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Phenotypic plasticity, the ability of cells to reversibly alter their phenotypes

in response to signals, presents a significant clinical challenge to treating

solid tumors. Tumor cells utilize phenotypic plasticity to evade therapies,

metastasize, and colonize distant organs. As a result, phenotypic plasticity

can accelerate tumor progression. A well-studied example of phenotypic

plasticity is the bidirectional conversions among epithelial, mesenchymal,

and hybrid epithelial/mesenchymal (E/M) phenotype(s). These conversions

can alter a repertoire of cellular traits associated with multiple hallmarks

of cancer, such as metabolism, immune evasion, invasion, and metastasis.

To tackle the complexity and heterogeneity of these transitions, mathemati-

cal models have been developed that seek to capture the experimentally

verified molecular mechanisms and act as ‘hypothesis-generating machines’.

Here, we discuss how these quantitative mathematical models have helped

us explain existing experimental data, guided further experiments, and pro-

vided an improved conceptual framework for understanding how multiple

intracellular and extracellular signals can drive E/M plasticity at both the

single-cell and population levels. We also discuss the implications of this

plasticity in driving multiple aggressive facets of tumor progression.

1. Introduction

A remarkable feature that cancer cells use to evade

therapy, metastasize, and drive tumor progression is

phenotypic plasticity, that is, the ability of cells to

switch back and forth among multiple phenotypes in

response to varied internal or external signals (H€olzel

et al., 2012). Phenotypic plasticity is usually tightly

controlled during adult homeostasis. It comes into

play only when needed, such as during tissue repair,

when resident stem cells give rise to cells that need to

be replenished. However, during tumor progression,

many of the molecular brakes against phenotypic plas-

ticity are deregulated, enabling cancer cells to behave

as ‘moving targets’ that can play ‘hide-and-seek’ with

multiple therapeutic regimes (Roesch, 2015; Varga

et al., 2014). In addition, these phenotypic conversions

can facilitate adaptation by enabling genetically identi-

cal cells to exhibit a diverse set of phenotypes and may

also help fuel genetic evolution of cancer cells (Brooks

et al., 2015; Mooney et al., 2016; Yadav et al., 2016).

A canonical example of such phenotypic plasticity

that contributes significantly to both metastasis and

drug resistance is epithelial/mesenchymal (E/M)
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plasticity, that is, the ability of cells to undergo a par-

tial or full epithelial-mesenchymal transition (EMT)

and its reverse mesenchymal-epithelial transition

(MET) (Diepenbruck and Christofori, 2016). Interest-

ingly, emerging evidence strongly suggests that these

transitions are rarely ‘all-or-none’. Rather, cancer cells

can often display a hybrid E/M phenotype by combin-

ing various epithelial and mesenchymal morphological

and/or molecular features (Jolly et al., 2015; Nieto,

2013; Nieto et al., 2016). Cells in this (these) hybrid

state(s) can be much more tumorigenic and drug resis-

tant as compared to those that are more fixed in a

strongly epithelial or mesenchymal state (Biddle et al.,

2016; Grosse-Wilde et al., 2015; Jolly et al., 2015).

Thus, elucidating the underlying principles of these

dynamic transitions is of foundational importance for

countering the yet insuperable clinical aspects of can-

cer – metastasis and drug resistance.

Recent progress in dissecting the molecular mecha-

nisms underlying these phenotypic transitions has

enabled the development of quantitative mathematical

models that can be used as hypothesis-generating tools

to guide further experiments. In this review, we high-

light how an integrative theoretical-experimental

approach has helped us better characterize E/M plas-

ticity. For instance, mathematical models capturing

the dynamics of core EMT signaling network have

predicted that cells can maintain a hybrid E/M pheno-

type stably and that cells with same genetic back-

ground (cell lines) can contain admixtures of epithelial,

hybrid E/M, and mesenchymal subpopulations. These

predictions have been validated by experimental obser-

vations showing different cell lines can contain sub-

populations of different phenotypes in varying ratios.

2. Why develop quantitative
mathematical models?

Quantitative mathematical models offer us a powerful

conceptual framework to elucidate underlying biological

mechanisms and to propose new sets of experiments by

generating falsifiable hypotheses. They can help inter-

pret or explain the existing experimental data, confirm

or reject alternate hypotheses, predict cellular behavior,

and eventually guide further experiments (Mobius and

Laan, 2015). They can decode the emergent dynamics of

various regulatory networks and biological phenomena,

and enable the experimental biologists to think more

quantitatively in terms of regulatory dynamics. Mathe-

matical models can also help unravel the principles that

govern cancer progression, from the molecular scale all

the way to the population level (Anderson and Quar-

anta, 2008). Thus, these models can aid in guiding

optimal treatment modalities and can contribute to

improved risk prognoses (Altrock et al., 2015).

3. What is a quantitative mathematical
model?

A model of any system is a replica that captures the

system’s essential features and can thus be used to pre-

dict how the ‘original’ system would behave in a vari-

ety of conditions. Each model has its own

assumptions, strengths, and limitations and is therefore

suitable to answer a specific set of questions. In biol-

ogy, we often use various preclinical models (e.g., cell

lines, mouse models, patient-derived xenografts) to

investigate different phenomenon relevant to human

biology, with an implicit expectation that lessons

learned in these preclinical models can provide useful

insights into the functioning of the human system.

Broadly speaking, these biological models can be

in vitro or in vivo. Similar to these model systems, a

quantitative mathematical model is an in silico repre-

sentation of the ‘original’ system, where a set of equa-

tions captures the essence of biological phenomenon

through terms representing different objects involved

in a phenomenon and interactions among them that

govern that phenomenon (Fig. 1A). A bidirectional

communication among mathematical and experimental

biologists has been fruitful in teasing out the mecha-

nistic aspects of many biological processes such as tim-

ing and patterning of developmental events (Lewis,

2008; Oates et al., 2009; Shaya and Sprinzak, 2011).

Just like biological models, mathematical models dif-

fer in scope and purpose (Mobius and Laan, 2015).

For instance, different mathematical models developed

to understand E/M plasticity have focused on different

questions: (a) ‘How do a set of transcription factors

and microRNAs (miR) regulate the intracellular

dynamics of a partial or full EMT/MET and modulate

phenotypic heterogeneity in an isogenic population

(Lu et al., 2013; Steinway et al., 2014; Tian et al.,

2013)?’; (b) ‘How does cell–cell communication affect

the spatial arrangement of epithelial, mesenchymal and

hybrid E/M cells (Boareto et al., 2016)?’; and (c) ‘How

do cells alter their morphological and motility traits

during EMT?’ As one may suspect, developing mathe-

matical models to answer each of these questions

requires quite different experimental data. Therefore,

often times the scope of the model is decided by the

data that are available; for example, whether longitudi-

nal data are available either in discrete time points or

in a more continuous fashion, whether data are avail-

able at a population vs. single-cell level, or whether

the available data are merely for altered protein and
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transcript levels vs. the data also includes morphology

and motility aspects too. In this review, we will focus

on a set of mathematical models that can be compared

extensively against the existing experimental data.

4. How does one develop a
quantitative mathematical model?

As discussed earlier, the first step in developing a

mathematical model entails being clear both about the

biological question that the model should be able to

answer, and the experimental data available with

which to construct, calibrate, and compare the model.

Second, one must realize the implicit assumptions of

different modeling frameworks and decide whether

operating under those assumptions enables a reason-

able replica of the ‘original’ biological system. These

assumptions should always be judged in light of the

question/phenomenon of interest. Third, one should

strive to accurately incorporate multiple key features

of a phenomenon in one’s model. Finally, the model

should be validated by comparing the predictions of

the model in cases where robust experimental data are

available a priori. Subsequent to model validation, one

can generate predictions that can be tested experimen-

tally and confirmed or falsified (Fig. 1B).

Generating falsifiable predictions is the most useful

application of developing mathematical models.

Therefore, simply fitting experimental data to a

model does little to contribute to new knowledge.

Rather, one should seek to ‘stick the model’s neck out

after it is fitted and try to falsify it’ (Gunawardena,

2014) by predicting how the ‘original’ system (often, the

biological model system being studied) would behave

under altered conditions, such as by introducing genetic

mutations or overexpressing a specific gene.

What happens if there is a mismatch between the

prediction of the mathematical model and the experi-

mental results generated? This mismatch can occur

due to multiple reasons, such as (a) underlying

assumptions of the model are not entirely valid; (b)

the model is not robust, that is, relatively small

changes to the model or its parameters dramatically

change the behavior of the model; and/or (c) techni-

cal inaccuracies in running experiments and/or model

simulations. Once the underlying reason(s) is (are)

identified, and predictions of the mathematical model

score well with experimental results, this iterative

cycle can continue to identify the next set of exciting

research directions to be answered using the same or

a different mathematical and/or biological model(s),

as applicable.

A

B

Fig. 1. Introduction to quantitative mathematical models. (A) Similar to biological models (e.g., cell lines, mouse models, and PDXs),

mathematical models can capture certain aspects of tumor progression. Insights gained using both classes of models can be more than

useful than through any one class alone. (B) The process of developing, calibrating, and validating a mathematical model for a specific

biological question. Generating predictions that can guide further experiments is the keystone of this integrative theoretical-experimental

approach. (All images have been taken from Wikimedia commons).
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5. How can epithelial/mesenchymal
plasticity be represented by a set of
mathematical equations?

An exemplary biological phenomenon in which mathe-

matical modeling has helped provide useful biological

insights is that of E/M plasticity. This plasticity arises via

a gene regulatory network that controls reversible

switches between phenotypes, and has implications for

numerous key biological processes in normal and disease

states. For example, in the context of cancer, phenotypic

switching between epithelial and mesenchymal states via

EMT and MET drives cancer progression, metastasis,

and therapy resistance. These epithelial and mesenchy-

mal cells have distinct morphological and molecular fea-

tures. For instance, epithelial cells have E-cadherin

(CDH1) localized at the cell membrane, which con-

tributes to adherens junctions. Conversely, mesenchymal

cells lack E-cadherin and typically have higher levels of

vimentin (VIM), N-cadherin (CDH2), and aSMA

(smooth muscle actin). Thus, EMT and MET typically

involve widespread changes in gene expression, micro-

RNAs, and epigenetic profiles, as well as cytoskeletal

reprogramming (De Craene and Berx, 2013). An under-

standing of the set of molecular players of interest and

the interactions among them can facilitate development

of a mathematical model that can trace these changes

during EMT and MET, and potentially highlight novel

areas of susceptibility to therapeutic targeting.

The first set of mathematical models developed for

EMT/MET focused on a specific question: Can the

underlying EMT/MET regulatory network enable the

existence of a stable hybrid E/M phenotype, and if so,

what is the molecular signature of this hybrid E/M

phenotype (Lu et al., 2013; Tian et al., 2013)? These

efforts at addressing this question modeled the interac-

tions among two sets of microRNAs and two sets of

transcription factors that were reported to govern

EMT/MET in multiple cell lines – miR-34, miR-200,

ZEB, and SNAIL (Bracken et al., 2008; Gregory

et al., 2008; Kim et al., 2011; Park et al., 2008;

Siemens et al., 2011) (Fig. 2A). The models predicted

Fig. 2. Integrated theoretical-experimental framework to understand E/M plasticity. (A) (Top) An EMT regulatory circuit denoting two

transcription factor families –SNAIL and ZEB, and two miR families – miR-34 and miR-200. Transcriptional (denoted by solid lines) and miR-

mediated (denoted by dotted lines) regulations in this circuit can be represented as a set of mathematical equations (middle) that can then

be solved to attain the steady states or phenotypes (shown by red solid dots) and dynamics of this circuit. (B) (middle) Bifurcation diagram

depicting the change in ZEB mRNA levels, and consequently phenotypic switching (shown by black arrows), for varying values of SNAIL.

Solid blue lines depict stable states (phenotypes), and dotted red lines illustrate unstable states. Mesenchymal cells have highest levels of

ZEB mRNA (topmost blue line), followed by hybrid E/M cells (middle blue line) and then epithelial cells (blue line at the bottom). (Top and

bottom) Immunofluorescence staining for CDH1 (red) and VIM (green) in different cancer cell lines reveals the existence of individual

phenotypes or co-existence of more than one phenotypes, as predicted by the mathematical model. Cell lines corresponding to each region

are marked; for instance, H2291 cell populations contain cells staining for either CDH1 or VIM, but not individual cells costaining for CDH1

or VIM; thus, H2291 maps on to the region where cells can adopt either an E or a M state – {E, M}.
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that under certain conditions, a hybrid E/M phenotype

can be stable and that in isogenic populations, multi-

ple phenotypes can co-exist. In other words, a clonal

population may harbor more than one phenotypic

subpopulations, owing to the nonlinear and highly

interconnected feedback loops among a set of core

EMT players (see three solid blue lines in Fig. 2B,

each of which represents a distinct phenotype – E (low

ZEB1), hybrid E/M (medium ZEB1), and M (high

ZEB1) – as illustrated by cartoons drawn alongside).

These predictions were later validated by experiments

demonstrating subpopulations of E, hybrid E/M, and

M phenotypes in varying ratios in cell lines across

multiple cancer types, as assessed by flow cytometry

and immunofluorescence (Andriani et al., 2016;

Grosse-Wilde et al., 2015; Jolly et al., 2016b; Ruscetti

et al., 2016).

Such co-existing phenotypes, as also observed exper-

imentally in H2291 and DU145 cells (Fig. 2B), may

enable dynamic switching among cells in different phe-

notypes (Ruscetti et al., 2016). This heterogeneity does

not eliminate the possibility that under certain scenar-

ios (i.e., in some cell lines), most, if not all, isogenic

cells display the same phenotype. For instance, the

model predicted regions corresponding to solely

epithelial (SNAIL < 180K molecules in Fig. 2B) and

solely mesenchymal (SNAIL > 230K molecules in

Fig. 2B) states, as validated experimentally by H820

and H1792 cells, respectively (Fig. 2B). It should be

noted that the baseline models predicted such homoge-

neous regions only for epithelial and mesenchymal

phenotypes, but not for a hybrid E/M phenotype.

More importantly, these models motivated the inves-

tigation of behavior of a set of non-small-cell lung

cancer (NSCLC) cell lines that were categorized as

‘hybrid’ based on population-based measurements

(Schliekelman et al., 2015). At a single-cell level, these

‘hybrid’ cell lines contained subpopulations of epithe-

lial and mesenchymal cells (H2291; Fig. 2B) and/or

individual cells co-expressing epithelial and mesenchy-

mal markers, such as CDH1 and VIM (H1975).

H1975 cells exhibited a hybrid E/M phenotype at the

single-cell level over multiple passages (Fig. 3A),

strongly suggesting that a hybrid E/M state can be a

stable phenotype (Jolly et al., 2016b). As compared to

epithelial cells (H820) and mesenchymal cells (H1299)

(Schliekelman et al., 2015), H1975 cells also stained

for nuclear ZEB1 (Jia et al., 2017), thus confirming the

prediction made by the mathematical model developed

by Lu et al. (2013) (Fig. 3B).

Observations in H1975 cells serve as a remarkable

example of the power of leveraging an integrated

theoretical-experimental framework. Although the

mathematical models predicted regions where a hybrid

E/M state may exist as a stable phenotype (see solid blue

line corresponding to 200 < ZEB1 mRNA levels < 600

molecules in Fig. 2B), as already noted, a parameter

region enabling a hybrid E/M state alone was not

observed. Consequently, that led to a search for poten-

tial ‘phenotypic stability factors’ (PSFs) – molecular

players that can enable a monostable {E/M} region.

Incorporating two proteins OVOL2 and GRHL2 that

were reported to form mutually inhibitory loops with

ZEB (Cieply et al., 2012, 2013; Roca et al., 2013) – in

the mathematical model – predicted the existence of a

desired {E/M} region (Hong et al., 2015; Jia et al.,

2015; Jolly et al., 2016b) (Fig. 3A). The role of OVOL2

and GRHL2 as PSFs was validated by experiments

showing that knockdown of either of these proteins in

H1975 drove the cells toward a stable hybrid E/M state

to a fully mesenchymal phenotype (Jolly et al., 2016b).

Similar results in developmental EMT contexts

strengthened the notion that these PSFs can act as

‘molecular brakes’ on EMT that can prevent cells ‘that

have gained partial plasticity’ from undergoing a com-

plete EMT (Watanabe et al., 2014; Werner et al., 2013).

Furthermore, the mathematical model suggested that

overexpression of PSFs can drive an MET, a prediction

already verified in breast and prostate cancer cell lines

(Roca et al., 2013; Werner et al., 2013), and kidney cells

(Aue et al., 2015), thereby indicating that such models

can behave as ‘semiquantitative predictive paradigms’

to predict the cellular behavior pertinent to EMT regu-

lation in multiple cell lines.

These mathematical models also proposed certain

network motifs that can be used to identify further

PSFs, one of which is that a potential PSF typically

forms a double negative feedback loop with ZEB

(Jolly et al., 2016b). Given that E-cadherin is a tran-

scriptional target of ZEB, and E-cadherin can seques-

ter b-catenin on the cell membrane, thus inhibiting

transcriptional activation of ZEB via Wnt/b-catenin
pathway (Mooney et al., 2016), E-cadherin and ZEB

seem to repress one another. Thus, E-cadherin can be

thought of as a potential PSF. However, detailed

mechanism-based models need to be constructed to

investigate that possibility comprehensively.

Despite the utility of these models, it is important to

note that we neither claim that these particular models

can accurately predict EMT regulation for all cell lines

nor that they can necessarily predict responses to all

perturbations that can alter EMT status in a given cell

line. For instance, overexpression of GRHL2 did not

drive MET in the RD and 143B human sarcoma cell

lines (Somarelli et al., 2016). Further experiments

indicated that in RD and 143B, GRHL2 coupled to
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miR-200 and ZEB1 in a different topology as com-

pared to that in multiple (adeno)carcinoma cell lines.

Therefore, GRHL2 did not seem to couple with miR-

200/ZEB feedback loop in one of the topologies pro-

posed to identify potential PSFs (Jolly et al., 2016b).

Consistently, in sarcoma cells, GRHL2 had no effect

on ZEB1 levels. Instead, GRHL2-induced changes

were only observed when ZEB1 was knocked down.

These findings led to the development of a revised

mathematical model that captured these newly

revealed interactions. The revised model was able to

reproduce robustly the key features of experiments in

sarcoma cells, such as the synergistic induction of E-

cadherin levels upon overexpression of both GRHL2

and miR-200 (Somarelli et al., 2016), and predicted

how epigenetic regulation of GRHL2 can modulate

MET. Therefore, ‘no one size fits all’; no model –
either biological or mathematical – fits all different

biological contexts; carcinoma cell lines may not be

reliable biological models to understand sarcoma

biology, and similarly, networks that work well for

predicting carcinoma cell line behavior need not be the

same for sarcoma.

Notwithstanding the complexity and heterogeneity

in the gene regulatory networks that drive EMT and

MET in different contexts, mathematical models can

be constructed to help rationalize existing experimental

results and to guide further experiments, by making

certain approximations or estimations about the model

parameters. Each of the mathematical models devel-

oped above has multiple variables – ZEB, miR-200,

GRHL2, etc. – and each variable is represented by an

equation tracing their levels over time. Each equa-

tion has terms representing the innate production and

degradation rates for those species that can be esti-

mated from their half-lives and/or typical number of

molecules in a cell (Milo et al., 2010). Similarly, each

equation contains terms pertaining to regulation of the

respective species by one another, for instance, inhibi-

tion of ZEB by miR-200. The quantitative parameters

Fig. 3. Characterizing a hybrid E/M phenotype. (A) (left) EMT circuit as shown earlier, with GRHL2 being incorporated based on literature

about its interactions with ZEB. (middle) Bifurcation diagram depicting change in the levels of ZEB mRNA as a function of varying SNAIL

levels, corresponding to the circuit diagram shown in left. It illustrates a monostable {E/M} region highlighted by dotted rectangle. (right)

Immunofluorescence images for E-cadherin (red) and VIM (green) in H1975 cells over multiple passages consistently show single-cell co-

expression for both markers. (B) Immunofluorescence images for E-cadherin, ZEB1, and VIM in H820, H1299, and H1975 cells.
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describing these interactions, such as the number of

binding sites and the fold change in levels upon over-

expression or inhibition, can also be gained from

relevant experimental data. For example, whereas

miR-200s can bind up to eight to nine binding sites on

Zeb mRNA and reduces the protein levels by 90%

(Gregory et al., 2011), miR-34 binds to two binding

sites on Snail mRNA and reduces the protein levels

only by 50% (Kim et al., 2011). Upon estimating a

relevant range of parameter variation, the sensitivity

of these mathematical models to different parameters

can be tested. For instance, the range of levels of

SNAIL for which a hybrid E/M phenotype is observed

is largely robust to �20% variation in parameters (Jia

et al., 2015). Thus, one need not know the exact value

of each parameter in the mathematical model for every

cell line. Instead, estimating their typical range from

the experimental data can be a good first approxima-

tion. This approximation is good because it can be

often impossible to perform all experiments to measure

every single parameter for every single-cell line, and

these measurements can themselves be subject to

uncertainty (Azeloglu and Iyengar, 2015; Kirk et al.,

2015).

Deriving mathematical models to represent biologi-

cal systems is rarely straightforward (Kirk et al.,

2015). Thus, a key to justifiably use mathematical

models is to state the assumptions and uncertainty in

the model structure and/or parameters clearly. If one

believes the assumptions of the model, one must also

believe its conclusions (Gunawardena, 2014) – and this

applies to both mathematical and biological models.

For instance, in models of the EMT/MET regulatory

network described above (Lu et al., 2013; Tian et al.,

2013), more than one family member of a protein or

microRNA are lumped into one variable, for the sake

of simplicity. So, an implicit assumption of these

mathematical models is that, for instance, both ZEB1

and ZEB2 – two members of the ZEB family – behave

identically, which need not be true in all contexts. Sim-

ilarly, in the context of biological models, an underly-

ing assumption in in vitro cell culture is that the

observed behavior of cells in a two-dimensional setup

plated on plastic recapitulates the ‘true’ behavior of

cells in vivo.

6. How can mathematical models be
used to study changes in other
cellular traits connected with EMT/
MET?

EMT and MET are considered as the motors of cellu-

lar plasticity due to their coupling with other cellular

traits such as metabolism, tumor-initiating potential,

genome plasticity, drug resistance, immunosuppres-

sion, and cell–cell communication (Brabletz et al.,

2011; Chen et al., 2014; Fischer et al., 2015; Lu et al.,

2014; Mani et al., 2008; Morel et al., 2008; Tripathi

et al., 2016; Wellner et al., 2010; Zheng et al., 2015).

By using mathematical models similar to those

described above, one can investigate the interplay of

EMT/MET with any one or more of these traits.

For instance, mathematical models have helped rec-

oncile apparently contradictory results with regard to

the interplay between EMT/MET and ‘stemness’ or

tumor-initiating potential. Initially, EMT was proposed

to promote a gain of stem-like properties (Mani et al.,

2008; Morel et al., 2008). However, later studies sug-

gested that cells locked in a mesenchymal phenotype

often lose their stem-like traits (Celi�a-Terrassa et al.,

2012; Tran et al., 2014) and that both epithelial-like and

mesenchymal-like stem-like subpopulations may exist

(Liu et al., 2014) (Fig. 4A, i–iii). To provide a unifying

schema to explain these apparently conflicting results, a

mathematical model was developed to connect core

EMT players, miR-200 and ZEB, with the master regu-

lators of stemness, LIN28 and let-7 (Yang et al., 2010).

This model proposed that cells in a hybrid E/M pheno-

type can be more likely to gain stemness as compared to

those in either a fully epithelial or mesenchymal state

(Jolly et al., 2014) (Fig. 4B, i-ii). Follow-up experiments

in breast cancer cells demonstrated that hybrid E/M

cells – cells co-expressing canonical epithelial and mes-

enchymal genes to a similar level – can form up to 10

times more mammospheres as compared to strongly

epithelial or mesenchymal cells, thus validating the pre-

diction of the model (Grosse-Wilde et al., 2015)

(Fig. 4B, iii). Hybrid E/M cells also drove aggressive

tumor growth in vivo (Goldman et al., 2015). More-

over, enhanced or acquired drug resistance of breast

cancer and oral squamous carcinoma cells in a hybrid

E/M phenotype further substantiate the proposed corre-

lation between a hybrid E/M phenotype and ‘stemness’

(Biddle et al., 2016; Brown et al., 2016; Goldman et al.,

2015). Despite initial promising validations, further

research is needed to evaluate how well the hypothesis

holds that the hybrid E/M state is more stem-like

(Celi�a-Terrassa and Kang, 2016). Moreover, the posi-

tioning of a ‘stemness window’ need not be fixed mid-

way on the EMT axis, but could instead be much more

dynamic and subtype- and/or patient-specific (Jolly et

al., 2016a).

Similarly, in a study demonstrating that a mesenchy-

mal phenotype correlates with immune evasion via

reduced expression of the immunoproteasome (a prote-

olytic machinery that plays a key role in immunity and
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homeostasis), a mathematical model was developed to

capture an underlying mechanism of immunoprotea-

some regulation that involved STAT3, STAT1, and

miR-200s (Tripathi et al., 2016). The model predicted

that inhibiting the activation of STAT3 can increase

the levels of immunoproteasome subunits PSMB8 and

PSMB9 in mesenchymal NSCLC cell lines. Indeed,

inhibition of STAT3 using rapamycin led to enhanced

levels of PSMB8 and PSMB9 via an activated STAT1

pathway.

Another specific question where mathematical mod-

els may prove to be crucial to decode the underlying

dynamics is the epigenetic reprogramming accompany-

ing EMT/MET (Tam and Weinberg, 2013). The

‘poised’ chromatin state of ZEB1 in which the ZEB1

promoter simultaneously displays epigenetic marks of

both active and repressed chromatin may enhance

cellular plasticity among cancer stem cells (CSCs)

and non-CSCs and consequently spike tumorigenic

potential (Chaffer et al., 2013). Similarly, epigenetic

A i

ii

iii

i

ii

iii

Fig. 4. EMT–stemness interplay. (A) Schematics representing apparently contradictory results on the EMT status of CSCs (left), as shown

by the position of ‘stemness window’ on the ‘EMT axis’ with epithelial (E) and mesenchymal (M) as two ends. (B) (top) A circuit simulated

via mathematical model by Jolly et al. (2014) for decoding EMT–stemness interplay. (middle) Prediction of the mathematical model about

the location of a ‘stemness window’. (bottom) Experiments showing the relative tumor-initiating potential of E, hybrid E/M, and M

subpopulations (modified from Grosse-Wilde et al., 2015). Figure reproduced from Refs. Jolly et al. (2014), Grosse-Wilde et al. (2015).
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differences can modulate MET induction in sarcomas

(Somarelli et al., 2016). Finally, these epigenetic inter-

actions could possibly modulate the transition rates

among epithelial, mesenchymal, and hybrid E/M

phenotypes in specific cell lines by controlling

genome-wide chromatin marks. A quantitative com-

parison of transition rates as measured using various

reporter systems (Somarelli et al., 2013; Toneff et al.,

2016) and those predicted by modeling of the underly-

ing regulatory networks (Li et al., 2016) can bridge

the gaps in our understanding of E/M plasticity. Simi-

larly, existing theoretical frameworks to investigate

epigenetic regulation (Steffen et al., 2012) can be

integrated with mathematical models incorporating

interconversion among CSCs and non-CSCs (Li and

Wang, 2015; Yang et al., 2012; Zhou et al., 2013) and

temporal mapping of epigenetic changes during EMT/

MET (Kao et al., 2016) to identify the epigenetic

marks that can be targeted to constrain cellular plas-

ticity and thus abate metastatic and therapy-resistant

progression.

7. How can mathematical models
connect signaling aspects to cellular
motility associated with EMT/MET?

Altered cellular motility and cellular morphology traits

are considered to be the primary consequence of

EMT/MET. During EMT, cells typically have reduced

adhesion with their neighbors, and migrate collectively

or individually depending on their intercellular adhe-

sion and spatial confinement (Boekhorst et al., 2016).

For instance, during embryonic development, neural

crest cells undergoing a partial or complete EMT can

migrate as either a multicellular stream or individually,

in order to reach distant tissues. Similarly, during gas-

trulation, both these modes of migration are observed

at different spatiotemporal coordinates (Scarpa and

Mayor, 2016). Typically, collective migration is associ-

ated with a partial EMT or hybrid E/M phenotype

(Kuriyama et al., 2014; Sarioglu et al., 2015), whereas

fully mesenchymal cells tend to migrate alone.

Depending on cell–matrix adhesion, the migrating cells

can also reversibly switch to an amoeboid migration

mode, where cells migrate individually and predomi-

nantly via squeezing through the gaps in extracellular

matrix (ECM) (Pankova et al., 2010; Wolf et al.,

2007). Similar to EMT/MET, the choice between mes-

enchymal and amoeboid modalities need not be a bin-

ary process and cells can exhibit signatures of both

mesenchymal and amoeboid motility – lamellipodia

and bleb-like protrusions, respectively (Bergert et al.,

2012; Yoshida and Soldati, 2006). Preliminary

mathematical models of some of the underlying signal-

ing mechanisms governing these transitions have been

developed (Huang et al., 2014, 2015), but a detailed

analysis of how these molecules impinge upon changes

in cytoskeletal reorganization, cell shape, cell–cell
adhesion, cellular contractility, and cell–ECM mechan-

ics and consequently drive different migration modes

remains to be accomplished.

Multiple existing theoretical approaches for cell

motility models focus on these key mechanical aspects.

Most frameworks for single-cell migration have focused

on fish keratocytes (Holmes and Edelstein-Keshet,

2012; Ziebert et al., 2012). For instance, Shao et al.

(2012) illustrate how cell morphology is determined by

collective effects of myosin contraction, actin polymer-

ization, and adhesion site dynamics. This type of

approach could actually make contact with the time-

course data correlating cell shape with EMT states

(Mandal et al., 2016; Sarkar et al., 2016). In contrast

to these single-cell models, other frameworks have con-

centrated on tissue-level dynamics by constructing

models for adhesive cell clusters and monolayers

(Basan et al., 2013; Bi et al., 2016; Harris et al., 2012;

Kabla, 2012; Zimmermann et al., 2016) (Fig. 5A,B). In

addition to actomyosin dynamics, these models can

incorporate intercellular forces, cell density, substrate

properties, and contact inhibition of locomotion (CIL)

– a fundamental feature of collective cell migration that

promotes the formation of protrusions in a direction

away from their contacts with the follower cells,

thereby propelling the migration by leader cells

(Fig. 5C) (Mayor and Etienne-Manneville, 2016). With

an emerging understanding of mechanochemical

coupling regulating the determination of leader and fol-

lower cells (Riahi et al., 2015), the models described

above focusing on tissue dynamics can elucidate how

different signaling aspects crosstalk with cell and tissue

mechanics during collective cell migration.

In terms of its application to cancer, a form of collec-

tive cell migration where multicellular clusters of tumor

cells can bud off the primary lesions and enter circula-

tion, has been observed to be the predominant way of

successful colonization (Aceto et al., 2014; Cheung

et al., 2016). These clusters of circulating tumor cells

(CTCs) retain their epithelial traits, at least partially,

and act as primary harbingers of metastasis (Cheung

and Ewald, 2016; Grigore et al., 2016; Jolly et al.,

2015). Differential gene expression signatures of leader

vs. follower cells in collective migration and invasion

during metastasis has highlighted JAG1 as a key player

(Cheung et al., 2016; Jolly et al., 2017), thereby reminis-

cent of the involvement of Notch signaling in regulating

leader vs. follower phenotypes in multiple contexts of
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collective cell migration (Blanco and Gerhardt, 2013;

Boareto et al., 2015; Riahi et al., 2015).

This connection between Notch signaling and collec-

tive migration motivated a recently developed mathe-

matical model that incorporated the coupling between

the EMT circuit and the Notch signaling pathway based

on existing experimental data (de Antonellis et al., 2011;

Brabletz et al., 2011; Bu et al., 2013; Niessen et al., 2008;

Sahlgren et al., 2008). This model predicted that Notch-

Jagged signaling, but not Notch-Delta signaling, can

enable both increased numbers and spatial proximity of

hybrid E/M cells that, owing to their ability to both

adhere andmigrate, may lead to the formation of clusters

of CTCs (Boareto et al., 2016). This prediction provides

mechanistic insights into why JAG1 may be crucial for

mediating clustered migration (Cheung et al., 2016), and

is consistent with the evidence that JAG1 is related to

drug resistance (Boareto et al., 2016; Guo et al., 2010), if

we refer to the earlier claim that hybrid E/M cells are

more likely to exhibit stemness. Yet, it remains to be rig-

orously and extensively tested experimentally whether

knockdown of JAG1 can reduce the frequency of clus-

tered migration and thereby curtail metastasis.

For a comprehensive characterization of collective

cell migration in cancer, such signaling mechanism-

based models need to be tied to previously described

models of cell motility in multiple ways, for instance,

by incorporating the effect of cellular stress on the

activation of Notch signaling (Riahi et al., 2015); inte-

grating how matrix stiffness can drive EMT through

TWIST1-GP3B2 pathway (Wei et al., 2015); including

how matrix density can alter the levels of membranous

E-cadherin and affect the EMT status of cells (Kumar

et al., 2014); and considering that ZEB1-mediated col-

lagen deposition and stabilization (Peng et al., 2016)

can increase matrix density. Developing such

mechanochemical models can reveal how phenotypic

transitions are coupled to the repertoire of mechanical

signals that cancer cells experience and generate

(Przybyla et al., 2016).

8. What other open questions in the
regulation of EMT/MET can benefit
from mathematical models?

Multiple open questions related to EMT/MET furnish

exciting opportunities for cross-pollination of ideas

among experimental and computational biologists,

including (a) ‘How many intermediate states can cells

attain en route to EMT and MET?’; (b) ‘What is the

A

B

C

Fig. 5. Mathematical models for cell motility. (A) Each cell is represented by two particles, both of which exert forces on the substrate.

Upon cell–cell contact, due to contact inhibition of locomotion, these forces change in magnitude and direction. (reprinted from

Zimmermann et al., 2016) (B) Simulations for individual cell migration (left) and collective cell migration (right); shown is one snapshot

emerging from this model of cell motility. (C) Individual migration observed for mesenchymal cell line H1299 and collective migration with

the emergence of leader cells (highlighted by arrow) forming finger-like projections observed for H1975 (hybrid E/M cell line) – reproduced

from Jolly et al. (2016b). Figure reproduced from Refs. ’Zimmermann et al. (2016), Jolly et al. (2016b)‘.
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genomic, proteomic, and epigenetic signature of these

states?’; (c) ‘How symmetric are the dynamics of EMT

and MET, and do cells display hysteresis (i.e., cellular

memory)?’; and (d) ‘What is the relative stability and

relative ‘stemness’ possessed by each of these states?’

As expected, mathematical models encompassing a lar-

ger number of EMT/MET regulatory players than

considered in the initial models (Lu et al., 2013; Tian

et al., 2013) have suggested multiple intermediate

states (Hong et al., 2015; Huang et al., 2017; Steinway

et al., 2015), but these predictions remain to be experi-

mentally verified, thus providing impetus for many col-

laborative efforts.

Furthermore, E/M plasticity of cancer cells has also

been linked to metabolic shifts (Dong et al., 2013;

Kondaveeti et al., 2015; LeBleu et al., 2014) – another

hallmark of cancer (Hanahan and Weinberg, 2011).

Mathematical models that calculate metabolic fluxes

by considering mass balance of various intracellular

metabolites is a standard technique to analyze meta-

bolic signatures (Markert and Vazquez, 2015). Such

models are being increasingly implemented to quantify

metabolic changes in tumor cells (Achreja et al., 2017).

Constructing mathematical modeling frameworks that

integrate these flux-balance models with models for the

dynamics of signaling networks can help investigate

the coupling of metabolic networks with signaling

pathways that regulate E/M plasticity and stemness

(Menendez and Alarc�on, 2014; Peiris-pag�es et al.,

2016). These new frameworks can offer novel insights

into the emergent consequences of bidirectional cross-

talk among these networks driving these different hall-

marks of cancer.

In addition to discerning this intracellular crosstalk,

mathematical models can infer the dynamics of stro-

mal cells as well as intercellular tumor–stroma signal-

ing and act as in silico coculture systems. For instance,

mechanism-based mathematical models can explain

how macrophages can exhibit an intermediate polar-

ization status between M1 and M2 (Italiani and

Boraschi, 2014). Further, models capturing the cross-

talk between differentially polarized macrophages and

cancer cells (Yang et al., 2016) at an intracellular deci-

sion-making level as well as at a population level (i.e.,

multiscale models) can help visualize how cancer cells

can engineer their microenvironment to their benefit

and drive tumor progression, and hence propose

strategies to restrict it.

9. Conclusion

As discussed above, an integrated theoretical-

experimental approach has been instrumental in

characterizing E/M plasticity and cellular traits associ-

ated with this plasticity. Concomitant with the

renewed understanding that cancer can be viewed as

an ecosystem unto itself (Yang et al., 2014), mathe-

matical models capturing the interplay between tumor

cells and multiple components of the tumor microenvi-

ronment can decode underlying organizing principles

that manifest as myriad phenotypic complexities

(Hanahan and Weinberg, 2011). Therefore, an iterative

crosstalk between theory and experiment can help pro-

pel the hope that cancer biology and treatment ‘will

become a science with a conceptual structure and

logical coherence that rivals that of chemistry or

physics’ (Hanahan and Weinberg, 2000) into reality.
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