, 2000.

Wen-Hwa Liao, Yu-Chee Tseng, and Jang-Ping Sheu. GRID: A fully location-aware
protocol for mobile ad hoc networks. Telecommunication Systems, 18(1-3):37-60,

2001.

Chunhung Richard Lin and Mario Gerla. Adaptive clustering for mobile wireless
networks. [EEE Journal of Selected Areas in Communications, 15(7):1265-1275,
1997.

A. McDonald and T. Znati. A mobility-based framework for adaptive clustering in
wireless ad hoc networks. IEEE Journal of selected areas in communications, August

1999.

Vincent D. Park and M. Scott Corson. A highly adaptive distributed routing algorithm
for mobile wireless networks. In Proceedings of INFOCOM’97, pages 1405-1413.

IEEE Computer Society and Communications Society, April 1997.

Guangyu Pei, Mario Gerlan, and Xiaoyan Hong. Lanmar: Landmark routing for large
scale wireless ad hoc networks with group mobility. In SIGCOMM 88, Stanford, CA,

1988.

Charles E. Perkins and Pravin Bhagwat. Highly dynamic Destination-Sequenced

Distance-Vector routing (DSDV) for mobile computers. In Proceedings of the SIG-

[29]

[30]

[31]

[32]

[33]

[34]

63

COMM ’94 Conference on Communications Architectures, Protocols and Applica-

tions, pages 234-244. ACM, August 1994,

Charles E. Perkins and Pravin Bhagwat. Highly dynamic Destination-Sequenced
Distance-Vector routing (DSDV) for mobile computers. In Proceedings of the SIG-
COMM ’94 Conference on Communications Architectures, Protocols and Applica-

tions, pages 234-244. ACM, August 1994.

Charles E. Perkins and Elizabeth M. Royer. Ad-hoc on-demand distance vector rout-
ing. In Second IEEE Workshop on Mobile Computing Systems and Applications,
pages 90-100, February 1999.

Ananth Rao, Sylvia Ratnasamy, Christos Papadimitriou, Scott Shenker, and Ton Sto-
ica. Geographic routing without location information. In Proceedings of the Ninth In-
ternational Conference on Mobile Computing and Networking (MobiCom’03), pages

96-108. ACM, September 2003.

Sylvia Ratnasamy, Paul Francis, Mark Handley, Richard Karp, and Scott Shenker. A
scalable content-addressable network. In Proc. ACM SIGCOMM’01, San Diego, CA,
August 2001.

Rudolf Riedi, Peter Druschel, Y. Charlie Hu, David B. Johnson, and Richard Bara-
niuk. Safari: A scalable architecture for ad hoc networking and services. Technical

Report NSF-ANI-0338856, Computer Science Department, Rice University, 2003.

A. Rowstron and P. Druschel. Pastry: Scalable, distributed object location and routing
for large-scale peer-to-peer systems. In IFIP/ACM Middleware 2001, Heidelberg,

Germany, November 2001.

64

[35] A. Rowstron and P. Druschel. Storage management and caching in PAST, a large-
scale, persistent peer-to-peer storage utility. In Proc. ACM SOSP’01, Banff, Canada,
October 2001.

[36] S. Srivastavaand R.K. Ghosh. A cluster based routing using a k-tree core backbone for
mobile ad hoc networks. In Proceedings of the 6th international workshop on discrete

algorithms and methods for mobile computing and communications, September 2002.

[37] 1. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H. Balakrishnan. Chord: A
scalable peer-to-peer lookup service for Internet applications. In Proc. ACM SIG-

COMM’01, San Diego, CA, August 2001.
[38] Terminode. http://www.terminodes.org/. Checked at March 2004.

[39] Hongwei Zhang and Anish Arora. GS3: Scalable self-configuration and self-healing
in wireless networks. 21st ACM SIGACT-SIGOPS Symposium on Principles of Dis-

tributed Computing, 2002.

[40] B.Y. Zhao, J.D. Kubiatowicz, and A.D. Joseph. Tapestry: An infrastructure for fault-
resilient wide-area location and routing. Technical Report UCB//CSD-01-1141, U. C.
Berkeley, April 2001.

