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CHAPTER I

INTRODUCTION

A. The Newman-Janis Transformation

Interest in complex transformations of solutions
to Einstein's field equation was initiated by the work of
Newman and Janis [1]. They were able to "transform," by
means of a complex "transformation," the Schwarzschild
metric into the Kerr metric, the field of a spinning
spherical mass. The "transformation" that they employed
was ad hoc and left unanswered the very important question
of the general role of complex transformations in con-
necting solutions of Einstein's equation.

The Schwarzschild metric, written in its usual form is

ag? = —(1- %g)dtz + (1- %M)_ldrz + r2 (362 + sinede?®) . (I-1)

This can be expresséd in terms of the Eddington coordinates

2

ds® = -(1- %E)du2 + 2drdu - r2(d92 + sin2

0de?) (I-2)

where now
u=¢t ~-r - 2M in(r-2M)
is a retarded time for this space. The contravariant form

of this metric is

00 11 2M
g 0 g = 901 =

22 1 33 _ 1
g = g 5



which can be written in terms of the pseudoorthonormal

tetrad (see Appendix B),

gH9 = - %Y - ont o+ R 4 o m" .

This tetrad is

M = (0,1,0,0) ,

= @, a -3, o0, (1-3)
w_ 1 1

mo= (0,0, r’ rsine)

2
Newman and Janis now allow the coordinates u and r

to become complex, and then write the tetrad

M= (0,1,0,0)
o 1 1
n¥ = (1, (1-M@E + 2)),0,0) (1-4)
r
w1 1
m = (OIOI ’ rsine) .

N r

Next, this tetrad is transformed in the usual way, allowing

u' = u - ia cos©
(I-5)
r' = r + ia cos®
where now u' and r' are required to be real.
The transformed tetrad is
2% = (0,1,0,0)
n'p' = (1, -%Ll - 2Mr ]tolo)
2.2 2
(r“+a“cos”9)
M . -1,._ . . s i
m = [J2 (r'+iacos8)] (1a51n9,—1as1n9,l,sine)



and if the metric

H=V . =1V

BV Z'ph'v - L'vnp m’ +mm |,

g + m

is calculated it is found to be the Kerr metric.

This procedure has a completely ad hoc character.
There is no reason why nu, for instance should have the
particular form that it has. Above all, this transforma-
tion works on the contravariant tetrad but not on the
covariant one. Nor can it be made to work on the general
tensor space of this manifold. Even the metric itself
cannot be transformed into another real metric.

Doubtless, in the facé& of these very serious
objections, this transformation would have been considered
a generally unproductive idea except for one thing. The
transformation was tried again by Newman et al. on the
Reissner Nordstrom metric (2] {(the charged version of the
Schwarzschnild metric), and the result was the charged
version of the Kerr metric (now called the Kerr-Newman
metric).

Subsequently, Newman and Demianski [3] used the

transformation

u' = u-i(acos8® + 2binsin®) + 2ib2ntan-%
nl

r + i(acose + b)

to produce the charged and uncharged versions of a combined
Kerr-NUT metric. When b = 0, the solution is the Kerr

metric, and when a = 0 it is the metric discovered by
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Newman, Unti, and Torrence [4] in 1963. Demianski [5],
finally, was able to extend this procedure to include yet
another parameter in his metric, and discovered that this
represented the maximum number of parameters to which this
transformation could be extended.

In spite of the ad hoc nature of this procedure, its
multiple successes tended to confirm Newman's belief that
their results are not fortuitous. The most likely explana-
tion lay in the fact that all of these metrics belong to a

class of spaces that are called the Kerr-Schild metrics.

B. The Kerr-Schild Metrics and Newman's Complex Minkowski

Space

Kerr and Schild, in a study of the Kerr metric [6]
discovered that both the Schwarzschild and the Kerr metrics

could be written in the form

N,y ~— 2M2 % (1-6)

Fuv ~ Huv W

where

nuv

i

diag.(-1,1,1,1)

and where EH is a vector such that

o,V SORVI
Nyt e =g 4 =0

The spaces are also algebraically degenerate (see Appendix
B, Section C) and Zﬁ defines one of the principal null
directions, i.e. one of the directions along which the field

propagates.
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What is significant about this is that the geometry
of these spaces is entirely determined by ﬁpv' and the
vector zu and its-derivatives. This is not unlike the
electromagnetic case, where the field is described by the
flat space metric, and a vector and its derivatives.
Newman investigated the complex transformation of

E. M. fields [7]. Maxwell's equations can be written.

curl w = iw

vV -w=20

where w = E + iB. If a translation is made of the coor-
dinate origin, this yields the same solution as before.
However if the translation is complex, then w(xu—ibu) is
a distinct solution to Maxwell's equations.

For example, consider an imaginary translation along
the z axis of the Coulomb field, E = e/r3 (x,v.,2)- This

translation gives

e ( -ia)
w' = 7.3 (X.¥,2-1a
(™)

where rT = (x2+y2+(z—ia)2)%. w is still a solution of
Maxwell's equation, but it has an electric monopole (e),
a magnetic dipole (iea), an electric quadrupole moment
(ea2) etc. In fact this field was already known to Newman
as the field of the charged Kerr metric.

Thése same results were found by Newman to apply to

the Weyl tensor of the linearized Schwarzschild field
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(the mass monopole field). In this case, the transformed
w@@ltensor is that of the linearized Kerr metric.

This parallel between the linearized Weyl tensor and
the electromagnetic field tensor iked him to speculate
that the Weyl tensor of these metrics is a field defined
upon complex Minkowski space. The Kerr field is realized
on various real "slices" of this complex Minkowski space,
corresponding to different values of the parameter a.

In order to extend these results to the full

Schwarzschild metric, he gave the Kerr-Schild metrics a new

form [8]

2 2

_ My 2 -
ds® = dshy ¢ + K(Zpdx ) (I-7)

where ds%,lat is not necessarily the Minkowski metric, but

is a flat space metric intrinsic to the particular metric

slice of complex Minkowski space. The vector s is, as
before, a principal null vector.

For Schwarzschild space (a = 0) the ds%,lat does repre-—

sent Minkowski space

d52 = —2du2 - 2dudr + r2(d92+sin29dw2) + %ﬂ du2 (x-8)

with the tetrad

s

wo_1 i
(Ollloio) ’ m - r(ololll sinG)

4

o)
i

(ll_lﬂolo) . (1—9)



If the transformation

u=1u'+ ia cose’' ,

r = r' - 2ia cose' ,
cosO = r'cos8'-2ia
T r'-2ia cos® ’
r'2—4a2
cos 2(p-') = = 5
r'“+4a

which is equivalent to a translation along the imaginary

z axis
z - z-lia
2 .
then dsFlat in (I-8) above becomes
as? = -2du'? - 2au'dr' + 2a’sin’e&arday’

+ %(r'2+4a2cosze')(d9'2+sin29'd¢'2)

+ .’z'.azsinlle'dcp'2 . (I-10)

This is just the Kerr metric with m = 0.

Thus far, then, Newman's attempt to extend his
results in the linearized Schwarzschild metric to the full
metric is successful. But the tetrad does not transform
well at all, and, in fact, is not even real. The same
is true for A in (I-9), and Newman is again forced to
correct these deficiencies by ad hoc assumptions. He gives
a procedure for finding the new Zu, and A, and then calcu-

late the Newman-Penrose components of the Weyl tensor.
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In spite of the actual failure of this attempt to
account for the slucctess of the Newman-Janis transformation,
Newman is probabiy right in looking to the Kerr-Schild
form of the metric to provide an explanation. This form
of the metric is sufficiently close to the linearized form
of the metric to enable it to behave in the same way as
does its linearized form under these imaginary translations.

These ad hoc procedures are sufficient to make up the

difference.

C. The Weyl Unitary Trick

The foregoing approaches to the complex transforma-
tions of solutions to Einstein's field equations, even were
they successful, would apply to only a small class of spaces.
I originally sought to discover more widely applicable
transformations.

Professor Howard Resnikoff suggested that the more
likely approach to this problem lay in Weyl's "unitary
trick." Weyl, in order to classify certain non-compact Lie
groups, rotated them onto a compact Lie group that was
already classified [9].

The most general way to perform this "trick" is to
complexify the tangent space to the manifold (the space of
vectors tangent to the curves in the manifold). Suppose
that the tangent spaces té two real manifolds arev: z:@e

~

spanned by the two sets of basis vector fields {gl,ez,...,enj
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and {el',ez',...,en'} respectively. Every vector field in

the first of these is some linear combination of these

vV = Xlel + kzez knen ’

where the ki's are real numbers. The same is true in the
primed space. By the complexification of these spaces is
meant that the xi's are allowed to take on complex values.
When this happens, the original manifold is now to be seen
as a real subspace of a 2n dimensional complex space.
Suppose that in this larger manifold, the two basis

sets can be related by a complex transformation

It is possible, by this means, to study the structure of
the one manifold in terms of the other. This is Weyl's
unitary trick.

Sometimes it is not necessary to do this through
the tangent spaces. Sometimes the manifold itself can be
rotated directly through its coordinate representation.
The example of this cited by Professor Resnikoff was that
of the circle,

x2 + y2 =1 .
If x and y are allowed to take on complex values, then

this is written,

(x + iw)2 + (y + iw)2 = 1 .
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Now the circle is just the subspace of this two dimensional
complex manifold u = w = 0. On the other hand, the manifold
u =y = 0 is the hyperbola

x2 - w2 =1 .

Any éppropmiateifunétipnndefinedfupenuthe*circiéybénabéyanal-
yticallyicontinued: fo. oneudefined upon: théezhypérbota.inFor ex-—
ample;.thé sinbis edntihwaedrndntonthe 5imh8q: the. tos6 .énto the
cosh®, etc. Most importantly, relations that hold for
these functions in one space, will hold in the other.
Thus cosze + sin29 = 1, and if @ - i@, then
cosh29 - sinhze =1.

It was this example that suggested to me the rotation
of the four dimensional sphere into the de Sitter universe.
The coordinate representation of this universe has long
been known to be the hyper-hyperboloid of one sheet embedded
in R° [10],

x2 + y2 + 22 + w2 - v2 =1 .

I realized that S4(R) could be rotated into this by means of
the coordinate transformation v - iv, the same one that
takes the circle into the hyperbola in the above example.

I next undertook the enumeration of all other four dimen-
sional spaces that could be obtained from S4(R) by such
transformations. There are three more of these besides
S4(R) and the de Sitter universe. These are the four
dimensional pseudosphere, the antidde Sitter universe, and

another space of signature zero which is of no interest here.
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My next thought was to extend these transformations
to other spaces besides these very simple ones. The
Schwarzschild space, for instance, does not have such a
readily available coordinate representation. If the
lessons learned from the de Sitter universe were to be ex-
tended to it, the more generally applicable method of
rotating the tangent space rather than the manifold itself
must be undertaken. To implement this for the rotation
of S4(R), the metric must be put in terms of the intrinsic
coordinates of the sphere (the spherical angles ¥, X, 6, 9,
and the tetrad of one-forms extracted. Two basic types of
rotation are required to do all of these transformations.
The first of these, designated as the type O transformation,
takes one of the legs of the tetrad of S4(R) and makes it
into the time-like leg of the de Sitter universe. This
same transformation makes one of the legs of the pseudo-
sphere into the time-like leg of the antitde é&tter universe.

The other transformation designated the type I trans-
formation changes the sign of the signature of the metrics.
Thus the type I transformation maps the de Sitter universe
onto the antikde Sitter universe, and the sphere onto the
pseudosphere.

The type O transformation from the four sphere to the
de Sitter universe involves the choice of a particular leg
of the tetrad of the sphere to be the time-like one in the
de Sitter universe. Since the legs of the tetrad of the

four sphere arezequivalent, there is no reason why that
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particular leg had to be chosen. There are three more legs,
and any one of them could have been made into the time-like
leg of the transformed space. Thus there are three other
spaces like the de Sitter universe that result from type O
transformations from the four sphere. By composing the
two type O transformations one can arrive at another trans-
formation from the de Sitter universe onto each of these
alternate universes. These transformations will involve
the exchange of one space—Lﬂ@ and the time-like leg of the
tetrad. These are called the type II transformations.

This can be done upon the antide Sitter universe also.
If a type I transformation is done upon the de Sitter
universe, and a type II is done upon the anti=de Sitter
universe which results, then one has a transformation from
the de Sitter universe to an alternate version of the
antidle Sitter universe. This composition of a type I trans-
formation with a type II transformation is called a type
III transformation.

In working through the example of the de Sitter
universe I found that four types of transformations will
relate a member of this family of spaces to any other member
of the family. The type O will relate positive or negative
definite metrics to Lorentz metrics. The type I relates
positive definite metrics to negative definite, and Lorentz
metrics to Lorentz metrics. Type II transformations are
useful in swapping the time-like legs of a Lorentz metric

with one of its space-like legs. Finally, the type III



13.
transformation is simply a composition of a type I and a
type II transformation.

Having worked out these transformations for the
S4(R) family of spaces, I investigate if these transforma-
tions have validity beyond this particular family of spaces.
This work is reported in Chapter III. The mathematical tools
that were used were Cartan's structure equation described
in Appendix A. For each type of transformation, these
equations permit the calculation of the structure function
of the transformed space in terms of those of the original
space. This in turn permits the components of the connec-
tion and the components of the curvature tensor for the
transformed space to be related to the same cbjects in the
original space.

For types I, II, and III, it is possible to calculate
the Einstein tensor. From this, I prove that a vacuum
solution of the field equations as: rotated onto another
vacuum solution by these transformations.

Although, normally, solutions that have Tij # 0
will not rotate onto other realistic solutions to the field
equation, adjustments can sometimes be made. An example of
this is the rotation of the Einstein static solution onto
the Godel universe. The necessary adjustment, in this case,
is a stretch in the time-like direction.

The next step in this work was to check the physical
significance of these transformations. This is done in

Chapter IV for two sets of parameters, the hydrodynamical
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parameters of the cosmological fluid, and the Newman-
Penrose spin coefficients. The first of these tells how
the behavior of test particles in the transform space,
relate to behavior of similar particles in the original
space. The latter tell how null fields (e.g. the photon
and graviton fields) propagate in this space.

The significance of these physical parameters are
explained in detail in order to make the thesis to some
extent self-contained. The way in which these parameters
transform in the family of space-times related to S4(R)
is described in some detail.

Finally, I felt that this work would be enhanced
if a more physical application could be made than the ones
already undertaken. Since the interest in complex trans-
formations began with the Schwarzschild metric, I returned
to it, originally in the hopes that the Newman-Janisstrans-
formation could be explained. This particular hope was
not realized but transformations were discovered that
related the Schwarzschild metric to the Kantowski-Sachs
metrics.

At the same time, I was anxious to find some sig-
nificant transformations on radiative metrics. The Bateman
metrics, and Robinson-Trautman metrics were natural can-
didates. These lead nowhere. The next candidates con-
sidered were the Einstein-Rosen-Bondi cylindrical waves.
These lead me to consider the Gowdy universes, tanat are

related to these waves. TTFwec things stood out about the
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Gowdy T3 universes. First of all, they included the
Kantowski-Sachs universes. Secondly, they all possessed
two hypersurface orthogonal, [30];=mutuvaltlyroathogenatespace-
like Killing vector fields. This meant that there should
be transformations that related them to the Weyl metrics
which possess two hypersurface orthogonal, mutually
orthogonal Killing vector fields, one time-like and one
space~like. There should be a family of Weyl metrics con-
taining the Schwarzschild metric related to these spaces
by a type II transformation.

These transformations were done after a careful
review of the properties of these metrics and in fact two
families of Weyl metrics were discovered. The first was,
of course, the ones related to the Schwarzschild metric ob-
tained by a type II transformation. The second was a
larger family of Weyl metrics.

In calculating the Newtonian potential for these
metrics, I found that both families contained terms that
indicated that they are the fields of the interior of a
shell of matter. The potentials of the two families of

metrics were distinguished by the presence of a point mass

at the origin in the class that contained the Schwarzschild

metric.

D. Future Prospects

The last section reviews the accomplishments of this

thesis. There are a number of problems yet to be considered
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before complex transformation can be considered an ade-
quately investigated technique for constructing solutions
to Einstein's equation.

First of all, more general transformations need to
be investigated. The first line of investigation in this
matter would be to pursue the effect of imaginary trans-
formation together with scale changes. An example of this
is the transformation of the Einstein static universe to
the Godel universe. Next, the matter of the Newman-Janis
transformation needsto be pursued. This has something to
do with the complex translations. Obviously, there is

something more to it than that, however.
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4
Chapter II - S (R)

A. Introduction

The idea of the complex rotation of a space is
actually quite simple. Before proceeding with the program
of this thesis, and setting forth the general results that
are to come, it seems best to first illustrate these ideas
with a simple example.

Consider the space S4(R), that is the ordinary 4-
sphere. As will be seen, this space can be rotated into
the de Sittef and anti<de Sitter universes which are well
known, well studied [14,15] cosmologies, and also into the
four dimensional pseudosphere.

These rotations will be done in Section A as a
simple coordinate rotation, but will later be done in
Section B by means of a tetrad rotation. Six other types
of spaces can be obtained from these by two different
types of rotations. These will serve as a model for the

general rotations that will be defined and examined in

the next chapter.

B. The Four Sphere

The coordinate representation of the four sphere
as imbedded in R5 is

x2 + y2 + z2 + w2 + u2 = 1

- 7



18.
with ‘
as? = ax? + ay? + dz? + aw® + du’ .
If the coordinates of S4(R) are allowed to become complex,
then it becomes the four dimensional complex space S4(C),

of which S4(R) is a real four dimensional subspace. This

is called the complexification of S4(R). A -

collection of real subspaces can be realized by setting
either the real or the imaginary part of each coordinate

equal to zero. This collection is

x+y2+z2+w2+u2=l S4(R)

x2 + y2 + 22 + w2 - u2 =1 de Sitter universe.;

x2 + y2 + 22 - w2 - u2 =1 space X

x2 + y2 - 22 - w2 - u2 =1 anFiékaSitter
universe:

x2 - y2 - 22 - w2 - u2 =1 pseudosphere

Of these, two spaces have Lorentz signature (the de Sitter
and anti<@e Sitter universes), two have positive or negative
definite signature {(the sphere and the pseudosphere) and
one (space x) has signature zero. The latter space is of
no interest here and will be dropped from consideration.
The remaining four will be studied further.

One can transform each space into the others by
imaginary rotations. For example, u - iu transforms
S4(R) into the de Sitter universes. This actually gives

little information about the spaces themselves. Additional

information can be gained by going to an intrinsic coor-
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dinate system, for example that of the spherical angles

x = cos{ sinX sin® coso
y = cos¥y sin¥X sin® sin®

z = cos{ sinX cos6

(II-1)
w = cosV¥ cos¥X
u = sinvy
The metric for S4(R) obtained from this is
ds? = ai? + cos?y(ax® + sin®y(d6? + sinZed¢?)) (I-2)
If u = iu, then { - it, and the metric becomes
d52 = —dt2 + coshzt(dx? + sinzx(de2 + sin29d¢?)) (I11-3)

just the metric for the de Sitter universes.

The antixzde Sitter universe-. is obtained from the
de Sitter by making two more coordinates imaginary. This
can be done by letting u become real again (t - it), and
then letting ¥ - i¥%, making x, y, and z imaginary. The

resulting metric is

d52 = dt2 - coszt(dx? + sinhzx(de2 + sinzedqg)) R (II-4)

which is the antidfle Sitter universes. This is further
transformed into the pseudosphere by the transformation

t - i, whose metric is

as? = —dwz - coszw(dx? + sinhzx(dez + sinzedqg) (I1-5)

Figure II-1 is a diagram of these results.
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Fig. II-1

C. The Tetrad Approach

The tangent space (space of contravariant vectors)
¢of any four dimensional manifold is spanned by four vectors

called a tetrad. These can be written in the form

X, = X.u-—éu , from which follow the transformation proper-

Tt ok
ties of contravariant vectors. The space of covariant

vectors is called the cotangent space, and its elements are

. . . . ' i i
caltled one forms which are written in the form w = Xuqxu.
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This space is obviously spanned by a tetrad of these one

forms. It is always possible to choose this basis so that

the metric can be written

- i

e digd —
guv nlg%{ U-X v ! (lvj 0111213)
where
nij = diag(e,1,1,1)

and where ¢ = +1 for signature + 4 spaces, and where

€ = -1 for signature + 2 spaces. If Xflixo“'L = ¢, and

xixju = 8% (i, 53=1,2,3), x$x°“:=oq then the tetrad is called
an orthonormal one, and the metric is said to be written in

normal form.

With these preliminaries, it is possible to exhibit

the tetrad of one-forms for the spaces that have been con-

sidered.

Sphere de Sitterx
w° ay dt
wl cosyay coshtdy
mz cos¥sin¥de coshtsinyde
w3 cosVysin¥xsinedy coshtsinysinede

Antiade Sitter Pseudosphere

o dt ay
wl costdy cosh¥dy (II-6)
w?  costsinhyde cosh{sinhyde
w3 costsinh¥sinedy coshiysinh¥sinede®

The transformations that have been made can now be

written down in terms of the effect on the tetrad of one
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forms. In going from the sphere to the de Sitter universe

the transformation was

0o (x') = -iw®(x")
wi'(x') = @i(x') (F2=7)
where wo(x') indicates the original one form, that has been
transformed by the coordinate transformation. For example,
for the sphere ¢°(x') = i dt, and uw°' (x') = -i(idt) = dt.

The transformation that was made from the de Sitter to the

antidde Sitter universe is
i o1 .
W' (x') = -iw (x'). (i=0,1,2,3) (II-8)

Using these two forms of the imaginary rotations, one can
transform from S4(R) to all of the spaces on Fig. II-1l.
In subsequent chapters these will be called the type 0
and type I transformations.respectively.

Returning to the list of four dimensional spaces, one
realizes that the coordinates x, y, 2, W, u are homogeneous
on R5, and can be interchanged. Thus, the de Sitter space

might be represented by

x2 - y2 + z2 + u2 + w2 =1 .

If the transformations to the intrinsic coordinate system
were correspondingly changed, the space would be exactly

the same as before. But if the two coordinate systems were
left in the same relationship as in II-1, the transformation
to the de Sitter universe might be effected by letting

® = it, ¥ - ¢ which gives the metric
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dsIZ = -cos2cps:i.nz)(sinze_dt2 + coszt‘.pd')(2 + coschsinz)(.de2
2
+ ag” . (a) (II-8)

This is equivalent to choosing w3 of,S4(R) rather than

o® for the time-like direction. The basic manifold here

is the same as the de Sitter space, but opposite points
have been identified in the space. This gives it a differ-
ent set of properties [14,16]. In terms of the tetrad
formalism, this space can be derived from the de Sitter
universe by exchanging the roles of the «° and w3, i.e.
making w3 rather than u° the time-like leg of the tetrad.

This is the transformation

ot (x') = i’ (x')

w3 (x') = -ie® (x*) (II-9)

0 (x') = Wi (x') . (a=1,2)

This suggests that two other spaces could be derived from
the de Sitter universe by making wl and wz the time-like
legs. Two other transformaticns similar to II-9 could be
written down, except m3 would be replaced by wl or wz.

These transformations are called Type II transformations.

The two additional metrics are
ds = —c052th2+d§2+coszgsinh2t(d92+sinh29dq?) (b) (II-8)

dsIII = -coszgsinzxdt2+d€2+coszg(dx?+sin2xsinh29d¢2)

(c) (TI-8)
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. Figure II-2 is drawn to illustrate II-8(b), where
yd

&// the 6 and @ coordinates have been suppressed. Tteisare

shown as embedded in R5.

e~ t
p LA

IDENTIFIED

-
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U ’
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Fig. II-2

This space is readily seen to violate causality, but a
covering space can be constructed such that this does not

happen. This becomes evident if c052C is factored from

the metric

2
cos“C
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: _cdc¢ 7, &
Letting r = S cost in tan(4 + 2)

one obtains the metric

ds 2 = sechzr(—dt2

T + dr2 + sinh?t (6% + sinh2ed¢?) .,

which does not violate causality.

The other spaces obtained in this way have for their

(r,t) space the two sphere, and so essentially violate
causality. If a type II transformation is done on the
anti-de Sitter universe, three other universes would be
derived from it. Since, however, the antisie Sitter uni-
verse is derived from the de Sitter by a type I transfor-
mation, these varieties of the antiédesittef universe
could be obtained from the de Sittexr by this combination

of type I and type II, which we call type III.
D. Summary

whe four sphere is a manifold that can be embedded

in RS, and in terms of the coordinates of R5, has the

simple expression

x2 + y2 + 22 + w2 + u2 =1 .

A set of imaginary rotations has been constructed for this

space which transforms it into the de Sitter universe,

the antidsde Sitter universe, and the pseudosphere. These

are
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u - iu x2+y2+zg+w2-u2 =1 de Sitter universe
u = lu. 2 2 2 2 e s :

w = lw} X“+yTrzt=w-u"= 1 anti<de Sitter universe
z = iz

u - iu

W : w xz—yz—zz—wz—u2 = 1 pseudosphere.

z iz

y - w

The metrics for these spaces can be calculated in

terms of the spherical angles {, X, ©, @, and they are

d52 = d¢2+coszw(dx?+sinzx(d92+sin29d¢?) (sphere),
d52 = -dt2+cosh2t(dx?+sin2x(d92+sin29d¢8) (de Sitter),
ds2 = —dt2+coszt(dx?+sinh2x(d92+sin29dm2) (antixde Sitter),

222 2,2 . 2. 2
ds® = +dt"+cosh”"t (dx +sinh”X(d8"+sin"6dy") (pseudosphere) .

The transformationsggiwen above are now given by

¥y - it sphere — de Sitter
t - it de Sitter - antisde Sitter
X = iy sphere - pseudosphere.

The metrics above are in normal form and can be

written

ds2 = e(w632+(m%2-+(w%2 +(w3)2

where € = +1 for the sphere and pseudosphere and € = -1

for the de Sitter and antisde Sitter universes, and where
{wl} is an orthonormal tetrad of one forms. The trans-
formation above can be given in terms of this orthonormal

tetrad. The first of these, that transform the sphere into
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the de Sitter universe, is given by

ol = ot , (4i=1,2,3)

‘and these are called the type 0 transformation. The
second transformation, which transforms the sphere into
the pseudosphere and the de Sitter universe into the
antide Sitter universe, are given by

wi' = i wi ’
and these are called type I.

In addition to these two rotations, two more are
needed for completeness. In making the type O transforma-
tion from the four-sphere to the de Sitter universe, a par-
ticular leg of the orthonormal tetrad of the sphere was
chosen to be the time-like leg of the de Sitter universe.
Three other possible choices could be made. If the de
Sitter universe is rotated back upon the four-sphere, a
new leg rotated as the time-like leg of the new space,

this would be equivalent to

(o) .

w ' = -1 wa

a .

W' = -1 mo

o' =w (5 =0,2)

where w® is a space-like leg and 0° is the time-like leg
in the de Sitter universe. These are called type II trans-

formations.
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Finally, a type III transformation is defined to be

the composition of a type II transformation, and a type I

transformation.

If a type II transformation was done

upon the de Sitter universe, then a type III transformation

woedd: Sredatke that space to the antide Sitter universe.

II

IIT

Table of Transformations

Example

4-sphere
-~ de Sitterxr
universe

de Sitterxr
universe
- antide Sitter

egdhange of

W and W

in the de
Sitter universe

space that
results from
exchange of w
and w” in the
de Sitter uni-
verse
- anti<de Sitter
universe

Tetrad Transformation

0®r (x")

ot (x')

wi'(X')

w®r (x')
W (x')
wh (x')

W (x*)
w?r (x*)

1
@

(x')

-i0% (x")
wh(x')  (i=1,2,3)

-i wh(x') (i=0,1,2,3)

-1 wa
-i 7w (x")
wh(x')  (izo,a)

—0? (x')
0 (x")

. i .
-i w {x') {ifo,a)
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Chapter III

Tetrad Transformations

A. Introduction

In the previous chapter, the space S4(R) was rotated
into the de Sitter and anti~de Sitter universes, and into
the pseudosphere by two tetrad rotations that were called
type 0 and type I respectively. Another transformation was
given that exchanged the time-like leg of the tetrad with
one of the space-like legs in the de Sitter and anti-de
Sitter universes. =This was called a type II transformation.
Finally, the combination of the type II with type I was
called a type III transformation. There, the example sug-
gested the transformations, and no rigorous basis was laid
for their general application.

In this chapter, each of these transformations will be
investigated, and general identities given between the impor-
tant geometrical object of the original space and the cor-
responding object in the transformed space. It will be shown
that a space derived from a solution to the field equation
with Tij = 0 by means of a type I, II, or III transformation
is itself a solution to those equations. Finally two ex-

ceptions are noted and explained.

B. Type 0 Transformations

In the previous section, a type O transformation was

defined to fit a specific example, the rotation of S4(R)
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into de Sitter space. More generally, a complex transfor-
mation is

i

x! =xll(xj) (koj = 0111213)

such that

P (x') =-i0°(x")
U.)i' (X') = UJl(X') (l = 11213) ’

i i
(x'), and w (x') are real one forms,

where wol(x'), w
and o° (x') is imaginary. This ensures that the transformed
space is again a real space, and that the tangent and
cotangent spaces are real vector spaces. In the original
positive definite space,

5 2 .2

ds” = A wl .

The transformed space is Lorentz signature because o° (x')
is imaginary.

The general relations between the components of the
connection of the transformed space and those of the

original space can be derived from the structure equations

(see Appendix BA)
i| il . St il kl N}
aut (x')=uw' jAw} = - L, WA .
(x') 3 % Cig

In terms of the time-like and space-like components, one

has (a = 1,2,3)

ol ol ol al ol al ‘bl
dw” (x') = - % Cl, .\ Aw® -5 C 0 Ay
L [}
=% icg,a, wae? - 4 Cg,b,wgwdb==~idw°(x')

i (o O Op 3 _ 0 0Oa Db
= -i(- % coaw/j.m % cabw/\-m) .
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From this,

Cora' = %a * Cap' T 1Cwn (I1I-1la)
and
d@Wr)=—zc§wWth-%C;d$kf'
=% 1c2:b,w9&&b -k cg:c,&ékwc
= dw?(x') = - % cibw/ﬁQb - % cgcdgﬁwc .
Thus,
Cipr = i Cop ¢ Cpigr = Cpo - (TTI-IB)
)O From (@-¥2) the coefficients of the connection can be

calculated to be

o' _ t© o' _ _: 1© a' _ s oma
ro'a' =Toa ra'b' = gﬂj o Tompr =1 1-\ob
and
a' _ i Ta _
Eb'O' = i rbo . (I11-2)
- .
Since w' j' = P;.wk, one has
J
o' , _ o b' o' o_ ..o b O Oy —_ :°
W a' = Tb,a,m + ro'a'w l(rbaw + roam ) =-iw a,
1

w® o' = iwao, and
wa'b' = wab .

Using the remaining structure equation, the components of

the curvature tensor can be calculated as
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Tt t
R 3

o' o' e' o' o' . L RS'a'b'ciubirus!
dw- a' - o e'Aw a' + Roigipt® N° T 92 Eo ii'b'c'wg/\&c

) T
= + imoeiwea - ir°® a'o'b'w%ﬁﬁb + % Rp a'b'c'wg&wc

= -idwa = %iwiwogﬁwea - iRpaobwe&Qb - %-Rpabcd§1wc ,
and

R(a):o'b' = ROy - Rg:b'c' = iRG . - (I1I-3a)
In the same way, one gets

Rla):o'd' = iRiod ! Rg'c'd' = R;cd * (III-3b)

Contrasting these, one gets the Ricci tensor and scalar

curvature..

(ITI-3c)
Suppose that the transformed space is a solution of the

field equation

- 1 ' Y = K
Rolol 2 ﬂo' |R + A'nolol TO'O'
R ta =LC( T 1ot
a o O a

- L ] - K
Ra'b' 2 nalblR + nnalbl K‘ Tal'bl

since the transformed space is of Lorentz signature4f+2),
and the original space is positive definite, the primed

and unprimed metrics are

ni.j' = dlag(—l,l,l,l)
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and nij = diag(i,1,1,1), or

oot = "Moo’ Marp' = Nab *

Transforming the field equations

This shows that one can define a stress—energy tensor on

the positive definite metric such that

T 1 1 = = T

o'o 00

Toige = =i T, (III-4)
Ta'b' = Tab -

For Ti'j' to be that of a perfect fluid requires only that

u' = -i u,, as would be expected.

1
O

C. Type..IiTransformation

1fx't=x1x)) is a complex transformation that

induces (in the sense discussed for the type O transforma-
tion) a transformation on the tetrad of one forms such that:

ol (x') = —iet(x')

then the components of the connection can be calculated as

before
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iv, ., i! 3 Ak i’ k
dw (x') = - % lekan/&w =% Cj,k,UJJAU.)
= —ide' (x') = i cf wlAe®

jk )
Therefore

i R §
Cj'k' 1 Cjk ’

i .
Tiige = i r;k , (I1I-5)
ot = wl .

J ]

This means that

il

i k! i k'n A
= - 1. Y-
dwjl wklf{mjl + %3 Rj'k'fa'w ./,UJ
ios K. i’ kAL
= - 4 -— ;’ 7
UJlk,QID J 2 R"j'klzlwhh
i ig k i < &
= dwj = - mk/&wj + % Rj_zwgkw ’
giving
1 — l (TTT.
Rj,k.z, Rjkfl (I 63)
and Rij = - Rij . (I11I-6b)

But due to the fact that ﬁi'

sk ij
and
C ey = ! L., =K
Rlljl 2 nltle + ﬁnlljl Tlljl
- l’ « . . s = - ¢ . -
Rij 3 Mg R+ AN K iy
Thus
T.,y =-T.., . TIT-T7S
13 13
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In general, this transformation rotates a universe
with positive energy density and pressure into one with
negative energy density and pressure. The sign of the
cosmological constant is also changed (the form of the
field equations changes with the change of the sign of the
signature).

Before going on to discuss the other two types of
transformations, it is interesting to note an apparent
exception to the above. The metric of the dust filled

Robertson-Walker universe, with k = +1, can be written

dsz = —dt2 + R2(dx?+sin2x(d92+sin29dw?)) ,

where

R = Ro(l - cosn)

o
il

R (M - sinm) .
A type I transformation on this metric is t = it, and
X - i¥x yielding the metric

ds? = at?-r? (@x%+sinh?y (@6%+sin“0de’)

with

R = Ro(l - cosh 1) ,

t = Ro(ﬂ - sinh n) .
This is the R. W. (k = -1) universe except that R has the
opposite of its usual sign. The R. W. (k = -1) universe

is known to have positive energy density.
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The explanation for this apparent discrepancy from

the above results lies in the fact that, for this universe,

p ~ R_3. When the type I transformation is made from the

k

+1 to the k = -1 universe, the energy density is indeed
negative, but $0 is R. The change to the usual sign for

R corrects the negative sign of p. This example stands as
a warning against the simplistic generalizations from the

properties of these transformations.

D. Types II and III Transformations

A complex transformation of type II transforms the

tetrad of one-forms as

P (x') = - iwt(x')
wl'(x') = - iw°(x") (I11-7)
wi(x') = w (x') .

The components of the structure tensor and the connection
must be calculated. This is done by means of the structure
equations, as before. From this, the ddemtitiesraedating
the components of the structure tensor and the components

of the connection of the original and transformed spaces

are

o' _ .al . 1 _ .0 . a _ A2
Cligr = iC; 7 Coiyr = 1Cp 7 Cgr1r = Co1
o _ .1 . a1 _ _.0 . 0 _a
Ca'b' = -1Cp ? Ca'b‘ - 1Cab d CO'a' - Cla
C1'a' = COa 7 cO'a' = cla i cl'a' = cOa
a' - | . a' _ ..a . a' _.a’
Coipr = i€l 7 Cipr = iCo, 7 Gpigr = Gpor
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o' _ .-l . a' _ _ 7a . a' _ _ ra
Topr = i1 7 Toior =~ T31 7 Tgrpo Do
ra' - _ 18 . l—\a' - _ ra . rl' - I\0
] 1 4 ] 1 14 lOl l
1'0 . 0l . 1'1 100 la a ; (III-8D)
Ol _ . 1 _ _ . . _ _ .
ra'l' - raO ’ ra'b' - lrab d ra'b' - lrab
a' _ era . a' - i@ . a' a
Tgipr = ¥yy 7 Toepe = 80gy 7 Thigr = Iy

Also, using the second structure equation, the

components of the curvature tensor may be calculated:

0! 1 .0 1

Ryigrir = Rgor 7 Rivgrar = * Roia

R(]).:l'a' = iRéOa d Rg:b'a' = R(:g'ba

Roigipe = Ry Roipipe = Roop (I11-9a)
Roipier = = iR R;i1'pe = Raob

Ri:b'c' =7 iRgbc d Rz:c'd' = Rgcd

From these, the Ricci tensor is obtained:

R = - R R = i R

0o'o’ 11 O'a' la
Rllll = - ROO Rl'a' = 1 Roa (III—gb)
Rabt = Rap Ryt = 7 Rgp

It is to be seen from this that only if Tij = 0 will one
solution to the field equation be rotated onto another.

It is possible, however, that such a transformation could
be made, and that ia could be a solution of the field
equations if one leg of the tetrad is "stretched," i.e. if
the scale is changed in the direction of that particular

leg. An example of this will be seen in connection with
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the type III transformation, which will be discussed next.
If a complex coordinate transformation induces the

transformation on the tetrad

o° (x') = - b (x")

1’ ' = - O '

¢ ,(x ) N éx ) (III-10)
w2 (x') = - iw?(x')

w3'(x') = - iw3(X') .

then it is a type III transformation. It is easy to see
that this space will be a solution of the homogeneous field
equations if the original space was. &his follows from the
fact the type III transformation is simply a type I trans-
formation followed by type II transformation. Using the
same methods previously employed, identities between the
components of the structure tensor, the connectionﬁ, in

the original and transformed spaces are

2l = - Coy 7 Chupr = 8CH ==,
O A T (TR 8
Ci:a‘ - icga i nga‘ = iCéa : Cé:a. = icg)_a (TT1-11)
cg:b- = - cly ¢ ci‘:b. = - Coy 7 cla)c - Cgc
10, =-Tly 7+ Trge =-T9y ¢ Tgigr = -iTqg
Ti:o' = - ngl : Tg:l. = irio : ri:l' - lrgo
Tg:l. = irio : Tg:b. = rib (T11-12)
ri:b' B rgb ’ l-‘g:b' =-Tp ° ri:b' rgb
fg:c'._ lrﬁc
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This gives the following relations between the- components
of the curvature tensor and the Ricci tensor in the
original and the transformed spaces

0 __ gl 0 1

Riigryr =~ Rgor 7 Rpirirar = 7 Rooa

Rgto'a' = - iRéla ; Rlipigr = - Ropa

Rg:O'b' = - Ry Ri:l'b' = - Ry

Ri:o'b' = _‘Rglb ; Rg:b'c' = iRibc (III-13)
Ri:b'c' = iRgbc i R3:3'2' = - R332

Ryigr =~ Ry 7 Ryupn = = Rpg 7 Rgupe = 7 Ry

Rorar =~ iRy, 7 Rpige = - iRoa 7 Ragp = 7 Ryp

As has been seen, the type II transformation on the de
Sitter universe exchanges a space-like leg of the tetrad
and the time-like one. Acting on the antidie Sitter uni-
verse, it does the same thing. Obviously, a type III
transformation maps the de Sitter onto one of these ver-
sions of the antidde Sitter universe, .and vice versa.
More generally, by relabeling the space-like legs

of the tetrad, a type III transformation can be written

' = w?
w?' = u°
wl'=dw
w3' = -iwl

The effect of this transformation dssto interchange £ and

m, and n and m, where £, n, m are the usual pseudoortho-
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normal tetrad of the Newman-Penrose formalism (see Appendix
B]. Under some circumstances, this is a very significant

transformation.

E. The Transformation of the Einstein-Static Univexrse into

the Godel Universe

An example of the type III transformation plus a
"time-like stretch" is the transformation of the Einstein
static universe into the GOdel universe [11,12]. From
previous results, a type III transformation from the
Einstein static universe would not be expected to yield a
solution to the field equations since Tuvﬁ#ﬁﬁ. In this case,
however, a "stretch" along the %E direction enables one to
obtain another solution to the field equations.

The Einstein static universe is R x S3, where R is
the time-line, and S3 is the space-like hypersurface. 1In
this transformation the space-like hypersurface becomes a
time-like hypersurface, and R is now simply an ignorable

space-like coordinate.

The metric for the Einstein static universe is

d52 = - dt2+-%(c 2 + O 2 + C 2)
X v 4

where the Gi's are the left invariant one-forms of 53 in

euler angle coordinates [13], given by

cz = - (dV + cosedy)
O, = sin{d® - cosi¥sin@dy
0 = cos{d® + sinysinedey .
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The transformation is

6 = - (2ir + M , de = - 2idr ,
y = 2t + @, ay = /2 dt + do ,
t=12z . dt = dz .

In terms of these variables, the one-forms are

0 = - (J2 dt + dy-+ cos (2ir+T)dy)
= - (W2 dt + dg - cosh 2r dy)
= - J2(dt - 42 sinh? r dg) ]

cx = sin (ﬁ t + o) (-2idr) - cos (ﬁ t+e) sinf~(2ir+m)}de
= -2i(sin (W2 t+@)dr + cos (W2 t+®)sinh r cosh r doy)

0 = cos (W2 t+9) (-2idr) + sin (W2 t+®)sin[-(2ir+m)]1de

= =21i(cos (JE t+y)dr - sin (W2 t+®)sinh r cosh r dy)

If one sets

N
NI Q NL:Q N| a
N Y] o

then in the new coordinates
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w- = dz
wl = -if[sin (ﬁ t+p)dr + cos (V2 t+y)sinh r cosh r d¢]
wz = —i[cos(JE t+y)dr - sin(Jf t+®) sinh r cosh r dg]
w3 = —-—é-(dt - JE sinh3 r do)
N2
so that
u)o, - w3 ,
w3' - wo ,
wl' = -iw” ,
mz' = —iw™ ,

and one has a type III transformation. A simple calcula-
tion of the Ricci tensor proves that this does not yield a
physical solution to the field equations (Tij = 4 iqéj,).
However, if the tetrad of one-forms is chosen so that

moll - A/E wol

wlll = wll ’
that is:
" = —(dt - J2 sinh r do)
ol = -[cos (V2 t+9)dr - sin(J/2 t+®)sinh r cosh r d¢]
wz" = ~[sin (V2 t+o)dr + cos (W2 t+p)sinh r cosh r dg]
w3" = dz ,

then this is a solution to the field eguation with the

metric

ds = -(dt—+2 sinhzr dcp)2 + dr2 + cosh2 r sinh2 r d¢?+dz2
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This is just the second form of the metric for the G&del

universe.

Conclusion

F.
The following is a summary of the results of this
chapter.
l. Type 0 transformation
o (x') = -ie®(x")
ot x') = ot x') (4 = 1,2,3)
Components of the connection
rg‘a' - rga g rg:b' - 'irgb i Top = Fop
Mo = iThg
Components of the curvature tensor
R ion = Raop 7 Pawprer = ~ifgpe
R*i:o'd' = iRy R1a>:c'd' = Req
2. Type I transformation

ol (%) = - iet(x)

The connection

it R -
Tj 1t = lrjk

The curvature tensor

it i

Rovgrgr = Ryky
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3. Type II transformation
o' (x') = —iwt(x')
ot (%) = i (x')
ol (xt) = i)

The connection
rg:l' irio 7 rg:o' ’Fil g rg:l' = 'Tio
Ti:o' —rgl ; ri:l' = Too 7 Ti:o' = rgl
rg:l' T:o g rg:b' = 'irib 7 ri'b' = _irgb
rg:b' = irib g ri:b' = irgb g r;'c' - r;c
The curvature tensor

Rcl):O'l' = R(1301 : R?.:O'a' lRéla
R?.:l'a' - iRg)-Oa d R(]).:b'a' - Réba
Rigrpr Rilb P Raupip: RiOb
Rg:b'c' = iR Ri:l'b' = Raob
R(g':b'c' = eu."Rgbc g Rla):c'd' = Rf;cd

4. Type IITI transformation
o®' (x) = —whx")
ot (x') = -0 (x")
02’ (x') = -iw® (x')
o (x') = —iw (x')
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The connection

rg:l' = ’rio d ri:o' “rgl g Tg:o' = -iTqy

r?:o' = -ilgy rg:l' = -iljg rizl' = -l

rg:l' = 1r;0 d rg:b' = rib d r;:b' gb

o =T ¢ Tiipr = 'Tgb i Ther = ilp
The curvature tensor

Ry.gipe = 'R301 ; Rg:l'a' = —iRéOa

R igrgar = eiRcl>1a ; Rpupige = -Réba

Rg:O'b' = _Rilb ; Ri:l'b' = ’R20b

Ri:O'b' = —Rglb ; Rg:b'¢' = iRibc

Riiprer = iRgbc P Ryigip = ‘Rg32
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Chapter IV

Physical Interpretation of These Transformations

A. Introduction

In order to give some physical meaning to the fore-
going results, one must relate the physical characteristics
of the original space to those of the transformed space.
This can be done for two sets of parameters.

All elementary cosmologies are constructed on the
premise that the universe is a perfect fluid. The hydro-
dynamical parameters that characterize such a universe are
treated in Section B. These parameters describe the motion
of the fluid and represent a decomposition of the proper-
ties of the covariant derivative of u, the tangent to
the streamlines, onto a hypersurface orthogonal to the
streamlines. The first such parameter is 8, the trace of
this projection of up;v’ It is a measure of the rate at
which neighboring streamlines diverge or converge. When
this quantity is subtracted from the projection of LAPINE
a traceless matrix remains. The antisymmetric part of
this is the vorticity tensor, Wove which measures the rate
at which the streamlines of matter twist about each other.
The symmetric part is the shear, cuv, which measures the
anisotropy of the expansion of the fluid. When 6, ©

. by’

and‘wuv are expressed with respect to the orthonormal

tetrad, they are the trace, the symmetric and the anti-
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symmetric parts of a 3 x 3 matrix. They can be directly
and simply related to the components of the connection,
whose transformation properties were studied in the last
chapter. Once these parameters are known for eneespace,
they can be calculated for all the spaces that can be
obtained from it by a type I, II or III transformation.

The de Sitter universe and its transforms are examples
of this.

The second set of important parameters that charac-
terize a space are those relating to the null paths of
that space. These are the twelve spin coefficients of the
Newman-Penrose formalism, and the five components of the
complex Weyl tensor which are treated in Section C.

The orthonormal tetrad formalism employs a tetrad
of vectors to span the space of the vector fields of the
space time, one of which is time-like, and the other three
of which are space-like. The Newman-Penrose formalism
employs two null vectors 4 and n, and two space-like
vectors which are contained in the real and imaginary parts
of a complex vector, m. The spin coefficients are to these
vectors what the cqmponents of the connection are to the
orthonormal tetrad. Two of these tell whether or not the
null paths tangent to £ and n are geodesics, and two more
tell whether or not the parameters used are affine or not.
If these two vectors are geodesic, then there are four
other spin coefficients that give the expansion, vorticity,

and shear of their paths.
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The spin coefficients of this formalism are combina-
tions of the components of the connection in the tetrad
formalism, and hence their transformation properties are
known. These can be generally stated for the case of the
type I transformation, but not for the others since the
time-like vector can swap with any of the three space-like
vectors under these transformations. The examples of the
de Sitter universe, and its transforms are worked out.
In the de Sitter universe, the two null vectors 4 and n
are geodesics. When w° is swapped with wl, 2 and n keep
their identity, and are still geodesic. But when o° is
swapped with w2 or wg, then wl must be swapped with w3 or
wz respectively for the new £ and n to be geodesic.

This situation is true for all algebraically -
speeial= metrics, and merits a separate investigation in

Section D.

B. Hydrodynamical Parameters

As has been indicated, most cosmologies are con-
structed on the premise that the universe is a perfect
fluid. In terms of finding a solution to Einstein's field

equations this means that

Tij = (P + p)uiuj + ﬂij

where P is the fluid pressure, p its density, and u is the

vector tangent to its streamlines.
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The tangent to the streamlines of the fluid must be
time-like and can be chosen to be the time-like leg of the
orthonormal tetrad. A Lorentz transformation will put it
into the form u = 3/3t Psee Appendix A, Section A). The
motion of the fluid is characterized by the covariant
derivative of u (or Xo), which is customarily decomposed
into three parts.

The first "piece" of Uy

vl

trace u -ﬁ This quantity measures the isotropic expansion

of the fluid, as can be seen from the following elementary

that is important is its

considerations.

From the rule on covariant gradients,

uu:‘.i = _B_ (A/-'; u}-l) .

1
T J=g 3 <M
Suppose that uLl is geodesic, and that the coordinate
system is cartesian at a point (and hence along a geodesic).
An infinitesimal volume AV is constructed about the geo-
desic, bounded on the sides by geodesics, and on the top
and bottom by surface increments that are orthogonal to
the geodesics, and having areas Al and A2 = Al + AA. This
is illustrated in Fig. [IV-1la].

Integrating over the 4-volume:

apav = (2= = = WMV a*x
S S«/—g— M

]
[ g ]
.j
q
&
o
Q.
")
o
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Two cases where the spacetime is
singular at 4 = !Lo.

Fig. [Iv-1]



(c)

The case where uu;u - L <0, and
the sheaf of geodesics has an inter-
section in the past.

()

The case where uu;u - - o, £ >0, and the

sheaf of geodesics has an intersection in
the future.
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where ds is the element of area orthogonal to the xu

W
coordinate direction, and 4S is the element of area

orthogonal to u®. In this infinitesimal volume,

™

5
R

:ﬁ Ale

ox

If now, u“;ﬁ_> 0, dA/d4 > 0, and the area orthogonal to u,
the cross section of a sheaf of geodesics, will increase as

4 increases. If uLl

sp = 0, this area will remain constant,
and if uu?u<:0, it will decrease. Thus, u“fgisa measure
of the rate at which neighboring geodesics converge or
diverge. It must be noted that this deduction is based upon
the behavior of a sheaf of geodesics, and‘%% is a measure
of the rate of change of the "cross section" of this‘sheaf.
Nothing is indicated as tc the shape of the cross section

or how the geodesics cross it.
Integrating the expression above, the behavior of A

over some small increment will be approximately
- !
A ~ expl (0¥, yas]

When uu;ﬂ - 0, as has been said before, A remains constant,
and the geodesics neither converge or diverge. Another

case that needs to be considered is what happens when

u“;ﬁ becomes singular, i.e. when u":y - @ or uulﬁ
In the cases where u“;ﬁ - ®, 4 >0 or uuzﬁ . _w, 3 <0,

A = ®. If & remains finite, then this space-time has a

- - =
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singularity, since these geodesics could not be continued
beyond that value of %£. This is illustrated in Fig. [IV-1Db].
If, on the other hand, uuéﬁ -®, § <0, or u“&ﬁ.“ - %,

4 >0, then A = 0. In the first instance, it means that

the geodesics are diverging from a point. In the second

instance, it means that they are converging toward omne.

These are illustrated in Fig. [IV-1lc and d].

There is another "piece" of Y.y that has obvious

significance. %his is the antisymmetric part of it. The

[usvl = c )

some relation to the vorticity of the fluid, as it does in

i = L -
quantity u 5 (uu’v uv'u) should have

TR VT
classical hydrodynamics. The difference is that in classi-
cal hydrodynamics, the vorticity is related to the three
dimensional curl of the velocity vector field, whereas in
this case, it is related to a four dimensional "curl."

It is necessary to reduce the dimensionality of this quan-

tity. This can be done by projecting u onto the hyper-

[wrv]
surface orthogonal to u by means of the projection operator
Y Proj P

huv = (guv + uugv) [4]. The resulting vorticity tensor is

o)

, = P
W h hv u[b’c] .

uy u

This, now, is a genuine, three dimensional "curl" that is
related to the rate at which the cosmological fluid rotates
in its rest frame.

The tensor that describes the way that the cosmologi-

cal fluid "flows" is LTINT Two "pieces" of this represent
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important parameters describing this flow. One of these is
the vorticity tensor that measures the rotation of the fluid.
The other is the divergence of the fluid. If the original

tensor . is projected upon the hypersurface orthogonal.

to it and the vorticity subtracted off, there remains

_ e c _
euv"hu N T

_ . P, 0O L. P, 0
hy by wp. s - By By U e
_ P c -1 -
=h, b, (uy -l g - ug )
=h Phn: =h Pn’
hy" hy (ug o Ug, ) =Ry R U,y

where ( ) always denotes symmetrization. The trace of this

tensor is

0\
v

LQ.

(Gup+uupp)(6vc+uvuc) % (u + u )

n

Vv c g o] g
gu (éupé +6upuvu + u Lpév + uugvupu Y5 (u ot )

il
Q
+
ol
o
e
e
4o
o
~

Now, the trace free part of Suv is what remains after the

vorticity and expansion have been subtracted from uu , and

’

it is called the shear

h .
_ P g _ By
Tuv = By By U(p;m) 3 ©
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o

where 8 = g = up;,u. Since the trace of eu\) is ’

(§RV)
the isotropic expansion, it might be concluded thatzeauw
is an expansion tensor. This means that the shear, the

expansion tensor minus its isotropic part, is a measure of

the anisotropy of the expansion.

To reiterate, Uy is decomposed into three parts,
Expansion: 6 = uu;u (IVv-1la)
Vorticity: g =h P h cu (IV-1b)

My BTy Tlesol
Shear: o _ =h °h % -in e (IV-1c)
3V B v T (prOo) 3 TRy

These quantities are illustrated in Fig. [IV-2].

The next step is to express these quantities with

respect to the tetrad basis

o M

V. p O _ Juy
i3 ~ %1 %y yh g g 3 ©)

M v o, ©
Xi Xj (hu hv u

w.

ij [p;01’

To evaluate these expressions, one needs

p _ i 5 P Oy _- P_s O _ {0 ifi=0
x.l“‘nLL =% +u ) =x°-5% IS(

BooM s S P if i=az0
Now, these definitions become
8
_ _ 0., O _ _ab
cij = %b = %2 % Y(p;0) 3 O
8
_ —ab
= %@ T3 ©
' o) o) 6ab
= ;’ — -
z(Tab +0,,) -5 e (IV-2a)

= =% c_ Oy = °© -
dt'}ij Yab 2(‘rab I"ba ) g Cab (IV-2Db)



Case of simple expansion.
Geodesics orthogonal to Ay
and A.,, and shape of A
simply and isotropically
enlarged.

(b)

Case of simple vorticity:
Al = A,, and the shape of
AT is éxactly that of A,,
but the congruences twist
around each other. -

STREAMLINES

P>b; 833 By
H’.: n;
(c)

@ =W, =0, 04 #0

Consequently A, = A,, but
the circular £fOrm o% is
squeezed into the elongated
elipse of A2.

Figure [IV-2]

Illustration of the physi-
cal meaning of the
expansion (a), vorticity
(b), and shear (c).
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From (a) above, one concludes that
(IV-2c)

Before going on to discuss the transformation proper<i
ties of these parameters, it is necessary at this point to
make note of the fact that solutions of the field equations
that do transform "well" under the transformations dis-
cussed here, are, in fact, empty spaces. They have no
fluid and hence no actual velocity field. This, however,
does not affect the significance of the hydrodynamical
parameters. In empty space solutions, it is customary to
introduce "test particles" into the space, and the vector
u now becomes tangent to the geodesics which these particles
follow.

With the definition of these hydrodynamical parameters,
their transformation properties can be studied. The trans-
formation of rabo and Cabo under each of the complex tetrad
transformations is required. The following table summarizes

these results.

o' _ _.:rO" o' _ _:pq0 _
Type 1: ra'b' = lrab ca'b' = lcab (a=1,2,3)
o' _ _srl o' _ _asnl lo] 1
Type II: rl'a' - lroa I\a'b' lI\ab 1-\ll B lI‘oo
(a=2, 3)
of R § o' _ial
Ciivar = "*5a Carp: 1Cp
o' _ ixl | O _ o~ ol
Type III: rl'a = lroa : ra'b' = Tab : ral = lrao
o _ 1
rll roo
c®' = ict c°’ 1 c© 1
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3 - =1 - 10
For a type I transformation, © ie , S.p ¥

Wop T T

The information that this gives is that
rotational universes transform into rotational.universes,
and irrotational ones into irratational ones. The same
applies to the shear. Shear free univerées transform into
shear free ones, and shearing ones into shearing ones.
There are many simple instances (e.g. the de Sitter
universe) where the expansion 6 = ©(t) where t is the time,
and where one of the coordinate transformation inducing
the type I transformations is t - it. Under the type I
transformation, 8' = Ti:o. = —ifi; = -i@
that @ (it') = * i .8(t'), and @ is an odd function of t.

. But this means

Consider seven of these odd functions t, .sinii, tantt, cot' t,
sinh-t, tanhtt, coth-t. In the following table, the zeros

and infinities of these functions and their transformed
spaces are displayed. Since the transforms of these func-
tions are included among the functions themselves, the table
can be read so that either the unprimed quantities (labeled
U) represent the original space, and the primed guantities

(labeled P) the transformed space, or vice versa.

e Zeros Neg. Inf. Pos. Inf.
U P U P U P_ U P
a) t X 0 0 = = N — ®
b) sin sinh t' nm 0 - _ - - + -
c) tan t tanh t' nm 0 (2n+l)§ - (2n+l)§
d) cot t coth t' (2n+l)g - nm o~ nﬂ* 0+

(The small +'s and -'s indicate that this value is approached
from the direction of increasing (+) or decreasing (-) t.)
The behavior of each of these spaces is indicated in

Fig. [IV-3j.
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LIHIT;

@ = tan t 8' = tanh t'
geodesics diverge as t - /2 or
t - -1/2

\ I

'

S ol s
asvnﬁron/j
LitayT
(d)

@ = cot t 8' = -coth t'
geodesics cross at £t =0 geodesics diverge
at t =0
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Less general information can be deduced from the

transformation of the connection in the case of the types

ITI and III transformations since 0. - T%., and TT. is
1] 1] 1]
less amenable to interpretation than is ng.

The example of the de Sitter universe, that has been
used previously, illustrates the properties of these trans-
formed spaces.

First of all, the components of the connection for

the de Sitter universe are

T =T = T3 = tanh t
30

2 _ 3 _ cot x
I'31 =131 = Gosh € (Tv-3)

1.\3 _ cot é
32 7 cosh t sin x

The parameters for this universe are then

o

3 tanh t

Oab =0= UJab

If a type I transformation is done upon the de Sitter uni-
verse, then, in accord with the previous claims, the new

parameters will be

@' = -3 tan t

cl

ab = Yip =0 -

The picture of the behavior of this universe (the antidde
Sitter universe) is like that in Fig. [IV-C2], where the

right side represents the de Sitter universe, and the left
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side that of the antide Sitter universe. A type II trans-
formation on the de Sitter universe would be given by the

metrics II-8. For the metric (II-8Db),

o' 1l o' _ 1
Copr = ~3C5 Cor1r = €10
i! . o' .~1
i = iy o Top = 71l
o' _ .rl
To = i,

where the primed objects are in the rotated space. This

means that

. .
08 = rll ' it - 2 coth x
i'o il cos t
' = 1 -
cab = Y 0.

and the paths of any object whose path is tangent to XO'
will still be irrotational and shear free.
In comparing this result with that for the de Sitter

universe one important point must be noted. For the de

Sitter universe, as can be seen from IV-3, Tgi = 0 for all i.
This means that X° is geodesic, i.e. Xi.v XOV = 0. In

the case of the transformed spaces, however,

Tg,l, = tan t # 0, and XOI is not geodesic. This means

that o', céb, and wéb describe the path of an accelerating
particle and is therefore of little physical interest. The
same result will hold for the type III transformation when

done upon the de Sitter universe. x° will not be tangent

to the path of the test particle there either.
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These spaces are best approached, as shall be seen

in the next two sections, by means of the Newman-Penrose

formalism.

C. The Newman-Penrose Formalism [15]

The Newman-Penrose formalism is perhaps more useful
for the description of the classes of universes that are
considered here because they are empty, and the null
properties have better definition than hydrodynamic ones.
In addition, the Newman-Penrose spin coefficient involve
more parameters than do the hydrodynamic parameters.

Define the usual pseudoorthonormal tetrad 4, 0, m, m

in terms of the orthonormal tetrad

1

* = ——

A 2(X0+X1)

n® = -1 (x - X.) (IV-4a)
) (o} 1

mk o= —= (X + iX.)

mT e 3/ -

1 (o} 1
L, = - —= (+ w - w)
* ,\/E
1 O 1
n =-—= (w0 - ) (IV-4D)
* JZ |
1 2
m, = — (W~ + iw™)
* ﬁ

They are defined in such a way that
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M M M p
—Zunp = muﬁ‘_l =1 (IV-4c)
and
Iy = -nuzv - Lunv + muﬁv + ﬁumv . (IVv-44)

For the pseudoorthonormal tetrad, the componentscdftthe
connection are called spin coefficients. These are related
to the component of the connection of the orthonormal tetrad.

Below is a table of these spin coefficients.

Hiv ’ ¥
o = zu;vm“ﬁ\’ , o0 = .@u;vmumv , T=14 ;Vm“n\’
v = —np;vﬁunv , Y = %(zu;vnunv-mu;vﬁunv) (Tv-5a)
b= —nu;vfﬁ“nv , N = -np;vﬁ“ﬁ\’ , T= nu;vﬁ“z\’
o = %4, AR -m, AR) B = 58, pnV-m A)

From this it can be seen that

\) - -— -—
= K K - [
zu;vz mu + mu (e + )zu

n n Vm Y .
and NN + Vmu + Vmu + (y + \()n,‘.l

Thus K = O means that the null paths tangent to 4 are

geodesic, and V = 0 means that the null paths tangent to
n are likewise geodesic. This shows that if K = 0, (e+¢e)
can be made zero by letting &' = ¢? for some . Likewise

(Y+Y) can be made zero if vV = 0 by allowing n' = in for an
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appropriate y. Note, however, that only in rare cases can
these be done simultaneously.

When these conditions hold ((e+€) = 0, K = 0) the

14

parameter p = %(—z“;u + i curl %), where curl £ =

(% H;V) ZU7V

N

[u;v]z . Also 00 = g(z(u;v) z“;u). Briefly, for
the null geodesics tangent to £, L (p+p) corresponds to 8
with respect to the streamline of matter, %lp—E‘Z to
wijwij, and 00 to Gijcij. (p+p) is the divergence of the
neighboring null geodesics, O measures the shear, and p-p
is the vorticity. The quantity T measures the way that %

changes as one moves along 7, as can be seen from

zu;vn\’ = T, o+ Tmy - (W4,
The parameters V, —d, -A, T correspond respectively to
kK, p, 0, T, except that the congruence to which they pertain
is tangent to n rather than 4.

The other important quantities needed in the Newman-
Penrose Formalism are the components of the Weyl tensor.

These are

= - B,Y. 0
wo = caByéz m-4{'m ,
- _ a B,y b
wl = CGBY & n"4'm- ,
4 =-% B\,6(12,“‘1c13z\( 2® - %nPn¥a’) (IV-5b)
- G Bre®
1”3 - asyéz ’
_ 0= B ¥=d
¢4 = CanénIn ’

where CQBY5 is the Weyl tensor in the coordinate basis.
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The five complex quantities { contain all of the inde-
pendent components of the Weyl tensor (see Appendix B).

* ‘, v — - l

For a space with A'= 0 Cvod Ruvpc' and the {.'s can be
calculated with R, . rather than C..., ,- Even in the case

ijk4 ijki
where the cosmological constant A # 0, the wi's can be
calculated with the Rijkzls' except that wz must be cor-
rected by adding #N/3<

The physical significance of the Weyl tensor is to

be seen from the Bianchi identities, which can be written

[14]

cOBYd . pY[o:Bl %,gY[BR;al

-~
2y,

By comparing this with Maxwell's equation

one can regard the Bianchi identities as a field equation
for CGBYé' giving the part of the curvature at a point
which results from matter distribution at another point
(Local matter distributions described entirely in terms of
Ruv). In other words, the Weyl tensor describes the way in
which the gravitational field propagates in a space time.
Specifically, these complex components of the Weyl
tensor indicate the Petrov type [15,17] of the space time
(see Appendix B). For example, if only wo # 0, the space
is Petrov type N, a pure radiation field, with a propaga-
tion vector n.,. If only ¢4 # 0 then the space is a Petrov

st
‘type N with propagation vector Zu. If only wl or ¢3 is not
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zero, then the space is type III, with nu or Ep respectively
as the propagation vector. If only wz # 0, then the space
is type D with propagation vectors nu and LH' If, however,
both Wl and §, # 0, then the space is type II. From these
wi's one can tell whether there is a pure gravitational
radiation mode, a gravitational "intermediate" field (type
III), a gravitational "near" field or some combination

thereof.

Two of the Newman-Penrose field equations merit

inspection:
2 -
Dp =p +co+¢oo
DS = (p+p)o + (3€-€)0 + b
-1 i,3
Poo = % Rygba”

where K = e¢+e = 0, and Dp = p,ﬁz”. Assume that at some

space-like hypersurface, 9 = p = O. goo is the energy
density that would be seen by an observer whose path is
tangent to £u. As one moves off this surface along Zu,

the rate at which p increases is proportional to goo. The

rate at which o increases is proportional to wo‘ If

g

oo = 0 at this surface, then 0 will increase,along the

congruence of Zu and consequently p+E will increase. The
effect of gravitational radiation is to increase the shear
along the direction orthogonal to the direction of propaga-
tion. The spin coefficients ¢ and A couple to the radiation

modes of the field wo and ¢4.
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To show the effect of types II and III transformations,
it is necessary to relate the spin coefficient and the com-
plex Weyl tensor of the Newman-Penrose formalism, and the
components of the connection and the curvature tensor in
the orthonormal tetrad formalism. These are given in
Appendix C.

Suppose that a type II transformation is made on a
metric. If & = —(wo—wl) is geodesic (K = 0) then #' will
also be a geodesic (one has merely exchanged w° and wl).
But in case the type II transformation exchanges o° and
wz, or w° and w3, then only rarely will the new % be
geodesic. One has to look for a new radial frame, to go
with the new time frame to give a new geodesic 4. This
process will be illustrated by the examples of the three
metrics obtained from the de Sitter universe by type II
transformations given in II-8 of the last chapter. First
4¥I=8b) is obtained from the de Sitter universe by the ex-
change of «° and wl, since ' = -(wo'—wl') = i(ml—wo) = i4,
%' will be geodesic if 1 is.

The metric (II-8a) is obtained from the de Sitter
metric by a coordinate transformation t - i®, © - it,
exchanging w® and w3. The components of the connection for

the de Sitter universe are

1 2 _ =3
rlO = tanh t = r20 = T30
I.\2 _ T3 _ cot x r3 cotd

21 - "31 " cosh t '’ 32 ~ sin¥x cosh t
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Under the coordinate transformations given above

1 _ . 2 _ 3
Tlo = i tany = on = T30

21 31 cosy '’ 32 sin¥ cos®
To make it easy to effect the transformation, the indices

one and three are now exchanged (1~-3), giving

3 _ _ 1 _ .
T3o = on = Tlo = 1 tang

FZ _ 1-.1 _ cotx Tl - cot®
23 13 cose 12 sinx cos¢® °

The relations (III-8) are now used to give the connection

for the transformed space,

o' _ 2t L3 2"
Tgipe = - tangp =T, =T3.; » Thug
=I\0' =C0tg
0'3! cos .
rO' _ cotl’

02 = sin¥cos®

From the calculation described in Appendix C one obtains

K — — 1 ( .cote + i cotx) £ 0.
22 sin¥cosw cos®
The choice of 4 with w® = cos® sin¥ sin6 d6 and
wl = 4 is not very physical. As it turns out, the correct

choice is W® = cos® siny sin® de and wl = cos® sin¥y de.

In this case K = 0 = 0 = (p—E). The null congruence repre-

sented by this £ is geodesic, shear free and irrotational.
Since (II-8c) is given by an W® - wl exchange on

(II-8a), K = 0 in the transformed space also.
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The next step would logically be the calculation of
the Wi's (the components of the Weyl tensor). This, however,
is unnecessary since they are zero for the de Sitter universe
[16]. Since the components of the Weyl tensor transform in
the same manner as the components of the curvature tensor
they will also be zero for the transformed space.

Type II transformations acting on the de Sitter uni-
verse give the three space-times II-8. The space-time
(II-8a) comes from an exchange of wo and w3. However, once

m3 is chosen as the time-like leg of the tetrad, —(wo'—wl)

is no longer geodesic. If wl and w2 are exchanged, then
—(wo'—ml') is geodesic.
The .complete transformation is:
0 (x) = ~i0® (x')
0¥t (x) = —ie®(x")
ot (xt) = WY,

o (x') = otz .

D. The 4-m Exchange

3
When «° and mz were exchanged above, wl and w were

exchanged as well. This means that an exchange is also

made between the legs of the pseudoorthonormal tetrad:

8 = = (02 -ut) = - (-iw?-0’) = i(e?-ie®) = im
n' = - (@P+wl) = - (-iw?+w) = i(eP+ivd) = im

(Iv-6)
' = wl+ind) = (-ieC+iol) = -i(eC-wl) = is

n' = im
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One may call this very special type II1 transformation an

4-m exchange.

To see the importance of an 3-m exchange calculate the
values of the spin coefficient of the transformed space in

terms of those of the original space:

K' = iG (g-¢)' = i(a+B) (o#B)' = -i(Y-¥)
™ o= ig  p' = iT (0=B) = i(Y+Y)
(e+€) = -i(a-B) A= —iv o' = ik

vl' = iXT  (Y+Y)' = i(a-B). W' = im

(Y-v). = i(a+§) T = ip .

If the original space had a shear free geodesic tangent to

4, then £ = 0, 0 = 0. But this means that %' =0, ¢' = 0.
The class of spaces for which this exchange works is very
wide indeed, encompassing the entire class of algebraically
special spaces (see Appendix B). The result of all this is
that a type II transformation can be made on an algebraically
specialized space, and the resulting space will always be
algebraically specialized. This is confirmed by the fact
that wi - ¢i in these transformations. Not only will the
resulting space be algebraically specialized, but also it

will be of the same Petrov type as the original space.
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E. Conclusion

The types I, II and III transformations relate ‘the
components of the connection and the curvature tensor in
one space to those same objects in the transformed space.
In order to give a relation between the physical structure
in one space to that of the other, it is necessary to
interpret these gquantities physically. This has been done
for two sets of parameters.

The first of these are the hydrodynamical parameters.
These are the divergence of the streamlines of matter e,
the vorticity of these streamlines Wy and their shear
SR The divergence 6 of these streamlines gives the
rate at which neighboring streamlines diverge. The vor-
ticity gives the rate at Whidh they curl about each other.
The shear measures the anisotropy of the expansion.

If the orthonormal tetrad is chosen so that X its
time-like leg, is tangent to the streamlines of matter,
there are simple relations between these parameters and the

components of the connection. These are

a
& = 1-\ao
_ 1 © - o _ o
b 2 Cab %(rab rba)
le) o 6ab
= i -
O = 2Ty + Tpa) 3 ©

Using the tables in Chapter III that relate the components

of the connection in the original space to those of the
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transforméd space for each type of transformation, it is
possible to obtain these parameters for the transformed
space from the components of the connection in the original
one.

The parameters themselves, however, only relate
directly in the case of the type I transformation.

The second set of parameters are the spin coeffi-
cients of the Newman-Penrose formalism. Instead of having
the time-like leg of the orthonormal tetrad tangent to the
streamlines of matter, the Newman-Penrose pseudoorthonormal
tetrad has two null vectors, 4 and n and a complex space-like
vector m. The spin coefficients are to this pseudoortho-
normal tetrad what the connection is to the orthonormal
tetrad. If at least one of these null vectors is tangent
to a congruence of null geodesics, then these parameters
have an easy interpretation. The real part of one of these,
p = zp;vmpﬁv, measures the divergence of this congruence,
while its imaginary part measures their vorticity. Another
of these, © = Eu;vmumv, measures the shear of this congru-
ence. There are two other spin coefficients that give these
same quantities for the null congruences tangent to n.

There are twelve spin coefficients altogether, and
they are sums of the components of the connection for the
orthonormal tetrad. For any of the transformations that

are considered here, the transformations of the spin coef-

ficients can be written down from the tables in Chapter III.
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For type I transformations, each spin coefficient for the
transformed space is given directly in terms of the trans-
form of that coefficient in the original space. This same
istfuefbr a type II transformation where w° and wt are
swapped. Otherwise, it is more complicated.

A particularly interesting -situation arises in the
case of the type II transformation of an algebraically
special space. When o° and w2 are swapped, one must also
swap wt and w3 in order to keep & geodesic. Or when w®
is swapped with m3, then wl and w2 must be swapped. This
means that 4§ - m, m = 4. Under these transformations,

algebraically special spaces are mapped onto algebraically

special spaces.
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Chapter V

Transformation on the Schwarzschild Metric

and on the Gowdy T, Universes

A. Introduction

This thesis contains two original contributions to
the study of General Relativity. The first of these is the
development of the types 0, I, II and III transformations.
This was developed in Chapters II and III. The second con-
tribution is contained in this chapter and is the discovery
of three families of new metrics obtained by the applica-
tion of these transformations to the Gowdy T3 universes.

First of all, these transformations are applied to the
Schwarzschild metric. This is done in Section A. The types
II and III transformations yield the Kantowski-Sachs closed
and open universes respectively.

Because the former of these metrics is contained in
the Gowdy T3 universe, these transformations are applied
there. The three types of transformations yield the three
new families of metrics.

The first of these is the result of the application
of the type II transformation to a special subset of these
Gowdy Ty universes. The resulting metrics are Weyl metrics
and contain the Schwarzschild metric as a special case.

The second of these new metrics is the result of a
type III transformation. These also are Weyl metrics, and

do not contain any singularities at r = O.
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The third family of metrics is the result of a type
I transformation, and reduces to the Kantowski~Sachs open

universe as a special case.
B. Schwarzschild Metric

The static gravitational field of a spherically

symmetric object is given by the Schwarzschild metric

2 2m, -1

— (1 _ 2m, .. 2 _ 2m 2
ds® = (1 - ydt® + (1 - ) dr

+ r2 (a0%+sinZed¢?)

By making a coordinate transformation §18]

r —
M 1 = cosh N
we have r = 2m cosh2 g-,
2m _ 2n
and 1 - T = tanh 5 -

Finally, the metric takes the form

ds? = —tanh2 a dt2

5 + 4m2cosh4'g(dn2+d92+sin29d¢?) .

The one forms are

s® = tanh 3 dt

wl = 2m coshz-g dan

wz = 2m cosh2 g d92

w3 = 2m coshz-g sinede .

This metric covers the entire exterior region of the

Schwarzschild space up to the horizon at r = 2m.

-~
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If now, M - it, t = €, these forms transform to

w = i tan t/2 d¢

ot = i2m cos® t/2 dt

w2 = 2m cos2 t/2 de

3 2 .

w~ = 2m cos” t/2 sinede .

A type II transformation yields the result

©' = 2m cos® t/2 dt

wl' = 2m cos2 tZZ de

2, 2 :

W' = 2m cos” t/2 sinedy

3,

W = tan t/2 4¢ .
The metric is

o om. ,2 . -~ = b] "‘2

as® = 4m>cos” t/21—c:2 +aé + Sln23Q¢?J + tan® t/2 ac” .

This is just an example of the Kantowski-Sachs closed
universe [19] (see Appendix D for a description of these
spaces). This universe is ismmetric to the Schwarzschild
metric within the horizon, as can be seen by making the
transformation cos t = i - 1.

If the transformation 6 - i6, N - t, t - r is made,

the orthonormal tetrad is given by

w°® = tanh t/2 dr
wl = 2m cosh2 t/2 dt
w2 = i2m cosh2 t/2 4e

w3 = i2m coshzt/z sinh 6dg .
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A type @II transformation yields the tetrad

W = 2m cosh2 t/2 dt
w- = tanh t/2 dr
= 2m cosh2 t/2 de

W~ = 2m cosh2 t/2 sinh edy ,

which gives the metric

2 2

as? = 2m cosh? t/2 [d@0%-at? + sinh?0d¢?] + tanh® t/2 dr® .

This is recognizable as the open vacuum Kantowski-Sachs

metric.

C. The Gowdy Universes [20]

The Kantowski-Sachs closed universe is contained in
a family of spaces discovered by Gowdy, the Gowdy Ty uni-
verses. The transformation from the Kantowski-Sachs uni-
verse to the Schwarzschild metric, when tried on the Gowdy
T, universes, might yield a whole family of spaces that
contains the Schwarzschild metric.

To investigate this possibility, a careful review,
needs to be made of these spaces. The Gowdy universes
are closed generalizations of the metric for the Einstein-
Rosen-Bondi cylindrical plane waves [21], and the Gowdy Ty
universes possess space-like hypersurfaces that are iso-
metric to theethree dimensional torus.

An Einstein-Rosen-Bondi space time is one that

possesses two mutually orthogonal, hypersurface orthogonal,
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space-like killing vector fields. The metric for such a

space is

2

as? = Lz{eza(dez—dtz) + R LePWae? + Be'ZWdaz)} (V-1)

where a, W, B and R are functions of © and t only. The
coordinates 8 and t are not fixed completely. If u = t-6,
and v = t+6, then u = F(d}), v o= G(g% are the most general
transformation that preserve the form of the metric.

For convenience in writing down the field equations,
derivatives with respect to u are denoted by a subscript--,
and those with respect to v are denoted by the subscript +.
Also, since W and B are redundant functions, it is conveni-

ent to define

The independent Einstein f£ield eguaticns are,
R,a, = RY 2+5Rr,, -%RER /R)2 (v-2a)
+ + + 2 Tt 4 +
2 2
Ra_=R{" +%R__-%R(R_/R) (V-2Db)

s R3g) -3¢ R3¢ (V-2¢)
2 2
%R %R

_3R_ g, (V-24)
202 at?

For the Einstein-Rosen cylindrical waves, R =6, or R = t.
Gowdy chooses R = sin® sint. This will give a universe that
is globally distinct from the Einstein-Rosen waves, although

not locally distinct.
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To see this, note that
R = sin® sint = - %(cos v - cos w). (Vv-3)
But, as has been said previously, one can always choose

F(u) ,

<4l Rl

= G(V) ’

where F and G are arbitrary functions of u and v respect-

ively, and still preserve the form of the metric. 1If one

chooses
G=Fm)=—cwtl
v = G(v) = - cos v
then,
~ ~ ~
R=v-u=286
or if a = F'(u) = cos u
then R = ; + §i= E.

The Gowdy universes are not, then, distinct in their local
structure from the Einstein-Rosen cylindrical waves.

They are, however, globally distinct. To see this,
consider the vector grad R, which is an invariant feature
of the spacetime whose magnitude determines the "c energy"
of the spacetime [22]. In the two versions of the Einstein-
Bondi spacetimes given above, grad R is space-like for R = 6,
and time-like for R = t. The Gowdy universej,however, con-

tains two regions in which grad R is time-like, and two in
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which it is space-like, joined together by a hypersurface
where R, is null. &#&These are shown in Fig. V-1 below. Thus,

globa]_]_y, the Gowdy universes consist of four Einstein-Rosen

yell

1GRAD K] 70

1GRRDRICO IGRRD RIKO
icRrD. meo/
*
IGRAD R] >0
+=0 _
e %7 00
Fig. V-1

"patches," two which are like the R = 6 waves, and two of

which are like the R = t waves, pasted together to form a

closed universe.
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Care must be taken in putting together such universes
as these. As can be seen from their metric they will be
regular only on the coordinate patch as displayed in Fig.
V-1, having initial and final collapse singularities at
t = 0, and t = T respectively, and coordinate singularities
at 8 = 0 and at 6 = T.

Along the diagonals of this patch, where u = 0, and
v=r, (grad R) =0 = [R+R_]% . R4 =0 alongv="m,R =20
along u = 0. This means that along these hypersurfaces,

a_ and a_, are not defined (cf. [V-2 a&b]). Along the

-+

diagonal v = 11, where R+ = 0, [V-2a] becomes

¢+ = %[ 2cos u/2]-l (V-4a)

and along u = 0,

V = #2 sin v/2]_l (V-4b)

——

If Eg. [v-2¢] ( a wave eguation) is written in terms of u

and v, and evaluated along the diagonal, it becomes a first
order differential equation for ¢+ and V_ respectively, and
the actual values of these functions given above for each
diagonal, are solutions of this wave equation. Thus the
constraints (V-4 above) are propagated in time, and need
only be imposed at one time. A convenient choice of this
time is t = T/2 where the diagonal cross at 8 = T/2. One

therefore requires that either

dy/98

0 and 2dYy/ot £1 (V-5a)

ox
dy/30

1 and oYy/9dt

i
o

(v-5b)
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Each possible pair of constraints lead to distinct solutions.

Gowdy now chooses
W= Zz[Asz(cos t) + CzQz(cos t)]PL(cose)
and, for the T3 universes,
B = sin® sin t , (Vv-6)

with the resulting metric

as? = r2sin’tle? Y™ (@02-at?) + ¢ sin%eas’] + LPe™Mas?
(v-7a)
where
¥ =a + W - i sin t . (V-7b)

Two sets of regularity conditions must be imposed. Those in
(V-5) keep the metric regular at u = 0, and at v = .
Further regularity conditions must be chosen to deal with

singularities at 8 = 0 and 6 = T. The necessary conditions

are Y = %% =0 at 6 = 0 and 8 = . The condition %% =0

is automatically gagi§fied from equations (V-2 a&b), and so

the only constraint necessary is Yy(O,t) = y(mt) = 0.

The unique solution incorporating the constraint

Y(O,t) = 0 is

° ., W 2 W 2 -
Y = S dy sin y{2sin t( ns + N
sin (t+y) sin (t-y) /
o

-cos y(sinz%—sinzy)_lj (v-8)
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The remaining regularity condition Y(7,t) = O can be imposed

at t = g-, with the resulting integral constraint

i

( @e tanol (aw/at)? + (@w/20)? -111g _ )y =0 - (V-92)
o]

The other set ui constraints (V-5) now becomes

oW
BW/30g _ ¢ _ nsp = O and Stlo = £ =mp2 = =1 (V-9b)
or
- oW = -
/30|y _ ¢ o qp = =1 and Stlo = = mp =0 - (V-99)

These two sets of constraints restrict the admissible values
of Az and CZ in W. If 3W/36 and dW/dt are calculated from
(V-6) and substituted into (V-9b) this is equivalent to

the constraint

and if substituted into (V-9¢), it is equivalent to

Zc, =0 z
n 2n
Once the Cz's have been chosen to satisfy these constraints,
then (V-9a) constrains the values of the Az's. There are

no solutions such that Cp = 0 for ali L.
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WCr = -L coth-% explZ Asz(cosh ﬂ)Pz(COSG)]dt
L
1 . .2 & ¥
W ' = -2L sinh“ = e' exp(X - A,P,(cosh M)P,(cos6)]de
2 P ) pA
2, L2t .
W = -2L sinh 5-51n9 exp (L - Asz(cosh n)Pz(cose))dé
L
3, _ . .2 t v
) = 2L sinh 5 e exp(Z - Asz(cosh n)Pz(cose))dn

with the new metric

d52 = —choth2 g-exp[zz Asz(cosh n)Pz(cose)]dt2
4
2 ..4 ¢t
+ 4L°sinh E-exp[ZZ - Asz(cosh n)Pz(cosG)] (V-10)

4

x {ezY(dn2 + d0%) + sinzedéz} )

It will be recalled that the original metric had two
orthogonal, hypersurface orthogonal space-like killing vec-
tors, 3/9%, and o/d0. Now %3 is still as it was, but 9/3¢0
is now 3/3t and is an hypersurface orthogonal killing
vector. This means that (V-10) is a static metric, with
another space-like, angular hypersurface orthogonal killing
vector. These spaces then belong to the Weyl metrics (see
Appendix D), and reduce to the Schwarzschild metrics as

A, =0, and as 1 - M-4T. Making this transformation

d52 = —i:an'hz'Il exp[2Z A ,P,(~cosh M)P (cose)]dt2
2 ) £ 2 2

+ 41%cosh® 7 exp[-2% A,P,(-cosh M) P, (cos0)]

2

.
x {ezY(dnz + ae%) + sin’e dézj
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If CZ = iézo' and if AZ = 0 for all 4, then

W= % fn cot t/2

and S%'= + csc t , and this clearly satisfies the constraints

(V-9a&b]. From this, ¥y = 0,

Y-W 1

e = Cot t/2 = tan t/2
and
d52 = L24sin2 %-cos2 t/2[tan2 t/2(de3—dt2) + tan2 %-sinzedézi
+ chot2 -%'-dc2
= ar%sin® %[ (@0?-at?) + sin®eas?] + 12cot® £ ao® .

Ift-~t+ m and © ~‘% .

d52 = 4L2cos4 %{&é@gédtz) + sin29d62] + tanz‘g d02

This is the usual version of the closed Kantowski-Sachs
metric given in the previous section. As has been demon-
strated, a type II transformation on this space yields the
Schwarzschild space.

The presence of the Schwarzschild metric among the
transforms of these spaces is a strong inducement to fur-
ther investigate their properties under the complex trans-

formations developed in this thesis.

From the metric (V-7a), the tetrad of one forms is
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o =1 sin t eV Mat
ol = & sin t e Y Wagp
w? = L sin t sine e W&
w3 =L erc ’

where W is defined by (V-6). Since it is necessary, under
these transformations, that these one forms be either
imaginary or real, the effect of imaginary coordinate
transformations on W and y must be tested thoroughly. If

© - if, W is real since the Legendre polynomials of the first
kind become ring functions. If however t - im, W will in
general become complex due to the presence of the logarithm
part of Q, (cos t). Thus

n
_ x _ 1
Qn(cos t) = Pn(cos t) In cot 5 mzl - Pm_l(cos t)Pn_m(cos t)

and when t - it

oo Lot
Qn(cosh t) Pn(cosh t) Ini-i coth 2]-~

|
s

1
™ Pm_l(cosh t)Pn_m(cosh t)

= p_(cosh t)n[coth t/2]-iP (cosh t)g

n™s

1
1m%mﬂ®%t) P _p(cosh t) .

In general eW is a complex number, and the resulting

m

space will be complex, and none of the rotations that have
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been discussed here will be possible. The single exception
is the case where C, = 1, and the resulting space is that
of Kantowski-Sachs discussad previously. This does not
mean, however, that the Kantowski-Sachs closed universe is
the only one of its kind since the Az's have not been
constrained.

The metrics for whic‘h'co = %], form a family with

W=2%A,P,(cos t)P,(cos6) + in cot-E .
. 44 4 2
When t = inm
= n_Aim
W % Asz(cosh n)Pz(cose) + In coth > 5
and
W . n
e = - i[exp(Z Asz(cosh ﬂ)Pz(cosG)]coth >
)
W _ . n
e = ilexp(~Z Asz(coshn)Pﬂ(cose)]tanh 5 -
z 3 -
To see how Y is affected by all of this, V-8 can be
written
© ‘ (W+2+W_2)sin t cose+(W;2=W_2)cos t sin8
Y = Q dy siny{Zsin t[ ]
J . 2 . 2
5 sin"t - sin“©

- Ccos y(sin?t - sinzy)—l}

The derivatives of W will all be real, and

W —.a_W_'_a_W.
+ %8 - tom

_W . W
W_ = Y + 1 31
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= 2, .2, 2 2 .
and so W _=W_, and W, + W_ 18 real, and W, =~ - W_ 1s
imaginary. This is what is required for Yy to be real.

The tetrad is now

w’ =1L sin t eYexp[—Z Asz(cos t)Pz(cose)]tan ét- dt
%
.2t Y
= 2L sin“ = e'exp[-Z A,P,(cos t)P,(cosB)] dt
2 2 L4 L
ot = 2L sin2 £ eYexp[—Z A,P,(cos t)P,(cose)] de
2 ) 44 2
2 .2 t .
w° = 2L sin® = sin® exp[-% A,P,(cos t)P,(cos8)] dbd
2 ) L4 4
3 t

w” = L cot 3 exp[Zz‘, AZPz(cos t)Pz(cose)] do.

Under the transformation t - -imn, 0 - t

w® (x') = 2Li sin’h2 _t_2:_ eYlexp(Z - Asz(cosh T])Pz(cose))dﬂ
A

1, , .2ty _

w-(x') = -2L sinh 3 e exp (¥ - AEPZ(cosh T\)Pz(cose))de
)

2, ., L .2t .

w”(x') = -2L sinh 5 sin6 exp (X - AZPz(cosh T‘\)Pz(cose))dé

4
w3 (x') = -iL coth % explX Asz(cos‘n t)Pz(cosG) at .

2

Finally, the type II transformation

WL = -iw3
3, . O
w ' = -iw
ol = of
w2t = w2

gives a new, rotated, tetrad
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If n = cosh—l(i - 1), then this will have the same coor-
dinates as the Schwarzschild metric.

Vorhees [23] notes that in the case of a Weyl metric

as? = 2%t + v, ax
ij

1 axd ’
¢ is the Newtonian potential. In the Schwarzschild

coordinates,

m r
=W =;’ - iALPz(—H—I - l)Pz(COSQ

m -
T Azruchose .

4

Type III transformations can also be made upon these
spaces. If © - ir, t -6, 0 = t, W will remain real, and

so will y. The tetrad of one forms becomes

w° = L sin® e(Y—W)de

o' = iL sing e Y War

w? = iL sin® sinhr e "as
w3 =L eW dt

and under the type III transformation, the new tetrad is

W©' =L &' at

wl' = L sin® sinhr e—Wldé
o =1L sine e YW )ag

w3 = L sin® e(Y—Wl)dr .

The metric for this space is
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2W - -
ds2 = —Lze dt3+I.|2sin29{e2(Y W)(c192+c1r2)+sinh2r e 2Wd62}.

ol

This is certainly a standard Weyl metric whose Newtonian
potential is

P =W= i [AZPz(cose) + CzQz(cose)]Pz(cosh:r)

These spaces lack the spherically symmetric part of
the potential, and have replaced it with a part in Qz(cose)
that is singular at 6 = 0.

A type I transformation can be done on the Gowdy T3
universe if t - it, and & - i8. In this case, it is again
necessary for Cy = 0 for all & # 0, and for C, = 1. This
assures that W will not have a variable, imaginary part,

and that ¥ will be real. In these cases,

- £ _ im
W= % AEPz(cosh t)Pz(cosh 0)+in coth 5 5
\/ . t
and e = -i coth a-exp[z Asz(cosh t)Pz(coshe)]
)
= -i coth-% éW N

The transformed y will be designated ¥'. The tetrad now

becomes
@® = iL sinh t tanh % e(Y'_ﬁ)dt
= 2iL sinh2-§ e(Y'_ﬁ)dt
ot = 2iL sinh2-§ é(Y|_ﬁ)de
o = 2iL sinn® £ e sinh eds
w3 = i coth E-é; do

2
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The type I transformation is given by
o°r (x') = -10°(x') ,

giving for the rotated tetrad

' = 21 sinh® £ o (V') 4y
wl' = 2L sinh2-§ e(Y';ﬁ)de
mz' = 2L sinh2-§ e-ﬁ;inh edd
m3' = coth-% éﬁ&o .
The metric is now
d52 = 4Lzsinh4-§ e_2ﬁ[e2Yl(d92—dt2)+ sinh29d§2]
+ coth2 E'ezﬁ d02 R

2

which, when Az - 0, reduces to the open Kantowski-Sachs

metric.

D. Conclusions

The Schwarzschild metric transforms by a type II
transformation into the closed Kantowski-Sachs universe,
and by a type III transformation into the open Kantowski-
Sachs universe.

This leads to an investigation of the Gowdy universes,
a series of closed universes locally like the Einstein-Rosen
cylindrical waves, among which are the Kantowski-Sachs
closed univers. After a thorough review of these spaces it

it was shown that a type II transformation induced by the
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coordinate transformation t - in acting upon all of these
universesawhere CL =0 if 4 # 0, and Co = 1, transformed
them into a new family of Weyl metrics that reduced to
the Schwarzschild metric as AZ - 0. The Newtonian poten-
tials of these spaces show that they represent a spheri-
cally symmetric source surrounded by a distant, nonspheri-
cally symmetric matter distribution.

A second new family of these Weyl metrics resulted
from the type III transformation induced by € - ir upon
all of the Gowdy universes. These lacked the point scurce
at r = 0, but kept the distant matter distribution, and had,
in addition, a piece of the potential that is irregular at
6 = 0.

Finally a type I transformation on the first class of
Gowdy T3 universe where Cz = = 602, transformed them into
a third family of new metrics that reduced to the open

Kantowski-Sachs universe as A, ~ 0.
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Chapter VI

Results and Conclusions

A. Results

This work began as an attempt to perform the Weyl
"unitary trick" upon solutions to Einstein's field equation.
These were first applied to a family of spaces that can be
obtained by the imaginary rotation of S4(R). This led to
the first original result of this thesis. Four of these
imaginary rotations were discovered. The first of these,
the type 0, rotates any solution of the field equations
back onto a positive definite metric. The second, the type
I, rotates one space that is a vacuum solution to the field
equations onto another with the opposite sign of the scalar
curvature. The third transformation, the type II, exchanges
a space-like leg of the tetrad of the space, and the time-
like leg. These transformations also map one vacuum solu-
tion onto another vacuum solution. Finally, the type III
transformation is a composition of the type I with the
type II.

These transformations were then applied to the
Schwarzschild metric and fo the Gowdy universes. Out of
these came the second original contribution of this work.
When these transformations were applied to the Gowdy T,
universes, one family of metrics was discovered that had

the Schwarzschild metric as the limit when the parameters
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B, ™ 0. Another had the open Kantowski-~-Sachs as the
limit when A, = 0. A third family was discovered that
reduces to no space in particular.
All of these new metrics seem to be interior to a

shell of matter.

These two contributions need now to be reviewed in

some detail.

B. The Rotations

The type 0 transformation maps a space with signature
+ 4 onto a space with Lorentz signature. Examples of these
rotations are the rotation of the de Sitter universe into
the four-sphere, and the rotation of the pseudosphere into
the antide Sitter universe.

All Lorentz spaces have their symmetry reduced by the
requirement that one axis be time-like, and that the other
three be: space-like. This means that it is sometimes
easier to deal with the positive definite manifold than with
the indefinite one. This is true, for instance, when working
with the complex structures of the manifold [24]. In these
cases, it is better to work with the positive definite sig-
nature manifold and then to transform into the Lorentz
signature space. The type O transformation makes this
possible.

The type I transformation maps a space into another

space whose scalar curvature has the opposite sign. If this

space is a vacuum solucion to Einstein's field equations,
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then the transform will also be a solution,Aand the sign
of A, the cosmoloéical constant, will be the negative of
that of the original space. If the one space is a closed
space, the other one will be open, and vice versa. The
ideal example of this is the transformation between the
de Sitter and the anti-de Sitter universe.

The type II transformation exchanges the time-like
and one space-like leg of the tetrad. If a space is a
vacuum solution to the field equation, then its transform
under the type II transformation will be also. For every
vacuum metric, there will be three other spaces reléted by
a type II transformation (provided that the necessary coor-
dinate transformation exists). Again, the classic examples
of this are the transformations from the de Sitter universe
to the universes whose metrics are given in II-8.

A particularly interesting exampie of the type II
transformation is the 4-m exchange. In choosing the Newman-
Penrose pseudoorthonormal tetfad, it is desirable to label
the space-like legs of the orthonormal tetrad so that
L= - L (0 + wl) is geodesic (is tangent to the actual
paths gg photons). When o° is exchanged with wz or w3 in

a type II transformation, the space-like legs of the tetrad

are again relabeled so that &' = —‘;% (wo' + wl') is geo-
2
desic. For the algebraically special metrics, it is found

that in order for this to obtain when W° = —iwz, then

1 3 . 2 . .
w ' = &, and when wo' = —1w3, wl' = 0w . This means that
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in the pseudoorthonormal tetrad 4 - m, n = m. The Petrov
type is preserved under these transformations.

The type III transformation is simply a type I trans-
formation followed by a type 1I transformation. Since both
of these transformations, acting on a vacuum solution of
Einstein's field equations would yield another such solu-
tion, then the type III transformation will do the same.

An example of these transformations are those from the

metric given in II-8 to the anti-de Sitter universe.

C. The New Metrics

When the types I, II and III transformations were
applied to the Gowdy T, universes, three new metrics re-
sulted that seem to be of some physical interest. The most
significant of these results from the application of the
type II transformation to the set of the Gowdy T3 universe
with C, = x 520. The resulting metrics are Weyl metrics
whose limit as AZ - 0 for all &, is just the Schwarzschild
metric. Otherwise, these spaces are a new set of Weyl
metrics, and seem to represent the field with a point source
at the origin, and interior to some shell of matter. The
metric of this space is

d52 = —L2coth2'% expl2 & Asz(cosh n)Pz(cose)]dt2
2
4

2

+ 4L"sinh E-exp[Z -2A ,P,(cosh Mn)P (cosQ)]{ezY(dn2+d92)
2 2 ) 2

+ sin2e déz}
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where Yy is that of V-8, with t = in.

The next most significant of these spaces is the one
obtained from the action of a type III transformation upon

the Gowdy Ty universes. The metric of this space is

as? = _LZeZWdtZ + Lzsinze{ez(y-w)(d92+dr2)+ sinh?r e-zwdéz}

where W = % [Asz(cose) + CzQz(cose)]Pz(cosh r)

and where Y is again defined by V-8, but with 6 - ir, t = 6.
This metric is agazn a Weyl metric, and seems to be
the field of a space interior to a shell of matter.
Finally, a type I transformation, acting on the same
set that the type II transformation acted on (those with
CL = % 502) gives a set of metrics that reduce to the

Kantowski-Sachs open universe as A, - 0. Their metric is

A
d52 = 4Lzsinh’ %-e

+ co th2

ofer

where now W = ¥ Pz(cosh t)PE(cosh ) and where Y is defined
)

by V-8 with t = it, 6 - i8. |

The last one of these metricshls of doubtful value as
a description of an actual physical system. As has been
said, as A, = 0, this universe becomes the vacuum Kantowski-

Sachs open universe. When this universe contains matter,

it has a negative energy density.
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The other two, on the other hand, are certainly worth
further investigation. What is needed is, first of all, an
explicit expression for the constraint V-9a) on the B,.
One suspects that these will be related to the mass distribu-
tion in the shell of matter surrounding the origin. This
should be demonstrated, if possible. Finally, it would be

helpful to work out some particular examples.
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Appendix A

Geometric Formalism

A. Manifolds, Vectors, and One-Forms [25]

The idea of a differentiable manifold is a general-
ization of the idea of an Euclidian space. It is, in
fact, a space that can be nicely mapped, neighborhood by
neighborhood, onto a Euclidian space. To define a manifold
exactly, some other definitions are necessary. An m
dimensional Euclidian space is denoted R*. A mapping

between two open subsets of R® is differentiable if the

coordinates of one set can be expressed as differentiable

functions of the other.
A homoeomorphism between two topological spaces X

and Y is a one to one mapping
£f : X=Y

such that both f and £ 1 are continucus.

If M is a topological space such that any two points

can be each contained in two disjoint open sets, it is

called a Hausdorf space. If M is a Hausdorf space, an open

chart on M is a pair (U,9), where U is an open subset of M,
and where @ is a homeomorphism of U onto R™. oOn U, the sub-
set of Rop(U), acts as a coordinate system. It is called a
coordinate patch, and the continuity of ¢ and ¢Fl guarantee
that these coordinates will be well behaved. These are

shown in Fig. A-l.
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Figure A-1

A manifold is a space that has a collection of such

open charts (Ug'ma)ueA that covers the entire manifold, i.e.

M= U,
aeA

It is further required that these open charts be
mathematically consistent with each other. If Ua and UB
are two intersecting open sets, the homeomorphism @a maps

) , m .
U, into ¢G(Ua), an open set of R, and $g maps UB into
wB(UB), another open set of Rm. Bach of these open sets

m .
of R" contains a subset, wa(Uafﬁ'U&) and @B(UQI\UB) that are
images of a common open set in M. Since Py, is a homeo-
morphism, @a—l is a one to one continuous map from
cpa(Uan Ug) onto u N Ug.

-1 .
Pq cpa(UanUB) UaﬂUB

and ch takes Uaﬂ UB into ch (UanUB)

g UaﬂUB - ch(UanUB) .



97.
Thus

950 9, T 9 (UNTL) = 9g (W NTY)

where © denotes the composition of the two mappings (the
mapping that results from the action, first, of ma—l on
wa(Ucf]UB), followed by the action of @B on its image).
This is illustrated in Fig. A-2. It is required that

Pg © wa—l be differentiable.

e
o

[~ > (%Y .
/ L—— \*
7/ l Lanfuanle) \ A
Figure A-2

Suppose that £ is a real valued function on M (that
is, f assigns a real numbér to each point of M). This
function f is said to be differentiable at some point p of
M if there is an open chart (Ua,ma) containing p such that
£ o wa_l is differentiable at p. It is said to be differ-

entiable if it is differentiable at each point p of M. The
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complete collection of such differentiable functions is
c”(m).

If £, geC&(M), then a vector field is a mapping

X :com - cTm
such that

1) X(af + Bg) = oXf + BXg
(a-1)
2) X(fg) = £(Xg) + Xf)g ,

where o and B are real numbers. The collection of vector
fields is denoted Dl(M).

It follows from (2) that if £ is a constant
X(fg) = £(Xg) = £(Xg) + (Xf)g

then Xf = 0. Suppose that (U,¢) is an open chart on M with

p an arbitrary point is U. Let ¢(q) = (xl(q),xz(q),...,xm(qL
where qeU, and £* = £ w—l for fecaﬂn). f* is a function
of the coordinates in ®(U). Further, let V be an open sub-

set of U such that ®(V) is an open ball in @(U) with a center

2

9(p) = (a’,a ,...a"), and let (xl,xz.-.-.xm)ewcv)-

f*(xl.xz.---.xm) = f*(al,az,..-,am)

:m of¥*

Sw i
i=1 °X

(al' 32, e ey am) (Xl-al)

32 £
L (a

1 axTtox’

1

o 2 m,, i i,2
+ %. PN ,@ @ )X -a")" 4+ L. .
i, j’-—'—'

Transferring back into M,
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m
Qf*
£(q) = £(p) + T (x.dq) - x; (p))
i=1 i (Bxl ©(p)
+ Z_ (x (@) - x (p))z( L e .
ij=1" ®(p)

If, now, XﬁD%(U)

XE(Q) = XE(p) + T X[x (@-x (p)] —a—f—
i=1 ox™t 0 {p)
m 2
+ 5 X(x (@-x (p))z(i—f——) TR
ij=1 3x*ax3 9 (p)

But Xf(p) = O since £(p) is just a constant part of f as
g ranges over the points of V. Also, for the same reason

X(x;(@)-x;(p)) = Xx. (q) . Therefore

m
2
X£(q) = >: xx, (@) (855 T X(x; (@-x; (D))
ax™ w(p) i,3=1
< ( 32 gx
3x axj e{p)
and as q ~ p,
x£(p) = T xx, (p) (25F (a-2)
3% ¢(p)
Thus, 2 Xx (p)(——-) 6 ¢ is the local realization of

1—1
the vector field.

In the ordinary parlance of physics, a vector field is
simply a function that assigns a vector to each point of a
space. It is far from obvious that the vector fields de-

fined above are, in fact, these vector fields. In order to
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show that this is so, it is necessary to check the trans-
formation prcperties of X defined above under a local coor-
dinate transformation.

(i i i
Let 13 = {Xx~}, where, as before, the X~ are the
cooadinate function on U. If xtr = xl'(xj) is a local

coordinate transformation on wﬂV), then

3 _ ) 3
\axl “axl ?x'J

and.
1]
x = xt _QI S Bxl - %3 [°)
ox ox Bx'J Bx'j
where
. . j,
XJI =X12{—.—.
i
oxX

The components of X, then, transform like a contravariant

vector. Every element of Dl(M) defines a contravariant

vector field.

Suppose, on the contrary, that a contravariant vector

field {Xl} is given. Then certainly X = x*t —EI defines a

ox
mapping

X :com -c m).
Dl(M), then, is just the space of all contravariant vectors
over M.
At each point peM, Dl(p) is just the space of all

vectors at that point. Dl(p) is the tangent space at p.

A vector field XeDl(M) defines a vector at each point peM,

and there is a family of curves in M tangent to X at each
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point of M. These integral curves are called the congruence

of X in M.

If X,YeDl(M), a product can be defined

(X,Y) -~ XY = X*—° 2 (v ) .

This product is not a vector. Another product, however,
[X,¥] = XY - ¥X (a-3)

is a vector field, and it is called the Lie derivative of

Y with respect to X.

Dl(p), the tangent space at p, is just a vector

space and is denoted TP. A linear functional on a vector

space Tp is a mapping @ that maps Tp into the real numbers

w s T -~ R.
b

An example of this is the inner product. If w and 6 are
linear functional on a vector space V, then a 8 + b w is a
linear functioﬁal where a and b are real numbers. Thus,
the space of linear functionals on a vector space V is itself
a vector space'é, called the dual space. Thus, at each point
of M, a dqual space exists to Dl(p). This can be denoted
D, (p) -

The basis of Dl(U) is {—QI}, as can be seen from
Aa-2.. Likewise, Dl(U) has a bZ:is {wi}, such that if

eeDl(U), e = eiwl. These w' can be chosen so that

wl(—§3> = 5lj. Later it will be shown that these wl = dxl
ox
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Dl(M) has already been identified as the collection
of contravariant vector fields over M. Since XuYu is a
real number, then the collection of covariant vector fields
is dual to the collection of contravariant vector fields.

It is possible to define a product on vector spaces
such that the product space is itself a vector space. This
is called the tensor product. If V and W are vector spaces,
and A,BevV, and C,PeW, then (aA+bB) @ (cC+dD) =.acAOC
+ adA@D + BcB®C + bdB@®D ¢ V W.

From what has been said before, Dl(M) can be producted

with itself, or with Dl(M)
1 1 1
DPM® DMS... DM Dl(M)@ --- ® Dy (M)

and the resulting space is a vector space. These are
called the tensor fiedds over M. Since {—QI} is a basis for
. oxX
1 (g 20N
D* (M) and i@x*} is a basis for Dl(M)' the basis for the

tensor fields of M are

——a—i@ —a—.@... -—a-]z@dx‘e'@ ... ®ax™ , i.e. for
ox ij ox
any tensor T,
T=le"'kz m—éi—@—a—.@... —a—kde‘e'Q...dem.
cTtT d¥x ij oOx

It is easy to see that these tensor fields under a

coordinate transformation x3' = xJ'(xl), transform
pite--3 _ k..on ax™'  axd' ax® ax®
4. ..m' X...t k °*°. n dxit °°° n °

ax ax dx
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Having now defined the tensor product of two one-
forms, another product can be defined. This is the exterior

product (or wedge product). If 6, weDl(M) then

m

AL =0@ uw-u0w®o

. _ 0 V)
Since 8 = Gpdx , W wvdx R

eA W

_ M V)
(epwv eva)dxﬁ dx”’ .

The complete collection of all such forms is called A2(M).
One can go on and define AS(M) for any number s > 1 as the

collection of s-forms of the form wl w2 .o ws. 1f

-] . i
AO = C (M), and Al = Dl' As is defined for all s =2 0. In

these cases, if flger, fag = £fg, and £A6 = £6, where

GeAl.

The exterior derivative is defined so that

1. If meAn, dweAn+l R

-

2. If feAO, then df = EEZ dxl, and df(x) = Xf

oxX
3. If wlena(M), wleAn(M)

’

d(wlA wz) = dml/\ mz + (-1) wlA dwz R

4. and @2 = d(@) = o.

It was stated before that the basis elements of Dl(M),
wl, such that wl(xj) = 5lj, are wl = dx>. This can now be

proved from (2) above

af (x) —a-f—i— dxl(xJ °) = afi %3 dxl(—a—.)
ox % ox axJ
Bxl
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This can be so only if dxl(—§v> = 6lj.

On any manifold, an affine connection V is the rule

by which the covariant derivatives of vectors are calculated.
This is defined in terms of the operator V which obeys the
two rules

1) Vg, + 9Y(2) = £ (2) + g¥,(2) (aa)

2) Vx(fz) = fo(Z) + (X£)2

where f,‘gecw(M) and X, Z, YeDl(M). Let {xi} be the basis

for a vector space, and define,

k
v =
X.X' T.. X.k .
Allow Y = YlXi and 2 = ZlXi and

vz =V . (2IX.) = ¥V (Z.X.)

J
=Yzjvx+Y’x“az X.
X; 3 oMt

if 3 &k wazd .
= “i.. + .
vz Ty X - xj)

= Yi<zj1“ijk X, u 22" )xk

., k
The quantity Yl(ZJTijk + XiU.QZE is the kEE component of
ox

a vector to the basis defined above. Furthermore if
Xi = B/aXl, then this is

Y“(l“ va az) o) (A-5)
HV Bx Bx
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=)

which is (X“Zp. ) —/ .

Before the significance of (A-5) can be discussed,
two more quantities must be introduced. These are the
torsion and curvature of M. These are respectively

T(X,Y) = V¥ - VX - [X,Y]

= V_V - V_ Vv -V

R(X,Y)Z = Vyu¥yZ = Vg2 = Vix,v]?

1
for X, Y, ZeD  (M).

For the purposes of this thesis, and, indeed, most

of the work in general relativity [29], the connection detf

fined in (A-4) is restricted to the pseudo-Riemannian

connection. This means that

1 T(X,Y) =0
v =
2 <9 0
where g is the metric.
Define g(X,¥) =g

ququ = Xuyv, and let tx“} be a

basis of Dl(M). Then condition (1) means

=V - Vv
[xi.xj] X.xj < X5
i J
_ k Xk
= (rij rji YKy -

Since [Xi'xj] is a vector field in Dl(M), it can be ex-

pressed with respect to the basis {Xi}. Let, then,

where the Cijk' the components of [Xi’xj] with respect to
{Xi}, are called the structure function. Condition (1)

above implies that
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k xk_ .k
Fig 7t = i3 o (2-7)
_ i
If {Xi} = {a/ax }, then
3P§“ '._é,a = 0, and r..Xx_or.X-o.
3x 3% ij ji

Now apply VZ to g(X,Y). Condition (2) above implies that

Let {Xi} be a basis of Dl(M), and define the metric g with

-

respect to that basis,

g(X;.X5) =g

ij

k9ii T Ja57ki T Figxj
If {Xi} = {a/axll then (A-8) says
Bg. .
_ —ij r 2 L_
Tk P93k T kg <O
%95 4 . ..
or + —x = [ki,3j] + [k3,i] .,
X

which gives the usual expression for the Riemannian con-
nection in terms of the metric tensor.

Returning to (A-5) it can be seen that if the connec-
tion is the pseudc-Riemannian one, then ruvp will be the
usual, symmetric Christoffel symbols of the second kind,
and (A-5) is 5ust the usual covariant derivative of Z with

respect to X.
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To investigate the curvature tensor, let

k
R(Xi'Xj)Xk = R zink (a-9)

Now, again let the basis of the tangent space be {B/Bxk}

and recall that V Ll(B/va) = rpvp 2 . Then
d/3x ax®
d 3 \_3 ) -V
R( W v/ P = a ( a ( p) ( ))
dx ox Ox v
Bx Bx ox Bx
3 _ o _3 5_ c 3
-3 3 ‘( p) =V 3 (rv s)” ¥ 3 (rup c)
—a’ _\)-.\ Ox —u P oax - Ox
ax X dx ax
o c
T al
1 (e gt Ty (0 T
VP _° Max BxLl X P 9 Max ox Sx
ox
o] T 3 c =) o) T 9 o} o)

= —_— _— - —— + T

vp ruc 3xcT + Vo, Uy O o rvc 3T MP,V 5, O

T T O~ 7T 0. T\_3 T - _09
( ve,d Mo,V + vp MO rup rvc BXU R pPUV ax’r

This means that

g _ T T on T _ On T
R ouv = Tup,u ™ Tupoy ¥ Tup Tue ~ Tup Tvo

which is the usual definition of the curvature tensor. In

the next section it shall be calculated with respect to the

tetrad frame.
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B. Tetrad Formalism [26,27]

All of the manifold being treated in this thesis are
of dimension 4. Therefore, generalization beyond this
dimensionality is unnecessary.

In a four dimensional manifold, the tangent space is
obviously spanned by four vectors. Likewise, the space of
one-forms is spanned by four one-forms. The vectors are
related to the one-forms by the metric. If X is the vector,

w the:-bne-formcdmalutd it,:i:,

X = XU'—EE
ax
and W = ngxu
SR AV
X =g Xv .

The four dimensional spaces relevant in general rela-
tivity have Loréntz signature (8ig. %£-2), and have their
tangent space spanned by four linearly independent field
vectors, {Xi} (i=0,1,2,3), one of which is time=like (i=0)
and the rest space-like (an alternative to this will be
discussed in Appendix B). These can be chosen to be orthog-

onal, and normalized so that quX.ijv = T.., where

i ij

nij = diag(-1,1,1,1) .

In addition, the above relation can be inverted:
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where X 1 are the covariant forms of Xi“. In this case

il

MoV i, 1, MoV
ds g, dx"ax” = nijxulxv dx"dx at)

_ ﬂijwle==m02 + u)12 + w22 + w32

and wl are the one-~forms dual to Xi' Such a tetrad of

vectors and one-forms is called an orthonormal tetrad, and
the line element, when expressed in terms of it, is said to

be in normal form. The metric gij expressed with respect

to the orthonormal frame is just nij' From (A-8), then

L L .
nzjrki + nzirkj = 0 . This means that

--T .0 + Tt = 0 or T - r t

ki k0 ki k0
(A-10)
and j 3 3 i
rki + rki =0 or rki = - rkj , where i = 1,2,3.

From (A-4), one would like to have the components of
the connection rijk in terms of the usual Christoffel symbols
of the second kind. To do this, the general basis (specifi-

cally the orthonormal tetrad) is expressed with respect to

{a/2x"}

(SRR
X, =X, —

* oM

From (A-4, one computes
-

v, X.=T,. x. M=
X735 ij (x 3 ) ( j axv)

Lax™

_ Mg v 3 — Vg d + SR v_ 9
Xy (Xj ax” Xluxj =) (axv) X 3™ Xj 3V



ax P
x. Y Vr P2, x* Yo 2
173 WY 5P oM P
=X H N + T px\) ._a_
1 MM MY 737 axP
- P S __rT =T P_o
x5, i3 Tk T i T e
Thus
xkp r..% = X.H.Xea or
1] 1 Jid
k _ P k _ _ gk P, W
Tis xi“xj”lxFJ S I
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(a-11)

From the relations (A-7) and (A-10) it is possible to

IR k
cdlculate the rij from the Cij .

i'jlk = 112'30 Then

r. ¥X_r. X
ij ji
r . 3_r.3
Kl 1K
i i
- T
Pi Tk
From this,
r. K=
ij

This procedure can be

r, 3
io ’

k

First of all, let

k 3
%(C54 + Cyy

used to calculate Ti-o.

i
Cjk )

J

r .J
o1

(a-12)

and

(A-12b)

(r-12c)
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Now, calculating the curvature tensor in terms of the

orthonormal tetrad, one defines

L
R(Xi,Xj)Xk = R iijZ .

From the definition (A-6),

R(X.,X.)X,=9_ 9. X,-V7 V7V X
i’ Xs xj & xj X

- X
"x; 3 S X - Ty (T55%) = "x X1

-V .X
) [xip%] jA

x X X
= . - v
R(X; /XX, =T, inxk + XU % - Ty xjx'k

k k s
- XTi % ~ Cig Ty %
_ k s ke S s
- ?jz r1k Xs riz,r Kk %s t Xlrjz X
s k s
Xjrlz Xs Cij I‘kﬁ,.xs
_ k s k. s s s
(g Tix ~ Tig Ty * ¥iTyp ~ %5Tiy
k s s
- Ciy Txg 1% = Rgii¥s -
Therefore
s _ kK s _ k S s _ s _ ks
R% g5 = Tyg Tie ~ Tig Uik * %iF50 ~ %5050 ~ Ciy e -
(a-13)

The following table summarizes the results of this section.
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I. The tetrad:

AR v
{Xi}l =0,1,2,3 ; gquiqu = nij' where
where nij = diag(-1,1,1,1)

- i, 3, J 2.3
= n. .X lx Xi‘-&u - 6i 14

i ij v
= X . .
where Xp n guv i
II. The Connection
k _ _ Vo, M
Iy = xmvkxi X!
k k k
le - rji = ClJ where
L,X.] = . - x.%. = -
[xl J] (Xl Jiu XJ l:H) (X Hx ; X Hxl:u)
= (X.X. - X.X.) =¢C
1 ji ij
and
k k 3j i 3 . .
T = 1 - 1, o~ -
Ty 2(cij + Cps qjk) ) (i,%k,3 1,2,3)

o o j i
= % -
rij z(c., C + C. 7))

i_ g i 3 o
Toj s(C .~ + C. + C..")

The Curvature Tensor

s _ kT s T k s

S
Rpij = Ty Tix i T4k il ~%5Tip ~ Ciq Txg
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D. The Structure Equation [25]

Let {Xi} be an orthonormal vector tetrad, and {wl}
the dual tetrad of one-forms. From previous sections,

. i i
since w' = X dxu,

0
. X
ao* =-——;E ax A ax" .
f=5'4
But
Xludxu = wl
VI VA |
dx" =X iw ’
SO
. axt ax*t .
dwt = — dx\)/\.dxLl = (———E x.V u>wjl\ Qk
Y v Jj Xk
bS] ox
axt axt .
B V, W Vo, Vo B 3 k
= X - — X, W' A W j <k
(8" - 5
- - (rjkl - rkjl)wj/\ K3 <x
= - cjklmj/\ o j <k

= i,3
W = rjk w ’ (a-142)
the first structure equation can be written

awt = - W A ok (A-14b)
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This structure equation, written in a more general form, is

qut = - ot wk + %’I‘jklel\ u)k ’

where Tjki are the components of the torsion tensor which
are equal to zero for Riemann manifolds. If one were using
a non-Riemannian geometry (non-symmetric connection) then
the full structure equation would be needed.

To go on, the exterior derivative of wlk is taken:

dwlk =T..1 ax"A ol + I‘j Taw]

jk:U« k
del=X£l“l wz
dwl = -wl_A ot = =T an/\ o
m nm
Then
i i B4 i _ i j.n m
dwk-l‘jk,uxzw/\m I‘kl‘nmw/\m

J
= L Ri sz mj -T..'r lu.)'q'/\ w?
2 T k] ik T AT
L ol zA j_ i T
= % szjm W ® T/\wk

This yields the second structure equation

i i k i 4 m
., = e . 3 . - -
dw] wk/\wj+2Rjzw/\w (A-14c)

The two together are

duw’ = —wle w = —c twA O (5 <))

i
dw .
J

(a-14)

—wlk/\ wkj + % R, wiA
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The utility of these equations in doing calculations

is enormous. The procedure is simple.

1. Put the metric in normal form:

ds2 = —w02 + wlz + w22 + m32

2. Use (A-14b) to calculate cjkl‘

3. Use (A-12) to calculate the rjkl' and thence

i i
wo. =1 7w .
J kJ

i

4., Use (Ad4c) to calculate R 5k 47 and then contract

to calculate Rij and R.

This is the procedure used in Chapter III of this thesis
to do the calculations for the Type 0, I, II, and III

transformations.
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Appendix B

The Newman-Penrose Formalism

A. Introduction

As was said in Appendix A, the tangent space of a
manifold is spanned by a tetrad of vectors,
{Xi} (i = 0,1,2,3) such that Xo is time-like, and

Xa(a = 1,2,3) is space-like and

v — —-—
gquipXj = nij (B-1a)
— ) .v" j _
Iy = Zf};jxnixv (B-1b)
i_ ij M -
where XH n guﬁxj . (B-1c)

In 1963 E. Newman and R. Penrocse [15] employed an
alternative tetrad as a basis for their formalism.

Instead of one time-like leg, and three space-like
legs, one could always substitute two null legs, and two

space-like legs into the tetrad. If {Xi} is an orthonormal

tetrad, then let

1
z*—ﬁ_(xo+xl) ’
_ 1 _
n* = = (Xo Xl) ’

and (4, n, X2, X3) is a tetrad such as has been described.

It is called a pseudoorthonormal tetrad. Now, however,
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g n” = -1
= B 2, 2 3, 3
and Iy = —Zugv = nuzv + Xu X, +Xu X, -

Newman and Penrose used this alternative tetrad with

one difference. They constructed from X2 and X3 a complex

vector m = —f-l'_- (X2 - iX3) . The Newman-Penrose tetrad now
2
consisted of (4,n,m,m). The following relations hold for
them
U' = e = Lu_ = ¥ = M =
zzp .%mLl mLl nmLl nmLl nnu
m m“l m mu 0 (B-2)
W — _ M -
hA nu = m mu 1
and
gu\) = - zunv - nuﬂov + mum\)+ lemU- .

If one allows

k=z;k=n;k=m;k3=ﬁ,

then (B-2) can be expressed in a way that is parallel to

(B—l) ’
v —
guvkiukj = Niy (B-3a)
- i ]
i _ i3 V=
where k p=n gu\)kj {B-3c)
0-1 0 O
and where -1 0 0 O
‘ni. = 0 0 0 1 . (B-34)
J 0 0 1 O
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As previously

2 _ i3
ds” = nijw W ’

where the one forms are those of the orthonormal tetrad,

and nij is defined by (B-1d), so

2_ 1 il jl -
ds” = nijw W (B-4a)
where
ol = kgk ax* (B-4b)

and_nij is defined by (B-3d).
These vectors and one forms are defined by their

orthogonality conditions up to the transformations of the

~

six parameter Lorentz group L . These can be written

+

™= M (B-5a)
ot = m* o+ as™

o= n¥ + an® + am” + aast

™= xM (B-5b)
At = k—lnu

e

™= ¢+ ot + b

ﬁp = mp + an‘L

IRV (B-5¢)

where a and b are complex numbers, and A and @ are real.
(B-5a) and (c) are the two parameter null rotations, (B~5b)
the ordinary Lorentz transformation in the 4-n plane, and

spatial rotations in the m-m plane.
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B. The Spin Coefficients

Using the definition of (B-4d), the structureaequa-

tions (A-13a) can be written

dwl = - wl. w3

, . (B-6)
i k j

4 . . _
The Yikj = niZY k3 are.called the spin coefficients, and
answer to the fij of the tetrad formalism. [When Eq. (2&-5)
is applied to the pseudoorthonormal tetrad, the spin coef-
ficients can be calculated.] In the following table, twelve

independent spin coefficients (linear combination of those

defined above) are given.

K= Y020 =<z9;V¢pzv poM="Y130 T _np;va“zv

¢ = %WMo107v230) = 5y, 87 -y )

o = Yo23 ~ Zu;vmuﬁv Poh= Y33 = 'nu;ﬁauﬁv

@ =%{¥y13 Yv233) %(zu;vn“av - Wy R ) (B=7)
8 = %(Y515Y232) %E”u;vnumv - mu,vﬁ“mv)

9= Y022 T Eu,om“mv PoME Y330 T _nu;vaumv

V= =Y¥931 'nu;vﬁunv PoT = Yp21 T Eu;vmpnv

Y =% ~ Ya31) = %(5u;vnuhv'mu;vﬁumv)

As before, physical significances can be given to
these quantities. From the expressions for the spin coef-

ficients above,
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by od = Kﬁu + Emu - (€+E)Zu , (B-8a)
zg;vnv = —(Y+§)gu + Tau + ?mu . (B-8b)
zu;vm\) = EmH - (o+8) b+ O‘r_nu , (B-8c)
“u;vﬁv = o, - (§f§) Lt om, . (B-8d)

From (B-8a) K = 0 is the condition that the null path tangent

to & be a geodesic. If K = 0, then a function @ can be

chosen so that Tu = ;pzp, and Z;'.;.E' = 0.

From (B-8), one can write down the expression for

= -[Km +fm - € - [~ v m +T
Zu;\) [ mu+ mu (e+€)zu]nv [-(y+Y) zu+'rmp+“rmu] 2'\)

+ [pmu— (o+8) zu + cmu]mu + [pmu—(a+8) qu-cmu]mV .
(B-9)
Thus

= gtlL = - (e4E) + (P+D) | (B-10)

is the measure of the rate of convergence or divergence of

the null paths tangent to £ [28]. When K = 0, e+e = O,

Miu = (p+D) .

One can project Eu_\) onto a hypersurface orthogonal

’

to 4 and n by means of a projection operator huv =

(gu\) + u(unv)) = (mumv + mvmu) . Allow
a0 %, _hm 0
e uy = BBy Ao - T (ATrw)
e ma’ i @ma® + o’
= (mum + mum )(mvm + m, )'ep;c
_ m m, + m\)le) (p+p)
2
= Gmumv + Umumv + (p—p)m[rﬂmv] .
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eb[uv] = (p=P)mp myy = 8y, (B-11a)

=— Q: =Z -
éB(UV) om, m., + om m, v (B-11b)

The vorticity of the null geodesics tangent to L is given

by Q and the shear by %

NG uy* From this,
g R ORI sV HAY,
0, 0" = 10757 im g U = Y (B-122)
zuvz“V = 200 = z(p.v)z“’v- (o w2 (B-12b)

Thus, the expansion and vorticity of the null congruence
tangent to M is given by the real and imaginary parts of
o, while the shear is given by 0.

Another parameter that is associated with this null
congruence is T, which, as can be seen from (B8-b), is the

o
These five spin coefficients, X, e€+&, p, 0, T give a com-

measure of how £ change as it is transported along n,-

plete description of its properties.
These same calculations could be done for nu, and the
coefficients, V, v+y, ¥, A and T would be found to do the

same for the null congruence tangent to it.

C. The Weyl Tensor and the Petrov-Pirani Classification

of Space Times

The Weyl tensor is defined in terms of the curvature

tensor, Ruvpc' the Ricci tensor, and the scalar curvature R
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R
== + - .
Civpo = Ruvps ¥ FuroRe1v T IvieRolu T 3 Furear”
(B-13)
Like the curvature tensor
vl teol = Cuveo = Cpomv ¢ (B-14a)
Cufvesy = 0 - (B-14b)
Covpposel = O (B-14c)
and in addition it is trace free,
u = —
C yus = O - (B-144)

In general relativity the effects of matter are com-
pletely accounted for by the Ricci tensor and its trace R.
The Weyl tensor is that part of the curvature tensor that
is not determined locally by the matter distribution. It
governs the way in which the gravitational field propagates

[14]. To see this, contraet the equation

Riv[po:r] = Ruvpost © Ruvorse T Ruvrps;o = ©

from which
R - R + RrP 0

vO; T vT; O vOT; P

From (B-13), one has

0 = 1
CVorio = Bolriol T 6 IvitR;a)
: (B-15)
or cTIVe, o gVIT70] +_% gv[cR;T]
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If this is written,

chvp;p _ Jch
where g oV = RV[T7G] + %-gv[cR7T], then it can be compared

with Maxwell's equation
% = g% .

0V . . .
Thus J is a kind of current vector, serving as a source

for Cchp, and Eg. (B-15) is a field equation for the

propagation of this tensor field.
One may press the analogy between cuvpc and Fuv

further. It is well known that Fuv can be classified as to

its eigenvectors. In the general case, there are two dis-

tinct eigenvectors. .In the special case, where E2—H2 =

E-B = 0, then there is only one eigenvector whose eigen-

. . . a . .
alue is zerc (i.e. if k° is the eigenvector, then

T
w
]

ab = 0). This is the null field, as distinct from the
non-null field. It corresponds to a pure radiation field,
whereas the nonwnull field has sources present.

This same kind of analysis has proved valuable in
gravitational theory. The Weyl tensor can also be classi-
fied.by its eigenvectors.

With respect to an orthonormal tetrad, the Weyl tensor
has the following symmetries

Kixp = nikcijkZ =0, (B-16a)
Cisks = ~Ciixe = Cijax = Cyimx T Ckeij (B-16b)

and
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cijkz + Cikzj 4+ Ciij =0 . (B-16¢)

(B-16a) gives the following equalities between the components

of the tensor,

Coror = ~C2323 C1020 = C1323
Co202 = ~C1313 C1030 = 1232
(B-17a)
Co303 = ~C1212 Co323 = ~C0121
€1202 = ~1303 Co232 = 0131
C0203 = €1213 ¢
while (B-16c¢) gives the relation
Co123 * €231 ¥ Cp312 = 0 - (B-17b)

ciij' as can be seen from (B-16b) is antisymmetric
in the first and last two indices, and symmetric under the

exchange of these pairs. If one labels each pair of indices

by an integer,

(23) =1, (31) = 2, (12) = 3, (10) = 4, (20) = 5,

-7

(30) =6,

then Cijkz can be written as a symmetric, 6 x 6 tensor, [17]

CMN' where A and B are now the labels given above for the

(B A
C = ’
MN c E

where A, B, C, E are 3 x 3 tensors, the symmetry of CMN in

pairs. If

M and N implies that C al. Also, from the relations in
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T T

(B-17a) it is clear that A = A" and B = B". Further,
céio = 0 shows that B is trace free, and (B-17b) shows that
A is also. Finally, the relations (B-17a) show that E = -B.
Thus
(B A
C = .
MN A -B
If another tensor D is defined
D = A + iB (B-18)
or
(C91017%C0123) Co1021%131) (Co103%C0112]
D = sym. (Co202+1C0231) (Co203+1C0212)

(Cy30371C0312)

then this tensor can be brought into canonical fo

:
g

means of the three dimensicnal com
(which is isomorphic to the Lorentz group) .

Three cases can now be distinguished. -This tensor
can have three, two or one independent eigenvectors, corres-
ponding to the case where it has two non-zero éigenvalues,
one non-zero eigenvalue, on no non-zero eigenvalues. These
correspond to the Petrov-Pirani classifications I, II and

III respectively. In each case the canonical form for D is

: = j)ju,ﬁ 0
D;.= R 0 A, 20 (B-19a)
0 0 (=M=} i



126.

A-id W 0
= Oy 35 3 -
DII Q I A1 0 (B-19Db)
0 0} -2
0 0 (3
DIII = 0 0 ipn (B-19c)
Booip 0

where A is complex and U real.

If xl = XZ in (B-19a), and 4 = 0 in (B=19b), then
D; = Diqe This is the Petrov type I D (or simply type D),
and both the Schwarzschild and Kerr metrics belong to this

classification. If A\ = 0 in (B-19b), then

-id 4 0
0] 0O O

and this is the Petrov type N, a pure radiation field. The

relations between these are tc ke seen in the Penrcse
diagram

Iz -

where 0 is the type when all of the components of the Weyl
tensor are zero (as in the de Sitter universe), and where
the arrows point in the direction of increasing algebraic
specialization.

When the Weyl tensor is expressed with respect to the
Newman-Penrose pseudoorthonormal tetrad, the independent

components are
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wo = —CGBYézamBLYm6

b = ~Cggyst’n®ein’

by = - HCugyt®nPein’- 2% P R) (B-20)
w3 = CaBYézathYﬁé

Yy = ‘Casysnaaanyﬁé

and where CGBY6 is the coordinate representation of this
tensor. The real and imaginary parts of these five complex
quantities give the ten independent real components of the
Weyl tensor.

The Newman-Penrose form of this tensor is related
closely to the components of the complex tensor D on which
the Petrov-Pirani classification tensor is based. 1In
Appendix C, the Wi's are given directly in terms of the
orthonormal tetrad components of the Weyl tensor. Comparing

these to (B-18), they can be written in terms of the com-

ponents of D,

vV = - %(Dzz—D33+21D23)

¥y = 5 (D ,+iDy3)

bp =% Dy

U3 = %Dy 5=iDy3)

¥y = = %(Dy;-D3g-2iD,5) .

Suppose that, of these, only wz # 0.
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il

D and D

22 = P33 23 = 0

¢o = ¢4 =0 D

4 =¥, =0 D,,=D,, =0

12 13

This means that

AN 0 0
D = 0O X O
0O 0 =2\
and the space time under consideration is type D. If only

wo # 0, then

Dip = D33 =0 =Dy;7
and ¢4 =0

Ajy = “Byy = “Ryy = M
and B33 = A23 = —B22 = 0 .

The tensor D is now in the form,

&«

0] 0 0
D= |0 u-ic . ‘Hi{pFioc)

0 -i(u+ig) - (u—-10)
A null rotation will now make 4 = 0, and D is that of a
type N field. The same thing can be done if only w4 # 0,
with the same results except for a change of sign on the
diagonals.i.e. a permutation of rows 2 and 3. This means,
as it turns out, that e is the propagation vector, rather
than n". If only wl # 0, then

D =0, D =D =0

11 22 22 s+ Dy3 =0

12 = iPy3

Ol
il



129.

0 u —-iy
D = L 0 0
-ig O 0

This is obviously type III. Again, the same will be true
if only W3 # 0 except that g% rather than n" will be the

propagation vector.

Again, suppose that @o = —¢4, and *1 = ¢3 = 0. Then
-2X 0 O
D = 0 AM
0 oA

and this is type II.
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Appendix C
Equalities Between the Spin Coefficient of the
Newman-Penrose Formalism and the Connection

of the Orthonormal Tetrad

First of all, the components of the spin coefficients
in terms of the components of the connection of the ortho-

normal tetrad are:

_ 1{0 1 0 1 .0 1,0 1
K =- 25{%2 Tl + Typ-Thn + 1(Tp3-T13%Ty3 1“03)}
N

e+e = J_;-{rgl + rio}

-5 = j—z; (r2, + T3,)

p = - ;;% (rio+ril + i(cg3 + C§3)) - (e+e)

o= - ;:/'—';:[(ng'rg3) - (T3pT33) + i{(rgfrgz) - (T:2L3+r§2)}]
T=- Z_J';: Ti2+il"]:£3 - Cio'icio} - %(a-8)

v = ';7'; (1‘82-1‘%2@32-1“?2—1[1“83—1“i3+1%3—1‘g3])

¥y = 'J_; (To1 - T1o)

Y- = J_g (1%3 - 1‘33)

U= 2—3-5 (th, - Th - i(c) reyy)) + (v+W)

1,0 0,1 1 .0 .0 .1 -1
A= o5 (T55-T33+T5 5 T33= 1T 3+ 35475 5+15,1)
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1 i . 2 . 3 -
M =-— (', - iy, + c7, - ic7,) + (o-B)
2;\/5 i2 i3 10 10
= 1 0 . ~0
(a+B) =-§§ (F21 + 1F31)

N2
The components of the complex Weyl tensor are related to the

components of that tensor with respect to the orthonormal

tetrad in the following way:

Uy = = %(Chy057Co30372%02127 12C0203C02137C0312! )
¥y = %(Ch1027C1012%1 (01037 C1013))

t, = = %(Cy101+1C0123)

¥3 = %(Chy02+C101271 (Cp103+C1013) )

Uy = = %(Ch302C03032%02127F (252037 Cp2137C0312) )

Now, the components of the connection wrt of the
orthonormal tetrad are given in terms of the spin coeffic
cients:

IO, = —= ((e+3) + (VY1)

N2

rgz S (K+K + T+T + T=T - V=V)
2.2

rg3 = - =X (K=K + T-T + T-T + V-V)
22

rgz = - 3 (K+K — 7= - =T - V=)
242

0 = - X (K=K —=7#T - THT - V)

13 ZJE



2

i
2,2

L

S

Sl

(a+B) + (o+B)

—é {(e+E) - (Y+V)}

(0-0 + P-p + A=X + U-1)

(0-G — p+5 + A=N — W+{)

—L (k4K - =T + ™T - v-9)

292

- L2 (K=K = T4T # =TT + V=-V)

22
22

2

2.2

1

(K=K + T-T = T+ -

1
g
1
I

(o+0 + p+p

(0+0 + p+p + AN

;% {@p - @B}

- L ((e-B) + (v-9)

N2

i

N2

((e-e) - (¥Y-1))

(K+K + T4+T + THT + V+V)

v=-V)

PR AT))

X+ p-i)

132.
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—1 (045
o - =P - A% 4 P

—L (045
- PP + M} = p-)

242

- 1 ((a
7 -8) + (o-8))
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Appendix D

Metrics and Spaces

A. The de Sitter and anti=de Sitter Universes [10,14]

The curvature tensor of a space of constant curva-
ture can be written

R
Riveo = 12 (9.09v0 =~ FpuoIvp)

R
=% Iuipdolv (B-1)

and

For Lorentz signature metrics, there are three unique

solutions to BP-1, depending on the value of R. If R > 0,
then this is the de Sitter universe. If R < 0, then it is
the anti-<de Sitter universe. If R = 0, it is Minkowski

space.

There are two possible physical interpretations of

these spaces. If one assumes that the cosmological constant

A = 0, then 87T

av = 2 Rguv. If this universe is a perfect

fluid, then
snT = 8T[ (p+p)u,u, + p9..,J] = - B g
SRV uov UV 4 “uv
and so

= -p = - B
p=-P="32"
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This negative pressure is not very reasonable physically,
and so it is usual to adopt the alternative interpretation

that A = = , and so

IS

R
—l‘ = -— - % =
Ruv 5 guvR + Aguv 2 guv 5 guVR + Aguv 0o .

The de Sitter universe is a hyper-hyperboloid embedded in

R5

x2+y2+zz+w2—u2=0,2

where A = R/4 = 1/a. The scale of these coordinates can

always be chosen so that A = 1/a = 1. By letting

u = sinh t X = cosh t sin¥ sin6 cos®
w = cosh + cos¥ y = cosh + sinX sin® sin®

z = cosh + sin¥ cos@

as? = -at? + coshZt(ax® + sin’y(d6’+sin®edg?))  (D-1)

These coordinates cover the entire hyper-hyperbecloid. These
are shown in Fig. D-1, with two angular variables {6 and o)
suppressed.

The t = constant hypersurfaces are three spheres, and
the geodesic normals are lines that converge to minimum
spacial separation, and then diverge. A more familiar form

of the metric for the de Sitter space is

as® = -at? + e"z,‘:‘(d:??:2 + di}z + az?) .
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Figure D-1

This metric can be obtained from the metric for R5 on the

hyper-hyperboloid if

€= tnw) , £=2=, §=75 5 = —E—

it covers only the coordinate patch such that w+u > O.

This piece of de Sitter space is the steady state universe,
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and represents-ihe limit of the Friedmann universe as the
matter density p - O.

The antide Sitter universe is the space of constant

curvature such that R < 0. It is also an hyper-hyperboloid

in R®

—x2 -y - 22 +u” +w =1,

as shown in Fig. D-2.

Figure D-2

If X = sin t cosh ¥ sin® cos® u = sin t sinh X
y = sin t cosh X sin® sing w = cos t
z = sin t cosh ¥ cos®
then the metric for this space is
ds? = -at? + cos?t (dx+sinh’x (@0%+sin®edg?)) . (D-2)

The antide Sitter universe contains closed time-like

lines, and so violate causality. This violation is not
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essential, since a covering space exists where this is not

so. This an be seen from the static form of the metric
ds2 = —coshzr dt2+dr3+sinh2r(d92+sin29d¢?) . (D-3)

nhe static form covers all of the covering space of the
antide Sitter universe, whereas the metric (D-2) covers

only part of it.

B» HThesEinstein Static Universe

This universe represents the first model of the
universe, and in order to obtain it, Einstein introduced
the cosmological constant A into his field equations.

Einstein noted that without the cosmological con-
stant, homogeneous, isotropic solutions to his field
equations either expanded or contracted. Since Hubble had
not at that time discovered the expansion of the universe,

Einstein naturally used this static model. This space is

just
u2+x2+y2+22=l
on five dimensional Minkowski space, with d52 = —dt2 + dx2
+ dy? + dz° + du®. If
X = cos¥ sin® cos® Z = cOos¥X cos8

v cos’X sin® sin® sin¥y

o
il

then the metric is

d52 = —dt2 + dx2 + sin2x(d92 + sin29d¢?) .
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If, however,

_ e J+o — owin B Y-
u = cos 5 Cos — ’ y = sin 2 cos 5 .
_ ein 8 L N-0 — e P
x = sin 35 sin 5 . z = cos 5 sin ~5— ,
and if

0 = 2(xdu - udx - zdy + ydz)

sinl d6-zos¢ssinedey

Q
il

2 (ydu + zdx - udy - xdz)

cosl d6+sin¥y sined®

o)
Z

2(zdu - ydx + xdy - udz) = -(d{ + cosedey) ,

then this metric is written

2
d52 = —dt2 + %(c.” + © + 0_7)

The coordinates here are the Euler angles, and the Gi's
are the left invariant one forms of S3(R).
When Einstein's field equations are computed for

this universe, AN = 1, and the matter density, p = %; .

C. GOdel Universe [11]

The line element of the GOdel universe can be written

2xl

2 X1 2 2 e 2 2}

ds” = %{—(dxo+e dxz) + dxl + = dx2 + dxg (D-4a)
or

as? = —(dt- 42 sin‘hzrdcp)2 + dr2 + sinhzrcoshzrdcp2 + dz? .

(D-4Db)
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As can be seen from Chapter III, the G6del universe is akin

1

to the Einstein static universe. i

It has A = -1, and p =
The GOdel universe has two interesting properties.

First of all, the fluid is rotational. The GOdel universe

is the first such cosmological solution of this kind to be

B

discovered. The vector u"~ = (1,0,0,0) is tangent to the

streamlines of the matter in this universe. With this

velocity field,

0 O 0 0

1
0 0 - o0 ; eJikd
w. =% 1 , and w = u.
MV 0o & 0 67=g i% s
0O O 0

is the angular velocity of distant matter.

i W
pression for uy’

ponent of this vector.

w

From the ex-

1/J2 is the only non-vanishing com-

The fact that the distant matter in this universe

rotates relative to an inertial frame means that this

universe does not obey Mach's principle.

The other interesting property in this universe is

that it violates causality.

circle t = const, =z

2

To see this note that the

const,

ds

(-2 sinh4r + sinhzr coshzr)dcp2

= sinhzr(l - sinhzr)d¢?.

. . . . =1 .
Then d52 € 0 on this circle if r 2 sinh ~ 1, and the circle

is time-like.
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D. The Kantowski-Sachs Universes

R. Kantowski and R. K. Sachs [19] set out to discover
certain space times with specified symmetries. The two

universes that were discovered have the form

as? = -at?

+ X2 (e)dar? + v (r)an® .

For the Kantowski-Sachs closed universe

X = e+(en + b)tan M

Y = a coszn
t--tO =a(n+ % sinzn)
a0? = (ae® + sinede?)
p = € sec4n/a2[l+(n+b)tan nl

and a, b, ¢ are constants with

€=0[l' —°<a<°’, a#o

-msb<0.
For the Kantowski-Sachs open universe

X = e-(entb)tanh 7N
Y = a coshzn

t-t
o}

dgz = (de2 + sinhzedwz)

a(n+ & sinhZm)

p = —-€ sedh4n/a2[1—(n+b)tanh nl

and ¢ and a are as defined previously and 0 = b < 0.
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The closed vacuum Kantowski-Sachs universe (when
€ = 0) is isomorphic to the Schwarzschild metric within
the horizon. This is shown to be true in Chapter V.
The space sections of these universes are homogene-

ous, but not isotropic.
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