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Abstract 

A Numerical Study of an Adjoint Based Method 

for Reservoir Optimization 

by 

Klaus D. Wiegand 

A numerical reservoir simulator that uses a finite volume spatial discretization and 

two time discretization schemes is developed and tested. First and second order 

derivatives for the numerical simulator are derived, using an adjoint based approach. 

The adjoint and derivatives are validated in the context of the time discretization 

schemes, using varying time step sizes, and compared for accuracy. Two optimization 

algorithms are developed and used in combination to solve a numerical reservoir 

optimization problem. Numerical results are presented and discussed. 
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Chapter 1 

Introduction 

This thesis presents the results of my research in developing an adjoint based op

timization method for numerical reservoir optimization. My work consists of three 

parts: First, I develop a numerical reservoir simulator for two phase, incompressible 

flow. The numerical simulator is based on a finite volume spatial discretization, and 

uses two different time marching schemes. The two schemes differ in their level of 

implicitness, and are compared against each other. 

Second, I derive an adjoint based formulation to compute first and second order 

derivatives for the numerical simulator. First order derivatives are derived for both 

time discretization methods and are compared for accuracy, using varying time step 

sizes. Second order derivatives are computed for the more implicit time discretization. 

Numerical validation methods are developed for the adjoints and derivatives. 

Third, I develop two optimization algorithms to solve numerical reservoir optimiza-
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tion problems, using the developed simulator and the adjoint based derivatives. The 

two algorithms are combined such that the first computes an initial guess for the 

second. The main contribution in the third part of my thesis is the development of 

a second order active set method of the Newton type. Based on the previous works 

of Forsgreen and Murray [6, 7], I develop a method for large scale optimization prob

lems, where the direct computation of the Hessian matrix is infeasible, and where 

function and derivative computations are prohibitively expensive. The combined op

timization algorithms are evaluated, using three case studies for numerical reservoir 

optimization. 

1.1 Motivation 

The motivation for my research is threefold: First, the rising costs for the exploration 

and production of hydrocarbon resources are driving the business need for numerical 

optimization in many areas of reservoir management. Second, the advances in nu

merical reservoir simulation, and the availability of cheap high performance digital 

computers makes it nowadays possible to apply numerical optimization to large field 

studies that were impossible to conduct just a decade ago. However, the main moti

vation for my studies is as follows: While numerical reservoir optimization is an active 

area of research in the petroleum industry and impressive results have been reported 

by some authors, many of the works I have studied in my literature review leave im

portant questions unanswered, that I consider relevant. Such questions are of a basic 
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nature: What are the numerical properties of the optimization problem and its deriva

tives? What optimality conditions were used in a particular study, and were these 

conditions achieved? How were the computations (adjoints, derivatives, optimization 

results) verified? What conclusions can be drawn for the further development and 

refinement of optimization algorithms tailored towards reservoir optimization? Some 

of these questions are answered by certain authors, others are not. I therefore felt 

the need to conduct a basic study of numerical reservoir optimization that allows me 

to find more answers to these questions. I have done this in the context of a fairly 

simple numerical reservoir simulator that allows me to focus on these basic questions, 

and that also allows me to make certain necessary assumptions about the smoothness 

of the problem that I require for the mathematical derivation. My hope is that the 

presented work is flexible and extendable enough, as to apply it to more complex 

problems in my future research. 

1.2 Organization of the Thesis 

In the following chapter, I give an overview of where numerical reservoir simulation 

is used in the oil and gas industry, followed by a literature review of the current re

search in numerical reservoir optimization. I then define the optimal control problem 

I solve for my thesis work. Chapter 3 is devoted to the description of the discretized 

numerical reservoir model, followed by the derivation of the adjoint based derivatives 

in chapter 4. Numerical results depicting the impact of using either a fully implicit 
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or semi-implicit time stepping method are presented. 

Chapter 5 develops the second order optimization algorithm that I use to solve the 

optimal control problem introduced in chapter 3. Numerical results for the opti

mization of three case studies are presented. The thesis closes with conclusions and 

suggestions for further research. 



Chapter 2 

Literature Review and Problem 

Statement 

This chapter introduces numerical reservoir simulation and optimization, and presents 

the results of my literature review. I then describe the optimal control problem that 

I solve using the optimization algorithm developed in chapter 5. 

2.1 Numerical Reservoir Simulation 

Numerical reservoir simulation is the simulation of fluid flow through hydrocarbon 

rich, subsurface reservoir rock, attached wells and surface facilities. The state of the 

reservoir (pressures, phase saturations, fluid composition, rock properties) is updated 

as the simulation advances in time, and fluid flow and pressure drops in attached 

wells and surface facilities are computed. Mathematically, the reservoir state has to 

5 
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satisfy a set of coupled, nonlinear PDEs that are derived from physical conservation 

laws. Typically, a no-flow Neumann boundary condition is imposed at the perimeter 

of the reservoir, and time varying Neumann or Dirichlet conditions are imposed at 

locations where wells penetrate the reservoir rock. Mixed (Robin-type) boundary 

conditions can be found in simulators with thermal simulation capabilities, e.g., one 

can specify a bottom hole well pressure along with an assumed heat-loss in the well 

bore. Full physics reservoir simulators are used in the industry to realistically model 

both microscopic and macroscopic interactions of the fluid with the rock, as well as 

the behavior near wells. For the numerical study of discretization approaches, such as 

mesh generation and quality, time discretization schemes, or the study of optimization 

problems, simpler reservoir models are used that allow one to focus on the important 

aspects of the problem at hand. 

2.2 Numerical Reservoir Optimization 

The exploration, development and production of oil and gas fields is very capital in

tensive, and hence, process optimization can result in significant savings. There are 

three major stages in the project-lifecycle for a hydrocarbon resource. 

Exploration Stage 

During this stage, assessments are made about the location, size, quality, and ulti

mate recovery of a reservoir. Geologic and seismic studies are conducted, drilling 
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cores and fluid samples are analyzed, and comparisons to fields similar in structure 

and size are drawn. The sparsity and uncertainty of the available data, coupled with 

economical and political uncertainties, favor optimization processes that evaluate re

turn on capital under risk. Numerical reservoir simulation is commonly not applied 

during this stage. The work of Saito, de Castro, et al. [19] provide examples on how 

value assessments can be performed, however, their work and optimization during 

the exploration stage in general is not directly relevant to my thesis and is mentioned 

here for completeness. 

Development Stage 

The development stage plans all major investments needed for the production of the 

field. This includes the number, size, and location of platforms; the number, type, 

and position of injection and production wells; the drilling schedule; infill positions 

for additional wells; and the construction of facilities such as hydraulic flow lines, 

pumps, compressors, separators, tanks, etc. The use of numerical reservoir simula

tors is common during this phase, and more recently, surrogate models have been used 

to evaluate possible development scenarios. The use of surrogates or reduced order 

models is attractive at this stage, since engineers try to establish a "big picture" view 

of possible development scenarios and don't require all the details of a full physics 

simulation. Although my work is applicable in this area, the high level of uncertainty 

in the available data at this stage makes the use of simulation based optimization less 

attractive. 
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Production S tage 

During the production stage, hydrocarbons are extracted from the reservoir based on 

the planned depletion strategy. The day to day operations focus on controlling well 

rates, wellhead and flow line pressures, maintaining reservoir pressure, and manag

ing operating constraints such as gas and water production, or injection constraints. 

Numerical reservoir simulation is used extensively during this phase. The research 

of production optimization is of great relevance to my thesis work, since it is there 

where nonlinear, PDE constrained optimal control problems are studied. 

The three stages described above offer an abundance of optimization opportunities. 

In the following, I will describe the most common optimization problems that have 

been researched and published by other authors. 

2.3 Research by Other Authors 

In the following, I give an overview of the research conducted by other authors. Not 

all of these works are directly relevant to my thesis, but are listed to provide some 

closure. 

Optimal Well Placement 

The optimal placement of wells has been one of the earliest attempts at reservoir 

optimization. Rosenwald and Green [18], as early as 1972, described the use of Mixed 

Integer Programming (MIP) to chose among N predefined potential well locations for 
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M < N wells. Seifert et al.[21] describe a stochastic model to place wells based on 

an exhaustive analysis of potential well locations and well trajectories. The research 

of Ierapetritou, Floudas, et al.[9] builds on Seifert's earlier work, and combines a de

composition approach with MIP in individual regions. 

Bangerth, Klie, Wheeler et al.[4] formulate the well placement problem as an uncon

strained integer optimization problem, where well locations are selected from a set of 

candidate locations, and the objective is a discounted cost function that takes into 

account the revenue of produced oil and the cost for injecting and disposing water. 

In their formulation of the dynamic state equations for the reservoir model, well rates 

are determined by location and a fixed bottom hole pressure, defined for both injec

tors and producers. The authors evaluate and compare five optimization approaches 

with focus on robustness and efficiency. For problems involving multiple (7) wells, 

the authors obtain the best results in using a fast simulated annealing algorithm. I 

consider this approach very interesting, however, I have concerns that the method 

will become inefficient when trying to solve the problem for a large number of wells 

with many candidate locations. 

Industrial numerical reservoir simulators use spatial discretizations, where wells are 

connected to nodes of finite difference grids, or to cells in finite volume grids. The ac

tual physical location of the well perforation within a reservoir cell is used to compute 

the reservoir-well connectivity (r-value). The commonly used formula to compute r-

values is differentiable, and was developed by Peaceman [15, 16]. Hence, the optimal 
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placement of wells can be treated as a continuous optimization problem, where the 

computed locations are translated into a node/cell index and the corresponding r-

value. In my thesis work, the main effort has gone into the adjoint and derivative 

computation, as well as in the development of the optimization algorithm. Most of 

this work can be re-used when considering a different set of control variables, e.g., 

well positions. 

History Matching 

History matching is a process where the reservoir model properties are updated in 

order to match simulation results with observed reservoir behavior. The problem is 

difficult for several reasons. First, it involves multiple scales, since large features, such 

as the location of faults, channels, or the depth and tilt of the oil-water contact have 

to be considered together with properties that vary on a much smaller scale, such as 

permeability and porosity. Second, it is an inverse problem with many local minima 

and sparse input. Third, the parameter space is highly dimensional. 

History matching is still a largely manual process in most energy companies, but in 

recent years, attempts have been made to assist or automate the process. Of special 

interest for my thesis are the works of Aitokhuehi and Durlovski [2], and P. Sarma et 

al. [20]. Their research is targeted at finding solutions for the combined problem of 

production optimization and history matching in a feedback loop. I will discuss their 

research below. 
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Production Optimization 

Production optimization, especially in the form of optimal well control, is the area 

most relevant to my thesis work. During my literature review. I have selected seven 

research contributions that I like to discuss in more detail. Before I start the discus

sion, I want to point out the early work of Ramirez [17], who in 1987 published his 

pioneering book about production optimization. To my knowledge, Ramirez is among 

the very first who formulated the problem of production optimization in the context 

of an optimal control problem, using the adjoint approach to compute derivatives of 

the objective function. His work, in many ways, inspired me to seek a mathematical 

rigorous approach to solve the reservoir optimization problem posed in my thesis. 

I start my evaluation with the work of Zandvliet et al.[25], who describe the applica

tion of Bang-Bang (on/off) well control to solve an optimal reservoir flooding problem. 

Their main result states that many reservoir flooding problems can be formulated as 

optimal control problems that are linear in the well controls, and that in the presence 

of simple bound constraints, these problems often have bang-bang optimal solutions. 

In their research, Zandvliet et al. define their objective function to be: 

J(u)= f h(x{t),t) + lZ(x(t),t)u(t)dt, (2.1) 
Jo 

where l\,l2 are terms related to production and injection, and where x(t) represents 

the state vector, and u(t) £ Rm is the vector of controls which is bounded from 

below and above. The objective function is similar in structure to the one I use in 

my work, with two differences: First, the controls enter the integrand in (2.1) in a 
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strictly linear fashion, and second, Zandvliet et al. restrict the control to injection, 

whereas I control both injection and production. The authors then define the optimal 

control problem to maximize (2.1), subject to state constraints, initial conditions, and 

the bound constraints on the controls. They show that the form of (2.1) imposes a 

particular structure on the first order necessary optimality conditions, that allows the 

optimal solution u* to be defined in bang-bang form, that is: 

Ui(t) = umin or Ui(t) = umax, i = 1 , . . . ,m, t € [0,T]. 

Zandvliet et al. don't provide details about the solution process, but state that they 

used a gradient based approach to solve their optimization problem. 

I consider the approach interesting from a mathematical point of view, but of lesser 

practical applicability; the main reason being that shutting-in and re-opening wells is 

problematic in practice, especially when it is to be done frequently. In addition, the 

method is not extensible to more general problems because of its dependency on the 

special structure of the objective (2.1). 

Wang et al.[23] in their work optimize the allocation of production well rates and 

gas lift gas rates (gas lift is used to enable/enhance the flow in production wells), 

using a sequential quadratic programming approach. However, their optimization is 

restricted to the gathering network of facilities, and does not treat the PDE based 

dynamic state equations of the numerical reservoir model as implicit constraints. 

Furthermore, the allocation optimization is not time dependent, but performed at 

each time step of the simulation process. Hence, their approach will be suboptimal 
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with respect to finding an optimal allocation pattern over the lifetime of the field. 

For that reason, I decided to not adopt their approach. 

Lorentzen et al.[10] propose the use of an Ensemble Kalman Filter as an optimization 

tool. Their main motivation for the approach is the complexity and computational 

cost associated with using a derivative based optimization method that considers the 

reservoir state equations. Instead, they assume an a priori knowledge of the net 

present value (NVP) or cumulative oil production over time, and use the Kalman 

filter to adjust control variables (chokes to regulate the flow between the well and 

the reservoir) that best match the predefined objective. The reservoir is treated as a 

black box 

While their approach is an interesting and unusual application of the Kalman filter, 

it is unclear to me how optimality can be achieved or tested by their method (except 

for using a probably exhaustive search), and how constraints are handled. 

The research of van Essen, Zandvliet et al.[22] is closely related to my thesis work. 

The authors define the discretized optimization problem as: 

N 

max J (q) = max y^ L(xk,qk), (2.2a) 
q k~x 

s.t. xk+1 =F(xk,qk), x(0) = x0, (2.2b) 

qmin S: <7fc — Qmaxi yZ.ZC) 

q0,k + qw,k = Qk, (2.2d) 
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where F(xk,qk) denotes the PDE-based dynamic state equations of the numerical 

reservoir simulator, L is a measure of the reservoir performance, and q0^, qw,k denote 

the fractional flow of oil and water. The variable k denotes the time step number. 

Van Essen, Zandvliet et al. describe the derivation of the gradient using an adjoint 

formulation, in a more general, abstract setting, and have used a gradient projection 

approach to ensure feasibility of the iterates. No details are provided about the per

formance of the optimization algorithm, what optimality criteria is being used, and 

the ability of their algorithm to identify the active set of inequality constraints at 

the solution. However, the main focus in their paper is the estimation of reservoir 

performance under uncertainty, which the authors try to address by applying the 

optimization to several different realizations of their numerical reservoir model. 

The work of A. H. Althuthali, D. Oyerinde and A. Datta-Gupta [3] is also closely 

related to my thesis problem. The authors address the problem of using well rate 

controls to optimize the water flooding of a reservoir. However, the authors use a 

different approach, which I consider very interesting. The formulation of the objective 

function and its derivatives are based on time of flight and arrival computations for 

the water front that extends from the injectors to the producers. A fast streamline 

simulation approach or finite differencing is used to produce the necessary input data 

for the computation of derivatives. Wells are assembled in groups of expected equal 

arrival times to reduce the dimensionality of the problem and the number of simula

tion runs to compute the derivatives. 
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The approach seems very appealing to me, when considering sweep efficiency as the 

main problem to solve. However, my goal was to provide a more general framework 

that allows me to re-use many of the developed algorithms in the context of other 

reservoir optimization problems. Hence, I did not consider this approach for my thesis 

work. 

The earlier work of Inegbenose Aitokhuehi and Louis J. Durlofsky [2] is a predeces

sor to the research conducted by Sarma, Durlofsky and Aziz [20], which is discussed 

below. The goal of the authors is twofold: Optimal well rate control for production 

optimization in combination with automated history matching. The optimization 

approach for the well rate control is very simple: A finite difference scheme is im

plemented to approximate the gradient of the objective function, with each gradient 

approximation requiring a forward simulation run. The computed gradients are used 

in a conjugated gradient optimization algorithm to determine optimal rates to maxi

mize recovery. 

The research of Sarma et al.[20] addresses the combined problem of optimal allocation 

control for water flooding and history matching. It is the first part of their work that 

is closely related to my thesis, and which is comparable to the works of van Essen, 

Zandvliet et al. The authors formulate the optimization problem as to maximize 

NPV over time and use an adjoint based approach to compute derivatives for the 

implicitly constrained optimal control problem. The adjoint approach is described 

in general terms; however, from attending a presentation at Stanford, I learned that 
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the approach was implemented in the context of a fully implicit time discretization 

scheme. No details are provided if and how the adjoint computations were verified. 

Sarma et al. claim that the problem can easily be solved using a steepest decent 

method, but do not provide details how feasibility is handled in their approach. It is 

open if an active set method or gradient projection is used and the optimality condi

tions are not clearly stated. 

I consider the work of Sarma et al. very interesting, and in scope certainly much 

broader than the problem that I address in my thesis. However, many details with 

respect to the adjoint computation and optimization are unclear, and hence, it is 

difficult for me to fully evaluate their approach. 

2.4 Contribution of my Thesis 

I develop a rigorous mathematical approach to solve an optimal rate allocation prob

lem, and evaluate the efficiency and accuracy of the method for fully implicit and 

semi-implicit time stepping schemes. Specifically, 

• I develop a discretized numerical reservoir model for a shallow, incompressible, 

oil-water reservoir, using both fully implicit and semi-implicit time marching 

schemes. 

• I then define the optimal control problem as a PDE constrained NLP. 

• I develop an adjoint based method to compute first and second order derivatives. 
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• I develop a second order active set method to solve the optimal control problem. 

• I report and evaluate numerical results for the adjoint based derivative compu

tation and the optimization algorithm. 

The following chapter describes the numerical reservoir model. 



Chapter 3 

Numerical Reservoir Model 

In this chapter I develop the numerical reservoir model used in my research. The 

development follows Peaceman [14], as well as Aarnes, Gimse, and Lie [1], using a 

simplified 2-phase incompressible oil-water system with incompressible rock. The use 

of a simplified reservoir model is justified by my focus on the optimization problem, 

and the fact that full physics reservoir models exhibit strong discontinuities that 

make a rigorous mathematical approach almost impossible. Before describing the 

fundamental equations for fluid flow through porous media, I describe the components 

and assumptions that go into the model. 

3.1 Rock Model 

I assume incompressible rock with spatially varying porosity and permeability. Rel

ative phase permeability is a nonlinear function of water saturation, that behaves 

18 
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uniform throughout the reservoir. The following properties are loaded into the model. 

Porosity 

Porosity describes the ratio of the pore space vs. the (bulk) volume of the rock. Phys

ically, porosity is a scalar valued function of location, pressure, temperature, and time 

(due to hysteresis effects). In my model, porosity is a scalar valued function of space: 

<j>(x) e(0,l), xeR2. 

This rock model is called incompressible. Since porosity defines a ratio of volumes, it 

has no unit. 

Absolute Permeability 

Absolute permeability is a tensor that defines the preferred flow direction of fluids 

inside the reservoir rock under influence of a pressure gradient. Most industrial reser

voir simulators use a positive definite, diagonal permeability tensor in combination 

with a spatial discretization that aligns the outward normal of the mesh cell's in

terfaces with the flow direction. Such meshes are called k-orthogonal. I adopt this 

convention in my numerical reservoir model, using a rectangular grid. Specifically, 

the permeability tensor K is given by 

K(x) = 
Kx(x) 0 

\̂  0 K2(x) ) 

and where K\ (x), K2(x) > 0, i £ l 2 . The unit for permeability is the Darcy, which 

is equivalent to 0.987- 10~12m2. The permeability of reservoir rock is usually small and 
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measured in milli-Darcy. However, in some natural reservoirs, absolute permeability 

can vary dramatically (5 to 7 orders of magnitude) on a small scale. This heterogeneity 

introduces strong jumps in the coefficients of the discretized reservoir model, creating 

difficulties for the numeric solution. 

Relative Phase Permeability 

Relative permeability is a phase dependent fraction for absolute rock permeability. It 

is experimentally derived from laboratory data, and describes how one phase moves 

through the rock in the presence of another. Many rocks are water wet, meaning that 

water clings stronger to the rock surface than other fluids, allowing it to displace them. 

In oil-water systems, relative phase permeability is usually defined as a nonlinear 

function of aqueous saturation. The properties of natural reservoir rock often impose 

limits on phase saturation values due to microscopic effects. The irreducible oil and 

water saturations s^. and swc define lower bounds for the saturation values, and are 

set to sor = 0.2, swc = 0.2 in my model. 

Let '/' denote the liquid hydrocarbon phase, and let 'a' denote the aqueous phase. 

Relative permeability is computed in my model as follows: 

kn(sa) = (1 - s*)2 , (3.1a) 

kra(sa) = s*2, (3.1b) 

where 
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The quadratic approximation is a reasonable model for relative permeability where 

hysteresis effects are ignored - see Peaceman [14, pp.14,15] for a reference. Since 

saturations add up to unity, the maximum water saturation is given by 1 — s^-. The 

following figure depicts the functional dependence: 
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3.2 Fluid Model 

I consider an undersaturated black oil fluid model consisting of a liquid phase (I) and 

an aqueous phase (a) in water-wet rock. The fluid model has the following properties: 

Phase Densities 

Phase density defines how much mass is associated with a given volume. The SI unit is 

kg/m3. In my model, phase densities are normalized to unity, p\ = 1, pa = 1 [kg/m3], 

since no additional insight for the optimization problem is gained by making them 

variable. 

Phase Compressibility 

I assume a small gas-oil ratio for my undersaturated liquid hydrocarbon phase, and 

hence, I neglect phase compressibility. The aqueous phase contains only water and 

is assumed to be incompressible. Including or excluding liquid phase compressibility 

neither adds nor removes much complexity to the numerical model, however, incom

pressible flow models are commonly used in academic research (for example, see J. E. 

Aarnes and T. Gimse and K.-A. Lie [1]), and choosing this variant will allow a larger 

audience to compare their results with mine. 

Phase Viscosity 

Physically, phase viscosity is a function of phase composition, pressure and tempera

ture, however, commercial simulators usually hold viscosity constant over wide regions 
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of the reservoir model without loosing accuracy. In my model, phase viscosity for the 

liquid and aqueous phase are held constant throughout the reservoir. The SI unit of 

viscosity is Pa • s, however, the petroleum literature commonly uses the centipoise, 

where lcp = 10 _ 3 Pa • s. The values used in my model are: 

Ha = 3 • 1(T4, m = 3 • 10~3 [cp]. 

3.3 Transport Model 

Fluid flow through porous media at low to moderate velocities is governed by Darcy's 

Law, an empirical law discovered in the last century by Henry Darcy, a French engi

neer. For horizontal flow (thus neglecting gravitational effects), Darcy's law defines 

the following relationship between the phase velocity v#, rock and fluid properties, 

and an applied pressure gradient: 

tfo = -K—Vpv = -K\#Vp#, $ = a,l (3.2) 

where \# = kr$//J,# is the phase mobility. 

3.4 Equations for incompressible Flow 

The derivation of the differential equations describing incompressible flow is straight

forward and well described in the literature. For a reference, again see Peaceman [14, 

p. 83]. The two fundamental equations are the pressure equation and the saturation 
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equation, which are both derived from the phase continuity equation and Darcy's law. 

Pressure Differential Equation 

Let ft C R2, Q open and bounded, be the region occupied by the reservoir. Under 

the assumptions stated in the rock and fluid model, the continuity equation for single 

phase flow is given by: 

0 (x) dS* fr^ + V-fl, (x, t) - q# (x, t) = 0, if = a , l , i e n , (3.3) 
at 

where q# (x, t) is an arbitrary source/sink term. Summing over two phases yields: 

4>(x)(—si + —saJ(x,t) + V-(vi + va) (X,t) - (qi + qa)(x,t) = 0. (3.4) 

Saturations add up to unity, hence 

si (x, t) + sa (x, t) = 1 and j^si (x, t) + -^sa (x, t) = 0 for all x and all t. 

This leaves us with: 

V • {yt + va) (a;, t) - (qi + qa) (x, t) = 0. (3.5) 

Using Darcy's law (3.2) to substitute for the phase velocities yields: 

- V • K(x) (Aj (sa (x, t)) Vpi (x, t) + (x,t)) Vp a (x,t)) 

= (qi + qa)(x,t). (3.6) 

For my incompressible fluid model, I can set pa = Pi = P, Peaceman [14, p. 83]. Next, 

I define the total mobility A and combine the two source terms: 

A = A/ + Aa, 

q = qa + qi-
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Assuming that the reservoir is enclosed in an impermeable rock formation that inhibits 

communication of fluids with outside regions, I add a no-flow Neumann boundary 

condition, and arrive at the pressure differential equation: 

- V - \{sa(x,t))K(x)Vp(x,t) = q(x,t), xefl (3.7a) 

Vp(x,t)-n = 0, xedQ. (3.7b) 

Saturation Differential Equation 

Since saturations are required to add up to unity, it is sufficient to solve for the 

saturation of the aqueous phase. The saturation equation can be directly derived 

from the phase continuity equation (3.3) by substituting Darcy's law for the phase 

velocity, and adding boundary and initial conditions: 

—sa (x, t) = —— (qa (t, x) - V • Aa (sa (x, t)) K (x) Vp (x, t)), t > 0 (3.8a) 
at (p (x) 

0 = Vp (x, t) • ft, (3.8b) 

sa(x,0) = sainit(x). (3.8c) 
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To summarize the above, the partial differential equations that govern the two-phase 

incompressible flow in my numerical reservoir model, together with their initial and 

boundary conditions, are given as: 

-V • \(sa(x,t))K(x)Vp(x,t) = q(x,t), xefl (3.9a) 

—sa (x, t) = — - (qa (t, x)-V-Xa (sa (x, t)) K (x) Vp (x, t)), t > 0 (3.9b) 
at <p \x) 

Vp(x,t)-n = 0, xedQ (3.9c) 

sa(x,0) = sainit(x). (3.9d) 

3.5 Finite Volume Discretization 

For the finite volume formulation, we subdivide tt into N open subregions, such that: 

N 

n = | j n i , (3.10a) 

0 = a n f y , i,j = l,...,N,i^j. (3.10b) 

Define 7^ = Q* D Qj, i,j = l,...,N,ij£j, and for the ith finite volume ni} let ff(i) 

denote the set of neighboring regions. In particular, 

7« = 0, j#M(i), (3.10c) 

7 ^ 0 , jeM(i). (3.10d) 
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Spatial Discretization of the Pressure Equation 

I now integrate (3.7a) over the finite volume flf. 

/ -V- X(sa(x,t))K(x)Vp(x,t)dx = / q(x,t)dx. (3.11a) 
Jfti JQi 

Under the assumption that Vp is continuously differentiable and that dtli is piecewise 

smooth, I apply the divergence theorem: 

/ -X(sa(x,t))K(x)Vp(x,t)-ndS= q(x,t)dx, (3.11b) 

and using (3.10), 

^2 / -\{sa{x,t))K(x)Vp(x,t)-ndS= q(x,t)dx. (3.11c) 

I now compute the flux across the interfaces jij using a two-point flux approximation. 

For this, I approximate the pressure field by piecewise linear functions, with average 

cell pressures Pi defined at the center of the finite volumes Jlj, i = 1 , . . . , N, which are 

represented by the cells of a uniform rectangular mesh. I assume the cell interfaces 

7ij to be perpendicular to the principal flow direction imposed by the action of the 

diagonal permeability tensor K(x) on the pressure gradient. If the uniform distance 

between the cell centers of neighboring finite volumes is given by h, I can approximate 

the surface integral of the dot product for pressure gradient with the outward normal 

on the interface 7^ by: 

/ Vp(x,t)-ndS& f (Pi~P^^ dS, (3.12a) 
Jin Jin h 
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where the direction (p, — pj) is by choice. Using this approximation, (3.11c) becomes: 

J2 f AK(x,t))^(Pi~f?,")(*)d5'= f q(x,t)dx, (3.12b) 

where the sign change is introduced by my choice of direction Apy = Pi — Pj, and 

where K^ is the scalar interface permeability. I will describe shortly how K^ is 

computed. 

Mobility Upwinding 

The mobility of the phases entering or leaving a finite volume is mainly determined 

by the relative permeability of the phases in the cells from which the flow originates. 

It is therefore common practice to use an upwinding scheme for interface mobilities, 

Peaceman [14, p. 143]. I approximate the aqueous saturation sa (x, t) by a piecewise 

constant function, and denote its value within each finite volume $1, by sai(t). The 

upwind mobility at the interface 7^ is then defined as: 

Ay(t) = A (sai(t)), if Pi (t) > Pj (t), (3.13a) 

Kj (t) = A (sa, (*)) , if Pi (t) < Pj ( t ) , (3.13b) 

where it is understood that Xij(t) depends on both aqueous saturation and pressure 

at time t, but I simplify the notation. In the case of equal cell pressures pi (t) = pj (t), 

we can choose either one of the two saturation values, or simply set \ij(t) = 0, since 

no flux is present. Using the upwind mobility and definition of Apy, equation (3.12b) 
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becomes: 

]T / Xij(t)Kij^^-dS = f q(x,t)dx. (3.14) 

The integrand on the left is independent of the integration variable and can be moved 

out. Setting: 

, def / 

Qi(t)= / q(x,t)dx, 
'Hi 

yields the discretized pressure equation: 

£ Ay (t) F^^tl = qi {t) (3 15) 

jeJV(i) 

It is common in the petroleum literature to define the interface transmissibility: 

Tij^FijKij/h, (3.16) 

and write (3.15) in the compact form 

^ TijXij(t)Apij(t) = qi(t). (3.17) 
jeAf( i) 

Computation of Interface Permeability Kij 

In equation (3.12b), I introduced the scalar interface permeability K^, which approx

imates the action of the permeability tensor K(x) on the pressure gradient along the 

interface 7^. In order to derive an expression for K^, I first approximate K(x) by a 
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piecewise constant function, where 

def 

#<(» = 
' KiX{x) 0 * 

i = l,...,N, (3.18a) 

y 0 Ka(x) J 

denotes the average cell permeability for each finite volume fij. For the following 

derivation, it is sufficient to consider one dimensional flow, since I assume a uniform, 

rectangular, and fc-orthogonal mesh for the finite volume discretization. 

Consider the ID diffusion equation: 

-(k(x)u'(xj) = f(x) are (0,1), (3.19) 

with homogeneous Neumann boundary conditions. Let {xi} denote the grid points 

of a cell-centered mesh, and let x,- i ,x,, i denote the location of the cell interfaces. 
2 ^ 2 

Assume that k (x) is continuous within a cell, and let h > 0 denote the uniform 

mesh-size. Now define the average diffusion coefficient: 

ki = \ P+h k [x) dx, (3.20) 
h Jx*-h 

and compute two flux approximations for the interface between the cells i,i + 1: 

Ui+l - Ui 

Hi+h = -ki + ^ / 2 , (3.21a) 

l t j + i - Ui+i 

Hi+, = -ki+1 ^ - t i . (3.21b) 

The continuity constraint for the interface flux dictates: Hi+i — Hi+i• Hence, 

kiUi + ki+\Ui+i . 
U ^ = ki + ki+l • ( 3 - 2 2 ) 
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Substituting the expression for ui+i from (3.22) back into equation (3.21a), we obtain: 

""i -nr&T <"»'-'''>• (a23) 

Equation (3.23) suggests a harmonic averaging for the permeabilities of neighboring 

cells along their interface. Adapted to the numerical reservoir model, this leads to 

the following definition: 

Kij = r^ ' 3 , cells aligned along coordinate axis x\, (3.24a) 
Knix) + Kjiix) 

K^ = T^ \ 3 , cells aligned along coordinate axis x2- (3.24b) 
Ki2{x) + Kji{x) 

Spatial Discretization of the Saturation Equation 

The finite volume discretization of the saturation equation follows the same steps as 

the discretization of the pressure equation. Setting: 

* * ( * ) = / qa(x,t)dx, (3.25) 

and defining the quantities: 

Vi= I dx, (3.26) 

<j>i = average porosity for finite volume f2j, (3.27) 

I arrive at: 

d_ 

dtS 
ai {t) = Jv- \qai (i) ~ 5Z Ti^ ( * ) A ^ (* ) ) ' (3-28) 

9% % \ J€Af(i) ) 

where \aij is the upwind aqueous phase mobility. For the nonlinear saturation equa

tion, upwinding is essential for the stability of the finite volume discretization, see K. 
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W. Morton and T. Sonar [12]. To summarize the above, the finite volume discretiza

tion for the numerical reservoir model yields the following equations: 

Qi (i) = Y, TiJxa (*) APv (*)> (3-2 9 a) 
jeAT(i) 

JtSai {t) = JY- (qai {t) ~ ^ TijXaij {t) Apij { t ) ) ' l > °' (3'29b) 
% \ jeAf(i) / 

Sai(0) = 4 f , (3.29c) 

where Ajj(i), Aai. (£) are functions of the piecewise constant approximation of the aque

ous saturations, and the piecewise linear approximation of the pressure field. Next, I 

introduce a compact matrix notation for the semi-discretized state equations. 

Matrix Formulation 

The finite volume quations (3.29) can be assembled for the domain Q using a compact 

matrix notation. I first define the following matrix elements: 

cnj(t) = -TijXijit), (3.30a) 

au(t) = ^ T\jXij(t), (3.30b) 

aij(t) = -TijXaij(t), (3.30c) 

aa(t) = £ TiiKM- (3-30d) 

Remembering that \ij{t), \aij (t) depend on both saturations and pressures, we form 

the two matrices A(sa(t),p(t)) and A(sa(t),p(t)) using the elements defined above. 

We now assemble equations (3.29a) for the finite volumes i = 1 , . . . , N in the following 
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form: 

q(t) = A(sa(t),p(t))p(t)- (3-31) 

Similarly, equations (3.29b) are assembled by: 

jtsa(t) = D-1 (qa (t) - A(sa(t),P(t))p(t)) , (3-32) 

where D~l is a diagonal matrix with entries l/fcVi. 

We finalize the step of writing the finite volume equations for the reservoir Q in 

compact form by defining two functions / , g: 

g(t,sa(t),p(t),q(t)) = Q(t) - A(sa(t),P(t))p(t) = 0, (3.33a) 

/(*, sa(t),p(t),Q{t)) = D-1 (qa it) - A(sa(t),p(t))p(t)) = j/a(t), t > 0. (3.33b) 

Throughout the rest of the document, I drop the vector notation for sa(t), p(t), q(t), 

and use subscripts to indicate that a particular element of the vector is being accessed. 

The MATLAB implementation of the finite volume spatial discretization of the 

reservoir equations follows the implementation described by Aarnes, Gimse, and Lie 

[!]• 

3.6 Time Discretization 

The two commonly used time discretization schemes in numerical reservoir simulation 

are IMPSAT and SEQUENTIAL. In the following I describe the two approaches in 

the context of my numerical reservoir model. 
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3.6.1 IMPS AT 

The IMPSAT procedure simultaneously and implicitly solves for end of time step 

values of pressures and phase saturations, using a backward Euler time integration 

scheme which is known to be unconditionally stable, although large time steps will 

decrease accuracy due to linearization errors. 

For my numerical reservoir model, I subdivide the simulation time interval [0, T] into 

K time steps of equal length. Let tk, sk, andpfe denote end of time step values, while qk 

denotes well rates held constant during the time step, that is, for t G [(k — 1)At, k At). 

The IMPSAT algorithm is then given by: 

Algorithm 3.6.1 IMPSAT- Algorithm 

Load initial aqueous saturations s° 

For k = l,...,K do 

Set well rates qk. 

( 

Solve 
g{tk,sk

a,p
k,qk) ^ V 

ysJ-sJ-'-At/ftsJ.p*,?*) 
/ \°) 

forpk,sk 

End 
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3.6.2 SEQUENTIAL 

The sequential time stepping procedure uses an operator splitting scheme. It differs 

from IMPSAT in the way that the two equations for pressure and saturations are 

solved sequentially, with the pressure equation being solved first. I first describe the 

differences between the sequential approach used in the industry and my approach, 

before outlining the algorithm used in my numerical reservoir simulator. 

Sequential approach used in industrial simulators 

The majority of industrial reservoir simulators implement the volume balance for

mulation, see Watts [24] for a reference. In this approach, the pressure equation is 

derived from a volume balance relationship, which states that the fluid volume must 

equal the pore volume at the end of the time step. This approach assumes compress

ible rock and fluid. Industrial simulators use the sequential formulation mainly to 

reduce computational time. They achieve this goal in the following way: First, the 

implicit pressure equation is solved using backward Euler time integration and a full 

Newton loop. Then, the solution to the implicit saturation equation is approximated 

using backward Euler with only a single Newton iteration. The resulting discrepancy 

in fluid and pore volume is used as a source term in the next time step, in order to 

correct the trajectory of the state variables. 
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My SEQUENTIAL Approach 

In my formulation, using incompressible rock and fluid, I use a different sequential 

scheme. After solving for new pressures using (3.33a), I solve (3.33b) for end of time 

step satutations using backward Euler time integration with a full Newton loop. I 

implement a dual time stepping scheme where pressures are computed based on larger 

time steps, and saturations are computed using a series of smaller time steps. The 

procedure works as follows. 

I divide the simulation time interval [0, T] into Kp € N (pressure) time steps of equal 

length. Each of these time steps is subdivided into L € N smaller saturation time 

steps of equal size At. The total number of saturation time steps is then Ks = L-Kp. 

I solve the discretized pressure equation at times kLAt for k = 0 , . . . ,KP — 1, and 

denote the solution by pk = p (kLAt). The pressure is held constant over the interval 

t e [kLAt, (k + 1) LAt) when solving for saturations. I then compute saturations 

saL+l = sa ((kL + /) At), (I = 1 , . . . , L) implicitly. Well rates are held constant during 

this time, since a change in rates would perturb the pressure field. In the following 

algorithm, pk, qk denote the set of pressures and well rates in the half open interval 

[kLAt, (k + l)LAt). 



37 

Algorithm 3.6.2 Sequential-Procedure 

Load initial aqueous saturations s° 

For k = 0 , . . . , KP - 1 do 

Set well rates qk 

Solve g(tkL, skL,pk,qk) = 0 for pk 

For I = 1 , . . . ,L do 

Solve <L+l-^L+l-x = f(tkL+l,skL+l,pk,qk) for skL+l 

End 

End 

In the following chapter, I will use both formulations to derive derivatives, used in 

the solution of a reservoir optimization problem introduced in chapter 5. 



Chapter 4 

Optimal Well Rate Allocation 

Based on the numerical reservoir model developed in the previous chapter, I want to 

compute injection and production well rates that optimize a given cost function over 

a fixed simulation period. I define the optimal control problem and then derive first 

and second order derivatives using the adjoint approach. 

38 
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4.1 Optimal Control Problem 

Let P, I denote the sets of finite volume indices for which the source terms: 

qi(t),i ePUl,l<i<N, 

are potentially nonzero, thus representing production and injection wells connected 

to the reservoir. Define 

Aa + M 

/ 'W : = r r rW' (41b) 

to be the fractional flow terms which determine the composition of produced fluids. 

Let qit(t) denote the oil component of <&(£), and let qai(t) denote the water component 

of qi(i) for a production well. We compute qit(t), qai(t) as follows: 

qii(sai(t)) = <li(t)fi(sai(t)), (4.2a) 

qaiMt)) = qi(t)fa(sai(t)). (4.2b) 

For injection wells, we set fa = 1 and // = 0 for all t, and hence, the source terms do 

not depend on the saturation values. Given these definitions, and using the conven

tion that production rates are negative, and injection rates are positive, I pose the 

following semi-discretized optimal control problem, where I want to find well-rates 
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q(i) to minimize a given cost function: 

min f X)»«.(*-*(*)) + Z>a<(so , (* ) ) + Y, f 9?(*) dt, (4.3a) 

subject to: 

eTq(t) = 0, te[0,T], (4.3b) 

9min < Qi(t) < 9max, t G [0,T], (4.3c) 

where p(t),5a(i),g(i) solve the finite volume based state equations: 

g(t,sa(t),p(t),q(t)) = 0, (4.3d) 

f(t,sa(t),p(t),q(t)) = jtsa(t), t > 0, (4.3e) 

and where a is a factor for determining revenue from oil production, and ft and 7 are 

factors that penalize water injection and production. The equality constraint (4.3b) 

is required by the Neumann boundary condition, imposed on the system due to in

compressible fluid and rock. 

Problem 4.3 is an implicitly constraint optimal control problem, in which the state 

equations form the implicit constraints for the state and control variables. Formu

lating the problem in this way allows me to maintain a higher degree of separation 

between the implementation of the optimization problem and the numerical reservoir 

simulator. 
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4.2 Adjoint and Gradient Computations 

I first describe the gradient computation for an implicitly constrained problem using 

an abstract example, and then derive the equations for the optimal control problem. 

The derivations for the abstract example problem have been provided by my advisor 

Dr. M. Heinkenschloss [8] and are used herein with his permission. 

4.2.1 Gradient Computation for an Abstract Problem 

Consider: 

m i n ^ u ) = V(y(u),u), (4.4a) 

where y(u) & Rny is the solution of the nonlinear state equation 

c(y,u) = 0, (4.4b) 

and where 

* : Rny+n- _• R, c : Rny+n« -» Rny. (4.4c) 

Assumption 4.2.1 

For all u £ U, there exists exactly one y € Rny such that c(y,u) = 0. 

There exists an open set D C i?n»+"u with {(y, u) : u e U, c(y, u) = 0} C D, 

such that \P,c are twice continuously differentiable on D. 

The inverse f -§-c(y, u) J exists for all (y, u) € {(y, u) : u G U, c(y, u) = 0}. 

Under assumptions 4.2.1, the implicit function theorem states the existence of a 

differentiable function y : Rnu —> Rny, defined by c(y(u),u) — 0. 
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Gradient Computation using Sensitivities 

The implicit function theorem implies the differentiability of $ , with the Jacobian of 

* being the solution of: 

cy(y^)\y=y{u)-yu(u) = -cu(y,u)\y^y{u). (4.5) 

To simplify notation, I use cy(y(u),u) for cy(y,u)\ , , and make similar simplifica

tions in other terms where the meaning is obvious. Using this notation, we have: 

yu(u) = -Cy(y(u),u)~lcu(y{u),u). (4.6) 

The derivative yu(u) is called the sensitivity of y with respect to the control variable 

u. Since y (u) is differentiable, ^f is differentiate and its gradient is given by 

W ( u ) = y„(u)TV„tf (y(u), u) + VuV(y(u),u) (4.7a) 

= -cu(y(u), u)Tcy(y(u), u)-TVyV(y(u), u) + VuV(y(u),u). (4.7b) 

Gradient Computation using Adjoint 

If in (4.7), we define \(u) := —cy(y(u), w)~TVy*(y(-u), u), the gradient of iff can be 

written as: 

Vtf(u) = Vu<ff(y(u),u) + cu(y(u),u)T\(u). (4.8a) 

Here, X(u) is the solution of the Adjoint Equation: 

cy(y(u),u)TX = -Vy<ff(y(u),u). (4.8b) 
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The above suggests the following algorithm for computing the gradient of ^ : 

Given u, solve the state equation c(y, u) = 0 for y. 

Solve the adjoint equation cy(y(u),u)TX = —Vy^f(y(u),u) for A. 

Denote the solution by X(u). 

Compute the gradient Vty(u) = Vu^f{y(u),u) + cu(y(u),u)TX(u). 

Lagrangian 

The gradient computation using the adjoint method can also be expressed by defining 

the Lagrangian: 

L(y, u, A) := tf (y, u) + A r • c(y, u), (4.9a) 

where the Lagrange Multiplier A relaxes the implicit constraint (4.4b). 

Using the Lagrangian, equation (4.8b) can be written as: 

VyL(y,u,\)\y=y{u)tX=Hu) = 0. (4.9b) 

Moreover, equation (4.8a) can then be written as: 

W ( « ) = VuL(y,u,A) (4.9c) 
y=y(u),A=A(u) 

Reason for Using the Adjoint Approach 

Examination of the sensitivity term yu(u) — — cy{y{u),u)~lcu(y(u), u) shows that it 

requires the solution of nu systems of linear equations. The approach becomes espe

cially expensive if the control space is large. However, the gradient computation (4.7) 
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requires only the application of the transpose of yu{u) to V y ^(y(u) ,n) . Therefore, 

the adjoint approach is more efficient. The use of the Lagrangian is an elegant way 

to derive the adjoint. 

4.2.2 Gradient Computat ion for Semi-Discretized Case 

To simplify notation, I define the cost function: 

i(t,Sa(t),q(t))
 d=f x)««.(s-.(*))+E^^(*)) + Ei^w» (41°) 

ieP ieP i&i 

where qii(sai(t)), qai(sai(t)) are as defined in (4.2). The Lagrangian for the semi-

discretized optimization problem (4.3) is then given by: 

L{p, sa,q,Xp,Xs) = / l(t,sa(t),q(t))dt 
Jo 

+ / K(t)T[s'a(t) - f(.t,sa(t),p(t),q(t))]dt 
Jo 

+ f \P(t)Tg(t,sa(t),p(t),q(t))dt. (4.11) 

The gradient of the objective function is given by: 

V J(q) = VqL(p, sa, q, \p, As), (4.12) 

where p = p (q), sa = sa (q) are the solution of the dynamic state equations, and 

Ap = Xp (q), Xs = Xs (q) are the solution of the adjoint equation: 

—Up, sa, q, Xp, Xa) = 0, (4.13a) 

Q~L(PI
 sa, Q, V xs) = 0. (4.13b) 



45 

To derive the adjoint differential equation, we compute 

d fT 

—L(jp, s0, q, Ap, Xs)5sa = / Vsl(t, sa(t),q(t))T8sa(t)dt 
osa J0 

+ f Xs(t)
T[5s'a(t) - ^-f(t,sa(t),p(t),q(t))8sa(t)]dt 

JO VSa 

+ J Xp(t)
T—g(t,sa(t),p(t),q(t))5sa{t)dt, 

r\ n'X' £\ 

—L(p,sa,q,Xp,Xs)Sp = - J Xs(t)
T—f(t,sa(t),p(t),q(t))6p(t)dt 

+ j Xp(t)
T—g(t,sa(t),p(t),q(t))Sp(t)dt. 

Integrating by parts, and setting both derivatives to zero yields the semi-discrete 

adjoint equations: 

0 = — g(t,sa(t),p(t),q(t))TXp(t) 

- ^f(t,sa(t),p(t),q(t))TXs(t), t e (0,T) (4.14a) 

-jtUt) = £-f(t,sa(t),p(t),q(t))TXs(t) 

-—g(t,sa(t),p(t),q(t))TXp(t) 

-Vsl(t,sa(t),q(t)), (4.14b) 

As(T) = 0. (4.14c) 

The gradient (4.12) is then given in the context of the linearization: 

DJ(q)5q = f \ Vql(t, sa,q)- Xs(t)
TDqf(t, sa,p, q) + Xp(t)

TDqg(t, sa,p, q) 1 5q{t)dt. 
Jo Lv ^ / J 

VJ(q) 
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Testing the Adjoint Computation 

In the following text, I will use the notation DSaf, Dpg, etc. to indicate derivatives. 

If Xp, Xs solve (4.14) and if p, sa solve the linearized state equation: 

sa'(t) = DsJ(t,sa(t),p(t),q(t))sa(t) 

+ Dpf(t,sa(t),p(t),q(t))p(t) + rSa(t), te(0,T) (4.15a) 

0 = DSag(t,sa(t),p(t),q(t))sa(t) 

+ Dpg(t,sa(t),p(t),q(t))p(t) + rp(t), t e (0,T) (4.15b) 

ia(0) = 0, (4.15c) 

where rSa,rp are arbitrary functions, then multiplying (4.14a,b) by sa,p, respectively, 

integrating the resulting identities over [0,T], and applying integration by parts leads 

to: 

0 = / VsJ(t,sa(t),q(t))Tsa(t)dt 
Jo 

( K(t)T{s~a'(t) - DsJ(t, sa(t),p(t), q(t))s~a(t)]dt 
Jo 

I Xp(t)
TDSag(t,sa(t),p(t),q(t))s~a(t)dt, (4.16a) 

Jo 

0 = - f Xs(t)
TDpf{t,sa(t),p(t),q(t))p(t)dt 

Jo 

+ / Xp(t)
TDpg(t,sa{t),p(t),q(t))p(t)dt. (4.16b) 

Jo 

Adding both equations and using (4.15) gives: 

0 = / VsJ{t,sa{t),q(t))Tsa(t)dt+ f Xs(t)
TrSa(t)dt- f Xp(t)

Trp(t)dt. (4.16c) 
Jo Jo Jo 

+ Ji 

+ fT 
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The latter identity must be satisfied for all functions rSa, rp. Hence, if a solver for the 

linearized s tate equation (4.15) is available, then the solution of the adjoint equations 

(4.14) must satisfy (4.16c). 

4.2.3 Gradient Computation IMPSAT 

For IMPSAT, we discretize the objective function (4.3a) in the following way: 

K 

J(q) = AtJ2Ktk,4,Qk)- (4-17) 
fc=i 

The optimal control problem (4.3) becomes: 

K 
Minimize At^l(tk,sk,qk), (4.18a) 

fc=i 
k fc—1 

s u b ject to Sa~^a = f(tk,S
k,pk,qk), k = l,...,K (4.18b) 

0 = g(tk,sk
a,p

k,qk) k = l,...,K. (4.18c) 

The Lagrangian corresponding to optimization model problem (4.18) is given by: 

K K 

L(p, 8at q, Ap, A.) = AtJ2Ktk, sk
a,q

k) + YH^Va - fr1 - A * / ( ^ 4,Pk,<lk)} 
k=l fc=l 

+ f2^K}T9(tk,sk,pk,qk). (4.19) 

fc=i 

IMPSAT Adjoint Equations 

Setting the partial derivatives of the Lagrangian with respect to sk and p k , k = 

1 , . . . , K, to zero gives the discrete adjoint equations. I set A f + 1 = 0 in accordance 

with (4.14c). The adjoint is computed as follows: 
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Algorithm 4.2.2 (Adjoint Computation IMPSAT) 

For k = K,..., 1 solve 

\fc+l _ \k 
- ' ^ ' = DJ(tk,sk,pk,qk)TXk - Dsg(tk,sk

a,p
k,qk)TXk 

-VsJ(tk,sk,qk), (4.20a) 

0 = Dpg(tk,sk,pk,qk)TXk
p (4.20b) 

-Dpf(t
k,S

k,pk,qk)TXk. 

Since we have assumed that Dpg(t,s,p,q) is invertible, (4-S0) can be solved for X^, 

which yields: 

Af = At 

K 

Dsf(t
K,S«,pK,qK)T 

- Dsg(tK, s«,p«, qK)T[Dpg(tK, sK,pK, qK)]~T Dpf(t
K, s«,pK, qK)T] «. 

-AWsJ(tK,s«,qK). (4.21) 

For sufficiently small At, (4.21) has a unique solution Af which satisfies ||Af || = 

O(At). Asymptotically, this matches the final condition (4.14c). 

Testing the Adjoint Computation 

Let Xk,Xk, k = 1,...,K solve (4.20). Multiplying (4.20a) by sk, k = 1 , . . . , K, and 

multiplying (4.20b) by pfe, k = 1,...,K, setting 3° = 0, and summing the resulting 
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equations gives: 

K 
0=J2^tVsJ(tk,sk

a,q
k)~sk

a 
fc=i 

K 
+ 5 > * ] T [ S £ - slT1 - &tDsJ(tk, sk,pk, qk)~sk - AtDpf(t

k, sk,pk, qk)pk] 
fc=i 
K 

+ Y,^K\T[Dsag{tk,stpk,qk)sa
k + Dpg(tk,sk,pk,qk)pk}. (4.22a) 

fc=i 

If we set s° = 0, and if pk, sk, k = 1 , . . . , K solve the linearized state equation: 

S° ~^y = DsJ(tk, sk,pk, qk)sk + Dpf(t
k, sk,pk, qk)pk + rk

a, (4.23a) 

0 = DSag(tk, sk,pk, qk)~sk + Dpg(tk, sk,pk, qk)pk + rk (4.23b) 

then (4.22a) leads to: 

K K K 
0 = £ AtVJ(tk,sk,qk)~sk + £ ^ [ X k ] T r k

a - £ At[Xk
p]

Trk. (4.24) 

fc=i fc=i fc=i 

The identity (4.24) has to hold for all sequences {sk} , {pfc}. 

I M P SAT Gradient Computation 

For k = 1 , . . . , K, the IMPSAT gradient is computed as: 

VqkJ(q) = Vqd(tk,sk
a,q

k) - Dqf(t
k,sk,pk,qk) XrC /-*'*' /y\'~ ft™ 1 

l T 
A* 

+ Dqg(tk,sk,pk,qk) 
l T 

(4.25) 
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4.2.4 Gradient Computat ion SEQUENTIAL 

For SEQUENTIAL, we discretize the objective function (4.3a) in the following way: 

KP-l L 

J{q) = At £ J2l(tkL+l>S«L+l>^> (4 2 6) 
k=0 1=1 

where the meaning of L and Kp as well as the other quantities are as defined in 

section 3.6.2. The optimal control problem (4.3) becomes: 

minAt££/(t f c^,sf+V), 
fc=o i= i 

subject to 

0 = g(tkL,skL,pk,qk), 

= f(tkL+l,skL+l,pk,qk), 

(4.27a) 

ckL+l _ akL+l-l 

(4.27b) 

(4.27c) 
At 

where k = 0 , . . . , Kp — 1 and / = 1 , . . . , L. 

We now denote \p{tkL) by \ k . The Lagrangian is then given by: 

RP-l L 

L(p,sa,q,XpAs)= E {&tJ2KtkL+l,skL+l,qk) 
fc=0 1=1 

+ LAt[\k
p}

Tg(tkL,skL,pk,qk) 

+ T,ML+l}T[sk
a
L+l ~ sf^1 - Atf(tkL+l,skL+l,pk,qk)] }, (4.28) 

i=i 

where I have weighted the discrete Lagrange multipliers with At and LAt respectively. 
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SEQUENTIAL Adjoint Equations 

The partial derivatives of the Lagrangian with respect to pressures are given by: 

VpkL(p,sa,q,Xp,Xs) = LAt\Dpg(tkL,skL,pk,qk) A* 

1=1 

ykL+l 

The partial derivatives of the Lagrangian with respect to the aqueous saturations are 

calculated as follows. 

For k = 0 , . . . , Kp — 1, / = 1 , . . . , L — 1, compute: 

kL+l „kL+l k\ Vj.L+lL{p,sa,q,\p,\s) = AtVsJ(tkL+l,skL+t,qk) 

+ \k,L+l - \kL+l+1 - At DsJ(tkL+l,sk
a

L+l,pk,qk) \kL+l 

For k = 0 , . . . , Kp — 2, I = L, compute: 

VJ.L+LL{P, sa, q, Xp, A.) = AtVsJ(tkL+L, skL+L,qk) 

+ \kL+L - A*L+L+1 - At 

+ LAt DSa9(t
kL+L,skaL+L,pk+\qk+1) 

DsJ(tkL+L,skL+L,pk,qk) 

l T 

l T \ kL+l 

Ap
fc+1. 

F o r A; = Kp — 1, I = L, c o m p u t e : 

VAL+LL{P, sa, q, A,, A.) = AtVJ(tkL+L, skL+L, qk) 

+ XkL+L - At DsJ(tkL+L,S
kL+L,pk

:q
k) 

lT 
\kL+l 

The adjoint equations are obtained by setting the partial derivatives to zero. This 

results in the following procedure for the computations of adjoints. 
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Algorithm 4.2.3 (Adjoint Computation SEQUENTIAL) 

Let KS,KP and L be given as in Algorithm 3.6.2. Let pk, skL+l, k = 0, 

I = 1,... ,L, be solutions of the dynamic state equations. 

Fork = Kp - 1 , . . . , 0 do: 

1. Ifk = Kp-l, solve for Xk
s
L+L 

X kL+L _ At 
i T 

DsJ(t^+L,s^,p*,q*) vkL+L 

AtVsJ(tkL+L,sk
a
L+L,qk). 

,KP-1, 

(4.29a) 

(4.29b) 

Ifkp<Kp-l, solve for Xk
s
L+L 

\fcL+L+l _ \kL+L 

At 
DsJ(tkL+L,skL+L,pk,q

k) ikL+L 

-L DSa9(t
kL+L,sk

a
L+L,pk+1,qk+1) A p

f c + 1 

-VsJ(tkh+L,skL+L,qk). 

(4.29c) 

(4.29d) 

(4.29e) 

2. Forl = L-l,...,l, solve for XkL+l: 

\kL+l+l _ \kL+l 

At 
DsJ(tkL+l,skL+l,pk

)q
k) 

-VsJ(tkL+l,skL+l,qk). 

ykL+l (4.29f) 

(4.29g) 

3. Solve for Xk 

i=i 

Dpg(tkL,skL,pk,qk) Xk = J2T\Dpf(tkL+l,SaL+l,Pk,<lk) *f+'. (4-29h) 

End ('k') 
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Testing the Adjoint Computation 

If Xk, Xk
s
L+l solve the adjoint equations (4.29) for k = 0 , . . . , Kp - 1, I = 1 , . . . , L, 

then: 

0 = VSaL(p, sa, q, Xp, Xs)sa + VpL(p, s0, q, Xp, Xs)p 

Kp-1 

= £ {^J2V^tkL+l^aL+l^k)T~sk
a

L kL+l c.kL+1 k\T~kL+l 

fc=o ;=i 

fclTn „/+feL „feL J c Jc\„~fc 

+ £[Af+T 
1=1 

5fcL+/ _ zkL+l-l 

£ At[XkL+l]TDpf(t
kL+l, skL+l,pk, qk)pk] 

i=i 

K"-2 

+ £ LAt[Aj+1]^9(* ( fc+1)L,4 fc+1)L.P fc+1^ fc+1)^ ( fc+1)L- (4.30a) 
fc=0 

Setting s° = 0, equation (4.30a) can be re-written as: 

KP-l 
kL+l 0= £ {At£v^(^+;,sf+V)T

St 
fe=0 i = l 

+ LAt[Aj]TDSa^(tfcL,Sf , / , 9
f c ) S f + LAt[Xk}TDpg(tkL,sk

a
L,pk,qk)pk 

L 

+ £[Af+f 
i=i 
L 

~kL+l _ ~kL+l-l AtDsJ(tkL+l,sk
a
L+l,pk,qk)SkL+l 

- £ At[XkL+l]TDpf(t
kL+l, skL+l,pk, qk)pk) (4.30b) 

i=i 

for all ~sa = ((SQ)T , . . . , (Sf ) r ) T and all p = ( (p°f , . . . , ( p ^ ) r ) T . 
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Hence, if s° = 0, \£P — 0, and if S*,. . . , s^s, p ° , . . . ,pKP solve the linearized state 

equations: 

0 = DSag(tkL, sk
a
L,pk, qk)~sk

a
L + Dpg(tkL, skL,pk,qk)pk + rk, (4.31a) 

•xkL+l _ ~kL+l-l 
f a "a _ n fffkL+l kL+l k k\~kL+l 

+ Dpf(t
kL+l,skL+l,pk,qk)pk + rkL

a
+\ (4.31b) 

for arbitrary right hand side vectors rk^+l,rk, k = 0 , . . . , Kp — 1, I = 1,... ,L, then 

0 = E A*{ E V-*(*"", ̂  9* )^ + ' - M]Tr* 
fe=0 1=1 
L 

1=1 
Ei^i^}- (4-31c) 

SEQUENTIAL Gradient Computation 

Let # s , i<Tp and L be given as in Algorithm 3.6.2. Let pk, skL+l, k = 0 , . . . , Kp - 1, 

/ = 1 , . . . , L, be solutions of the dynamic state equations, and let Xk, \kL+l be the 

solution of the adjoint equations (4.29). The gradient is then computed as follows. 

Algorithm 4.2.4 (Gradient Computation SEQUENTIAL) 

For k = 0 , . . . , Kp — 1 compute: 

V0*J(9) = ^ E V ^ L + ' > s a L + V ) + [Dq9{t
k\sk

a
L ,pk,qk)]TXk 

l=i 

-\J2[DJ{tkL+\sk
a
L+l,pk,qk)\T \kL+\ (4.32) 

where the computation of the gradient is based on the inner product 

KP-l 

&,«,) = £LA*(^)T(g2
fe). 

fc=0 
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4.3 Second Order Derivatives 

In this section I derive the algorithm to compute Hessian times Vector products for 

the fully discretized reservoir optimization problem, using the IMPSAT formulation. 

I start by describing the derivation using the abstract model problem. 

4.3.1 Second Order Derivatives for Abstract Problem 

Hessian Computation 

Assuming that \l/ and c are twice continuously differentiable, ^ is twice continu

ously differentiable, and we can compute the Hessian from (4.9c). We first need the 

derivative ^ A ( M ) . Applying the implicit function theorem to (4.9b) gives us: 

VyyL(y(u),u, X(u)) yu(u) + VyuL(y(u),u, X(u)) + VyxL(y(u),u, A(u)) X(u) = 0. 

Using the fact that Vy>\L(y, u, A) = cy(y, u)T and making use of (4.6) in the previous 

equation, we find that 

Xu{u) = Cy(y(u), u)~T [VyyL(y(u),u, A(«)) cy{y(u),u)~l cu(y(u),u) 

-VyuL(y(u),u,X(u))}. (4.33a) 

We can now differentiate (4.9c): 

V 2 £(u) = VuyL{y(u),u, X(u)) yu{u) + V2
uL(y(u), u, X(u)) 

+ VUlXL(y(u), u, X(u)) Xu(u). (4.33b) 
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If we insert (4.33a) and (4.6) in (4.33b) and observe that S7u\L(y(u),u,X(u)) = 

cu(y(u),u), the Hessian can be written as: 

V 2 ^(u ) = cu(y(u),u)Tcy(y(u),u)~T V2
yL(y{u),u, X(u)) cy{y{u),u)~l cu(y(u),u) 

- cu(y(u),u)T cy(y(u),uyT VyuL(y(u),u, X(u)) 

- VuyL(y(u), u, X(u)) cv{y{u),u)~l cu(y(u),u) + V2
uL(y(u),u, X(u)). (4.33c) 

Hessian times Vector Computation 

The computation and storage of the full Hessian is often infeasible unless sparsity 

can be exploited. A way out is to use optimization algorithms that rely on Hessian-

times-vector products, which can be computed as follows. 

Algorithm 4.3.1 Hessian times Vector Computation - V2iff(u)v 

Given u, solve the state equation c(y, u) = 0 for y. 

Denote solution by y{u). 

Solve the adjoint equation cy(y(u),u)TX — —Wy
ib(y(u),u) for X. 

Denote solution by X(u). 

Solve cy(y(u),u) w = cu(y(u),u) v for w. 

Solve cy(y(u),u)Tp = V2
yL{y(u),u, X(u)) w - VyuL(y(u),u, A(u)) v for p. 

Compute 

V 2 *(u) v = cu(y(u),u)Tp - VuyL(y(u),u, X(u)) w + V2
uL(y(u),u, X(u)) v. 
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4.3.2 Hessian times Vector Product for Reservoir Problem 

We now require a more elaborate notation. Setting 

fsl\ 

\»" J 

^ 

r.K 

(4.34a) 

\ q ) 

where sk,p , q are vectors whose size is defined by the number of mesh elements and 

the number of wells, respectively, and defining the matrices and vectors 

Lyk,k-i DK 
I-AtDsf

k -AtDpf
k 

(oiy 
y=y(u) 

Dsg
k Dpgk J 

[-AtDqf
k}T [Dqg

k]T 

/ 

V 

- / 

0 

\ 
0 

°y 
(4.35a) 

A* = 
y=y(u) 

(4.35b) 

where fk is shorthand for / (tk, sk
l,p

k, qk), the gradient can be computed as: 

/ n , l \ 

V*(«) = At 

Vgl1 

V ^ ) 

( (Dl)T\i ^ 

+ 
K\T \K 

y=y(u) {Wr A* ; 

(4.36) 

y=y(«),A=A(«) 

We need the following matrices of second order derivatives, which can be formed ef

ficiently due to the sparsity of the mesh discretization: 

A. 

/ AtV*l» - At £ V2Jk \k
Si + £ V2

s9
k \k

pi -At £ Vspf
k A* + £ Vspg

k Xk
Pi ^ 

-At £ VpJ
k Xk

Si + £ Vps9
k Xk

Pi - At £ V*/* A* + £ V X A*, 
i= l i-l i=l i= l / 
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V2
yL(y(u),u,\(u)) 

Dlv 

Dly 0 

Dyy J y=y(u),X=X(u) 

(4.37) 

Nr Nr 

D«u := ( AtV*lk - At Y, V2
qf? A*4 + £ V?fl? A*, 

V*L(y(u),u,A(u)) 

D}„, 0 

0 Diu 0 

V 
Duu I 

G-R"u> 

y=y(")A=M«) 

(4.38) 

/ Nr Nr \ 

AtVsql
k ~AtJ2 Vsqf? As

fc
; + Y, V.,ff? A£ 

£>fe •= 
^ y u • 

Nr Nr 

-AtYVp^^+Y^P^i^ 
i = i »=i 

VyuL(y(u),u,X(u)) 

Diu 0 

0 £>2« ° 

V 
Dyu J 

6 Rnv*n», (4.39) 

y=y(u),A=M«) 

AtV,^fc - A* £ V,.tf A* + £ V„«tf A£ -At £ Vgp/* \k
Si + £ Vw«tf A£ , 

i= l j=l i= l i= l / 

/ 

VuyL(y(u),u,\{y)) = 

< 0 

0 D2
uy 0 

\ 

Duy J 

rz D^uXHy (4.40) 

y=y(u),A=Mu) 
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Given the matrices defined above, the Hessian-times-vector computation is defined 

by the following algorithm: 

Algorithm 4.3.2 (Hessian times Vector Computation IMPS AT) 

• Given u, solve the state equation c(y,u) = 0 for y. Denote solution by y(u). 

• Solve the adjoint equation cy(y(u),u)T\ = ~Vy^f(y(u),u) for A. Denote solution by X(u). 

• For k = 1 , . . . , K, solve the linearized state equation 

D* 
ws 

\WP J 

D$ vk + 
wk-l 

V ° J 

( \ 

for 
ws , where w® = 0, u>° = 0. 

\WP J 

• For k = K,..., 1, solve the secondary adjoint equation 

W? 

whe 

= Dt 

,K+\ _ r, „JC+1 

w. 

\ WP ) 

.fe+1 

Dk
yuv

k + for 

0 , ^ + 1 = 0 . 

zp J 

• For k = 1 , . . . , K, compute: 

(vH{u)v)k = (Dk
uf zk - Dk

uyw
k + Dk

uuv
k 

In the above algorithm, it is understood that all derivative terms are evaluated at 

y = y(u),i.e. ^ J (u). 
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4.4 Numerical Experiments for Adjoints 

In this section I investigate the impact of the time discretization and different time 

step sizes on the accuracy of the computed adjoint and gradient. Values for the 

IMPSAT discretization with the smallest time step size are used as reference. 

4.4.1 Reservoir Model 

For the numerical study, I chose the top layer of the SPE10 comparison problem as 

the reservoir domain. The SPE10 problem is a 3D synthetic reservoir model, which 

is considered to be "hard" for most commercial reservoir simulators. Its considerable 

size and very strong heterogeneity in the permeability makes it an ideal test case for 

flow based up-scaling techniques, using single phase flow, and for numerical reservoir 

simulation on the geological cell size level. I have chosen the top layer of the model for 

my study, since the heterogeneity of the model makes it an ideal candidate for the type 

of problem I solve. The permeability distribution and the resulting flow patterns will 

force the optimizer to compute an injection and production pattern that varies over 

time, and hence, we can expect that the dual variables and the gradient components 

vary strongly over time. The model uses a rectangular, structured grid of 60 x 220 x 80 

cells, the top layer then being comprised of 13,200 simulation cells. 

Figure 4.1 shows the permeability distribution for the 3 dimensional volume. The top 

layer resembles a tar bed, which models a formation close to a shoreline. Figure 4.2 

shows the permeability distribution in the top layer. 
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Figure 4.1: SPE10 Permeability Volume 

Figure 4.2: SPE10 Top Layer Permeability Distribution - log (K**+Kw\ 
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4.4.2 Experimental Setup 

For my numerical study, I place 4 injection and 4 production wells across the 2D 

reservoir model. Intentionally, these wells are not placed at optimal locations. Only 

two of the producers are placed in high permeability areas, and all injectors are placed 

in low permeability areas at the corners of the model. Figure 4.3 shows the setup. 

In order to stress the algorithm, I use a random time series for the injection and 

Figure 4.3: Adjoint Experimental Setup - Well Placement 

production rates in the forward simulation model. The time series consist of 100 

random values that are used to compute piecewise constant well rates, such that 
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the total injection and production is equal for all chosen time step sizes. Figure 4.4 

depicts the rate profiles for the injection wells. The producers are a mirror image of 

these rates, since the Neumann boundary condition requires the well rates to sum up 

to zero. 

0 200 400 600 800 1000 1200 1400 1600 1800 2000 
Simulation Time 

Figure 4.4: Adjoint Experimental Setup - Injection Profiles 

The following collection of figures shows the gradient components for the injector and 

producer wells. For each well, a pair of plots is generated. The left side depicts the 

gradient components, as these are computed for different time step sizes using an 

IMPSAT forward simulation model. The right hand plot depicts the same well and 

time step sizes using the SEQUENTIAL formulation: 
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Gradient (I MPS AT) for Injector 1 for various A t Gradient (SEQ) for Injector 1 for various A t 
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Figure 4.5: Comparison of Gradients (Injectors 1,2) IMPSAT k SEQUENTIAL 

Figure 4.5 shows a trend that can be observed for all wells. Gradient components for 

various time step sizes match up well for later simulation times, but tend to show 

larger differences in the first half of the simulation run. Since the relative differences in 

the adjoint show the exact opposite behavior (as shown further below), the differences 

are most likely introduced by variations in the saturations and the partial derivatives 

of the discretized functions f(t,s(t),p(t),q(t)) and g(t,s(t),p(t),q(t)) in the forward 

model. 
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Figure 4.6: Comparison of Gradients (Injectors 3,4) IMPSAT & SEQUENTIAL 

Figure 4.6 hints at a potential problem we may have to expect when using the SE

QUENTIAL method for large time step sizes. The zero crossing of the gradient for 

injector 3 occurs at a later simulation time due to a lateral shift. While this can 

be attributed in part to the coarser resolution implied by larger time step sizes, the 

switch from a positive value to a negative value occurs at least one time step later 

than it would have ideally been. This may cause different results in optimization 

algorithms that compute step directions based on gradient information. 
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Figure 4.7: Comparison of Gradients (Producers 1,2) IMPSAT & SEQUENTIAL 

Figure 4.7 shows a similar behavior for producer 1 as we have seen for injector 3. 

The lateral shift and difference in amplitude is actually even more pronounced. The 

gradient component stays above zero, however, the strong downward trend for large 

time steps in the SEQUENTIAL method is not observable for smaller time steps or 

in the IMPSAT discretization. 
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Figure 4.8: Comparison of Gradients (Producers 3,4) IMPSAT & SEQUENTIAL 

The final four plots repeat the pattern observed for the injectors and the first two 

producers. 

4.4.3 Discussion of Numerical Results 

As expected, the IMPSAT formulation generates gradient components for different 

time step sizes that are closer to each other than those generated by the SEQUEN

TIAL approach. 

As previously mentioned, the strong lateral shift in the gradient components for the 
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Figure 4.9: Lateral shift of Gradient for Injector 3 

SEQUENTIAL formulation is a concern, and may be problematic especially when it 

occurs close to a zero crossing, as this is the case for injector 3. Using a small time 

step size, the zero crossing occurs shortly after the start of the simulation, whereas 

for large At, the gradient changes its sign much later. The figure above shows the 

problem at a higher resolution. 
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The following figure shows the spatial distribution of the saturation adjoint at t = 

1000 days. The picture is presented to give the reader an estimate for the magnitude 

of the components. 

Adfcint s (IMPSAT) at t = 1000 Dayi AdjoMS (SEQ)ait = 1000 Day6 

W- •yV- A i 
I . 

4-

The following figure shows the infinity norm of the relative difference between the 

adjoints, computed for different time step sizes using the IMPSAT and SEQUENTIAL 

formulation. For each time t, the value is computed as: 

I \ tsp \base I 

II X base || 
l l A s 112 

where the superscript tsp indicates the adjoint computed for a specific time step size, 

and the superscript base indicates the baseline value, which is computed using a time 

step size of At = 1 day. 

The relative difference for the adjoint, using the sequential formulation, can reach up 

to 10% for large time step sizes. In addition, larger time step sizes cause instabilities 

in the adjoint for the second half of the simulation run. However, this does not 

necessarily affect the quality of the gradient. All larger discrepancies in the gradient 

computation for the sequential formulation occur in the first half of the simulation 

file:///base


70 

Adjoin! Sw (IMPSAT) re!.A from Baseline (or various A Adjoint S (SEQ) re!. A from Baseline lor various A I 

s 
I 0.08 

At-50 
At = 25 
Al-5 

1 ; \ • \ 

i i i \ ; 

; ; : ; ; vi 
:• :'xrx=^L 

I 
i 0.08 

At = 50 
— A t - 2 5 

A l = 5 

' i i ;'" ! \ f 

I I; r'|l| 
i I i i i J 

_ ^ ^ _ L _ ^ ^ ^ 
0 200 400 600 1000 1200 1400 1600 1800 2000 

Simulation rime In Days 
0 ZOO 400 

Figure 4.10: Relative Difference in Adjoint - IMPSAT and SEQUENTAL 

run, where the adjoints for different time step sizes match very well. On the other 

hand, gradient components for the second half match closely, whereas the adjoints 

show large differences. 

4.4.4 Conclusions 

From the numerical experiments, I conclude that the sequential formulation is not 

as well suited for numerical reservoir optimization as the fully implicit formulation. 

Considering that industrial reservoir simulators, based on the volume balance formu

lation, often take only a single Newton iteration for the approximation of the solution 

of the nonlinear saturation equation, I propose to always use a fully implicit approach 

for the computation of the adjoint and the gradient. 



Chapter 5 

Numerical Optimization 

In this chapter, I develop an active set Newton method for the solution of smooth 

nonlinear programs with mixed linear constraints, which I use to solve the reservoir 

optimization problem. The approach behind the method is based on the works of 

Forsgren and Murray, who describe algorithms for the solution of NLPs with linear 

equality constraints and linear inequality constraints [6, 7]. My adaptation of their 

work combines the two approaches, and considers large scale optimization problems 

where the Hessian is not directly available. The motivation for using this approach 

is to examine the usefulness of using curvature information from the Lagrangian to 

solve the reservoir optimization problem. Most researchers in the field have reported 

good results for the solution of reservoir optimization problems using methods based 

solely on steepest descent step computations. I want to examine if a second order 

method can improve upon their results. An earlier approach that I took, using an 
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interior point method with BFGS approximation of the Hessian, was not successful 

due to scaling problems of the Hessian approximation. Based on that experience, I 

decided to develop an optimization algorithm that makes use of analytic second order 

derivatives. 

5.1 Introduction 

I consider the NLP: 

min f (x) (5.1a) 

s.t.: AEx = bE, (5.1b) 

Aix < br, (5.1c) 

where x E W1, AE E RmEXn, A7 E RmiXn, 

and / is twice continuously differentiable on an open set containing the feasible points 

of (5.1). In my application, n, mE, and mi are possibly large, and V 2 / is not directly 

available, but products of the form V2fv can be computed to some precision. The 

following two theorems state the first order necessary and second order sufficient 

optimality conditions for problem (5.1). 
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Theorem 5.1.1 (Karush-Kuhn-Tucker) If x* is a local minimizer of (5.1), then, 

there exist A* e R m £ , A** G Rmi, such that: 

Vf{x*)+AT
E\* + Ajn* = 0, (5.2a) 

AEx* -bE = 0, (5.2b) 

Aix* - 6/ < 0, (5.2c) 

[Aix* - bI)
Tn* = 0, (5.2d) 

/x* > 0. (5.2e) 

The vectors A*, /i* are the Lagrange multipliers associated with the linear equality 

and inequality constraints. 

Theorem 5.1.2 Let x* satisfy the KKT conditions (5.2) with Lagrange multipliers 

A* and fi*. Let I denote the set of inequality constraints, and consider the set of 

vectors D C M.n, satisfying the following conditions: 

AEd = 0, afd = 0, Vz G J : //• > 0, ajd < 0, Vz G / : H* = 0. 

/ / d T V 2 / (x*) d > 0 for all d G D, then x* satisfies the second order necessary 

optimality conditions. 

If d T V 2 / (x*) d > 0 for all d € D, then x* satisfies the second order sufficient 

optimality conditions. 

A discussion of first and second order optimality conditions, and proofs for theorems 

5.1.1 and 5.1.2 can be found in Nocedal and Wright [13, pp. 321-341]. 
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Definition 5.1.3 Let I := {1, 2, . . . , rrij} 

We say that the ith constraint is 

active at the point x if ajx — bi = 0, 

inactive at x if ajx — 6» < 0, 

violated at x if ajx — bi > 0. 

Let Xk be a feasible iterate for (5.1a) with respect to the constraints (5.1b,c), and let 

Ik (%k) Q I be the set of active inequality constraints at the point Xk- A set Wk C Ik 

is called the working set of active inequality constraints at x\.. The computation of 

the working set will be described later. 

I will use the convenient notation Awk for the working set matrix with the rows 

af, i e Wk- The matrix Awk is a sub-matrix of Aj. The matrix of all active 

constraints is given by: 

Ak:~- (5.3) 
AE 

Awk 

Furthermore, I define Zk to be the matrix whose columns form an orthonormal basis 

for J\f(Ak), where M denotes the null space, and assume throughout that Ak G R m x n 

is of full row rank with 0 < m < n. 
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5.2 Optimization Algorithm 

In the following, I describe the computation of the step directions for the iterates, the 

line-search strategy used, and how the working set is computed. Since problem (5.1) 

is linearly constrained, V 2 £ (x, X,iu) = V 2 / (x), and I use V 2 / (x) throughout. 

5.2.1 Algorithm Overview 

The algorithm computes a sequence of iterates {xk} such that: 

Xk+\ •= xk + akpk, (5.4a) 

Pk •= sk + dk + qk, (5.4b) 

where sk, dk, qk are step directions, and ak is the step length, determined by a line-

search procedure. In addition, a set of Lagrange multiplier estimates Xk, \ik is com

puted at each iteration. The working set is updated at the end of the line-search 

procedure. 

Step Directions 

The feasible step direction sk is the Newton direction for a quadratic subproblem 

that I describe shortly. The vector qk is a feasible direction aimed to remove inequal

ity constraints from the working set, and dk is a feasible, non-ascending direction 

of negative curvature. Depending on the Lagrange multiplier estimates, the current 

working set, and the spectrum of the reduced Hessian Z^HkZk, one or more of these 

step directions may be zero at any iteration. 



76 

Let E denote the set of equality constraints, and / the set of inequality constraints. 

The optimization algorithm used to solve (5.1) is outlined below. Details for the step 

computations are provided in the following subsections. 

Algorithm 5.2.1 (Optimization Algorithm) 

k <— 1, xk <— x0, Wk C [i e / : afxk - h = 0} 

while k < maxiter 

Compute Ak, Zk, based on E and Wk 

Compute fk := f (xk), V/fc 

Compute Sfc, Xk, fik as described in section 5.2.2 

if Z^Vfk — 0, test optimality and return xk if optimal 

if mm(fik) > 0 or Wk % Wk-\, set qk •— 0, else compute qk as described in 5.2.3 

if ^min {Z^V2 fkZk) < 0, compute dk as described in 5.2.4, e^se set dk '•— 0 

Pk = sk + qk + dk 

Perform line search and compute xk+\ = xk + akpk
 a$ described in section 5.2.5 

Compute W^ = {i e Wk : a[Xk+i - 6, = 0} 

Compute Wk
+ C {i e / , i £Wk : afpk > 0 A aJxk+\ — bt — 0} 

Compute Wk+\ := W£ U WjT as described in section 5.2.6 

k^-k + l 

End 

return xk 
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Algorithm 5.2.1 computes a nonzero step direction q^ only if no new active constraints 

have been added to the working set by the previous iteration. The intention is to 

make at least one feasible step within the nullspace of the current set of active con

straints, before removing constraints from the working set. In the case that no feasible 

step pk 7̂  0 can be made, Wk+i Q Wk, and qk+\ ^ 0 may be computed in the next 

iteration. 

The computation of the step directions is based on the minimization of an approx

imate quadratic model for (5.1) at the current iterate xk- Algorithms of this type 

are called sequential quadratic programming (SQP) methods. A description of the 

approach can be found in Nocedal and Wright [13, pp. 423,424]. The SQP approach 

can be combined with trust-region and line-search methods, of which I have chosen 

to use the latter. Following is a brief description of the SQP approach, tailored to 

NLPs with linear constraints. 

Let Xk be the current iterate for NLP (5.1). Define the Lagrangian 

C {xk, Xk, Hk) •= f (xk) + J ] (Afe)j {ajxk - bEi) + J ^ (/ifc)i (ajxk - bh), (5.5a) 

VXC (xk, Xk, fik) •= V / (xfc) + AT
EXk + Ajfjtk. (5.5b) 

The SQP step can be derived in two ways: 
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One considers the minimization problem: 

min /(x f c) + V/(x f c) pk + ^Pk^xf{
xk)Pk 

Pk Z 

s.t. Akpk = 0. 

(5.6a) 

(5.6b) 

The justification for (5.6) follows immediately from the second order Taylor expansion 

of/. 

An alternative viewpoint is to to solve for the KKT point using Newton's method. 

, jeWk L e t 7Tfc : = 
' * N 

V ^ ) 
be the subset of Lagrange multipliers associated with the equality constraints and the 

active inequality constraints in the working set. Define 

F(x, n):= 
V x £ ( x , 7r) 

V Ax 

= 0, 

/ 

where C (x, n) is a slightly modified Lagrangian with multipliers for inactive inequal

ity constraints removed. Linearizing around xk, irk' 

F' (x, n) 

which leads to the Newton step: 

' V2C(xk,irk) Al^ 

Xk-^k 

V o 
/ 

V 

*lf(xk) A\ 

Ak 0 

\ 

) 

1 \ ^ 
5xk 

\5* J V 

-Vf{xk)-A
T

knk 

Akxk 

(5.7) 

J 
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Adding A^TT^ on both sides of the first equation, and using the fact that AkXk = 0, 

we obtain: 

/ _ „ \ / . \ / _ . . > \ 

V 

V*/(*fc) Al 

Ak 0 
/ 

y TTfc+i J V 

- V / ( x f c ) 

0 

(5.8) 

J 

Nocedal and Wright [13, pp.530-533] show that the solutions to (5.8) and (5.6) are 

equivalent under the assumption that the matrix Ak is of full row rank, and the 

Hessian V 2 / (xk) is positive definite on the nullspace of the active constraints. 

5.2.2 Computat ion of Sk 

The computation of the vector s^ follows (5.8), and is identical to the approach that 

Forsgren and Murray use. Solve: 

/ 
Hk AT \ ( \ 

\ 
Ak 0 7 

/ \ 
-V/ (x f c ) 

(5.9) 

/ 

Sk 

V * k ) \ ° 
for Sk, 7Tfc, where Hk denotes a suitable modification of the Hessian at Xk, such that 

Z^HkZk is positive definite. 

Lemma 5.2.2 Let Xk be a local minimizer of (5.1), i.e. Xk = x*, let Wk = I(xk), 

and let Ak be of full row rank. Then, the solution to (5.9) satisfies the first order 

KKT conditions (5.2) with Sk = 0. Furthermore, the set of Lagrange multipliers is 

uniquely defined. 
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Proof: Premultiplying the first equation of (5.9) with Z j , we obtain: 

Zk
THksk + Zk

rVf(xk) = 0, (5.10) 

since Z^A\ 

fJ-k 

= 0. The second equation of (5.9) implies that Aksk = 0, and 

hence, sk lies in the nullspace of Ak. Then there exists z G M.n~m such that sk = Zkz. 

Substituting into (5.10), and using the fact that Z^Vf (x*) = 0, we obtain: 

[zlHkZ^ z = 0. (5.11) 

Since Hk was assumed to be positive definite on the nullspace of the active constraints, 

equation (5.11) implies that z = 0, and hence, we obtain sk = 0. Substituting sk = 0 

into the first equation of (5.9) we obtain: 

Afc 

Al 
Hk 

+ Zk
LVf(xk) = 0. (5.12) 

Since Ak is of full row rank, equation (5.12) has a unique solution. Since we required 

Wk to contain all active constraints at x*, the solution further contains all Lagrange 

multipliers / / j , that are not required to be zero due to the complimentary conditions. 

Setting A* = A&, fj,* = (/̂ fc)j for i G Wk, and /i* = 0 otherwise, we obtain the result. 

• 

Lemma 5.2.3 Let xk be a feasible point of (5.1), xk ^ x*, and let Ak be of full row 

rank. Then, a nonzero sk from the solution to (5.9) is a descent direction that is 

feasible with respect to the active constraints. 
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Proof: Premultiplying the first equation of (5.9) with s£, we obtain: 

+ slVf(xk) = 0, (5.13a) 

Aksk = 0. (5.13b) 

Clearly, (5.13b) forces sk into the nullspace of Ak, and hence, s^A^. 

leaves us with 

sT
kHksk + slVf (xk) = 0. 

Since, by assumption, Hk is positive definite on the nullspace of the active constraints, 

we have s\Hksk > 0 for sk ^ 0, and hence: 

slVf(xk) < 0. 

• 

Computation of sk for Large Scale Optimization Problems 

For large scale optimization problems, a direct solution of equation (5.9) is impracti

cal, or impossible if only Hessian-times-vector products are available. In the following, 

I split (5.9) into two parts that can be solved separately, and suggest an iterative so

lution process, based on a low dimensional Krylov subspace, to solve for sk. 

T AT skHksk + skAk 

A* 

fJ-k 

A*; 

V>k 

= 0. That 
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Expanding (5.9) yields: 

HkSk + Alirk = -Vf(xk), (5.14a) 

Aksk = 0. (5.14b) 

If we define sk to lie in the range of Zk, i.e. sk := Zkz, then sk lies in the nullspace 

of the active constraints, and (5.14b) is fulfilled, since AkZk = 0. 

Definition 5.2.4 Let Ak, Zk be defined as before, with Zk G R n x ' " " m ' , and Ak G 

Wnxn having full row rank with 0 < m < n. Define Yk G M.nxm to be a matrix, whose 

columns form the basis for the orthogonal complement of the subspace spanned by the 

columns of Zk in W1, and define X to be the the matrix X := ( %, yk ) ^ Mnx™. 

Furthermore, define sk := Zkz . 

Pre-multiplying (5.14a) with XT yields: 

ZlHkZk z = -ZlVf (xk) (5.15a) 

Yk
TUkZk z + Yk

TAT
k*k = -Yk

TVf (xk) (5.15b) 

Definition 5.2.5 / now define Hk as follows: Let Hk = ZkHkZl, where Hk is a 

positive definite approximation of the reduced Hessian Z^V2f (xk) Zk. 

Hence, Y^Hk = Y^ZkEkZl = 0 (since Yk
TZk = 0), and the first term in (5.15b) 

cancels. This leaves us with with two equations for (5.15), which can be solved 

separately for z and nk. The solution to (5.15a) will be computed iteratively, while 
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the solution to (5.15b) is computed as: 

^ = - ( n T ^ D _ 1 n T v / o r f c ) - (5.16) 

We need a way to compute Hk that is compatible with the iterative solution approach. 

I suggest to use low rank Lanczos factorization of the reduced Hessian: 

Definition 5.2.6 Let VkTkVk
T with Tk 6 Rlxl and Vk e R<n-m>*', be a low rank 

factorization of the reduced Hessian Z^V2f (xk) Zk. Let Tk denote a positive definite 

modification ofTk, such that wTTk w > 0 for all w EM.1, w ^ 0, and define 

Hk = VkfkVk
T. 

Given the definition above, the system (5.15a) is then approximated by: 

VkTkVk
Tz = -ZlVf(xk). (5.17) 

Clearly, for I <^ (n — m), Hk will itself possess a very large nullspace, and hence, is 

only positive semi-definite on the nullspace of Ak, which is the range of Zk. For the 

proof of lemma 5.2.2 we need to show that Ak sk = 0, and that sk = 0 for xk = x*. 

The first part follows immediately from definition 5.2.4 since AkZk = 0. For the 

second part, we use the following definition: 

Definition 5.2.7 Define Vk G R( n - m )> d to be the matrix whose column vectors Vj 

form an orthonormal basis for the Krylov subspace: 

/ Q : = span[zlVfk, [ZT
k^

2 fkZk)
X Z^Vfk, . . . , {ZT

k^ fkZk)
l~X Zfc

TV/fe} , 
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where fk := / (xk). Furthermore, by orthogonality of the matrix Zk, we have Z^HkZk = 

Hk = VkfkV^. 

Lemma 5.2.8 / / the solution z to (5.17) is contained in the space JCe , then sk = 0 

at x*. 

Proof: At x*, we have Z j V / (x*) = 0, and hence, all Krylov vectors 

VJ = {zlv2fkzk)
j-lzlvfk 

are zero. Hence, z is zero, and since sk = Zkz, we obtain the result. • 

In the proof for lemma 5.2.3 we made use of the assumption that Hk is positive 

definite on the nullspace of Ak, and hence s^Hk sk > 0 for sk ^ 0. However, if Hk is 

defined as in definition 5.2.6, then Hk is only positive semi-definite. But we actually 

don't need that wide ranging assumption about Hk; all we require is: 

siHk sk > 0 for sfc = Zkz ^ 0. 

Lemma 5.2.9 If the solution z to (5.17) is contained in the space /Q , and if Hk is 

defined as in definition 5.2.6, then slHk sk > 0 for sk = Zkz ^ 0. 

Proof: By construction of sk and JCe, we have 

si Hk sk = zTZlHkZk z, (5.18a) 

= zTVkfkVk
Tz. (5.18b) 
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Since z € span {VJ}, and all Vj are orthonormal to each other, both zTVk 7̂  0 and 

Vk
T z 7̂  0 for z ^ 0. Furthermore, Tk is positive definite on the space M', and since 

zTVk E Rl and Vk
T z E M1, we obtain the result for z ^ 0. D 

In my implementation, I compute the Krylov subspace /Q using a Lanczos itera

tion with —ZkVf(xk) as starting vector v\. I want to emphasize that setting v\ := 

—Z%Vf (xfc) is essential for the proof of lemmas 5.2.2 and 5.2.3, however, it also im

proves the factorization with respect to reducing the residual 2%Vf(xk) + VkTkV?z 

5.2.3 Computat ion of qk 

Let Afc, /Xfc be the set of Lagrange multiplier estimates computed in (5.9). My aim is to 

remove those inequality constraints from the working set Wk+\ for which {nk)i < 0. 

For this purpose, I construct the vector qk such that Akqk < 0, and afqk < 0 for 

i E Wfc : (/ifc)j < 0. The latter implies that qk will be feasible with respect to all 

equality constraints, and all those inequality constraints for which {nk)i > 0. The 

following construction process is used: 

If min (fik) > 0 or Wk $Z Wk-\, then qk = 0. Otherwise, let 0 < ft < 1 be given, and 

define the vector vk e RmE+m> such that: 

vki = 0 ie{l,...,mE} 

vkmB+i = ~ (Vk)i if Mi < tf/^min, 

vkmB+i = 0 if (/ifc). >tfnkmin. 
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The direction qk is then computed by solving the linear system: 

H, -Al 

\ 
0 J 

( \ I „ \ 
qk I _ . 0 (5.19) 

Lemma 5.2.10 Let x^ ^ x* be a feasible point of (5.1), and let Ak be of full row 

rank. Furthermore, let min(/Ufc) < 0. Assume that Hk has full rank. Then, the 

solution to (5.19) yields a descent direction qk that is feasible with respect to the 

equality constraints, and those inequality constraints i 6 Wk for which {^ik)i > 0. 

Furthermore, we have Akqk < 0. 

Proof: Expanding (5.19), we obtain: 

HkQk + Alrjk = 0, 

-Akqk = vk. 

(5.20a) 

(5.20b) 

Expanding (5.20b) and using the construction properties of vk yields: 

ajqk = 0 i e { 1 , . . . , mE} , 

amE+i Qk = 0 ieWk, (//fc). > 0, 

Hence, qk satisfies the feasibility conditions of the lemma. Since (//fc)i < # Vkmin < 0, 

we further have: 

amE+iQk<0, ieWk and (pfc)i < $ Vkmin, 
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so that Akqk < 0. The above implies that the step direction q^ aims at removing the 

inequality constraints i G Wk from the working set Wk+i, for which (nk)i < $^kmin-

I now show that qk is a descent direction 

Remembering that itk = 
Afc 

and premultiplying (5.19) by ( _ s r ^ r ) : 

/ 

T T 

-4 n 

\vk J 

Hk -Al 

-Ak 0 

-slHk-nlAk 0 

\ 

/ 

Qk 

{-Vk) 
T T 

-4 K 

vT/fc o 

/ \ 
qu 

= *Ivk, 

^kVk, 

^ 

W 
, (5.21a) 

(5.21b) 

(5.21c) 

(5.21d) 

From the construction of Vk, we have: 

and substituting into (5.21d), we obtain 

(5.22) 

VTfkqk < ~Amin < 0. (5.23) 

• 
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Computation of qk for large scale Problems 

For the time being, we ignore the fact that Hk will be a low rank approximation of 

V2f(xk). Expanding (5.19) yields: 

Hk qk + Alr]k = 0, 

-Akqk = vk. 

Since vk is constructed such that Akqk < 0, qk is not confined to the nullspace of Ak, 

and will in general lie outside the range of Zk. 

Definition 5.2.11 Let the direction qk be decomposed into the two vectors qk := 

Zkzq + Ykyq , where Yk € R" x m is the orthogonal complement of Zk in M.n: Z^Yk = 0. 

Plugging in, we obtain: 

HkZk zq +Mis¥k^+ Al Vk = 0, (5.24a) 

^AkZk%-AkYkyq = vk. (5.24b) 

The vector yq can immediately be computed from (5.24b): 

yq= - {AkYkY1 vk. (5.25) 

Pre-multiplying (5.24a) with XT: 

ZT
kUkZk zq +^A^%= 0, (5.26a) 

Yk
TMzZk%+ Yk

TAT
k nk = 0. (5.26b) 
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Since Z^HkZk is positive definite, it follows that zq = 0, and we arrive at: 

qk = Ykyq = -Yk {AkYky
l vk. (5.27) 

The terms used in the actual computation of qk do not depend on the rank of Hk, or 

the factorization of the reduced Hessian. 

5.2.4 Direction of Negative Curvature dk 

Let xk be a critical point of (5.1), that is, Z^Vf (xk) = 0. 

Definition 5.2.12 A feasible, non-ascending direction of negative curvature at the 

point xk is a vector dk € W1 such that 

AEdk = 0, (5.28a) 

Aidk < 0, (5.28b) 

4 v 7 ( z f c H < 0 , (5.28c) 

V T / (xfe) 4 < 0. (5.28d) 

In my optimization algorithm, I use the low rank Lanczos factorization of ZlV^.f{xk)Zk, 

described earlier, to find negative eigenvalues of the reduced Hessian. If Am;n(Tfc) > 0, 

I set dk = 0. Otherwise, let uk be an eigenvector of unit-norm, associated with the 

smallest eigenvalue of Tk. The vector dk is then computed as 

4 := ZkVkuk, (5.29) 
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with sign chosen such that V / (x^ dk < 0. The direction dk is feasible with respect 

to the active constraints, since dk lies in the range of Zk- Since I search for negative 

eigenvalues of the reduced Hessian in a subspace approximation, it is possible that I 

compute dk = 0 in the presence of negative eiganvalues that have not been discovered 

by the truncated Lanczos iteration. If this happens at a saddle point of my problem, 

my algorithm will falsely assume that second order sufficient optimality has been 

achieved. 

5.2.5 Computat ion of pk and Line Search Strategy 

I construct pk as the sum of the three step directions: pk := Sk + dk + qk- Once pk 

has been computed, an upper bound akmax > 0 is determined, such that Xk + otkmax Pk 

does not violate any inequality constraints: 

(bi~afxk\ , . 
<Xkmax •= mm I—-f- y (5.30) 

afpk>0 l fljPfc J 

where aj are the rows of the matrix Aj. 

The starting value for otk in the line search algorithm is then computed as min {1, o.kmax}-

Following the example of Forsgren and Murray, I adopt the line search procedure sug

gested by More and Sorensen [11]: Select ctfc such that 

/ (xk + akpk) < f {xk) + /3afcV/ {xkfpk + g m i n {Pk V V (xk)pk, 0} a2
k, (5.31a) 
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and one of 

Vf {xk + otkPkf Pk <j'Vf(xk)
Tpk + mm{plV2f{xk)pk,0}ak, (5.32a) 

"fc = akmax (5.32b) 

holds. Here, (3 G (0, | ) and 7 € [/?,1). Note that for a positive definite Hessian, the 

procedure reduces to the strong Wolfe conditions. 

P ropos i t i on 5.2.13 The line search parameter ak is well defined. 

Proof: See More and Sorensen [11], Lemma 5.2. • 

5.2.6 Computat ion and Update of the Working Set 

Given feasible XQ, the initial working set matrix AQ is assumed to have full row rank, 

and contain all constraints active at XQ. Forsgren and Murray give the following rule 

for updating Wk —> Wk+\. Define 

Wk~ := {ieWk : ajpk = 0} , (5.33a) 

Pk •= {i &Wk : ajpk > 0 and ajxk+1 = h} , (5.33b) 

W+ CP f e . (5.33c) 

The updated working set Wk+i is then computed as: 

Wk+l := W^UWfc", (5-34) 

where Wk
+ was chosen such that Ak+1 is of full rank. 
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5.3 Strategy for Problems with Large Working Sets 

The algorithm developed so far has the drawback that at most a few constraints 

are added to the working set at each iteration. This is a consequence from the 

computation of akmax in the line-search algorithm, which scales the direction pk such 

that the point Xk + OLkmaxVk n e s exactly on the boundary of the feasible set, unless 

the direction p^ is unconstrained. In the context of simulation based optimization 

with a large number of active constraints at the solution x*, this behavior poses a 

serious problem, since each iteration is very costly. It is therefore desirable to find 

a starting vector x0 which is sufficiently close to the solution x*, and produces an 

initial working set Wo that contains already most of the active constraints for x*. I 

obtain the starting vector x0 by solving (5.1) approximately, using a projected gradient 

algorithm. 

5.3.1 Gradient Projection Method 

Gradient projection methods were originally proposed by Goldstein, Levitin and 

Polyak, see D. B. Bertsekas [5] for a reference. The gradient projection algorithm 

projects a steepest descent step back onto the feasible set. By varying the size of the 

steepest descent step (using line search), the projection moves along a path that is 

called the projection arc. If the unconstrained minimum lies outside the feasible set 

T, and T is convex, the path of the projection arc will follow the boundary of J-'. I 

first describe the method in general, and then give specifics for the adaptation to my 
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optimization problem. 

Consider the NLP: 

min/(a;) (5.35a) 

s.t.: x E T, (5.35b) 

where x € R", T is a nonempty, closed, and convex set, and / is continuously 

differentiable on an open set that contains T. Let 

xk (a) := V (xk - a V / (xk), T) , 

where V (x, J7) denotes the projection of x onto the feasible set T. Using the Eu

clidean 2-norm, V is defined by 

V(x,T) = argmin{||z — x\\2 : z £ J7} . 

If Xfe = Xk (0) is a feasible iterate for problem (5.35), xk ^ x*, the projected gradient 

method defines the next iterate as 

xk+l := xk (ak) for ak > 0, 

where ak is determined by the line search rule. Bertsekas [5] proposes a practical 

finite procedure to determine the step size ak: 

Given f3, fj, in (0,1), and 7 > 0, he suggests to use an Armijo rule where 

ak := / T * 7 , 
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and where mk is the smallest nonnegative integer such that 

/ (zjfc+i) < / (xk) + V ( V T / (xk) {xk+1 - xk)) • 

Under the given assumptions about / and J7, Bertsekas shows that limit points of the 

sequence {xk} are stationary points of (5.35), and that if {xk} converges to a local 

minimizer that satisfies the second order sufficient conditions and strict complemen

tary, then the set of active constraints is identified in a finite number of steps. 

Computation of the projector for my optimization problem 

If Xk — afcV/ (xk) is feasible, then V = I. Otherwise, let E = {1, 2, ..., TUE} denote 

the set of linear equality constraints, and let / = {1, 2, . . . , mi} denote the set of lin

ear inequality constraints as before. I compute V (x, J7) by solving the minimization 

problem: 

min ||x - (xk - akVf (xk))\\2 (5.36a) 
X 

s.t. AEx = bE, (5.36b) 

Ajx < hi. (5.36c) 

Finding a solution to problem (5.36) may pose difficulties for large n, THE, and m/. 

An alternative is to search for 5X in the nullspace of the equality constraints. Setting: 

x = Xk + Sx, (5.37a) 

Sx = ZE v, (5.37b) 
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where Z& is a matrix with orthonormal columns forming a basis for the nullspace of 

AE, I can reformulate the problem into: 

min -vTv + -vTZT
E (xk + akVf (xk)) (5.38a) 

v l I 

s.t. AiZE v<bi-Ai xk. (5.38b) 

Stopping Criteria for Gradient Projection Method 

I use a simple stopping criteria for the gradient projection method, since my goal is to 

find an initial guess for the active set Newton method, which is my main optimization 

algorithm. The iteration is stopped whenever one of the following three conditions is 

true: 

The norm of the reduced gradient || ZjjTV/ (xk) || is smaller than a given tolerance; 

The number of iterations exceeds the allowed maximum; 

The minimum step size is reached in the line search. 

In order to compute the reduced gradient, the working set of active constraints has 

to be computed for xk. For my implementation of the gradient projection method, 

the working set Wk is always identical to the set of active constraints: 

Wk = {i : a[xk - bi = 0} , (5.39a) 

(5.39b) 

The following outline describes the gradient projection algorithm: 
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Algorithm 5.3.1 (Gradient Projection Algorithm) 

k <— 1, xk <— x0, Wk = {i: a[xk — 6̂  = 0} 

Compute ZE 

while k < maxiter 

Compute Ak, Zk based on E and Wk 

Compute fk-=f Ofc), V/fc 

if Z^Vfk ~ 0 ; return x := xk 

mk <- 1, ak <- (3mkj 

while ak > amin 

Compute xk (ak) using the projector described in section 5.3.1 

if f {xk (ak)) < f {xk) + fi ( V T / (xk) (xk (afc) - xk)) => break 

mk <— mk + 1, ak <- j3mk'y 

End 

if ak < amin, return x := xk 

xk+1 <— xk (ak) 

Compute Wk+i := {i E I : ajxk+i — 6̂  = 0} 

ki- k+l 

End 

return x := xk 
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5.3.2 Integrated Optimization Approach 

As mentioned at the begin of this section, I first obtain an approximate solution XQ 

to (5.1) using the gradient projection algorithm, and feed this value as the starting 

point to the active set Newton algorithm. A variation of the technique, which I have 

used successfully, is to obtain the approximate solution XQ on a coarser time-scale, 

interpolate the result onto a finer time-grid, and continue the solution process with 

the active set Newton method. 



98 

5.4 Numerical Optimization Results 

In this section I present the numerical results for solving the reservoir optimization 

problem for three different experiments. The first two experiments consider a simple 

box model as reservoir, while the third experiment uses the top layer of the SPE10 

comparison case as the reservoir domain. 

5.4.1 Experiment 1 

I use a simple box model that consists of 625 finite volumes, arranged in a 25x25 

quadratic grid. For this experiment, I use an isotropic permeability tensor with a 

single high permeability column on one side of the grid. A total of 3 injector wells and 

one producer is laid out such that one of the injectors is connected with the producer 

via the high permeability column. Figure 5.1 shows the setup: My expectation is 

that the optimization algorithm will reduce or shut-in injector 2 in order to avoid an 

early water break-through that is penalized by the cost function. 

Simulator and Optimizer Settings 

For this experiment, I chose a simulation period of 1,000 days with a time step size 

of At = 50 days. I compute an initial guess for the active set Newton method by 

taking 1 iteration of the projected gradient algorithm. For the active set method, I 

chose a KKT norm of 0.01 as target, and require the algorithm to reach second order 

sufficient optimality conditions. 
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Figure 5.1: Optimization Experimental Setup 1 

Iteration Results 

Following is the iteration information for both optimization algorithms. Due to the 

large number of iterations taken in the active set method, I show individual rows for 

the first 5 iterations, followed by increments of 25 iterations for the remainder of the 

optimization process. 

The first table lists iteration information for the gradient projection method. The 

objective function value / (xk) and the reduced gradient ZTVf (xk) are evaluated at 

the begin of the iteration, using the rate and constraint information from the previous 

iteration or the initial rate setting. Step norms and the number of active constraints 
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Table 5.1: Iteration Results for Gradient Projection Algorithm - Experiment 1 

Iteration 

1 

2 

f(Xk) 

-3.96e5 

-5.09e5 

\\xk+i - xk\\2 

1 

7.45e-09 

ll^rv/(^)||2 

2.42e2 

1.15e+l 

20 

40 

are end-of-iteration values, as determined by the Armijo rule. For this experiment, 

the initial rate setting was a uniform pattern of unit well rates for injectors and 

producers alike. The algorithm terminated after 1 iteration (which was the preset 

maximum number of allowed iterations). The rows of the second table depict the 

iteration information for the active set Newton method, and are to be interpreted 

as follows: The values for the objective function f(xk), the KKT norm ||.ftr.KT||2, 

and the working set size Size Wk are beginning-of-iteration values. The column 

max{—//,0} depicts the largest negative Lagrange multiplier encountered (for active 

inequality constraints present in the working set Wk), and the column max{—a, 0} 

depicts the largest negative eigenvalue computed for the reduced Hessian, using the 

Lanczos factorization. 
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Table 5.2: Iteration Results for Active Set Newton Algorithm - Experiment 1 

Iteration 

1 

2 

3 

4 

5 

25 

50 

75 

100 

125 

150 

175 

200 

225 

250 

275 

300 

325 

350 

f(xk) 

-5.093e5 

-5.093e5 

-5.096e5 

-5.096e5 

-5.097e5 

-5.101e5 

-5.103e5 

-5.104e5 

-5.104e5 

-5.105e5 

-5.105e5 

-5.105e5 

-5.105e5 

-5.105e5 

-5.105e5 

-5.105e5 

-5.105e5 

-5.105e5 

-5.105e5 

6.79e-2 

2.12e+0 

6.05e-l 

6.50e-2 

6.37e-2 

4.21e-2 

2.52e-2 

1.51e-2 

9.10e-3 

5.50e-3 

3.30e-3 

2.00e-3 

1.20e-3 

7.29e-4 

4.40e-4 

2.65e-4 

1.60e-4 

9.67e-05 

0 

\\KKT\\2 

1.15e+l 

1.12e+l 

1.06e+l 

1.07e+l 

1.04e+l 

6.97e+0 

4.21e+0 

2.54e+0 

1.53e+0 

9.25e-l 

5.58e-l 

3.37e-l 

2.03e-l 

1.23e-l 

7.41e-2 

4.47e-2 

2.70e-2 

1.63e-2 

9.83e-3 

max{—//,0} 

-0 

9.2e+0 

4 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

max{—a, 0} 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

|w*l 
40 

40 

39 

38 

38 

38 

38 

38 

38 

38 

38 

38 

38 

38 

38 

38 

38 

38 

38 
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Following are figures that graph selected iteration information for the active set New

ton algorithm. The algorithm was able to continuously decrease the KKT norm 

towards the given target. However, it can be seen from the plot of the objective 

function values in figure 5.4 that the target KKT norm was too small, and many 

unnecessary iterations have been taken. 

KKT Norm 

fe 
* 

150 200 
Iteration 

350 

Figure 5.2: KKT Norm/Iteration - Experiment 1 
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Step Norms per Iteration 
T 

150 200 
Iteration 

350 

Figure 5.3: Step Norm/Iteration - Experiment 1 
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The following figure depicts the decrease of the objective function value during the 

iterations taken in the active set Newton method. 

Objective Function Values • 103 

-509.2 

-509.4 

-509.6 

-509.8 

><_ 
—} 

-510 

-510.2 

-510.4 

-510.6 
0 50 100 150 200 250 300 350 

Iteration 

Figure 5.4: Objective Function Values - Experiment 1 

J I I I I L 
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The next figure plots the computed optimal well rates. As expected, the second 

injector is shut-in for most of the simulation period. However, close to the end of 

the simulation it is activated and able to push some oil from the high permeability 

column towards the producer. 

-5 

Injector 1 
Injector 2 
Injector 3 
Producer 

Optimal Well Rates 

-10 
0 100 200 300 400 500 600 700 800 900 1000 

Simulation Time in Days 

Figure 5.5: Computed Optimal Well Rates - Experiment 1 
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The last figure is a plot of the final aqueous saturation profile after 1,000 days of 

injection. The profile clearly depicts how the optimizer steered the fluids towards the 

producer, avoiding the high permeability column. 

2 5 K 

Final Aqueous Saturation Profile 

0.55 

H0.45 

0.35 

Figure 5.6: Final Aqueous Saturation Profile - Experiment 1 
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5.4.2 Experiment 2 

For the second experiment, I use an unisotropic permeability tensor with 

Kx{x) = 100K2(x) 

on the same grid that I used in the first experiment. The layout of the three injectors 

and the two producer wells is such that injector 2 will most likely force an early 

water breakthrough in producer 2, injector 1 will least likely force an early water 

breakthrough in any producer, and injector 3 may force an early water breakthrough 

in producer 1. Figure 5.7 shows the layout of the wells: 

Figure 5.7: Optimization Experimental Setup 2 
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My expectation is that the optimization algorithm will allocate well rates such that 

injector 1 will inject the most water, followed by injector 3 and injector 2. 

Simulator and Optimizer Settings 

For this experiment, I chose a simulation period of 1,500 days with a time step size of 

At = 50 days. I compute an initial guess for the active set Newton method by taking 

3 iterations of the projected gradient algorithm. For the active set method, I chose a 

KKT norm of 5 • 10_1 as target, based on the experience from the first experiment. 

Iteration Results 

Following is the iteration information for both optimization algorithms. Due to the 

large number of iterations taken in the active set method, I show individual rows for 

the first 10 iterations, followed by increments of 25 iterations for the remainder of the 

optimization process. 

Table 5.3: Iteration Results for Gradient Projection Algorithm - Experiment 2 

Iteration 

1 

2 

3 

4 

-2.67e5 

-7.02e5 

-7.02e5 

-7.02e5 

1 

3.73e-09 

9.31e-10 

1.16e-10 

ll^Tv/M|2 

3.42e2 

4.21e+l 

4.21e+l 

4.21e+l 

0 

90 

90 

90 
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Table 5.4: Iteration Results for Active Set Newton Algorithm - Experiment 2 

Iteration 

1 

2 

3 

4 

5 

25 

50 

75 

100 

125 

150 

175 

200 

225 

250 

256 

f(Xk) 

-7.022e5 

-7.024e5 

-7.029e5 

-7.029e5 

-7.036e5 

-7.124e5 

-7.174e5 

-7.190e5 

-7.201e5 

-7.205e5 

-7.207e5 

-7.207e5 

-7.208e5 

-7.208e5 

-7.208e5 

-7.208e5 

\\xk+i - xk\\2 

1.14e-l 

3.07e-l 

2.56e-07 

3.27e+0 

2.83e+0 

2.10e-l 

1.48e+0 

1.08e-l 

7.00e-2 

4.70e-2 

0 

2.36e-2 

1.46e-2 

1.32e-2 

8.37e-3 

0 

\\KKT\\2 

4.21e+l 

3.60e+l 

3.52e+l 

3.52e+l 

3.70e+l 

3.39e+l 

2.10e+l 

1.55e+l 

9.34e+0 

5.64e+0 

3.72e+0 

2.44e+0 

1.47e+0 

8.96e-l 

5.41e-l 

4.91e-l 

max{—yu,0} 

0 

0 

7.40e+l 

3.00e+l 

1.20e+l 

0 

3.10e-2 

0 

0 

0 

6.90e+l 

0 

0 

0 

1.90e-3 

0 

max{—a, 0} 

0 

0 

0 

0 

0 

0 

4.20e-l 

0 

0 

0 

0 

0 

0 

0 

0 

0 

\wk\ 

90 

91 

91 

91 

90 

72 

71 

73 

73 

73 

75 

75 

75 

75 

75 

74 
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Following are figures that graph selected iteration information for the active set New

ton algorithm. This time, the algorithm required 25 iterations to sweep off unwanted 

constraints from the working set, before it was able to continuously decrease the KKT 

norm towards the given target. 

KKT Norm 

t * 

150 
Iteration 

300 

Figure 5.8: KKT Norm/Iteration - Experiment 2 
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Step Norms per Iteration 

150 
Iteration 

300 

Figure 5.9: Step Norm/Iteration - Experiment 2 
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The following figure depicts the decrease of the objective function value during the 

iterations taken in the active set Newton method. 

Objective Function Values-103 

150 200 
Iteration 

300 

Figure 5.10: Objective Function Values - Experiment 2 
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The next figure plots the computed optimal well rates. As expected, injector 1 is the 

most active, followed by injector 3 and injector 2. Similar to the first experiment, the 

optimizer opened the injector, which is most likely to cause a water breakthrough, 

towards the end of the simulation to sweep the oil column towards the producer. 

Optimal Well Rates 

Injector 1 
Injector 2 
Injector 3 
Producer 1 
Producer 2 

500 1000 
Simulation Time in Days 

1500 

Figure 5.11: Computed Optimal Well Rates - Experiment 2 
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The last figure is a plot of the final aqueous saturation profile after 1,500 days of 

injection. The profile clearly depicts how the optimizer steered the fluids towards the 

two producers, avoiding water breakthrough. 

Final Aqueous Saturation Profile 

0.55 

0.45 

0.35 

Figure 5.12: Final Aqueous Saturation Profile - Experiment 2 
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5.4.3 Experiment 3 

The third experiment tests the optimization algorithm's ability to handle large prob

lems. The top layer of the SPE10 model consists of 13,200 simulation cells, arranged 

in a 220 x 60 rectangular grid. I place a total of 4 injection and 4 production wells. 

Two of the injectors (12, 13) are intentionally placed in close proximity to production 

wells (P1,P2). The expectation is that the optimizer computes an allocation pattern 

that avoids early water breakthrough by reducing these two injectors. The other two 

injectors (II, 14) are placed as to sweep oil towards all 4 wells. Figure 5.13 depicts the 

well placement for the experiment, and the permeability distribution of the model. 

The forward simulation time period for this experiment is 2,000 days with time steps 

of size At = 100 days. 
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Figure 5.13: Optimization Experiment 3: Setup k, Permeability Distribution 
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Iteration Results 

Following is the iteration information for both optimization algorithms. Due to the 

large number of iterations taken in the active set method, I show individual rows for 

the first 5 iterations, followed by increments of 10 iterations for the remainder of the 

optimization process. 

Table 5.5: Iteration Results for Gradient Projection Algorithm - Experiment 3 

Iteration 

1 

2 

f(Xk) 

-1.1105e6 

-1.7766e6 

\\xk+i -Xk\\2 

1.00e+0 

1.86e-09 

II^V/(xfe)||2 

1.76e2 

3.74e+l 

|/(*fc)l 

0 

38 
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Table 5.6: Iteration Results for Active Set Newton Algorithm - Experiment 3 

Iteration 

1 

2 

3 

4 

5 

10 

20 

30 

40 

50 

60 

70 

80 

85 

f(Xk) 

-1.776e6 

-1.776e6 

-1.792e6 

-1.793e6 

-1.800e6 

-1.822e6 

-1.835e6 

-1.836e6 

-1.837e6 

-1.837e6 

-1.838e6 

-1.838e6 

-1.838e6 

-1.839e6 

2.65e-2 
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Following are figures that graph selected iteration information for the active set New

ton algorithm. 

KKT Norm 
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Iteration 

Figure 5.14: KKT Norm/Iteration - Experiment 3 
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Step Norms per Iteration 
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Figure 5.15: Step Norm/Iteration - Experiment 3 
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The following figure depicts the decrease of the objective function value during the 

iterations taken in the active set Newton method. 
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Figure 5.16: Objective Function Values - Experiment 3 



The next figure plots the computed optimal well rates. 
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Figure 5.17: Computed Optimal Well Rates - Experiment 3 
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The last figure is a plot of the final aqueous saturation profile after 2000 days of 

injection. 

10 20 30 40 50 60 

Figure 5.18: Final Aqueous Saturation Profile - Experiment 3 

5.5 Discussion of Optimization Results 

The optimization results show that the active set Newton method, baed on the ap

proaches from Forsgren and Murray, is a robust and stable algorithm. With its ability 

to handle directions of negative curvature, and the approach to sweep off unwanted 
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active constraints, one can expect the algorithm to solve problems that are considered 

'hard' for other nonlinear optimization codes. However, the fact that the algorithm 

adds new constraints at a very low rate (due to the linesearch strategy) is a poten

tial drawback in situations with a large number of active constraints at the solution. 

For this reason, I combined the method with the gradient projection algorithm, to 

compute an initial guess with as many active constraints as possible. In case, that 

no degenerate constraints exist for the optimization problem, the algorithm is able 

to sweep of a multiple of unwanted active constraints at the same time. Hence, when 

coupled with the projected gradient method, both the problem of adding multiple 

constraints and deleting multiple constraints are addressed. 



Chapter 6 

Conclusions and Further Work 

An adjoint based method for numerical reservoir optimization has been developed and 

successfully tested using three case studies. The components of the method (numerical 

reservoir simulator, adjoint computations, gradient computation, and Hessian-times-

vector products) have been validated, and adjoints and gradients have been tested 

and compared against each other for two different time integration schemes, using 

varying time step sizes. The method is applicable to reservoir optimization problems 

with large state and control spaces. 

In my future research, I need to address the extension of the method to numerical 

reservoir models with more complex physics, e.g. compressible fluid and rock models 

and mass transfer between miscible phases. An extension of the numerical simulator 

to support the compositional volume balance formulation needs to be considered. 

The known drawback of the second order active set Newton method is the slow 
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rate of adding new constraints to the working set. The implementation and test 

of alternative second order methods need to be considered. Furthermore, the use 

of piecewise constant well rates should be reconsidered and replaced with piecewise 

linear or piecewise quadratic controls. Last but not least, the handling of nonlinear 

constraints for both state and control variables needs to be researched in the context 

of more complex physics models for the numerical reservoir simulator. 
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