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Robust Steady-State Tracking

Behnam Sadeghi

Abstract

The thesis solves the problem of finding an LTT controller that minimizes the steady-
state tracking error of uncertain discrete-time systems. If a system is LTI, use of the
“internal model principle” will assure that the error signal converges to zero. But
this principle no longer applies when the physical plant is time-varying. This leads
to the problem of how the steady-state value of the tracking error can be minimized
in the time-varying case. The solution is provided in the following mathematical
setting. The nominal model of the plant is SISO and LTI, and plant uncertainty is
modeled by an arbitrary fading memory operator that is SISO, linear time-varying,
and norm-bounded. A special case of the more general n-perturbation problem is also

solved.
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Chapter 1

Introduction

1.1 Background and Motivation

Research in linear control theory in the past two decades has been characterized by the
recognition of the necessity to account for uncertainty in the plant. There is always
a discrepancy between a physical system and its model, and therefore a controller
that is designed for the model may not perform well with the physical plant. This

problem may be addressed by designing the controller after the uncertainty itself has

been modeled.

The dominant paradigm for the modeling of plant uncertainty has been the incor-
poration of norm-bounded perturbations. For example, if P is a linear time-invariant

operator representing a nominal model, the physical system may be assumed to lie in

the class of admissible systems:
{Pa:PA=P+A, |AIS1)

where the A is an operator beldnging to a pre-specified class, and ||A|| represents
its induced norm. Uncertainty is thus accounted for in the arbitrariness of A, and
is restricted by the the maximum allowable induced norm of the same. One then
seeks to design a controller that performs well for every plant in the above set. More
generally, uncertainty may be introduced at more than one point within the system,
so that there are several A’s. One may lump these uncertainty perturbations in a

single diagonal perturbation operator, thus representing structured uncertainty.



The two primary goals in controller synthesis are maintaining stability and meeting
performance specifications. Stability means that injection of bounded signals should
produce only bounded signals within the system. Attaining stability in the face of all
admissible perturbations is robust stability. An easily computable necessary and suffi-
cient condition is available [KhPrsn90,KhPrsn91,KhPrsn93,DahBob95] for the robust
stability of discrete-time systems when the signals are in £,, and the perturbations
are linear time-varying and bounded in the £,-induced norm, namely the ¢; norm.
The same condition applies when the perturbations are in addition “fading horizon,”

meaning that their output eventually vanishes for vanishing inputs [Kham95].

Robust performance is defined for systems that are robustly stable. It means
keeping some signals in the system “small” in the face of arbitrary disturbance signals
which are all bounded above in the £, norm, the choice of this norm indicating that
one is contending with disturbances that are persistent in ‘time. ‘When the sigrials are
in €., the robust performance problem reduces to a robust stability problem. This

holds for both of the perturbation classes that were mentioned in the last paragraph

[KhPrsn91, KhPrsn93, Kham95].

A special performance criterion is robust tracking. It arises when the goal is for the
system to track a fixed signal. The tracking is formulated as keeping an error signal
small. The smallness of this signal can be specified in terms of different measures.
One may choose the £, norm of the error signal. This would correspond to keeping
the maximum deviation below a certain level over all time. This thesis, however, is

concerned with the maximum deviation at the steady-state. The associated problem

is called “robust steady-state tracking.”

Recently [Kham953] has established analysis results that constitute necessary and

sufficient conditions for a SISO system with multiple uncertain perturbations to



achieve steady-state tracking. Furthermore, given a plant and a controller, these
results enable one to easily compute the maximum steady-state error over the set of

admissible perturbations.

What has not been hitherto addressed in the literature is the synthesis aspect of
the problem, and that is the subject of this thesis. We will provide a solution to the

problem of minimizing the worst-case steady-state tracking error (SSTE) over the set

of stabilizing controllers.

The thesis is organized as follows. Chapter 2 provides the necessary background
information. Chapter 3 poses the optimization problem in the case of a single pertur-
bation, provides a solution, and proves that the optimal closed loop map is “FIR,”
i.e. has a “finite impulse response.” It also shows how the method can be used to
minimize the worst-case steady-state error subject to an upper bound on the norm
of worst-case sensitivity. Chapter 4 provides two examples. The first example is of a
plant for which the optimal SSTE is smaller than what can be obtained by inclusion
of an internal model. The second example demonstrates that plants with optimally
small SSTE’s may have arbitrarily large worst-case sensitivity norms. Chapter 5
treats a special case of the more general n-perturbation SSTE minimization problem.

Chapter 6 serves as a conclusion and points to issues that require further research.

1.2 Notation, Terminology, and Abbreviations
Z+ Set of nonnegative integers: {0, 1,2,---}.

N Set of natural numbers: {1,2,3,---}.

R Set of real numbers.

R+ Set of nonnegative real numbers.
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[-lleo
I
Il-llx

ll-llss

JAN

Space of all bounded sequences of real numbers, i.e. z = {z(k)}2g € £

if and ounly if sup|z(k)| < co. If = € £y, then ||z||c = sup |z(k)|.
k k

Space of absolutely summable sequences. If z € £; then

Subspace of ¢, of vanishing signals, i.e. sequences z € £, which

satisfy (k) — 0 as k — oo.

All vector and matrix inequalities are element-wise. Thus if

¢,y € R", z < y means that z; < y; forc=1,---,n.

Absolute value, applied element-wise when the argument is a vector.
See £ .

Same as ||.|};-

o0

¢, norm of a sequence. Given a sequence g, ||z|l, = Y |z(k)|. Also,
k=0

given a linear operator T : £y, — €o, ||T||1 denotes the £; norm of the

impulse response of 7', and is also the same as its £, induced norm.
Steady-state semi-norm. If e € Lo, |le||ss := klim sup le(?)].
00 >k

Set of all linear, causal operators mapping £, into itself, with induced

£, norm less than or equal to one. Hence,

A= {A 1l — o sUp 1Az]o < 1}.

I

The restriction of A to fading memory operators. Thus

Ap={A€l; A:co— }.



Set of all diagonal operators of the form D = diag(Aq, ..., A,) where
A; €A

Set of all diagonal operators of the form D = diag(Ay,...,A,) where
A; €A Fe

Spectral radius.

A-transform  The complex variable of the A-transform. See next item.

FIR

LTI

SSTE

SISO

causal

If @ represents the impulse response of an LTI operator T : £, — £,

then @ is the A-transform, & := Z@;)\i. Note that A-transform is
t=0

defined differently from what is normally called the Z-transform, in

that A = z7!. Thus the unstable region is the unit disk, |[A] < 1.

If M is a non-scalar stable operator with elements mapping /o into
itself, then M is obtained by replacing each element of M by the ¢

norm of its impulse response.

Convolution operator.

Finite impulse response.

Linear time-invariant.

Worst-case steady-state tracking error semi-norm.
Single—input,‘ single;output.

Given a sequence z, let P, k € Z*, be the truncation operator, i.e.
Pr(2(0), 2(1),---) = (2(0), (1), - -, 2(k),0,0,---). Then we say that
an operator T is causal if BT = P,TP,; for all ¢.



fading memory An operator that maps ¢ into co.
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| Chapter 2

Preliminaries

2.1 Introduction

In this chapter, we will give a summary of the results corresponding to the problem
of finding the maximum error of a system at the steady-state, where the maximum is
taken over the set of admissible perturbations. This quantity is properly referred to as
the “worst-case steady-state tracking error.” We will assume that we have a nominal
plant with a stabilizing controller, that the admissible perturbations are SISO, linear,

causal, and fading memory operators, and that the goal is to track a fixed signal.

This chapter treats an “analysis” problem, as it assumes that a nominal plant,
a controller, and a set of perturbations are given, and that the goal is to assess the
performance of the system at the steady-state. This problem was solved in [Kham95]

in the case of multiple SISO perturbations (“structured uncertainty”).

Before dealing with robust steady-state tracking, however, it is necessary to define
robust stability and robust performance, and to state the corresponding analysis

theorems and formulas.

2.2 Robust Stability

The robust stability problem is posed in terms of Figure 2.1. Here M represents
a stable, linear time-invariant nominal system, including any nominal plants and

controllers. Structured uncertainty is incorporated into A, whose diagonal elements
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Figure 2.1: Robust Stability

represent the individual SISO perturbations within the system. Thus A is an arbitrary

member of the set:
Dr(n) = {diag(Ar,-+-,An) : A; € Ap}

where Ap; which represents the class to which the individual norm-bounded pertur-

bations, A; , belong; is defined to be the restriction of

A:={A:lx — ly; A is linear, causal and ||A|; <1}

to fading memory operators, i.e. those operators that map the set of vanishing £,

signals, cg, into itself. In other words,
Ap :={A:cg— co; A is linear, causal and ||A]|; <1}

In summary, uncertainty is represented in the form of linear perturbations A;
within the system which are causal, SISO, norm-bounded, and fading memory. Note
that they may be time-varying. These perturbations are selected from wherever
they appear in the system and lumped together as the diagonal elements of a single

operator called A. For this class of perturbations, robust stability is defined as follows.



Definition 2.1 (Robust Stdbility: Fading Memory Perturbations) The

system in Figure 2.1 is robustly stable if for every A € Dg(n), (e1, €2,y1, y2)

is bounded whenever (r1, rz) is bounded.

Thus, robust stability means that for all possible perturbations, all signals within
the system remain bounded upon the injection of bounded signals into the system.
The following theorem gives a simple necessary and sufficient condition for robust

stability in terms of the #; norms of the entries of the stable matrix M.

Theorem 2.1 (Robust Stability: Fading Memory Perturbations [Kham95])
The system in Figure 2.1 is robustly stable if and only if p(IVI) < 1, where
p(.) is the spectral radius, and

[Mulle [[Maelli .. Myl
— IMalls Mol - (Mol
M - . . .

[Menlly IMaplle - [|Manll

Robust stability is defined similarly when A belongs to the following class of

perturbations:
D(n) := {diag(A1,---,As) : A; € A}

In fact, historically this class was treated before Dp(n). It turns out [Kham93] that

A

p (M)< 1 is also a necessary and sufficient condition for robust stability against

perturbations in D(n). Therefore, we have:

Corollary 2.1 ( [Kham95]) A system is robustly stable against pertur-

bations in Dp(n) if and only if it is robustly stable against perturbations

in D(n).
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2.3 Robust Performance

Besides stability, an important concern is achieving good performance, which is usu-
ally stated in terms of keeping some signals in the system small. We will define two
performance criteria: robust ¢;-performance in this section (henceforth, simply “ro-

bust performance”), and robust steady-state tracking with a fixed input in the next

sectiomn.

The robust performance problem is formulated in terms of Figure 2.2. M is stable,
linear, and time-invariant, representing the nominal part of the system, including any
nominal plants and controllers. The uncertainty is represented by A. It belongs to
D(n) or Dr(n) as the case may be. Thus, its off-diagonal elements are zero, and its
diagonal elements represent the individual norm-bounded SISO perturbations within

the system. The output is e, while r € £, represents the disturbance.

AN -

Figure 2.2: Robust Performance

The goal is to keep the effect of disturbance, r, on the output, e, small. Therefore,

if T¢, is the map that takes r to e, we would like the peak gain

T i sup JEls

r#0 [[rfloo
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to be small. If, for example, we achieve ||T.,|| < ¢, that would mean that as long
as the persistent disturbance, |r(k)|, is bounded above by 1 over all time, the error

magnitude |e(k)|, will be bounded above by € over all time.

AN

Moreover, we would like ||T.,|| to be small in spite of the existing plant uncertainty.

This gives rise to the notion of robust performance:

Definition 2.2 (Robust Performance: Fading Memory Perturbations)
Suppose the system in Figure 2.2 is robustly stable against fading memory
perturbations. Let T¢, be as defined above. Let A € Dp(n). Then system

is said to achieve robust performance if

sup |Terll < 1
A€Dp(n)

Robust performance against perturbations in D(n) is defined similarly, except that
Dr(n) is replaced throughout with D(n).
The following significant result [KhPrsn91, KhPrsn93] states that when A € D,

the robust performance problem is equivalent to a certain robust stability problem.

Theorem 2.2 ( [DahBob95]) If A € D, then the system in Figure 2.2
achieves robust performance if and only if the one in Figure 2.3 is robustly

stable with A, € A.

An important question is whether a similar equivalence holds when the class of

perturbations is Dr. Enough background material has already been presented to

enable us to give an affirmative answer.

Corollary 2.2 ( [Kham95]) The system in Figure 2.2 achieves robust
performance against fé,ding memory perturbations if and only if that of

Figure 2.3 is robustly stable against fading memory perturbations.
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A I

Figure 2.3: Robust Performance reduced to Robust Stability

Proof Suppose the system in Figure 2.2 achieves robust performance against fading
memory perturbations (A € Dr). Then, by the Small Gain Theorem it follows that
the system in Figure 2.3 is robustly stable with respect to fading memory perturba-
tions (A € Dp and A, € Ar). Conversely, if the system in Figure 2.3 is robustly
stable against fading memory perturbations, by Corollary 2.1 it is also robustly sta-
ble against A € D and A, € A, which by Theorem 2.2 implies that the system in
Figure 2.2 achieves robust performance against perturbations in D. Since Dy C D,

it also achieves robust performance against perturbations in Dg. d

During the rest of the thesis, we will be concerned only with fading memory

perturbations. Thus, henceforth A € Dy and A, € Af..

The fact that robust performance has been reduced to robust stability along with
Theorem 2.1 allows us to write down a simple necessary and sufficient condition for

robust performance. Corresponding to the system in Figure 2.3 we have:



My . A’Il,n+l

Mn+1,1 s Mn+1,n+1
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By Theorem 2.1 the system achieves robust performance if and only if p(lVI)< 1,

where the “hat” on top indicates here and elsewhere in this chapter that each element

of the LTI, stable matrix operator is replaced by its £; norm. Next, we partition M

as follows:

(o)~ (o v )
y _\M21 Mzz/ \¢
M

Thus, My1is 1 x1, M2 is1 xn, M2y i1sn x 1, and Mgz is n x n.

Lemma2.1 ( [Kham94]) Let Abeann+1 x n+1 nonnegé,tive matrix

( Ap A12)
A=
Ay A

and A1 1s 1 x 1, Ay, has dimension n x n, and A;; and Aj; have the

where

appropriate dimensions. Then p(A) < 1 if and only if p(Az;) < 1 and
An+ Ap(l - Azz)—lAm < 1.

Thus, the lemma implies that p(lVI)< 1 if and only if
p(l/v\.[zg) <1

l\//\[11 + 1\7[12(1 - Mzz)_lﬁ21 <1

The first condition is equivalent to robust stability. From these, we can obtain a

formula for the worst-case sensitivity.
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Corollary 2.3 ( [Kham9/]) U the system in Figure 2.21s robustly stable,

then its worst-case sensitivity norm is:
sup ”Ter“ - M11 + M12(I - M22)_1M21
A€Dp

Proof The system is robustly stable and supa¢p, ||Ter|| < 7 if and only if the new
system obtained by scaling the sigﬁal e by % achieves robust performance. The latter

is equivalent to:

:1),'1/\/\111 ]-VI12
ol o <1
;M21 M22

which by the preceding lemma and remarks holds if and only if

IVI11 + ﬁm(f - ﬁzz)_lﬁm <

Therefore,

sup ”Terll = 1\/7[11 + I/\/\112(1 - ﬁ22)“1ﬁ21
A€Dp

2.4 Robust Steady-State Tracking

The tracking problem is formulated in terms of Figure 2.2. The situation is analogous
to that of robust performance, but with two differences: First, the signal r is assumed
to be fixed, i.e. known in advance. Secondly, the objectiveis to keep small not the
peak magnitude of e, but its deviation at the steady-state. The signal r could, for

example, be a step input we wish to track, and e could represent the tracking error.



To have a measure of the tracking error, we define the steady-state semi-norm, defined

in the following fashion:
lefles := Jirm sup le(?)]
Note that the semi-norm is well-deﬁned for signals that do not have a limit as
k — oo, such as sinusoids. Thus, this measure of the steady-state error can be

thought of as “the maximum amplitude at infinity.” The objective is to keep it small

in the face of all possible perturbatiohs. This gives rise to the following definition:

Definition 2.3 The system in Figure 2.2 is said to achieve robust steady-

state tracking if it is robustly stable and if
sup |lefl,, <1
s el

In the case of the robust performance problem, as discussed in the last section,
the analysis formula is in terms of the matrix M, which is in turn composed of the £
norms of the elements of M. An analogous situation holds in the problem considered
in this section. The difference, however, is that we will now have a combination of ¢,

norms and steady-state semi-norms of the elements of M.

Theorem 2.3 ( [Kham95]) The system achieves robust steady-state

tracking if and only if p(Mss) < 1, where p(.) is the spectral radius, and

[Murllss M2 ... [[Mypsalh
|| Marr||ss Mool ... |[Meogpll
ISS .: . : . 0 .
IMesrarllss IMasrzlls - [[Magrnsalh

Note that this matrix is identical to M except in its first column.
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We next partition Mgs as follows:

Mssy, My,
Mss = ~
MSS21 M22

where Mggy; is 1 x 1 and the other block elements have the appropriate dimensions.

Applying Lemma 2.1 to Theorem 2.3 gives the following.

Corollary 2.4 ( [Kham9]) The system achieves robust steady-state

tracking if and only if:

p(Ms2) < 1

Mssyq +ﬁ12(1 - 1’\7[22)“11‘45521 <1

Again, the first condition is equivalent to robust stability. The corollary allows us

to get a formula for the worst-case steady-state error.

Corollary 2.5 ( [Kham9/]) If the system is robustly stable, then its

worst-case steady-state error is given by:
sup |le]lss = Mssyy + Mig(I — Ma2) ™ Mssy
AEDp
Proof The proof is similar to that of Corollary 2.3. 0
Having the above formula for the tracking error paves the way for the latter’s
minimization.
This completes the exposition of the relevant results in the literature that pertain

to robustness analysis with time-varying perturbations. We will henceforth focus on

the primary objective of the thesis, namely the synthesis problem.
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Chapter 3

Controller Synthesis with Single Perturbation

3.1 Introduction

The last chapter presented the analysis results in [Kham95] corresponding to the ro-
bust steady-state tracking problem with multiple SISO perturbations. In this chapter
we specialize to a single perturbation and address the synthesis problem, i.e. the prob-
lem of finding a controller which optimizes the worst-case steady-state tracking error
semi-norm (SSTE). We will present a method for obtaining the optimal closed loop

transfer function.

3.2 Statement of the Problem

Figure 3.1: Single Perturbation: Multiplicative Uncertainty
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The problem is posed in terms of Figure 3.1. P is the A-transform of the SISO, LTI
nominal plant; K of the LTI controller; and W of a stable weighting function. The
fixed signal r is a unit step input. Uncertainty is represented by the SISO A € Ap.
Thus, the physical plant is assumed to lie in the set parameterized by P(1+ WA).
This is called “multiplicative uncertainty.” (Were we to choose “additive uncertainty”
instead, i.e. P+ WA, we would obtain results similar to what will follow.) The

system M, as defined in Section 2.3 maps (r £)’ to (e y)'. It is straightforward to

S —SwW
M=
r -Tw

where S and T are respectively the sensitivity and complimentary sensitivity func-

show that

tions:

1 PK
S(A) = 7 PK and T(A)=1-S5= 1+ PK

_ (HSH IISWII)
M = .
I NTwi|

For simplicity, we will assume that W()) is a real number R, serving to scale the

Therefore,

maximum radius of the perturbation A. By Corollary 2.3, this yields the following

expression for the worst-case sensitivity norm:

lIrlloo <1 AEA p R +—|T|

Using the Final Value Theorem, we can write:

1S7ll.s = | Jim Sr(k)| = | lim(1 — 1)S(N)

So,

<|5(1)| ||5|l)
Mss =
T 117
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which, by Corollary 2.5, gives this expression for the SSTE with the unit step function
as the input, r:

S
sup |le|lss = [S(1)] + IT(I)II%'
sl K- I7]

The goal is to find an optimal controller among the set of controllers which provide
nominal stability. An optimal controller is one that provides robust stability and gives

the smallest SSTE. Stated precisely, the problem is this:

Problem 1

Given that r is a unit step input, find the minimum SSTE,

» .—_ .
6 T K'stigli‘iziny Aseué_pp “e“ss

where “K stabilizing” means that K stabilizes the nominal system.

3.3 Solution

Our approach to solving Problem 1 will be to perform the minimization over the set of
feasible nominal ciosed-loop maps. Once an optimal closed-loop map is obtained, the
controller can be easily derived. To that end, we will use the YIJBK parameterization

[DahBob95] of all stable closed loop maps S:

S(A) = H() - UNQM)

where H and U are fixed stable transfer functions which can be obtained through
knowledge of the nominal plant, and @ is an arbitrary stable parameter. In other

words, there is a one-to-one correspondence between stabilizing controllers and the
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set of all feasible closed loop maps, and the latter is parameterized as above. Let

B\ :=5=Y &N

i=0
Here, the “hat” is meant to signify that & is a A-transform. We will carry out the
optimization over the coefficients of @, namely the ®;. To that end, we will make
use of constraints on these coefficients which would be equivalent to the feasibility of
®. These are known as the “Interpolation constraints” and, as will presently become

clear, are obtained from H and U in the YJBK parameterization.

Let a1,-++,a, be the zeros of U in the unit circle. (For simplicity, assume that
they are distinct). Then [DahBob95] & is feasible if and only if the vector of its

coeflicients, @, satisfies the interpolation condition:

A 9 b
T @ @ \ (%Y [H\
1 a a... o, H (a)
5, =
l a, dal... : H(a,)

Note how A, @, and & have been defined above., Therefore, we have:

5(1):&(1):%@ and T(1)=1~§q>,~

i=0

IS =12l =3_ 1% and [T =L —@|f = |1 ~ o] + D |2:].

=0 =1

And we can further write

1 i=00 1
|7 < = ¢ Robust Stability & |1 —®| + ) |9 < =
i=1
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K (nominally) stabilizing < S feasible & A® =b

Since we shall perforrﬁ the éptimization over the coefficients of ®, we will have to
convert expressions involving S and T into ones involving ®; in accordance with the
above relations. However, we will occasionally use expressions involving S, T, and )
as short hand for those in terms of ®;. The reason why is that the former are more
compact and, besides, look more familiar. It will be clear from the context what is

meant.

Define ~(®) as follows:

S]] 220 4]
h(®) := = I
(®) LTI L -1 — @] - =%, |9

Note that ﬁ%l would be the expression for the worst-case sensitivity norm.

From the preceding discussion it follows that we can rewrite Problem 1 as follows:

Problem 2
[SQ)| |T(1)]
P P —

& = inf £(®) = [(1)] + 1 - B()IA(®)
Over: ®; ¢ R

Subject to:

ITI <R

AP =1b

We have replaced the constraint ||T']| < 1/R with ||T|| £ 1/R. If the optimal
solution to this modified problem happens to satisfy ||T|| = 1/ R, then we will simply
redo the problem with the new constraint ||T'|| < 1/R — ¢, with an appropriately
chosen ¢ > 0. In this manner, we will always keep the constraint set closed. Note

also that £ is, in general, not convex.
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The goal is toreduce the above problem into one involving linear programs. If 2(®)
in Problem 2 were replaced with a constant, then the problem would immediately
reduce to a linear program. This observation motivates the formulation of a new

problem.

Problem 3

n* =inf (®;7) = |&(1)| + 1 — &(1)|y
Over: ®;¢R, v€R

Subject to: -

ITII<1/R

AD=1b

h(®) < v

We will show that this problem is equivalent to Problem 2.

Proposition 1 Let h: 4, — R", f:4,, = R*" and g: £l — Rt
be continuous. Let P be a polytope in £, i.e. a closed bounded set

described by linear inequality constraints. Then the minimization

£ = inf £(z) = h(@) + /(2)'g(2)
is equivalent to

*x

N = inf n(z;7) = h(z) + f(x)'y

+"
xeP,'yEIR 2 g(z)<y

Proof We will show that £ = n*. Let =* be a minimizer of the first optimization

problem and let 4~ = g(2™). Then:

7" <p(a™77) = h(z™) + f(@™) 'y = h@") + f(2")g(@") = &
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This establishes that n* < £*. To show that & < »*, now let (z*,7*) be a minimizer

of the second optimization problem. Then:
£ <E(x7) = h(z") + f(z")g(e") < h(@™) + f(=™)y =7

Thus, the two objective functions achieve the same infimum value over their respective

feasible sets. It is easy to show that every solution of the first problem is a solution

of the second one, and vice-versa. O

The following corollary follows immediately from proposition 3.1 by letting n = 1.
Corollary 3.1 Problem 2 is equivalent to Problem 3.

We now present an algorithm for solving Problem 3.
Main Algorithm.

i) Perform the minimization:

®;€lR: A¢=b and ||T||<1/R

This is nothing but R times the minimum achievable worst-case sensitivity for the

system. An algorithm for obtaining it is given in [KhPrsn90].

ii) Let the parameter v range over [Ymin,00]. (Should we wish to impose, as a
new constraint in the problem, an upper bound 2¢= on the worst-case sensitivity,

then we instead let v range over [Vmin, Ymaz) )-

iii) For each fixed value of ¥ € [Ypin, 00] perform the minimization:

n7(y) = inf n(®;7)
iR ST TNIS/R, Ad=b, h(g)<r

= inf d1)|+1— 0
o.eR s.7.: |IT|I<1/R, A0=b, h(q>)s'y| (W} +| (Dly
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iv) Let ™ be the miniﬁum \)alue of 5*(7) over ¥ € [Vmin, 00|, and let ®* be a
corresponding minimizer. Then (®*,7*) is a solution to Problem 3.

In other words, after plotting n™ () versus v, optimal solutions to Problem 3 occur
at the global minima of the plot. Thus, the question is how to obtain 1*(v) for a given
~. Therefore, the key step in this algorithm is the minimization in step (iii), which
is an infinite dimensional problem for each . The rest of this section is devoted to
showing how this minimization can be performed. We will first show that (iii) may
be formulated as an infinite dimensional linear program, and will then prove that its
solution is finite dimensional, so that the optimization in step (iii) can be performed
with only finitely many ®; as variables.

Reduction of step (iii) to a linear program.

In a series of manipulations, we transform the problem in (iii) into a linear pro-

gram.

We introduce two new variables e; and e,, replace the objective function |®(1)] +

|1 — &(1)}y with e; + ey, and add two new constraints:
|®(1)]<e; and |1—®(1)] <e,
We replace the left hand side constraint with two new ones:
d(1)<ey and —-0(1)<e
Similarly, the right hand sidé constraint is replaced with the following:

1-®(1)<e; and —1+0(1)<e,

Keep in mind throughout that ®(1) = -2, ®;. None of these transformations

change the problem.
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We replace each variable ®; with two nonnegative variables as defined below:

{ = (Dt =

{q),‘ ifq),'>0 {—‘I’; if‘I),'<0

0 otherwise 0 otherwise

Thus ®; = ®} — ®; and |®;] = ®} + ®;. We make these substitutions in the

constraints wherever ®; and |®;| appear.

With these substitutions, the four constraints given above become:

o0 o

—e;+ ) 0 - @7 <0 —er+ )y ~0f + @7 <0
=0 =0
o0 o0

—ea+ Y —0F + &7 < -1 —e+y Of —®7 <1
=0 i=0

or in matrix notation:

-1 0 1 -1 €1 0

-1 0 -1 1 €2 0
<

0 -1 -1 1 ot -1

0 -1 1 -1 o~ 1

where the inequality is element-wise and
1:=(1 11 ...)
ot :=(dF oF ...), O = (®; @ ...)

We next manipulate the following pair of constraints:

h@) = 2 < and 7)< 2

il

=]

)
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1
S| <(% —|T
ISIH = 7(5 =T

3
(e o) '7 o
219 < 5=l =l =732
1=0 =1

¥
L = ®o| + [@o| 4 (1 +7) Z

i
v —7®¢ + 785 +OF + &5 + ( 1+7)}:(<1>++<1>)

i=1

:cR

<X
R
B — By 4 OF + 05 + (L4 7) 3 (BF + 87) < %
t=1
i)
Q=78 + 1 +7) D 0F + 1+ 07 < ~(

=1 1=0

L+ 3 8F + (1 - )85 + (l+7)2‘1’7§7(

i}
( g (1+m) (<I>+) . (7(;%—1))
L+l g =) \v(%+1)

g=(1—v 149 1+v ...).

8

o

)

8
x| - =i

where

We can now write down the final formulation of (iii) as a linear program, LP:

€1

pe=inl (1 7 0 O)f |
T N e’
C o
o
P

Subject to the inequality constraints:
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0 0 ¢ ~1 \ 0
0 0 -1 ¢ 0
-1 O l_ —l €1 0
-1 0 -1 1 € 0
<
0 -1 -1 1 ot -1
0 -1 1 -1 o~ 1
0 0 g (1+71 g —1
0 0 (1++)L g / \7(%+1)
And equality constraints:
€1
€2
(0 0 A —A) =b
(I)‘l'
@-—

where [ is an infinite dimensional identity matrix and ¢ is an infinite dimensional

“square” zero matrix, and 1 and ¢ are as defined before.

For computational purposes, it is useful to know that there is a finite dimensional
optimal solution to the above minimization. That is what we will prove next. The
result is that programs in step (iii) of the main algorithm are finite dimensional; and

so is the minimization corresponding to the optimal solution. Hence, the optimal

closed loop response is FIR.

Theorem 3.1 The solution to the above linear program, LP, is finite

dimensional.

Proof We put the above linear program in the following form:



p=inf, <z,C>

Az <B
x>0
We have:
-1 0 1 -1
-1 0 -1 1
0 -1 ~1 1
0 -1 1 -1
A=
0 0 g @+
0 0 (I+91 g
0 0 A -A
0 0 —A A

€1
€2

@4—

1

There are two steps to the proof. First we show that the dual of the above infinite

dimensional linear program has a finite dimensional solution. Next, we show that

there is no “duality gap,” so that the dual formulation is indeed equivalent to the

primal one. The dual problem is:

pt = sup, < B,y >
Ay <C

y <0

We rewrite Ay < C as follows:
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f#
Y1\
c
A* Y2 /(—i\\
(-1 =1 0 0 0 0 0 0 \|wm
F)/
0 0 -1 -1 0 0 0 0 Ya
<
r - -1 v q (L+m1 A A || s
- 0
- Y -l (4 g A A e _
Z+ \

where y; € R for i = 1,2,---,6; 2zt € R", and 2~ € R".

From the first two rows of the matrix equation, we obtain:
“n-¥2=1 —y-y7.
And from the last two rows of the matrix equation, we obtain that for & € N,
Apz < =g+ y2 +ys— ya — (1 4+7)(ys + ¥6)

—Az < yi—y2—ys+ys— (L4 7)(ys + ye)-

where Aj is the k’th row of A*. By definition, the latter consists of the k’th powers of
the zeros of U within the unit circle. Since |A%|| — 0 as k& — oo, there exists an integer
N such that if yi,y2, -+, ys, zT,2~ satisfy the last two equations for k=1,---, N,

then they also necessarily satisly them for k=N +1,N+2,---

Therefore, the dual prbblem is equivalent to the following finite dimensional prob-

lem:
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pt = pp? :=sup, <B,y >
Ar” y <Cr

y<0

where the subscripted quantities are appropriately truncated finite dimensional ver-
sions of the unsubscripted ones. There is no duality gap for finite dimensional pro-

grams. Therefore, the above optimization is equivalent to its primal formulation:

fin® = pin 1= inf,, < zF,Cr >

Ar zrp < B
zp 2> 0
This is the same as the original infinite dimensional primal problem, except for a

reduction in the constraints. So, we can write:

lim g, = p

n—oo
Into the above equation, we now substitute u? for u,, and conclude that:

p=p

Therefore, there is no duality gap. Moreover, both the primal and dual problems are

finite dimensional. O
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Chapter 4

Examples

4.1 Introduction

The results of Chapter 3 make it possible to optimize the tracking error using soft-
ware developed in MATLAB. In this chapter, we apply these results to two concrete
examples, both of which shed some light on the nature of the problem at hand. The
examples are with reference to Figure 3.1, and the notation is the same as that in

Chapter 3.

4.2 Example 1

In this example, the nominal plant is

A+05

P = 3 Ton0=03)

and R = 0.1.

Figure 4.1 shows the plot of n*(7) versus %. The horizontal axis corresponds to
the upper bound on the tolerable worst-case sensitivity norm. Note that a transition
occurs at § = 184.65. To the left of 184.65, the plot has a negative slope. This means
that the least achievable worst-case steady-state tracking error semi-norm (SSTE)
decreases linearly as we ease the restriction on the maximum worst-case sensitivity

norm that can be tolerated. For example, if we impose the constraint



12r

101

L s L L . s
?SO 165 170 175 180 185 180

Figure 4.1: Example 1. Plot of 5*(y) versus .

1__1IS]l
e < 170
Rz —IT|

then we can read off the graph that the minimum achievable worst-case tracking error
will be 7.25. But if we ease the restriction to:
L__lIsl

= < 180
Ry —|T|

then the minimum SSTE reduces to 2.99.

To the right of 184.65, the graph is flat. Thus, beyond that point no improvement
on the tracking error is possible. The optimal SSTE equals 1.

What now if we restrict ourselves to controllers which include an “internal model”?
Since r is a unit step input,.tha,t v?ould require K to include the factor ,\—1_-1— We lump
this factor with the nominal plant instead, define a new nominal plant

A+ 0.5
O+ 0.7)(A —03) (A = 1)’

and design an optimal controller.
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16.5

15.5

50 155 160 165

Figure 4.2: Example 1. With internal model. Plot of 9*(v) versus 7.

Figure 4.2 shows the plot of *(y) versus %. The optimal SSTE (n*) can be read
off at == where the global minimum occurs, and equals 15.1. The fact that the
global minimum occurs at the leftmost point means that the optimal SSTE is yielded
in step (i) of the algorithm (Chaptér 3). In this case, therefore, a solution minimizing
the worst-case sensitivity also minimizes the SSTE.

The minimum SSTE value of 15.1 in this case can be compared to the optimal

value of 1 in the absence of an internal model. Clearly, system performance severely

deteriorates with inclusion of an internal model.

4.3 Example 2

In this example, the nominal plant is
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The goal is to explore the properties of the optimal solution as the maximum
allowable perturbation radius, R, varies. The values obtained for the optimal SSTE
for different R’s are listed in the second column of Table 4.1 and plotted in Figure 4.3.
As would be expected, the optimal SSTE increases monotonically with increasing

plant uncertainty.

251 B

201 b

15} .

10} X g

Ol w x x x X X X X X X X X XX ,
0 002 004 006 008 01 012 014 0.16 018 0.2

Figure 4.3: Example 2. Minimum SSTE (n*) versus radius (R).

In general, there is no unique solution to the problem of minimizing the SSTE, and
n*(y) may have more than one global minimum. By choosing the leftmost minimum,
however, we are assured to obtain an optimal solution of the smallest worst-case sen-
sitivity norm. This procedure was used to obtain values for the worst-case sensitivity
norms of the optimal solutions for different R’s. These are listed in the third column

of Table 4.1 and plotted in Figure 4.4.



Perturb. Radius (R) | Minimum SSTE | Minimum %#_J—ﬂjm for opt. sol.
0.01 0.0723 7.23
0.02 0.1576 7.88
0.03 0.2600 8.666
0.04 0.3850 9.6241
0.05 0.5411 10.8220
0.06 0.74158 12.3596
0.07 0.93357 12.3950
0.08 0.99944 12.3260
0.09 1 14.1821
0.1 1 17.0220
0.11 1 21.2840
0.12 1 28.40
0.13 1 42.63
0.14 1 85.5
0.145 1 1721
0.149 1 905.3
0.1497 1 3557
0.150 6.6666 16.0009
0.155 7.2593 17.7803
0.160 8.0002 20.0033
0.165 8.9526 22.8595
0.170 10.2226 26.6700
0.175 12.0004 32.0024
0.180 14.6670 40.0020
0.185 19.1116 53.3354
0.190 28.0001 80.0003

‘Table 4.1: Example 2.

35
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Figure 4.4: Example 2. Smallest worst-case sensitivity for optimal solution
versus radius (R).

As R approaches R* = 0.14975564634839 from the left, the worst-case sensitivity
norm goes to 0o.! This shows that optimal solutions which yield the minimum SSTE

may have arbitrarily large worst-case sensitivities.

It is instructive to look at the plot of #*(y) for R = 0.149 in Figure 4.5. The
optimum SSTE, n* = 1. But this minimum may be attained only at the expense
of a worst-case sensitivity norm of about 905. From the plot, it is clear that there
is a trade-off between tracking error and sensitivity. For example, we can tell from

the plot that if we constrain the sensitivity norm to be less than 400, then the least

achievable SSTE will be 4.16.

As we have seen, optimal solutions may have very large worst-case sensitivity
norms. This fact has important ramifications that will be discussed in the final

chapter.

1t happens that 7= equals the minimumof ||T}| subject to T(1) = 0 and the interpolation conditions.
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Figure 4.5: Example 2. Plot of n*(v) versus &, R = 0.149.
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Chapter 5

Multiple Perturbations: Special Case

5.1 Introduction

Chapter 3 solved the SSTE minimization problem in the case of a single perturbation.
This chapter gives a procedure for the minimization in the case of n perturbations,
for n € IN. The special case where the individual elements of M are affine in the
YJBK parameter is treated only. The algorithm presented in Chapter 3 carries over,

though with two key modifications.

First, there will now be n real parameters instead of just one. So, one will solve
a linear program for each fixed value of a parameter v/ € R*".

Second, in general it will no longer be possible to carry out the optimization over
the coefficients of the feasible closed-loop maps. Such a minimization problem would
defy reduction to linear programs, for the elements of the M matrix will no longer
be affine in the variables. This problem will be circumvented by minimizing instead

over the coefficients {¢;} € £; of the YJBK parameter, @ = 332, M.

5.2 Extension to Multiple Perturbations

The problem in this section is in terms of Figure 2.2, with the input r a unit step

signal. Uncertainty is represented by A € Dr(n); there are n SISO perturbations.

As before, the operator M : (r €)' — (e y)' is partitioned in this way:



‘M My
M= ,
Mz My
where My is 1 x 1, Myyis 1 x nn, My 1s » X 1, and My; is n X n. Accordingly, we

have: ' o

IMu(1)] M.
A/Iss = ey )
Mo (1)} Mo,

where the absolute values are applied element-wise, and the expressions Mj;(1) and
M1 (1) are meant to indicate that the A-transforms of the individual elements are

evaluated at A = 1.

By Corollary 2.5, the SSTE is given by:
sup |lelles = [Mua(1)] +Miua(T — M)~ [Ma (1)),
AeDp

The object is to minimize the above quantity subject to robust stability, p(ﬁzz) < 1.
[t will be shown that this minimization can be reduced to a linear program that de-
pends on a parameter v € R*", v = (m,---,7), % € R*. As 7 varies, the linear
program yields different optimal values. Global minima of these values will be optimal

SSTE’s. The solutions yielding such minima will be optimal solutions.

We assume that each individual element of M has a A-transform of the form:
My; = Hi; — U;Q,

The assumption is not true in general. But it holds, for example, in the case of a
plant with both multiplicative and additive perturbations [KhPrsn91]:

Pan = P+ Wi PA, + WyA;, where W7 and W, are stable weighting functions, and
AL A€ Af.
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For convenience, the subscripts of H and U will be dropped. H and U are stable
Mtransforms that are readily obtained from knowledge only of the nominal plant.
We will thus consider them as given. (}) is the YJBK parameter. All feasible M;;
are obtained by letting ( range over the set of all stable rational transfer functions.
The coefficients {g;} € €3 of Q(\) = 32y ¢:\* will be variables in the optimization
problem. Minimizing over the {¢;} is tantamount to minimizing over @, and hence

over the set of the feasible M.

From the formula for the SSTE, it is clear that we need to obtain expressions for
|M;;(1)| and ||M;;]| which are in terms of {¢;}. Ignoring the subscripts again, we let
{h+} and {us} be the FIR impulse responses of H and U. The impulse response of
@ is, of course, {g;}22, € 4. Then,

M (1)) = [HQ) — U1)Q)] = é b= (3 w3 a0,

k=0 k=0

and

M| = [l — wk * gells

o0
= [lhx — Y ur—1qi]ln
=0

o0 o0
=3 |hk =D g
k=0 {=0

Note that considerable simplification will result when H and U are FIR. The expres-
sions for |M;;(1)| and ||M;;|| are affine in the variables ¢;. As it will turn out, this
is what is needed in order to convert the optimization problem into a (parametric)
linear program. In order .for a mathematical programming problem to reduce to a
linear program, it suffices for its objective and constraint functions to be summa-
tions of absolute vaiues of terms that are affine in the variables. Such expressions are

therefore what we have aimed at.
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We are only one lemma away from the main result of this chapter.

Lemma 5.1 Let A be an n x n matrix with nonnegative elements. Let
z € RY" satisfy z > (0 --- 0). If Az < z, then p(A) < 1. All inequalities

are element-wise.

Proof The proof will be by mathematical induction on n, and will be based on
Lemma 2.1. For n = 1, the statement of the lemma holds trivially. As the inductive
hypothesis, assume the statement of the lemma holds for some n € N. Now, assume
that z € R"*! and that A is an n 4+ 1 X n 4+ 1 nonnegative matrix satisfying Az < z.
It suffices to prove that then p(A) < 1. To that end, we rewrite Ax < z as follows:

A z T
e erme— e gt
Apn Ap Z1 1
<
An A ¥ ¥
Note how A and ¢ have been partitioned; A;; is n x n and y € R™. Carrying out the
multiplication on the left hand side yields two inequalities:

Anzy + Ay < @,

Ay + Ay < y.

From the second inequality, we have Ay < y. By the inductive hypothesis, this
implies that p(Ag) < 1. Hence, (I — Ajp) is nonnegative and invertible. So, the
second inequality can be rewritten as (I — Agp) ' Ag12; < y. Substituting this into

the first inequality yields:
A+ A2(I — A22)_1A21 <1

By Lemnma 2.1 this result, along with p(Az,) < 1, implies that p(A) < 1. 0



42

Proposition 2

The SSTE minimization problem, P1:

inf [Mys(1)] + Mip(I — Maa) ™ Mg (1)]
Over {¢;} € {4
Subject to p(ﬁzz) <1

is equivalent to P2:

inf |My; (1) + 7[Ma (1)]
Over: {¢;} € b1,y € R™
Subject to:

1\7[12 + 71\7122 <7.

Proof By Proposition 1 from Chapter 3, P1 is equivalent to P1':

inf [Mi1(1)] + | Mz (1)]
Over: {¢:} € &1,7' € R*"
Subject to:

p(My) < 1

Mio(I — Myp)™ <~

The second constraint can be rewritten as
M, + M <7,

which means that yMj, < ~. This implies, by Lemma 3.1, that p(lVI-),g) < 1.
Therefore, the first constraint is redundant as it is implied by the second one, and

P1’ reduces to P2. O
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For each fixed v, P2 is reduced in a straightforward fashion to a linear program.
This can be seen from the fact that the expressions in both the objective function and
the constraints are sums of absolute values of terms that are affine in the variables,
gi.

The problem has thus been reduced to a parametric linear program, the number

of the parameters e(iualing the number of the perturbations A; in the system.

In P2, there are infinitely many variables. The stable () and the maps generated
by it can be approximated arbitrarily closely by FIR maps. Therefore one may in-
stead perform the minimization over FIR @ of impulse responses of length N, and
let N — oo in order to converge to the optimal SSTE. In other words, the minimum

SSTE can be arbitrarily closely approximated by solving programs (P3) of the fol-

lowing form:

inf [My (1)} + v[M21 (1)

Over: ¢ € R(:=1,---,N);y' € R™"
Subject to:

IM1a(1)] + 7Maz < 7.

5.3 Remark

The results in this chapter will sfill hold if M,, is replaced with l/V\I, and the SSTE
with the worst-case £; norm of the system. As a result, the above procedure can be
used to solve the robust ¢, problem as well. This provides an alternative method to
those discussed in [DahBob93]. In particular, the parametric programming method
described in this chapter is comparable to the grid method discussed in [DahBob95,

p. 356-7]. In both, a linear program is evaluated at each point of a grid.
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Chapter 6
Conclusion

In control system design, often the objective is to track a fixed input signal which
is known in advance, such as a unit step signal. If the physical plant is LTI, use
of the “internal model principle” will assure that the error signal converges to zero
[DahBob95, p. 103]. If the physical plant is time-varying, however, it may no longer
be possible to achieve that. Nor is a controller with an internal model guaranteed to
be in any sense optimal. This poses the problem of how the tracking error can be
minimized. The principal contribution of the dissertation is to provide a solution to
the minimization problem on the assumption that the nominal plant is LTI, and that
plant uncertainty is represented in terms of a norm-bounded perturbation which may
be time-varying,.

In having solved the problem, however, we have gained insights which expose the

potential inadequacy of the standard formulation of the problem.

In many cases, the standard formulation of the tracking problem and our solution
to it will be satisfactory. Moreover, the engineer will be able to tell when that is the
case: An optimal solution which has an acceptable worst-case sensitivity is a good
solution. However, the case of the simple, first order nominal plant of Example 2
demonstrates that sometimes optimal solutions to the tracking error minimization
problem may have arbitrarily large sensitivities. This means that the magnitude

of the error signal e may become arbitrarily large before it eventually attains its

Y

advertised, “low,” steady-state value. When that happens, the graphical technique
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presented in this dissertation can be used to impose an upper bound on the worst-case
sensitivity. But this solution may not be entirely satisfactory. It is too conservative,

since the quantity “worst-case sensitivity” is

ol a Wl

i.e. the maximum over a rather large set of conceivable inputs r. But the input r is
in fact a single fixed signal which we know in advance. Therefore, instead of imposing
an upper bound 4m., on the worst-case sensitivity, a more appropriate formulation
of the tracking problem would be as follows. Minimize the steady-state error subject

to maxa ||Terrollcoc < Ymaz, Where rg is a known, fixed signal. This problem requires

investigation.

Chapter 5 solved the SSTE minimization in a special case of the more general
n-perturbation problem, (n € N). As discussed in Section 5.3, the problem is struc-
turally quite similar to the robust ¢, problem, for which optima,l‘ solutions are FIR.
Moreover, in the n = 1 case we proved that the solution is indeed FIR. Therefore, it

is worthwhile to determine whether the FIR property is preserved when n > 1.

The method in Chapter 5 is equally applicable to the robust ¢, problem. It remains
to see how it fares compared to the techniques discussed in [DahBob95], particularly
with the grid approach described therein on pages 356-57. Most importantly, one
must investigate whether methods along the lines of [KunKon91, KonYaj92] can be
used to obtain better algorithms for solving the parametric linear programs in the
robust tracking and robust ¢, problems. Efficient algorithms become indispensable

when uncertainty is represented by many perturbations.
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