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Asynchronous Bipolar-Equivalent Optical CDMA

Keith Dillon

Abstract

We analyze the use of the bipolar-equivalent coding method in a incoherent fiber optic
time-encoded CDMA communication system in an attempt to emulate the behavior
of a coherent bipolar system. Specifically, we consider two possible asynchronous
versions of the system which we refer to as appended and interleaved. We then
describe a unified theoretical analysis for these systems based on the average inter-
ference parameter and the signal-to-noise ratio. We then consider the performance
of the appended and interleaved systems and compare them to the performance of
similar bipolar systems using length-127 m-sequences and Gold codes. We find that
interleaving performs best of the methods considered—performance is very similar to
the bipolar system we were trying to emulate, except for a factor of two increase in

bandwidth requirement.
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Chapter 1

Introduction

1.1 Motivation

The increasing demand for capacity in communication networks has led to increasingly
complicated protocols for efficiently allocating available bandwidth to a large number
of users. Code-division multiple access, or CDMA, is a spread spectrum technique
which typically allows a very large number of possible subscribers, but takes advantage
of the fact that not all subscribers are transmitting all the time [7]. Standard wireless
CDMA systems are based on the use of bipolar codes, which are modulated directly
on the bipolar data stream. In asynchronous systems these are pseudo-random codes
such as maximum-length sequences or Gold codes which have the property that the
correlation between any two codes, and therefore any two users’ transmission, is very
small.

In a CDMA system, a given subscriber is given a unique signature sequence that
modulates that user’s data. The user correlates the incoming signal with the same
sequence, referred to as the reference code, with a receiver type called a matched filter
or correlator (look ahead to Figure 3.3). If the correlation is found to be large, it means
the data was modulated with the same sequence. The linearity of the correlation
operation means this will work regardless of the number of users. Of course, while
the correlation of other users’ transmission, called the interference, is small in any

single case, it adds up linearly with an increasing number of users and can overwhelm



the desired transmission. This is why we refer to this system as interference limited,
meaning, our primary concern for system performance is the intra-user interference.

To properly perform in a CDMA system, the codes must be transmitted in a way
which retains their bipolar nature. The most common method is binary phase-shift
keying, or BPSK, where the carrier is transmitted with one of two phases which differ
by 180 degrees.

In an optical CDMA system the frequencies are too high for coherent detection.
We must therefore use incoherent binary transmission, where the intensity of the
carrier is modulated on & off.

If we tried to blindly apply our bipolar codes to this system by replacing BPSK
with on-off keying, we would get a intra-user interference which resembled the case in
the bipolar system, but with an additional offset equal to the weight of the code which
was proportional to the number of users. Bipolar-equivalent coding is a different
approach to applying that same bipolar CDMA system to unipolar systems. The
bipolar code sequence is separated into two unipolar sequences which are transmitted
separately and recombined at the receiver. Obviously, this requires some way of
keeping the two unipolar components separate to work correctly. Bipolar-equivalent
coding was originally implemented in a spectrally-encoded system where the code
chips were spread over two separate groups of wavelength slots and transmitted in
parallel. Everything, therefore, was kept synchronous and this system reproduced the
bipolar behavior of the codes.

Our interest here, however, is in time-encoded systems that transmit the code
chips in series, as in the wireless system. Such systems can only take full advantage
of the bandwidth reuse of CDMA when asynchronous. In an asynchronous system
there will, in general, be an unknown delay between any two users’ transmission. The

output of the correlator will not just be the correlation of the two users’ codes. but



the shifted correlation. We must therefore be concerned with what the correlation
between two users’ transmission is for all possible shifts. If, as we would like to do,
we multiplex the two unipolar components of the bipolar code together somehow,
we must consider the shifted cross-correlation between this multiplexed signal and
another user’s signal multiplexed similarly. In this thesis we consider multiplexing
the unipolar components at the bit level, which we call appending them, and at the
chip level, which we call interleaving them. There may, of course, be other ways
to do this, and it could be the case that synchronicity at some level is necessary in
unipolar systems. In this thesis, however, we find that with the requirements that
our system be unipolar, time-encoded, and asynchronous, we can still achieve bipolar
performance with only a factor of two increase in bandwidth.

This thesis consists of an analysis of all possible correlations between bipolar-
equivalent signals using interleaving and appending in a time-encoded asynchronous
system, and therefore, computes the interference between two users in such a bipolar-
equivalent system. The key to our analysis of the bipolar-equivalent system is to
relate its behavior to true bipolar systems. In such systems, the behavior of the codes
is well known. We seek to describe the correlation and therefore interference in the
bipolar-equivalent system in terms of the bipolar system’s correlation and interference.
Doing this allows us to compare our bipolar-equivalent system’s performance to the
true bipolar system’s performance to see if we have succeeded in translating the
advantages of CDMA to a unipolar system. We describe a unified method of analysis
of the performance of the system using average interference parameters which give the
system’s signal-to-noise ratio which then can be used to approximate the probability of
error of the system. We compare the interleaved and appended asynchronous system

to the bipolar system both when fully asynchronous, and when partially synchronized.



1.2 Previous Work
1.2.1 Bipolar Analysis

Our analysis of Chapter 3 relies heavily on the methodology derived by Pursley in
[4] and other papers for the bipolar system. Starting from the cross-correlation func-
tion, Pursley derives the average interference parameter, or AIP, on the way to an

expression for the signal-to-noise ratio, or SNR, which he derives as

1 N
SNR= v rz," ] (1'1)
6L3 ,’gl y

N~

The AIPs are, for the so-called worst-case,
ki = 3ur,:(0), (1.2)

which refers to the case where different users are synchronized at the chip level (but
not necessarily at the bit level), and for the so-called average-case where different

users are completely asynchronous,
Thi = 2k,i(0) + pei(1). (1.3)

The term p(n) is called a correlation parameter and it can be described as the auto-
correlation of the cross-correlation function between pairs of users’ codes. x(0), then,
is essentially the variance of the two-user interference. Since different users’ signals
are assumed to be uncorrelated, we can sum the variances of the 2-user interferences
to get the variance of the total N-user interference, which we use to get the SNR. In
this thesis, we will deriver our results in terms of the same parameters to compare
the unipolar results to the bipolar results.

Now, we will quickly review the work that has been done in incoherent optical

CDMA.



1.2.2 Bipolar-Equivalent Coding

All the explicitly bipolar-equivalent coding work done thus far has been based on
the use of spectrally-encoded rather than time-encoded systems. Obviously, there
are nontrivial differences between the two methods, particularly when it comes to an
asynchronous system, as we will see. The first paper on spectrally-encoded bipolar-
equivalent coding is the paper by Nguyen, et al [1], where the very basic idea is
presented along with some discussion of the system’s statistics. In this system, Nguyen
makes use of a rather complex system of gratings and masks to achieve the spreading
of the code over the spectrum which, with modern technology, does not appear to be

particularly cost-effective.

1.2.3 Related Methods

There have been a few papers published describing methods which take a different
approach or outlook, but end up quite similar to the time-encoded bipolar-equivalent
systems we describe in this thesis. There are two papers in particular which we will
discuss here. The paper by Tancevsky, et al [9], entitled “Incoherent asynchronous
optical COMA” provides a rather simplified analysis of a system where the bipolar
Gold code is essentially Manchester coded to form a unipolar code of twice the length.
Thus far, the system is identical to the interleaved system we discuss later. The
receiver is rather similar, in principle, to the interleaved system as well. Tancevski
uses the unipolar Manchester coded sequence as reference in the correlator, where
in the interleaved system, the reference is the bipolar version of the same code. We
will not go into unipolar reference receivers in this thesis, except to say that they

produce an additional scaling factor from the bipolar reference and, when combined



with a unipolar transmitted signal, a large offset which must be removed somehow.
Tancevski, et al., do this using balanced detection.

In “New architecture for incoherent optical CDMA to achieve bipolar capacity,”
[13] Zaccarin and Kavehrad form composite sequences from the bipolar codes. The
type of composite sequences they use are called Kronecker sequences and are formed
by taking the Kronecker product, or tensor product, of the original code with some
new code. The original code is generally some arbitrary sequence such as a Gold
code while the new code is usually a single short sequence such as a Barker sequence.
The Barker sequence is the “outer” sequence, meaning the composite sequence is a
concatenation of Gold codes, the “inner” sequences, each repeat being modulated by
the respective bit of the Barker sequence. The correlative behavior of such sequences
has been discussed several times throughout spread-spectrum literature, but proba-
bly the most detailed analysis is provided in the 1983 paper by Stark and Sarwate,
“Kronecker sequences for spread-spectrum communications” [12], wherein they con-
sidered bipolar systems. But as we will show in this thesis, it is relatively easy to
relate a code’s correlative behavior in a bipolar system to its correlative behavior in a
unipolar system. While Zaccarin and Kavehrad use Barker sequences of length four
and higher as outer sequences in their work, their method would be very similar to the
appended method described in this thesis if they used the Barker sequence of length
two, (0,1), as the outer sequence. Further, though the Kronecker sequence analysis
always assumes some single short outer code and arbitrary inner code, the method
could be reversed to describe a system with short inner sequences and arbitrary outer
sequences. If the length-two Barker sequence was used as the inner sequence, this

method would be very similar to the interleaved system we describe.



1.2.4 Other Unipolar Systems

The work by O'Farrel entitled “Code-division multiple-access (CDMA) techniques
in optical fiber local area networks” [2] consists entirely of the analysis of the asyn-
chronous time-encoded unipolar CDMA system with bipolar reference. For his codes
he simply uses the unipolar version of bipolar codes such as Gold codes and considers
a receiver which uses the bipolar version of the same code as reference. He goes on to
analyze the system performance through the use of the average interference parame-
ter, or AIP, and gets expressions for the signal-to-noise ratio of the system. We show
in the next chapter how our asynchronous bipolar-equivalent system can be analyzed
the same way by considering super codes.

One final type of system we should mention is the unipolar system with unipolar
reference. This category of system actually includes the method of Tancevsky [9] dis-
cussed earlier, but also includes the very different area of so called optical orthogonal
codes. We will not go into this last method due to the optical orthogonal codes’ poor
correlative properties and small code set size. All of these methods, as well as the
unipolar system with bipolar reference discussed above, are outlined in the popular

article by Parham, et al [3].

1.3 Overview of the Thesis

In Chapter 2, we describe bipolar-equivalent coding and show how it leads to the
appending and interleaving methods in a time-encoded system when using a single
fiber for transmission. We then show how these are equivalent to normal unipolar
systems where unipolar codes of twice the length are transmitted with the bipolar
versions of these same codes used as reference at a correlator receiver. These systems

are, therefore, unipolar transmission/bipolar reference systems as described in [3].



In Chapter 3, we go on to derive a unified analysis for unipolar transmission /bipolar
reference systems based on the analogous analysis of bipolar transmission/bipolar
reference systems of [4]. We reach an expression for the signal-to-noise ratio of the
systems based on their codes’ cross-correlation parameters.

In Chapter 4, we compute the cross-correlations of the appended and interleaved
systems, which leads us to their respective correlation parameters and, therefore,
signal-to-noise ratios. We find simple expressions for the bipolar-equivalent systems
allowing us to write their correlations and correlation parameters in terms of bipolar
correlation parameters: A result which allows us to compare the performance of
different systems by just computing the correlation parameters for specific codes.

In Chapter 5, we perform the comparison described above for different types of
codes. We start by considering perfect random codes which have perfect correlation
performance. This gives us a result which we would expect codes with increasingly
good randomness properties would approach. We then compare the average interfer-
ence parameters for the different systems using length-127 m-sequences. We see that
the interleaved system performs very similarly to the average-case bipolar system.
while the appended system is similar to the worst-case bipolar system. Because of
the limited size of the set of m-sequences, we change to Gold codes which have larger
code sets with somewhat decreased randomness properties. We see that the Gold
codes still yield similar results to the m-sequences in terms of the average interfer-
ence parameters. We go on to compute the signal-to-noise ratios which we use to
approximate the probability of error. We perform an exact analysis of the probability
of error due to interference and find our approximation is adequate for comparing
system performance. We also perform an analysis of the probability of error due to

the Poisson statistics of optical receivers in a hypothetical system. Overall, we find



that the interleaved system does a very good job of reproducing the bipolar system
behavior, thereby achieving our goal.
Chapter 6 is our conclusion where we discuss the relevance of our results as well

as discuss future problems and ideas worth considering.

1.3.1 Statement of the Problem

To summarize what we have said, then, the purpose of this work is to produce a time-
encoded unipolar CDMA system based on the bipolar-equivalent coding method that

achieves performance comparable to that of bipolar systems using the same codes.
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Chapter 2
Bipolar-Equivalent Coding

The primary goal here is to see how we can analyze our bipolar-equivalent coded
codes in a system which is not only time-encoded, but also asynchronous. We accom-
plish this by showing how we can describe the bipolar-equivalent systems as unipo-
lar transmission/bipolar reference systems which use new, so-called “supercodes”.
Recognizing this fact will then allow us to compare the performance of these systems
when asynchronous by looking at the shifted correlations of the supercodes. In partic-
ular, we consider two types of time-domain bipolar-equivalent systems, the appended

and interleaved systems.

2.1 Basic Bipolar-Equivalence

The key to bipolar-equivalent coding is recognizing that we can describe a bipolar
sequence of length L, ai, with a;, € {—1,+1}, as the difference of two unipolar
sequences of length L, ug — %, with ugn, %, € {0,+1}. We then transmit u; and
Uk in our unipolar system, and subtract them at the receiver. Obviously, if we want
to properly rebuild ax, we must keep u; and u separate, and we must keep track
of which is which. To start, we consider them transmitted over two separate fibers,
essentially spatially-multiplexed, as shown in Figure 2.1. Note that we have taken
advantage of the linearity of the correlator-type receiver to move the subtracting

operation which rebuilds a; after the correlation. This can be seen in the following,

CUk.A. = Cuk.ag + Cik,—n.- = Cu.k—ik,a.' = Cﬂk,d.’t (2-1)
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1-» U Matched
=] = ﬁ a;
k
b —
k -
1=» U Matched
k Fiber Filter
-1 > uk a,

Figure 2.1 Spatially multiplexed bipolar-equivalent system.

where C;, can be any type of correlation function for vectors z and y; the only

property we make use of is its bilinearity.

2.2 Single-Fiber Time-Encoding

In the spectrally-encoded system, as we have said before, the codes are spread over
specific wavelength slots. There is no need to consider further complications since one
would not expect the wavelengths to change over transmission. It would be trivial to
implement a spectrally-encoded system like this using a single fiber. In time-encoding,
on the other hand, we cannot put u, and % in parallel in any way. We must multiplex
them together in series somehow. The most obvious method of doing this is shown
in Figure 2.2, where T is the total bit period, the time taken to transmit u.

Now we must transmit half as often to fit u; and T after each other on the same
channel, so we have paid the price of doubling our bandwidth requirement to halve
our fiber requirements. If we keep this system synchronized properly, it will obviously
give the same output as the bipolar system we are trying to emulate. In fact, we can
see that, in general, the output of the transmitter will be either [ug, @], or [T, ug]

depending on what the data bit, b, is. That transmitted signal can then be seen to
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1> u Matched
- Filter
= a
b — | Fiber |— N
k -
l= 1 Matched
e T T Filter
-l -» uk a;

Figure 2.2 Single fiber bipolar-equivalent system.

be correlated at the receiver with [ak, —ak]. The net effect is as simple as one half of
the system of Figure 2.1, and it is depicted in Figure 2.3.

This we call the “appended” system since we have appended u; and % together
to form a new “supercode” [uy,Tx).

To see why this distinction is useful, imagine the transmitter in Figure 2.3 (or
Figure 2.2 for that matter) was 1T out of synchronization with the i-th receiver
(shown in the figure). We would then have the correlation of a; with part of uj
subtracted from the correlation of a; with the rest of uy, and something similar with
U. While this is not overly difficult to work out, it is much simpler to think of the

problem in terms of shifted correlations between the length 2L supercodes [uy, ]

a,nd [ak, —ak].

1=>[u U] Matched
b — Gl Fiber Filter —
e 11k Uk [ai -a i]

Figure 2.3 The equivalent appended system.
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This appended system is one of two apparent ways to combine u; and %;. The
other would be to multiplex them at the chip level, a system corresponding to Figure
2.2 with a delay of T, the chip period, used to fit the unipolar codes together. This

second system we call the “interleaved” system.

2.2.1 Manchester Meanings

Here we show how the appended and interleaved systems can arise from the use of
Manchester coding as we mentioned in Chapter 1. Below, we see how the appended
system’s transmitter can be drawn as the concatenation of a Manchester coding block

with a normal code generator to produce an appended output.

Manchester PN Generator
+1 - (-1,1) +1 = y;
-1-(1,-1) -1-7

Reversing the order gives us a more traditional application of Manchester coding

in the following.

PN Generator Manchester
+1 > a; +1 —(0,1)
-1->a; -1 - (1,0)

We would also expect the receivers for the respective systems would have their
reference codes produced in the same way.
2.2.2 Unipolar Transmission/Bipolar Reference
Back to the supercodes now, we write the appended supercode as U#*? where

U = (U1 Ui gy vees Ui Lo Wit T 23 ooes Wi L) (2.

[S)
N9
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and the reference code for this system is
AP = (i1, 02, ooy Qi Ly — ity —Gi 2, ooy —Gi L) (2.3)
It is not too difficult to see that the interleaved system will have the supercodes
Ui™ = (Ui, Tyt Uiy T2y oo UirLs TiL)s (2.4)

and

A::ﬂt = (ai,la ~Qi 1, 44,2, —A{2, ..., Q{ L, —'ai,L)’ (2-5)

at the transmitter and receiver, respectively. These codes, then, would be used in a
system like the one in Figure 2.4.

The final point to be made about this is to stress how, in every way, it is a
unipolar transmission/bipolar reference system. The only thing new is our use of
specially made codes. Even so, we can see how A; and U; are merely the bipolar and
unipolar versions of the same code respectively for either system. Further, we can now
determine what the output of the correlator will be for arbitrary timing differences
between users by knowing the correlation between the supercodes in a given system.

In the next chapter we will make use of this fact.

1-» U, Matched
b — - Fiber Filter —>
-1 Uk A,

Figure 2.4 The equivalent unipolar
transmission/bipolar reference system with
supercodes.



Chapter 3

General System Analysis

In this chapter we introduce and analyze the asynchronous unipolar transmitter/bipolar
reference CDMA system generally. This will allow us to describe the behavior of the
systems of the previous chapter with the supercodes U7 or U/™t, or for that matter,
any unipolar code, super or not. We start off relating the unipolar and bipolar codes
in the first—and most important—equation. This allows us to follow the basic route
of [4], except that we carry along additional scale and offset terms (and we normalize
things differently). We describe the interference in terms of the cross-correlations of
whatever codes are used, then we show how the interference will have an extra term
which varies with the number of users. Of course, we don’t need to address that prob-
lem since for the bipolar-equivalent supercodes we use, the extra term will be zero
(we will see that in the next chapter). Next, we derive an expression for the signal-
to-noise ratio which uses the average interference parameter, a kind of fourth order
correlation. The average interference parameter is made up of correlation parameters
which are functions of the cross-correlation of the codes. So when, in the next chap-
ter, we find out what the cross-correlations of our supercodes are, we will be able to

compute the systems’ signal-to-noise ratio, an important performance measure.

3.1 Uni- and Bi-Polarity

In the bipolar system, the i-th user is given a bipolar signature code sequence a; of

length L with a;, in {~1,+1}. The unipolar version of this code, u; with Uin IN
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{0, +1} can be produced by changing all the —1s in a; to zeros. We can write a; as

u; — U;, and we can write 7; as 1; — u;. Putting these two ideas together gives

1 1
u; = +§ag + 51,, (31)
_ 1 1
u; = —--2—a. + 51,. (32)

We have introduced the sequence 1; (the subscript is there simply to remind us where
the 1 term came from), a sequence of ones of length L, which is our way of denoting
the offset between bipolarity and unipolarity. An example is given in Figure 3.1.
We will continue to use u’s to represent unipolar codes and a’s to represent bipolar
codes, though we will occasionally use z and y to represent arbitrary codes. Note,
also, that the first subscript on the codes always refers to the user while the second

subscript is the specific code chip.

3.2 The Unipolar Transmitter

To send the n-th data bit 6™ in the usual direct sequence bipolar scheme, the i-th

user would transmit

L-1
SOy =3 pt - jTe)ai ;607, (3.3)
1=0
J——U—l_ 1 1 l '
= — - + —
2 2

Figure 3.1 Unipolar sequence as sum of
bipolar sequence and “ones sequence”
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where p(t) is some pulse shape, and T is the chip period. The total period of the
transmitted signal, then, is LT. = T. b; usually takes values from {—1,+1}, and so
this method is known as sequence inversion keying (SIK). It is also known as binary
phase-shift keyed CDMA.

In the unipolar system, the analogous method is sequence complement keying

(SCK) where we send the code or its complement depending on the data as in

L-1 _ . (n) _
S (1) = Yiso p(t — nT)u;; for b +1 (3.4)
‘ S p(t = nTYa; for 6" = —1.
Employing Equation 3.2, this gives us

L-1
S0 = ¥ a(t ~ ¥7) (5ais + ) (3.5)
>

where the data bit bf»") is the same bipolar number as in the SIK system. Therefore,
we have related the “unipolar transmission” part of unipolar transmission/bipolar
reference to bipolar transmission. Basically, all of the differences between the bipolar

system and our unipolar system will come from this relation.

3.3 The Channel

The model for the asynchronous optical communication channel as seen by the i-th

user is shown in Figure 3.2, and the total received signal is given by

s(t) = :;_: Sui(t — ) + n(t). (3.6)

where N is the total number of active users, 7(t) is zero mean additive white Gaussian
noise. The system is asynchronous since we have delays between different users where

7k is the relative delay of the k-th user with respect to the i-th user.
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Figure 3.2 The Asynchronous CDMA System Model
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3.4 The Matched-Filter Receiver

The simplest and most popular type of receiver used in CDMA systems is the matched-
filter, or correlator, shown in Figure 3.3 [2].

The matched-filter receiver has the advantages that it is linear, allowing the machi-
nations of the last chapter, and that it can be implemented almost completely pas-
sively using tapped-delay lines (see Section 5.4 for an example). We say that this
receiver is matched to the sequence q; for the i-th user. The output of the receiver is

then
T
Z(T) = f s(t)ai(t)dt, (3.7)

where we use a;(t), the impulse response of the i-th matched filter, to refer to the

continuous-time version of the code a;. Putting in our expression for s(t), this gives
T TN T
Z(T) = [ Suadt+ [ 3 Sult)ailt) + | aana. 38)
k=1
ki

We describe the three parts of this signal as
Z(T)=2Zs+ Z1 + Z,. (3.9)

A signal part (the wanted signal), an interference part (the unwanted signal), and a
noise part.

Using Equations (2.1) and (2.3), we write the signal term as

L-1
Zs = PL.Y. (§"3au0 + 3as) =0 (B0 + (BEw). @)
i=0

where we have used the fact that u; and a; are synchronized (m; = 0). W; is the

discrete weight of the code, Zf-‘;ol a;x, and PT is the power per bit of the transmitted

signal.
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Figure 3.3 The i-th User’s Matched Filter Receiver.
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The term we are most concerned about is the interference term, which we write

N
Z[ = PTC Z [k,i(Tk)’ (3.11)
s
where we have introduced I;, the normalized two-channel interference between the

i-th and k-th channel. We write it as
Lei(me) = —{5OR BVER T.W; 3.12
k.t(Tk) = 2T{ k ak,ae(Tk)+ 3 ak,aa(Tk) + 1. t} (3. 2)
introducing the continuous-time partial cross-correlations,

Rapai(7) = /()Tak(t—r)ai(t)dt (3.13)

A

T
Rarai(r) = / ar(t — 7)ai(t)dt. (3.14)

The final term, Z,, the additive channel noise, we will neglect in this treatment

since we are considering an interference-limited system.

3.4.1 Correlation Situation

If we assume a rectangular pulse as the chip shape, we can write the partial cross-

correlations as

Rayai(7) = Cappai(l = LT + [Capoi(l +1 = L) = Copoi(l = L))(7 = IT.)  (3.15)
Rarai(7) = Corai(DTe + [Copai(l 4 1) = Cop o (D)( = IT2)  (3.16)

where [ is the discrete timing delay in number of chips, IT, < 7 < (I + 1)T,, and we

have introduced the aperiodic cross-correlation function (CCF),
o akjaigu . 0SISL—1
Cak,a.'(l) = ZJ[-'=_01+k ar-jai; » 1—L<Il<0 (3.17)
0 oW
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We will make use of a more simple looking version of Equation 2.18 by requiring that
for any code z, z,; equals zero when 7 <0 or j > L — 1. We then get
L-1
Capai(l) = ‘Z:o ki@ 4l (3.18)
j=
If both codes are bipolar as above, we will write Caroa; s Ck,; from now on.

Note that when we discuss the interference from a unipolar code uy, we can do
so in terms of the correlation from the corresponding bipolar code, ay, since we have
separated the difference into the W; term using Equation 3.12. We assume continuous
transmission for all users so we can replace the aperiodic continuous weight with the
discrete weight. The corresponding bipolar aperiodic terms, on the other hand, must
be considered, as we will see later, due to the randomness of the data.

With the CCF, we can see more clearly the origin of W;. If we write u; as Jak+il,

then the CCF of u; with some code g; is
1
Cuk,a.'(l) = C%ak-l-%lk,a.'(l) = i{Ck,i(l) + Clk,ai(l)}: (3'19)

and we already know this Cy, ,,({) term as W;. The equation above, however, is of
an aperiodic CCF so we should not expect it to result in a constant. For a normal
system with continuous transmission, however, the net effect of a series of these will,
in fact, produce the constant W;.

To get a relatively simple expression for the interference, we start by introducing

the even and odd periodic bipolar cross-correlation functions, respectively

ok‘g(l) = Ck,g(l — L) + Ck,,'(l), (3.20)
0ei(l) = Crill = L) = Cei(l). (3.21)

Note from Equation 3.12 that the interference depends on the data at any give time

as well as the previous data bit. For the four different possible combinations of data



23

at any time, (bf:l),bﬁo)) equal to (+1,+1), (+1,-1), (~1,+1), and (—1,~1), we can

write the respective two-channel interferences I}, I, I, and [T as

B = ST + Becli+1) - OO - D+ WY, (322)
L7 = 5{-ak‘,-(z) — [Bri(l+1) - ok,(l)](— — )+ W}, (3.23)
B = G0+ B+ ) =B -0+ W), (320
G} = 0 - B4 ) - B OIE -0+ W). (29)

3.4.2 Mean of the Interference

We make the standard assumptions that the data is an independently distributed
Bernoulli process with P(b= +1) = P(b = —1) = L, and that the timing delays,
are uniformly distributed between 0 and 7.

First we compute the mean of [; ;, E(I;;), the expectation with respect to random
timing difference and data bits. We use the fact that the data is uniformly random

to say that the four possible interferences are equally likely.

E(L;) = YE(IFH)+ + s E(ED) + sE(IGH) + YE(L)
= $E(If; T LT+t + 7).

(3.26)

Referring to Equations 2.21-24, we see that the only terms which don’t sum to zero
will be the constants, ;W;, giving $E(3W;) or just 1W; as the mean.
The total NV-user mean interference, then, will be
N 1
E(Zr)= PT. ) E(L;) = -é-PTc(N - HW.. (3.27)
e
The mean interference depends on the number of active users on the channel for

nonzero W;. This obviously poses a problem which, as discussed in [2], can be solved

in one of two ways. The first, not at all trivial. way is to actively detect the number
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of users on the channel somehow, and subtract the appropriate offset to eliminate the
mean. The second way would be to simply to use code families for which the weight
is zero. While no commonly-used bipolar code families have this property, bipolar-

equivalent supercodes do have this property as we will see in the next chapter.

3.5 Signal-to-Noise Ratio

We refer to Pursley [6] for the general expression for the signal-to-noise ratio of a

matched-filter

Va.r[ZI]

We must be a little careful with the numerator of this equation due to our varying

SNR = \J (ElZ, + 2] - E[Z1])" (3.28)

mean situation. For now, we will take the approach of [2] and occasionally disregard
terms involving W;, since we assume we have eliminated them by other means. To

calculate the variance, we start with

2

N N
Var(Z;) = E | PT2 | Y L | | - B2 |PT. S L], (3.29)
= =

where the expectation is taken over all possible time delays and data bits. We expand

both terms and separate them into squared terms and cross terms to get

Var(Z;) = P’T? (EE B+ S Elll] —232 Ii] - 3 S E[L)E] 1,,) :

k £k k I#k
(3.30)
Since the data is uncorrelated (E[b;b;] = &; ), the second and fourth terms sum to

zero and, substituting W; for E[/], get

Var(Z;) = PWZ( (2] - (;W;)Z). (331)



We use Equation 3.12 to get

1 v 2
Var(Z1) = PT2 S (E [(ﬁ{bff’ﬂak,a.-(n) 467 Ry + T J - iW) -
k ¢
(3.32)
Since the data is zero mean and uncorrelated, the cross terms will average to zero.

Also, the W; terms will cancel, leaving
Var(Z;) = —ZE[ () + B (7). (3.33)

Equation 3.33 is, within some constants, the same as the well-known variance of the
bipolar interference. We have used a different normalization than [4] and others, so
the only nontrivial difference is the factor of one fourth. A highly detailed derivation
similar to what follows here, using perhaps more traditional normalization factors,
can be found in [2].

Making use of the uniform distribution of 7 and Equations 3.16 and 3.17, we

replace the expectation with an integral and write

Var(Zy) = %2 > % / " dn (3.34)
%
([Ck','(lk - L)Tc + (Ck,i(lk +1-—- L) - Ck,,'(lk — L))(Tk - lch)]z
H[Cri(le)Te + (Cri(le + 1) — Cri(le) (7 — L TL)]P).

But [, the discrete timing difference (in number of chips), is related to 7%, the con-
tinuous timing difference. We express this as 7, = [T, + \; where A is the chip-level
timing difference which varies between zero and T.. Then, we substitute this into

Equation 3.34 and replace fo dr with YL lf,(H'l)T‘ dA; to get

2 N L-1 (l+l)Tc
Var(Z;) = P e DIDD / (3.35)

k 5t =0
([Ck.z(lk = L)YTe 4+ (Crille + 1 = L) = Cri(le — L)) M)

HCrille)Te + (Crille + 1) = Cri(le)) Ae]?)



26

3.5.1 Worst-Case SNR

We start with the simple case where all the users are synchronized at the chip level.
This is called the worst case for reasons we will see in the next section. Chip-level
synchronization means that A is zero in Equation 3.35 so the integral reduces to

multiplication by the constant T. leaving

Var(zy) = © 2Z2Zi(ck,(zk L)+ C2k) (3.36)

k =0

We have also made use of the fact that 7.L = T. We can combine the two terms into

one by extending the summation range to get
P2T2

Var(Z;) = 1 Zpk.(o (3.37)
where we have introduced the correlation parameter, u;(0), which comes from [4]
L-
pei(n) = Z Cri(1)Cri(l + n). (3.38)
I=1-L

Note that p;(0) is the variance of the discrete cross-correlation between a; and ay.

Referring to Equation 3.28, we get for the worst-case SNR,

\J (5 (
SNR = . 3.39)
PQTZE 2k #k,i(0)
And all the normalization constants cancel, anyway, to leave
-4
1 &1
SNR = | = > suei(0) | - (3.40)
=

Here we disregarded the mean terms in the numerator of the SNR as we mentioned
earlier.
Using a little foresight, we define the mean-squared interference parameter, Trys

also known as the average interference parameter (AIP), from

2

SNR = 6L3 Z Tey . (3.41)
k;éx



for arbitrary codes x and y. For the worst-case situation, then,
red = 3ui(0). (3.42)

We have put the SNR in the same form as Equation 1.1, and get the same result for
the AIP, as we would expect since we treat the two systems as scaled versions of each

other.

3.5.2 Average-Case SNR

To compute the average-case SNR, we go back to Equation 3.35, and expand the

terms to get

Va.r(Z[) = P ZI—Z:L/ d/\k{C,“ lk)Tz (Ck,(lk-{- 1) (343)

—Ck,i(lk))2/\k + 2Cki(le)(Cri(le + 1) — Cri(le))TeAe }.
Performing the integral and relabeling a few indices gives us
P? T3
Var(Z;) = T Z _{2/—”: i(0) + pi (1)}, (3.44)

which provides an average-case SNR of

1 N )
SNR = | == 3~ {20(0) + (D)} | (3.45)
i
which gives us
ris = 2uki(0) + piei(1), (3.46)

again, equaling the bipolar result of Equation 1.3.

So the difference between the worst-case and the average-case is that one of the
three discrete CCF variances, p,;(0), is replaced by a px (1) term. Referring back to
Equation 3.38, we can see the reason for the designation of worst-case versus average-

case. [If the Cy (/) are thought of as any string of numbers, then the sum of their
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squares will always be greater than or equal to the sum of Cy;({)C (I + 1), an equal
number of cross terms, via the Cauchy-Schwarz inequality. In fact, as discussed in [2],
for truly random codes a; and a;, y; ;(1) will be zero since all points on the correlation
(except for at zero shift) will be equal to zero. We will look at this simplified system
in the next chapter. We would hope that for codes with good randomness properties
#k,i(1) will be very small, and we can get a significant reduction in the variance of
the CCF’s, and therefore, in the SNR. From now on, we will use simply ri; to refer

to the average-case AIP.

3.6 Summary of Our Method

The important equations we have derived, Equations 3.45 and 3.46, give us the signal-
to-noise ratio of 2 unipolar transmission/bipolar reference system in terms of its codes’
(bipolar) correlation parameters. For normal bipolar codes, these parameters have
been investigated extensively (see, for example, [6]). It should be stressed that, while
we use the unipolar versions of the codes instead of the bipolar, the only difference
is a factor of four appearing in our equations. One could, for example, forego the
supercodes and just use plain Gold codes in the system. The correlation parameters
are provided in [6], and we would, as a result, see a signal-to-ratio equal to the
bipolar result. We would still have the problem of a varying mean as in Section
3.4.2, of course, so this is not what we want. In the next chapter we will see how
the supercodes, which don’t have the varying-mean problem, will have correlation
parameters which can be related to the ones from the bipolar case, which anyone can
look up, allowing us to compare the performance of the supercode systems to the

bipolar systems by comparing the signal-to-noise ratios.
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Chapter 4

Specific System Analysis

We now want to relate the cross-correlations of our supercodes to the cross-correlations
of the bipolar codes used to produce them. This will allow us to relate their average
interference parameters and go on to compare their performance. This chapter con-
tains the most important mathematical relations of the thesis, though, unlike the last
chapter, no step performed in this chapter will require anything more complicated
than simple algebra. The key is that wherever we write an equation for some term
with a superscript such as X7 or Y™, meaning for the appended or interleaved
case, we will relate it to terms without superscripts, X and Y perhaps. These terms
without superscripts will refer to the well-known bipolar case, so we are relating the

supercode systems to the bipolar system.

4.1 Appended System

It is easy to see that we can describe U{%, the result of appending u; and #;, as
Ui’ = uipn + Ui n—r and similarly, AP = ain + (—a;q-r) (recall that we assume
zij =0for J < 0and j > L —1). We will use this fact to eventually write the
average interference parameter of appended codes in terms of correlation parameters
from the original bipolar codes. The cross-correlation of the appended unipolar code

with the appended bipolar reference code will therefore be
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CU:PP,A?pP(l) = Cuk,a.'(l) + Cuk,—-a.'(l - L) + Cik,a.-(l + L) + Cik,—a,-(l)

(4.1)
= Cri(l) = 3{Cki({ = L) + Wi + Cri(l + L) — W}
where the Wis cancel and we get
1
el (D) = Cra(l) - F1Cki(l = L) + Cri(l + L)}, (4.2)

We see from Equation 4.2 that we have the original CCF plus two “cross terms”
which arise since the codes are now 2L long. We can compute the average interference

parameter with this from

2L—-1 ,  2L-1 1 2
pet(0)= 3 (CZ,'EPU)) = > (Ck.i(l) = 51Cki(l = L) + Cii(l + L)}) (4.3)
{=1--2L I=1-2L
which becomes
2L-1 1 1
B0 = Y (CLO)+ 08~ )+ {CRA1+ 1) (44
I=1-2L

—Ck,,-(l)Ck,.-(l - L) - C’k,,-(l)Ck',-(l + L))

And since the summation indices go from 1 — 2L to 2L — 1, twice as far as any one
term goes, we can make substitutions ! for [ — L and {” for [ + L when appropriate,

and using the fact that p(—{) = p(l), we get
a 3 -
tii (0) = 514i(0) — 2uii(L), (4.3)

where the p and r terms with no superscript refer to the original bipolar case as we

have said. Also,

2L-1
pP(1) = ) {Cri(k)Cri(k +1) - %Ck,i(k)ck,i(k -L+1) (4.6)

=1-2L

1
~5Ckilk = L= 1)Cuilk +1) + 7Ceilk ~ L)Ciilk = L+1) (4.7

1 1
—5Ckilk+ L)Cri(k + 1) + ch,i(k + L)Cri(k+ L+ 1)},
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which yields

KPP = Spi(1) = (L — 1) = pna(L + 1), (48)

Since we assume an asynchronous system, we use Equation 3.46 for the AIP, and

we combine these results to form

i = 27 (0) + g (1) (4.9)

= 3ui(0) + guk,i(l) — {pki(L = 1) + 4pri(L) + pei(L + 1))

= Sri = Dl = 1)+ 4ued(L) + (L + 1),

a rather complicated result which we look at empirically in Chapter 4.

What we can see here is that the average interference parameter for the appended
system, which tells us the variance of the interference caused by a single interferer, is
three halfs the bipolar system result with some additional terms. [t makes sense that
the variance of the appended cross-correlation will be fifty percent larger than the
bipolar result if one considers Equation 4.2. At any given time, either Cy ;({ ~ L) or
Ck,i(l + L) will be zero since the code length is L, so for codes with good randomness
properties, we have one random number plus one half another independent random
number. Random numbers would have the same variance, ry ;, so the factor of one half
gives a net variance of %rk,;. The additional terms in Equation 4.8 appear because our
two random numbers aren’t independent, but based on what we have just considered,
we expect these extra terms to be small for codes with good randomness properties.
In the final analysis, then, the appended system doesn’t look like it will give us the

performance we want.

4.2 Interleaved System

Here we describe Uf™ as Uy, = u;, + Uing1. Then it is easy to see that
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Curai(3) + Cq, =i () = Cri(20) , for l eve
CU’:nt,A:jn:(l) = ke ( ) k1 (2 ) k. (2 ) n (410)
Cup-ai(3(1 = 1)) + Caia(3(l+1)) , forlodd

So this method reproduces the original cross-correlation of u; and a; at even shifts,

but has cross terms at the odd shifts. Bounds on the cross terms have been discussed

n [9]. We can do better than bounds on the terms, however. We write

Cr.i( Ll , for [ even
civy=4 © (z0) (4.11)
—3{Cki('5H) + Wi+ Cri(BL) — Wi}, for [ odd.
So the weight terms cancel again leaving
Cri(31) , for [ even
Capai(l) = : (4.12)

~2{Chi(3l — §) + Cri(3l+ 1)} , for L odd,
showing that the odd terms are the negatives of the linearly interpolated even terms:
if the even terms take values A, B, C, ..., then the odd terms must be
—5—'2@, —EZLQ, ... This, in itself, is a fairly interesting result.
The AIP, then, can be computed from
t 2L—1 2 2L-1 [ — [+1
pei(0)= - (Ck,i( ) + 3 (—- (Ck,,-( —5—) + Cri(—— )) - (413)

I=1-2L I=1-2L
I even 1 odd

We make the substitution /' = L‘*—'-l- as needed to get

pi(0) Z CE:(0) + Z{ck.(z )+ CRil+1) + Cri()Cri(l + 1)}, (4.14)

(=1-L llL

which gives us
3 1 ;
HEE(0) = Saei(0) + Spi(1), (4.15)

and, similar computations yield

(1) = —pri(0) = pea(1), (4.16)
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giving us the average-case AIP,

tnt

Tk‘,- = 2[11:';(0) =Tki — llk,x'(l)- (4.17)

The above AIP is actually very close to the average-case bipolar result, differing only
by the p;;(1) term which we discussed earlier.

That this system seems to work so well, having a low variance for its cross-
correlation, is understandable based on what we have seen. Qur cross-correlation
is equal to the bipolar cross correlation at even shifts and, at odd shifts, takes num-
bers interpolating the neighboring even shift numbers. We would expect the variance
for this new system to be as good as the bipolar result, or perhaps slightly better,
and this is what we see in Equation 4.16.

We now know everything we need to compare the interleaved system to the ap-
pended system, and both to the bipolar systems. We have written everything in terms
of the well-known bipolar system correlation parameters, and all that is left is to see
what these terms will be for specific real cases. Therefore, in the next chapter, we

will numerically compute what these terms will be for specific code sets.
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Chapter 5

Performance Results

We will now numerically compare the different coding methods using the parameters
we have derived. We wish to compare our two unipolar systems to the bipolar system.
We already have a fairly unified analysis, making use of the same equation for the
signal-to-noise ratio, but there is still one key difference. In our bipolar-equivalent
system, we formed supercodes of twice the length which were the basis of our analysis
in Chapter 3. We must, therefore, consider all the systems using double the length
to have an even comparison between the unipolar and the bipolar systems. We
are basically accepting the factor of two increase in bandwidth as the cost of using
bipolar-equivalence.

We have enumerated the different possible average interference parameters in

Table 5.1.
Table 5.1 Average interference parameters
Method AIP
Average-case bipolar 20k, (0) + pie (1)
Interleaved 2p,:(0)
Worst-case bipolar 3pk,:(0)
Appended 3uki(0) + Spki(1) = [ L — 1) + 4piei(L) + pei( L + 1))

For the unipolar systems, we only consider the average case unless we explicitly

state otherwise.
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First, we will examine a theoretical case where we assume completely random

codes in order to better recognize the dominant terms in the AIPs.

5.1 Random Codes

Some insight into the behavior of the correlation parameters can be gained by con-

sidering random codes, codes with perfect randomness, and therefore correlation,

properties. This should give us a theoretical result which real codes will approach

depending on how good their randomness properties are. The key to this analysis is

to recognize that with a little reorganization of indices, we can write Equation 3.38

as [4]
L-1

pri(n) = Y Cu(D)Ci(l + n), (5.1)

I=1-L

where we use the auto-correlation functions, defined as usual, instead of cross-correlations.

Now, for random codes, the auto-correlation will be zero except at Cy(0) where it will

take value L. Because of this, Equation 5.1 will be zero except at p ;(0) where it will

take value L2. Table 5.1, then, becomes rather trivial.

Table 5.2 Average interference parameters with perfectly random codes

Method

AIP

Average-case bipolar
Interleaved
Worst-case bipolar
Appended

2L?
2L2
3L2
3L?

We will see that these values form the greater part of the actual numerical results.

As such, the results here tell us that the average interference parameters for the

average-case bipolar and the average-case interleaved are very similar. The average
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interference parameters for the worst-case bipolar and the average-case appended are
also very similar, but % as large. Since the average interference parameter is in the
denominator of the SNR, we would expect the SNR for the appended case to be about

\/g as large, or about 18 percent lower, than the interleaved case.

5.2 Length-127 m-sequences

First, in Figure 5.1, we look at what the different AIPs from Table 5.1 are for various
combinations of the 18 length-127 m-sequences. In this Figure, the z-axis gives the
number & of a code, and on the y-axis is plotted r¢; for the four different systems. For
length-127 codes, the random code result, 2L?, is approximately equal to 3.2 x 104,
and 3L? is approximately equal to 4.8 x 10%. The data in Figure 5.1 can be seen to
hover about these points. We can also see from this figure that the interleaved and
average-case bipolar systems are indeed very similar, as are the appended and the
worst-case bipolar.

In Figure 5.2, we show g (1), the difference between the interleaved case and
the bipolar case. Note that the scale is much smaller than the previous plot. Most
importantly, we see the values going positive and negative rather randomly. Therefore,
we cannot generally say whether 2u4 ;(0) + pk:(1) or 2u:(0) will be greater, but we
expect them not to differ by much.

In the next figure, Figure 5.3, we show —2 g :(1)+pii(L—1)+4pp i (L) +p s (L+1),
which is the difference between the asynchronous appended system and the worst-
case bipolar system. We note again that the u(n) terms vary randomly about zero
for n # 0. These systems are interestingly similar, but neither are practical since

their AIPs—and therefore, their variances—are roughly fifty percent larger than the
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alternatives. The basic point we can see from all of these plots is how much the t,i(0)

term dominates the AIP.

5.3 Length-127 Gold Codes

We will now consider a set of codes that has more of a practical value in a CDMA
system (since there are 129 of them), Gold codes. In Figure 5.4, we plot the AIPs for
the bipolar system and the interleaved system. As before, 2L2 is 3.2 x 10%, and we
can see that the data stays within about twenty percent of this value.

In the next plot, Figure 5.5, we show g (1), the difference between the bipolar
average-case system and the interleaved system. Again, we see that difference hovers
around zero, an order of magnitude less than the dominant term, and it depends
greatly on the particular user’s code. This suggests that the difference in perfor-
mance between these two systems is a code-dependent parameter that is very small
regardless.

With our respective AIPs in hand, we are equipped to compute the SNR, as

-4

1 N
SNR=| =S r.,| |, 5.2
6L3 k=1 ! ( )

k#t

where now we decide which r;, from Table 5.1 to use depending on our coding
method. SNRs for increasing numbers of interferers are plotted in Figure 5.6. The
difference between the two similar pairs of systems is barely discernible here. Note

that this is for one particular choice of the i-th user.
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5.3.1 Gaussian Approximation of the Probability of Error

Next, using the SNR, we make the somewhat controversial Gaussian approximation

to get the probability of error from
Pe = Q(SNR). (3.3)
where we have used the zero mean, unit variance error function Q.

Q(SNR) = e5 dz. (5.4)

1 0
Vor -/SNR
There has been a great deal said about the accuracy (or inaccuracy) of this approxi-
mation (see, for example, [4]). We performed a calculation of the exact probabilities
of error in a worst-case situation to see for ourselves how well the approximation
works. We did worst-case calculations, of course, because there are only a finite
number of possible timing differences in this case, leading to much quicker results.
Specifically, we computed the probability of error of the interleaved system where
the only noise came from the multiple-access interference, which was a sum of terms
from the discrete shifted cross-correlation. The shifts were varied uniformly over the
possible discrete shifts. We counted the number of times an error was produced and
compared this result to the worst-case probability of error from Q(SNR) where the
average interference parameter in the SNR is 3u{™(0), as in Equation 3.44. Because
it is not likely to be a useful system, we didn’t consider the worst-case bipolar equiv-
alent system in Chapter 4, but we can see by applying Equation 3.42 to Equation

4.15 that the average interference parameter will be

in 9 3 o
rk,it’PVC —_ ;/.lk,i(o) + Eﬂk,i(1)~ (5.3)

Substituting this into Equation 5.2, we get the Gaussian-approximated result. Both

results are compared in Figure 5.7. We can see from this data that, while there is a
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noticeable difference between the exact and approximate results for low numbers of
users, it is not an unreasonable approximation. Further, if we wish practically exact
comparisons of systems, we need simply to look at the trends for 30 users and up,
where the approximation becomes nearly perfect.

Using the Gaussian approximation now, for all four systems the probability of
error versus number of simultaneous users is plotted in Figure 5.8. The plot shows
that the interleaved code system actually performs very nearly the same as the original
bipolar case, as we have come to expect.

Next, we try changing the i-th user’s code to see what effect the specific code
has on the performance. In Figure 5.9 we tried thirty different choices of the i-th
code, and computed the probability for the four systems with two different numbers
of interfering users. In other words, we have systems with thirty-one (or seventy-one)
users transmitting simultaneously. We look at the performance of the systems based
on their interference for thirty different possible choices of who to label our i-th user,
and so consider a receiver with his code as reference. The bottom four traces show the
results for the systems with thirty interferers, while the top four are the four systems
with seventy interferers. We can see from this that the choice whether the interleaved
or the bipolar performs better depends greatly on the particular user’s code, and the
same is true for the appended and worst-case systems. Another thing we can see
is that the interleaved system’s performance is actually more uniform over different
codes, probably due to the lack of that u(1) term. Also, these results are evident
in the seventy-interferers plots as well, where we know the Gaussian approximation
works well.

Of course, the Gaussian approximation isn’t the only approximation we have
made. We also chose to neglect stochastic noise sources such as source noise and

detector shot noise. In the next section we will consider the latter.
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Figure 5.8 log,o(Pg) vs. number of users for: original bipolar system
(solid trace), interleaved code system (dotted), chip-synchronous bipolar
system (dashed), and appended case (dash-dot).
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5.4 Implementation Considerations

In this section, we will consider a possible implementation of the asynchronous bipolar-
equivalent system using a tapped-delay line correlator, and we will consider the sys-
tem’s performance in the presence of detector shot noise. The receiver for the system
is shown in Figure 5.10. Assuming the i-th user, to whom this receiver belongs, is
transmitting constant ones, or U;’s, we would expect the output of the top tapped-

delay line to be something like
K 4
Zeop(T) = 5 (127 + 3 Cup i (lk)), (5.6)
k

where the 127 comes from the i-th user signal, and there is interference from the
other users. The K is the number of photons per chip, so this equation tells how
many photons hit the detector. We have assumed a completely ideal system so far.
We can write Uy and U; in terms of bipolar codes Ay and A; using Equation 3.2
and substitute this into Equation 5.6. Using Equation 3.19 and the fact that for the

interleaved system, W; is zero, we get

K 1
Ziop(T) = (127 4+ 63.5(N — 1) + 7 3= Capalle)); (5.7)
k

Tapped-Delay Line

Ui +
Splitter Tapped-Delay Line B}
Ui
Detector

Figure 5.10 Fiber optic tapped-delay line based receiver.
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where N is the total number of users. Modeling the detector noise as a Poisson

process, we find the signal from our top detector to be
ZE (T) = Xu,

where X is a Poisson random variable with parameter J,.

_K

_ 1
AL = (127 + 635(1\/ - 1) + 4- E CAk,A;(lk))-
k

2

Along similar lines, the bottom detector yields
Zin(T) = X,

where X, is a Poisson random variable with parameter ),,

K 1

A = S(63.5(N = 1) = = 3" Cap as(le)).

2 44

The net received signal, therefore, will be
Z(T) = Zti:p(T) - Zl;iot(T) = Xl - X2s

in terms of number of detected photons.

We can approximate X; — X, with a Gaussian random variable with mean A=A

and variance A; 4+ ;. This random variable simply adds a correction to the variance of

our total interference in the amount 3—%)- So the correction decreases as expected

with increasing transmission power.

In Figure 5.11 we provide the results of a simulation where the probability of error

versus photon number was computed exactly in this system with 90 interfering users

and compared to the Gaussian approximation just described. We see from this plot

that the interleaved system continues to be superior to the appended system in the

presence of increasing shot noise. We can also see that the Gaussian approximation

works very well.
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The probability of error in the interleaved system as transmission power increases
for four different numbers of interfering users is plotted in Figure 5.12. The powers
here range from 1 photon per chip to 10,000, which corresponds roughly to one mi-
crowatt and one milliwatt total power per bit respectively in a 1.55um wavelength
system transmitting chips at 10 GHz. We can see from this plot that the correction
effect is insignificant above 100 photons, or a few hundred microwatts suggesting that

the shot noise effect is completely negligible in a normal system.
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Chapter 6

Conclusion

The goal of this work was to produce a time-encoded bipolar-equivalent system which
gave us performance equivalent to the bipolar system, allowing, of course, for a fac-
tor of two increase in bandwidth requirement. We showed that, not only could this
be achieved, but that it could be achieved in a system that is asynchronous when
using the interleaved method. In this thesis, on the whole, we performed a complete
analysis of the behavior of the two different asynchronous bipolar-equivalent CDMA
methods we (and others) have found. We found that the cross-correlation functions
for the interleaved codes could be represented very simply in terms of the CCF’s of
the original codes. This led directly to several results such as description of the exact
values of the odd terms instead of just bounds as had been presented in [9]. Knowing
this, we were further able to compute the average interference parameter for inter-
leaved codes and compute the signal-to-noise ratio and approximate the probability of
error, and compare these with other methods of achieving bipolar-equivalent CDMA.

We also discussed the difference between bipolar and unipolar systems, the 1
ofset term in the codes which can pose problems depending on W, the weight of the
code. All of this comes from the use of the matched-filter detector which outputs
a correlation between the input and reference code. Wj is, after all, just the CCF
between 1, and the reference code a;. We found that while the W; term may pose
problems in the generic unipolar transmission/bipolar reference system, it becomes

zero for the bipolar-equivalent systems.
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6.1 Ramifications of our Results

Using the interleaving method, we are now able to build a time-encoded unipolar
CDMA system which provides performance almost identical to that of the well-known
bipolar asynchronous system. The only price we have paid for this is the increase in
bandwidth requirement by a factor of two. In addition, as we showed in Chapter 2,
our system can be implemented in a very simple, completely asynchronous, unipolar

transmission/bipolar reference system.

6.2 Future Work

One might well question the reasons behind the choice of particular asynchronous
bipolar equivalent coding methods analyzed in this thesis. We basically looked at
the interleaved case, the method several other researchers are considering, and the
appended case, the method used in spectrally-encoded systems. While the interleaved
method is worth investigating for the reason just given, and in hindsight, it performs
probably as well as can be done, might there be some other strange combination
method which works better? We doubt it. Our result is, on average, as good as the
best possible result. Of course, since our codes are doubly redundant, there could
also be some kind of compression done to reduce the total code length, but it would
probably require complicating our receiver, and may not be practical to implement.

Another interesting idea comes from the result concerning cross-correlations (11]
where we replace codes a;, and aj, with (=1)"a; and (—1)"ax , respectively. The
CCF of these two will then be (~1)'Ci«(!). Recall that the interleaved system pro-
duced a CCF that was almost a linearly interpolated version of the bipolar CCF
except that the interpolated points were the negative of the actual linear interpola-

tion. If we were to modulate the interleaved system’s output with (—1)', we could get
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back the original linearly interpolated bipolar result. This therefore, would be equiv-
alent to modulating the incoming data from the channel with (—1)*, and doing the
same to the reference code. Since linear interpolation can be considered a crude form
of lowpass filtering (a filter with spectral response sinc?(w)) this idea has relevance

to bandwidth reduction of the receiver.
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