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Abstract The nonlinearities of power amplifiers com-

bined with non-contiguous transmissions found in mod-

ern, frequency-agile, wireless standards create undesir-

able spurious emissions through the nearby spectrum

of data carriers. Digital predistortion (DPD) is an ef-

fective way of combating spurious emission violations

without the need for a significant power reduction in

the transmitter leading to better power efficiency and

network coverage. In this paper, an iterative, multi sub-

band version of the sub-band DPD, proposed earlier by

the authors, is presented. The DPD learning is iterated

over intermodulation distortion (IMD) sub-bands until

a satisfactory performance is achieved for each of them.

A sequential DPD learning procedure is also presented

to reduce the hardware complexity when higher order

nonlinearities are incorporated in the DPD learning.
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Improvements in the convergence speed of the adap-

tive DPD learning are also achieved via incorporating

a variable learning rate and interpolation of previously

trained DPD coefficients. A WarpLab implementation

of the proposed DPD is also shown with excellent sup-

pression of the targeted spurious emissions.
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1 Introduction

Mobile devices need to access more radio spectrum to

meet the increasing data-rate demands of mobile users.
This is particularly challenging when we compound this

with the growing number of active wireless devices in

the world today [1]. This leads to what is referred to as

spectrum scarcity and fragmentation [2,3]. In scenar-

ios where there is little available bandwidth, it may be

necessary to aggregate spectrum opportunistically, po-

tentially across multiple bands non-contiguously. This

sort of frequency-agile system has been adopted in pro-

tocols and standards such as in LTE-Advanced with

carrier aggregation [4] and will likely also play a role in

5G communications [5].

For cases where spectrum is aggregated in a non-

continuous manner, challenges arise in the radio fron-

tend design. In particular, the power amplifier (PA) be-

comes problematic. The PA is inherently a nonlinear

device [6], and whenever non-contiguous signals pass

through this nonlinearity, they intermodulate creating

intermodulation distortion (IMD) components through-

out the nearby spectrum as illustrated in Figure 1. For

example, if carriers exist at radio frequencies f1 and
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Fig. 1 Power spectral density of a non-contiguous signal af-
ter being applied through a nonlinear PA. Intermodulation
of the main carriers, x1 and x2, cause distortion throughout
the nearby spectrum. For example, the third-order intermod-
ulation distortion products (IMDs) are shown as IM3- and
IM3+. Each IMD is the sum of multiple nonlinearity compo-
nents. Here we show the contribution of each nonlinear order
up to the seventh in each of the IMD products.

f2, there will be third-order IMD products (IM3s) at

frequencies of 2f1 − f2 and 2f2 − f1. These spurious

emissions or “spurs” could interfere with other users or

with a device’s own receiver in a frequency-division du-

plexing scenario [7]. If severe enough, they may violate

emission requirements in standards such as the 3GPP

LTE-Advanced or other FCC standards [8,9,10,11].

The undesirable effects of the PA nonlinearities are

exacerbated by modern, multicarrier signals such as

OFDM due to their high peak-to-average power ratio

(PAPR) [6]. Techniques such as crest factor reduction

(CFR) can help reduce the PAPR of these signals by

many dB by limiting the peak power through clipping

and filtering. However, CFR doesn’t correct for the non-

linearities of the PA and may come at the cost of a

poorer error-vector magnitude [12].

In conjunction with CFR, to avoid violating the

strict emission requirements, devices may need to also

considerably back off their transmit power from the

nominal maximum value (e.g., +23 dBm in 3GPP LTE
uplink) so that the PA operates in a more linear region.

However, reducing the transmit power in order to sat-

isfy the emission mask will necessarily reduce the uplink

coverage and the energy efficiency of the PA. [13,14,15,

16,8,17].

An alternative to power back-off is digital predistor-

tion (DPD). DPD is a signal processing technique that

requires sampling the output of the PA to learn its non-

linearities and then applying an inverse of them in the

digital baseband signal to cancel the effect of the PA’s

nonlinearities. This can have the effect of dramatically

reducing spurious emissions and other nonlinear effects

[17].

However, to cancel a nonlinearity, we have to also be

able to observe it. For many carrier aggregation scenar-

ios, the carriers may be spaced hundreds of MHz apart.

This would lead to their IMD products being spaced

even farther apart so that the observation bandwidth

necessary to mitigate the spurious emissions becomes

infeasible for many analog-to-digital converters (ADCs)

and radio-frequency (RF) downconverters [18].

This issue is quickly becoming more prevalent in

that carrier aggregation is now almost commonplace.

Since its 2011 debut in LTE Release 10, it has made its

way from the standards down to commercial implemen-

tations. Many networks already provide support for up

to three carriers on the downlink [19], and many con-

sumer devices also support it with system-on-chips such

as the Snapdragon 835 supporting four downlink car-

riers and two uplink carriers [20]. However, most DPD

solutions do not completely consider the carrier aggre-

gation scenario. For example, in [18], the effects of in-

termodulation are considered, but only the bandwidth

around the main carrier is linearized.

To combat this, the authors introduced a sub-band

DPD method in [16]. However, the IM3 sub-bands were

considered separately while not taking into consider-

ation the mutual effect of each of the IM3 sub-band

DPDs over the other. An fpga implementation of this

solution has also been presented by the authors in [21]

demonstrating real-time processing of the adaptive DPD

learning solution.

An extension of the DPD solution in [16,21] was

proposed in [22], where an iterative learning algorithm

is used between the right and left IM3 sub-bands until

they are both properly suppressed. A WarpLab im-

plementation of an iterative version of this higher or-

der sub-band DPD was also presented with additional

ideas added to reduce the complexity and/or improve

the learning speed of the proposed DPD. Moreover, in

[23], higher nonlinearity orders were introduced in ad-

dition to the third-order nonlinearity processing in [16,

21].

In this paper, we extend the work from [22] to in-

clude processing for the fifth-order IMD products (IM5)

and include new interpolation based speed-up methods.

In summary, this paper includes:

– An iterative version of the previously proposed sub-

band DPD. This solution iterates between the differ-

ent spurious components, such as the IM3+, IM3-,

IM5+, and IM5- until a satisfactory performance is

achieved for each of them. This improves the flexi-

bility and potentially reduces complexity when com-

pared to a full-band DPD system in that learning

can be focused only on sub-bands that are in viola-

tion of emission limits and only a single RF feedback

path is necessary. This comes at a cost of additional

latency when compared to full-band DPD.

– The learning of the higher-order nonlinearities in

each sub-band is done sequentially, one basis func-

tion at a time in ascending order. This has the ad-

vantage of reducing the hardware complexity by es-
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sentially using one learning module for all the non-

linearity orders. An additional flexibility advantage

is that we can stop adding higher orders in the learn-

ing phase once a sufficient spurious emission sup-

pression is achieved, thus further reducing the com-

plexity. However, this comes at a cost of additional

latency.

– To improve the convergence speed of the proposed

solution, two modifications have been adopted in

this paper. The first is using a variable learning rate

during the DPD coefficient learning to have a fast

convergence during the initial phase of the learn-

ing while not sacrificing the steady-state error. The

second modification is that the DPD coefficients are

stored once they are converged. When transmitting,

the previous acts as a starting point for learning

anytime the same carrier configuration is transmit-

ted again. For transmissions with new configura-

tions, we can interpolate from stored values to help

start training from a value close to the final value.

– A WarpLab implementation is done demonstrating

effective performance of the proposed solution using

real hardware equipment.

This paper is organized as follows. In Section II,

the modeling of the spurious emissions at the IM3 sub-

bands and their mutual effects are presented. The pro-

posed iterative sub-band DPD processing is also intro-

duced in this section. In Section III, sequential learn-

ing of the DPD coefficients is proposed to reduce the

hardware complexity. In Section IV, two methods are

proposed for improving the convergence time. In Sec-

tion V, the overall DPD system flow is presented. In

Section VI, we show the results from testing the pro-

posed algorithms on the WarpLab platform. Finally,

in Section VII, we conclude the paper.

2 Spurious Component Modeling and Iterative

IM3 Sub-band DPD Processing

In [16], a decorrelation-based sub-band DPD was pro-

posed to mitigate the spurious emissions at the IM3±
sub-bands. However, the mutual effect of, for example,

the IM3+ sub-band DPD on the other sub-bands was

not taken into consideration. In this work, we propose

an iterative sub-band DPD that starts with linearizing

the most extreme sub-band, and then after applying

the sub-band DPD, the learning is switched to another

sub-band. Since each of the IM3± and IM5± sub-band

DPDs has an effect on the other sub-bands, the pro-

posed DPD iterates the learning between each of the

considered sub-bands until the spurious emissions are

sufficiently suppressed.

To further illustrate this behavior, a mathematical

analysis is introduced in this section to show the impact

of the IM3+ sub-band DPD on the IM3- sub-band when

a dual carrier signal is applied to a nonlinear PA. This

analysis will provide a theoretical foundation and moti-

vation for our work. For simplicity of the presentation,

we restrict our analysis in this section to third-order

nonlinearity. However, in the actual WarpLab exper-

iments, higher order nonlinearities are included in the

DPD processing. The analysis is carried out at compos-

ite baseband equivalent level, and the two component

carriers (CC’s) are assumed to be separated by 2fIF .

Thus, the composite baseband equivalent PA input and

output signals, x(n) and y(n), read

x(n) = x1(n)ej2π
fIF
fs

n + x2(n)e−j2π
fIF
fs

n, (1)

y(n) = β1x(n) + β3|x(n)|2x(n), (2)

where β1 and β3 are unknown PA coefficients, and x1(n)

and x2(n) are the baseband equivalents of the input

CCs. Through direct substitution of (1) in (2), the base-

band equivalent positive and negative IM3 terms read

yIM3+(n) = β3x
∗
2(n)x21(n), (3)

yIM3−(n) = β3x
∗
1(n)x22(n). (4)

The idea proposed in [16], for suppressing the IMD at

the IM3+ sub-band for example, is to inject a proper

additional low-power cancellation signal to (1), located

at three times fIF , such that spurious emission at the

IM3+ sub-band at the PA output is suppressed. Stem-

ming from the signal structure in (3), the injection sig-

nal is of the form x∗2(n)x21(n) but should be scaled prop-

erly with a complex DPD coefficient denoted here by α.

Thus, incorporating such DPD processing, the compos-

ite baseband equivalent PA input signal now reads

x̃(n) = x1(n)ej2π
fIF
fs

n + x2(n)e−j2π
fIF
fs

n

+ α(x∗2(n)x21(n))ej2π
3fIF
fs

n. (5)

Substituting now x̃(n) in (2), the IM3 components at

PA output read

ỹIM3+(n) = (β3 + β1α)x∗2(n)x21(n)

+ 2β3α(|x1(n)|2 + |x2(n)|2)x∗2(n)x21(n)

+ β3|α|2α|x1(n)|4|x2(n)|2x∗2(n)x21(n), (6)

ỹIM3−(n) = β3x
∗
1(n)x22(n) + 2β3α

∗|x1(n)|2x∗1(n)x22(n) .

(7)

It can be seen from (6) and (7) that the spurious emis-

sions at both IM3 sub-bands are dependent on the DPD

parameter α, despite the cancellation signal being in-

jected only at the IM3+ sub-band. In particular, an ad-

ditional fifth-order term which depends on α appears at
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the IM3- sub-band, which is shown inside the box in (7).

Despite the magnitude of this term being quite small,

it becomes considerable when the PA exhibits strong

nonlinearities. This represents the theoretical basis of

the mutual effect the IM3+ sub-band DPD has on the

two IM3 sub-bands.

In [16], the learning of the DPD parameter α, for the

IM3+ sub-band, for example, was formulated to min-

imize the correlation between the IMD at the consid-

ered IM3 sub-band and the distortion basis x∗2(n)x21(n).

This correlation minimization will eventually minimize

the distortion at the considered sub-band effectively, as

demonstrated in [16,21]. However, optimizing the DPD

parameter α to minimize the power at the IM3+ sub-

band, will affect the IM3- sub-band as well, as shown

in (6) and (7).

That is why an iterative sub-band DPD learning is

proposed in this paper in the case that multiple IMD

sub-bands are required to be mitigated effectively. First,

we start by learning the DPD coefficients for the most

extreme IMD sub-band, then after injecting its DPD

cancellation signal, the emissions at other sub-bands are

raised a little above their original levels due to the mu-

tual effect described earlier. In the case that the IM3+

is the most extreme, learning begins there. Then, the

DPD learning may switch to the IM3- sub-band, which

then also affects the IM3+ sub-band. An extra itera-

tion may be required at previously learned sub-bands so

that the spurious emissions are all reduced to appropri-

ate levels. This will be demonstrated in the WarpLab

experimental results in Section 6. This method also has

a practical, hardware benefit in that only a single RF

feedback path is necessary. The downconverter in the

feedback path will simply be re-tuned to each of the

sub-bands during training.

In the following sections, modifications are intro-

duced to the proposed sub-band DPD in order to re-

duce the complexity, improve the convergence speed,

or both. These aspects are particularly important for

mobile devices, which is the main scope of this work.

3 Sequential Learning of IM3 Sub-band DPD

Coefficients

A detailed analysis of the nonlinear distortions at the

IM3 and IM5 sub-band has been done in [23] when a

ninth-order PA is excited with a dual carrier signal as

in (1). We hereby present the distortion components up

to the ninth order at the IM3+ sub-band, which read

u3+3 (n) = x∗2(n)x21(n), (8)

u3+5 (n) = u+3 (n)× (2|x1(n)|2 + 3|x2(n)|2), (9)

u3+7 (n) = u+3 (n)× (3|x1(n)|4 + 6|x2(n)|4

+ 12|x1(n)|2|x2(n)|2), (10)

u3+9 (n) = u+3 (n)× (4|x1(n)|6 + 10|x2(n)|6

+ 30|x1(n)|4|x2(n)|2 + 40|x1(n)|2|x2(n)|4).

(11)

Similarly, for the IM3- sub-band, the distortions terms

u3−(n) are simply obtained by interchanging x1(n) and

x2(n) in (8)-(11). The distortion components up to the

ninth order at the IM5+ sub-band read

u5+5 (n) = (x∗2(n))2x31(n), (12)

u5+7 (n) = u5+5 (n)× (4|x1(n)|2 + 3|x2(n)|2), (13)

u5+9 (n) = u5+7 (n)× (10|x1(n)|4 + 6|x2(n)|4

+ 20|x1(n)|2|x2(n)|2). (14)

Similarly, for the IM5- sub-band, the distortions terms

u5−(n) are simply obtained by interchanging x1(n) and

x2(n).

The proposed DPD was based on injecting the above

basis functions at the IM3+ sub-band with proper scal-

ing such that the distortion at the IM3+ sub-band is

minimized. The composite baseband equivalent PA in-

put signal with Qth order sub-band DPD processing

thus reads

x̃(n) = x(n) +

 Q∑
q=3
q odd

α+
q,n ? u

+
q (n)

 ej2π 3fIF
fs

n (15)

The qth order DPD coefficients α+
q,n are obtained

such that the correlation is minimized between the non-

linear distortion observed at the PA output at the IM3+

sub-band, and the nonlinear basis functions in (8)-(11).

This is formulated as a simple block-adaptive learning

approach, where the following vector based notations

are defined

α+
q (m) = [α+

q,0(m) α+
q,1(m) ... α+

q,N (m)]T , (16)

ᾱ+(m) = [α+
3 (m)T α+

5 (m)T ... α+
Q(m)T ]T , (17)

u+
q (nm) = [u+q (nm) u+q (nm − 1) ... u+q (nm −N)]T ,

(18)

ū+(nm) = [u+
3 (nm)T u+

5 (nm)T ... u+
Q(nm)T ]T , (19)

Ū
+

(m) = [ū+(nm) ... ū+(nm +M − 1)], (20)

where N denotes the DPD filter memory depth, and

nm denotes the first sample of block m, with block size
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M . Consequently, the DPD block-adaptive parameter

learning update then reads

e+(m) = [ỹIM3+(nm) ... ỹIM3+(nm +M − 1)]T , (21)

ᾱ+(m+ 1) = ᾱ+(m)− µ Ū
+

(m)e+∗(m), (22)

where ỹIM3+(n) denotes the baseband equivalent ob-

servation of the PA output at the IM3+ sub-band with

the current DPD coefficients, and e+∗(m) refers to the

element-wise conjugated error signal vector, while Ū
+

(m)

denotes the filter input data matrix, all within the pro-

cessing block m. The obtained new DPD coefficients

ᾱ+(m + 1) are then applied to the next block of sam-

ples, as illustrated in [21].

In order to reduce the hardware complexity of the

DPD, a sequential learning of the DPD coefficients is

adopted in this paper instead of learning the DPD coef-

ficients for all the nonlinearity orders concurrently. The

idea is to first train the DPD for the third-order coef-

ficient, and after injecting the scaled third-order basis

function at the target IM3 sub-band, we start training

for the fifth-order coefficient using the residual IMD at

the target sub-band, and so on. This proposed learning

algorithm has two advantages. The first is that only

one hardware module needs to be used for training all

the DPD nonlinearity orders thus reducing the hard-

ware overhead due to DPD learning, which is an im-

portant aspect, especially for small devices. The sec-

ond advantage is that we can stop training the DPD

once a sufficient performance is achieved. For example,

if after doing the third-order training, the transmitter

already satisfies the emission limits, then there is no

need to train the DPD for higher orders. This will save

the complexity in both the DPD training phase and in

the actual DPD filtering as well.

However, for fast and smooth learning of the pro-

posed sub-band DPD coefficients, a basis function or-

thogonalization procedure was proposed earlier in [23].

In this paper, we use an orthogonalization procedure

which allows us to learn the DPD coefficients with dif-

ferent orders sequentially instead of concurrently. The

idea of the orthogonalization and learning procedure in

this paper is to generate the third-order basis function

and train the DPD for this basis function. Then the pro-

jection of the third-order basis function onto the fifth-

order basis function is subtracted from the fifth-order

basis function in order to obtain the new orthogonalized

fifth-order basis function, which is then used to train the

DPD for the fifth-order nonlinearity, and so on. Once

the spurious emissions satisfy the emission regulations,

the DPD training is stopped to save further higher-

order processing that may not be required, depending

on the transmission scenario and TX power level. Using

the standard vector dot product, the new orthogonal-

ized basis functions v±q (n) used for DPD learning thus

read

v±3 (n) = u±3 (n), (23)

v±5 (n) = u±5 (n)− dot(u±5 (n), v±3 (n))

||v±3 (n)||2
v±3 (n), (24)

v±7 (n) = u±7 (n)− dot(u±7 (n), v±3 (n))

||v±3 (n)||2
v±3 (n)

− dot(u±7 (n), v±5 (n))

||v±5 (n)||2
v±5 (n), (25)

v±9 (n) = u±9 (n)− dot(u±9 (n), v±3 (n))

||v±3 (n)||2
v±3 (n)

− dot(u±9 (n), v±5 (n))

||v±5 (n)||2
v±5 (n)

− dot(u±9 (n), v±7 (n))

||v±7 (n)||2
v±7 (n). (26)

Despite the reduced complexity that is achieved from

the proposed sequential DPD learning, the learning time

is now increased compared to the case when we learn

all the DPD nonlinearity orders concurrently. Two al-

gorithm modifications are thus proposed in the next

section for improving the convergence speed of the pro-

posed DPD.

4 Improving Convergence Speed of the

Proposed DPD

In the previous section, a trade-off was made between

hardware complexity and convergence time. We intro-

duce two methods to help relax the extra time that is

necessary to converge sequentially. Firstly, we modify

the learning rate, and secondly, we modify the starting

coefficients.

The first modification involves adjusting the learn-

ing rate µ in (22) depending on the residual correla-

tion between the observed spurious IMD at the PA out-

put and the nonlinear basis functions representing this

IMD. We allow µ to take on two values, µ1 and µ2

where µ1 > µ2. This ensures fast convergence while not

sacrificing the steady state error. We also establish a

threshold, γ, and a confidence metric, ν. The change

to µ is decided as shown in Algorithm 1. The thresh-

old, γ, and the confidence metric ν are chosen based on

experimental results over a wide range of carrier alloca-

tion scenarios and power levels. This helps ensure that

the basis functions and the spurious IMD have actually

decorrelated and that we do not switch µ too soon due

to fluctuations in the correlation.
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Fig. 2 Block diagram of the system architecture. Here, the mth nonlinear order IMi sub-band is being trained.

Algorithm 1: Adaptive µ update procedure.

count = 0;
µ = µ1;
while DPD Training do

Send block;
Receive block;
Calculate correlation;
if correlation < γ then

count = count+ 1;
end
if count ≥ ν then

µ = µ2;
end

end

The second modification involves adjusting the start-

ing point for the DPD training. In (22), ᾱ(0) = 0. If

we were to start closer to the final coefficient, there

would be less change necessary and hence the conver-

gence time could be much faster. We propose storing the

final coefficients from various transmit scenarios. Then,

whenever the same transmit scenario is used again, we

can retrain by starting from the previous value. The

previous coefficients should be similar, but retraining

allows us to overcome possible variations due to tem-

perature, power levels, etc.

If we slightly change a TX parameter such as the

gain of the PA so that we are in a new scenario, it

may not be necessary to start our training from zero.

Instead, as we collect DPD coefficients from a variety

of scenarios, we can perform a linear interpolation to

fill in the blanks. By starting the DPD training from

an interpolated guess, we can reduce the training time

for new scenarios.

5 Overall DPD System Flow

In this section, the overall flow of the proposed DPD

processing is summarized and presented, thus putting

all the bits and pieces together. In Figure 2, we in-

troduce the system architecture for the DPD learning.

This architecture shows the lower-level algorithm for

performing the DPD learning. This architecture will be
used in a method shown by the higher-level flow chart

in Fig. 3 which presents the overall DPD system pro-

cessing including the iterative IMD learning, sequen-

tial learning for the higher nonlinearity orders, and the

speed-up methods.

The system begins by applying stored coefficients

if they are available. If they are not available, the sys-

tem will interpolate from other previously stored val-

ues if possible or set the DPD coefficients to zero. The

system searches for spurious emissions in violation of a

threshold. If there is a violation, the system chooses the

most extreme violation to train on. We then choose the

lowest possible order to train on for that spur (third

for IM3, fifth for IM5, etc.) and perform a sub-band

DPD learning step after which the spurious emissions

are checked to see whether they already meet the emis-

sion requirements or not. If they do not satisfy emission

requirements, an additional nonlinearity order is added.

In all the learning phases, the DPD learning rate µ is

varied according to the residual correlation between the
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Fig. 3 System flow chart of the proposed iterative sub-band
DPD solution with speed-up methods. The speed-up methods
are indicated in bold letters.

observed IMD emissions and the corresponding basis

function(s), in order to improve the learning speed, as

explained in Algorithm 1.

Once the spurious emission is below the threshold,

we search for another spur that is above the limit. If

there is one, we will similarly train on that spur. We

then begin the search again realizing that it is possible

that a previously trained spur may no longer meet the

requirements due to the mutual effects of one DPD ap-

plication on the other. In the case that the DPD can

not sufficiently suppress the spurious emission below

the limit, we lower the transmit power and begin again.

Whenever all spurs are under the limit, the coefficients

can be stored in the memory. This serves as a start-

ing point for whenever the transmission scenarios are

repeated and for interpolation of other values. In the

next section, experimental results are presented using

the WarpLab setup demonstrating the effectiveness of

the proposed DPD solution.

6 WarpLab Results

The methods presented previously in the paper were

tested using the WarpLab framework on the Warpv3

board. Warp is a software-defined radio platform that

allows for rapid prototyping by interfacing with Mat-

lab to perform the baseband signal processing [24]. The

Warp board is similar to other SDR boards like the

popular Usrp boards from Ettus Research/National

Instruments in that they allow for rapid prototyping

via software such at Matlab. In order to study the

DPD performance, a PA is needed as part of the SDR

platform. The USRP does not contain an integrated

PA. However, the WARP platform contains a standard

on-board PA which makes it ideal for algorithm veri-

fication. A photo of the experimental setup is shown

in Fig. 4. For these experiments, the DPD processing

is done on the host CPU, but the broadcasting is done

on the Warp radio hardware which includes the Maxim

MAX2829 transceiver and the Anadigics AWL6951 PA.

6.1 IM3± Iterations

We began by testing the iterative method presented

in Section 2. An LTE uplink signal was generated in

Matlab with two non-contiguous carriers. One carrier

was 3 MHz, and the other was 1.4 MHz. Both carriers

had 64 QAM subcarrier modulation. The frequency do-

main results at each iteration are shown in Fig. 5. The

IM3+ spur was trained first using seventh-order DPD

processing, and suppression was achieved as evident in

the red curve. However, the IM3- spur magnitude was
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Fig. 4 The Warpv3 board interfaces with Matlab via an
Ethernet cable connected to a PC. The TX port is directly
connected to the RX port via a 30 dB directional coupler for
the feedback loop during training.
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Fig. 5 Normalized spectral result when using the iterative
method to suppress both the IM3+ and the IM3- spurs.

increased slightly which is consistent with (7). We then

trained the IM3- spur (yellow curve). Again, there was

a negative effect on the opposite spur, so we retrained

the IM3+ spur (purple curve). At this point, we were

satisfied with the performance and quit training.

6.2 Sequential Learning

As presented in Section 3, we then tested the sequen-

tial learning concept in WarpLab where we started

with low-order nonlinearities and added higher orders

as needed. In Fig. 6, we show an example for compari-

son using the previously developed concurrent training

method. We then switched to using the new sequential

method as seen in Fig. 7. For these two experiments,

the same LTE uplink signal and setup were used. We

see that all the coefficients converged to approximately

the same value. In Fig. 8, we show the results in the fre-

quency domain on the IM3+ spur. From these figures,
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Fig. 6 Example DPD coefficient convergence when concur-
rent training is used. By training multiple orders concurrently,
convergence occurs more rapidly at the price of additional
hardware complexity when compared to sequential learning.
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Fig. 7 WarpLab testing of sequential learning of DPD coef-
ficients. By training multiple orders sequentially, convergence
occurs more slowly with the benefit of less hardware complex-
ity when compared to concurrent learning.
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Fig. 8 PSD result when using the concurrent and sequen-
tially trained coefficients to suppress the IM3+ spur. This
shows nearly identical performance between the methods.

it is evident that the final result is equivalent and the

only difference is the amount of time it takes to train.
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Fig. 9 Correlation vs. block index during DPD training. As
training progresses the correlation decreases. Once it is below
the threshold for a total number of times greater than the
confidence metric, we change to the lower learning rate.

6.3 Speed-up Methods

The convergence time for sequential training is longer

than training in parallel as discussed earlier and shown

in Figures 6 and 7. To overcome this, we tested the

previously presented methods for speeding up the con-

vergence time.

We tested the adaptive µ concept presented by Al-

gorithm 1. In Fig. 9, we show the correlation between

the error block and the LMS reference block as the algo-

rithm converges. As the DPD coefficient convergences

(shown in blue), the correlation decreases (shown in or-

ange). When it is below the threshold (γ) of 0.05 (shown

in red) more than 5 times (the confidence metric, ν),

the learning rate changes from µ = 4 to µ = 0.7. This

change of µ is denoted by the dashed line. The values

were determined experimentally to what worked well

for a variety of scenarios as determined by the authors.

We then tested the concept of starting the DPD co-

efficient at a value based on the interpolation of other

trained values. When using WarpLab, there is an RF

gain parameter that sets the gain for the PA. This value

is an integer between zero and sixty-three with approx-

imately half a dB of gain per integer increase of this

parameter. We started with an RF gain parameter of

45 where we trained from a starting point of zero. Then,

we increased the RF gain to 55 where we again trained

from 0. At each, the coefficients converged smoothly

with sufficient suppression.

We then choose to work at an RF gain of 50. We lin-

early interpolated from the two values previously stored.

We then started training from this point. The training

is shown in Figure 10. Based off the sequential, LMS

training, a small update to the interpolation guess is

made.

Fig. 10 Convergence of the DPD coefficients after interpo-
lating from previously learned coefficients.

Table 1 Results of the intermediate training steps in the
multi sub-band DPD from Figure 11.

Training Step Result (dB)
Step Spur Order IM5- IM3- IM3+ IM5+

0 - - -38.7 -28.0 -27.9 -38.8
1 IM3+ 3 -37.3 -27.4 -34.4 -36.7
2 IM3+ 5 -37.2 -27.4 -36.9 -36.4
3 IM3- 3 -35.9 -33.9 -35.5 -34.9
4 IM3- 5 -35.0 -37.0 -35.8 -34.5
5 IM5+ 5 -34.5 -33.15 -34.5 -43.0
6 IM3- 5 -33.6 -37.1 -34.3 -44.4
7 IM5- 5 -42.9 -32.0 -33.5 -44.0
8 IM3- 5 -45.1 -37.6 -33.2 -44.0
9 IM3+ 3 -43.2 -32.3 -36.8 -42.6
10 IM3- 5 -44.6 -37.5 -37.0 -42.5

As we continue to transmit under various condi-

tions, the interpolations become more accurate. Even-
tually, a complete table of DPD coefficients is formed.

Then whenever we need to broadcast, we can simply

load the previous coefficients and quickly update them

to account for small fluctuations if needed.

6.4 Full System Verification

We then put everything together in WarpLab to fol-

low the process shown in Figure 3 where multiple spurs

need to be under a threshold. The previously discussed

speed-up methods are applied in the training process.

Two LTE carriers are broadcast. The two carriers are

set to be 1.4 MHz LTE uplink signals spaced 6 MHz

apart. This allowed the IM5 spurs to be observable in

the Warp board’s 40 MHz RF Bandwidth. For this ex-

periment, we set a threshold that the spurs must be 35

dB below the main carriers. The results are plotted in

Figure 11.
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Fig. 11 Normalized spectral result when using the iterative
method to make sure both IM3 and both IM5 spurious emis-
sions are below the threshold.

We assume this to be a new configuration where we

start with no know coefficients; every coefficient gets

initialized to zero. The non-contiguous signal is broad-

cast over the Warp board, and the spectrum for this is

shown as the blue curve in Figure 11. We identify the

IM3+ spur as the most severe and train on it. There

is some suppression, but it does not completely meet

the threshold. We train another order on the IM3+

spur and then continue the process until the final re-

sult shown in black is achieved. During the process,

the mutual effect of one DPD training negatively im-

pacts the other spurs and causes additional steps in the

multi sub-band DPD. All of the intermediate results

are shown Table 1.

7 Conclusion

In this paper, an iterative, multi sub-band DPD learn-

ing algorithm has been presented that can suppress the

IM3 and IM5 spurious emissions. A sequential learning

procedure where higher nonlinearity orders were added

one at a time was also presented in order to reduce the

complexity and add flexibility to the DPD solution. Ad-

ditionally, the convergence speed of the proposed DPD

has been improved by two methods, while not sacri-

ficing the DPD performance. The first used a variable

learning rate which switches from high speed to lower

speed once the loop becomes close to convergence. The

second method starts the DPD learning from previously

learned points and uses interpolation of past scenarios

to reduce convergence time. A WarpLab implementa-

tion of the proposed DPD solution has been demon-

strated showing excellent performance with up to 20

dB suppression in the undesired spurious emissions.
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