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Abastract: 

A matrix perturbation B - A in the space of symmetric matrices should be related 
to the structure of that space. We try to take advantage of this fact to decompose the 
matrix perturbation in such a way that we get a more precise description of the eigenvalue 
perturbation. We obtain a lower bound for the eigenvalue perturbation that improves the 
known bound I IIBIIF - IIAIIF I given by the norm. Also we construct an upper bound that 
is related to the structure and sometimes is smaller than the known estimate IIB - AIIF . 
This bound gives us the maximal eigenvalue perturbation of two matrices with the same 
eigenvectors, keeping the same eigenvalue order. 

Keywords: eigenvalue perturbation, matrix perturbation. 

AMS(MOS) subject clasification: 15A18, 15A24, 65Fl5. 
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1.- INTRODUCTION. 

Some properties of the structure of the symmetric matrices and the result obtained 
in [2] and [3] led us to look at the problem of eigenvalue perturbation from the view point 
of the relation between the perturbation and the structure of the space. The idea behind 
this paper is that there are subspaces that preserve the eigenvectors when you move inside 
them and there are special sets (generated by orthogonal similarity transformations) that 
preserve eigenvalues in the same way. 

These properties suggest one may decompose any matrix perturbation into a pure 
eigenvalue perturbation plus a pure eigenvector perturbation, as we shall do in section 2. 

If B is a perturbation of A we obtain in section 3 a lower bound for the eigenvalue 
perturbation. We construct a matrix X* such that 

n 

IIB-X*IIF ~ [l)µi - Ai)2] 112 

i=l 

where µi and Ai, i = l, ... , n are the eigenvalues of A and B respectively. Moreover this 
bound satisfies 

and the equality holds only if B is a scalar multiple of an orthogonal similarity transfor­
mation of A. There is a simple construction for X* using A, B and the identity matrix. 

In section 4, under natural order assumptions, we compute an upper bound for the 
eigenvalue perturbation, obtained via a matrix M which has the eigenvalues of A and the 
eigenvectors of B. The bound is computed by an optimization approach which yields an 
estimate for the maximum distance between M and B in the worse case. Sometimes this 
estimate is worse than the usual IIB - AIIF estimate (see [1]) and in others it is better. 
The following example shows the motivation for this estimate. 

Define A and B as follows 

(

1/3 
B = l/3 

1/3 

The eigenvalues of A and B are equal and the vector of eigenvalues is (1, 0, 0) with no 
eigenvalue perturbation at all, but IIB-AIIF = 2112 (})112 while our bound is (}) 112 . 

This estimate gives us an idea of the maximal perturbation of two matrices with the same 
eigenvectors, keeping the same eigenvalues order. 

Finally in section 4 we obtain a global estimate for the perturbation with no order 
consideration, and in the same way as we did in section 3, we construct a matrix X* such 
that 

n 

I)µi - ,\1r(i))
2 ~ IIB - X*II} 

i=l 

for any arbitrary permutation 1r. 
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2.- PRELIMINARIES. 

We denote by Rnxn the space of square matrices of order n and by Sn the subspace 
of symmetric matrices. We will use in Rnxn the Frobenius inner product defined by 

and the Frobenius norm generated by this inner product will be denoted by 11-IIF· 
This allows us to introduce the cosine between two matrices as follows 

< A,B >F 
cos(A,B) = IIAIIFIIBIIF · 

If we are interested in the cosine between any matrix and the identity, denoted by I, we 
have 

tr(A) 
cos(A, I) = IIAIIFnl/2. 

lFrom this expression it follows that the cosine between a matrix and the identity is 
invariant under orthogonal similarity transformations. 

Let B be a perturbation of A, both in Sn, and denote the spectral decomposition for 
these two matrices by 

n 

A= LAiViV[ 
i=l 

and 
n 

B = Lµiuiuf. 
i=l 

If P is an orthogonal matrix such that 

Pui = Vi i = l, ... , n, 

then we are interested in the matrix pT AP which we denote by M. It is easy to see 
that M has the same eigenvalues as A and the same eigenvectors as B. This allows us to 
decompose the perturbation B - A in the following way 

B - A = (B - M) + ( M - A) 

where B - M is a pure eigenvalue perturbation because both matrices have the same 
eigenvectors. Also we have that M - A is a pure eigenvector perturbation because both 
matrices have the same eigenvalues. 

A very good question is how to determine whether a perturbation only involves the 
the eigenvalues or only the eigenvectors. The answer is not easy, but some conditions can 
be stated. 

Lemma 1: A necessary condition for B - A to be an eigenvector perturbation is that 

tr(A)IIBIIF = tr(B)IIAIIF 
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This condition is necessary and sufficient for n=2. 

Lemma 2: If tr(A)IIBIIF -/= tr(B)IIAIIF II, then the perturbation implies an eigenvalue 
perturbation. In other words ( B - M) -/= 0. 

The proof of these lemmas are a direct consequence of the invariance of the trace and 
the Frobenius norm under orthogonal similarity transformations. 

We need another piece of notation, given A E Sn we define 

,(I, A)= {YE Sn/cos(Y, I)= cos(A, I)} 

the conic shell that contains A. As a consequence of our previous discussion, for any 
orthogonal matrix P we have that 

pT APE ,(I, A). 

3.- THE LOWER BOUND. 

Because the cosine between a matrix A and the identity depends only on the eigen­
values of A, we have that if a matrix X has the same eigenvalues as A then XE ,(I, A)). 
It is well known that IIB-AIIF is an estimate of the eigenvalue perturbation [l]. But from 
our decomposition the exact eigenvalue perturbation is given by 

because B and M have the same eigenvectors and the spectral decAomposition is an 
orthogonal decomposition when we use the Frobenius norm. Then we are looking for a 
lower bound for IIB - MIIF that does not require the computation of M, since this would 
imply that we know the spectral decomposition of A and B. 

Because of the facts pointed out above, we want to consider the following optimization 
problem 

{ 

min IIB - XII} 
PLB = XE ,(J,A) 

IIXIIF = IIAIIF 
which will provide us with a lower bound for our eigenvalue perturbation. It is clear that 
this is a lower bound for JIB - AIJF and IJB - MIIF-

In order to solve P LB we will search for a matrix X that 
a) belongs to 1(1, A) 
b) lies in the plane generated by I and B 
c) has Frobenius norm equal to IIAIJF-
We will do this by first generating a matrix in the plane of I and B and then force it 

to satisfies a) and c). 
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Because of symmetric consideration our matrix must be B + v I where v is a real 
number. We are going to determine v from the condition a) or in other words our matrix 
must satisfy 

or 

cos(!, B + vl) = cos(!, A) 

(1) 
tr(B) + vn 

IIB + vIIIF 
tr(A) 

IIAIIF 
If we square the equality we get the following quadratic equation for v 

[n(nllAll}-tr(A)2)]v2 + [2tr(B)(nllAII} -tr(A)2)]v + [tr(B)2IIAll}- IIBll}tr(A)2] = 0 

and after some algebraic computations we obtain 

11 
= _ tr(B) ± tr(A) nllBII} - tr(B)2 

( ) 

1/2 

n n nllAII} - tr(A)2 

If X E Sn, then the standard deviation of the eigenvalues of X can be written as 

which will be denoted by s(X). Then 

[ ] 

1/2 
ns(X) = (nllXII} - tr(X)2) 

which allows us to change the expression of v as follows 

tr(B) tr(A) s(B) 
v=---±----. 

n n s(A) 

Since s(B) and s(A) are always nonnegative and since v has to satisfy the equation (1), 
it is easy to see that the negative sign in the second term of v does not provide a solution 
(this is an extraneous solution that appeared because we squared equation (1)). Hence 

(2) 
tr(B) tr(A) s(B) 

v=---+----. 
n n s(A) 

Remark: In [2] we proved that for any symmetric matrix Z, all its eigenvalues are in the 
interval 

Thus the length of the interval that contains the eigenvalues is 
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Now it is interesting to observe that 

s(B) _ 2[~(11BII}- ~)] 112 

s(A) 2[n~l (IIAII} _ tr(:)2 )]1/2' 

which means that s(B)/ s(A) is the quotient between the lengths of the intervals that 
contain the eigenvalues of A and B. 

Finally we obtain the solution of our optimization problem, which is 

IIAIIF 
x* = IIB + vIIIF (B + vI) 

where 11 is given in (2). Using equation (1) and the expression of 11 we have 

IIB + vIIIF 
s(A) 
s(B) 

X* = s(A) (B + vl) = s(A) B + [tr(A) _ s(A) tr(B)] I. 
s(B) s(B) n s(B) n 

These lemmas allow us to establish the following result. 

Lemma 3: X * solves the optimization problem P LB, and 

Proof: The conditions a), b) and c) are the Kuhn-Tucker conditions. 
With this result we can state the main result of this section. 

Theorem 4: Given a perturbation B E Sn of A E Sn then 

and 
n 1/2 

IIB-X*IIF::; IIB -MIIF = [I)µi - Ai)2
] . 

i=l 

We want to know the relation between the lower bound IIB-X*IIF and the well known 
bound I IIBIIF - IIAIIFI- Because IIAIIF = IIX*IIF, then 

Corollary 5: Given a perturbation B of A, then 

and equality holds if and only if B is a multiple of pT AP for some orthogonal matrix P. 
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4.- UPPER BOUNDS. 

We can assume that the eigenvalues of A and its perturbation B are ordered as follow 

µ1 ::; µ2 ::; · · · ::; µn 

which implies M has the same order as A for its eigenvalues. 
Our principal problem now is to determine the maximum distance between M and 

B. It is important to note that they are in the same subspace (generated by the rank one 
t . T . l ) ma nces UiUi i = , ... , n . 

Our problem can be stated as a constrained optimization problem, which we will call 
Pl 

n 

max IIX - Ylli = 1)77i - ai)
2 

i=l 

{ 

I:~=1 CTi = tr(M) 
r(M) ~~=1 ~r = IIMI)~ 

a, - a,-1 2: 0 z - 1, ... , n 

{ 

I:~=l T/i = tr( B) 
r(B) ~~=1 :r = IIBII_}_ 

T/i -11,-1 2: 0 z -1, ... ,n 

where we are assuming for X and Y the following spectral representation 

n 

x = I:aiUiUr 
i=l 

n 

X = L T/iUiUr. 
i=l 

Notice first that r(M) = r(A) and second that this problem is a generalization of the LB 
problem used in [3]. 

This problem has a very special structure. In general r(M) and r(B) are different 
sets, but when tr(A) = tr(B) and IJAIJF = JJBJJF they become the same set (this particular 
case is important in the proof). Each of these sets r(.) are "spheric polytopes", in the 
sense that all the constraints are linear except the equation related to the norm, which is 
quadratic. 

Our first goal is to identify the extremal points of these sets. Because they are struc­
turally equivalent, we only establish the result for one of them. 

Lemma 6: The extremal points of r( M) are the matrices X ( k) k = l, ... , n - l, whose 
eigenvalues are 

CTi = tr~M) - [n ~ k (IJAJJ} - tr(:)2)] 112 
i = 1, ... , k 

,.,.; = tr(M) + [ k (JJAJJ 2 _ tr(M)2 )] 1/2 
v. n n(n-k) F n i=k+l, ... ,n. 
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Note that because M and B are in the same spectral subspace, then it is possible to 
construct X(k), k = l, ... , n - l from its eigenvalues using the eigenvectors of B. 

Proof: Because we need n equations from r ( M) in order to find the extremal points and 
we have two equations and n - l inequalities, we transform n - 2 of the inequalities into 
equations. Because these new equations come from the order inequalities, we have to set 
the first k eigenvalues equal to a and the remaining n-k equal to /3. With this selection for 
k = l, ... , n - l the inequality ak+l - Uk 2:: 0 remains as the only possible strict inequality. 
These considerations give us a new system to solve 

{ 
ka + (n - k)/3 = tr(M) 
ka2 + (n - k)/32 = IIMII}-

After some elementary algebra we get 

a = tr~M) ± [n :k k (IIAII} _ tr(~)2)] 1;2 

/3 = tr(M) ± [ k (IIAll2 _ tr(M)2
)]1;2_ 

n n(n - k) F n 

It is easy to see that the second terms of a and /3 must have opposite signs in order to 
satisfy the equation of r(M) that includes tr(M). Finally the increasing order of the 
eigenvalues tells us that the sign of a must be negative and positive for /3. Hence for 
k = l, ... , n - l the matrix X ( k) has eigenvalues 

{ 
a i = 1, ... , k 

Ui = /3 i = k + l, ... , n. 

with 
a= tr(M) _ [n - k (IIAll2 _ tr(M)2 

)] 1/2 
n nk F n 

/3 = tr(M) + [ k (IIAll2 _ tr(M)
2 
)] 1/2. 

n n(n - k) F n 

In order to simplify these expressions, we introduce the notation 

and observe Bce[B 

_ [n - k] 1/2 
8(k)- -k- , 

1 
8(n -k) = b(k)" 

This allows us to express a i as 

ai = tr(M) - 8(k)s(M) i = 1, ... , k 
n 

<li = tr(M) + 8(n - k)s(M) i = k + l, ... , n 
n 
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We denote by ,\[X(k)] the vector of eigenvalues of X(k). In other words the vector with 
components Ui. 

In the same way the extreme points of f(B) are matrices Y(j), j = 1, ... , n-1 whose 
eigenvalues are 

. _ { 0 i = l, ... ,j 
T/i - . - . 

E i - J + 1, ... , n. 

where 

0 = tr(B) - 8(j)s(B) 
n 

tr(B) . 
E = -- + 8(n - J)s(B). 

n 

Taking into account that B and M are in the same subspace we have 

IIX(k) - Y(j)IIF = 11,\[X(k)] - ,\[Y(j)]lb 

and this distance will be denoted by d(k,j). 
An equivalent optimization problem to Pl is the following problem P2 

max d(k,j) = 11,\[X(k)] - ,\[Y(j)]ll2-
k=1, ... ,n-1 
j=l, ... ,n-1 

Before considering this new problem, we write down the vector ,\[X(k )]-,\[Y(j)]. Assuming 
that k ~ j, 

{ 

tr~M) - tr~B) - 8(k )s(M) + 8(j)s(B) 1 ~ i ~ k 

(,\[X(k)] - ,\[Y(j)])i = tr~M) - tr~B) + 8(n - k)s(M) + 8(j)s(B) k + l ~ i ~ j 
tr~M) - tr~B) + 8(n - k)s(M) - 8(n - j)s(B) j + 1 ~ i ~ n. 

First we are going to consider a special but basic case of P2, where JJMJJF = JJBJJF and 
tr(M) = tr(B). We wish to compute d(k,j) for this case. 

d(k,j) 2 = { k[8(j) - 8(k)]2 + (j - k)[8(n - k) + 8(j)]2 

+ (n - j)[8(n - k) - 8(n - j)] 2 }s(B)2
• 

If we expand the squared terms and regroup we obtain 

d(k,j)2 = 2s(B)2 [n - n k:. k 8(j)8(k)]. 

This problem has certain symmetries among the distances that we can exploit. 

Lemma 7: d(k,j) = d(n - k, n - j). 
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Proof: We only need to compute d(n - k, n - j). Assuming for simplicity that k :s; j and 
using the symmetry of the distance we obtain 

d(n - k,n -j)2 = d(n - j,n - k)2 = { (n -j)[8(n - k)- 8(n -j)] 2 

+ [(n - k) - (n - j)][b(n ~ j) + 8(n - k)]
2 

1 1 2} 2 
+[n-(n-k)][8(n-j)- 8(n-k)] s(B). 

But using the definition of 8(.) and regrouping, we obtain 

{ k[8(j)-8(k)] 2 + (j - k)[8(n - k) + 8(j)] 2 + (n -j)[8(n - k)- 8(n- j)] 2 }s(B)2 = d(k,j) 2
• 

We want to make a couple of observations. First we only need to consider k :s; j 
because of the symmetry of the distance. Second, it is enough to consider k + j :s; n 
because if k + j > n then ( n - k) + ( n - j) :s; n and these distances are equal by Lemma 
6. Moreover the case k = j gives us distances equal to zero, and this is not important for 
our optimization problem, which is a maximization problem. These observations introduce 
new important constraint in our problem. 

There is an interesting subset of distances which we call maximal distances. They are 
the distances d(k,j) with the property that k + j = n, or in other words, distances with 
the form d( k, n - k). A useful property of this set of distances is our next result. 

Lemma 8: If k :S k, then 
d(k,n - k) :s; d(k,n - k) 

and d(l, n - l) is the maximum of the set. 

Proof: Using the formula for the distance, we can compute 

kn kn 
d(k,n - k)2 = 2s(B)2[n - n _ k 8(n - k)8(k)] = 2s(B)2(n - n _ k). 

Now from elemental calculus, it is easy to verify that this function decreases with k. 
Our next step is to prove that given any distance d(k,j), it is always bounded by a 

maximal distance. 

Lemma 9: Given d(k,j), if i = min{k,n- k}, then 

d(k,j)::; d(i, n - i). 

Proof: Because of the symmetry of the distance, we can always suppose that i is equal to 
k. Then we have to prove 

d(k,j) :S d(k, n - k) 

or 
nk nk 

2s(B)2[n - n _ k 8(k)8(j)] ~ 2s(B)2[n - n _ k], 
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and the inequality follows from the fact that 8(k)8(j) 2: 1 under the condition k + j :'.Sn. 
These lemmas establish the following result. 

Theorem 10: If IIMIIF = IIBIIF and tr(M) = tr(B), then 

max d(k,j) = d(l, n - l). 
k=l, ... ,n-1 
j=l, ... ,n-1 

In others words, d(l, n - l) solves P2 and Pl under the hypothesis given above. 
We now wish to solve problem Pl in general and we need to modify some notation. 

We will use </> to denote 
tr(M) - tr(B) 

n 

and e to denote the vector with all components equal to one. Then we can write 

-X[X(k)] - -X[Y(j)] = </>e + z(k,j) 

where 

{ 

8(j)s(B) - 8(k)s(M) 1 :'.Si :'.S k 
z(k,j) = 8(n - k)s(M) + 8(j)s(B) k :'.Si :'.S j . 

8(n - k)s(M) - 8(n - j)s(B) j :'.Si :'.Sn 

Because -X[X(k)] and ,\(Y(j)) are vectors of eigenvalues satisfying r(M) and r(B), then 

-\[X(k)]T e = tr(M) 

-X[Y(j))T e = tr(B) 

or 
{-X[X(k)) - -X[Y(j))}T e = tr(A) - tr(B) 

fork= l, ... , n - l and j = 1, ... , n - l. But using our new notation 

[</>e + z(k,j)f e = </>n + z(k,jf e = tr(M) - tr(B) 

we have that 
z(k,jf e 

is constant for any k and j. But we know that 

11-X[X(k)) - -X[Y(j))II~ = 11</>e + z(k,j)II~ = 11</>ell~ + llz(k,j)II~ + 2</>eT z(k,j). 

Now it is easy to see that our goal is to maximize d(k,j)2 but it is sufficient to maximize 
llz(k,j)II~ in order to obtain the maximizer. 

We want to look for a useful expression for llz(k,j)llt since 

llz(k,j)II~ = k[8(j)s(B) - 8(k)s(M)] 2 + (j - k)[8(n - k)s(M) + 8(j)s(B)] 2 

+ (n - j)[b(n - k)s(M) -b(n -j)s(B)]2
• 

12 



By expanding the squares and regrouping, we obtain 

llz(k,j)II~ = n[s(B)2 + s(M)2] - 2 n k:: k c5(j)c5(k)s(B)s(M). 

Since this is very similar to the function d(k,j), it is easy to define the maximal distances 
llz(k,n - k)ll2 and prove results similar to Lemma 7, 8 and 9, which allow us to state the 
next result. 

Theorem 11: The vectors ,\[X(l)] and ,\[Y(n - 1)] solve problem Pl and the maximum 
value of the objective function is 11,\[X(l)] - ,\[Y(n - 1)]112-

This completes our results about problem Pl, and now we can establish the main 
result of this section. 

Theorem 12: Given B E Sn a perturbation of A E Sn, then 

n 

L(,\i - µi) 2
::; (a -8)2 + (n -1)(,B- 8)2 + (,8- €)2, 

i=l 

where 

a= tr(A) - b(l)s(A) 
n 

tr(A) 
,B = -- + b(n - l)s(A) 

n 

and 
tr(B) 

8 = -- - b(n - l)s(B) 
n 

tr(B) 
€ = -- + c5(1)s(B) 

n 

Finally we consider a global problem 

max IIB-XIIF· 
XE-y(J,A) 

IIXllp=IIAIIF 

Taking into account that the constraints can be described as 

tr(X) = tr(A) 

IIXIIF = IIAIIF, 
this problem is very similar to the problem discussed in section 3, and the same techniques 
can be applied to find the solution. These considerations yield to the following result. 

Theorem 13: If B E Sn is a perturbation of A E Sn and 7r a permutation of n elements, 
then 

n 

L(µi - ,\1r(i))
2 

::; IIB - X*II 
i=l 
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where 

with 

X* = s(A) (-B + el) 
s(B) 

e = tr(B) + tr(A) s(B). 
n n s(A) 

Proof: Consider that any matrix with the same eigenvalues of A is in ,(I, A), and take 
the farthest one from B, using the plane that contains B and the identity matrix. 

5.- CONCLUSIONS. 

Even though the results of this paper have been stated for symmetric matrices, they 
can be generalized in a strightforward manner to Hermitian matrices and the proofs are 
exactly the same. 

Only a few results can be generalized beyond the Hermitian matrices case. The lower 
bound and the global upper bound still hold for normal matrices, because the tools that 
we have used to prove these result are the invariance of the trace and the Frobenius norm 
under similar orthogonal transformations. 

Finally we want to say that intermediate problems between Theorem 10 and the global 
upper bound can be studied, allowing certain shifts in the eigenvalues order. The way to 
do this is to establish the corresponding optimization problem and solve it in order to 
obtain the bounds. 
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