
Atlas + X:
Sampling-based Planners on Constraint Manifolds

Caleb Voss, Mark Moll, and Lydia E. Kavraki

Abstract—Sampling-based planners struggle when the valid
configurations are constrained to an implicit manifold. Special
planners have been proposed for this problem recently. Our new
framework is decoupled from any particular planner and aug-
ments existing algorithms not explicitly designed for constraint
planning. We demonstrate the advantages of our generalized
approach.

Index Terms—Motion planning; constraint manifolds;
sampling-based planners; atlas.

I. INTRODUCTION

A robotic system whose motion is subjected to a set of
hard kinematic constraints poses a challenge to traditional
sampling-based planning techniques because the set of feasible
configurations forms a low-dimensional manifold embedded in
a higher dimensional space. Examples where such manifolds
arise include problems in which the robot carries an object in
a fixed orientation, in which the robot maintains contact with
the environment, or in which the robot performs bimanual
manipulation. In all these cases the robot cannot exercise
its full range of motion due to the constraints. The resul-
tant configuration space manifold of lower dimension poses
several challenges for many sampling-based motion planners,
which explore the space by interpolating toward sampled
configurations [1]. The first difficulty is the sampling of valid
configurations. The manifold of constrained configurations
has zero measure with respect to the ambient space metric;
therefore the space is almost everywhere invalid. Direct sam-
pling of a valid configuration is often impossible because the
manifold is defined implicitly by the constraints and lacks an
analytic formula. The second difficulty is interpolation through
the manifold space. Ambient-space interpolation departs the
manifold, and projecting a sequence of such points back onto
the manifold may not give a continuous path. Because of
these difficulties, a standard sampling-based planner cannot
solve such a problem unless it is augmented with a specialized
sampler and interpolator.

One approach is to sample a target uniformly from ambient
space and then repeatedly step towards it and project to the
manifold. This is the approach of the planner CBiRRT2 [2],
which is explicitly designed to operate on constraint manifolds.
However, there is no guarantee that the manifold is covered
uniformly by this process. For example, when samples are
projected onto a torus with a small hole, the area around the

Work on this paper has been supported in part by NSF 1139011, NSF
1317849, and NSF 1514372.

The authors are with the Department of Computer Science at Rice Univer-
sity, Houston, TX 77005, USA. {cav2, mmoll, kavraki}@rice.edu

Fig. 1: Planner graph (orange) and best path (blue) generated
by Atlas + RRT* in 0.5 seconds. RRT* minimizes path length
during the allotted time. The manifold is the surface of a
sphere. Three narrow passages occur at different heights due
to obstacles encircling the sphere.

hole will be sampled much more sparsely than other parts
of the surface since a smaller fraction of the bounding box
projects there. A solution is to use a representation of the
manifold called an atlas. Formally, an atlas is a collection of
charts that cover a manifold, where each chart is a diffeomor-
phism between a subset of the manifold and an open subset
of Euclidean space. In this paper, we approximate an atlas
(with bounded error) using a piecewise linear approximation
[3]. In a slight abuse of terminology, we will refer to this
approximation as the atlas throughout the paper. Projecting
samples from an atlas onto the manifold gives much more
uniform coverage of the manifold, to the benefit of sampling-
based planners. Moreover, the process of constructing the atlas
itself can be guided by a sampling-based planner, giving rise to
the AtlasRRT algorithm [4], which incorporates a bidirectional
variant of RRT [5]. AtlasRRT is successful and has been
demonstrated to outperform CBiRRT2, which does not use
an atlas, on several kinematically constrained problems.

While AtlasRRT ties the use of an atlas to a specific
planning algorithm, we will supply a collection of planner-
independent algorithms for interpolation and for two kinds
of sampling on an atlas-backed configuration space. These
algorithms enable many existing sampling-based planners—
without modifications—to operate on an implicitly defined



constraint manifold with all the atlas details hidden behind our
work. This is possible because many sampling-based planners
interact with the space solely through interpolation and sam-
pling. Within our framework, there is no need to develop a
sampling-based planner with special mechanisms for dealing
with a manifold. As a consequence of our contribution, pre-
existing sampling-based planners that were not able to operate
under kinematic constraints can now solve such problems.

Our work is inspired by the excellent results in [4]. We
devise a generalization of AtlasRRT, whose design philoso-
phy does not rely on specific properties of RRT other than
its sampling-based nature. Expecting that we can substitute
another sampling-based planner that may perform better, we
isolate operations that directly involve the manifold from
any planner decisions, allowing the planning algorithm to be
agnostic of the atlas. It is not immediately clear that such
encapsulation is possible, as the atlas and the planner rely on
one another for functionality. The atlas is constructed only
because it is driven by the planner’s exploration attempts. But
the planner can only explore near the volume already covered
by the atlas. For the ensemble to work, a typical sampling-
based planner needs two operations to be provided by the atlas:
sampling and interpolation.

Not all planners sample in the same way. Some use uniform
sampling, which is approached in [4]. Others instead specify a
ball in which to sample, so we devise a means of performing
this on an atlas. There are also two distinct ways that a planner
can use interpolation. The first is to query a single state that
lies between two endpoints. The second is to query many such
states at high resolution for collision checking. In a Euclidean
space, these are one and the same. But on a manifold, the atlas
can naturally supply the second through incremental stepping
and projection. We are then able to implement the first on top
of the second by reasoning over the intermediate points.

Our framework allows rapid substitution of different plan-
ners into the same problem specification. We call our work
Atlas + X, where X is the chosen planner. The advantage
is that we are no longer constrained to a single sampling-
based planning algorithm that is integrated with the atlas.
By providing functionality to sample and interpolate using an
atlas, many existing sampling-based planners become suitable
candidates for solving problems on implicit manifolds in high-
dimensional spaces, without any modification to adapt them
to an atlas approach. One can then choose, for example,
an appropriate and performant flavor of RRT, such as the
bidirectional RRTConnect [6] or the asymptotically optimal
RRT* [7], or use different planner algorithms altogether, like
PRM [8], which can produce a roadmap instead of a single
path, or EST [9], which directs it search toward less explored
regions. See Figure 1 for an example of Atlas + RRT* finding
the shortest path on a spherical manifold with obstacles.

We show that Atlas + X planning times are often an order
of magnitude faster than CBiRRT2, noting that CBiRRT2 is
designed for constraint manifolds, while X is not aware of
the constraints. We also find examples of Atlas + X planners,
including a unidirectional one, that can outperform the original
bidirectional AtlasRRT. We demonstrate that there can be
significant disparity in planning time across different choices

of X, emphasizing that one planner may be better suited for
a given problem than another.

Our contribution is beneficial in allowing the planner to be
selected from among many known algorithms without requir-
ing any modification to use the atlas. This result effectively
extends the pre-existing sampling-based planners to handle
constraint manifold problems, even where no prior effort has
been made to do so. The chosen planning algorithm can
operate without understanding the atlas-based mechanics of
the configuration space.

II. BACKGROUND AND RELATED WORK

Much of the literature in robotic motion planning for high-
dimensional systems is devoted to sampling-based planning
techniques. These are techniques that randomly explore the
configuration space of the system by attempting to reach sam-
pled states. PRM [8] constructs a roadmap of the free space
by connecting neighboring samples. RRT [5] incrementally
constructs a tree of motions by iteratively expanding the tree
from a node that is closest to a uniformly randomly sam-
pled configuration. Other sampling-based planning algorithms
guide exploration based on an estimation of sample density
by iteratively biasing tree growth toward less densely sampled
parts of configuration space. Examples of algorithms that use
this general technique include EST [9], KPIECE [10], and
STRIDE [11].

Some robotic systems are subjected to constraints for par-
ticular tasks, restricting the set of valid configurations to a
manifold, which has measure zero with respect to the ambient
space. Naturally, sampling can no longer effectively produce
valid configurations. Some approaches target specific kinds of
constraint problems, such as open- or closed-loop kinematic
linkage constraints [12], [13], end-effector pose constraints
[14], or n-point contact constraints [15]. Some approaches
project invalid samples through gradient descent [16] or by
more robust means [17]. A successful algorithm for planning
under abstract constraints is CBiRRT2 [2]. Like RRT it steps
toward sampled points, but after every step it projects the
current point back to the manifold.

In [4] the AtlasRRT algorithm was proposed. During plan-
ning, it constructs a piecewise linear approximation of the
manifold by computing tangent spaces. This approximation
allows the planner to reason about a difficult, implicitly defined
space by projecting regions onto simpler spaces. AtlasRRT
resolves some problems that arise with CBiRRT2. Namely,
CBiRRT2 struggles to achieve uniform exploration since the
ambient space does not project uniformly to the manifold;
AtlasRRT approaches uniform sampling of the manifold di-
rectly by sampling from the tangent spaces. AtlasRRT has
been demonstrated to outperform CBiRRT2 on a number
of problems, so we will likewise compare Atlas + X with
CBiRRT2.

In similar spirit to AtlasRRT, a very recent paper [18]
also proposes to use a set of tangent spaces to address the
problem of reasoning on a curved domain. A key contribution
of Tangent Bundle RRT (TB-RRT), the algorithm described
in [18], is that projection from the tangent space to the



manifold is done lazily. This saves significant computation
time; however, it requires the collision detector to operate
on preliminary points in a path that may be adjusted later
during projection. TB-RRT is suitable if one can dilate the
obstacles to suppress the discrepancy or if the issue is tolerably
rare. TB-RRT has a bidirectional RRT integrated into the
algorithm, very much like AtlasRRT. Unlike AtlasRRT, which
coordinates the tangent spaces patches to minimize overlap,
TB-RRT samples from tangent space domains that can overlap
significantly, so uniformity is not achieved. In contrast, our
atlas-based approach samples uniformly over the explored part
of the manifold and, in the limit, achieves uniform coverage
of the entire manifold.

Another approach to good manifold sampling, which works
for the configuration space of a closed-loop kinematic chain
[19], is to sample a subset of the dimensions, leaving only
finitely many possible configurations to choose from. How-
ever, this technique requires an appropriate IK solver to find
such solutions, which we do not assume to be available.

Interpolating smoothly along a manifold defined by contact
points between the robot and its environment has been ad-
dressed [15], with the goal of finding a parameterization that
satisfies the dynamic constraints of a system. The constraint
manifolds we address include, but are not limited to, contact
constraints. We do not consider systems with dynamics in
this work, so we are satisfied with C0 paths; however, one
could refine the output path or roadmap with a more advanced
interpolator.

III. DEFINITIONS

We consider an n-dimensional Euclidean state space with
n − k constraints. More precisely, n − k is the number
of degrees of freedom lost due to the constraints. These
constraints are given by a differentiable constraint function
F : Rn → Rn−k such that F(x) = 0 precisely defines the
points where the constraints are satisfied. Thus, F implicitly
defines a manifold M of dimension k. We say x is on the
manifold when ||F(x)|| < τ , for some tolerance τ . We refer
to n as the ambient dimension, k as the manifold dimension,
and n− k as the codimension.

A chart is a k-dimensional hyperplane tangent to M at
some point, called the chart’s center. Points on the chart are
represented using an orthonormal basis in which 0 coincides
with the center. We will follow the notation of [4]. First, the
exponential map, ψc : Rk → Rn, projects a point in chart
c onto the manifold in the direction orthogonal to the chart.
Second, the change-of-basis function, φc : Rk → Rn, rewrites
a chart point in ambient space coordinates. We will also invoke
the inverse of ψc. The only user-supplied information required
to compute them is F. An explicit formulation of the Jacobian
of F, if available, is also useful, but not necessary since it
can instead be computed numerically. The basis for a given
chart is the orthonormalized kernel of the Jacobian at its
center. The maps φc and ψ−1

c are operations using this basis
and its transpose, respectively. The map ψc is implemented
as Newton’s method on a system involving the chart basis
and F. Refer to [4] for a full mathematical treatment of this
computation.

The validity region Vc of a chart c is the neighborhood of the
chart center in which the chart provides an acceptable approx-
imation of M. We control this by ε, the maximum distance
between a chart point and its projection on the manifold; α,
the maximum angle between the chart and the manifold as
it curves away from the chart; and ρ, the maximum radius
from the chart center. A polytope, Pc ⊃ Vc is maintained to
approximate the validity region. Finally, the atlas itself is a
collection of charts that covers M with its validity regions.

IV. ALGORITHMS

The original AtlasRRT works by running a bidirectional
RRT with special sampling and interpolation techniques that
rely on the atlas. The atlas is not constructed in advance but
simultaneously with the planner trees. New charts are created
as needed when new regions of the manifold are explored by
the trees. The output is a path on the manifold connecting the
start and goal states.

Our new scheme is to decouple the atlas from the planner.
At a high level, we differ from AtlasRRT by isolating the
process of moving along the manifold between two points into
TRAVERSEMANIFOLD (Algorithm 1). Two points are given as
start and end points. We step across the manifold from one to
the other in increments of δ (line 8). At each step we move
within the local chart in the direction that maximizes progress
toward the goal. This is done by projecting both points onto
the chart (lines 4–6, 16–18). The chart, of course, is exactly
tangent to M at its center, by construction. Since a chart is
only valid within a neighborhood of its center, defined by
the parameters ε, α, ρ, we switch to another existing or new
chart whenever we depart it (line 15). It is simple to check
if the manifold point is more than ε from the chart plane or
if the chart point is more than ρ from the chart center. The
angle between the manifold and the chart is estimated using
the ratio between the distance traveled in the chart, δ, and
the distance traveled in ambient space, ds, during the most
recent step. With appropriate limits on this validity region,
local motions in the chart are nearly tangent to the manifold.
We proceed until we are within δ of the goal (line 7), or some
failure condition occurs, such as a collision, diverging from the
goal, or traveling excessively far along the manifold (line 12).
Finally, we return the list of every valid point visited on the
manifold (line 19).

Note the differences from AtlasRRT1. We do not maintain
our own tree of motions here, as that is left for the planner.
Readers familiar with AtlasRRT know that its manifold traver-
sal algorithm behaves in one of two modes depending on if
the purpose is to explore toward a sampled configuration or
to connect the two planner trees. It would be impossible for
us to make the explore/connect distinction as not all planners
use two trees, and our goal is to keep the space logic agnostic
of the planning logic. We found that a single traversal mode
suffices.

1We believe there to be a typographical error on lines 8, 13, 37 of AtlasRRT
in [4] (p. 111). The text indicates that the updated point should be a certain
distance from the initial point. The formula on its line 13, as given, finds an
appropriately scaled vector in the direction of the target, but fails to add this
to the initial point. Lines 8 and 37 contain related errors.



Algorithm 1
TRAVERSEMANIFOLD(A,xa,xb,COLLIDE)
Input: Partial atlas A for some manifold M, states xa, xb,
with xa on M, and COLLIDE : Rn → {TRUE, FALSE} a
function to recognize states that are in collision.
Output: A sequence {xi} of interpolated points from xa

toward xb in free space. {xi} may not attain xb.
1: j ← 0
2: dtrav ← 0
3: xj ← xa

4: c← GETORCREATECHART(A,xj)
5: uj ← ψ−1

c (xj)
6: ub ← ψ−1

c (xb)
7: while ||ub − uj || > δ do
8: uj+1 ← uj + (ub − uj)δ/||ub − uj ||
9: xj+1 ← ψc(uj+1)

10: ds ← ||xj − xj+1||
11: dtrav ← dtrav + ds
12: if (COLLIDE(xj+1)) or ||xj+1 − xa|| > ||xb − xa||

or dtrav > 2||xb − xa|| then
13: break
14: j ← j + 1
15: if ||φc(uj) − xj || > ε or δ/ds < cosα or ||uj || > ρ

or uj 6∈ Pc then
16: c← GETORCREATECHART(A,xj)
17: uj ← ψ−1

c (xj)
18: ub ← ψ−1

c (xb)
19: return {xi}j0

All chart management occurs in GETORCREATECHART,
which determines to which chart a point belongs. We do this
by searching candidates in a nearest-neighbors data structure,
indexed on the chart centers. The method uses the validity
polytopes to identify the correct chart and ρ to know when
all feasible candidates are exhausted, at which time a new
chart is created and the boundaries of its neighbors are
updated. For some problems the constraint manifold may have
singularities (regions of lower dimension), which the algorithm
is technically not able to handle. As long as the singularity is
not a necessary part of the solution path, we can circumvent
this by detecting when a new chart’s basis would not be of
full rank and treat the point as an obstacle.

TRAVERSEMANIFOLD incrementally interpolates along the
manifold in a way that is useful to a planner as it checks
whether two states can be connected by a motion. However, a
planner may also interpolate at an explicit time point. For this
purpose we provide GEODESICINTERPOLATE in Algorithm 2.
The sequence of points returned by TRAVERSEMANIFOLD
lends itself to a natural attempt at this computation. Simply
pass COLLIDE ≡ FALSE to mark the entire space as free,
and verify that xb was attained (lines 1–3). The accumulated
ambient space distance along the returned sequence of points
approximates geodesic distance. So one can find the two
appropriate adjacent points (lines 4–7) to use in linear inter-
polation (lines 8–9). We caution that the chart boundaries will
continue to be refined as a side-effect of such computations

Algorithm 2
GEODESICINTERPOLATE(A,F,xa,xb, t)
Input: Partial atlas A for some manifold M with constraint
function F, states xa,xb on M, and time t ∈ [0, 1].
Output: A point on M occurring at time t on the approxi-
mated geodesic between xa,xb. Returns xa upon failure.

1: {xi}j0 ← TRAVERSEMANIFOLD(A,xa,xb, FALSE)
2: if ||xb − xj || > δ then
3: return xa

4: d0 ← 0
5: for i← 1..j do
6: di ← di−1 + ||xi − xi−1||
7: Choose k s.t. dk/dj ≤ t and dk+1/dj > t.
8: s← (t dj − dk)/(dk+1 − dk)
9: y← ψc(xk + s (xk − xk+1))

10: if ||F(y)|| ≥ τ then
11: return xa

12: return y

Algorithm 3
SAMPLEUNIFORM(A, ρs)
Input: Partial atlas A and sampling radius ρs.
Output: A point sampled uniformly from the region of the
manifold covered by A.

1: repeat
2: c← RANDOMCHART()
3: us ← SAMPLEINBALL(ρs)
4: until us ∈ Pc

5: ADJUSTBOUNDARY(us, c)
6: return ψc(us)

since the atlas is still being constructed. The sequence of points
returned by this algorithm can then vary from call to call
during the same execution.

Almost all sampling-based planners rely on one or two kinds
of sampling: uniform sampling from the space and sampling
near an existing state. As we noted, a classical example of
the first is RRT, while EST uses the second. Both sampling
methods can be implemented if we make a concession on
the uniformity. SAMPLEUNIFORM (Algorithm 3) provides
pseudo-uniform sampling in a manner very similar to [4].
Through rejection sampling, a point is chosen uniformly from
a chart that is itself selected uniformly. There is a natural
bias at the frontier of the atlas because those charts are
larger, due to the initial polytope significantly overestimating
the validity region. To keep this bias constant regardless
of manifold dimension k, we will always fix ρs = 21/kρ.
The ADJUSTBOUNDARY routine expands the boundary of
neighboring polytopes if the sample is close to the edge of
the current chart, as this helps with manifold coverage [4].

The final component needed to complete our interface is
the second kind of sampling, given in SAMPLENEAR (Al-
gorithm 4). We simply select the chart to which x belongs
and sample uniformly from a tangent-space ball of radius ρs
around the projection of x in the chart (lines 3–4). We do
not fix ρs here, but leave it to be chosen by the planner.



Algorithm 4
SAMPLENEAR(A,F,x, ρs)
Input: Partial atlas A with constraint function F, state x on
the manifold, and sampling radius ρs.
Output: A point projected to the manifold from a uniform
sample from a ball of radius ρs in the chart for x.

1: c← GETORCREATECHART(A,x)
2: repeat
3: us ← ψ−1

c (x) + SAMPLEINBALL(ρs)
4: xs ← GRADIENTDESCENT(F,us)
5: until ||F(xs)|| < τ
6: ADJUSTBOUNDARY(us, c)
7: return xs

It is possible, especially near singularities or areas of high
curvature, that it is difficult to project the resultant point onto
the manifold. We use gradient descent rather than ψc (which
projects orthogonally to the chart) in line 4 since we found
it much more likely to succeed, thereby decreasing sampling
time.

We have now supplied approximate interpolation and the
two common kinds of sampling using these algorithms. A
planner can operate in the space without knowledge of the
atlas, and the atlas construction does not depend on a specific
planning algorithm. All that is left is to choose a sampling-
based planner, and, without adaptation, it can run on an
implicitly defined constraint manifold, with all the atlas details
hidden behind this interface.

V. RESULTS

We implemented all of the above algorithms in the Open
Motion Planning Library (OMPL) [20], which has existing
implementations of many popular sampling-based planners.
It is a design philosophy of OMPL to provide an abstract
interface by which any planner may use nearly any state space;
therefore, it is an appropriate platform for our contribution,
which seeks to provide an atlas-based state space and use
an arbitrary sampling-based planner on it. All timing data
was collected on a 1.4 GHz multicore processor with 64
GB of RAM. For consistency, in all our experiments we use
ε = 0.5, ρ = 0.2, α = π/8. Our choice of these parameters
is intended to produce a few large charts so that less time is
spent constructing the atlas, and more time is spent using the
atlas to solve the problem.

Some of the planners we test use SAMPLEUNIFORM, while
others use SAMPLENEAR. Two examples are RRT and EST,
respectively. The sampling radius ρs serves a slightly different
purpose in each of these sampling algorithms. In uniform
sampling, we fix ρs so that the sampled volume is a constant
multiple of the maximum possible chart volume. As a result,
points can be sampled past the frontier of a partial atlas,
which is what drives the atlas construction. By contrast, ρs is
chosen explicitly by planners that use SAMPLENEAR. Such a
planner can use this selective sampling to move toward regions
that it believes are less explored. So in the uniform case, the
planner cannot receive samples over the entire space until the

CBiRRT2 Atlas +
RRTConnect

Atlas +
RRT

Atlas +
PRM

Atlas +
KPIECE

Atlas +
STRIDE

Atlas +
EST

Atlas + 
BiEST

planner

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

tim
e 

(s
)

Comparison of CBiRRT2 and Atlas + X on a Sphere

Fig. 2: Comparison of CBiRRT2 against several Atlas + X
planners on a 2D spherical manifold (see Figure 1) over
100 runs. Note that RRT(Connect) and PRM invoke SAM-
PLEUNIFORM, while KPIECE, STRIDE, and (Bi)EST use
SAMPLENEAR.

atlas is complete, and the exploration is a consequence of
the atlas. However, in the sample-near case, the planner is in
explicit control of the exploration. We therefore hypothesize
that a sample-near planner may be better a candidate for atlas-
based planning than a uniformly sampling planner, such as the
original AtlasRRT.

A. Experiments

We begin with a small but illustrative example problem.
The unit sphere is defined by a single constraint on 3D
ambient space: that the distance to the origin be 1. In this
case, both the manifold and the ambient space have low
dimension, and the curvature is constant, resulting in charts of
approximately equal area, which we have direct control over
using the atlas parameters. Uniform samples from ambient
space project nearly uniformly onto the sphere in a way that is
far from pathological. Mitigating biases in projected samples
is a primary motivation for an atlas-based approach [4] over
methods like CBiRRT2 that sample in ambient space. We
therefore expect CBiRRT2 to perform comparatively well here.
We add three latitudinal obstacles around the sphere, creating
narrow passages between the start and goal states, which are at
the poles. An example solution is shown in Figure 1. The tree
of valid motions is constructed by RRT*, which approaches
the optimal solution. The best path from start to goal after 0.5
seconds is highlighted in blue. The obstacles are not shown,
but their shapes can be inferred from the gaps in the planner
tree. The graph conforms to the spherical manifold, and the
three empty bands imply where the obstacles lie. For reference,
with the given parameters RRT* creates an average of 45
charts in 0.5 s, but if it is allowed to run longer, it will finish
covering the freespace of the manifold with a maximum of
about 56 charts.



Fig. 3: Diagram of the 5-link kinematic chain, shown in its
start configuration. Base (pink) is at the sphere’s center. Goal
configuration places the end effector (green) at the target on the
opposite side (orange). Each link is represented as a distance
constraint between adjacent joints. Further constraints can be
applied, such as affixing the end effector to the sphere’s surface
or maintaining a distance between non-adjacent joints.

We compared several Atlas + X planners with CBiRRT2,
which does not use an atlas. The execution times of 100 runs
are shown in Figure 2. Only CBiRRT2 is designed specifically
for planning under constraints. The other planners can only
solve the problem because they are augmented by our ap-
proach, without which sampling would be nearly impossible.
We find CBiRRT2 to be consistently the fastest, narrowly
beating the uni- and bidirectional variants of EST. Note that
the original AtlasRRT is not equivalent to our Atlas + RRT. At-
lasRRT is bidirectional, and it retains every state encountered
during traversal of the manifold, rather than just the terminal
state in a tree extension. Thus we also compared a variant
of Atlas + RRTConnect, which is bidirectional, modified to
retain all the intermediate states from a tree extension. So this
Atlas + RRTConnect emulates the original AtlasRRT within
our framework. It is both expected and observed that Atlas +
RRTConnect outperforms the unidirectional Atlas + RRT. We
also compared KPIECE and STRIDE using our approach. Like
EST, they estimate coverage in different regions of the space
to guide the search. In particular, they use SAMPLENEAR to
choose where to explore. KPIECE conspicuously struggles to
compete with the other planners on this example.

Having measured the relative performance of Atlas + X for
various planners in a very simple environment, we go on to
explore the relationship between dimensionality and planning
time in a more complex system. We define a 5-link kinematic
chain robot with universal joints, as depicted in Figure 3.
Rather than model the joint kinematics explicitly, we build
a 15-dimensional ambient configuration space from the 3D
position of each joint and the end effector, and then constrain
the distance between adjacent joints to a fixed link length.
This gives rise to a 10-dimensional manifold, since there are
five links. To create obstacles in the space, we forbid self-
intersections.

The codimension of the problem, which is the difference
between the ambient space dimension and constraint manifold

dimension, is equal to the number of DOFs lost due to
constraints. So the codimension of the model is currently 5.
To achieve a codimension greater than 5, we can impose
additional constraints, giving successively higher codimen-
sions as follows: We first affix the end effector to a sphere
(see Figure 3); this extra distance constraint brings the total
codimension up to 6. We then additionally require the z
coordinates of the first and second joints to be equal, giving a
codimension of 7. Next we also require that the x coordinate
of the second and third be equal, for a codimension of 8;
that the y coordinate of the third and fourth be equal, for a
codimension of 9; and finally that the y coordinate of the first
joint and the end effector be equal, ending with a codimension
of 10.

We give the median planning times over 100 runs for the
increasing set of constraints in Table I. Atlas + X is always an
order of magnitude faster than CBiRRT2. We have highlighted
the minimum and near-minimum (within 10%) times in each
column. Observe that the increasing codimension does not
always correspond to an increase in planning time for Atlas +
X, but it very clearly does for CBiRRT2. To visualize some of
the data, we have plotted the planning times for codimension
6 (Figure 4). Notice that Atlas + KPIECE beats the Atlas
+ RRTConnect (our stand-in for AtlasRRT) on codimension
6, but that CBiRRT2, the non-atlas competitor, outperforms
Atlas + PRM after about 7 seconds. We have also plotted
codimension 9 in Figure 5 since it is a problem for which
every Atlas + X planner performs exceptionally well (cf.
codimensions 8 and 10 in Table I), whereas CBiRRT2 gives
no indication that the problem is easier.

We also varied the ambient dimension of the problem.
By allowing the chain to move in the hypothetical four-
dimensional workspace R4 instead of R3, we can increase
the ambient and manifold dimensions by 5 (one per joint).
Planning in a R5 increases the dimensionality by another 5.
Table II gives the extended data of these higher dimensions
for selected codimensions. Across all the dimensions, Atlas
+ KPIECE still competes well with Atlas + RRTConnect and
often outperforms it (highlighted in bold). As we noted before,
the behaviors of CBiRRT2 and of Atlas + X do not coincide
in response to changing the codimension, especially apparent
for codimension 9. However, they do coincide with respect to

TABLE I: Median planning time (seconds) over 100 runs
on the kinematic chain problem under increasing constraints
(codimension). Best planner(s) in each column are highlighted
in bold text. Note that CBiRRT2 performs steadily worse,
while Atlas + X exhibits more complicated behavior.

CODIMENSION
6 7 8 9 10

CBiRRT2 4.31 6.48 6.93 9.38 11.56
Atlas + RRTConnect 0.47 0.39 0.27 0.21 0.64
Atlas + RRT 1.70 1.80 0.45 0.33 1.64
Atlas + PRM 2.46 1.37 1.84 0.43 0.93
Atlas + KPIECE 0.40 0.41 0.37 0.20 0.57
Atlas + STRIDE 0.78 0.78 0.50 0.33 1.36
Atlas + EST 2.20 1.07 1.54 0.47 4.18
Atlas + BiEST 1.12 0.77 1.23 0.42 1.09



TABLE II: Median planning time (seconds) over 100 runs on the kinematic chain problem under selected constraints
(codimension) in workspaces of 3, 4, and 5 dimensions. Best planner(s) in bold; easiest workspace dimension in italics.

CODIMENSION = 6 CODIMENSION = 8 CODIMENSION = 10
WORKSPACE: R3 R4 R5 R3 R4 R5 R3 R4 R5

CBiRRT2 4.31 4.01 4.30 6.93 6.11 7.10 11.56 10.00 12.13
Atlas + RRTConnect 0.47 0.52 0.68 0.27 0.30 0.39 0.64 0.31 0.40
Atlas + RRT 1.70 2.00 2.60 0.45 0.42 0.57 1.64 0.43 0.54
Atlas + PRM 2.46 1.44 1.87 1.84 1.02 1.32 0.93 0.58 0.71
Atlas + KPIECE 0.40 0.43 0.38 0.37 0.31 0.34 0.57 0.30 0.33
Atlas + STRIDE 0.78 0.77 0.86 0.50 0.44 0.56 1.36 0.50 0.54
Atlas + EST 2.20 1.38 2.17 1.54 1.17 1.58 4.18 1.80 1.98
Atlas + BiEST 1.12 0.88 1.12 1.23 0.49 0.47 1.09 0.42 0.52

0.75

0.80

0.85

0.90

0.95

1.00

0 5 10 15 20

time (s)

cu
m

u
la

ti
v
e
 p

ro
b

a
b

ili
ty

CBiRRT2
Atlas + RRTConnect

Atlas + PRM

Atlas + KPIECE

Atlas + STRIDE

Atlas + BiEST

Kinematic Chain, codimension 6

Fig. 4: Kinematic chain with end effector constrained to a
sphere. This is modeled as 15 dimensional system with 6
constraints. Cumulative distribution shows what fraction of the
100 runs completed within a given time.

0.75

0.80

0.85

0.90

0.95

1.00

0 5 10 15 20

time (s)

cu
m

u
la

ti
v
e
 p

ro
b

a
b

ili
ty

CBiRRT2

Atlas + RRTConnect

Atlas + PRM

Atlas + KPIECE

Atlas + STRIDE
Atlas + BiEST

Kinematic Chain, codimension 9

Fig. 5: Kinematic chain with end effector constrained to a
sphere and three additional constraints between joints. Cu-
mulative distribution again taken over 100 runs. Note the
exceptional disparity between CBiRRT2 and Atlas + X.

Fig. 6: Diagram of the bimanual robot holding a tray. Each
shoulder and wrist has 3 rotational DOFs, while the elbows
each have 1. Thus the total ambient dimension is 14. Holding
the tray and imposing further constraints on the tray’s orien-
tation creates manifolds of successively lower dimension.

the ambient dimension. There is general agreement that the
4D problem is easiest (italicized), but it is not clear whether
3D or 5D is the hardest.

For a more practical example, we modeled a bimanual task
performed by a robot with 7 revolute joints in each of its
two arms: the shoulder and wrist each have three, and the
elbow has one. Thus the unconstrained ambient space of our
model has dimension 14. The planning query is to move a
tray from a starting position just within reach of the robot to
a goal position close to the torso. See the illustration of the
robot in Figure 6. To hold the tray, the hands must remain a
fixed distance apart, taking away one DOF. Second, we can
additionally require that the tray not roll left or right around
one axis. Third, we can additionally require the robot to hold
the tray level (no rotation in two axes). For this problem, we do
not explicitly provide the Jacobian of the constraint function to
the program, illustrating that it can be computed numerically
if unavailable. Table III shows a very similar story to what was
observed with the kinematic chain. CBiRRT2 is an order of
magnitude slower than any Atlas + X planner. But notably, this
time it is Atlas + PRM and Atlas + BiEST that compete with
Atlas + RRTConnect. The three unidirectional SAMPLENEAR
planners, KPIECE, STRIDE, and EST, consistently outperform
RRT, which is a unidirectional SAMPLEUNIFORM planner.



TABLE III: Median planning time (seconds) over 100 runs
on the bimanual manipulator problem under increasing con-
straints (codimension): hold a tray, refrain from tilting the tray
left or right, and hold the tray completely level. Best planners
in bold.

CODIMENSION
1 2 3

CBiRRT2 9.99 12.74 17.94
Atlas + RRTConnect 0.19 0.20 0.25
Atlas + RRT 0.88 0.78 0.63
Atlas + PRM 0.20 0.21 0.47
Atlas + KPIECE 0.55 0.50 0.58
Atlas + STRIDE 0.43 0.43 0.53
Atlas + EST 0.48 0.52 0.67
Atlas + BiEST 0.19 0.20 0.25

B. Discussion

As we noted, planning on the spherical manifold is the
simplest of the problems we considered. The ambient and
manifold spaces differ by only one dimension; the manifold
exhibits uniform curvature; its embedding lends itself to near-
uniform sampling by projecting ambient samples. For all these
reasons, it is unsurprising that Atlas + X, which is an elabo-
rate approach requiring a non-trivial amount of bookkeeping,
performs worse than CBiRRT2, which takes a more direct but
less informed approach without any bookkeeping.

One striking feature of the results is how KPIECE struggles
so much more than the others to find a solution on the
supposedly easy problem, but is one of the fastest planners
on the higher dimensional problem with a kinematic chain.
KPIECE maintains a discretization of the space and uses
SAMPLENEAR, instead of SAMPLEUNIFORM, to intentionally
target specific regions. We believe the performance to be
related to this strategy. Planners that do not try to sample
selectively will still naturally explore from the frontier charts
of the partial atlas. This is because those charts do not yet
have fully formed boundaries, and thus are much larger. The
atlas effectively provides a discretization of the space that
naturally assists in exploring the frontier. However, KPIECE
performs much more bookkeeping to maintain its own cellular
discretization for this purpose, beyond the one provided by the
atlas. The work involved is excessive for a simple problem
like a spherical manifold, but can ultimately pay off in higher
dimensions.

In understanding why Atlas + X in general does better
than CBiRRT2 on the higher dimensional kinematic chain and
bimanual problems, and why Atlas + X responds so well to an
increase in codimension, while CBiRRT2 does not, we should
look at two factors: the quality of samples and the cost of
projection. It is difficult to comprehend the shape the manifold
takes on in such high dimensions; however we can build
some intuition about what happens to ambient-space samples.
Consider the location of the first of the five kinematic chain
joints. It is constrained to the sphere, S2. Uniform sampling in
an R3 bounding box already fails to given uniform coverage
when projected to S2. Now consider the second joint. It must
lie on a sphere centered at the first joint, forming a torus-
like manifold S2 × S2. It suffers the same deficiency that we

described for the ordinary torus (S1×S1), with samples rarely
projecting onto the region surrounding the hole. Continuing
down the chain, this bias is exacerbated by each subsequent
joint. Therefore, projecting uniform samples from ambient
space to the constraint manifold produces poor coverage of
configurations where the chain must bend tightly. This is one
of the primary advantages of Atlas + X over CBiRRT2: it
approaches uniform coverage of the manifold and encourages
exploration of unreached regions.

Secondly, Atlas + X and CBiRRT2 perform projections
differently, and the speed is affected by the codimension. For
CBiRRT2, the only information known about the manifold is
the behavior of the constraint function at the current sample;
it can project to the manifold using the pseudoinverse of the
Jacobian. The matrix to pseudoinvert is (n−k)-by-n, where n
and k are the ambient and manifold dimensions, respectively.
That is, n− k is the codimension, or degrees of freedom that
are constrained. Hence, as codimension increases, so does the
size of the system CBiRRT2 must solve. Atlas + X, however,
inverts an n-by-n matrix consisting of the Jacobian and the
chart basis, since it aims to project orthogonally from the chart.
The system to solve is thus larger than that of CBiRRT2;
however, it is invariant with respect to codimension. Both
projections use an iterative Newton method, but since Atlas +
X takes samples from charts which approximate the manifold,
we expect an Atlas + X projection to take fewer iterations
to converge than a CBiRRT2 projection. As the codimension
increases and manifold dimension decreases, the bookkeeping
of charts becomes less expensive. It is for these reasons that
we believe Atlas + X responds well to an increase in the
codimension while CBiRRT2 does not.

VI. CONCLUSION

We have introduced a new framework, Atlas + X, which
provides planner-independent algorithms for interpolation and
sampling in an atlas-backed constraint manifold space. The
framework allows existing sampling-based planners to operate
on such manifolds in a space-agnostic way. While prior work
combined an atlas representation with a specific planning
algorithm, here we have shown the advantages of decoupling
them. Our contribution immediately opens the possibility
of applying existing sampling-based planning algorithms to
motion problems on constraint manifolds, even where no prior
effort has been made to adapt a given planner for such a
problem. Future space-agnostic planners will also be suitable
for use in our framework without modification.

Our experiments show that such Atlas + X planners vary in
their abilities to solve specific problems. On a simple, low-
dimensional problem we found the alternative approach of
CBiRRT2 to be a better choice. But in higher dimensions and
on more complicated manifolds, such as that of a kinematic
chain or bimanual manipulator, Atlas + X is an order of
magnitude faster for many choices of X, such as RRTConnect,
KPIECE, and BiEST. As evidence that some planners are more
suited to certain problems, though one expects a bidirectional
planner to be faster than a unidirectional one, we found an
example of the unidirectional Atlas + KPIECE outperforming



the bidirectional Atlas + RRTConnect, which emulates the
original AtlasRRT algorithm. This again strongly demonstrates
the advantage of our generalized technique.

With our contribution, the robotics community is now
equipped to approach constraint manifold problems using a
wide variety of planning algorithms. The next step is to
apply the atlas approach to multiple intersecting manifolds or
stratified manifolds, along with a proper method of handling
singularities. A bimanual robot may choose to grasp a large
item in any number of configurations, each giving rise to a
different manifold. A legged robot moves under multi-modal
constraints depending on which feet are currently contacting
the ground. Writing on a surface is a simpler example. While
the pen is in the air, the robot moves through an n-dimensional
manifold, but while it touches the paper for a stroke, motion
is confined to an (n − 1)-dimensional sub-manifold. Such
problems may require coordinating motion graphs across
multiple atlases, with special care taken at the intersections,
which are themselves manifolds of lower dimension. See, for
example, [21] for some early work on planning across different
intersecting manifolds.

It is an open question whether there will be any advantage
to using higher-order approximations of the manifold in an
atlas. For example, can we significantly reduce the number of
charts required to cover a manifold if the charts are quadratic
patches instead of linear? Will this pay off, considering the
computational cost of the additional math involved?

With our current formulation, the implicit manifold specifi-
cation does not suit every constraint-based problem since it as-
sumes the underlying ambient space is Euclidean. However, a
given system may be better modeled by an ambient space with
different topology. For example, SE(3) has a non-Euclidean
subspace, and thus any interesting manifold embedded in this
space would no longer be embedded in Rn. Therefore, some
care must be taken to ensure the mathematics of the manifold
traversal will be correct. Then it will be possible to operate
arbitrary sampling-based planners on manifolds embedded in
more complicated spaces.

REFERENCES

[1] H. Choset, K. M. Lynch, S. Hutchinson, G. A. Kantor, W. Burgard, L. E.
Kavraki, and S. Thrun, Principles of Robot Motion: Theory, Algorithms,

[8] L. E. Kavraki, P. Švestka, J.-C. Latombe, and M. H. Overmars, “Prob-
abilistic roadmaps for path planning in high-dimensional configuration
spaces,” IEEE Trans. Robot. Autom., vol. 12, pp. 566–580, 1996.

and Implementations. Cambridge, MA: MIT Press, 2005.
[2] D. Berenson, S. S. Srinivasa, and J. J. Kuffner, “Task Space Regions:

A framework for pose-constrained manipulation planning,” Int. J. Rob.
Res., vol. 30, pp. 1435–1460, 2011.

[3] M. E. Henderson, “Multiple parameter continuation: Computing implic-
itly defined k-manifolds,” Int. J. Bifurc. Chaos, vol. 12, pp. 451–476,
2002.

[4] L. Jaillet and J. M. Porta, “Path planning under kinematic constraints by
rapidly exploring manifolds,” IEEE Trans. Robot., vol. 29, pp. 105–117,
2013.

[5] S. M. LaValle and J. J. Kuffner, “Randomized kinodynamic planning,”
Int. J. Rob. Res., vol. 20, pp. 378–400, 2001.

[6] J. J. Kuffner and S. M. LaValle, “RRT-Connect: An efficient approach
to single-query path planning,” in IEEE Int. Conf. Robot. Autom., 2000,
pp. 995–1001.

[7] S. Karaman and E. Frazzoli, “Sampling-based algorithms for optimal
motion planning,” Int. J. Rob. Res., vol. 30, pp. 846–894, 2011.

[9] D. Hsu, J.-C. Latombe, and R. Motwani, “Path planning in expansive
configuration spaces,” Int. J. Comput. Geom. Appl., vol. 9, pp. 495–512,
1999.

[10] I. A. Şucan and L. E. Kavraki, “A sampling-based tree planner for
systems with complex dynamics,” IEEE Trans. Robot., vol. 28, pp. 116–
131, 2012.

[11] B. Gipson, M. Moll, and L. E. Kavraki, “Resolution independent density
estimation for motion planning in high-dimensional spaces,” in IEEE Int.
Conf. Robot. Autom., 2013, pp. 2437–2443.

[12] X. Tang, S. Thomas, P. Coleman, and N. M. Amato, “Reachable dis-
tance space: Efficient sampling-based planning for spatially constrained
systems,” Int. J. Rob. Res., vol. 29, pp. 916–934, 2010.

[13] J. Cortés and T. Siméon, “Sampling-based motion planning under kine-
matic loop-closure constraints,” in Algorithmic Foundations of Robotics
VI, M. A. Erdmann, D. Hsu, M. Overmars, and A. F. van der Stappen,
Eds. Springer, 2005, pp. 75–90.

[14] D. Berenson and S. S. Srinivasa, “Probabilistically complete planning
with end-effector pose constraints,” in IEEE Int. Conf. Robot. Autom.,
2010, pp. 2724–2730.

[15] K. Hauser, “Fast interpolation and time-optimization with contact,” Int.
J. Rob. Res., vol. 33, pp. 1231–1250, 2014.

[16] J. H. Yakey, S. M. LaValle, and L. E. Kavraki, “Randomized path
planning for linkages with closed kinematic chains,” IEEE Trans. Robot.
Autom., vol. 17, pp. 951–958, 2001.

[17] P. Kaiser, D. Berenson, N. Vahrenkamp, T. Asfour, R. Dillmann, and
S. S. Srinivasa, “Constellation—An algorithm for finding robot con-
figurations that satisfy multiple constraints,” in IEEE Int. Conf. Robot.
Autom., 2012, pp. 436–443.

[18] B. Kim, T. U. Taewoong, C. Suh, and F. C. Park, “Tangent bundle RRT:
A randomized algorithm for constrained motion planning,” Robotica,
vol. 34, pp. 202–225, 2016.

[19] Y. Zhang, K. Hauser, and J. Luo, “Unbiased, scalable sampling of closed
kinematic chains,” in IEEE Int. Conf. Robot. Autom., 2013, pp. 2459–
2464.

[20] I. A. Şucan, M. Moll, and L. E. Kavraki, “The Open Motion Planning
Library,” IEEE Robot. Autom. Mag., vol. 19, pp. 72–82, 2012.

[21] T. Siméon, J.-P. Laumond, J. Cortés, and A. Sahbani, “Manipulation
planning with probabilistic roadmaps,” Int. J. Rob. Res., vol. 23, pp.
729–746, 2004.


