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ABSTRACT
Ritz Values and Arnoldi Convergence for Nonsymmetric Matrices
by
Russell Carden

The restarted Arnoldi method, useful for determining a few desired eigenvalues
of a matrix, employs shifts to refine eigenvalue estimates. In the symmetric case,
using selected Ritz values as shifts produces convergence due to interlacing. For
nonsymmetric matrices the behavior of Ritz values is insufficiently understood, and
hence no satisfactory general convergence theory exists. Towards developing such a
theory, this work demonstrates that Ritz values of nonsymmetric matrices can obey
certain geometric constraints, as illustrated through careful analysis of Jordan blocks.
By constructing conditions for localizing the Ritz values of a matrix with one simple
normal wanted eigenvalue, this work develops sufficient conditions that guarantee
convergence of the restarted Arnoldi method with exact shifts. As Ritz values are
the basis for many iterative methods for determining eigenvalues and solving linear
systems, an understanding of Ritz value behavior for nonsymmetric matrices has the

potential to inform a broad range of analysis.
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Chapter 1
Introduction

This thesis analyzes the behavior of Ritz values and convergence of the restarted
Arnoldi method for nonsymmetric matrices. Understanding the behavior of Ritz val-
ues is essential to establishing convergence of methods for approximating eigenvalues.
In the symmetric case, for which much is known, convergence of the restarted Arnoldi
method with exact shifts follows from the interlacing property of Ritz values. In the
nonsymmetric case, the restarted Arnoldi method with exact shifts performs well in
practice. Researchers have observed typical patterns of behavior for Ritz values, but
these are not sufficiently understood to establish criteria for convergence. In this
thesis I analyze nonsymmetric matrices for which the Ritz values can be localized.
This information will then be used to develop sufficient criteria for convergence of the
restarted Arnoldi method with exact shifts for these nonsymmetric matrices. Specif-
ically, the criteria will address constraints on the starting vector and the spectral

properties of the original matrix.

1.1 Eigenvalues

The restarted Arnoldi method is an indispensable tool for determining a few selected
eigenvalues of a ma.triic, such as those with the 1argest real part. Eigenvalues pro-
vide insight into the behavior of dynamical systems. They indicate how modeled - -

features will grow, decay or oscillate. An important use of eigenvalues is to deter-



mine the stability of the system z'(t) = Az(t). No real world system can sustain
the constant growfh of a modeled feature that correspond to eigenvalues with posi-
tive real part. Similarly, undampened oscillations associated with purely imaginary
eigenvalues, when coupled with resonant driving forces, can lead to unsustainable
behavior. The determination of system stability typically involves the computation
of only a few of the eigenvalues. This is fortunate, as it limits the work needed to
solve real-word problems; moreover, many of the eigenvalues of the matrix can be
spurious approximafions to the true eigenvalues of an underlying infinite dimensional
operator.

To determine eigenvalues of a matrix A of order n, one must determine z and A
such that

Az =z

where z, the eigenvector, is a nonzero vector of order n and A, the eigenvalue, is
a complex scalar.i The vector x and scalar A are said to be an eigenpair and are
denoted (xz,A). The set of all eigenvalues of a matrix is called the spectrum of the
matrix, denoted by U(A). A space spanned by eigenvectors is called an eigenspace.

Eigenvalues can be characterized as foots of the characteristic polynbmia,l,
pa(A) = det(A] = A).

The roots of the characteristic polynomial correspond to the values for which A/ — A
is singular, which means that A — A has a nontrivial null space. As the roots of
polynomials of order greater than five cannot generally be determined in a finite

number of steps, eigenvalues must be determined iteratively.



1.2 Krylov Subspaces

The Arnoldi method approximates eigenvalues by orthogonally projecting a matrix
onto a subspace. The performance and analyéis of many iterative methods for eigen-
values and systems of equations relies on Krylov subspaces. A Krylov subspace is

sparined by the iterates of the power method,
Ki(A,v) = span{v, Av, A%v ..., A¥ v},

where v is the starting vector. The power method itself is an eigenvalue method that
approximates the eigenvector associated with a distinct, largest-magnitude eigenvalue,
if such an eigenvalue exists. The power method approximates the vector that A*v
approaches (in angle), the desired eigenvector, as k becomes large. A Krylov subspace
contains not only all power method iterates, but it contains all shifted power method
iterates (A — oI)'v for any complex o, 1 - 1,...k — 1. As a Krylov subspace is
larger than the span of any single power method iterate, (A — ol )v, provided that
the starting vector v is not an eigenvector, the Krylov subspace should offer a better
approximation to desired eigenspaces than any single vector method. Subspaces are
particularly useful for eigenvalue estimation when the size of the matrix prohibits
dense eigenvalue methods, and also when the number of eigenvalues desired makes

single vector iteration/deflation techniques impractical.

1.3 Ritz Values

/

Eigenvalue approximatidns from a subspace are known as Ritz values. The set of all
possible Ritz values is known as-the numerical range or field of values of a matrix.

The numerical range of A € C™*" is



W(A)={z"Az:z € C", 2"z = 1}.

Hence the numerical range is the set of all possible Rayleigh quotients of a matrix.
Methods for sketching the numerical range make use of the following property: the
Hermitian part of A, H(A) = (A4 + A*), satisfies W(H(A)) = Re W(A), where
Re denotes the real part. Hence the boundary of the numerical range of A can
be determined by computing W (H (e A)) for various values of . Ritz values have
~ numerous interesting properties. The Ritz value associated with v is the scalar 6 such
that Av — @v is orthogonal to the space spanned by v, i.e., v*(Av — fv) = 0. A Ritz
value is optimal in the sense that it minimizes the norm of Av — fv. The Ritz value
represents the action of A restricted to the subspace spanned by v. For a Ritz value
to be a good approximation to an eigenpair; the residual Av — fv should be small.
For Ritz values generated from a subspace spanned by the columns of a matrix V,
the residual is orthogonal not only to the Ritz vector, but also to any vector in the

subspace. Hence

V*(Az — 26) = 0.

Since any z € Ran(V') can be written as Vy,
V*(AVy — Vy8) =0,
which is written as
Hy=V*Vyl,

where H = V*AV. Thus the problem of determining Ritz values from a subspa(.:e‘is
equivalent to solving the generalized eigenvalue problem Hy = V*Vy#0. If the columns
of V are orthonormal, then V*V = I, and the problem of determining Ritz values

from a subspace reduces to an ordinary eigenvalue problem.



1.4 The Arnoldi Method

The Arnoldi method determines Ritz values by generating an orthonormal basis for
the Krylov subspace. The Arnoldi method was introduced in the early 1950s by W.E.
Arnoldi [1] as a generalization of the Lanczos method for symmetric matrices [12].
Though both Lanczos and Arnoldi recognized that their methods had some iterative
potential, at the time they were proposed both methods were seen primarily as ways
of reducing a matrix to tridiagonal or upper Hessenberg form by a unitary similarity
transformation [16]. In the symmetric case, for which the eigenvalues all fall on
the real line, in their most basic form Sturm sequence methods determine eigenvalues
by repeatedly evaluating thé characteristic polynomial, locating eigenvalues by noting |
sign changes. The idea of the Arnoidi and Lanczos methods was that the evaluation of
the characteristic polynomial is much simpler for such structured matrices. However,
numerical instabilities in the methods lead to inaccuracies in the reduced matrices that
limit the ability to accurately determine eigenvalues. As result, until the 1970s neither
method reéeived much attention as anything other than a procedure for reducing a
matrix to tridiagonal or upper Hessenberg form (see, e.g. Wilkinson [26]).

The utility of the Arnoldi and Lanczos methods comes from their ability to gener-
ate accurate eigeﬁvalue approximations from a partial rather than full upper Hessen-
berg factorization of a matrix. Both the Arnoldi and Lanczos methods work by gener-
ating an orthonormal basis for the Kryldv subspace. Each step of the Arnoldi method
generates a new basis vector v; such that [|vil| = 1 and v; L K;(A,v) for j < ¢ and
v; € Ki(A,v). A‘p the kth step, the columns of the matrix Vk = [vy,vs,. .. ,vk_l,bk]
span the kth Krylov subspace. Based on these properties, the v; must satisfy

Av; = E hjivj + Rit1,iVit1-

=1



This recurrence is a consequence of the nesting of Krylov subspaces, Kip(A,v) C
Ki41(A,v). Combining these recurrence equations into a matrix equation, A and Vj
must satisfy

AV = Vi Hi + hiet1 xVk+16€5,

where [Hy)i; = hi; is an upper Hessenberg matrix, the orthogonal restriction of A
onto the kth Krylov subspace. Similar to the optimality of the Ritz values, Hj is
optimal in that it minimizes the norm of AVy — V; H ovér all H[23]. If hgy1x = 0,
the columns of V; span an eigenspace of A. If hgy1k, is small, then the entire kth
Krylov subspace approximates well an eigenspace of A. Even if Apy, ; is large, there
rhay be Ritz pairs that are good approximations to eigenvalues. Thev residual for a

Ritz pair, z = Viy and 0, obeys

Az — 0z = AVyy— 0Vyy
= ViHiy + hiy1pver6ry — 0Viey
= OViy + hiy1pvrrrery — 0Viy

*
= Pky1,kVk+1€£Y,

and hence || Az — 0z|| = |hy+1,4||efy|. Thus if together the product of |hk+1,k| and thé
kth component of y are small, then = and 6 are likely to be a good approximation
to an eigenpair. The matter of how small |hj4; k| must be to ensure that the Ritz
values aie good approximations to eigenvalues depends on the sensitivity of the spec-
trum to perturbations. The sensitivity to perturbations can be measured using the
pseudospectra of the matrix [25].

The e-pseudospectrum of a matrix for a given € > 0 is the set of X in the complex

plane for which there exists some E € C**” with [|E|| < € such that A is an eigenvalue



of A+ E, i.e.,
0 (A)={rAe€C:3 Ewith |E| <eand A € 6(A+ E)}.

Every Arnoldi Ritz value is in the e-pseudospectrum of A for all € > |hgy1k]. To
see this, take F = —hg41 kVk+1vf. From the perspective of pseudospectra, the bound
on how accurate a Ritz pair can be for a given Ay is reflected in how large the
e-pseudospectrum of A is relative to the spectrum of A. For a normal matrix, (i.e.,
A*A = AA*)', the e-pseudospectrum for a given e consists of the union of open disks
in the complex plane centered about the eigenvalues. Hence small perturbations to a
normal matrix produce small changes to the eigenvalues. In this case the eigenvalues
are said to be well conditioned. For a nonnormal matrix the pseudospectra can differ
significantly from the spectrum. The condition of the eigenvalues may vary; some
may be more sensitive to perturbations than others. Typical applications require ép—

proximating well-conditioned eigenvalues, which can be complicated by nonnormality

associated with the remaining eigenvalues.

1.5 The Restarted Arnoldi Method

The advantage of both the Arnoldi and Lanczos methods is that the Hessenberg
factorization can be updated incrementally with the size of the Krylov subspaée.
The primé,ry difﬁcui’cy with these methods is maintaihing the orthogonal basis. The
cost of doing so in-creases steadily as the diinension of‘ the subspace increéses. The
costs of maintainihg orthogonélity and ‘of storing the baSiS vectors are the primary
7 reaséns why these methods must be restarted. Loss er Qrthgoﬁality‘ m the symmetric
éase is particularly acute, as the Lanczos method works on the assumption that

basis vectors satisfy a three-term recurrence, a huge advantage, as the method only



8

étores three basis vectors at any oﬁe time. However, the three-term recurrence is
only true in exact arithmetic. In floating point arithmetic, more must be done to
maintain orthogonality. The problem also worsens when the éubspace develops a
good approximation of a particular eigenvalue. Without modification, the Lanczos
method can lead to dubious eigenvalue estimates. In the 1970s Paige and Parlett
determined the necessary modifications to the Lanczos method for addressing the
loss of 0rt>hogonality due to floating point arithmetic [16, 14]. The knowledge and
insight developed for Lahczos set the stage for Saad to introduce the restarted Arnoldi
method as a means of calculating a few eigenvalues of a nonsymmetric matrix [17].

The impact of Saad’s paper on the restarted Arnoldi method was threefold. First,
Saad provided an alternative eigenvalue algorithm. At the time, subspace iteration
(then also known as simultaneous iteration) was the prominent iterative method for
determining several eigenvalues of a nonsymmetric matrix. Subspace iteration is a
generalization of the power method to subspaces. Unlike the original Arnoldi method,
which requires ever larger subspaces and hence more memory and computation to
improve eigenvalue approximations, the restarted Arnoldi method (like subspace it-
eration) works to refine an approximate eigenspace.

Second, Saad provided the first a priori convergence bounds for the approximation
of eigenvectors of nonsymmetric matrices from a Krylov subspéc’e. Assuming that the
‘eig‘en%zalues of A are simple and that the starting vector represented in a norrhalized
eigenvector basis {u;} is v = E;V=1 aju;, then provided that o; # 0, the norm of the
residual of the projection of the eigenvector u; onto the Krylov subspace is bounded
as

I - ViVl <& min max |p(A)],

peP j=12,..N
p(Xi)=1" J#i

where §; = Z;V=1 i |2]/|ci|l. Though presented in terms of a projection, the bound



gives a measure of the angle between an eigenvector and a Krylov subspace. The
bound in\}olves a min-max problem for determining a polynomial that is small on the
unwanted eigenvalues.

Last, Saad motivated the need for restarting the Arnoldi method and proposed
a technique to do so. To restart the Arnoldi met‘hod, one must pick a new starting
vector, v, for the Krylov subspace. Saad suggested that this new starting vector
be a weighted linear combination of the Ritz vectors, with the weights chosen based
on how well the Riﬁz vectors approximate eigenvectofs. As every vector in a Krylov
subspace can be represented as a polynomial in the matrix times the starting vector,

Saad’s apprdach to restartihg is equivalent to selecting the roots, u;, of a polynomial,

¥(z) = [[ (= — ).

i=1

Hence the new starting vector is

In the years following his introduction of the restarted Arnoldi method, Saad used
the polynomial representation of vectors in a Krylov subspace to suggest that the
restart polynomial, 3(z), should be small on the unwanted portion of the spe¢trum.
Such a choice will amplify the components of the starting vector in the difection of
desired eigenvectors. In the case that the spectrum is real, if one can determine an
interval containing only the unwanted eigenvalues, then a Chebyshev polynomial can
be constructed to be uniformly small on the interval and large everywhere else [19].
Chebyshev polynomials are optimal for intervals; ie., ‘any other polynomial on the
same interval would not be as ﬁniformlyr small on the Vinterval. For éomplék rspect‘;ra‘,

if there exists "a,n'ellipse containing only the unwanted eigenvalues, then a Chebyshev
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polynomial can be constructed to be small on the ellipse. In this case the Cheby-
shev polynomial is asymptotically optimal for the ellipse: as the polynomial degree
increases, the Chebyshev polynomial will improve asymptotically at the same rate as
the optimal polynbmials for the ellipse. In practice there may not exist an ellipse that
contains only the unwanted eigenvalues. In this case the problem of constructing a
polynomial that is small on a region containing the unwanted eigenvalues becomes
difficult; one could use another method such as conformal mapping to construct the
resfa.rt polynomial [22, 9]. The main difficulty in this approach to constructing restart
polynomials is estimating the location of the unwanted eigenvalues. The goal of the
Arnoldi method is to compute solely the wanted eigenvalues, but in following the
recipe above one has to determine estimates of the unwanted eigenvalues as well.
This problem remains relevant in analysis and application of the Arnoldi method.
My work is partly focused on clarifying how reliably Ritz values can be used to ap-

proximate the unwanted portion of the spectrum.

1.6 Implicitly Restarted Arnoldi with Exact Shifts

Nearly a decade after Saad introduced the Arnoldi method, Sorensen [21] formulated
the implicitly restarted Arnoldi method. Explicit restarting of the method involveé
directly applying the restart polynomial to the starting vector to generate the starting
vector for the next iteration. The new starting vector is then used to generate a
bésié for the new Krylov subspace, as well as the projection of the matrix dnto that
subspace. In ﬂoating point arithmetic, ‘explicit restarting ié numerically unstable. The
~ direct application of the ’matrix polynémial to a vector can lead to rounding errors.
By interpreting the Arnoldi method as a truncated version of the QR eigenvalue

iteration, Sorensen developed a numerically stable method of implicitly applying the
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restart polynomial using the tools and concepts from the QR eigenvalue iteration,
including implicit shifting and deflation. In addition to putting the restarted Arnoldi
method into a reliable numerical form, Sorensen proposed a method for picking the
roots of the restart polynomial and showed that this approach under mild assumptions
gives a convergent algorithm for symmetric matrices.

To determine a restart polynomial, one must have some knowledge of the location
of wanted and unwanted eigenvalues. Unless one has some prior knowledge of the
system, this information has to be determined adaptively as the algorithm proceeds.
With prior knowledge one can construct a fixed restart polynomial. In this case the
Arnoldi method is similar to applying the power method With the fixed polynomial.
Not surprisingly, Sorensen showed that the convergence criteria for Arnoldi with a
fixed restart pOlynomial is similar to the convergence criteria for the power method.
Fixed restart polynomials are rarely used in practice, but they are useful in theory
for establishing convergence bounds. For a more potent practical algorithm, Sorensen
| proposed using some of the Ritz values as the roots of the restart polynomial. De-
pending upon the type of eigenvalue desired (largest/smallest magnitude, real part or
imaginary part), the Ritz values are sorted and a fixed number of the least desirable
Ritz values at each iteration are used as roots for the restart polynomial. These Ritz
values are referred to as ezact shifts. Using properties of symmetric matrices that lo-
calize Ritz values, Sorensen showed that the implicitly restarted Arnoldi method with
exact shifts would converge. As symmetric matrices are encountered in numerous ap-
plications, Sorensen’s proof validated the utility of the implicitly restarted Arnoldi

method for determining eigenvalues of symmetric matrices.
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1.7 Convergence of Restarted Arnoldi for Nonsymmetric Ma-
trices

Nonsymmetric eigenvalue problems arise frequently, and the use of the implicitly
restarted Arnoldi method with exact shifts to solve them is common practice. Though
the behavior of Ritz values for nonsymmetric problems is poorly understood, exact
shifts perform well in practice. This thesis will identify and characterize the Ritz
values of particular nonsymmetric matrices for which the Arnoldi method will con-
verge. This is a difficult problem because, for one, there are matrices and starting
vectors for which the method will fail to converge in exact arithmetic; the restart
polynomial annihilates the components of the starting vector in the direction of de-
sired eigenspaces [6]. Matrices that allow for this type of failure are characterized by
having wanted eigenvalues that lie in the numerical range of the portion of the matrix
associated with the unwanted eigenvalues. Understanding Ritz value behavior alone
is not sufficient to establish convergence, as the starting vector must be properly ori-
ented to guarantee convergence. Even for the cése of normal nonsymmetric matrices
with perfectly conditioned eigenvalues, little is known about what is necessary for
convergence.

Various lines of research have developed for understanding convergence of the
restarted Arnoldi method. The most direct attacks on the problem focus on bound-
ing convergence of the method using optimal shifts [2, 3]. The convergence of the
restarted Arnoldi method is best measured by calculating the containment gap, which
is associated with the sine of the largest canonical angle between the current subspace

and the desired subspace,

- d(W,V) = maxmin v = w]

oS Tl
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where typically W will be an invariant subspace and V some approximating subspace
(possibly of unequal dimensions). These approaches involve seeking polynomials that
are small not only on the spectrum but also on larger sets that contain the spectrum,
such as the pseudospectrum. The main result [3] of the convergence analysis for
restarted Arnoldi gives the following bound for the containment gap between a desired

invariant subspace U, and the restarted Krylov subspace as
0(U,, Ki(A, ¥ (A)v)) < C1(A,v)Ca(A, ) meax [1—W(2)a,(2)|.

The first term accounts for the starting vector v. The second term accounts for the
nohnormality of A associated with the unwanted eigenvalues contained in the complex
set . The last term, where VU is product of all the restart polynomials and oy is a
polynomial with roots at the wanted eigenvalues, captures the convergence behavior
associated with constructing restart polynomials that are small on a set containing
the unwanted portion of the spectrum and yet large on the wanted portion of the
spectrum. The disadvantage of this approach is that, though it does bound the rate
of convergence and essentially identifies what would be ideal behavior for exact shifts,
it does not provide insight into what is necessary for such ideal behavior to occur.
By localizing Ritz values, this thesis will provide insights into why exact shifts should

exhibit ideal behavior.

1.8 Ritz Values and Restarted Arnoldi Convergence

This thesis will identify criteria that give rise to localization of Ritz values, partic-
ularly Arnoldi Ritz Values, for nonsymmetric ma’.cll"ices, In the symmetric case, the
classical interlacing result of Cauchy [16, §10.1] restricts the location of Ritz values

with respect to the spectrum. The optimality of Arnoldi Ritz values gives rise to the
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separation of Ritz values by eigenvalues. These properties restrict the set of possible
Arnoldi factorizations. To‘ recover similar properties in the nonsymmetric case, this
thesis will characterize the set of possible Arnoldi factorizations for particular non-
symmetric matrices. I will show both numerically and analytically that even for the
most nonnormal matrix, a Jordan block, the Ritz values can be Iocalized in the sense
that repeated Ritz values cannot occur throughout the entire numerical range.

The results of this thesis will allow for further analysis of methods that rely upon
Ritz values for eigenvalue approximation. A better understanding of the behavior of
Ritz values for nonsymmetric matrices can potentially aid in the analysis of deflated
and augmented Krylov techniques, such as Morgan’s GMRES-DR algorithm [5, 15].
These methods use information about eigenspaces derived from Ritz pairs to impro{/e
the rate of convergence. In the standard restarted GMRES algorithm, at each restart
information associated with certain eigenvalues (such as those closest to the origin)
must be rediscovered before the algorithm can continue to make progress [20]. By
supplementing the method with Ritz value information from previous steps, the time
spent rediscovering the troublesome eigenvalues can be minimized. The question is,
How well can one expect the Ritz values to localize these eigenvalues?

This thesis will also establish criteria that are sufficient for convergence of the
restarted Arnoldi method for cerfain scenarios in which the wanted eigehvalues are
not in the numerical range of the portion of the matrix associated with the unwanted
eigenvalues. For this class of matrices, the type of failufe demonstrated by Embree
cannot occur [6]. Without loss of generality, the possible Ritz values will be char-
acterized using the Schur decomposition, an invaluable tool in understanding many
different eigenvalue problems. In 2001 Stéwart generalized the notion of an Arnoldi

decomposition, introducing what he called Krylov decompositions [24]. With this
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genera’ulizatlion and the Schur decomposition, he int‘roduced a Krylov—Schur algorithm
for determining eigenvalues. The algorithm is equivalent to the Arnoldi method but
the resulting factorization is upper triangular rather than upper Hessenberg and al-
lows for a simpler application of the exact-shift restart polynomial. This thesis will
characterize Ritz value behavior partly by'determining the possible Krylov—Schur
factorizations. - |

To the set of possible Krylov—Schur factorizations for a particular matrix there
corresponds the set of equivalent matrices that can generate the same factorizations.
This thesis will use equivalent matrices, matrices that can generate the same Arnoldi
factoriiation, for characterizing Ritz values and Arnoldi conVergenCe of block diagonal
‘matrices with shifted skew-symmetric blocks. This result can possibly provide insight
into how to show convérgence of the restarted Arnoldi method for sectorial matrices,

matrices whose eigenvalues or numerical range lie in a cone in the complex plane.
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Chapter 2
Ritz Value Localization for Jordan Blocks

The interlacing theorem ensures that Ritz values of a Hermitian matrix cannot cluster
trices is a significant obstacle preventing the development of a convergence theory for
the restarted Arnoldi algorithm. Indeed, the presence of multiple Ritz values beyond -
the rightmost eigenvalue is essential to examples of extreme eigenvalue failure [6]. In
this chapter, I evaluate the potential for clustered Ritz values by analyzing a Jordan
block, the most extreme deviation from a Hermitian matrix. Even for this highly
- nonnormal matrix, a defective matrix having only one eigenvector, the Ritz values
can be localized, i.e., the Ritz values cannot cluster throughout the entire numerical
range.

I will determine regions in the complex plane in which partiéular Ritz values may
-occur. The following questions will be addressed: when determining n — 1 Ritz values
of a n x n Jordan block, where in the complex plane can the second rightmost Ritz
value occur, and where in the complex plane can Ritz values with multiplicity n — 1
occur? To help answer these questions I study numerical ranges. As the Ritz values
of a matrix are the eigenvalues of a smaller matrix determined via projection, I will
need to know how the numerical range of the full matrix relates to the numerical
- range of the projected ‘rmatrix. Real projections Wibll‘provivd:e a surpri'si‘ng amount of
insight into- how the Ritz values may be distributed. For the smallest interesﬁing case,

which involves determining two Ritz values of a 3 x 3 Jordan block, I determine the
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region in which the leftmost Ritz value must lie and the region in which repeated Ritz
values may occur. Results for the n = 3 case will provide weak bounds for similar
regions for localizing n — 1 Ritz values of a n X n Jordan block. To derive sharper

bounds, the numerical range of the adjugate of A\I — J, will be used [11, 13].

2.1 Numerical Range of a Jordan Block

A Jordan block, J,, is a square matrix with ones along the first superdiagonal and

zeros elsewhere. For insight into the numerical range of J,, consider matrices of the

(0 1 )

form

1 0 1

\ 10/

Note that this is simply a translation of the matrix used to form finite difference

approximations of the second derivative. The largest eigenvalue of such a matrix is
p(B,) = 2cos(n/(n + 1)). How do matrices of this form relate to matrix A? The
Hermitian part of J, is given by

H(J,) =22t

1
=B,.
2 2

A technique used for determining the boundary of the numerical range of a matrix
requires determining the extreme eigenvalues of H(Ae®) for values of § ranging from

0 to 7 [10]. The extreme eigenvalues of H(Ae®) determine the interval
{Re(ze?: ze W(A)} C R

and thus bounds the numerical range of A.
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For J,, W(H(J.e")) = W(D~'H(J,)D) = §W(B,), where D is a diagonal matrix
with diagonal entries [D];; = e%. The first equality follows because the numerical
range is invaﬁant under unitary similarity transformations. The second equality
shows that the extreme eigenvalues of H(e*J,) do not vary with 6 and are equal to
the extreme eigénvalues of B,,. Hence the numerical range of J, is the disk centered

about the origin of radius cos(x/(n + 1)) [8, §1.3].

2.2 The Casé n =73

In this case I wish to characterize the Ritz values of J3 generated from orthogonal
projections of J3 onto a fwo dimensionél subspace. This is equivaleht to analyzing
the eigenvalues of H = P*J5P for all P € C**? such that P*P = I,. Since H is a
2 X 2 matrix, it will have two eigenvalﬁes, A1 and A, which I will refer to as left and
right eigenvalues, in the sense that Re();) < Re(Az). The main concerns are, Where
in C may A; lie? and, Where in C may \; = Ao?

To build some intuition, one can generate matrices P using random complex
vectors. After sampling thousands of such randomly generated matrices, one finds

that the region in which A, may lie, {2, has a kidney bean shape, as seen in Figure 2.1.

Using a trace argument one can determine a bound for €,

Lemma 2.1 The region ) in the numerical range of J3 must be bounded by
{z € C: 2] £ V2/2,Re(2) < V2/4}.

Proof.
Consider any unitary matrix 2 € C**3. Then H = [P*J;P]; where []; denotes
the principé,l submatrix formed from removing column 3 and row 3. As all Ritz values

are in the numerical range, the left boundary of €2 should coincide with a semicircle of
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Figure 2.1 : Points in €2, the region where left Ritz values of J; may lie. The blue
line indicates the bound based on the trace argument.

radius v/2/2, which is the left boundary of W (J3). The extent of the right boundary
is constrained by the trace of H. As the trace of a matrix is invariant under similarity
transformations,

Since the trace of a matrix is equal to the sum of the diagonal entries, and the diagonal

entries of Js are all zero,

tr(P*J3P) = 0.
From the properties of the trace,

~

where [P*J;gp]gg denotes entry (3, 3) of the matrix P*J,P. Taking the absolute value

and noting that [P*Jgp]gg is simply a point in the numerical range and thus must



20

have a magnitude no greater than v/2/2, so

ltr(H)| = |[P*J3P]ss| <

[

Hence the magnitude of the trace of H can be no greater than /2/2.

As Q consists of the points where left Ritz values may occur, if the left Ritz value
has a real part of v/2/4, then the real part of the right Ritz value must be greater
than or equal to v/2/4 by definition, and less than or equal to v/2/4 to satisfy the
constréint oh the tréce of H. = -

This result is sufficient to rigorously illustrate that the leftmost Ritz value cannot
fall just anywhere in the numerical range: see Figure 2.1. I will now use a combination
of numerics and analysis to estimate the finer structure of 2. The result agrees with
what is observed using random complex orthogonal projections. Indeed, there is more
structure to the:right half of  than can be gleaned solely from invariance of the trace
of Js. |

A better understanding of the boundary‘of Q) requires a parametrized, rather than
random, means of selecting the matrices P with orthonormal columns. Selecting a
matrix P € C3*2 corresponds to selecting a vector p € C? to which the columns of
P are orthogonal. With p chosen and the fact that éigenvalues are invariant under
unitary similarity transformations, I can then choose the columns of P to have a
structure that will facilitate analysis. The natural parametrization involves a complex
variant of spherical coordinates. The additional structure imposed upon P by unitary

sifnilafity is that its second column has a zero in its first entry. The reaso‘n_ir'lg above
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yields

[ cos(61) 0 | sin(6,)
P = | —sin(6;) cos(62)e®  sin(By)e®® |, P = [cos(6;)cos(By)e?® |,  (2.1)
—sin(f),) sin(6y)e®  — cos(6)e™ cos(6;) sin(fy)e

where I have also required that the first entry of each column be real. Based on this
parametrization of P, expressions for the trace of H and the determinant of H in

terms of 6y, 05,05 and 6, are as follows:

tr(H) = —sin(6;)cos(6;) cos(8z)e™® — cos?(8;) cos(f,) sin(fy)ei® %) (2.2)

det(H) =  cos(8;)sin(8;)sin(f;)e". | (2.3)

Expressing the eigenvalues of H as Ai = r1e*! and A\ = r9e’®?, I determine expres-
sions that can be used to determine the righf, portion of the boundai'y of €. Results
from the random projections indicate that along the right pdrtion of the boundary of
Q2 the eigenvalues have equal real components, 7, cos ¢; = r9cos¢y. As I will show,
this assumption leads to convincing numerical results. With this assumption and the
fact that the above equations may be complex valued and thus make up altogether

four equations, one can derive an expression relating 1, ¢1, ¢2 and 6;:
12k — r8(k§ cos® 0, sin® 6, + 2k§ sin*0;) + r8k2k? sin* 6,
+ r#(2k2 ks sin® 8, + k2 sin® 6; + 2kZ cos® 6, sin® 4,)

+ r2k2sin® ) — cos® B, sin'®; =0, (2.4)
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with

k% = (1 - k5)2 k‘% =(1+ k5)2
k2 = k2 sin® (d)l ; ¢2) + k2 cos® (¢1 + ¢2)

2
k2 = k? sin? (¢1 — ¢2> — k3 cos® (d)l T ¢2>
2 2
__cos¢y
ks = COS ¢y

Using the relationship (2.4), I numerically estimate the maximum r; for each ¢,
which determines the right boundary of {2: see Figure 2.2. |

As expressions often simplify when dealing with only- real arithmetic, I considered
the boundary for solely real projections (63 = 64 = 0), as it would include all Ritz
values produced by the Arnoldi method applied to J; with a real starting vector. I
found the right} portion of the boundary for real projections almost coincides with the

right portion of the boundary of 2. In this case the above equation reduces to
8+ r$sin? §; + ri(sin® §; — sin® 4, cos? 6;)
4+ r2sint6; (4 cos? ¢ — 2cos® ;) —sin®f; cos? 6, = 0. (2.5)

Using numerical methods to determine the largest r; for a given ¢, in the real case
I determined that all the complex conjugate eigenvalues fall in a region bounded by

circles {z + iy} in the complex plane represented by the equations,

: 2
o)

T + (y+£> =

CO| k=

1

4 8

: 1
—1)? 2 -
(z-1)°+y 5
1

($+1)2+y2 = 5,
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as illustrated in Figure 2.2.

The difference between the boundary for the complex case and the real case can be
seen in Figure 2.3. The deviation occurs iﬁ the region where the third equation above
holds for the real case. In spite of being able to determine smooth approximations to
the boundary, I have not yet found an equation that can describe the middle portion

of the right bounda,ry of Q.

0.6f

0.4

0.2¢1

t
<@
[\

-0.8 -06 -04 -0.2

Figure 2.2 : Boundary for 2. Boundary for real projections in blue, complex in
red. Dashed blue lines indicate arcs of the circles that make up the boundary of real
projections.

For the question of equal Ritz values, in rotating €2 about the origin in the complex
plane, the region where equal Ritz values can occur must be the interior of the circle

of radius 1 — v/2/2. The expressions above for the determinant and the trace of H
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Figure 2.3 : Close up of Figure 2.2.

do indeed allow us to rotate 2. By inspection, one can see that for a given pair of
Ritz values corresponding to some H, one can rotate the Ritz values by ¢ simply by
increasing 65 and 8, by ¢ and 2¢, respectively. In other words, a rotation by ¢ requires
the angle of the trace of H to increase by ¢ while the angle of the determinant must
increase by 2¢. Since the point 1 — /2/2 on the boundary of  can be attributed to
real projections, all that remains is to eliminate the possibility of a complex projection
giving equal Ritz values of larger magnitude.

Since the Ritz values can always be rotated such that the determinant is real, for
determining properties of the Ritz Values of J; only the case where 8, = 0 need be
considered. If H has equal eigenvalues and a determinant that is real, then the trace
must be either purely real or purely imaginary. If the Ritz values lie on anything
othér thah the pdsitive half of the real axis, tlien a rotation can make them real and

positive. This leads to the question, For 84 = 0, is there any 63 # 0 such that tr(H)
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is real and positive? Based on (2.2) the following must hold in order for the trace of

H to be real:

Im(sin(0;) cos(6;) cos(fa)e'® + cos?(6;) cos(fy) sin(fz)e %) = 0
sin(6;) = cos(#;) sin(6>)

tan(6;) = sin(6s).
If this holds, then the implications for the trace and determinant are

tr(H) = cos(f3) cos(6;)4/1 — tan?(6;) ( — sin(6;) — cos(6;) tan(6;)),

= —2sin(0;) cos(8s)/ cos?(6y) — sin*(6:);
det(H) = cos(6,) sin(f;) tan(6,)

= sin?(6,).

Since I am concerned with equal eigenvalues, then tr(H) = 24/det(H). Using the -

expressions above leads to:

2sin(f;) = —2sin(6;) cos(93)\/cos2(01) — sin?(6,)

1=- cos(03)\/cos2(01) — sin%(6,)

-1
M = cos(63).
The above equation only holds where 6, and 65 involve integer multiples of 7, in which
case the determinant must be zero. Thus complex projections do not allow for equal
Ritz values of magnitude greater than 1 — v/2/2. ‘

If I can indeed generate some H that has equal eigenvalues, what can be said of
the normality of such matrices? Further analysis shows that if A is normal then H

has Ritz values such that A1 = —AX9. This result shows that the set known as the

k = 2 numerical range of J, is empty [13].
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2.3 Observations for n > 3

For n > 3, deriving equations that characterize the regions I wish to bound becomes
difficult. However, I can determine bounds for these regions.

To identify where in the numerical range one can have Ritz values of multiplicity
n — 1, one may again use a trace argument. Since all the Ritz values are equal, the
radius of the desired region is bounded by the radius of the numerical range of J,

divided by n — 1.

] cos(;15)
- n-1

Thus as n becomes large, the region within the numerical range of J, corresponding
to equal ritz values shrinks to zero. Based on the results for n = 3, this may be a

weak bound.

2.3.1 Interlacing Polynomials

To determine the region where the left Ritz values, 0y, ...,0,_o, must’ lie, I cannot use
a trace argument to develop a useful bound. A trace approach would discard informa-
tion regarding how the Ritz values must distribute themselves about the numerical
range. With the tools utilized thus far, the possibility of developing any sort of bound
is rather bleak. Thus some new tools must be found. A glimmer of hope was found
in applying results of Johnson on interlacing polynomials of Hermitian matrices [11].

Johnson made the observation that for a Hermitian matrix A the set of polyno-
mials in A whose roots interlace the eigenvalues of A is equal to the numerical range
of the adjugate of AI — A. Recall that the adjugate of a matrix is equal to its inverse
multiplied by its determinant, adj(4) = det(A)A~!. Also, each (i,j) entry in the
adjugate of a matrix is proportional to the determinant of the matrix with rows j

and column ¢ deleted. The interlacing polynomials for a Hermitian matrix form a
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convex set. For a general matrix, the interlacing property is lost, and the meaning of
the polynomials derived from the numerical range of adj(A — A) is not clear, nor is
this set of polynomials convex for general matrices [13]. However, for a Jordan block
adj(Al — A) can be easily computed.

For n = 3 the followingv holds,

XA
adj(Al —Js)=| 0 A2
0 0 A

From this matrix and the properties of powers of Js, one can form the equivalent
expression

adj(A\] — J5) = A2 + \Js + Js2.
Glancing back at equations (2.3) and (2.2) for the determinant and the trace, one can

see that the characteristic polynomial of a projection of J3 can be determined by the

vector p in (2.1) that is in the null space of the projection:
pu(A) = p*adj(Al — Js)p.

Thus for n = 3, this formula determines all possible characteristic polynomials of our
projected matrices. This same technique can be used for n > 3. For any given n —1
dimensional projection, I can construct a unitary matrix U such that the (n,n) entry
of the adjugate of U*(AI — A)U is the characteristic ‘polynomial of the corresponding
H, and the appropriate p would be the unit vector spanning the null space of the
projection. With this new perspective I can construct a bound for how far to the right
the second rightmost Ritz value can be. For the n = 3 case, the boundary includes -
a point on the positive real axis where the rightmost real Ritz value of multiplicity

two occurs, 1 — v/2 /2. For this point there is a corresponding p° that determines the
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projection and characteristic polynomial. In the general case the coefficients of the

characteristic polynomial will have the form

k1
Ck = zpipi+n—l—k = p*Jy 1 7*p, for k=0,...,n—1,

i=1
where c; is the coefficient of the XE term. From the n = 3 case, | have a p° that
determines a polynomial with a real repeated root. I can use the entries in this p°
to construct vectors for n > 3 that also have real repeated roots. The entries will rbe
as follows: 1 '= 1‘1(1’,7 Prnj2) = P5 and Ppimod(nt1,2) = PJ with the rest of the entries in
p equal to zero. This particular p will give a double root of (1 —/2/2)%®1 for n
even and at (1 — v/2/2)%/™ for n odd. Thus I have a lower bound for how far to the
right the second rightmost Ritz value can occur. |

With some effort, the above bound can be checked numerically. Table 2.3.1 and
Figure 2.4 show the results for n < 20. As n becomes large the bound is not sharp:
some second rightmost Ritz values fall to the right of the lower bound. This is shown
in Figure 2.4 by the blue dots, which represent the numerical results, being above the

green crosses, the bound.

2.4 Discussion

My goal ir} this chapter was to show that the Ritz values of a Jordé,n block ‘could
be localized. I determined regions in the numerical range of a Jordan block where
Ritz values of high multiplicity can occur. I also determined how far to the right the
second rightmost Ritz value of a n — 1 restriction of a,.‘nth order Jordan block can be.
For the n =‘3 case I det‘ermvingd these regions pfecisely. For n > ,3,vI provided bounds
for thése regidns, which are not necessarily sharp. Nonetheless I.have shown that the

Ritz values of a Jordah block can be localized. A Jordan block is a highly specialized,
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Table 2.1 : Numerical estimates and bounds for how far to the right the second

rightmost Ritz value from an n — 1 dimensional subspace can be for n = 3,...,20

n

numerical

bound

11
12
13
14
15
116
17
18
19
20

© 00 N O C s W

10

0.29289322

0.46821319

0.58278965
0.66214216
0.71960811

0.76268337

0.79591334
0.82214652
0.84328207
0.86057854
0.87495276
0.88702230
0.89638493
0.90568113
0.91350451
0.92020649
0.92606332
0.93575519

0.29289322 |
0.44103482

0.54119610
0.61190461
0.66410452
0.70409496

0.73566032

0.76118629
0.78224332
0.79990435
0.81492609
0.82785691
0.83910366
0.84897436
0.85770643
0.86548575
0.87245991

0.87874757
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Figure 2.4 : Plot of numerical estimate and bound on how far to the right the second
rightmost Ritz value from n — 1 dimensional subspace can be for n = 3,...,20.

particularly nasty, nonnormal matrix having just one eigenvalue and one eigenvector.
Jordan blocks are defective matrices that are difficult for many numerical methods to
handle in practice. If Ritz values for such a nasty matrix can be localized, then there
is good hope that Ritz values may also be localized for more general nonsymmetric

matrices. I address this issue in the next chapter.
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Chapter 3
Block Diagonal with a Normal Eigenvalue

Having observed in the last chapter that Ritz values can obey some localization
behavior even for nonsymmetric matrices, I exploit this general idea to develop some
sufficient conditions for the convergence of the restarted Arnoldi method with exact
shifts. In this chapter I consider a class of block diagonal matrices that address some
of the issues that arise in the convergence of restarted Arnoldi iterations.

The problem of determining a few eigenvalues of a matrix using an iterative
method such as restarted Arnoldi is complicated by the nonnormality of the eigen-
values both desired, which restarted Arnoldi seeks to compute, and undesired, which
restarted Arnoldi suppresses via the restart polynomial, and also by the possibility
of failure or stagnation. The nonnormality of eigenvalues reflects how sensitive the
eigenvalues are to perturbations in the matrix. The possibility of failure is dependent
upon whether there are starting vectors that could lead to either a “lucky break-
down,” in which case an eigenspace has been found, or misconvergence to undesired
eigenvalues. In applications, additional issues arise due to the finite precision of float-
ing point arithmetic and the cost of performing real versus complex arithmetic. Such
concerns necessitate modifications to the algorithm, such as reorthogonalization to
counteract the loss of orthogonality due to ﬁniter precision and double shifts to avoid
complex arithmetic.

Addressing all the factors above would be a rather daunting task; in this chapter

I address some of these issues. First I present examples demonstrating two different
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types of failure. The first example demonstrates the possibility of stagnation: the
Ritz values converge but not to eigenvalues. This type of failure is dependent on the
starting vector. The second example comes from Embree [6] and involves extreme
breakdowﬁ: the restart polynomial annihilates the desired eigenvector from the start-
ing vector, thereby precluding the possibility of convergence to the desired eigenvalue.
This type of failure is due to the wanted eigenvalue being in the numerical range as-
sociated with the unwanted eigenvalues. Towards avoiding extreme breakdown, I
makerrestrictions on the numerical range associated with the unwanted eigenvalues.
To address the possibility of stagnation, I establish criteria for the starting vector.
Throughout I assume exact arithmetic, in which case the implicitly restarted Arnoldi,
restarted Arnoldi and restarted Krylov—Schur methods are all mathematically equiv-
alent.

Since in practical applications the desired eigenvalues tend to be relatively normal,
I consider matrices that have a simple normal eigenValue, an- eigenvalue with an
algebraic multiplicity of one whose eigenvector is orthogonal to the complement of its
invariant sﬁbspace. Hence, fhe class of matrices I consider are all unitarily similar to

a block diagonal matrix with diagonal entries A and D,

A0
A= : (3.1)

0 D

where A is real and nonnegative and D contains all the unwanted eigenvalues. Future
work would alloW forvmore wanted eigenvalues and also for nonnormal coupling ‘be-
tween the wanted eigenf}alue and the block associated with the unwanted eigenvalues.

The development of a convergence theory for the matrices I consider will proceed
in the following manner. I will establish that there is a Ritz value near the wanted

eigenvalue. Then I will show that the other Ritz values cannot be arbitrarily close
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to the wanted eigenvalue. Using these results I will determine conditions on the
spectrum and the starting vector that will together ensure convergence. To test my

results I will consider the case where D is skew symmetric, D* = —D.

3.1 Examples

In this section, two examples will be considered. One demonstrates extreme break-
down and the other demonstrates stagnation. All these involve computing the eigen-
value with largest real part. In each example the wanted eigenvalue is simple and
normal and thus the matrices in question could each be presented in the block diag-

onal form (3.1).

3.1.1 ‘Stagnation

In this section I will present a matrix and starting vector for which the restarted
Arnoldi method stagnates.

Consider the matrix
010

A=10 0 1,
100
a circulant matrix whose largest real eigenvalue A = 1 has an eigenvectoi‘ with equal
components in each entry. Using the restarted Arnoldi method with one exact shift

to compute the largest eigenvalue with the starting vector

-

v =

o O
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gives Ko(A,v;) = span{v,, Av, } = span{v;, vy}, where

0
Up= 10

1

Forming the the upper Hessenberg matrix Hs, the restriction of A onto K»(A,v1)

using Vo = [v; v}, gives
Hy =V, AV, =
10
Clearly Hs has but one eigenvalue, thus §; = 6, = 0. Using an exact shift of zero to

generate the new starting vector,

0
v =vt=Av = 0],

1

where the superscript denotes that v,(f) is the starting vector for the second iteration
of the restarted Arnoldi method.

For the second iteration, the. Arnoldi basis vectors are
0 0\
2
W=lol, =1
1 0

As in the previous iteration, the restriction of A to the current Krylov subspace is

| 0 0
H2(2) — (V2(2))*AV2(2) -
10
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As before, both Ritz values are zero. Proceeding with further restarted Arnoldi cycles

produces the successive starting vectors

0 1

=[] o= o

0 0

Thus at the fourth cycle of restarted Arnoldi, the starting vector v§4) = vgl) , the
new starting vector is equal to the first starting vector. Hence, for this example
the restarted Arnoldi method stagnates, and the Ritz value never converges to an
eigenvalue, wanted or unwanted.

This example is particularly striking because A is a normal matrix with a unique
rightmost eigenvalue A = 1. If put into the form (3.1), then A ¢ W (D). The starting
vector vy has a significant component in the desired eigenvector direction; in fact, the
problem arises because v is equally weighted in edch of the eigenvectors. Moreovér,
this example readily generalizes to n-dimensional circulant shift matrices with Krylov
subspaces of dimension & for 2 < k < n. This matrix is also a well known example of
stagnation for GMRES; see [4].

If one were to alter the starting vector slightly, making it closer to the desired
eigenvectdr, then restarted Arnoldi would converge. This example suggests that for
some matrices there exist criteria for local convergence. In other words, if the starting
vector is sufficiently rich, as in the desired eigenvector, then the restarted Arnoldi
method will converge. Later in this chapter, I will consider a class of matrices for

which local convergence as well as stagnation can occur.

3.1.2 Extreme Breakdown

This example is taken from Embree [6] and demonstrates extreme breakdown.



Consider the matrix

0 06
0 0O

\0 0 0

(100 0"‘\

-2
2

0)
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of the form (3.1) with largest eigenvalue A = 1 and corresponding eigenvector e;.

Using the restarted Arnoldi algorithm with one exact shift to compute the largest

eigenvalue with a starting vector that has equal components in each entry leads to

the following Arnoldi basis for Ks(A, v1):

(1)

1

DN —

U = oy V2 FE =

1
\1)
Restricting the matrix A to K3(A,v;) gives

7/4
V35/

Hy =VyAV, =

The characteristic polynomial of Hj is

pu(A) = det(A] - 'H;) =X -3x+2=() —}1)()\ —2).

=
9

\ -7

3/(4V/35)

4

5/4

Thus the eigenvalues of Hy are 6, = 1, @2 = 2. The strategy for computing the

rightmost eigenvalue would use §; as the exact shift. Since #; = A, this particular
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shift results in the new starting vector

(0

3
’U+ = (A - 91[)’01 = y
1

\ -1

which does not have a component in e;, the eigenvector associated with the rightmost

eigenvalue. Due to the structure of A, all further starting vectors of the restarted
Arnoldi method will be orthogonal to e;. Hence convergence to e; for this particular
starting vector, v, is impossible. This failure is not unique to just this particular

starting vector. Failure can also occur for any vector of the form

(o)

1 1
V= —F=—= ;
at+3 1

A1)

where « is any scalar. This form shows that the starting vector can be arbitrarily

rich in the desired eigenvector and yet restarted Arnoldi can still fail‘ to converge
to the desired eigenvdlue. Such ekamples are tfoubling for convérgence theory of
the restartéd iArnoldi for general matrices. Unlike the previous example in\folving
stagnation, local convergence is not possible for this matrix.

Embree went on to generalize this example allowing for more desired eigenvalues
and more shifts. In all his examples, this type of failure occurs where the wanted
eigenvalues are in the numerical range of the portion of the matrix associated with
the unwanted eigenvalues. Note that in the notation of (3.1), A € W(D). It is not
known if A ¢ W(D) is sufficient to prevent extreme Arnoldi failure (i.e. where v; is

arbitrary close to e1).
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3.2 The General Case

Having shown two types of failure for the restarted Arnoldi method, in this section I
develop a convergence theory for a class of matrices that addresses the more serious
type of failure. Throughout this section assume that ) is not in the numerical range
of D, and that ||D| < A. For simplicity, I always assume we are computing a single
rightmost eigenvalue and hence will use all but one Ritz value as exact shifts.

The development of the convergence theory rests upon the localization of the Ritz
values. I show there must be a Ritz value within a certain distance of the wanted
eigenvalue, and that the rest of the Ritz values are bounded away from the desired
Ritz value. Sufficient criteria for convergence are then based upon these localization
results. Throughout this section I assume A has the form (3.1) and the starting vector

v is represented as

where ¢ € C is a nonzero scalar and represents the component of the starting vector
in the direction of desired eigenvector, e;, and 7 € C*! is the rest of the starting

vector.

3.2.1 Ritz Value Localization

In this subsection I prove three lemmas that localize the Ritz values. The first lemma
shows that not all the Ritz values can be arbitrarily far away from the desired eigen-

value.

Lemma 3.1 For a Krylov .s"ubs;bace'K;c (A,v), there must exist at least one Ritz value,
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61, that is within  of the desired eigenvalue, |6; — \| < n, where
1
el Y
n= (DIl + {7 ] -
lc]
Proof. Ritz values from a Krylov subspace are optimal in the sense that they are

the roots of the monic polynomial that minimizes

k

[[A=-6:.0w

i=]1

= min [p(4)],

-where Py is the set of all monic polynomials of degree k; [18]. Suppose that all the

Ritz values, 6;, are such that |\ — 6;| > €. Due to the block diagonal structure of A4,

k k
H(/\ —8)e H(/\ —8)c

= min|p(A)v]|>
;gg;llp( |

2 2

+

‘ 2
<

k
[[(D-6:0)r

Then due to the nature of e,
k .
< Al
€lel < min ||p(A)v]]

Since the Ritz values are optimal, no other polynomial 5(z) with different roots can

produce a smaller norm, so taking $(z) = (2 — A)¥, one obtains
min [|p(A)v]l < (D - 3)*r]);
peF;

this comes from the fact that this particular $(2) annihilates the first component of
the starting vector. Applying the definition of the operator norm and the triangle

inequality, the term on the right gives
min |[p(A)v]| < (IDI + X)*|lrl-
PEP;
Combining the bounds from above and below for minyep, ||p(A)v| yields

é’lel < (1PNl + NIl
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bl

This implies that € < (|| D|| + ) ( %l) . indicating that not all of the Ritz values can

be greater than n = (||D|| + A) ( 'r”) from A. Denoting the closest Ritz value to A

x|

fel

as O, wesee |A—0;|<7n. =
The next two lemmas localize the exact shifts, i.e., the Ritz values 8;, j = 2,..., k.
The first utilizes a trace argument, whereas the second makes use of a Schur decom-

position.
~ Lemma 3.2 If ReW(D) C [—q, 8], then for each 6;, j =2,...,k,
Red; < f(a,n) :==n+ Re(tr(D)) + (n — 2)a.

Furthermore

16, < p:= /Fla,n)? + p(D), (3:2)

where p(D) := maX,ew(p) |2| is the numerical radius of D.

Proof. From the matrix of k& Arnoldi basis vectors Vj, form a unitary matrix such
that V = [Vi Vi € C™m, where the range of V- spans the space orthogonal to
the range of V4. Then V*AV is a matrix that is similar to A and has for its kth
priricipal submatrix Hy. Use 6; fori =k +1,. .,n to denote the Ritz values of the
(n — k) x (n — k) submatrix of H, = (V;1)*AV;L. Since the trace of a matrix is

invariant under similarity transformation,
A+tr(D) = tr(Hk) + tr(H)

= 29+29

i=k+1

Rearranging to form an equation for 6; for j = 2,...,n and‘regrouping the terms in

- the summation,

(A —6,) + tr(D) — Ze =0;,

=2
1#1
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Taking the real part of this equation and then using the bound for the first quantity
from Lemma 3.1,

Ref; = Re(X—0;)+ Re(tr(D)) — i Re¥;

i=2

i
< 75+ Re(tr(D)) + (n — 2)a,
where I have used Re6; € ReW(D) C [-a,[]. =
The following lemma gives a bound for how close the shifts, 8; for 7 = 2,...,k,

can be to the desired eigenvalue A. The proof uses a Schur decomposition of H.

Lemma 3.3 The Ritz values 0; for j =2,...,k, all satisfy

A D
Re0j S ———*'_—gu

Proof. Recall that Ritz values are simply the eigerivalues of Hy = V7 AV, where
the columns of V;, € C***, the Arnoldi basis vectors for the kth Krylov subspace, are
orthonormal.

The Schur decomposition implies there exists a unitary U € C*** such that
U'VFAVU =U"H U =T,

where T € Ck"k ié an upper triangular matrix and the diagonal entries of T are
the Ritz values. As U is unitary, Z = V;U € C"** has orthonormal columns. The
columns of U are Schur vectors for Hy and denote the jth column of Z by 2;, which
I call a Krylov-Schur vector. The matrix T is not unique; the Ritz values can appear

in any order along the diagonal of 7. Assume they are ordered such that -

diag(T) = (61, 62,05, .. .,0k),

where diag(T") denotes the diagonal entries of T [24].
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Expressing the Krylov—Schur vectors as

Zj = y
Tj
where 2; € C, r; € C*}, then each Ritz value satisfies
0; =2jAz; = |%PA+7}Dr;.
This expression yields a bound for the magnitude of each Ritz value,
Ref; < A|%[* + u(D)|Ir;])*.
Since the columns of Z are orthonormal,
k
G2+ ImlP =1, DI <1. | (3.3)
_ o

If the last inequality were attained then that would imply that the wanted eigenvector
is in the Krylov subspace.

Using equations (3.3) in the inequality for |6;], observe that

Red; < (A—p(D)I&I" + (D)

< (A= u(D)(1 - &) + u(D).

However, 6; must also satisfy Re6; < Ref;, hence the bound for 16;] solves

mpscnin {2+ (D)1~ (), O\ = (D)1~ 4+ u(D) .
This bound for |6;] is largest when |5;|% = 1/2. Thus

o A4u(D
Re0j50:=ﬁ+—’2‘(-—).
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Implications for Arnoldi Convergence

Building upon the lemmas above, in this section I demonstrate two separate conditions
sufficient for convergence of the restarted Arnoldi method with exact shifts. The
first result holds only in the case that the starting vector is sufficiently rich in the
desired eigenvector. In other words, I will first show criteria that are sufficient for
local convergence in the sense that the Ritz vector is sufficientlly close to the desired
eigenvector.

To ensure convergence of the restarted Arnoldi method, I seek conditions where the
containment gap, the angle between the desired eigenspace and the Krylov subspace,
will decrease at each restart. For the model problem (3.1), the desired eigenspace

is spanned by the first canonical vector e;. Write the starting vector, v, as in the

()

where ¢ € C and r € C*! are such that ||v]| = 1, so that for convergence the norm of

previous section, as

r must be driven to zero by successive restarts. The relationship between the starting

vector from one cycle to the next involves the restart polynomial, ¥(z), so that

+_ _Y(Ap

v = —t—

[ (Aol
Note that due to the structure of A,
cp(A)
YA = ( )
$(D)r
Using p = k — 1 exact shifts, the result from the previous section indicates that

the p shifts will all have a magnitude less or equal to both § = () + w(D))/2 and

p = +/f(a,n)* + u(D)?. The first quantity, 4, is independent of the starting vector,
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whereas the second, p, incorporates information from the starting vector via 7. Having

the containment gap decrease at each step is equivalent to having

I — esetyotll _ @)l _ Il
leto] e =7 el

for some fixed 7 € [0, 1] at each iteration. Thus for convergence,

(D)l
e < (34)

With this notation in place, the following two theorems employ the different bounds
for the shifts 8; for j = 2,....,k to determine sufficient conditions to ensure conver-

gence of restarted Arnoldi.

Theorem 8.1 If || D|| + 2u(D) < A and the starting vector is sufficently close to the

desired eigenvector then, the containment gap will decrease at each step.

Proof. - The bound (3.4) implies the more stringent convergence criterion

[4(D)rll _ (D)l
R IECY B (Y]

<1

To generate an even stronger criterion, recall that ¥(z) = Hf=2(z — 0;), where the
0; are the exact shifts, the unwanted Ritz values. Then the worst possible scenario
would be that all the shifts occur at 8 := (|A| + u(D)) / 2, for this would minimize
the dendminator. A bound for the numerator term involves ||D — || < || D|| + 6. By

requiring

4\p
(D) _ (DI +8p _
| T (A -y |
or equivalently
IDi+9 - - (35)
A—0 ‘
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the containment gap will decrease and v* will better approximate the desired eigen-

vector e;. Rearranging equation (3.5) leads to a criterion for 0:

5y . A—1ID
0<-—2—.

Using the inequality from the previous section as a bound for the magnitude of all

the unwanted Ritz values, one finds

. A—||D

01 < (= D)L = [z + (D) < 212

The criterion above implies that if A is greater than || D|| + 2u(D) then if the original
starting vector is sufficiently rich in the desired eigenvector, then the new starting
vector will better approximate the desired eigenvector. This criterion is sufficient for
local convergence of the restarted Arnoldi method using p shifts. =

The next theorem uses the bound involving p from equation (3.2) to generate a

sufficient condition for convergence.

Theorem 3.2 If A and v are such that ||D|| < X — 2p, then the component of the
starting vector in the desired eigenvector will increase with each iteration and thus

the restarted Arnoldi method will converge.

Proof. By requiring

D DI+ e
[N~ A-—p

<1,

the result follows. m

The criteria in both these theorems are not particularly sharp, that is, there are
most certainly matrices that do not safisfy these criteria and yet restarted Arnoldi
converges. The above theorems involve bounding ||¢/(D)r||/||r|| with ||¢(D)||. Re-

quiring ||9(D)r||/||7]| to be small, depending on 7, may necessitate only that ¢(z) be
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small on some of the eigenvalues of D, whereas requiring ||4(D)| means ¢(z) must
be small on all the unwanted eigenvalues. In bounding ||¥(D)||/|¥())|, each of the
shifts was treated independently, and they were allowed to cluster as close as possible
to A. Such clustering is unlikely to occur in practice. A sharper bound would require
treating the shifts as an ensemble rather than independently. The quantity p is an
extremely weak bound; for one, it does not reduce to u(D) in the case of v being
extremely rich in the desired eigenvector, due to the use of the trace argument, but

at least it does incbrborate the startiﬁg vector. The quangity f is ox}erly pessimistic, |
for its derivation involved the assumption that 2, = 2; = 1/2, which would imply
that the desired eigenvector is in the current Krylov subspace. Nonetheless the the-
orems above do indeed give criteria that ensure convergence of the restarted Arnoldi

algorithm with exact shifts, the first such results of which I am are aware.

3.3 Skew Symmetric D

Here I demonstrate some of the notions developed in the previous section for a small
normal matrix for which everything can be determined.

Given a real matrix with D = —D* of the form (3 1),

A 0 0
A0
A= = 0 0 o 3
0 D
0 —a O

which has eigenvalues A, ai and —ai, I answer the following questions concerning

Ritz values of 2 x 2 real restrictions of A.
e Where in the field of values of A can complex conjugate Ritz values occur?

e How rich must the starting vector, v, be in e; in order to guarantee convergence
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to A for restarted Arnoldi with exact shifts (RA)?

e Are there any restrictions that must be placed on the magnitude of o to ensure

it is possible for RA to converge to A?

First I determine where complex conjugate Ritz values may lie, and then I show
how Ritz values for a general restriction of A can be related to the Ritz values from a
vKrylov subspace. These results lead to conditions on the angle between the starting
vector and the desired eigenspace, the containment gap, that ensure a desirable shift
for RA. I will refer to the cosine of the angle © between e; and v as the richness in

€1,
le1v]

ol

To consider the Ritz values of all possible real projections of A, it suffices to

cos(O) =

parametrize a matrix P € IR3*? with two orthonormal columns as

cosf 0
P =1 sinfcos¢ sin ¢
sinfsin¢g —cos¢
The sufficiency of this form follows from the invariance of eigenvalues under unitary
similarity transformations.

From this special P the restriction of A, PTAP, takes the form

Acos?d —asinf
PTAP =
o sin 0 0

Immediately one can see that

tr(PTAP) = M\cos’6

det(PTAP) = o?%sin?4.
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Thus the roots of the characteristic polynomial for PTAP are given by

Acos? 0 £ /)2costf — 4a2sin® 6
5 .

(3.6)
The Ritz values will be a complex conjugate pair if and only if
M2 cos® 0 — 40’ sin? 6 < 0.

To determine where complex conjugate pairs may lie, consider

o Acos?f
s T
Vda2sin? 0 — N2 cost §

vy = 2

Combining these equations, the relationship between z and y is

2 o?\? 2 o\
Y+ <x+—x—) = « (1+ﬁ)'

Hence the possible complex conjugate Ritz values all lie on a circle centered at
(z,y) = (—a?/),0) with radius a/T + a2/A2; see Figure 3.1. Note that this circle is
tangent to the boundary of the numerical range of A at *ai.

At this point one might be tempted to parametrize the starting vector for RA in
a manner similar to that of P. However, due to the size of the problem, one can do
much better. To determine a Krylov subsbéce that spéns the range of P, let p; and

pe denote the columns of P and p; the vector orthogonal to the range of P. Then a

starting vector v for which K5(A,v) = Ran(P) must satisfy the equations
piv = 0
pAv = 0.

The first equation indicates that v should be a linear combination of p; and p,,

v = ¢1P1 + ¢c2p2. The second equation then gives



49

_a L

—a?/\ A

Figure 3.1 : Blue solid lines outline W(A), The dot-dash line indicates the arc of a
circle in W(A), along which complex conjugate Ritz values may occur; the dashed
green line indicates the center of this circle.

C1
(p?{Apl pgApz) : = 0.

Cy

Thus (cy, ;)T must lie in the null space of (p} Ap1, pl Ap,). With the exception
of & = 7/2, which corresponds to P being completely deficient in e;, the null space
has a dimension of 1 and is spanned by the vector (pl Apy, —pl Ap,). For our chosen

basis p3 = (sinf, — cos # cos ¢, — cos @ sin ¢)T. Thus one can conclude that

—q cosf

Acosfsiné
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Hence the angle, ©, between e; and the starting vector v = Pc is given by

a?cos? 6

- A2sin?0 + o2’

cos*(0) (3.7)

Using this formula for the bias of v requires knowing where the left Ritz value
must lie for the restarted starting vector v to be richer than v in the eigenvector e;.
Representing v as in previous sections, v = (c,7)%, where c is a scalar and r € C2,

consider a real shift 6,

- (A—0)c
vt =(A-0w= X

(D —-0)r
For progress, the richness of v+ must be greater than the richness of v. As in the

previous section this amounts to

Ivorl (38)

Il (M)
For the single exact shift § and the vskew—symmetric D, ||w(D)r]| = V8% + o2||r|.

Hence the inequality above is equivalent to

672+a2

—_— < 3.9
op (3.9)

Manipulating the inequality to determine a criterion for the shift gives

~ AN _q? A+a) /A—a '
jodot_ (o) (1oe) o0

where the last expression should be contrasted with the result of Theorem 3.2,

A— D]

<
p 2

in this case ||D|| = a. Hence for this example the shift can actually be larger than

prescribed by Theorem 3.2 and still lead to convergence.
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If the leftmost Ritz value satisfies inequality (3.10), then the new starting vector
will be richer in e; and the containment gap will decrease; Note that this inequality
is useful only if a < A.

Using our formula for the Ritz values, equation (3.6) with inequality (3.10) yields

an inequality for cos?(6):
A+ o?

% (3.11)

cos? 6 >

Recalling equation (3.7) for the richness of the starting vector in terms of 6, the

inequality in equation (3.11) can be manipulated to determine a criterion for the
richness of v in e; such that the new starting vector, v*, will be richer in e;:

‘ 2. 2p 2

o cos* 0 o

vl ———— > — (3.12
ezl Asin?@+a2 " A2 ' (3.12)

If the richness of the starting vector is greater than a/), then restarted Arnoldi will
make progress at this step.

Suppose the richness of the starting vector satisfies this criterion, and denote ©;
as the angle between the starting vector at the ith step and the desired eigenvector.

Then for progress, equation (3.8) is equivalent to requiring that
tan(@i.,.l) < tan(@,-).
If the criterion for the shift is met, then in terms of tan(©;), the following must hold:

tan(@i“)" 62 + o2
1>—— = —,
tan(©;) |\ —4|?

The quantity on the right is the rate at which progress is made at this step. The

question is then, If the criterion for the shifts is met at one step, will it also be met
for all subsequent steps?b ,
To show that all subsequent steps will also satisfy the criterion, note that the

formula for the rate of progress, which depends on é, and the formula for the shift,
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which is dependent upon cos(f), are given by

62 + o2 Acos?d — /A2 cost 8 — 4a2 sin? §
A =8 2 '

The formula for the shift is a monotonically decreasing function of cos(#). If the
shift meets the convergence criteria, then equation (3.12) indicates that cos(d) will
increase at this step and thus the shift will decrease (move to the left). The rate of
progress is a monotomcally 1ncreas1ng function of 6, which means that method will
make more progress at the next step. The asymptotlc ra’ce of progress is a/A. Hence
if the starting vector is sufficiently biased in the desired eigenvector and A > a , then
restarted Arnoldi will converge and yield the desired eigenvector.

Figure 3.2 presents an example of the Ritz values at each step of RA for a = v/3 /3,
A =1 and |ejv] = a/X + .001. For this example the numerical range of A is an
equilateral triangle and the starting vector is just barely rich enough to meet the
criterion. Figure 3.3 for the same example shows the convergence of tan(©;). Note
that the matrix for this example is just a shifted and scaled version of the matrix
given to demonstrate stagnation in Section 3.1.1.

Having de\?eloped a criterion for RA convergence for this test problem, one must
ask, Is the criterion sharp‘? The sharpness of the bound as well as the possibility of

stagnation are addressed by the following lemma.

Lemma 3.4 If a > %)\, then there exists starting vectors such that restarted Arnoldi
method can stagnate. If a < ‘/Tg)\, then there exist starting vectors which do not satisfy

(3.12) such restarted Arnoldi will converge.

Proof. ~ Note that from equation (3.9) the condition of having

62 + o?

A~ 62
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F iguré 3.2 : Ritz values for five cycles of RA for A = 1 and o = v/3/3. The two Ritz

values at each cycle are denoted in the plot by the value of k.

10°

e |RA
Asymptotic Rate

0 5 10 15 20 25 30 35 40 45

# of iterations

Figure 3.3 : Dots indicate tan(©;) in RA for A = 1 and & = v/3/3. The blue line

shows the asymptotic rate of convergence.
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is equivalent to having 6 be equidistant from all the eigenvalues. The point on the

real axis that is equidistant to all the eigenvaleus is

22— qa?

€=

The question then becomes, Is there a real orthogonal projection for A such that the
leftmost Ritz value is equidistant from all the eigenvalues? Using the expression for

the circle on which the conjugate Ritz values must lie, equation (3.7) gives

where (Z,0) is the vpoint on the real axis where a double Ritz value can occur. So if
£ > %, then there are no real projections such that RA can stagnate. For a given A,
manipulating the‘expressions for £ and Z gives an inequality for « such that stagnation
cannot occur:

o2 2 )2_ 2

a 1+__a_<
A2 22 7

which, after some algebra, reduces to
A> \/§a,

the desired result. Note that if A = v/3a, then the numerical range of A is an
equilateral triangle. If the numerical range is narrow, so that A > \/3_a, then any
starting”vector such that the resulting Ritz values are real will lead to convergence.

In this case a sharper convergence criterion is determined from (3.7):

40?sin?0 — N2cos?0>0. m
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Higher Dimensions

In this section I extend the results for D of dimension 2 to larger matrices. In this
case D € C™" with spectrum such that o(D?) C [—a2,,,, —o2,,] with *amaxi, Tamint
being eigenvalues of D. First I determine where all the Ritz values may lie, then show
sufficient criteria for convergence.

To determine where the Ritz values may lie, I will construct a matrix of dimension
3 that _generates the same Hessenberg matrix as A for a particular starting vector.
The matrix will be of the same form as the matrix analyzed in the previous section.

This matrix will be constructed by projecting A onto a subspace that contains the

current Krylov subspace. Consider the subspace
K2 (A, ’U) + €1,

which is equivalent to

c
iceC,re Ky(D,r) p,
r
where r is such that v ="[c; r]. Construct an orthogonal matrix whose columns span

this subspace:
1 0
Q= e
0 Q
where the columns of Q form an orthonormal basis for KQ(D; q). If V3 and Hy are
respectively the Arnoldi basis and resulting usual upper Hessenberg matrix from

K5(A,v). Then because the columns of V; are in the span of the columns of @,

QQ*Vy = V,. Define A = Q*AQ and V = Q*Vs. Then we have

V*AV = V;QQ*AQQ*V; = Ha.


file:///c/r/

o6

Note that V and H, together with the vector orthogonal to the range of V form
an Arnoldi decomposition, starting from the Arnoldi decomposition associated with
Ky(A,v):
AV =VH + fel
Q" AQQ'V = Q'VH + Q" fe]
AV =VH + féf.

Due to the structure of Q, A will have the form

R A 0
A=QAQ = o
0 Q*DQ
Since D is skew-symmetric
A0 O
A=QAQ=|0 0 al,
0 —a 0

where a = ¢gi Dga.

So A = QTAQ is a 3 x 3 matrix that would generate the same H, for the
appropriate starting vector, @Q*v. This matrix indicates where all possible Ritz values
of RA using one exact shift can lie. Proceeding as in the previous section, where
in W(A) can complex conjugate Ritz values occur? From the properties of Krylov
‘subspaces for skew-symmetric matrices, —a? € W(D?). Using knowledge from the
dimension-2 case, all the complex Ritz values must lie between the arcs of two circles
determined by the largest and smallest eigenvalues of D?.

The rest of this section will develop criteria for convergence for general skew-

symmetric D. As in the 2-dimensional case, a criterion for convergence is that

(D)l

——— <1

[
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(64 max [

Qmin

—Qmin |

Figure 3.4 : Blue solid lines outline W (A); The red dot-dash line indicates the arcs of
circles that bound the region in W(A), in which complex conjugate Ritz values may
occur; the dashed green line indicates the centers of this circles.
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In this case, [|¢(D)|| = /02 + aZ,,,. Hence the shift criterion is dependent only upon
the largest magnitude eigenvalue of D. Recall the corresponding richness criterion

from the 2-dimensional case:

etf? = a? cos? 9 S a?
vt = —0——m—s >
' A2sin?f+ a2 7. A2

In the worst case, @ = amax. Then, by the arguments used for the dimension-2 case,
if the richness of the starting vector is greater than amax/A then RA will converge
Vregardless of what the component of the startlng vector is in the other elgenvectors
In practice, the component of the starting vector in the unwanted eigenvectors may
lead to rapid initial convergence; however, the asymptotic rate will be determined by

the extreme eigenvalues of D.

3.4 Discussion

In this chapter I developed sufficient conditions for the convergence of the restarted
Arnoldi algorithm for a matrix with one simple normal eigennalue for which the
wanted elgenvalue is not in the numerical range associated with the desired eigenval-
ues. The requlrements on the numerical range of the matrlx are essential for elim-
inating the possibility of extreme breakdown. Some of the criteria are rather weak
in that they ask that the wanted eigenvalue be well seperated from the unwanted
eigenvalues. The localization of the Ritz values involved in the conditions relied upon
the the inability of Ritz values to cluster arbitrarily close to the desired eigenvalue.
Developing less stringent criteria will require accounting for not just how the Ritz
values may cluster about the wanted eigenvalue, bnt also how the Ritz values must
distribute themselves throughout the rest of the numerical range.

I developed sharp convergence criteria for matrices in which the unwanted eigen—
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values come from a skew-symmetric block. In this case, the criteria ultimately address
the issue of local convergence; if the starting vector has a large enough component
in the desired eigenvector, then restarted Arnoldi will converge. Also,. only one
shift was considered for the skew-symmetric case, Future work could involve handling
more shifts as well as complex éonjugate shifts. The skew-symmetric results may
prove useful for showing convergence for matrices whose spectrum is sectorial, i.e.

,the numerical range lie in a cone in a sector of the complex plane.
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Chapter 4
Conclusion

This thesis has shown that under certain conditions the Ritz values of nonsymmetric
matrices can be localized and that the localization of the Ritz values can be used to
determine sufficient conditions for convergence of the restarted Arnoldi method.

The results of Chapter 2 concerning the Ritz values of a Jordan block raised
questions about possible generalizations of the numerical range that would be useful
- for characterizing matrices for which Arnoldi will converge. From the example of
extreme failure we know that if the numerical range associated with the unwanted
eigenvalues can contain the desired eigenvalue, then there may well exist a vector for
which restarted Arnoldi will fail. Perhaps the requirement on the numerical range
may be relaxed or sharpened by requiring that the desired eigenvalues must not fall
in the k = 2 numerical range, W*(A), where the A € W*(A) means that ) is a Ritz
value of A of multiplicity k¥ for some k¥ dimensional subspace. Note this is not how
the k = 2 numerical range is defined in the literature; in the literature th‘e algebraic
and geometric multiplicity of the Ritz values in W"(A) ‘must be equal. As Arnoldi
factorizations allow for only defective Ritz values, a more useful generalization of
the numerical range for analyzing the Arnoldi method would allow for defective Ritz
values.

The use of the numerical range of the adjugate of Al — A to determine the char-
acteristic polynomial of a restriction of A is a polynomial numerical range approach

to characterizing Ritz values. Generalizations to polynomial numerical ranges for
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k < n — 1 dimensional subspaces do exist [13]. The polynomials in such sets would
certainly provide insight into Ritz value behavior. However, they may be too difficult
too compute to be of practical use. Any connection between the polynomial numerical
range and the polynomial numerical hull would be interesting [7].

The Arnoldi convergence criteria for matrices with ohe simple normal eigenvalue
developed in Chapter 3 are buti/ a first step toward the development of a sharper
convergence theory for the restarted Arnoldi method with exact shifts. The criteria
do address the impértant issueé suvchr as the distribution bf the sperctrl;mr relative to
the desired eigenvalues and the richness of the starting vector. Sharper criteria must
be more precise in the handling of the shifts. The criteria developed assumed the
worst possible distribution for the shifts, but it seems likely that the shifts, when
analyzed as an ensemble, will provide a convergence theory that is applicable to a

wider range of matrices.
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