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Dynamic Response of Hazardous Liquid-Waste
Storage Tanks used in Nuclear Facilities

Shivakumar Padmanaban

Abstract

This dissertation presents a comprehensive study of the dynamic response of stor-
age tanks containing high-level radioactive wastes in nuclear facilities. Of the many
issues that are peculiar to these systems, four important ones have been studied.
Accordingly, the study is presented in four parts :

The first part deals with the dynamic response of flexible tanks that are placed
inside concrete vaults and are attached to the vaults both at the top and the bottom.
The tanks are presumed to be fixed at the base and supported by either a roller or a
hinge at the top. The response quantities examined include the natural frequencies
of vibration, the hydrodynamic pressures and the induced tank forces. The general
trends are established by comparing the response quantities for the top-constrained
systems with those for base-excited cantilever systems.

The second part deals with the response of rigid and flexible tanks containing
stratified liquids. The liquid is considered to be arranged in layers with varying layer
thicknesses and mass densities, or to be inhomogeneous with a continuously varying
mass density. In addition to the free vibrational sloshing characteristics of the liquid,
the responses examined include the vertical displacements at the free surface, and
the impulsive and convective components of the hydrodynamic wall pressures and
associated tank forces. A simplified analytical procedure that estimates the response
quantities for the layered systems from corresponding solutions for homogeneous sys-
tems is also presented.

The third part presents an exploratory study for assessing the effects of tank-base
flexibility on the response of vertically excited liquid storage tanks. A suitable model
of the tank-liquid-foundation-soil system is considered, and the natural frequencies,
the associated damping ratios and the induced pressures are studied for a wide range
of base-flexibility values.



The final part estimates the effects induced by the impact of the sloshing liquid
on the tank roof. Consideration is given not only to the effects that are induced on
the roof but also to the effects that are transferred to the side-wall. Both rectangular
and cylindrical systems are considered and the effect of changing the slope of the roof

on the induced impact effects is also studied.
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Chapter 1

Introduction

1.1 Overview

Deeply embedded and underground tanks storing high-level radioactive wastes are
critical components in nuclear facilities, and it is important that they be designed to
withstand safely the earthquakes to which they may be subjected. Failure of these
systems, which may typically contain up to a million gallons of waste, may have
catastrophic consequences, and their safety is of major concern at the present time.

There are two types of underground tanks currently in use, as shown in Fig. 1.1:
the single-shell tank which is composed of a steel liner adjoining a concrete vault; and
the double-shell system which is composed of a steel tank embedded in a nearly rigid
concrete vault. The tank in the latter case may be either free-standing or constrained
by the surrounding vault at the top.

Current understanding of the seismic response of liquid-containing upright cylin-
drical tanks is mainly derived from analyses of ground-supported, base-excited can-
tilever systems that contain homogeneous liquids. For a detailed account of this
knowledge, the reader is referred to the state-of-the art report by Veletsos [65] and
to the references of more recent publications by Haroun et al, [17, 18, 19], Lau and
Zeng [36], Veletsos et al [67, 69, 70] and Malhotra et al [40]. The rational analysis of
the underground tanks that are of current interest requires the solution of a number

of special problems :

1. Being embedded in the ground, the effects of soil-structure interaction may be
important and must be considered. For the single-shell tanks, the interaction
effects of interest are those of the liquid-tank system with the surrounding soil,
whereas for the double-shell systems, provision must also be made for the in-
teraction of the concrete vault with the enclosed steel tank.

2. Many of the steel tanks in the double-shell systems are connected at the top to
the surrounding concrete vault. The top constraint may affect significantly the



magnitude and distribution of the resulting hydrodynamic forces in the tank
and must be considered.

3. The contents of many of these tanks cannot adequately be modeled as homo-
geneous liquids but must be approximated as layered liquids with varying layer
thicknesses and mass densities or as inhomogeneous liquids with continuously
varying mass densities. The effects of this density stratification on the hydro-
dynamic effects may be important and need to be assessed.

4. The base plate of the tank-liquid system is usually assumed to be rigid. This
may not be true in many cases, particularly when the base-plate to soil stiffness
is small and the distribution of the superposed tank and liquid inertias is non-
uniform. It is necessary to evaluate the adequacy of the rigid-base assumption
and assess the effects of base-flexibility on the induced hydrodynamic response.

5. Surface-waves, with displacement amplitudes larger than the available free-
board, will impact the tank-roof. The impact pressures and forces that are
then transmitted to the side-wall of the tank can be significant and need to be

evaluated.

The embedded tank-liquid systems of current interest have also been the subject
of parallel studies at Rice University, [73, 74, 75]. Some of the issues related to item
1 have been addressed by these studies. Many of the remaining issues are addressed

in this dissertation.

1.2 Objectives

The principal aim of this study is to provide valuable insight into the various issues
governing the dynamic response of tanks storing high-level radioactive liquid wastes

in nuclear facilities. The specific objectives of this study are :

1. To determine the hydrodynamic response of top-constrained systems and high-
light the interrelationship of such systems with the corresponding response of
cantilever systems.

2. To assess the effects of density stratification on the hydrodynamic response
through comprehensive studies of both rigid and flexible systems containing
layered and inhomogeneous liquids.

3. To evaluate the effects of foundation flexibility on the hydrodynamic response

of vertically excited liquid storage tanks.



4, To evaluate the effects of surface waves impacting the tank-roof, with special
attention given to the magnitude and distribution of the resulting wall pressures

and tank forces.

The tanks are presumed to be of circular cross-section, uniform wall thickness and
to be fully anchored to a horizontally moving rigid base. The contained liquid is
considered to be incompressible, irrotational and inviscid, and only linear actions are
examined.

The focus of the proposed study is to formulate methods of analysis and to gen-
erate information and concepts with which the effects of the factors enumerated may
be evaluated rationally and cost-effectively. It is expected that the results of the
proposed studies will prove of value in the evaluation of the seismic safety of existing
tanks as well as in the design of new tanks. The scope is outlined briefly in the

following section.

1.3 Scope of Work
1.3.1 Response of Top-Constrained Tank-Liquid Systems

Chapter 2 deals with the hydrodynamic effects induced in tank-liquid systems that
are constrained at the top and excited simultaneously and similarly at the top and
bottom. The tanks are presumed to be fixed at the base and supported by either a
roller or a hinge at the top. The response quantities examined include the natural
frequencies of vibration, the hydrodynamic pressures and the induced tank forces.
The procedures formulated are used for evaluating both impulsive and convective
components of the tank forces. Extensions of procedures originally developed for
cantilever systems are used for this purpose. The general trends are established by
comparing the response quantities for the top-constrained systems with those for

base-excited cantilever systems.

1.3.2 Response of Layered/Inhomogeneous Tank-Liquid Systems

The response studies for these systems are presented in Chapters 3, 4, 5 and 6.

In Chapter 3, the sloshing action of layered liquids in rigid cylindrical and long
rectangular tanks is investigated considering both their free vibrational characteristics
and their response to a horizontal component of base shaking. Special attention is
given to the maximum surface displacement induced by the base motion. The analysis



is formulated for systems with N superimposed layers of different thicknesses and
densities, and it is illustrated by a numerical example. In addition, comprehensive
numerical data are presented for two-layered and some three-layered systems which
elucidate the underlying response mechanisms and the effects and relative importance
of the numerous parameters involved.

In Chapter 4, the hydrodynamic wall pressures and the associated tank forces
induced by horizontal ground shaking in rigid, vertical, circular cylindrical tanks
containing liquid layers of different thicknesses and mass densities are examined, and
comprehensive numerical solutions are presented for two-layered and some three-
layered systems. Both the impulsive and convective actions are studied.

Chapter 5 presents a simplified analytical procedure to assess the dynamic re-
sponse of both rigid and flexible layered tank-liquid systems. A simple concept is
proposed to estimate the natural frequencies of the dominant modes of vibration of
the flexible layered systems. The layered system in the proposed approach is repre-
sented as a series of sub-systems containing uniform, homogeneous liquids of different
heights and densities, and frequency expressions based on the Dunkerley procedure
are developed. The approximate frequency solutions are compared with rigorously
computed exact solutions over a wide range of parameters. The underlying concept
is then extended to rigid layered systems and the associated impulsive response co-
efficients are estimated by superposing corresponding solutions for the homogeneous
sub-systems.

In Chapter 6, a study of the response to horizontal ground shaking of rigid cylin-
drical tank containing an inviscid liquid with a continuous vertical variation in density
is presented. In addition to the free vibrational sloshing characteristics of the liquid,
the responses examined include the vertical displacements at the free surface, and
the impulsive and convective components of the hydrodynamic wall pressures and
associated tank forces. The equations of motion for the system are formulated for
an arbitrary variation in liquid density but the solutions presented are for a density
that increases exponentially from top to bottom. Comprehensive numerical data are
included which elucidate the underlying response mechanisms and the effects and rel-
ative importance of the various parameters involved. The solution for the continuous
density variation considered are also compared with the solutions previously reported
in Chapters 3 and 4, in which the liquid was modeled as a multi-layered, discrete

system.



1.3.3 Effects of Tank-Base Flexibility

In Chapter 7, an exploratory study for assessing the effects of tank-base flexibility on
the response of vertically excited liquid storage tanks is presented. The foundation is
modeled as a flexible circular plate supported on a soil represented by Winkler springs.
The effects of the tank wall, roof and participating soil inertias are represented by a
mass distributed along the periphery of the plate. Different conditions of rotational
constraint are considered at the junction of the wall and plate, including the limiting
cases of hinged and fixed edge-supports. The response quantities of interest include
the natural frequencies of the system, the associated mode shapes, the modal damping
ratios, and the hydrodynamic pressures that are induced on the tank-wall and base.
Results are obtained over a wide range of parameters to assess the effects of the

base-flexibility.

1.3.4 Effects of Roof-liquid Impact

The objective of Chapter 8 is to estimate the effects induced by the impact of the
sloshing liquid on the tank roof and those that are then transmitted to the side-wall.
The emphasis of the effort is to obtain conservative, yet realistic estimates of the
impact effects. The study is initially confined to two-dimensional motions in long,
rectangular tanks and the results are then used to obtain conservative estimates of
the corresponding effects in cylindrical tanks.

The kinematics of a design impact wave are defined such that the wave can be pre-
sumed to produce the maximum impact effects during the time history of the liquid
sloshing. The magnitude and temporal variation of the roof impact force due to the
design wave are then derived by using an impulse-momentum relation. The added
hydrodynamic mass of the impacted length of the roof plate is used in this computa-
tion. The effects are evaluated for both flat and sloping roofs and the validity of the
results is established by comparing them with limited experimental/empirical data
available in the literature [31, 64]. Procedures are then formulated for evaluating the
impact pressures and forces transmitted to the tank wall. Comprehensive numerical
solutions are finally presented for the roof and wall impact effects and their impor-
tance is ascertained by comparing them with previously established impulsive and

convective effects.
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Chapter 2

Dynamic Response of Top-Constrained Tanks

2.1 Introduction

Many tanks used to store liquid radioactive wastes in nuclear facilities are under-
ground and are embedded in vaults. Furthermore, they are attached to the vaults in
such a manner that during an earthquake, they are excited simultaneously at the top
and base. Fundamental to the analysis and design of the inner tank of these double-
shell systems is a thorough understanding of the hydrodynamic effects in constrained

systems. The objectives of this chapter are :

e To highlight the nature of the hydrodynamic effects induced in tanks that are
supported at the top and experience the same input motion at that level as at
the base; and

e To establish the interrelationship of the response of the top-constrained systems
to the well-established response of free-standing, cantilever systems.

The governing expressions are presented in a form similar to those for the cantilever
systems, and the effects of the top-constraint on the associated response coefficients
are assessed by suitably using/modifying existing methods and programs for cantilever
systems.

The response quantities of interest include the natural frequencies of the vibrating
tank-liquid system, the impulsive pressures exerted against the tank wall and base,
the shears at the top and the base, the base moment and the foundation moment.
Both impulsive and convective components of the induced tank forces are considered.
Selected numerical data are presented in order to elucidate the action of the top-
constraint, and the effects and relative importance of the numerous parameters that

influence the response.



2.2 System Considered

The system investigated is as shown in Fig. 2.1. It is an upright, circular, cylindrical
tank of radius R and is filled with liquid to a height H. The tank is presumed to be
bonded to a moving rigid base and to be supported by either a roller or a hinge at the
top. While a roller support allows axial displacement and prevents the tangential and
radial displacements, a hinge support does not permit displacements in any direction.
The liquid is considered to be incompressible and inviscid. Only linear actions are
examined. The mass densities of the tank and liquid are denoted by p and py, and the
modulus of elasticity and Poisson’s ratio for the tank material are denoted by E and
v, respectively. Points for the tank and contained liquid are defined by the cylindrical
coordinate system, r, § and z, as shown in Fig. 2.1.

The system is presumed to be excited by a uniform horizontal motion directed
along the 6 = 0 coordinate axis. The constrained system is excited simultaneously
and similarly at the base and at the level of the top-support. The acceleration of the
ground motion at any time ¢ is denoted by &,(t). The corresponding velocity and

displacement is denoted by &,(¢) and x,(t) respectively.

2.3 Method of Analysis

Since the convective component is associated with motions of significantly lower fre-
quencies than the natural frequencies of the tank-liquid system or the dominant
frequencies of the excitation, the sloshing frequencies and the convective pressures
remain practically unaffected by the flexibility of the tank wall or by the condition
of top-support and can be conveniently evaluated from well-established expressions
for rigid tanks, [65]. Hence it is only necessary to assess the impulsive frequencies
and the impulsive component of the hydrodynamic pressure for the constrained tank-
liquid systems. These are deduced herein by extending existing methods for flexible
cantilever systems, [82]. Both impulsive and convective components of the induced
shears and moments in the tank are, however, affected by the condition of top-support
and the methods developed in the study cater to both response components.

2.3.1 Natural Frequencies

The constrained system is replaced by a cantilever system that possesses springs of
large finite stiffnesses, k, per unit circumferential length of the shell at the top. The



number of springs are taken equal to the number of displacement components that
are curtailed at that level : 2 for a roller support and 3 for a hinge support.

The analysis then follows well-established principles for cantilever systems, ([55,
82]). The fundamental principles are briefly summarized here and the reader is re-
ferred to [55, 82] for more details. The basic scheme used is the Rayleigh Ritz method
in combination with Lagrange’s equations of motion. The axial, radial and tangential
components of displacement, u, v, and w, respectively, are expressed as linear combi-
nations of the natural modes of vibration of a uniform, cantilever beam, (z), or of
the first derivatives of the modes, 9'(z).

U= Z Ui(t)y'(2) cosd v = Z Viit)¥(2) sinf  w = Z Wi(t) ¥(z) cosd (2.1)

i=1 i=1
where Ui(t), Vi(t) and Wi(t) are time-dependent coefficients with units of length
indicating the degree of participation of each mode; Ny, Nz and N; are the number
of terms used in the series expressions.

Using the above expressions for the displacement components, the strain energy
of the shell is evaluated in a manner consistent with Flugge’s theory for cylindrical
shells. For the top-constrained systems considered, due consideration is also provided
for the strain energy, S,, stored in the springs located at the top of the tank,

Nz Na

So= [ k() Rdo = TRRY. S W)W WiH)bs(H)  (22)

i=1j=1
The total kinetic energy of the system which includes the contributions of the shell and
the liquid is then evaluated. The distributed inertia force of the shell and the impulsive
pressure on the wall of a rigid tank, are used to compute the virtual work performed
by the external forces. The differential equations of motion are then obtained by
repeated application of Lagrange’s equation and can be expressed in matrix form as

[M{§} + [Kc]{q} = —{P}&,(?) (2.3)

where [M] and [K.] represent the mass and stiffness matrices respectively, and {P}
represents the loading vector. {g} is the vector of displacement coefficients given by

{(I} = {UlaUZa"",UNnVIaV% """"" aVNz, WlaW2a """ aWNs}T (2'4)

While [M] and {P} remain unchanged for the cantilever and spring-supported sys-
tems, [I(.] for the top-constrained system is established as the sum of two matrices :
[K] for the cantilever tank and a matrix representing the effect of the top-support.
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Now, on neglecting the right hand side and expressing {¢(t)} in the form,

{q} = {q}e"' (2.5)
and substituting in equation (2.3), one obtains
[K{q} = wi[M]{4} (2.6)

This free-vibration problem is then solved to obtain the natural frequencies, fi, and

the corresponding modes of vibration, gp.

2.3.2 Impulsive Pressures

With the natural frequencies and modes established, the impulsive pressures are eval-
uated by using the modal superposition method. The steps followed are identical to
those for the cantilever systems, [55], and are not repeated here. The pressures exerted
on the wall and base of the constrained tank, p;(z, 8,t) and p;(r, 0,1) respectively, are
finally expressed in the form

pi(2,0,t) = i cu(2) pi R An(t) cost (2.7)

n=1

and
o0

pi(r,0,t) = > ca(r) pr R An(t) cost (2.8)

n=1
where c,(2) and ¢,(r) are dimensionless functions that define, respectively, the height-
wise and radial variations of the impulsive pressure component associated with the
n th natural mode of vibration of the constrained system; A,(t) is the instantaneous
pseudoacceleration of a similarly excited single-degree-of-freedom (SDOF) oscillator
with natural frequency and damping equal to those of the nth natural mode of vibra-

tion of the tank-liquid system and is given by

w b, . (-

Anlt) = 7= [ () eapl=Guon(t = )] sinfan(t = 7)) (2.9)
- n

The quantities w, and @, in equation (2.9) are the nth undamped and damped

circular natural frequencies of the constrained system, respectively; ¢, represents the

damping factor for the nth mode of vibration; and 7 is a dummy time variable.

The maximum values of A,(t) are the quantities normally displayed in a response

spectrum.
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2.3.3 Tank Forces

With the hydrodynamic pressures established, the induced tank forces can be com-
puted by means of a pseudo-static analysis. The maximum pressure is evaluated
and is applied as a static load, and the resulting tank forces can be computed by
means of an appropriate shell theory using any one of a number of existing computer
programs. Alternatively, the support reactions and internal forces at critical sections
may be computed by use of the beam and ring theories in a manner analogous to that
normally employed for cantilever tanks. The latter approach is used in the present
study. This requires the evaluation of the reactions at the level of the top-support.
The method of consistent deformation is applied herein to evaluate the top-support
reactions.

The top-constraint is removed so as to render the tank free at the top and the
spectral value of the impulsive pressure that was computed in the previous section is
applied as a static load on the cantilever system. The resulting displacements at the
top that were initially constrained by the top-support are then given by

{a:} = [K]7{£} (2.10)

where {A;} is the vector of top displacements associated with the impulsive load: it
comprises of the v and w displacement components for the roller case, and u, v and
w displacement components for the hinged case; [K] is the stiffness matrix for the
cantilever system; and {f;} is the load vector due to the applied impulsive pressure.

Unit loads along the circumnferential length of the shell at the top are then succes-
sively applied in each of the directions that were initially constrained and the resulting
displacement matrix, [6], is evaluated. The vector of top-support reactions, {r;}, is
then evaluated from

{ri} =67 {A)} (2.11)
With {r;} established, the shear and moment distributions along the tank-wall are
easily established from equilibrium considerations.

The top-reactions and the associated shears and moment distributions induced by
the convective pressure can be evaluated in a similar manner. The convective pressure,
evaluated herein from well-established rigid-tank expressions, is applied as a static
load on the cantilever system and the top displacement vector {A.} is evaluated. The

vector of associated top-support reactions is then given by

{re} =617 {Ac} (2.12)
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2.4 Numerical Solutions

2.4.1 Natural Frequencies

The natural frequency in cycles per second of the n th mode of vibration of the tank-

liquid system, fy, is conveniently expressed in the form

C. [E
fum o H\[; (2.13)

where C, is a dimensionless coefficient that depends on H/R, h/R, v, pi/p and the
condition of top-support.

The frequency coefficients for the first three modes of vibration are plotted in Fig.
2.2 as a function of H/R for three conditions of top-support. For these solutions, 2/R
= 0.001, » = 0.3 and p;/p = 0.127. The associated values of the frequency coefficients
are also listed in Table 2.1. The following trends can be observed:

o The effect of the top constraint is negligibly small for broad tanks with values
of H/R of the order of 0.3 to 0.5. The effect, however, increases in importance
for tall, slender tanks.

e The effect of the top constraint is greatest for the fundamental natural frequency
of the system, and of decreasing importance for the higher frequencies.

o There is practically no difference in the results obtained for the roller and hinge

conditions of top support.

Additional results for tanks having clamped top-boundaries (fixed against rotation)
have been presented in [66] and again it has been demonstrated that the natural
frequency coefficients are quite insensitive to the degree of top-constraint.

Further insight into the greater importance of the top-constraint on the fundamen-
tal natural frequencies of tanks of higher slenderness ratios may be obtained from an
examination of the natural modes of vibration. Figs. 2.3 and 2.4 show the configura-
tions of the displacement components, , v and w, for cantilever and top-constrained
tanks with H/R = 0.5 and 3.0 respectively. It is seen that the broad cantilever tanks
exhibit shear-beam type behavior and the top displacements are quite small. On the
other hand, tanks with higher slenderness ratios exhibit flexural-beam type behav-
jor and the top displacements are substantial. The introduction of a top constraint
could, therefore, be expected to have inconsequential effects on the natural modes
and associated frequencies for broad tanks. On the other hand, it could affect the

corresponding quantities for slender tanks appreciably.
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2.4.2 Impulsive Pressures

The distribution functions for the impulsive pressures, c,(z) and cy(r), are a function
of H/R, h/R, pi/p, v and the condition of support at the top. In the following discus-
sion, the contribution of only the fundamental mode of vibration will be considered.
Based on previous studies of cantilever systems, this simplification is deemed to be
totally acceptable for realistic tanks with values of H/R < 1.

The function ¢;(z) for the fundamental impulsive mode of vibration of tanks with
either a roller or a hinge at the top are compared with those for cantilever tanks in
Fig. 2.5. Results for rigid tanks are also shown in the figure. Three values of H/R in
the range between 0.5 and 3.0 are considered. Similar results for ¢;(r) are presented
in Fig. 2.6. The following trends are worthy of note:

e There is no significant difference in the results obtained for the roller and hinge
conditions of support. In fact, the curves for the two cases are practically
indistinguishable from each other.

e For broad tanks with values of H/R of the order of 0.5, the wall pressure
distributions are practically independent of the degree of the top-constraint and
the pressure distributions for all three conditions of top-support and for rigid
tanks are essentially the same. On the other hand, for tall, slender tanks with
H/R of the order of 3.0, the pressure values for tanks with free and constrained
top boundaries are significantly different.

e The solutions for the top-constrained tanks are closer to the rigid tank solu-
tions than those of the cantilever tanks. It follows that the impulsive pressure
distributions for the flexible constrained tanks may be approximated by those
of rigid tanks over a wider range of H/R values than is acceptable for flexible

cantilever tanks.

2.4.3 Tank Forces

Total Force

The instantaneous value of the total hydrodynamic force exerted against the tank
wall, P(t), may be expressed by the sums of a series of impulsive and convective

components as

P(t) = i my An(t) + i Men Aen () (2.14)

n=1
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where m,, represents the effective mass of the tank-liquid system vibrating in its
nth impulsive mode and m., is the mass associated with the n th sloshing mode of
vibration of the liquid.

The values of my normalized with respect to the total liquid mass, m; = piwr R*H,
are plotted in Fig. 2.7 for water-filled steel tanks constrained, respectively, by a
roller and hinge at the top. Normalized values of m. obtained by integrating the
corresponding rigid tank pressure distributions are also shown in the figure. For
the impulsive component, it is seen that there are no significant differences in the
results for the two conditions of top-support. Furthermore, the results are relatively
independent of wall-flexibility and of the condition of top-support for the broad tanks,
while for taller tanks, the values for the top-constrained systems are closer to the
values of m, for rigid tanks than the corresponding cantilever systems.

Base Shear

The instantaneous value of the base shear, @;(t), may be expressed in the form

Ot) = 3 aumnAn(t) + 3 Cenonen(?) (2.15)

n=1 n=1

in which o, and o, are dimensionless factors representing the contributions of the
nth impulsive and convective modes respectively.

The values of a; and ay for the water-filled steel tanks of current interest are
presented in Table 2.2 for both roller and hinge conditions of top-support. It is seen
that a; is approximately 0.60 indicating that, for both conditions of top-support,
the fundamental impulsive component of the base shear is roughly 60 percent of the
corresponding component of the total force exerted on the tank wall. Similarly, the
values of o, indicate that the fundamental convective component of the base shear
varies from 20 percent to 50 percent of the corresponding component of the total force.

The shear at the top is clearly equal to the difference between the total hydrodynamic

wall force and the base shear.

Moments

The instantaneous value of the wall moment, M(n,t), may be expressed in the form

M(n,t) = on:ldn(n)m,HAn(t) + idm(n)mlHAcn(t) (2.16)
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in which d,(n) and d.(n) are dimensionless factors representing the heightwise dis-
tributions of the nth impulsive and convective wall moments respectively.
The instantaneous value of the foundation moment, M'(t), may be similarly ex-

pressed as
M) = dimuHAL ) + Y doymiHAL(t) (2.17)

n=1 n=1
in which d, and d,, are the n th impulsive and convective foundation moment coeffi-
cients respectively.

Values of the fundamental impulsive and convective moment coefficients at critical
sections of cantilever and top-constrained tanks are presented in Table 2.3. Three
values of H/R in the range from 0.5 to 3.0 are considered. The moment coefficients
at the top and base, the maximum values (denoted by the subscript m) and their
associated locations H,,, and the foundation moment coeflicients are presented in the
table. Additionally, the heightwise distributions of di(#) for the systems are compared
in Fig. 2.8 for the cantilever and top-supported systems. The values presented, like
those in Tables 2.1 and 2.2, are for steel tanks with /R = 0.001, p;/p = 0.127, and
v = 0.3. Examination of the data presented reveals the following:

o The maximum values of the wall moment coefficients for tanks with a roller
support at the top are, as might be expected, smaller than those for similarly
excited cantilever tanks of the same proportions. By contrast, for broad tanks,
the corresponding values for hinged tanks are either of the same order of mag-

nitude or significantly larger than those for cantilever tanks.

e The heightwise distributions of the bending moments for the top-constrained
tanks are more nearly uniform than for the corresponding cantilever tanks.
Furthermore, whereas the absolute maximum values of the moment for the
cantilever tanks occur at the base, those for the top-constrained tanks occur at
or close to mid height.

e For a prescribed direction of the hydrodynamic wall pressure, the maximum
bending moments in top-constrained tanks act in a direction opposite to that
for the corresponding cantilever tanks. This fact is indicated by the opposite

signs of the data presented in Table 2.3.

Large moment coefficients for broad tanks that are hinge supported at the top are
Poisson’s ratio related, and may be explained as follows. Because of the Poisson’s
ratio effect, a tensile circumferential (hoop) force in the tank wall tends to induce axial
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shortening of the wall, whereas a compressive circumferential force tends to induce
axial extension. For a tank that is fully constrained against axial movements, these
displacements naturally cannot occur. As a result, the circumferential tensile forces
caused by the hydrodynamic wall pressures over half of the tank induce tensile axial
forces over that half, and the circumferential compressive forces over the opposite half
induce compressive axial forces in that half. The net effect of these axial forces is a
bending moment over sections normal to the tank axis. Furthermore, the direction
of this moment is opposite to that of the moment induced in a similarly excited
cantilever tank.

It should be realized that, for axially constrained tanks, Poisson’s ratio-related
axial forces also develop under hydrostatic loads, and that these forces must be con-
sidered in assessing the consequences of the axial forces induced by the hydrodynamic
actions. For the tank proportions and intensities of ground shaking normally encoun-
tered in practice, the uniform axial tensile forces induced by the hydrostatic wall
pressures are generally larger than the corresponding tensile and compressive forces
induced by the hydrodynamic pressures. The net effect under these conditions would
be a reduction in the magnitudes of the compressive axial forces compared to those
developed in a free-standing cantilever tank, and a consequent reduction in the ten-

dency for wall buckling.

2.5 Conclusions

The constrained tanks differ from the cantilever tanks in three respects:

e They are stiffer systems, with higher natural frequencies and different modes
of vibration. The increased frequencies affect the ratios of the maximum re-
sponse pseudoaccelerations to the maximum ground acceleration, and, hence,
the magnitudes of the resulting hydrodynamic pressures and tank forces.

o The distributions of the hydrodynamic pressures also are different in the two
cases. However, these differences are not significant for broad tanks with values
of H/R of the order of unity or less.

o Whereas the hydrodynamic pressures for cantilever tanks are resisted entirely
at the base, those for the constrained systems are resisted partly at the top and
partly at the base. In particular, the top support may reduce significantly the
magnitudes of the base forces which typically control the design of cantilever
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systems. These reductions will, in turn, decrease the tendencies for wall buckling
and base uplifting.
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Table 2.1: Values of frequency coefficients for first three modes of vibra-
tion for different values of H/R and top-support conditions;
Systems with A/R = 0.001, » = 0.3 and p;/p = 0.127

Values of C; Values of Cy Values of C3
H/R | Free | Roller | Hinge | Free | Roller | Hinge | Free | Roller | Hinge
0.3 |0.0600 | 0.0613 | 0.0634 | 0.1035 | 0.1048 | 0.1051 | 0.1344 | 0.1351 | 0.1353
0.4 | 0.0666 | 0.0690 | 0.0712 | 0.1171 | 0.1196 | 0.1200 | 0.1521 | 0.1528 | 0.1531
0.5 |0.0719 | 0.0758 | 0.0781 | 0.1285 | 0.1326 | 0.1330 | 0.1690 | 0.1701 | 0.1703
0.6 | 0.0762 { 0.0820 | 0.0843 | 0.1381 | 0.1440 | 0.1444 | 0.1843 | 0.1859 | 0.1862
0.7 |0.0799 | 0.0880 | 0.0901 | 0.1462 | 0.1542 | 0.1545 | 0.1981 | 0.2003 | 0.2007
0.8 | 0.0829 | 0.0937 | 0.0957 | 0.1534 | 0.1634 | 0.1637 | 0.2106 | 0.2135 | 0.2139
0.9 |0.0855 | 0.0993 | 0.1011 | 0.1598 | 0.1718 | 0.1720 | 0.2220 | 0.2257 | 0.2262
1.0 |0.0875 | 0.1047 | 0.1062 | 0.1657 | 0.1795 | 0.1796 | 0.2324 | 0.2370 | 0.2376
1.2 |0.0903 | 0.1148 | 0.1158 { 0.1765 | 0.1932 | 0.1933 | 0.2509 | 0.2575 | 0.2582
1.4 |0.0916 | 0.1239 | 0.1243 | 0.1864 | 0.2054 | 0.2054 | 0.2667 | 0.2756 | 0.2764
1.6 |0.0917 | 0.1316 | 0.1317 | 0.1956 | 0.2165 | 0.2165 | 0.2803 | 0.2918 | 0.2926
1.8 |0.0910 | 0.1379 | 0.1379 | 0.2040 | 0.2268 | 0.2268 | 0.2920 | 0.3064 | 0.3073
2.0 |0.0897 | 0.1430 | 0.1431 | 0.2115 | 0.2365 | 0.2365 | 0.3024 | 0.3197 | 0.3206
2.2 |0.0879 | 0.1468 | 0.1474 | 0.2180 | 0.2456 | 0.2457 | 0.3117 | 0.3319 | 0.3328
2.4 |0.0859 | 0.1496 | 0.1508 | 0.2233 | 0.2542 | 0.2543 | 0.3201 | 0.3432 | 0.3440
2.6 |0.0838 | 0.1515 | 0.1536 | 0.2275 | 0.2622 | 0.2623 | 0.3280 | 0.3537 | 0.3545
2.8 |0.0815 | 0.1527 | 0.1557 | 0.2304 | 0.2696 | 0.2697 | 0.3355 | 0.3636 | 0.3643
3.0 |0.0792 | 0.1533 | 0.1574 | 0.2323 | 0.2764 | 0.2765 | 0.3426 | 0.3729 | 0.3736
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Table 2.2: Values of coefficients a; and a. in expressions for impulsive
and convective components of base shear in top-constrained
steel tanks; Systems with A/R = 0.001, » = 0.3 and p;/p =

0.127

Top-Support Condition

H/R Roller Hinge
(251 Qe (451 Qc1
0.3 | 0.567 | 0.449 | 0.622 | 0.499
0.4 | 0.569 | 0.438 | 0.623 | 0.489
0.5 | 0.571 | 0.428 | 0.624 | 0.478
0.6 | 0.573 | 0.418 | 0.624 | 0.465
0.7 | 0.575 | 0.407 | 0.623 | 0.452
0.8 | 0.577 | 0.395 | 0.622 | 0.437
0.9 | 0.579 | 0.383 | 0.620 | 0.423
1.0 | 0.581|0.372 | 0.618 | 0.408
1.2 | 0.585 | 0.348 | 0.612 | 0.377
1.4 | 0.588 | 0.326 | 0.606 | 0.348
1.6 | 0.590 | 0.306 | 0.599 | 0.321
1.8 | 0.592 | 0.287 | 0.590 | 0.295
2.0 |0.593 | 0.270 | 0.582 | 0.272
2.2 10.595 | 0.255 | 0.576 | 0.252
2.4 10.596 | 0.242 | 0.568 | 0.233
2.6 |0.598 | 0.230 | 0.562 | 0.216
2.8 | 0.600 | 0.218 | 0.554 | 0.200
3.0 | 0.601 | 0.208 | 0.548 | 0.186
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Table 2.3: Values of impulsive and convective moment coefficients at
critical sections of cantilever and top-constrained steel tanks;
Systems with 2/R = 0.001, » = 0.3 and p;/p = 0.127

H/R =05 [ H/R =1.0 | H/R = 3.0
Top-support condition
Coeff. | Tree [ Roller | Hinge || Free | Roller | Hinge || Free | Roller | Hinge
Impulsive Component
di(1) 0 0 0.310 0 0 0.110 0 0 -0.051
dy(0) {-0.115 | 0.015 | 0.310 | -0.224 { 0.021 | 0.111 | -0.371 | -0.041 | -0.050
(dy)m | -0.115 | 0.048 | 0.349 | -0.224 | 0.084 | 0.183 | -0.371 | 0.094 | 0.065
E}}ﬂ‘- 0 0.40 | 0.45 0 0.40 | 0.45 0 0.50 | 0.50
d, -0.434 | -0.304 | -0.009 || -0.399 [ -0.155 | -0.064 || -0.389 | -0.059 | -0.069
Convective Component
de1 (1) 0 0 0.697 0 0 0.090 0 0 -0.004
d.1(0) | -0.352 | 0.026 | 0.681 | -0.262 | 0.010 | 0.085 || -0.124 | -0.004 | -0.005
(de1)m | -0.352 | 0.094 | 0.774 | -0.262 | 0.056 | 0.139 || -0.124 | 0.013 | 0.010
Ham | 0 | 050 | 0.55 0 | 055 | 0.55 0 | 070 | 0.70
d, |-1.030 |-0.653 | 0.002 (| -0.338 | -0.066 | 0.009 | -0.125 | -0.005 | -0.005
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Figure 2.1 : Top-constrained tank-liquid system considered
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Figure 2.2 Natural frequency coefficients for first three modes
of vibration of roofless steel tanks filled with water;
h/R =0.001, v=10.3, p/p = 0.127
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Figure 2.7 Total impulsive load for rigid tanks compared with corre-
sponding load for the fundamental mode of vibration of
flexible tanks; flexibility-independent convective load
associated with fundamental sloshing mode also shown.
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Chapter 3

Sloshing Response of Layered Liquids in Rigid
Tanks

3.1 Introduction

Current interest in the response of tanks with layered liquids is motivated by two
factors: (1) Many waste storage tanks in nuclear facilities contain two or more layers
of liquid or liquid-like material of different densities; and (2) recent processing for the
recovery and decontamination of discharge fuel materials is typically carried out in
tanks containing two-layered liquids, [8].

Prior to the present study, the only known study of the sloshing response of tanks
with layered liquids was the one reported by Tang et al [60], who examined the free
vibrational characteristics and the surface sloshing action of a two-layered liquid in a
rigid, circular cylindrical tank subjected to a horizontal component of base shaking.
The solutions presented, however, have been based on an incorrect characterization
of the pressure condition at the interface of the two liquids, and the accuracy of the
reported expressions and numerical results is questionable.

The objectives of this chapter are: (1) To reformulate the analysis for the sloshing
response, considering the general case of a system with NV homogeneous liquid layers of
different thicknesses and mass densities; and (2) Through comprehensive parametric
studies of systems with two and three layers, to elucidate the underlying response
mechanisms and the effects and relative importance of the parameters involved.

In addition to circular cylindrical tanks, long rectangular tanks are examined, and
the interrelationship of the responses of the two systems is identified. The response
quantities investigated include the natural modes of vibration of the liquid, the as-
sociated frequencies, and the sloshing motions induced by a horizontal component of
base shaking,.

For all the solutions reported, the tanks are presumed to be rigid. However, inas-
much as the sloshing action of the liquid is normally associated with significantly
longer periods of vibration than the dominant periods of the earthquake ground mo-
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tions, based on previous analyses of tanks with a homogeneous liquid [65, 69], the
results are expected to be also applicable to flexible tanks that are either rigidly or

flexibly supported at the base.

3.2 Systems Considered

The systems investigated are shown in Fig. 3.1. They are rigid, vertical tanks that
are filled to a height H with two or more layers of liquid of different thicknesses and
densities. The tanks are either rectangular, of width 2R in one direction and infinite
extent in the normal direction as shown in part (a) of the figure, or cylindrical, with
a circular cross section of radius R as shown in part (b) of the figure, and they are
presumed to be anchored to a rigid moving base. The liquids are considered to be
incompressible, irrotational and inviscid, and only linear actions are examined.

The liquid layers are numbered sequentially starting with 1 at the lowermost or
bottom layer and terminating with N at the uppermost or top layer. The mass density
and height of the j th layer are denoted by p; and Hj, respectively. The values of p;
are considered to decrease with increasing j. Points within the j th layer of the long
rectangular system are defined by the local Cartesian coordinates, = and z;, shown in
part (a) of Fig. 3.1, and those for the cylindrical system are defined by the cylindrical
coordinates, r, 0, z;, shown in part (b) of the figure.

The ground motion is considered to be horizontal and uniform and to be directed
along the z- or § = 0 coordinate axis. The acceleration of the ground motion at
any time, ¢, is denoted by &,(t), and the corresponding velocity and displacement are

denoted by &,4(t) and z4(t), respectively.

3.3 Fundamental Relations

The flow field in the j th layer must satisfy Laplace’s equation,
Vi =0 (3.1)

in which ¢; = a velocity potential function of time and the position coordinates, and

the operator V? is defined by

V2—i2.+ g2

51 * 57 (3.2)
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in the rectangular coordinate system, and by

9* 10 109> ©o°

o o Troe t o (3:3)

V=

in the cylindrical coordinate system. If vj;, is the instantaneous value of the velocity
of an arbitrary particle in the j th layer in the direction of a generalized n-coordinate,

then
o ”

Oin = on

and the corresponding hydrodynamic pressure is

0¢;
pj = Pj-a“tl (3.5)
The solution of equation (3.1) must satisfy the following boundary conditions:

1. At the tank base, the vertical component for the liquid velocity must vanish;

01 _
<527)z,=o =0 (3.6)

2. Along the tank wall, the radial or normal velocity component of both the tank
and liquid must equal the corresponding component of the ground motion. For

accordingly,

the long rectangular system, this requires that

whereas for the cylindrical system, it requires that
_9; = &4(t) cosh (3.8)
or ) _n

3. At the free liquid surface, the following linearized pressure boundary condition

must be satisfied
(¢N -9 dN) =0 (3.9)

:ny=Hpn
where dy represents the vertical surface displacement, a dot superscript denotes
differentiation with respect to time, and g = the gravitational acceleration. The

origin of this equation is identified under item 4.



32

4, At the interface of a pair of layers, the vertical velocity of the liquid must be

a¢j) (a¢j+1)
- = | — 3.10
(aZJ zj=H; azj-}-l 2j41=0 ( )

Additionally, the total pressure (hydrodynamic plus the increment due to the
vertical displacement at the interface) must be continuous. If d; represents the
instantaneous vertical displacement of an arbitrary point at the upper interface
of the j th layer measured from the position of static equilibrium, then assuming
that the displacements are small and that the inertia of the interfacial wave is
negligible, the pressure condition may be written in the form indicated in Lamb

[35], as

continuous; accordingly,

pi (#5) — pi9dj = pin ("Bf“)zﬁ,:o — pi+1 9 d; (3.11)

Equation (3.9) may be deduced from equation (3.11) merely by letting j = N

zj=Hj

and pj41 = 0.

It is clear from equation (3.11) that while the total pressures are continuous, the
hydrodynamic components are discontinuous at the interfaces of layers of different
densities. In the studies of Tang et al [56, 60], the contribution of the pressure incre-
ment due to the interfacial displacement was not considered, and the hydrodynamic
component of the pressure was taken as continuous. The consequences of this ap-

proximation are identified in later sections.

3.4 General Approach

The solution of equation (3.1) is obtained in a manner analogous to that employed
by Abramson [1] and Bauer [5] in their studies of tanks containing a homogeneous

liquid, by the superposition of two component solutions as
¢; = X;j +¥; (3.12)

In this expression, y; = a velocity potential function associated with the rigid body
motion of the tank walls, and ; = a corresponding function providing for the relative
motion of the contained liquid and the tank walls. The function x; represents the
solution obtained when both the upper and lower surfaces of the j th liquid layer are
rigidly capped, whereas 1; represents a corrective solution which accounts for the
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difference between the actual and fully constrained conditions at these boundaries. It
is important to realize that these component solutions are different from the so-called
impulsive and convective solutions used by Housner [24], Veletsos et al [65, 72] and
Haroun and Housner [20] in their studies of tanks with homogeneous liquids.

3.4.1 Solution for x;

For the long rectangular system,

Ox; .
) (3.13)
whereas for the cylindrical system,
Ox; .
a—r’ = —&4(t) cosd (3.14)
On integrating these expressions, one obtains
X; = —ig(t) e (3.15)
for the rectangular system, and
Xj = —ig(t) r cosd (3.16)

for the cylindrical system.

It is observed that the functions x; are independent of the physical properties
of the liquid layers, and will henceforth be denoted by x. Furthermore, considering
that equations (3.15) and (3.16) are independent of the vertical coordinates zj, it
follows from equations (3.4) and (3.5) that x is associated with no vertical velocities
or displacements but represents simply a finite-sized pressure field which increases

linearly in the horizontal direction.

3.4.2 Solution for 7;

The function t; must satisfy Laplaces’s equation (3.1), the solution of which may be
obtained by the method of separation of variables as follows. For the long rectangular

system,
i = Z(z) X(2) T(t) (3.17)

and for the cylindrical system,

;= Z(z;) R(r) T(t) cosf (3.18)
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in which X, R, Z and T are functions of z, r, z; and t, respectively.

Inasmuch as the boundary conditions along the walls are satisfied exactly by the
potential function x, the corresponding conditions for 1; are zero at these boundaries.
On substituting equations (3.17) and (3.18) into Laplace’s equation and making use
of the homogeneous boundary conditions along the walls, the following expressions

are obtained for ;. For the long rectangular system,

i = D [Pnj(t) coshAmn; + Qm,;(t) sinkAmn;] sinAné (3.19)

m=1
in which ¢ = ¢/R, n; = z;/R,

Am = (2m — 1)-’25 (3.20)

and Py, ;(t) and @m,;(t) are time-dependent coefficients that must be determined from
the conditions at the lower and upper boundaries of the j th layer. These boundaries
will henceforth be referred to as the (j — 1) th and j th interfaces, respectively. The
corresponding expression for the cylindrical tank is

i = D [Pmi(t) coshAmn; + Qm,;(t) sinhAmn;] J1 (Amé) cosb (3.21)

m=1
in which € now stands for the normalized radial distance, r/R; J; = the Bessel function
of the first kind and first order; and A,, = the mth zero of the first derivative of J;,

i.e., the m th root of J;(A) = 0. The first three of these roots are
A = 1.841 A2 = 5.331 Az = 8.536 (3.22)

Note that the meaning of ¢ and the values of A, Pn j(t) and Qn, ;(t) are different in
equations (3.19) and (3.21).

Before proceeding to the formulation of the equations of motion, it should be
noted that if equation (3.12) is substituted into equation (3.11) and the resulting
terms are rearranged and normalized with respect to p;, the pressure condition for
the j th interface may be expressed in terms of the potential functions #; and x as

Z‘f‘ﬁf‘@' [ﬁ_&ﬂJgdﬁ_[&_&ﬂ]/\a (3.23)

4 '/’j+1— P1 £1 M 51
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3.4.3 Equations of Motion for System

In formulating the equations of motion for the multi-layered system, it is desirable
to use as generalized coordinates the modal values of the vertical displacements at
the junctions of the tank wall and the interfaces of the liquid layers, rather than
the quantities Py ; and @Qm;. To this end, let Dy, ;(t) be the displacement at the
junction of the wall and the j th interface when the system is vibrating in its mth
horizontal mode of vibration. For the cylindrical tanks, for which these displacements
are functions of the circumferential coordinate 0, D,y ;(t) refers to the value at 6 =
0. The sloshing displacement d;(¢,t) for an arbitrary point at the j th interface may

then be expressed as

sm/\mf
d; D, .
.7(6’ rg:l 1.7 SznA (3 24)
for the long rectangular system, and as
d;(€,0,1) Z Do i( Jl(Amﬁ) cosh (3.25)

Ji(Am)

for the cylindrical system. That the functions of the £-coordinate in these expressions
are the same as those in the corresponding expressions for v; follows from the fact
that d;(£,t) is the time integral of the velocity v;(¢,¢), which, in turn, is related to
1; through equation (3.4). The normalizing functions sindn, and Ji(An) are needed
so that, when evaluated at £ = 1 and 0 = 0, the component terms in equations (3.24)
and (3.25) reduce to Dy ;(t). It should be recalled that the values of A for the
rectangular system are defined by equation (3.20), whereas those for the cylindrical
system are defined by the roots of J;(A) = 0.

In order to relate Py ;(t) and Qm;j(t) to Dm;(t), the vertical velocities of the
liquid at the j th and (j — 1) th interfaces evaluated from equation (3.4) are equated
to those obtained by differentiating with respect to time the interfacial displacements
defined by equations (3.24) and (3.25). On solving the resulting equations and back
substituting, the potential function 1; may be rewritten as

& R [Dwg(t) coshAmy = Dmjo1(t) coshhm(e; —1;)] sinAmé
bi== 2 Am | sinhAna; | sinAn (3.26)

m=1
for the long rectangular system, and as

_ i R [ Do i(t) c08hAm7; = Dpje1(t) coshdm (o — 1) ] J1 (Amé)

5| S Ama; | T

(3.27)
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for the cylindrical system. In these expressions, o; = H;/R.

The equation of motion for the j th interface of the rectangular system may now be
derived from equation (3.23) by substituting the expressions for x, d; and %; defined
by equations (3.15), (3.24) and (3.26), respectively. The left-hand member of the
expression obtained in this manner involves an infinite sum of horizontal sinusoidal
modes. On multiplying both sides of this expression by sinAn, £ and integrating from
0 to 1, all but one of the terms on the left side cancel because of the orthogonality of

the trigonometric functions involved, and the equation reduces to

Aji-1 Di,j-1 + Ajj Dm,j + Ajjs1 Dmjjsr + %g B;; Dim,j = —€m Am 85 E4(t) (3.28)
where
Aj;= b cothAma; + Pivt cothAmerp1 (3.29)
£, 51
P S S
Aji=1 p1 8tnhAp e (3.30)
. _ _Pin 1
"4.71.1'1'1 - 1 sz'nh/\maj+1 (331)
Pi _ Pit1
B, =g; =58 0+l 3.32
3= SIE P ( )
and €,, is a dimensionless factor defined by
2
€m = Xén: (3.33)

It is shown later that the factor €, appears in the expression for the surface sloshing
motion of a homogeneous liquid, and to highlight its meaning, is kept separately from
Am. Note that D,, o = 0; hence, both Dy, ;-1 and Dm,j._l in equation (3.28) vanish
for j = 1.

The equation of motion for the j th interface of the cylindrical system is obtained
similarly by substituting equations (3.16), (3.25) and (3.27) into equation (3.23).
The two sides of the resulting expression are then multiplied by £ J1(Ané) d€ and in-
tegrated from 0 to 1. Because of the orthogonality of the Bessel functions, the infinite
summation of terms again reduces to equation (3.28) with A;;-1, Aj;, Aji+1, Bij
and s; defined, as before, by equations (3.29) through (3.32), except that the values
of )\, are different in the two cases. Additionally, the factor €, for the cylindrical

system is given by )

€m = -1 (3.34)
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rather than by equation (3.33).

The complete set of equations for the multilayered system is obtained by repeated
application of equation (3.28) to all interfaces. The resulting set of equations may be
written as

() (B} + 222 [B] {D} = —em hm {5} &5(0) (3.35)

where {D,,} and {s} are vectors of size N, the j th elements of which are D,, ; and
s, respectively; [A] is a tri-diagonal, symmetric matrix of size (N x N), for which
the elements of the jth row are given by equations (3.29), (3.30) and (3.31); [B] is
a diagonal matrix of the same size, with its j th element given by equation (3.32);
and €, is defined by equation (3.33) for the long rectangular system and by equation

(3.34) for the cylindrical system.

3.5 Free Vibration

The equations for free vibration are deduced from equation (3.35) by setting its right-
hand member equal to zero. The solution of these equations is obtained in the usual

manner by letting

{Dm(t)} = {Dn} e'mt (3.36)
and solving the resulting characteristic value problem,
. WR_ o
B {Dn) = 52141 (D) (3.37)

in which ¢ = v/=1, and w,, = the circular frequency associated with the m th horizon-
tal mode of vibration. For the long rectangular system, the latter mode is defined by
the function sinA, €, whereas for the cylindrical system, it is defined by the function
J1(Amé).

It is clear from equation (3.37) that, for each horizontal mode of vibration, there
exist N vertical modes, each associated with a distinct frequency. This fundamental
fact was not revealed in the solutions presented by Tang et al [60], which led to a
single frequency and a single vertical mode of vibration for each value of m.

The nth circular natural frequency of the system for the mth horizontal mode
of vibration is denoted by wp,, the corresponding vector of interfacial displacement
amplitudes is denoted by {Dy:.}, and the j th element of the latter vector is denoted
by ﬁmn,j. The ordering of these frequencies and modes is identified later. The
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characteristic vectors are real-valued and satisfy the orthogonality relations
{Drr}T [A] {Dms} =0 (3.38)

and
{Dmr}T[B]{Dma} =0 (3.39)

for r # s. Furthermore, both [4] and [B] can be shown to be positive definite, ensuring
that all natural frequencies are real and positive. The positive definiteness of [A] and
[B] follow from the fact that these matrices are symmetric and diagonally dominant.
For the definition of diagonal dominance, the reader is referred to Golub and Van

Loan [16].

3.5.1 Two-Layered System

For the special case of a two-layered system, for which the matrices [A4] and [B] in
equation (3.37) are of size 2 x 2, the resulting frequency equation, after multiplying

through by tanh A, ay tanh Ao, becomes

(1 + %tanh/\mal tanh/\,nag) w;‘n — (tanhApay + tanhd, o) )‘lewi
1

\ 2

+ ( - EE) (lg) tanh\,aq tanhda2 =0 (3.40)
14 R

With the natural frequencies of the system, wy,; and wn2, determined from this equa-

tion, the ratio of the interfacial to the surface modal displacement amplitudes for the

(mn) th mode of vibration is determined from equation (3.37) to be

A

Q"L'l = coshApmog — wzng stnh oo (3.41)

mn,2 mn

Finally, the orthogonality relation defined by equation (3.39) can be written as

(1 - [)—%) Dy Dmay + Lz Dinip Dinza =0 (3.42)
41 4

Provided one uses the appropriate values of A, as previously indicated, equations

(3.40), (3.41) and (3.42) are applicable to both the long rectangular and the cylindrical

systems. Incidentally, with the appropriate reinterpretation of the meaning of the

various symbols, equations (3.40) and (3.41) can be shown to be identical to those
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presented by Lamb [35] for the sloshing frequencies and the associated modal ratios
of two superposed liquids flowing in a long rectangular channel.

For a homogeneous liquid with pa/p1 = 1, on neglecting the trivial solution of
zero frequency, equation (3.40) yields the well known expression for the m th circular

natural frequency of sloshing motion,

_ Amg
Wy = Cn 7 (3.43)

Cn = 4|tanh (ﬁ‘éfi) (3.44)

Furthermore, for the limiting case of pa/p;1 = 0, which corresponds either to a system
without the upper layer or to one with a very heavy, practically immobile lower layer,
the two frequencies reduce, as they should, to those obtained from equation (3.43)
for homogeneous liquids with depths Hy and Hj, respectively.

in which

3.5.2 Numerical Solutions for Sloshing Frequencies and Modes .

The circular natural frequency corresponding to the m th horizontal and n th vertical
mode of vibratjon may conveniently be expressed in a generalized form of equation
(3.43) as

Ang (3.45)

Wmn = Umn R

in which Cp,, is a dimensionless factor that depends on the tank shape and slender-
ness, H/ R, the number, relative thicknesses and relative densities of the liquid layers,
and, of course, on the order of the frequency or mode under consideration. As already
indicated, the values of A, in this expression are defined by equation (3.20) for the
long rectangular system, and by equation (3.22) for the cylindrical system.

Two-Layered Systems

The frequency coefficients Cy; and Cis for two-layered liquids in long rectangular
tanks are presented in Fig. 3.2, and those for the corresponding cylindrical systems
are shown in Fig. 3.3. The results are plotted as a function of the slenderness ratio,
H/R, for two values of the layer thickness ratio, Ho/H;, and several values of the
density ratio, pz/p;. These coefficients and the associated natural frequencies and



40

modes of vibration are numbered in reverse order, starting with n = 1 for the highest
frequency and terminating with n = N = 2 for the lowest frequency. The rationale
for this convention is that the higher numbered modes are associated with a higher
order of waviness (larger number of points of zero crossings) in the vertical direction.
The explanation for the decrease in the values of the associated natural frequencies
with increasing modal order is examined later in this section. It is observed that both
the frequency coefficients and the associated natural frequencies for the cylindrical
tanks are larger than those for the corresponding rectangular tanks; however, the
differences are not significant, and the general trends of the results for the two systems
are quite similar. Incidentally, the corresponding plots for the second horizontal mode
of vibration, m = 2, also exhibit the same general trends and are not shown.

The uppermost curves in Figs. 3.2 and 3.3 are for a homogeneous liquid with a
depth H equal to the total depth of the layered system. It is noteworthy that both
frequency coefficients for the layered system are smaller than that for the associated
homogeneous system. The effect of the heavier bottom layer is to decrease the effective
total depth of the layered system and, as would be expected from equations (3.43)
and (3.44), this reduction leads to a corresponding reduction in the values of the
frequency coefficient and of the associated natural frequency.

The interrelationship of the natural frequencies of the layered and the homoge-
neous systems can more clearly be seen in Fig. 3.4, in which the frequencies wi
and w;, for the cylindrical systems examined in Fig. 3.3 are plotted normalized with
respect to wy, the fundamental natural frequency for a homogeneous liquid of the
same total depth. It is observed that the results, particularly those corresponding to
the lower values of H/R, are substantially less than unity and that those for wi2 tend
to zero as pz/py approaches unity. In general, when the densities of the individual
layers in a multi-layered system become equal to each other, all but one of the nat-
ural frequencies corresponding to each horizontal mode tend to zero. These limiting
values represent trivial solutions and may be disregarded. The interfacial sloshing
displacements are caused solely by density discontinuities across interfaces and cease
to exist for a homogeneous liquid.

The dotted curves in Figs. 3.2 and 3.3, which refer to systems of pp/p1 = 0, also
represent the frequency coefficients for homogeneous liquids with depths Hy and H,
when they are considered to act independently. For the systems with equal layer
thicknesses considered in the left-hand plots, there is naturally a single such curve,

whereas for the systems with unequal depths considered in the right-hand plots, there
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are two distinct curves. Note that the highest natural frequency of the layered system
is higher than the higher of these curves, whereas the lowest frequency is lower than
the lower curve. This result is consistent with the well known interrelationship of the
natural frequencies of systems having one and two degrees of freedom. If a single-
degree-of-freedom system with a natural frequency f; is augmented by the addition
of another such system, it is well known that the natural frequencies of the resulting
two-degree-of-freedom system lie on either side of fi. Since the systems in the right-
hand plots of Figs. 3.2 and 3.3 may be formed either from the lower layer by the
addition of an upper layer, or from the upper layer by the insertion of a lower layer,
their natural frequencies must lie on either side of the pair of dotted curves, and there
will be no frequencies in the region between.

Further insight into the free-vibrational characteristics of the two-layered systems
may be gained by examining the distributions of the modal displacement amplitudes
of the liquid throughout its depth. Denoted by ﬁmn(n), where n = z/H and z = the
vertical distance measured from the tank base, these amplitudes are shown in Figs.
3.5 and 3.6 for cylindrical systems with two values of H/R, two values of Hz/H; and
several values of p2/p1. The interfacial values of these amplitudes constitute the vector
{Dyn}. The values of Dima(n) at elevations between the liquid interfaces are evaluated
by substituting equation (3.36) for the mode under consideration into equation (3.27),
differentiating the resulting expression with respect to 7; and integrating the resulting
modal velocity with respect to time. The modes on the left correspond to the first
or higher of the two natural frequencies and are normalized with respect to the free-
surface displacement, whereas those on the right correspond to the second or lower
natural frequency and are normalized with respect to the interfacial displacement.
Note that the first or fundamental mode is associated with no zero crossings, while
the second mode is associated with a single such crossing. The interfacial ordinates of
these modal configurations naturally satisfy both the orthogonality relation defined
by equation (3.42) and the somewhat more involved relation defined by equation
(3.38). For a multi-layered system, the n th vertical mode of vibration is associated
with n — 1 zero crossings.

It is noteworthy that, for the fundamental mode of vibration, the displacement
amplitude at the interface of the two layers for the layered system is lower than
that for the homogeneous system, the difference increasing with decreasing values of
p2/p1. This result confirms the earlier statement to the effect that the larger density
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of the lower layer decreases the effective total depth of the layered system leading to
a reduction in frequency.

The very low frequency values of the second natural modes may also be explained
by the location of the sections of zero modal amplitudes (points of zero crossings)
near the top. Since the vertical motion of the liquid is zero at these sections, the
natural frequency of the system for this mode must be equal to that of a homogeneous
liquid with a depth equal to the distance from the free surface to the section of zero
amplitude. As an illustration, it is noted that for the cylindrical system with values
of H/R = 0.5, Hy/H; = 1 and py/p1 = 0.5 considered in Fig. 3.5, the section of
zero crossing for the second mode of vibration is located at a distance 0.140 H from
the top. This leads to an effective depth-to-radius ratio for the homogeneous liquid
of 0.070. If this ratio is substituted into equation (3.44), the value of the resulting
frequency coefficient turns out to be C; = 0.358, which is precisely the value of Ci2
reported in Fig. 3.3.

In concluding this section on two-layered systems, it should be noted that the
frequency coefficients for the systems with H;/H; = 2 considered in the right-hand
plots of Figs. 3.2 and 3.3 also apply to systems with H;/H, = 2. This follows from
equation (3.40), which shows that interchanging the dimensionless thicknesses a; and
ay does not alter the equation. However, the natural modes are different in the two

cases, as may well be appreciated from equation (3.41).

Three-Layered Systems

As an illustration of the free vibrational characteristics of systems with more than two
layers, in Fig. 3.7 are shown the natural frequency coefficients for the fundamental
horizontal mode of vibration, m = 1, of a cylindrical system with three layers of
identical depths. The mass densities of the layers are presumed to increase from top
to bottom in proportion to 1:2:3, and a range of H/R values is considered. Also
shown are the natural modes of the system for the special case of H/R = 1, with
each mode normalized to a unit maximum amplitude. The values of the modal
amplitudes for sections between layer interfaces are computed in a manner analogous
to that indicated earlier for the two-layered system. The dashed curves in this figure
represent the corresponding results for a homogeneous system with a depth equal to

the total depth of the layered system.
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It is observed that all three frequencies are lower than that of the associated ho-
mogeneous system, that the highest frequency is associated with a vertical mode of
vibration which has no zero crossing and is similar to that of the associated homoge-
neous system, whereas the modes of the next two lower frequencies have one and two

zero crossings, respectively.

3.6 Forced Vibration

With the natural frequencies and modes of vibration of the system established, its re-
sponse to an arbitrary lateral excitation may be obtained by the modal superposition
method. In this approach, the vector {Dy ()} of the interfacial vertical displace-
ments of the liquid along the tank wall is expressed as a linear combination of the

characteristic vectors, {Dpns}, as
N
{Dmn()} = > {Dmn} gma(?) (3.46)
n=1

in which gmn(t) is a generalized time-dependent coordinate corresponding to the m th
horizontal and nth vertical mode of vibration. On substituting equation (3.46) into
equation (3.35), premultiplying the resulting expression by {Dpr}T, and making use
of equation (3.37) and of the orthogonality properties of the natural modes defined by
equations (3.38) and (3.39), the resulting system of equations is uncoupled, leading

to
. T
P (2,135 C) #,(t) (3.47)
{Dmn}T [A] {Drmn}
It is convenient to replace the tri-diagonal matrix [A] on the right-hand member
of this expression by the diagonal matrix [B]. On making use of equation (3.37),

equation (3.47) may be rewritten as

Gmn(t) + wzm gmn(t) = —A

Gmn(t) + w;'znn gmn(t) = —€m wfnnrm"R mg;t) (3.48)
in which ', is a dimensionless factor given by
A T
Ton = —= {D’;”} {s) (3.49)
{Dmn}T [B]{Drin}
The solution of equation (3.48) is then given by
Apn(t
(]mn(t) = —€tn an R _'(_2 (3.50)

9
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in which A,,,(t) represents the pseudoacceleration function defined by

Apn(t) = wmn /Ot &o(T) sStnwmp(t —7) dr (3.51)

For a base-excited single-degree-of-freedom oscillator with a circular frequency wms,
the pseudoacceleration Apn(t) represents the product of the square of wy,, and the
deformation of the oscillator, Upn(t). The maximum value of Ann(t) is the quantity
displayed on a pseudoacceleration response spectrum.

The interfacial displacements at arbitrary points are finally determined from equa-
tion (3.24) or (3.25) by making use of equations (3.46) and (3.50). For the long

rectangular system, they are given by

© X $inAmE Amn(t)
{d(&,t)} = -R m2=:1 nZ;: {dmn} < . (3.52)
and for the cylindrical system, by
X Ji(Am€) Amn(t
{dE00)==R 3 S {dmn} }(( : ’5)) ®) os0 (3.53)
m=1 n=1 1 m g
where
{dmn} = €m [imn {Dmn} (3.54)

It must be recalled that the factors A, and the expressions for ¢, are different for
the two systems. The same is also true of {Dmn}, Tinns {dmn}s wmn and Apn(t).

For a single-layered system with a homogeneous liquid, the only interfacial dis-
placements are those at the surface. In this case, {Dmn} and {dmn} reduce to the
scalars Dy, and dp,; {d} reduces to the surface displacement, d(¢,8,); the matrix [B]
and vector {s} become unit scalars; and the product 'y {Dmn} in equation (3.54)
reduces to unity. It can then be cencluded from equation (3.54) that the factors €,
which are defined by equation (3.33) for the long rectangular system and by equa-
tion (3.34) for the cylindrical system, represent the displacement coefficients for the
surface sloshing motion along the tank wall of the homogeneous liquid. The latter

factors can be shown to satisfy the relation
Y oem=1 (3.55)

Because of their special meaning, these factors were not absorbed into the I'n,,, factors

but were retained as multipliers in the expressions for the layered systems as well.



45

The surface displacement of the uniform system may then be determined from the
following specialized forms of equations (3.52) and (3.53), of which the second has

been reported previously, e.g., Reference 1:

& sindat Au(t)
d(¢,t) = Rnf\“:l e (3.56)
and - 70
d(6,0,t)= R Y em }1(( A"‘f)) An(t) 50 (3.57)
m=1 m

g

In these expressions, A, (t) represents the instantaneous pseudoacceleration of a sim-

ple oscillator with a natural frequency equal to that of the mth sloshing mode of

vibration of the actual system when it is subjected to the prescribed ground motion.
If the contribution of only the fundamental mode of vibration is considered, the

surface displacement along the tank wall, d,,, for a homogeneous liquid in a cylindrical

tank reduces to the well known expression
dy(0,t) =0.837TR A—lg@ cost (3.58)

On replacing A;(t) by w? Ui(t), where U(t) = the instantaneous deformation of the
single-degree-of-freedom oscillator, and making use of equation (3.45), equation (3.58)
can also be written as

dy(0,t) = 1.54 C? Uy(t) cost (3.59)
in which C; is the dimensionless frequency coefficient defined by equation (3.44).

For a multi-layered system, it can be shown that

N
> {dmn} = em {1} (3.60)

n=1

and by virtue of equation (3.55), it can further be concluded that

o N
> Z_:l{dmn} = {1} (3.61)

m=1

Equation (3.60) is proved in the following by examining the hydrodynamic pressure
difference at the j th interface of the system, Ap;. The instantaneous value of this
difference is determined from equation (3.11), by making use of equation (3.5), to be

Ap;(€,t) = (p; — pij+1) g di(€,1) (3.62)
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in which d; is defined by equation (3.52) for the long rectangular system, and by
equation (3.53) for the cylindrical system. For the latter system, equation (3.62) may

thus be written as

Ap;(€,0,t) = (pj — pi+1) R Z Z dmn,j —mi)) Apnn(t) cost (3.63)

m=1 n=1

Now, if the natural frequencies of the system are very high compared to the dominant
frequency of the ground motion, all the pseudoacceleration functions Ama(t) will
reduce to the ground acceleration &,4(t), the liquid will respond as a rigid body, and
the resulting expression for Ap; will reduce to the pressure induced by the inertia of
a rigid disk which has unit depth, radius r, mass density p; — p;41 and is subjected
to a horizontal motion with acceleration &,(t). The latter pressure is given by

Api(€,0,1) = (ps — piua) T (t) cosd (3.64)

On equating the right-hand members of equations (3.63) and (3.64) and cancelling

the common terms, one obtains

oo N
> 3 e 2ol (3.65)
Finally, on multiplying through by ¢ J1(Am€) d€ and integrating from 0 to 1, by virtue
of the orthogonality of the Bessel functions, the double summation on the left-hand
side reduces to a single summation over n only, and the final expression reduces to the
7 th element of equation (3.60). The validity of equation (3.60) for the long rectangular
system can be demonstrated in a similar manner working with trigonometric rather

than Bessel functions.

3.6.1 Sloshing Displacement Coefficients

Of special interest in practice is the sloshing motion of the liquid at its free sur-
face, as the maximum surface displacement is needed to define the freeboard that
must be provided to prevent the liquid from overflowing or impacting the roof. This
displacement is defined by the top elements of equations (3.52) and (3.53).

In Table 3.1 are listed the surface values of the displacement coefficients dmn,2
for two-layered, long rectangular and cylindrical tanks. Systems with two different
slenderness ratios, H/ R, two liquid thickness ratios, Hy/H,, and several mass density
ratios, pz/p1, are considered. Results for the first two horizontal modes of vibration,
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m = 1 and 2, and for each of the two vertical modes are presented. The following

trends are worth noting:

1. The results for the two vertical modes of vibration are of opposite signs, and
their numerical values increase with decreasing p,/p1; the increase is particularly
large for the lower values of H/R, especially for Hy/Hy, = 1, for which the
natural frequencies of the individual layers are equal. The larger displacement
coefficients for the fundamental vertical mode of vibration of the layered systems
are attributed to the fact that, in addition to being excited laterally, the upper
layers of these systems are excited at their base by the rocking motion of the

interfacial sloshing.

2. For a specified horizontal mode of vibration, the sum of the displacement coef-
ficients for the two vertical modes is equal to that obtained for a homogeneous
liquid of the same total depth. This is in agreement with equation (3.60).

3. The values of the coefficients for the second horizontal mode of vibration, m =
2, are significantly smaller than those for the fundamental mode, m = 1.

4. Provided a sufficiently large number of horizontal modes of vibration is consid-
ered, the algebraic sum of the coefficients is unity, in agreement with equation

(3.61).

5. The results for the long rectangular and cylindrical systems are very similar.

In Table 3.2, the top values of the displacement coefficients, dmn, for the two
horizontal modes of vibration of the three-layered cylindrical system examined in the
right part of Fig. 3.7 are compared with those obtained for a homogeneous liquid
of the same total depth. As before, the larger numerical values are obtained for the
layered system, and the reported values satisfy both equations (3.60) and (3.61).

Notwithstanding the importance of the displacement coefficients, it must be re-
alized that the relative contribution of the various modes of vibration to the total
response depends also on the relative values of the pseudoaccelerations, Amn(t). The
latter quantities depend, in turn, on the characteristics of the ground motion and
the natural frequencies of the system itself. This matter is considered further in the

following section.
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3.6.2 Hydrodynamic Pressures

The main focus of this chapter has been on the sloshing motion of the system. With
the information presented, however, it is also possible to determine the magnitude
and distribution of the hydrodynamic pressures induced by the ground shaking. The
hydrodynamic pressure at any point in the j th layer may be evaluated from equation
(3.5) making use of the expression for the velocity potential function ¢; defined by
equation (3.12). The functions x and %; in the latter equation may be evaluated from
equations (3.15) and (3.26) for the long rectangular system and from equations (3.16)
and (3.27) for the cylindrical system. The final expressions, along with numerical so-
lutions that elucidate the interrelationship of the hydrodynamic pressures for layered

and homogeneous systems, will be presented in the next chapter.

3.7 Numerical Example

The surface sloshing displacements induced by the lateral component of an earthquake
ground motion are evaluated for two-layered liquids in a cylindrical tank of 60-it
radius. The depths of the lower and upper layers are taken as 12 ft and 24 ft,
respectively, and several different values are used for the relative mass densities of
the two layers. System damping for each mode of vibration is considered to be of the
viscous type, and is taken as 0.5 percent of the critical value.

The ground motion is specified by the response spectrum shown in Fig. 3.8,
which refers to viscously damped single-degree-of-freedom systems with the desig-
nated amount of damping. The spectrum is displayed in a tripartite logarithmic
format with the abscissa representing the natural frequency of the system, f, and the
pseudoacceleration, A, plotted on the right-hand diagonal scale. The vertical scale
represents the pseudovelocity of the system, V, and the left-hand diagonal scale rep-
resents the associated deformation, U. The three spectral quantities are interrelated
by

A=2rfV =4r?f2U (3.66)
The maximum values of A, V and U are 1.68g, 61 in./sec and 31 in., respectively,
and the maximum values of the acceleration, velocity and displacement of the ground
are 0.33 ¢, 15.9 in./sec and 10.2 in., respectively. The response spectrum considered
is the same as that used for the illustrative example in Reference 1.

The cyclic natural frequencies of the liquid for the first two horizontal and each of
the two vertical modes of vibration are listed in Table 3.3 along with the corresponding
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values of the surface displacement coefficients, dmn,2. Several values of pz/p; in the
range between unity and 0.10 are considered. Note that all frequency values fall in
the left-hand, displacement-sensitive region of the response spectrum, and that, for
all cases considered, the frequencies fi; and fy; fall within the segment for which the
deformation U attains its maximum value. Note further that the largest displacement
coefficients are associated with the fundamental mode of vibration, m =n = 1.
Table 3.4 lists the maximum values of the components of the surface displacements
along the tank wall contributed by each of the four modes of vibration. The results
are normalized with respect to the maximum ground displacement, (Zy)masz. Also
listed are the corresponding values of the total displacement computed by taking the
square root of the sum of the squares (SRSS value) of the component terms. The

following trends are worth noting:

1. The displacements of the layered liquid are larger than those of the homoge-
neous liquid of the same total depth. However, as would be expected from the
information presented in the preceding sections, the increase is not particularly

significant for values of ps/p1 2> 0.5.

2. The fundamental mode of vibration, which corresponds to values of m =n =
1, is the dominant contributor to the response. The contribution of the remain-
ing modes is minor due to the smallness either of the relevant displacement

coefficients or of the associated pseudoaccelerations or both.

3. The response contributed by the mode corresponding to m = 2 and n = 1 is
greater than that contributed by the mode corresponding to m = 1 and n = 2.

3.8 Conclusions

With the information presented herein, the free vibrational characteristics and the
sloshing action of base-excited, layered liquids both in long rectangular and in cylin-
drical tanks may be evaluated readily and accurately. The comprehensive numerical
data that have been presented provide valuable insights into the underlying response
mechanisms and into the effects and relative importance of the numerous parameters
involved. The principal conclusions of the study may be summarized as follows:

1. For a liquid with N homogeneous layers, there is an infinite number of horizontal
natural modes of vibration, and corresponding to each such mode, there are N
distinct vertical modes. The latter modes have from zero to N —1 points of zero
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crossings, and their frequencies are lower than the corresponding frequency of

a uniform liquid of the same total depth.

. For a specified horizontal mode of vibration, the natural frequencies of a two-
layered system are, respectively, higher and lower than those computed consid-
ering the two liquid layers to act independently.

. The natural modes of the layered liquid satisfy simple orthogonality relations
that are identified in the text.

. The maximum surface sloshing displacement of a layered system is typically
greater than that of a homogeneous system of the same total depth. The in-
crease is significant, however, only when the densities of individual layers differ
substantially. The increased response is associated with the fact that, in addi-
tion to the lateral component of shaking, the base of the top layer is subjected
to the rocking motion induced by the sloshing action of the interface.

. For large-capacity tanks subjected to earthquake-ground motions, the mode of
vibration corresponding to m = n = 1 is the dominant contributor to the surface
sloshing displacements of the liquid. Furthermore, the contribution of the mode
corresponding to m = 2 and n = 1 is typically greater than that of the mode

corresponding to m = 1 and n = 2,

. For the 2-layered system considered in the illustrative example, the maximum
surface displacement along the tank wall was found to range from 3.96 times
the maximum ground displacement when the densities of the two layers were
considered to be equal, to 5.3 times the maximum ground displacement when
the density of the top layer was taken as one-tenth that of the lower layer.
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Table 3.1: Surface-displacement coefficients for two-layered long rectan-
gular and cylindrical systems

Values of dpy,2 for Values of d,;p, 2 for
long rectangular systems cylindrical systems
H/R | p2/ ;1 m =1 m=2 m=1 m = 2
n=1|n=2|n=1|n=2|n=1|n=2|n=1|n=2
(a) Hg/H] =1
0.5 1.0 | 0.811 0.090 0.837 0.073
0.75 | 0.873 | -0.062 | 0.096 | -0.006 | 0.901 | -0.064 | 0.077 | -0.004
0.50 | 0.978 | -0.167 | 0.106 | -0.016 | 1.009 | -0.172 | 0.085 | -0.012
0.25 | 1.215 | -0.405 | 0.132 | -0.042 | 1.254 | -0.417 | 0.105 | -0.032
0.10 | 1.687 | -0.876 { 0.184 | -0.094 | 1.741 | -0.904 | 0.148 | -0.075
0.01 | 4.458 | -3.647 | 0.494 | -0.404 | 4.602 | -3.765 | 0.399 [ -0.326
2.0 1.0 | 0.811 0.090 0.837 0.073
0.75 | 0.853 | -0.042 | 0.090 | 0.000 | 0.873 | -0.036 | 0.073 | 0.000
0.50 { 0.932 | -0.121 | 0.091 | -0.001 | 0.942 | -0.105 | 0.073 | 0.000
0.25 | 1.138 | -0.327 | 0.092 | -0.002 | 1.130 | -0.293 | 0.074 | -0.001
0.10 | 1.598 {-0.787 | 0.097 | -0.007 | 1.579 | -0.742 | 0.076 | -0.003
0.01 | 4.415 | -3.604 | 0.168 | -0.078 | 4.507 | -3.670 | 0.108 | -0.035
(b) Hy/H, = 2
0.5 1.0 | 0.811 0.090 0.837 0.073
0.75 | 0.863 | -0.052 | 0.094 | -0.004 | 0.890 | -0.053 | 0.076 | -0.003
0.50 | 0.944 | -0.133 | 0.101 | -0.011 | 0.973 | -0.136 | 0.081 | -0.008
0.25 | 1.099 | -0.289 | 0.115 | -0.025 | 1.132 | -0.295 | 0.091 | -0.018
0.10 | 1.303 | -0.493 | 0.137 | -0.047 | 1.342 | -0.505 | 0.109 | -0.036
0.01 | 1.573 | -0.762 | 0.173 | -0.083 | 1.623 | -0.786 | 0.139 | -0.066
2.0 1.0 | 0.811 0.090 0.837 0.073
0.75 | 0.836 | -0.025 | 0.090 | 0.000 | 0.857 | -0.020 | 0.073 | 0.000
0.50 | 0.881 | -0.070 | 0.090 | 0.000 | 0.893 | -0.056 | 0.073 | 0.000
0.25 | 0.986 | -0.176 | 0.091 | -0.001 { 0.983 | -0.146 | 0.073 | 0.000
0.10 | 1.170 | -0.360 | 0.092 | -0.002 | 1.156 | -0.319 | 0.074 | -0.001
0.01 | 1.533 | -0.722 | 0.104 | -0.014 | 1.560 | -0.723 | 0.078 | -0.005
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Table 3.2: Surface-displacement coefficients for three-layered cylindrical
system with H/R = 1 and H, = Hy = H;

Values of dinn3

p3/p2/p1 m =1 m =2
n = n=2[n=3|n=1|n=2|n=3
1/1/1 0.837 0.073
1/2/3 1.101 | -0.295 | 0.031 | 0.085 | -0.013 | 0.001
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Table 3.3: Natural frequencies and surface-displacement coefficients for
system considered in numerical example

Natural frequency, fun

Surface-displacement

p2/p1 in cps coefficients, dyn 2

fuiu | fiz | fa | fo2 [ dug | dizg | dar | dape
1.00 | 0.142 0.269 0.837 0.073
0.75 | 0.140 | 0.039 | 0.269 | 0.094 | 0.888 | -0.051 | 0.075 | -0.002
0.50 | 0.137 | 0.058 | 0.268 | 0.142 | 0.970 | -0.133 | 0.079 | -0.006
0.25 | 0.133 | 0.075 | 0.268 | 0.188 | 1.127 | -0.290 | 0.088 | -0.015
0.10 | 0.129 | 0.086 | 0.267 | 0.217 | 1.337 | -0.500 | 0.105 | -0.032
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Table 3.4: Maximum values of surface displacements of liquid along tank

wall for system considered in numerical example

Values of (dy)maz/(Tg)maz

Component contributed by Total

p2/p1 m=1 m =2 computed by
n=1[n=2|n=1n=2| SRSS rule

1.00 | 3.775 1.181 3.956
0.75 | 3.893 | 0.006 { 1.213 | 0.004 4.078
0.50 | 4.071 | 0.047 | 1.269 | 0.028 4,265
0.25 | 4.459 | 0.263 | 1.414 | 0.119 4.687
0.10 | 4.975 | 0.706 | 1.673 | 0.337 5.307
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Xg(®) Xg(t)
(a) Long rectangular system (b) Cylindrical system

Figure 3.1 Systems considered
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Figure 3.5 Vertical displacement configuration for the fundamental
horizontal mode of vibration of two-layered liquids in
cylindrical tanks with H/R = 0.5
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Chapter 4

Hydrodynamic Effects in Rigid Tanks containing
Layered Liquids

4,1 Introduction

The study described herein is a sequel to the one reported in Chapter 3. It deals
with the evaluation of the hydrodynamic effects induced in rigid tanks containing
layered liquids. The objectives are to elucidate the response mechanisms of the sys-
tems referred to, and to provide information and concepts with which the effects of
the primary parameters may be evaluated rationally and conveniently for design pur-
poses. The response quantities examined include the hydrodynamic wall pressures,
the associated base shears, and the bending moments at sections immediately above
and below the tank base. Both the impulsive and convective actions are examined.
Related studies for rigid two-layered systems have also been presented recently by
Tang et al [56, 59, 60]. The earlier of these studies were based on an inaccurate rep-
resentation of the layered system and the consequences of this approximation have
been identified in Chapter 3.

Only the cylindrical system is considered here. The system is the same as that

shown in Fig. 3.1 (b).

4.2 Method of Analysis
4.2.1 Hydrodynamic Pressures

On substituting equations (3.16) and (3.27) into equation (3.12) and making use of
equation (3.5), the hydrodynamic pressure in the jth layer, p;(£,7;,0,t), may be

expressed as

. 2\ | D ;(t) coshApn; — ..D'm’j_l(t) cosh A (o; — ;)
Pi= {€ %o(t) + 21 [ Am Sinhdn;

—J:}—l%"i-%l} pjRcost (4.1)




64

in which Dy, ; and Dy, j_; are obtained by double differentiating with respect to time
the expression

{Dum(t)} =-R Z{dmn} ""‘(t) (4.2)

n=1
which in turn is obtained by substituting equation (3.50) into equation (3.46) and
by making use of equation (3.54) for the vector of dimensionless displacement coeffi-
cients, {dmn}. Amn(t) is the instantaneous modal pseudoacceleration function given
by equation (3.51). On recalling that A, (%) is related to the deformation Upa(t) of

a base-excited single-degree-of-freedom system by
A (t) = =why, Unn(t) (4.3)

and that the second time derivative of Uy, (t) may be determined from the equation

of motion for such a system to be

0mn(t) = —&g(t) = Whn Unn(t) = —&4(t) + Amn(t) (4.4)
equation (4.2) leads to

w N P
(D0} = =R Y. e} ( 9;” - A’";(”)) (4.5)

Finally, on substituting the expressions for D,, ;() and Dy, ;—1(t) into equation (4.1),
making use of equation (3.45) for w2, and grouping together all terms that are
proportional to the ground acceleration, equation (4.1) may be rewritten as the sum

of an impulsive component and a convective component as

Pj(f,ﬂj,O,t) = p;’(éa njaeat) + P?(fﬂ?jao’t) (46)

The impulsive component, which represents the effect of the part of the liquid that
may be considered to move as a rigid body with the tank wall and hence experiences

the same acceleration as the ground, is given by

(6777.7,0 t |:£ z;l Z_: Cmn,] ((Ami)] PjRCOSO(ig(t) (4.7)

whereas the convective component, which represents the effect of the sloshing action

of the liquid, is given by

p;(€:n;,0,1) [f} f} Cran,i (15) J—(’\"‘—g) A,,m(t)] p; R cost (4.8)
1

m=1n=1 (/\m)
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in which

dmn,j €C08hAnn; — dmn,j—1 COShAm (05 — 1;)
sinhAmo; (49)

cmnvj (77.7) = C'Iznn

In the latter expression, dpn, ; represents the j th element of {dmn}; Cinn represents the
dimensionless frequency coefficient in equation (3.45); and the terms with the factors
dyn,j-1 and dmn,; represent the effect of the sloshing or rocking actions of the lower
and upper interfaces, respectively. It should be clear from equation (4.8) that there is
an infinite number of horizontal sloshing modes of vibration; that for each such mode,
there exist N vertical modes; and that associated with each horizontal and vertical
mode, there is a distinct pseudoacceleration function, Apn(t). The summations on
m in equations (4.7) and (4.8) represent the contributions of the horizontal modes,

while those on n represent the contributions of the vertical modes.

Simplification of solution for impulsive pressures

In the form presented so far, the evaluation of the impulsive component of response
requires the prior evaluation of the convective components. The impulsive component
can also be evaluated independently of the convective as follows : On letting

N
{em} = Z Cr?m {dmn} (4.10)

n=1

equation (4.7) may be rewritten as a single series as

e, & coshAmmi  coshAm(e; — ;)
Pj(é., nj,0,t) = {6 7;=1 [em’J sinhAma; Fmi=t sinhAna;
Ji(Amé .
Jll((/\m)) } piRcosh &y(t) (4.11)

in which ey, ; is the j th element of {e,}. It is shown in Appendix A that the vector
{em} also represents the solution of the system of algebraic equations

[A] {em} = en{s} (4.12)

in which [A] and {s} are the matrices appearing in equation (3.35). With the values
of {en} determined in this manner, the impulsive pressures may be evaluated from
equation (4.11) without prior knowledge of the sloshing frequencies and the associated
modes of vibration of the system. The numerical solutions reported herein have been

obtained by this approach.
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It may be of interest to observe that equation (4.12) is merely a statement of the
fact that the impulsive pressures are continuous at the N liquid interfaces. If the
dimensionless distance coordinate ¢ in equation (4.11) is expanded in the form

£= Z €m "‘6)) (4.13)

the j th component of equation (4.12) is obtained simply by equating the expressions
for the impulsive component of the pressure on either side of the j th interface.

‘Wall pressure
The hydrodynamic wall pressure for the j th layer may be written in the form
P00 = = [0 (0 + 35 3 6n0) ()] miReost 01
m=1 n=1

where ¢, ;(7;) is a dimensionless function, obtained from the expression within the

braces in equation (4.11) by letting £ = 1, i.e.,

_ = coshdmn; coshAn (a; — ;)
%i(ni) =1 = mz=:1 [ ™ sinhAmey mi=l T ik Amay (4.15)

From equations (4.9), (4.10) and (4.15), it now follows that

o N
Co,i(M3) + D2 D Cmnj(m) =1 (4.16)

m=1 n=1

It is important to note that the pressure in equation (4.14) is expressed in terms of
the density of the layer under consideration rather than that of some reference layer.

Specialized expressions for wall pressure

For a single-layered, homogeneous system, [A] = cothAn H/R, {s} = 1, equation
(4.12) yields
em = €m tanhA, H/R (4.17)

and equation (4.15) reduces, as it should, to the well-known expression

& coshdpz/R
=1- z_:lfm cosh A, H/R

m=

(4.18)
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where z is the vertical distance from the tank base, and the m th term of the summa-
tion represents the dimensionless function ¢y, (z) in the expression for the convective
component of the pressure.

For a two-layered system, the solution of equation (4.12) yields

o ¢ [(1 = p2/p1) coshAmas + pa/p1] sinhAmen (4.19)
Ml 0 hAm @y cOsh Amerg + (p2/p1) sinhAmay sinhAnas '
and - N
_ €m SInhAn0s + emp
om2 = coshApan (4.20)

On substituting these expressions for e, ; into equation (4.15) and recalling that
em,-1 for j = 1 is zero, the resulting expressions can be shown to reduce to those
presented in [56]. The corresponding expressions for the convective pressure compo-
nents are given by equation (4.9), in which dpyn,j—1 for j = 1 must be taken as zero,

dmn; for j = 1 and 2 must be determined from equation (3.54) and C7, must be

evaluated from equation (3.40). The results obtained in this manner can again be

shown to agree with those obtained from expressions presented in [59].

4.2.2 Tank Forces

Base shear

The instantaneous value of the base shear or total hydrodynamic force acting on the

tank-wall, Qb(t), is given by
1) = 3 " o 1 0 t R 9 (l0 d 4,21
Qb( ) JE ‘ [) /0 pJ( s 25y U,y ) coS 2 ( . )

which, on expressing the wall pressure by equation (4.14) and performing the indicated

integrations, can be written as

© N
Qu(t) = m, &y(t) + Z Z Mamn Amn(t) (4.22)
m=1n=1
with m, and m,,, given by

o s [] $ omi — emie
me= Y Mo; = my;|l > (4.23)

j=1 j=1 m=1 Am@tj
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and

N N
G2t — Oy hranie
Mmn = men.j = Zml.j ( ma mn,J/\ S’mn o 1) (4.24)
j=1 J=1 m=a

The quantity my; in the preceding two equations represents the mass of the jth
layer, p;m R*H;; m,,; represents the portion of m; that acts impulsively; and m,
represents the total impulsive mass. Similarly, mm, represents the total liquid mass
participating in the m th horizontal and n th vertical sloshing mode of vibration, and
Munn,; Tepresents the part that is contributed by the j th layer. From equations (4.23)
and (4.24), and with the aid of equation (4.10), it can finally be shown that

o N N
me + Z Z Mmn = Zm;,j =my (4.25)
m=1 n=1 J=1

That is, the sum of the impulsive mass and all convective masses equals the total

mass of the liquid, m.

Moment above base

The instantaneous value of the hydrodynamic moment induced across a section of the

tank immediately above the base is given by
N H; p2r
M) =3 [ [ pil,z0.0 [L,-_1 + zj] R cosf df dz; (4.26)
oo Jo

where

Jj-1
Lioi=)_ Hy (4.27)
k=1

refers to the height of the (j — 1) th liquid interface measured from the tank base. On
substituting equation (4.14) for the wall pressure into equation (4.26) and integrating,

one obtains

M(t) = mohoy(t) + 3 f: Mo Form Amn(£) (4.28)

m=1n=1
in which the quantity moh, for the impulsive component of response is given by

N =3
_ a1l (em,j + emj-1) (1 — coshAgma;) | em, 1.
el = E {mlJHJ [2 mz=:l ( A% of sinhAmay ¥ Am& Fmoili-t
(4.29)
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and the quantity mmpmahmn for the convective component associated with the mth
horizontal and n th vertical mode of vibration is given by

N
— . 2 (dmnj + dmn,j—l) (1 - COSh/\maj) dmn,j T,
Mpphmn = Z {ml.JHJ [Cmn ( )\?n ajz sinh/\maj + /\maj + mmndLj_l
(4.30)

The quantity h, in these expressions represents the height at which the mass m,
must be concentrated to yield the impulsive component of the base moment, and
humn represents the height at which my,, must be concentrated to yield the convective
component of the corresponding moment associated with the m th horizontal and
nth vertical mode of vibration. From equations (4.29) and (4.30) and with the aid
of equations (4.10) and (4.25), it can be shown that

j=1

o N N H:
moho + Z Z mmnhmn = Z my 4 (Lj_l + —éi) = mlhl (431)

m=1n=1 j=1

where h; represents the height of the center of gravity of the total liquid mass from

the tank base.

Foundation moment

In addition to the moment M (t), the foundation moment, M’(t), includes the effect
of the hydrodynamic pressures exerted on the tank base. The latter moment is given
by,
R p2r
M'(t) = M(t) + / / pu(r,0,8, 1) 72 cosd dO dr (4.32)
o Jo

which, on expressing M(t) by equation (4.28), replacing p; by the sum of equations
(4.7) and (4.8) with j = 1, and integrating, can be written as

oo N
M'(t) = mohl #o(t) + Y Y Munnhiy Amn(t) (4.33)
m=1n=1
with . -
' _ . em,l
moho = moha + ml,lHl (40’% mz=:l a%/\?n Sznh/\mal) (4.34)

and

2
mmnh;nn = Mpnhmn + 77’11,1Hl ( Cmn dmn,l ) (435)

aid? sinhAnoy
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From the latter two expressions and equations (4.10) and (4.31), one finally obtains

oo N
moh! + 1§=;1 n}_::l Mumnll, = miby + mz_llei—% = myhj (4.36)
where the term on the extreme right represents the foundation moment induced by
an unit acceleration when the entire liquid is presumed to act as a rigid mass, and
the term involving m;,; represents the component of this moment contributed by the
base pressure. The latter pressure increases linearly from zero at the center of the
tank base to p; R cosf at the junction of the base and the wall.

4.3 Presentation and Analysis of Numerical Solutions
4.3.1 Hydrodynamic Wall Pressures
Normalization of Wall Pressures

In examining their variations with height, it is desirable to express the hydrodynamic
wall pressures in terms of the density of some reference liquid layer rather than in the
form of equation (4.14), in terms of the density of the layer being considered. In the
remainder of this paper, all pressures are expressed in terms of the mass density of
the heaviest or bottom layer, p;, as

© N
p(lvnaoat) = ca(n)'%g(t) + Zl Zlcmn(n) Amn(t) p R cost (4'37)
m=1 n=

where 7 = z/H is the normalized vertical position coordinate, and ¢,(n) and cmn(7)
are dimensionless functions defining the vertical distributions of the various pressure

components.
For a value of z corresponding to the j th layer (i.e., Lj_; < z < L;), the functions
co(n) and cma(n) are related to the functions c,,;(7;) and cmn,;(n;) in equation (4.14)

by
p

o) = Zeaj(n)  and  cmn(n) = emnilns) (4.38)
P mn
Accordingly, equation (4.16) may be rewritten as
oo N i
(M) + D D cmnln) = ;Ji for Lj 1 <2< L; (4.39)
m=1n=1 1
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It is shown in Appendix A that the cun(n) functions are discontinuous at the layer
interfaces, and that, for each horizontal mode of vibration, the sum of the disconti-
nuities at an interface for all the vertical modes of vibration satisfy the relation

N

> {c;m - c,i“m} = em{s} (4.40)

n=1
in which the — and + superscripts identify sections immediately below and above the
interface under consideration. For two-layered systems, equation (4.40) reduces to

22: (637; - 03;2) = €m ( - &) (4.41)

n=1 Pt

for the first or lower interface, and to

22: Chm = €m (&) (4.42)

for the second or top interface.

Representative Wall Pressures

Fig. 4.1 shows the heightwise distributions of the components of wall pressure for
a tank with H/R = 1 containing a two-layered liquid with p2/p1 = 0.5 and Hy =
H, = 0.5H. Part (a) of the figure shows the dimensionless function ¢,(7) for the
impulsive component of the pressure, whereas part (b) shows the functions ¢xn(n) for
the convective components associated with the first two horizontal modes of vibration.
It should be recalled that there is an infinite number of horizontal modes, and that to
each such mode there correspond N (two for a two-layered system) vertical modes.
The ¢mn(7) functions for the third and higher horizontal modes are negligibly small
and are not included. Also shown in part (c) of the figure is the distribution function
ci(n) computed on the assumption that the entire liquid mass acts impulsively.
Similar plots are given in Fig. 4.2 for a three-layered liquid with equal layer
thicknesses and values of p; increasing from top to bottom in the ratio 1/2/3. In this
case, only the convective pressure distributions corresponding to the fundamental
horizontal mode of vibration are given.
The following trends are worth noting in Figs. 4.1 and 4.2 :
1. As is true of a homogeneous liquid, the impulsive pressures increase from zero
at the top to a maximum at the base. The distributions of these pressures are
continuous, but exhibit slope discontinuities or cusps at the layer interfaces.
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2. The convective pressure components are discontinuous at the layer interfaces
and, for a given horizontal mode of vibration, the sum of the discontinuities at
an interface for all the vertical modes satisfies equation (4.40).

3. Irrespective of the order of the horizontal mode of vibration, the convective
pressure associated with the nth vertical mode exhibits (n — 1) changes in sign.
These changes are consistent with those noted in Chapter 3 for the correspond-
ing modal displacements, and are associated with the relative sloshing or rocking
actions of successive interfaces.

4. The algebraic sum of the impulsive and of all the convective pressure distribution
functions satisfies equation (4.39); it is, therefore, equal to the function obtained

by considering the entire liquid to act as a rigid mass.

In assessing the relative importance of the various convective pressure components,
it should be kept in mind that their contributions depend not only on the values of
the dimensionless distribution functions ¢, () but also on those of the corresponding
pseudoacceleration functions Amn(t). The latter functions depend, in turn, on the
characteristics of the ground motion, and on the natural frequency and damping of
the mode of vibration being considered.

As an illustration, consider the two-layered system examined previously in Chapter
3, for which H = 36 ft (10.98 m), R = 60 ft (18.29 m), H, = 2H; = 2H/3 and p,
= 0.5p;. The instantaneous value of the normalized hydrodynamic wall pressure at
a section just below the interface of the two layers in this case is given by

p(1,3,6,t) Au(?) Ar2(?) Aan(?) Asa(t)
g g

~v1 R cosl

+0.023——=+4...
I (4.43)
in which 41 = p1g is the unit weight of the lower layer. Further, let the ground motion
be specified by the design response spectrum presented in Fig. 3.8, which corresponds
to a maximum ground acceleration &, = 0.33 ¢ and a coefficient of viscous damping
of 0.5 percent critical. Using the natural sloshing frequency values listed in Table 3.3,
the maximum or spectral values of the first four pseudoacceleration functions Amn(t),

denoted by A, are found to be

+0.239———=+0.009——=

= 0.265 g( )+0 431 ———

Ay = 0.059g A =0.005g Ay =0228g Agp=0.064g (4.44)

On substituting these values along with &, = 0.33¢ into equation (4.43), the maximum
values of the impulsive and the first four convective terms become
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Impulsive Convective Terms

Term m=1 m=2
n=1 [ n=2 | n=1 | n=2
0.0875 [ 0.0259 | 0.0012 | 0.0021 | 0.0015

Finally, when computed approximately by adding to the maximum value of the impul-
sive component the square root of the sum of squares of the convective components,
the maximum value of the total hydrodynamic wall pressure at the elevation consid-
ered becomes 0.114vy R.

It should be noted that, whereas the coefficient of the term involving the A;2(%)
function is much larger than of the term involving the A2 () function, the opposite is
true of the relative magnitudes of these two terms. Note further that the maximum
component of the convective pressure is contributed by the fundamental sloshing mode
of vibration (m = n = 1), that the contributions of the higher modes are negligibly
small, and that the total convective pressure is small compared to the corresponding
impulsive pressure. These results are representative of those that can be expected for

large capacity tanks of normal proportions subjected to earthquakes.

Wall Pressures for Two-Layered Systems

In the left part of Fig. 4.3, the c,(n) function for the impulsive component of the wall
pressure for the two-layered system examined previously in Fig. 4.1 is compared with
those obtained for several other values of the density ratio p2/p;. Also shown are
the corresponding functions ¢;1(n) and e12(n) for the first horizontal sloshing mode
of vibration. As would be expected, the impulsive pressure coefficients decrease with
decreasing py/p1, and for the limiting case of pz/p1 = 0, they reduce to the values
applicable to a tank that is half-full with a homogeneous liquid of density p;. By
contrast, the convective pressures in the lower layer increase with decreasing p, /p1,
and as pz/p1 tends to zero, c11(n) and ci2(n) become proportional to each other
and their sum tends to the corresponding function for the half-full tank. The latter
function is associated with a value of 0.837 at the tank mid-height and a value of
0.575 at the tank base.

The limiting behavior of the convective pressure distributions referred to above is
strictly valid only for systems with H; = Hy = 0.5 H, for which the uncoupled natural
frequencies of the two layers (i.e., the frequencies computed considering the two layers
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to act independently) are equal. For systems with unequal layer thicknesses, as p2/p1
tends to zero, the convective pressure distribution for the tank containing only the
lower layer is reached by the function ¢1,(2) for which the associated frequency of
vibration is closest to the uncoupled natural frequency of the lower layer. This is
demonstrated in Fig. 4.4, where the distributions of ¢1;(n) and ci2(n) for a tank
with H/R = 1 and pa/p1 = 0.1 are shown for two values of Hy/H;. Note that for
H, = 0.5H;, for which the fundamental uncoupled natural frequency of the lower
layer is higher than that of the upper (see, for example, equation 3.44), it is the
c11(n) function that approaches the distribution of the partially filled tank, while
¢12(n) becomes negligibly small. By contrast, for H; = 2H, for which the uncoupled
natural frequency of the bottom layer is the lower of the two, it is the ¢;2(7) function
that approaches the distribution of the partially filled tank while c11(7) tends to zero.

The impulsive and convective pressure coefficients for additional two-layered sys-
tems are listed in Table 4.1. The tabulated results are for the free-surface, for sections
immediately above and below the interface (denoted by I+ and I—, respectively), and
for the tank base of systems with H/R = 0.5, 1 and 2, and Ha/H;, = 0.5 and 2. The
general trends of these data are similar to those of the data displayed in Figs. 4.3

and 4.4.

4.3.2 Tank Forces

Two-layered systems

Fig. 4.5 shows the masses m, and my; in the expression for base shear of systems
with equal layer thicknesses and density ratios pa/p; in the range between 0.1 and 1.
The results are plotted as a function of the total liquid height to tank radius ratio,
H/R, and they are normalized with respect to m, the total liquid mass of the system
being considered. Normalized values of the corresponding base moment coefficients,
moh, and my1hq1, and of the foundation moment coeflicients, moh}, and my1hy,, are
presented in Figs. 4.6 and 4.7, respectively. The normalizing quantities in these plots
are those obtained by considering the entire liquid to act as a rigid mass, and are
naturally different for tanks of different proportions and contents.

The normalized values of m, and m;; for additional two-layered systems, along
with the corresponding values of myq, mg; and my,, are presented in Table 4.2, and
the associated moment coefficients are presented in Tables 4.3 and 4.4. Examination
of these data and of those displayed in the figures reveals the following trends :
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1. For values of pz/p; between 0.5 and 1, the normalized values of the liquid masses
m,, m1; and mg; may, for all practical purposes, be considered to be same over
the entire range of H/R considered. The same is also true of the correspond-
ing moment coefficients, although the ranges of p2/py and H/R over which the
results may be considered to be the same are somewhat different in the two
cases. Incidentally, these quantities are the ones most likely to affect signif-
icantly the seismic response of practical systems. It follows that, within the
indicated range of p/p1 values, the solutions for layered systems may be ob-
tained with reasonable accuracy from well-established solutions [65] for tanks
with homogeneous liquids. It should be recalled, however, that the normalizing
quantities are different in the two cases.

For values of p;/p; smaller than 0.5, the proportion of the total liquid acting
impulsively may be substantially lower for the layered system than for the ho-
mogeneous system. The large interfacial discontinuity in liquid density increases
the sloshing or convective actions of the system, and this increase, in turn, leads

o

to a corresponding diminution of the impulsive effects.

3. While the increase in the convective action of systems with the large changes in
liquid density does not necessarily increase the normalized values of the response
components for n = 1, it does increase the sum of the corresponding components
for n = 1 and n = 2. This is true for each horizontal mode of vibration and
is demonstrated in Fig. 4.8 for the convective masses associated with the first
and second horizontal modes of vibration (i.e., m = 1 and m = 2). It can be
seen that, in each case, the sum of the convective masses for the layered system
is indeed higher than the corresponding mass for the homogeneous system.

Three-layered systems

Numerical data similar to those presented in the preceding section for two-layered
systems are given in Tables 4.5, 4.6 and 4.7 for three-layered systems with equal layer
thicknesses. Three different values of H/R and two different ratios of layer densities
are considered. As before, the results are normalized with respect to those computed
on the assumption that the entire liquid mass acts rigidly.

The tabulated data satisfy equations (4.25), (4.31) and (4.36), and the interrela-
tionships of the impulsive and convective results are generally similar to those for the

two-layered systems examined in previous sections.
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4.4 Conclusions

With the information presented herein, the response to horizontal base shaking of
rigid, vertical, circular cylindrical tanks containing an arbitrary number of uniform
liquid layers of varying thicknesses and densities may be evaluated rationally and
effectively. The comprehensive numerical solutions that have been presented elucidate
the underlying response mechanisms, as well as the effects and relative importance
of the numerous parameters involved. The principal conclusions of the study are as

follows :

1.

The response of an N-layered system may be expressed as the sum of an im-
pulsive component and an infinite number of horizontal convective or sloshing
components, each associated with NV vertical modes of vibration.

The convective component of the pressure associated with any horizontal and
the nth vertical mode of vibration exhibits (n — 1) changes in sign. These
changes are due to the in-phase or out-of-phase sloshing actions of the interfaces.
The impulsive pressure component is continuous and increases from zero at the
top to a maximum at the base, whereas the convective pressure components are
discontinuous at the layer interfaces, the magnitude of the discontinuity being
a function of the tank proportions and of the relative densities and thicknesses
of the layers.

When normalized with respect to the pressures computed on the assumption
that the entire liquid acts as a rigid mass, the coefficients for the impulsive and
all convective components of the hydrodynamic wall pressures add up to unity.
The same is also true of the corresponding coefficients for base shear and base
moments in the tank.

The impulsive component of response may be evaluated either as the differ-
ence between the response computed on the assumption that the entire liquid
acts as a rigid mass and the sum of all convective components of response or,
independently, without the prior evaluation of the convective effects.

. For two-layered systems with ratios of mass densities in the range between 0.5

and 1.0, the base shear and base moments may be related simply to those
obtained from well-established solutions for homogeneous systems.
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Table 4.1: Values of coefficients in expression for hydrodynamic wall
pressure at selected sections of two-layered systems with dif-

ferent H/R and H,/H,

2_2_ Hg/Hl = 0.5 Hz/Hl =2
P1 Ui Co C11 €12 €21 C22 Co €11 C12 €21 C22
H/R =0.5
1 1 0 0.837 0.073 0 0.837 0.073
I+ | 0.270 | 0.687 0.031 0.378 | 0.603 0.031
I-10.270 | 0.687 0.031 0.378 | 0.603 0.031
0 0.411 | 0.575 0.010 0.411 | 0.575 0.010

075 1 0 0.672 | -0.045 | 0.059 | -0.004 0 0.667 | -0.040 | 0.057 | -0.002
I+]0.218 | 0.557 | -0.046 | 0.025 | -0.005 |[ 0.304 | 0.492 | -0.046 | 0.012 | -0.006
I-|0.218 | 0.692  0.028 | 0.033 | 0.005 || 0.304 | 0.550 | 0.105 | 0.014 | 0.010
0 |0.380 | 0.580 | 0.024 | 0.011 | 0.002 | 0.352 | 0.525 | 0.100 | 0.010 | 0.007

0.5 1 0 0.495 | -0.076 | 0.044 | -0.008 0 0.486 | -0.068 | 0.040 | -0.004
I+]0.158 | 0.415 | -0.077 | 0.019 | -0.009 || 0.219 | 0.369 | -0.076 | 0.009 | -0.009
I-0.158 | 0.702 | 0.054 | 0.036 | 0.010 || 0.219 | 0.474 | 0.237 | 0.014 | 0.023
0 |0.347 | 0.588 | 0.045 | 0.012 | 0.003 |[ 0.286 | 0.453 | 0.226 | 0.010 | 0.016

025| 1 0 0.291 | -0.082 | 0.027 | -0.009 0 0.283 | -0.074 | 0.023 | -0.005
I+ |0.086 | 0.248 | -0.081 | 0.012 | -0.009 || 0.120 | 0.223 | -0.079 | 0.006 | -0.008
I—|0.086 | 0.726 | 0.069 | 0.043 | 0.015 || 0.120 | 0.347 | 0.424 | 0.012 | 0.040
0 |0.310] 0.608 | 0.058 | 0.014 | 0.005 || 0.212 | 0.331 | 0.405 | 0.009 | 0.028

0.1 1 0 0.139 | -0.056 | 0.014 | -0.007 0 0.134 | -0.051 | 0.011 | -0.004
I+ |0.038]0.121 | -0.054 | 0.006 | -0.006 || 0.051 | 0.109 | -0.052 | 0.003 | -0.005
I-]0.038|0.765 | 0.054 | 0.054 | 0.013 || 0.051 | 0.202 | 0.609 | 0.009 [ 0.055
0 |0.286 | 0.641 | 0.046 | 0.018 | 0.004 || 0.163 | 0.192 | 0.581 | 0.006 | 0.039

H/R=1

1| 1 0 |o0.837 0.073 0 |o0.837 0.073
I+ | 0.503 | 0.480 0.012 0.686 | 0.309 0.002

I- | 0.503 | 0.480 0.012 0.686 | 0.309 0.002

0 |0.738 | 0.259 0.001 0.738 | 0.259 0.001

0756 | 1 0 0.676 | -0.048 | 0.057 | -0.003 0 0.660 | -0.033 | 0.055 | -0.001
I+ |0.416 | 0.392 | -0.055 | 0.010 | -0.007 || 0.565 | 0.254 | -0.056 | 0.002 [ -0.007
I—|0.416 | 0.505 | 0.042 | 0.013 | 0.008 || 0.565 | 0.297 { 0.110 | 0.002 [ 0.010
0 |0.701] 0.272 | 0.023 | 0.001 | 0.001 || 0.652 | 0.249 | 0.093 | 0.001 | 0.003
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_p_g_ Hz/H1=0.5 Hz/Hl =2
P1 n Co C11 C12 €21 C22 Co c11 C12 C21 C22
0.5 1 0 0.503 | -0.084 | 0.041 | -0.005 0 0.476 | -0.057 | 0.037 | -0.001
I+ {0.309 | 0.296 | -0.090 | 0.007 | -0.011 || 0.418 | 0.194 | -0.088 | 0.001 | -0.011
I— | 0.309 | 0.542 | 0.083 | 0.014 | 0.019 || 0.418 | 0.275 | 0.249 | 0.002 | 0.024
0 0.658 | 0.293 | 0.045 | 0.001 | 0.001 || 0.549 | 0.230 | 0.209 | 0.001 | 0.008
0.25 1 0 0.303 { -0.094 | 0.025 | -0.007 0 0.274 | -0.065 | 0.020 | -0.001
I+ |0.175| 0.184 | -0.091 | 0.004 | -0.010 |} 0.236 | 0.122 | -0.086 | 0.001 | -0.010
I-10.1751 0.611 | 0.109 | 0.017 | 0.032 || 0.236 | 0.224 | 0.440 | 0.002 | 0.043
0 0.606 | 0.330 | 0.059 | 0.001 | 0.002 | 0.424 | 0.188 | 0.368 | 0.001 | 0.014
0.1 1 0 0.150 | -0.066 | 0.015 | -0.007 0 0.131 | -0.050 | 0.009 | -0.001
I+ 1 0.076 | 0.094 | -0.060 | 0.003 | -0.006 || 0.102 | 0.064 | -0.054 | 0.000 | -0.006
I—-10.076 | 0.698 | 0.090 | 0.025 | 0.038 || 0.102 | 0.146 | 0.618 | 0.002 | 0.058
0 0.569 | 0.377 | 0.048 | 0.001 | 0.002 || 0.335( 0.122 | 0.517 } 0.001 | 0.019
H/R =
1 1 0 0.837 0.073 0 0.837 0.073
I+4 | 0.748 | 0.245 0.002 0.919 | 0.078 0.000
I—|0.748 | 0.245 0.002 0.919 | 0.078 0.000
0 0.955 | 0.042 0.000 0.955 | 0.042 0.000
0.75 1 0 0.670 | -0.042 | 0.055 | -0.001 0 0.642 | -0.015 | 0.055 | -0.000
I+ |0.635 | 0.198 | -0.069 | 0.002 | -0.008 || 0.780 | 0.061 | -0.076 | 0.000 | -0.008
I-10.635|0.263 | 0.075 | 0.002 | 0.010 || 0.780 | 0.078 | 0.117 | 0.000 | 0.010
0 0.940 | 0.045 | 0.013 | 0.000 | 0.000 || 0.892 | 0.042 | 0.063 | 0.000 | 0.001
0.5 1 0 0.498 | -0.079 | 0.038 | -0.001 0 0.446 | -0.028 | 0.037 | -0.000
I+ |0.487 | 0.148 | -0.111 | 0.001 | -0.012 || 0.598 | 0.044 | -0.117 | 0.000 | -0.012
I— | 0.487 | 0.292 | 0.164 | 0.002 | 0.024 || 0.598 | 0.077 | 0.270 | 0.000 | 0.024
0 0.920 | 0.050 | 0.028 | 0.000 | 0.000 [ 0.809 | 0.041 [ 0.146 | 0.000 | 0.001
0.25 1 0 0.312 | -0.103 | 0.020 | -0.002 0 0.246 | -0.037 | 0.018 | -0.000
I+ |0.287( 0.093 | -0.108 | 0.001 | -0.011 [{ 0.352 | 0.027 | -0.105 | 0.000 | -0.011
I—- 10287 0.362 ! 0.251 | 0.002 | 0.042 || 0.352 | 0.073 | 0.476 | 0.000 | 0.044
0 0.893 | 0.062 | 0.043 | 0.000 | 0.000 || 0.698 | 0.039 | 0.257 | 0.000 | 0.003
0.1 1 0 0.173 | -0.089 | 0.009 | -0.002 0 0.116 | -0.032 | 0.007 | -0.000
I+ |0.128 | 0.052 | -0.068 | 0.000 | -0.006 f 0.157 | 0.015 | -0.059 | 0.000 | -0.006
I—-]0.128 | 0.491 | 0.247 | 0.003 | 0.058 || 0.157 | 0.062 | 0.647 | 0.000 | 0.060
0 0.872 | 0.084 | 0.042 | 0.000 | 0.000 { 0.611 | 0.033 | 0.349 | 0.000 | 0.003
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Table 4.2: Normalized values of effective masses in expression for base
shear of two-layered systems with different H/R and H,/H;

H,/H; = 0.5 Hy/Hi=2
£z mo my; myp mg; mpz mey my myy mp) mag
p1 me my my mg mg me mg mg me my
H/R =05
1 0.299 | 0.660 0.027 0.299 | 0.660 0.027

0.75 | 0.288 | 0.670 | 0.002 | 0.027 | 0.000 || 0.289 | 0.663 | 0.008 | 0.026 | 0.001
0.5 | 0.270 | 0.681 | 0.008 | 0.027 | 0.001 || 0.267 | 0.644 | 0.045 | 0.025 | 0.004
0.25 | 0.241 | 0.694 | 0.018 | 0.029 | 0.003 || 0.218 | 0.551 | 0.176 | 0.022 | 0.014
0.1 {0.217 | 0.711 | 0.020 | 0.032 | 0.004 || 0.159 | 0.359 | 0.409 | 0.015 | 0.031

H/R =1

1 |0.547 | 0.432 0.014 0.547 | 0.432 0.014
0.75 | 0.538 | 0.440 | 0.003 | 0.012 { 0.000 || 0.540 | 0.432 | 0.008 | 0.013 | 0.001
0.5 | 0.517 | 0.453 | 0.012 | 0.011 | 0.002 {| 0.512 | 0.421 | 0.046 | 0.011 | 0.003
0.25 | 0.474 | 0.478 | 0.026 | 0.010 | 0.005 || 0.431 | 0.369 | 0.172 | 0.008 | 0.011
0.1 | 0.433 | 0.512 | 0.029 | 0.010 | 0.008 || 0.322 | 0.252 | 0.384 | 0.005 | 0.023

H/R =2

1 |0.762 | 0.227 0.007 0.762 | 0.227 0.007
0.75 | 0.769 | 0.217 | 0.004 | 0.006 | 0.000 || 0.768 | 0.214 | 0.007 | 0.006 | 0.000
0.5 | 0.763 | 0.209 | 0.019 | 0.004 | 0.001 || 0.751 | 0.195 | 0.043 | 0.005 | 0.002
0.25 | 0.732 | 0.209 | 0.048 | 0.003 | 0.004 || 0.674 | 0.158 | 0.153 | 0.003 | 0.006
0.1 | 0.691 | 0.235 | 0.061 | 0.002 | 0.007 || 0.550 |{ 0.110 | 0.318 | 0.002 | 0.013
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Table 4.3: Normalized values of coefficients in expression for overturning
moment at a section immediately above tank base of two-
layered systems with different H/R and H,/H,

Hy/H; = 0.5 Hy[H =2
pz | mohy | myhy; | myohjs | maghey | mgghyy || mohe | myhyy | myghja | mypihy mgyohas
P1 mthg mghg mght m¢h¢ m¢h¢ mghg mghg m¢h¢ mthg mghg

H/R =05
1 0.238 | 0.703 0.037 0.238 | 0.703 0.037
0.75 | 0.236 | 0.724 | -0.016 | 0.037 | -0.001 || 0.241 | 0.736 | -0.032 | 0.037 | -0.002
0.5 | 0.227 | 0.746 | -0.028 | 0.038 | -0.002 || 0.239 | 0.772 | -0.064 | 0.038 | -0.004
0.25 | 0.206 | 0.764 | -0.029 | 0.039 | -0.001 { 0.221 | 0.780 | -0.058 | 0.037 | -0.002
0.1 | 0.181 ] 0.768 | -0.016 | 0.041 0.001 | 0.177 | 0.643 0.110 0.032 0.011
H/R =
1 0.442 } 0.523 0.022 0.442 | 0.523 0.022
0.75 | 0.446 | 0.538 | -0.016 | 0.021 | -0.001 |l 0.453 | 0.542 | -0.028 | 0.022 | -0.001
0.5 | 0.439 | 0.557 | -0.026 | 0.019 0.000 || 0.458 | 0.564 | -0.054 | 0.021 | -0.001
0.25 | 0.407 | 0.583 | -0.023 | 0.017 0.004 |[ 0.434 | 0.573 | -0.040 { 0.018 0.003
0.1 | 0.364 | 0.606 | -0.008 | 0.017 0.008 || 0.353 | 0.483 0.118 0.014 0.013
H/R =
1 0.644 | 0.337 0.012 0.644 | 0.337 0.012
0.75 | 0.663 | 0.331 | -0.011 | 0.011 0.000 || 0.664 | 0.335 | -0.017 | 0.012 | -0.000
0.5 | 0.670 | 0.325 | -0.011 | 0.009 0.001 |[ 0.679 | 0.330 | -0.028 | 0.011 0.000
0.25 | 0.646 | 0.324 0.012 0.006 0.005 | 0.662 | 0.312 0.005 0.009 0.003
0.1 | 0.595 | 0.346 0.037 0.004 0.010 |} 0.569 | 0.259 0.144 0.006 0.011
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Table 4.4: Normalized values of coefficients in expression for foundation
moment of two-layered systems with different H/R and H,/H,

Hy/Hy = 0.5 Hy/Hqy= 2
! ' ! ! ! ! ! ! ! !
p2 | mohy | myhy | myghyp | majhoy | maghoy || mohy | muihy; | mushys | mashy; | mazhy,
p1 | mehy | meh m¢h, m¢h; m¢h; meh, | meh, m¢h, meh,’ mgh,
H/R =05
1 10.292 | 0.687 0.013 0.292 { 0.687 0.013
0.75 | 0.271 | 0.696 | 0.015 | 0.012 | -0.000 || 0.254 | 0.652 | 0.076 | 0.011 0.000
0.5 | 0.244 | 0.708 | 0.032 | 0.011 | -0.000 | 0.204 | 0.586 | 0.195 | 0.009 0.001
0.25 | 0.208 | 0.728 | 0.046 | 0.010 | 0.000 |f 0.135( 0.447 | 0.401 0.006 0.003
0.1 | 0.185] 0.759 | 0.040 | 0.010 | 0.001 | 0.088 | 0.265 | 0.633 | 0.004 0.006
H/R=1
1.0 | 0.526 | 0.451 0.015 0.526 | 0.451 0.015
0.75 | 0.521 | 0.459 | -0.000 | 0.013 | -0.000 || 0.509 | 0.445 | 0.025 | 0.013 | -0.000
0.5 | 0.505| 0471 | 0.006 | 0.011 0.000 | 0.469 | 0.425 | 0.088 0.011 | -0.000
0.25 | 0.467 | 0.494 | 0.020 | 0.009 | 0.002 | 0.372 | 0.362 | 0.245 | 0.007 0.002
0.1 | 0.431| 0.512 | 0.029 | 0.010 | 0.004 | 0.274 | 0.241 | 0.470 | 0.004 0.006
H/R =
1 |0.676| 0.305 0.011 0.676 | 0.305 0.011
0.75 | 0.695 | 0.296 | -0.008 | 0.010 | 0.000 | 0.692 [ 0.295 | -0.005 | 0.010 | -0.000
0.5 | 0.704 | 0.285 | -0.005 | 0.008 | 0.001 | 0.696 | 0.278 | 0.009 | 0.009 0.000
0.25 1 0.684 | 0.280 | 0.019 | 0.005 0.004 | 0.653 | 0.240 | 0.087 | 0.007 0.003
0.1 | 0.645 | 0.296 | 0.040 | 0.003 0.008 | 0.559 | 0.174 | 0.247 | 0.004 0.007




82

Table 4.5: Normalized values of effective masses in expression for base

shear of three-layered systems with different H/R and H;

H2=H3=H/3

palpa/pr | T | T | TR N =
H/R =0.5

1/1/1 | 0.299 | 0.660 0.027

1/2/3 | 0.252 | 0.674 | 0.028 | 0.004 | 0.026 | 0.003 | 0.000

1/3/5 | 0.229 | 0.672 | 0.044 | 0.008 | 0.027 | 0.005 | 0.001
H/R=1

1/1/1 | 0.547 | 0.432 0.014

1/2/3 | 0.495 | 0.450 | 0.032 | 0.004 | 0.010 | 0.003 | 0.001

1/3/5 | 0.459 | 0.462 | 0.050 | 0.009 | 0.008 | 0.004 | 0.001
H/R =2

1/1/1 |0.762 | 0.227 0.007

1/2/3 | 0.757 | 0.193 | 0.035 | 0.005 | 0.004 | 0.001 | 0.001

1/3/5 |0.731 | 0.189 | 0.058 | 0.012 | 0.003 | 0.002 | 0.001
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Table 4.6: Normalized values of coefficients in expression for overturning
moment at a section immediately above tank base of three-
layered systems with different H/R and H, = H, = H3 = H/3

/ / mohe | myjhyy | myahys | myshys mpjhg; | mgohog | mashys
p3/P2/P1 | ‘b, mehy mehy mghy mehy mehy mehy

H/R =105

1/1/1 {0.239 | 0.703 0.037
1/2/3 |0.226 | 0.789 | -0.057 | -0.010 | 0.039 | -0.003 | -0.001
1/3/5 |0.212 | 0.808 | -0.054 | -0.020 | 0.040 | 0.002 | -0.002

H/R =

1/1/1 | 0.442 | 0.523 0.022
1/2/3 |0.446 | 0.586 | -0.049 | -0.010 | 0.018 | 0.000 | -0.001
1/3/5 |0.424 | 0.609 | -0.041 | -0.020 | 0.017 | 0.002 | -0.001

H/R =

1/1/1 |0.644 | 0.337 0.012
1/2/3 | 0.692 | 0.323 | -0.019 | -0.010 | 0.008 | 0.001 | -0.000
1/3/5 |0.682 | 0.321 | 0.001 | -0.018 | 0.006 | 0.003 | -0.000
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Table 4.7: Normalized values of coefficients in expression for foundation
moment of three-layered systems with different H/R and H; =

H, = Hy = H/3
mohg mllh'u l'l’llghllz m13h'13 mglhlm mgzhlzz mzahlza
pal P2/ 1 m¢h) mgh) mg¢h) m¢h} m¢h; m¢h}, m¢h),
H/R =05
1/1/1 }0.292 | 0.687 0.013
1/2/3 |0.196 | 0.639 | 0.113 | 0.040 | 0.008 | 0.001 0.000
1/3/5 |0.168 | 0.643 | 0.113 | 0.063 | 0.008 | 0.001 0.000
HIR =1
1/1/1 | 0.526 | 0.451 0.015
1/2/3 | 0.466 | 0.459 | 0.040 | 0.020 | 0.009 | 0.000 -0.000
1/3/5 | 0.429 | 0.467 | 0.056 | 0.034 | 0.008 | 0.001 -0.000
H/R =2
1/1/1 |0.678 | 0.305 0.011
1/2/3 |0.715 | 0.271 | -0.000 | 0.001 | 0.007 | 0.001 -0.000
1/3/5 |0.702 | 0.263 | 0.020 | 0.003 | 0.005 0.002 | -0.000
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Figure 4.5 Impulsive and fundamental convective masses for two-
layered systems with Hy/H; =1
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Chapter 5

Simplified Analysis of Layered Tank-Liquid
Systems

5.1 Introduction

The evaluation of the exact response of systems containing layered liquids is based
on relatively complex methods that require the development/ready accessibility to
sophisticated programs for their implementation. The effort and complexity of the
computations is further increased when effects of tank-wall flexibility need to be con-
sidered. In order to facilitate the preliminary design of both rigid and flexible layered
systems, and develop an insight into their response characteristics, there is a need
for simplified procedures that conveniently and accurately assess the hydrodynamic
layered response. The study presented in this chapter is intended to be responsive to
this need. The objectives of the study are two-fold :

e To propose a simple concept by which the natural frequencies associated with
the dominant modes of vibration of a layered system can be readily assessed.

e To use the underlying concept to also estimate the impulsive response coeffi-

cients for rigid layered systems.

Since homogeneous tank-liquid systems have been the subject of several past studies
and solutions for reference tank-liquid systems are well-established and readily avail-
able in the literature, it is desirable to base the proposed procedures for the layered
systems on the solutions for such reference homogeneous systems. The validity of
the proposed procedures is established by comparing the approximate solutions with
their exact counterparts over a wide range of tank-liquid parameters.

Only the impulsive component is considered here. Since the convective component
is generally associated with motions of significantly lower frequencies than the domi-
nant frequencies of the excitation or the natural frequencies of the flexible tank-liquid
system, it is assumed to be practically unaffected by tank-wall flexibility and can be
evaluated from the rigid-tank expressions presented in Chapters 3 and 4.
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5.2 Background
5.2.1 Rigid Tanks

The response of rigid tank-liquid systems is well-established and the expressions for

the quantities of current interest are summarized in this section. The expressions are

presented in a form that is applicable to both homogeneous and layered systems.
The instantaneous value of the impulsive pressure exerted on the tank wall, p; =

pi(2,0,t), is expressed as
pi(2,0,1) = co(2) E(t)p1 R cost (5.1)

where p; is a measure of the mass density : for a homogeneous system, it is the liquid
density, whereas for a layered system, it can be interpreted as the density of the
bottom-most layer, p;; z is the vertical distance measured from the tank-base, and;
c,(2) is a dimensionless function that defines the heightwise variation of the impulsive
pressure. It is a function of z and H/R for a homogeneous system, (Veletsos 1984),
whereas for a layered system, it also depends on the relative layer densities, p;/p1,
and relative layer heights, H;/H, (see Chapter 4).

The impulsive tank forces are obtained by appropriate integrations of the pressure
given by equation (5.1). The instantaneous value of the impulsive base shear, Qs,i(t),
is given by

Quilt) = ma (1) (5.2)
and the corresponding values of the bending moments immediately above and below

the base are expressed in the form

M;(t) = mo ho &g(t) (5.3)
and

MI(t) = mo hl, E4(t) (5.4)
respectively. The moment M;(t) is due exclusively to the impulsive wall pressure,
whereas M!(t) includes, in addition, the contribution of the pressure exerted on the
tank base. m, represents the impulsive component of the liquid mass, and A, and A
are the heights at which this mass must be located to yield the correct base moments.

5.2.2 Flexible Tanks

In previous studies for flexible tanks containing homogeneous liquids, [65], a simple
method has been presented to conveniently account for the effects of tank-wall flexi-
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bility. For flexible tanks with H/R in the range between 0.25 and 1.0, the impulsive
effects have been obtained from the relevant expressions for a rigid tank simply by
replacing the ground acceleration term in these expressions by the pseudoacceleration
function corresponding to the fundamental natural frequency of the tank-liquid sys-
tem. For instance, the impulsive component of the base shear for the broad flexible

system is expressed as

@b,i(t) = moAi(t) (5.5)

where m, is the rigid-tank impulsive mass; and A;(t) is the instantaneous pseudoac-
celeration of a single-degree-of-freedom oscillator, the natural frequency and damping
of which are equal to those of the fundamental fixed-base natural mode of vibration
of the tank-liquid system when subjected to the prescribed ground shaking,.

The fundamental natural frequency, f;, needed to compute A;(t) is well-established

for homogeneous systems and is given by

C; |E

fi= or i ; (5.6)

where H is the height of the liquid; E and p are the modulus of elasticity and
the density of the material of the tank-wall respectively, and; C; is a dimensionless
frequency coefficient that depends on H/R, h/R, pi/p and v.

The simplified approach has been based on the observation that, for all practical
purposes, the impulsive pressure distribution for broad homogeneous systems is insen-
sitive to the wall flexibility. The latter trend must also hold true for layered systems
with broad aspect ratios and this has been verified in a recent study of two-layered
systems, [58]. It follows that the simplified approach can be applied to broad layered
systems too and that the crucial step in the extension to flexible tanks of the available
information on impulsive effects in rigid tanks with layered liquids is the evaluation

of the fundamental natural frequency of the tank-liquid system.

5.3 Flexible Layered Systems
5.3.1 Approximate Evaluation of Fundamental Natural Frequency

For a system with N uniform liquid layers of different thicknesses and mass densities,
the desired frequency is determined from the corresponding frequencies of IV subsys-
tems, each containing a homogeneous liquid. The procedure is described by reference
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to a three-layered cantilever system, for which the variation in liquid density is shown
by the sketch at the extreme left of Fig. 5.1.

Referred to as subsystems A, B and C, the three replacement systems are identi-
fied by the three rightmost diagrams in Fig. 5.1. For subsystem A, a homogeneous
liquid of the density of the top layer, ps, extends to the total height H; for subsystem
B, a homogeneous liquid of a density equal to the difference in the densities of the
second and top layers, p; — p3, extends to the top of the second layer, Hy + Ha; and
for subsystem C, a homogeneous liquid of a density equal to the difference in the
densities of the bottom and middle layers, p; — p2, extends to the top of the bottom
layer, H;.

Let fa, fp and fo be the fundamental natural frequencies of the impulsive modes
of vibration of subsystems A, B and C, respectively, and let T4, Tp and Tc be the
associated periods. The corresponding frequency of the actual layered system, f;,
may then be determined by application of a Dunkerley-type approximation from

1 1 1 1

= — o — 5.7

FERTBYTR (50
and the corresponding natural period, T}, may be determined from

T?=T:+ T+ T (5.8)

Inasmuch as these expressions do not follow from an exact application of the Dunkerley
approximation, the results obtained do not necessarily constitute a low-bound esti-
mate of the desired frequency.

On expressing the frequency of the layered system in a manner similar to equation
(5.6), and making use of equation (5.7), the frequency coefficient C; for the layered
system is expressed in the form

2 2
515 _ 512 [(H +CI;:)/H] + [ch{gH] (5.9)

1

C; is evaluated once the corresponding values of C4, Cp and C¢ are known. These, in
turn, can be evaluated directly from existing programs for systems that are partially
filled with liquids of arbitrary homogeneous densities. It is more convenient, how-
ever, to evaluate C4, Cp and C¢ from tabulated solutions for reference homogeneous

systems. The latter evaluation involves making two approximations :

1. The frequency coefficient for a tank that is partially filled to a certain height
can be taken to be the same as that for a fully filled tank of the same height.
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This approximation is based on the observation that only the portion filled
with liquid contributes significantly to the mass and stiffness properties of the
system.

2. If the frequency coefficient for a homogeneous system with a specific 2/ R and
pi/p is taken as reference (denoted by the subscript ref), the value of the
frequency coefficient for any other value of &/R and p/p is given by, [52],

. — ) (h/R) (pl/p)ref
Ci= (Cz)refJ TR (o)) (5.10)

The above expression is based on the assumption that the inertia effects of the
tank itself are negligible compared to those of the contained liquid, a condition

normally satisfied in practice.

Making use of equation (5.10), well-established solutions for reference systems can
be used to evaluate the frequency coefficients for the homogeneous sub-systems, C4y,
Cg and Cg. The latter values are then substituted into equation (5.9) to determine
C; which, in turn, is used to evaluate the fundamental natural frequency of the three-
layered system, f;, from equation (5.6).

The basic principles that have been enunciated above can be easily applied to sys-
tems with any number of layers and similar expressions for the fundamental frequency

can be obtained.

5.3.2 Approximate Evaluation of Second Natural Frequency

As shown in a later section, it is sometimes necessary to know the second natural
frequency of vibration as well while approximately assessing the response of flexible
tank-liquid systems and there is a need to have a simple method for evaluating this
frequency for layered systems.

Making use of the fact that the frequency of a system vibrating in a certain mode
is generally insensitive to inaccuracies in the representation of that mode, the method
proposed above for evaluating the fundamental frequency is reapplied to evaluate the
second natural frequency of the layered system. On repeating the steps shown be-
fore, the coefficient for the second natural frequency of vibration of the system is
again given by equation (5.9), provided C4, Cp and C¢ in that expression are now
interpreted as the frequency coefficients for the second mode of vibration of the corre-
sponding homogeneous sub-systems A, B and C. Solutions of the latter coefficients for
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reference values of /R and p;/p are also readily available in the literature and equa-
tion (5.10) can again be conveniently used to relate them to corresponding frequency

coefficients for arbitrary h/R and pi/p.

5.3.3 Exact Evaluation of Natural Frequencies of Vibration

The validity of the proposed procedure for the natural frequencies of vibration of
the layered system can only be established by comparing the approximate solutions
with corresponding solutions obtained in an exact manner. The rigorous method for
solving the free-vibrational problem is treated in this section. Attention is devoted
to two and three-layered cantilever systems.

The procedure followed is based on the one formulated for homogeneous systems
by Yang [82], with due provision made for the effects of the liquid layering. The
analysis is implemented by making use of the Rayleigh-Ritz method. The axial, radial
and tangential components of displacement, u, v, and w, respectively, are expressed as
linear combinations of the natural modes of vibration of a uniform, cantilever beam,
(z), or of the first derivatives of the modes, ¥'(z).

N N, N3
u = ; Ui(t)9'(2) cosd v =3 Vi(t)h(z)sind w=7 Wi(t)1(z)cosd (5.11)

i=1 i=1

where Ui(t), Vi(t) and W;(t) are time-dependent coefficients with units of length
indicating the degree of participation of each mode; Ny, N2 and N3 are the number
of terms used in the series expressions. Using equation (5.11) for the displacement
components, the stiffness and mass properties of the tank-shell are computed in a
manner identical to that for the homogeneous systems. The general principles followed
in this evaluation have been extensively described in [55, 82] and are not repeated
here.

Additionally, it is necessary to evaluate the participating modal masses of the
layered liquid. The procedure to evaluate these masses for a three-layered cantilever
system is presented in Appendix B. The liquid modal masses are combined with the
appropriate values of the shell masses to form the mass matrix [M]. Using this and
the previously established stiffness matrix [K], the free-vibration problem is written
in the form

[K){d} = w*[M){q) (5.12)
where {4} is the vector of modal displacement ordinates, given by

{(}} = {(Ajla""a[Alea"yl9 """" af/NzaWh """ 1WN3}T (513)
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On solving the resulting characteristic equation, a total of (¥ + Nz + N3) frequencies
are obtained, of which only the first two solutions are of interest in the present study.

Using the same general scheme of the Rayleigh-Ritz method and Lagrange’s ap-
proach, but a different method to compute the participating liquid modal masses, the
free-vibrational problem for two-layered tank-liquid systems has also been studied in
[57]. The solutions obtained therein have been restricted to Ny, Np, N3 < 9 since
numerical difficulties related to the precision with which integrals involving the shape
functions 1(z) and ¥'(z) can be evaluated have been encountered for values greater
than 9. Such numerical problems have been resolved in the present study by using
asymptotic expressions of the shape functions for large values of the arguments and
the combination of Ny = 10, N, = 15 and N3 = 20 has been successfully used for
all the reported solutions. The larger number of approximating functions used in
the present study naturally yield frequency values that are more accurate than those

presented in [57].

5.3.4 Numerical Results

Frequency coefficients for water-filled steel tanks with #/R = 0.001, » = 0.3 and p;/p =
0.127 are readily available in the literature (Haroun and Housner 1981, Veletsos 1984)
and are taken as reference values in the present study for computing the frequency

coefficients of the homogeneous sub-systems.

Two-layered systems

Approximate frequency coefficients for the fundamental mode of vibration of two-
layered systems with equal layer thicknesses (H;/H = Hy/H = 0.5) are evaluated
by the procedure demonstrated for the three-layered system and are compared with
corresponding exact values in Fig. 5.2. The exact values are shown as solid lines
while the approximate values are shown as dashed lines. The results are evaluated
for steel tanks with 2/R = 0.001, » = 0.3 and are plotted as a function of H/R for
values of pa/p; ranging from 0.25 to 1. The liquid in the top layer is taken as water
so that pa/p = 0.127. Exact and approximate solutions for the equal-layered case
considered and for additional values of H;/H are also presented in Table 5.1. Similar
solutions for the second mode of vibration are presented in Table 5.2 for two-layered
steel tanks containing water in the top-layer. The results are obtained for values of
H/R ranging from 0.5 to 2, pa/py ranging from 0.25 to 1 and H;/H ranging from
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0.25 to 0.75. Similar studies have also been made for two-layered systems with the
bottom layer taken as water, i.e., p1/p = 0.127. The following representative trends

are worth noting :

1. For the fundamental frequency coefficients, the agreement between the exact
and the approximate values is good over the entire range of parameters consid-
ered. For most cases, the errors are less than 3% to 4% and, as expected, the
approximate values are not necessarily on the lower side. Relatively large errors
that range between 4% and 6% occur for Hy/H = 0.25 or 1/3 and p2/p; = 0.25.
The increased errors can be attributed to the fact that for systems with small
values of Hy/H and p;/pi, the true mode of the layered system and the corre-
sponding modes of the component homogeneous systems differ substantially.

2. While the agreement between the results for the second frequency is still quite
good over the entire range of parameters considered, the agreement is not as
good as that for the fundamental frequency coefficients. This follows from the
fact that the proposed procedure is an adaptation of the Dunkerley procedure
which, in turn, is strictly valid for only the fundamental mode of vibration. The
larger errors are in the range of 10 % to 14 % and are again associated with

small values of Hy/H and p2/ps.

Three-layered systems

Exact and approximate solutions for the fundamental frequency coefficients of three-
layered systems with equal layer thicknesses are presented in columns (2) and (3) of
Table 5.3. Similar results for the second mode are presented in columns (4) and (5).
The tanks are assumed to be made of steel and the top layer is taken as water: h/R =
0.001, » = 0.3 and ps/p = 0.127. The agreement in the results is again very good and
the general trends of the results are found to be similar to those for the two-layered

systems.

5.3.5 Extension to Tall Tanks

While the layered natural frequencies have been estimated with a good degree of
accuracy over a wide range of H/R, it should be noted that the simplified method
for evaluating the hydrodynamic response quantities is strictly applicable for systems
with broad aspect ratios (H/R < 1). Simple extensions are proposed in this section
to estimate the hydrodynamic response effects for tall layered systems as well.
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A better estimate of the impulsive base shear of tall systems may be obtained by
considering the contributions of the first two modes of vibration, i.e.,

Qb,i(t) = m1A1(t) + mada(t) (5.14)

where m; (j = 1 or 2) is the impulsive mass for the layered system responding in
the jth natural mode of vibration; and Aj;(t) is the corresponding instantaneous
pseudoacceleration function of the system. In order to be able to use equation (5.14),
it is necessary to know the values of m; and my. A simple method to estimate m;
and m, for tall systems can be derived by presuming that tank-wall flexibility should
have a similar effect on the average modal pressure of a layered system as on that of a
homogeneous system. The shear coefficients of the flexible layered and homogeneous
systems can then be approximately related by

(m) = (mo)" (1) (5.15)

°
where the superscripts L and H denote solutions for layered and homogeneous systems
respectively; m, and m; represent the impulsive masses for a rigid tank and for the
7 th mode of vibration of a flexible tank respectively. Note that for broad tanks,
(my/mo)H =~ 1, and equation (5.15) reduces to (my)~ = (m,)E. The expressions and
solutions for the terms on the right-hand side of equation (5.15) are well-established
and can be used to evaluate the modal masses of the layered system. Using the
solutions for the first two modal masses and the associated solutions for the natural
frequencies to evaluate the pseudoacceleration functions, the base shear @,i(t) for
tall tanks can be evaluated from equation (5.14).

In order to compute the impulsive wall and foundation moments for tall layered
systems, the simplified approach can be applied in its original form. This is again
based on the observation for homogeneous systems that the moment coefficients for
tall systems are not significantly affected by tank-wall flexibility and only the funda-
mental modal contribution is sufficient for estimating the impulsive moments.

5.4 Rigid Layered Systems
5.4.1 Proposed Method of Analysis

The concept that has been proposed in the previous section can be directly extended
to assess the impulsive response of a rigid layered system. The procedure is demon-
strated in Fig. 5.3 for a three-layered system : Wall-pressure distributions for the
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three homogeneous sub-systems A, B and C defined in Fig. 5.1 are evaluated from
well-established solutions (Veletsos 1984) and shown in the left part of the figure.
They are then normalized with respect to the density of the bottom-most layer, pi,
and superimposed to obtain the layered pressure distribution shown in the right part
of the figure.

Approximate wall-pressure distributions for a two-layered system with H/R = 1,
Hy = H, = H/2 and pa/p1 = 0.5 and for a three-layered system with H/R = 1,
Hy = H, = H3 = H/3 and p3/p2/p1 = 1/2/3 are compared with corresponding exact
wall-pressure distributions in Fig. 5.4. The exact solutions are obtained from the
expressions previously established in Chapter 4. Both the exact and approximate
pressure distributions are expressed in terms of p;. It is seen that the two sets of
solutions are in good agreement and that the proposed approximation captures the
significant trends of the true response. The approximate ordinates are, however,
consistently smaller than the exact ones. The reason for this is as follows : In any
layer j, the exact impulsive pressure p;; is expressed as a superposition of the effects
due to the motion of the tank-wall and those due to the rocking motions of the
bounding interfaces j — 1 and j. In the method being proposed, the latter interfacial
motions are replaced with the rocking motions induced in a series of homogeneous
liquids having free-surfaces located at successive interfaces and densities that are
equal to the difference in densities between adjacent layers. The true layer-to-layer
interaction that causes the interfacial rocking motions is not fully represented by this
replacement causing an under-estimation of the impulsive response.

The errors involved can be assessed by computing the ratios of the approximate
and exact values for the impulsive components of the base shear, base moment and
foundation moment. The ratios are plotted versus H/R in Fig. 5.6 for two-layered
systems with equal-layer thicknesses (Hy/H = Hy/H = 0.5) and values of p2/p
ranging from 0 to 1. Similar studies for other two-layered systems with representative
values of Hy/H in the range from 0 to 1 are presented in Table 5.4. The following

trends are worth noting :

1. Due to the under-estimation of the true response, the approximate solutions are
on the unconservative side. The errors, however, are reasonably small for all the
response quantities and tank-liquid parameters of interest. For most practical
cases, the errors are in the order of 5% to 15% and for some isolated cases, they

vary between 15% and 20%.
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2. While the ratios for the base shear and moment above base are relatively inde-
pendent of H/R, those for the moment below base are close to unity for tanks
with broad aspect ratios. The latter trend follows from the fact that the foun-
dation moment of broad tanks is dominated by the contribution of the pressure
acting on the base and the lever arm of this pressure is nearly the same for both
the approximate and the exact solutions.

3. The absolute error values increase as py/p; decreases from 1 to about 0.25
and then decrease as pa/p; tends to 0. They behave similarly with varying
Hi/H,i.., increase as Hy/H decreases from 1 to about 1/3 and then decrease
as Hy/H tends to 0. This trend follows from the fact that the approximate
solution satisfies the limiting cases of p2/p1 = 0, 1 and H;/H =0, 1.

Similar ratios evaluated for three-layered systems with equal layer thicknesses
(Hy/H = Hy/H = H3/H = 1/3) are given in columns (2), (3) and (4) of Table 5.5.
Three different values of H/R and ratios of layer densities are considered. It can be
seen that the proposed approximation works quite well for three-layered systems too
and the associated errors are generally in the range of 10% to 15%.

5.4.2 Adjustment to Proposed Method

The concept used in the previous section identically satisfies the limiting cases and
captures the significant trends of the exact layered response with an average error of
about 10% that may be tolerable for many practical applications. Since the errors
are, however, on the unconservative side, a further improvement may be deemed
necessary. An empirical adjustment is proposed in this section in order to improve
the accuracy of the approximate method.

The basis of the proposed adjustment is to appropriately increase the proportion
of liquid in each layer that participates in the impulsive action. This follows from
the fact that the unadjusted approximate method consistently under-estimates the
response for each layer. The increase is accomplished herein by empirically weighting
the density of each liquid layer. The empirical formula that relates the old and
new density values is identified later. When the new density values are used, the
contributions of the homogeneous systems used to approximate the layered response
are altered. For instance, for a three-layered system, the density of system A is
increased from p3 to pZ, that of system B is changed from (pz — p3) to (p3 — p3) and
that of system C is decreased from (p1 — p2) to (p1 — p3).
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Based on numerical studies of several layered systems with 0.3 < H/R < 3,
H;/H > 0.2 and p;/p1 > 0.2, the adjusted density, p}, is empirically related to the

corresponding unadjusted density, p;, by the expression

pi\™
= Ll 5.16
p;=p ( pl) (5.16)
where «; is a dimensionless function of H;/H, p;/p1and H/R, given by
o H; Hj) . TP ( . WH)
a;j=1-0.6 ¥ (1 7 ) stn o 1+ sin iR (5.17)

It can be seen from (5.17) that the factor a; varies between 0.7 and 1. It is equal to
1 when the relative layer density/height becomes zero or unity, i.e., for these cases,
the adjustment for the layer under consideration reduces, as it should, to zero.

For the two-layered system with H/R = 1, H; = H, = H/2 and p; = 0.5 py, the
value of the equivalent density p3 is determined from (5.16) to be 0.597 p;. Similarly,
for the three-layered system with H/R = 1, Hy = H, = Hz = H/3, p; = 0.667 p; and
ps = 0.333 p1, the values of the equivalent densities are determined to be p3 = 0.722 p
and p5 = 0.414p;. The adjusted pressure distributions for these two systems are
shown in Fig. 5.7. The corresponding unadjusted pressure distributions and the exact
ones are also shown in the figure. It is seen that the suggested adjustment significantly
improves the agreement in the pressure distributions. Similar improvements have been
obtained on applying the adjusted approximate procedure to other layered systems
with different tank-liquid parameters.

Ratios of the base shear, wall moment and foundation moment obtained by the
adjusted and exact methods are plotted in Fig. 5.8 as a function of H/R for two-
layered systems with H;/H; = 1 and values of p;/p; ranging from 0 to 1. Ratios for
three-layered systems having equal-layer thicknesses are presented in columns (5), (6)
and (7) of Table 5.5. Similar results for other two-layered and three-layered systems
have also been extensively studied. The agreement between the adjusted and exact
results is found to be very good. The errors are generally confined to a range of £ 5%
and are usually much smaller than that. For isolated cases that are associated with
very low values of H/R (< 0.3) or unrealistic values of p;/p1, H;/H (< 0.2), these
errors rise up to about £ 8 %.
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5.4.3 Other Approximate Methods

It is of interest to compare the accuracy of the proposed method with those of other
methods that could be used to estimate the impulsive response of rigid layered sys-
tems. The latter methods are also based on simple, rational principles that express
the layered response in terms of corresponding solutions for homogeneous systems.

Method I

The layered system is replaced by an equivalent uniform system that has the same
average mass density. Approximate values for the impulsive base shear, base moment
and foundation moment of the layered system are then computed from existing solu-
tions for the equivalent homogeneous system and compared with exact values in Fig.
5.8 for two-layered systems with equal layer thicknesses. It is seen that :

1. The errors are on the positive side, i.e., the proposed approximation over-
estimates the response. This over-estimation is moderate for values of pa/p;
in the range of 0.5 to 1, but increases significantly for smaller values of py/p
and H/R.

2. The errors for the base shear are smaller than those for the base and foundation
moments. The reason for this is as follows : The proposed method only repre-
sents the effects of layering in an average sense and, as a result, the trends of
the exact and approximate pressure distributions are quite different. While the
areas under the two sets of curves are in reasonably good agreement, causing
an acceptable match for the base shear, the heights of the respective centroids
from the tank-base and the respective pressure ordinates at the base are quite
different, causing significant errors for the base and foundation moments.

Method II

A normalization scheme used in Chapter 4 is to represent the hydrodynamic response
of the layered system as a fraction of that obtained by presuming the contained liquid
to act rigidly. For example, the impulsive base shear is expressed as a fraction of the
total shear of the system, m; #,(t), and the impulsive base moment is expressed in
terms of the moment induced by the entire liquid mass acting at the center of mass
of the layered system, my hy &4(2).

Based on the similarity of the normalized exact numerical solutions presented

therein to the corresponding solutions for homogeneous systems, it can be assumed
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that the fractions which relate the hydrodynamic effects for the layered system to
the corresponding rigid effects are approximately equal to those for a homogeneous
system with identical height-to-radius ratio. For example, the impulsive shear and
base moment for any layered system with H/R = 0.5 is taken as Qs,i(t) ~ 0.3, &,4(t)
and M;(t) ~ 0.24m; by Z,4(t) respectively, where my&y(t) and mihiEy(t) are the total
shear and base moment for the given system, and 0.3 and 0.24 are the corresponding
solutions (fractions) for a homogeneous system with H/R = 0.5 (Veletsos 1984).
The accuracy of this procedure is examined in Fig. 5.9, wherein the ratios of the
approximate and exact coeflicients for the impulsive component of the base shear,
base moment and foundation moment are plotted as a function of H/R for two-
layered liquids with Hy/H = H,/H = 0.5 and values of py/p; ranging from 0 to 1. It

is seen that :

1. The ratios for base shear are identical to those obtained by replacing the layered
system with a uniform system of the same average mass density. This follows
from the fact that the total shear of the layered system evaluated in Method II
is equal to that of the replacement uniform system considered in Method 1.

2. While the errors are reasonably small for base shears and base moments, they
are substantial for the foundation moments of tanks with broad aspect-ratios
(H/R < 1). This is consistent with the findings in the previous chapter and
follows from the fact that in this range of H/R, the fraction that relates the
contribution of the impulsive pressure exerted on the base to the total rigid
foundation moment is quite different for the layered and homogeneous systems.

5.5 Conclusions

With the information presented herein, the impulsive response of a layered system
may be evaluated readily from existing solutions for homogeneous systems. Simple
methods have been presented for evaluating the dominant frequencies of vibration
of a flexible layered system and the impulsive response coefficients of a rigid layered
system. The latter quantities have been shown to play an important role in the
approximate assessment of the modal participation factors for both broad and tall
flexible tanks. The principal conclusions of the study are as follows :

1. The first two natural frequencies of vibration of a layered system are accurately

estimated by representing the layered system as a series of homogeneous sub-
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systems of different liquid heights and densities. For realistic values of the
tank-liquid parameters, the errors are typically in the range of 3% to 5%.

. The proposed concept also enables the convenient evaluation of the impulsive
response coefficients for rigid layered tank-liquid systems. The errors in this
case typically vary between — 5% and — 15%. An empirical modification to the
densities of the approximating homogeneous sub-systems further improves the
accuracy to within & 5%. Furthermore, this method compares favorably with
other methods that could be used to approximate the rigid layered response.
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Table 5.1: Frequency coefficients for fundamental mode of vibration of
two-layered systems with different H/R and H:/H,; Systems
with A/R = 0.001, p;/p = 0.127 and v = 0.3

H,/H =025 | H{/H=1/3 Hy/H =05 H,/H=2/3 | H/H =0.75
p2/p1 | Exact | Appr. | Exact | Appr. | Exact | Appr. | Exact | Appr. | Exact | Appr.
1 | @) 8 | 4 GG [ O] 6 | @ |d) | (41
H/R =105
1 0.0719 | 0.0719 | 0.0719 | 0.0719 | 0.0719 | 0.0719 | 0.0719 | 0.0719 | 0.0719 | 0.0719
0.75 | 0.0700 | 0.0699 | 0.0692 | 0.0691 | 0.0676 | 0.0674 | 0.0659 | 0.0657 | 0.0650 | 0.0648
0.5 | 0.0674 | 0.0665 | 0.0654 | 0.0644 | 0.0613 | 0.0605 | 0.0575 | 0.0570 | 0.0557 | 0.0554
0.25 | 0.0622 | 0.0586 | 0.0574 | 0.0545 | 0.0495 | 0.0481 | 0.0439 | 0.0432 | 0.0416 | 0.0411
H/R=1.0
1 0.0875 | 0.0875 | 0.0875 | 0.0875 | 0.0875 | 0.0875 | 0.0875 | 0.0875 | 0.0875 | 0.0875
0.75 | 0.0850 | 0.0854 | 0.0840 | 0.0845 | 0.0820 | 0.0825 | 0.0801 | 0.0804 | 0.0791 | 0.0793
0.5 | 0.0817 | 0.0815 | 0.0793 | 0.0793 | 0.0745 | 0.0747 | 0.0701 | 0.0703 | 0.0680 | 0.0681
0.25 | 0.0757 | 0.0725 | 0.0703 | 0.0680 | 0.0610 | 0.0602 | 0.0540 | 0.0538 | 0.0512 | 0.0510
H/R =20
1 0.0896 | 0.0896 | 0.0896 | 0.0896 | 0.0896 | 0.0896 | 0.0896 | 0.0896 | 0.0896 | 0.0896
0.75 | 0.0880 | 0.0882 | 0.0871 | 0.0876 | 0.0851 | 0.0860 | 0.0828 | 0.0839 | 0.0817 | 0.0826
0.5 | 0.0857 | 0.0856 | 0.0836 | 0.0838 | 0.0787 | 0.0798 | 0.0736 | 0.0750 | 0.0712 | 0.0723
0.25 | 0.0817 | 0.0789 | 0.0770 | 0.0749 | 0.0672 | 0.0671 | 0.0586 | 0.0593 | 0.0549 | 0.0555
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Table 5.2: Frequency coefficients for second mode of vibration of two-
layered systems with different H/R and H,/H,; Systems with
h/R = 0.001, p;/p = 0.127 and v = 0.3

H\/H=025 | Hi/H=1/3 Hy/H =05 H,/H =2/3 | Hy/H =0.75
p2/p1 | Exact | Appr. | Exact | Appr. | Exact | Appr. | Exact | Appr. | Exact | Appr.
L | @ B) | 4 G) | © ] (M | (8 9) | (10) | (11)
H/R =05
1 0.1284 | 0.1284 | 0.1284 | 0.1284 | 0.1284 | 0.1284 | 0.1284 | 0.1284 | 0.1284 | 0.1284
0.75 | 0.1247 | 0.1248 | 0.1230 | 0.1231 | 0.1200 | 0.1198 | 0.1175 | 0.1168 | 0.1162 | 0.1154
0.5 | 0.1179 | 0.1184 | 0.1136 | 0.1141 | 0.1078 | 0.1067 | 0.1027 | 0.1007 | 0.1000 | 0.0981
0.25 | 0.1021 | 0.1038 | 0.0965 | 0.0958 | 0.0881 | 0.0838 | 0.0790 | 0.0757 | 0.0751 | 0.0724
H/R=1.0
1 0.1656 | 0.1656 | 0.1656 | 0.1656 | 0.1656 | 0.1656 | 0.1656 | 0.1656 | 0.1656 | 0.1656
0.75 | 0.1590 | 0.1606 | 0.1566 | 0.1588 | 0.1528 | 0.1552 | 0.1500 | 0.1513 | 0.1487 | 0.1493
0.5 | 0.1480 | 0.1520 | 0.1425 | 0.1475 | 0.1354 | 0.1391 | 0.1300 | 0.1312 | 0.1272 | 0.1274
0.25 | 0.1247 | 0.1326 | 0.1180 | 0.1241 | 0.1094 | 0.1105 | 0.1001 | 0.0994 | 0.0956 | 0.0946
H/R =20
1 0.2114 | 0.2114 | 0.2114 | 0.2114 | 0.2114 | 0.2114 | 0.2114 | 0.2114 | 0.2114 | 0.2114
0.75 | 0.2002 | 0.2057 | 0.1968 | 0.2034 | 0.1923 | 0.1984 | 0.1896 | 0.1932 | 0.1884 | 0.1906
0.5 | 0.1833 | 0.1955 | 0.1757 | 0.1898 | 0.1671 | 0.1782 | 0.1623 | 0.1675 | 0.1599 | 0.1626
0.25 | 0.1507 | 0.1722 | 0.1404 | 0.1610 | 0.1313 | 0.1418 | 0.1239 | 0.1268 | 0.1196 | 0.1207
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Table 5.3: Frequency coefficients for first two modes of vibration of three-
layered systems with different H/R and H; = H, = Hs = H/3;

systems with A/R = 0.001, p3/p = 0.127 and v = 0.3

Values of C; Values of C;
p3/p2/p1 | for first mode | for second mode
Exact | Appr. | Exact | Appr.
(1) (2) (3) (4) (8)
H/R=10.5
1/1/1 [0.0719 | 0.0719 | 0.1284 | 0.1284
1/1.5/2 | 0.0608 | 0.0603 | 0.1077 | 0.1068
1/2/3 | 0.0538 | 0.0530 | 0.0950 | 0.0934
1/3/5 | 0.0450 | 0.0440 | 0.0794 | 0.0770
H/R=1
1/1/1 | 0.0875 | 0.0875 | 0.1656 | 0.1656
1/1.5/2 | 0.0738 | 0.0744 | 0.1357 | 0.1387
1/2/3 | 0.0656 | 0.0658 | 0.1189 | 0.1217
1/3/5 | 0.0551 | 0.0549 | 0.0991 | 0.1007
H/R =2
1/1/1 | 0.0896 | 0.0896 | 0.2114 | 0.2114
1/1.5/2 | 0.0775 | 0.0790 | 0.1682 | 0.1776
1/2/3 |0.0699 | 0.0715 [ 0.1454 | 0.1561

1/3/5

0.0601 | 0.0612

0.1201 | 0.1294
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Table 5.4: Ratios of approximate to exact values of impulsive component
of base shear, base moment and foundation moment for rigid
two-layered systems with different H/R and H,/H

H.JH =025 HJH =105 H/H = 0.8

[Quila | Mila | Ma | [Quila | Mi]a | [Mlla | [Qbila | [Mi]a Mi]a

paloy | il | % | e | @oide | (Ml | DAl | Qodle | Mile | (M0

(1) (2) 3) | ) (5) 6 | (M (8) (9) | (10)
H/R =05

1 1 1 1 1 1 1 1 1 1

0.75 | 0.067 | 0.973 | 0.972 | 0.964 | 0.960 | 0.971 | 0.982 | 0.974 | 0.986

0.5 0.933 | 0.943 | 0.945 | 0.932 | 0.921 | 0.948 | 0.970 | 0.955 | 0.978

0.25 | 0.003 | 0.912 | 0.925 | 0.920 | 0.894 | 0.941 | 0.971 | 0.953 | 0.980
H/R = 1.0

1 1 1 1 1 1 1 1 1 1

0.75 | 0.053 | 0.961 | 0.953 | 0.949 | 0.944 | 0.950 | 0.978 | 0.966 | 0.975

05 | 0.906 | 0.920 | 0.907 | 0.906 | 0.891 | 0.909 | 0.960 | 0.941 | 0.960

0.25 | 0.867 | 0.877 | 0.871 | 0.891 | 0.856 | 0.895 | 0.962 | 0.940 | 0.961
H/R = 2.0

1 1 1 1 1 1 1 1 1 1

0.75 | 0.949 | 0.962 | 0.957 | 0.949 | 0.942 | 0.947 | 0.974 | 0.960 | 0.965

05 | 0897 | 0.919 | 0.912 | 0.907 | 0.886 | 0.900 | 0.957 | 0.931 | 0.942

0.25 | 0.855 | 0.872 | 0.871 | 0.894 | 0.850 | 0.877 | 0.959 | 0.928 | 0.941
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Table 5.5: Ratios of approximate to exact values of impulsive component
of base shear, base moment and foundation moment for rigid
three-layered systems with different H/R and H, = H; = H3 =

H/3
Unadjusted Values Adjusted Values
Qu,ila | Mila | Mia | [Qbila | Mila | [Mi]a
polpalpr | Qe | Ml | Ml | [Quile | DRI | DM
(1) 2 | @B | @4 | (6 | (6 | (7
H/R =05
1/1/1 1 1 1 1 1 1
1/1.5/2 | 0.934 | 0.925 | 0.949 | 1.004 | 1.014 | 1.017
1/2/3 0.915 | 0.899 { 0.937 | 1.005 | 1.014 | 1.025
1/3/5 0.906 | 0.882 | 0.934 [ 0.993 | 0.993 | 1.020
H/R =1
111 | 1 1|1 | 1|1
1/1.5/2 | 0.909 | 0.898 | 0.911 | 0.989 | 1.002 | 0.991
1/2/3 0.885 | 0.865 | 0.888 | 0.987 | 0.999 | 0.990
1/3/5 0.875 | 0.846 | 0.879 | 0.975 | 0.975 | 0.978
H/R =2
1/1/1 1 1 1 1 1 1
1/1.5/2 | 0.904 | 0.889 | 0.899 | 0.983 | 1.003 | 0.996
1/2/3 0.875 | 0.850 | 0.866 | 0.977 | 0.996 | 0.989
1/3/5 0.861 | 0.825 | 0.848 | 0.961 | 0.964 | 0.964
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Figure 5.2 Frequency coefficient for fundamental mode of

vibration of two-layered steel tanks with H;=H,=H/2,
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Chapter 6

Dynamic Response of Rigid Tanks with
Inhomogeneous Liquids

6.1 Introduction

A sequel to the studies in Chapters 3, 4 and 5, the study reported herein is motivated
by the need for improved understanding of the response to earthquakes of tanks in
nuclear facilities that store high-level radioactive wastes. In some cases, the contents
of these tanks cannot adequately be modeled as homogeneous liquids, and it is nec-
essary to consider more complex representations such as continuously varying liquid
densities.

For specific forms of such density variations, it is possible to obtain simple ana-
lytical solutions, and it is the purpose of this chapter to present such solutions for
cylindrical tanks for which the density of the contained liquid increases exponen-
tially from top to bottom. Some attention is also given to the interrelationship of
the solutions obtained for the continuous variation and its discretized, multi-layered
representation. The only known related study on this subject is the one reported
by Chwang [11] for the limiting case of a straight wall retaining a slightly stratified
liquid.

The governing equations of motion are first formulated for systems with an arbi-
trary vertical variation in liquid density, but the solutions presented are limited to
the exponential variation. Both the free-vibrational characteristics of the system and
its response to a horizontal ground shaking are studied. The response quantities ex-
amined include the vertical sloshing motions of the liquid at its free-surface, and the
impulsive and convective components of the hydrodynamic wall pressures and associ-
ated tank forces. The impulsive effects reflect the action of the part of the liquid that
may be considered to move in synchronism with the tank wall as a rigidly attached
mass, whereas the convective effects represent the action of the part of the liquid un-
dergoing sloshing motions. Comprehensive numerical solutions are presented which
elucidate the effects and relative importance of the numerous parameters involved and
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the relationship of these solutions to those obtained for an equivalent homogeneous

system.

6.2 System Considered

The system investigated is shown in Fig. 6.1. It is a rigid, vertical, circular cylindrical
tank of radius R that is filled to a height H with an inhomogeneous liquid the mass
density of which increases continuously from top to bottom. The liquid is presumed
to be incompressible, irrotational and inviscid, and only linear actions are examined.
The tank is considered to be anchored to a rigid, horizontally moving base. Points
within the tank-liquid system are specified by the cylindrical coordinates, r, § and z,
as shown in the figure. The heightwise variation of the liquid density, p(z), is defined

by

p(z) = poe™P /M) (6.1)
where p, represents the density value at the tank base, and B is a dimensionless,
positive decay factor. Fig. 6.2 shows the variations of p(z) for different values of
p1/po, Where p; represents the top value of the liquid density. The corresponding

values of 8 are shown in parentheses.

The exciting motion is considered to be uniform over the tank base and to be
directed along the # = 0 coordinate axis. The acceleration of the base motion at
any time ¢ is denoted by Z,(¢), and the corresponding velocity and displacement are

denoted by #,4(t) and z4(t), respectively.

6.3 Governing Equations
6.3.1 Background Information

The response of the liquid is governed by the system of differential equations,

¢ 10 10% o

o2 T ror T e " Bae (6.2)
and 9 96\ od 0

e gae_9° =

9z (” at) o~ ;900 (6.3)

in which d = d(r, z,0,t) is the vertical sloshing displacement of the liquid at an ar-
bitrary point and time, and ¢ = ¢(r, 2,0,t) is a velocity potential function which is
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related to the hydrodynamic pressure, p = p(r, z,6,t), by

a¢
P=pg (6.4)
and to the radial and tangential components of liquid velocity, v, and vy, by
. 0¢ _ 10¢
’U,.—-—-37 Vg = —';-6—0 (6.5)

Equations (6.2) and (6.3) are deduced from more general expressions presented by Yih
[85] by expressing the latter in cylindrical coordinates and specializing them to the
incompressible liquid considered herein. For a homogeneous liquid with p = constant,

od _ _9¢ (6.6)

ot 0z

and equation (6.2) reduces to the well-known Laplace’s equation V2 ¢ = 0.
The solutions of equations (6.2) and (6.3) must satisfy the continuity of radial

velocities at the tank-wall, defined by

0¢ :
(E) T —4(t) cosl (6.7)
the condition of no vertical motion at the tank-base, defined by
(d),z0 =0 (6.8)
and the linearized pressure condition at the free liquid surface, defined by
d¢ _

where g is the acceleration of gravity.

6.3.2 Equation of Motion in Terms of a Single Unknown

Following the approach used in the analysis of the layered system, the potential

function ¢ is expressed in the form

é(r, 0, 2,t) = —&4(t) r cosd + (r,0,2,1) (6.10)
where the first term on the right side provides for the rigid body motion of the tank,
and the potential function ¢ provides for the relative motion of the liquid and tank.
On substituting equation (6.10) into equations (6.2) and (6.3), one obtains

8% 109 10% 9:d _
o2 "oy T T 5zar 0 (6.11)
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and

o 0%d ap dp
5 ( 8t> +p W—;?; d-a riy(t)cosd (6.12)

The solutions of equations (6.11) and (6.12) may be obtained by the method of

separation of variables in the form
d(r, z,0,t) = D(z,t) X(r) cosd (6.13)

H(r, z,0,t) = U(z,t) X(r) cosh (6.14)

That the function X(r) in these two expressions must be the same follows from
equation (6.12). On substituting equations (6.13) and (6.14) into equation (6.11),
separating the resulting functions of r from those of z and ¢, and equating each set
to —(A\/R)?, where X is a dimensionless constant, one obtains Bessel’s differential
equation for X(r) and the following relation between ¥ and D :
R? 9°D

A2 D20t

Next, on using the antisymmetry condition at r = 0 and the continuity condition for

radial velocities at » = R, the solution for X(r) can be shown to be given by any one
of an infinity of Bessel functions of the first kind and first order. The mth of these

U(z,t) = — (6.15)

functions may be expressed as

Xn(r) = Bmdy (,\m%) (6.16)

where B,, is a constant that remains to be determined, and A, is the mth root of
the first derivative of J;(}), the first three values of which are

A = 1.841 Az = 5.331 Az = 8.536 (6.17)
Equation (6.16) effectively defines the radial variation of the displacement d when
the liquid is oscillating in its m th horizontal mode of vibration. The displacement d
at an arbitrary point and time is then determined from equation (6.13) as a linear

combination of its modal components to be

= J (Amé)
d(€,7,0,1) mé:l Din(n Jl(/\m) cosf (6.18)

where the constant By, in equation (6.16) has been absorbed into the function Dp;
¢ = r/R and n = z/H are dimensionless radial and vertical position coordinates;
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and Dy, (n,t) represents the instantaneous value of the vertical displacement of a
liquid particle at the junction of the tank-wall and the § =0 plane when the liquid is
vibrating in its m th horizontal natural mode. The corresponding expression for 1 is
determined from equations (6.14), (6.15) and (6.16) to be

_ & R 8D hi(Mn)
¥(é,n,0,t) = UZ::II\%H a1 10w cosf (6.19)

where a dot superscript denotes differentiation with respect to time.
On substituting equations (6.18) and (6.19) into equation (6.12) and making use
of the orthogonality of the Bessel functions, the equation of motion for the system

can be expressed solely in terms of the function Dy, (n,1), as

2 7 'S 2 o
9Dy, | 9p 0Dy _ p(’\mH) D,, + _,(]/\_m (M) @Dm = —€mAm (M) @d’:g(t)

p@nz +6_n on R R R JOy R | On
(6.20)
where 5
€m = %1 (6.21)

Furthermore, on making use of equations (6.10), (6.18) and (6.19), the boundary
conditions defined by equations (6.8) and (6.9) reduce to

(D )sz0 = 0 (6.22)

( R? 8D,

—__/\,2,1 T oy +gDm> = —en RE,(1) (6.23)

2=H
After determining the functions Dy, = D,,(n,t) for different values of m, the displace-
ment d, the potential functions % and ¢, and the hydrodynamic pressure p may be
computed from equations (6.18), (6.19), (6.10) and (6.4), respectively.

For the system with the exponential variation in liquid density considered herein,

equation (6.20) reduces to

2D, 0Dn [MH\’n  ghm [ AnH _ AH\ .
o Py ‘( R )Dm"R—(T) ﬂD’"—em'\m(_R—) Aa,(t) (6.24)

6.4 Free Vibration

On setting the right-hand side of equation (6.24) equal to zero and letting Dy (n,1) =
Dp(n)emt, where i = /=1 and wy, is the circular frequency of the m th horizontal
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mode of vibration, one obtains

2D, 0Dn  |BAmH  [AH\?| A
o o +[Cﬂ“( R )JD’"‘O (6:25)
in which C,, is a dimensionless factor related to wy, by
— o9
wn = | T3 (6.26)

Similarly, the boundary conditions defined by equations (6.22) and (6.23) can be

expressed as

(D)n=0 =0 (6.27)
ODm  Am H 3

With appropriate reinterpretations of the symbols involved, equations (6.25), (6.27)
and (6.28) can be shown to be the same as those presented by Lamb [35] for the flow
of inhomogeneous liquids in rectangular channels.

The nature of the solution of equation (6.25) depends on whether the roots of the
associated characteristic equation are real-valued or complex, and this depends, in

turn, on the value of C,,. For
B(AmH/R)
Cm > J B4+ (/P (6:29)
the roots are real, and on satisfying the boundary condition defined by equation

(6.27), the solution can be written as

D(n) = Ep €27 sinhymy (6.30)
where -
e (MH\ B[R
Im = J 1 + (—R __C,z,, (6.31)

and E,, is an arbitrary constant. Note that v,, is a function of the still unknown
frequency coefficient Cp,. On making use of the second boundary condition defined
by equation (6.28), it is found that ., and C,, are also interrelated by

_ A\ H/R
Crn = J BT ol (6.32)
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and on substituting equation (6.32) into equation (6.31), one obtains the transcen-

dental equation

Ly P B ( 2y -

mt tanhyn, + 4 Am R/ ~ 0 (6:33)
It can be shown that equation (6.33) has a single positive root, ym1, and that this

root exists only if

zz +8— (/\m%)z <0 (6.34)

With the value of v,,; established, the displacement configuration for the m th
horizontal and first vertical natural mode of vibration, Dm(?]), is determined from
equation (6.30) by replacing the subscript m by ml, and the associated circular
natural frequency, wn1, and frequency coefficient, Cpm1, are determined similarly from
equations (6.26) and (6.32), respectively. It should be recalled that equations (6.30)
and (6.32) are valid only as long as equation (6.34) is satisfied.

For values of C,, that are smaller than the right-hand member of equation (6.29),
the roots of the characteristic equation are complex, and the counterpart of equation

(6.33) becomes
2
2 _ Pm B (,\ —If) =0 6.35

™ tany, 4 T Am R (6.35)
The latter equation has an infinity of roots, 4mn, where n is an integer ranging from
2 to oo when equation (6.34) is satisfied and from 1 to co when equation (6.34) is not
satisfied. It follows that, for each horizontal mode of vibration, there is an infinity of
vertical modes, each associated with a distinct frequency. Subject to the indicated
qualification on n, the m th horizontal and nth vertical mode of vibration, f)mn(n),

is given by
Drn(n) = Emn €®/? sinyman (6.36)
where E,., is an arbitrary constant, and the associated frequency, wpn, may be ex-
pressed as
A
Wmn = Cmn g‘% (637)

in which the dimensionless coefficient, Cynyn, is determined from

Crnn = J An(H/E) (6.38)

ﬂ/2 + '7mn/tan')’mn



129

For the intermediate case of Cy, equal to the right-hand member of equation (6.29),
the two roots of the characteristic equation are equal, and the mode can be shown to
be given by equation (6.30) with the function sinhy,n replaced by 7.

For a homogeneous liquid for which 8 = 0, equation (6.33) yields

H
™R
which when substituted into equation (6.32), yields the well-established expression
for the frequency coefficient (see, for example, [65])

Yn = A (6.39)

Cm = 1| tanh (/\—'E’i> (6.40)

The associated mode of vibration is determined from equation (6.30) to be

Din(n) = Ep, sinkh (/\m%n) (6.41)

The corresponding solutions from equations (6.35), (6.38) and (6.36) are trivial and

are not considered.

Orthogonality of Modes
The modal displacements defined by equations (6.30) and (6.36) satisfy the orthogo-

nality relation

[ 18460~ Do) DueDmmdn =0 forr s (642)

in which the term involving the delta function, §(n— 1), accounts for the discontinuity
in the liquid density value at the free-surface. The derivation of this equation follows
well-established steps. Specifically, equation (6.25) for Dpr(n) is multiplied through
by p(17)Dms(n) and integrated from 0 to 1; the term involving the second derivative
of ﬁmr(n) in the resulting expression is integrated by parts; and use is made of the
boundary condition defined by equation (6.28) to obtain

AH] [t -
a‘i— - T] /0 p(1) Dyar(n) Dms(n) dn =
(7) 8Dw» 0D

1 2 - ! [4 ) ms
Drur(1) Do(1) + [ SHTE o o (6.43)

"
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These steps are repeated by starting with the Dins(n) mode and multiplying through
by p(7)Dmr(7). The resulting expression is then subtracted from equation (6.43) to
obtain equation (6.42).

Equation (6.42) may also be deduced from the corresponding expression for the
N-layered, discrete system examined in Chapter 3. The latter expression is

{Dmr}T [B]{Dps} = 0 (6.44)

where {Dpn,} and {Dp,} are vectors of size N that define the amplitudes of the
interfacial displacements; and [B] is a matrix of size N x N expressing the values of
the density discontinuities at the interfaces. To obtain equation (6.42), one must :
(1) replace the elements of the first (N — 1) rows of [B] by (—0p/0n)dn, (2) replace
the elements of the N th row by the density discontinuity at the top, 6(n — 1) p(n)dn,
and (3) express the inner products of the modal displacement vectors as an integral

from 0 to 1 of the modal displacement functions.

6.5 Forced Vibration

With the natural frequencies and modes of vibration of the system established, its
response to an arbitrary lateral excitation may be determined by modal superposition.
In this approach, the modal displacements, Dy, (7,1), are expressed in the form

Dy, (72, t) = i_o:l Dmn("?) an(t) (6.45)

where ¢nn(t) is a generalized time-dependent coordinate corresponding to the mth
horizontal and nth vertical mode of vibration. Substituting equation (6.45) into
equation (6.24), multiplying through by [8 + é(n — 1)]p(7) Dmn(n), and making use
of the orthogonality of the natural modes defined by equation (6.42), one finds that

gmn is governed by the differential equation

Grmn(t) + WE gmn(t) = —€m Wi Tma R mgg(t) (6.46)

in which I';,,, is a dimensionless factor given by

_ foilﬂ + 8(n = 1)] p(1) Dmn(n) (6.47)
JoB + 8(n — 1) p(n) DZ,,(n)dn

mn
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The solution of equation (6.46) is given by

qmn(t) = _emrmnR Am;(t) (6.48)

where A, (%) represents the instantaneous pseudoacceleration of an undamped single-
degree-of-freedom oscillator with a circular natural frequency wm. subjected to the

prescribed ground acceleration, and is given by
t
Amn(t) = wnn [ &5(7) sin [wma(t = 7)] dr (6.49)
The maximum value of A,,,(¢) is the quantity displayed on a pseudoacceleration

response spectrum. Substitution of equation (6.48) into equation (6.45) leads to

Da(nyt) = —R 3 bpn(r) 2zl

n=1 g

(6.50)

where 6,,,(n), a dimensionless function corresponding to the m th horizontal and n th

vertical mode of vibration, is given by
6mn(77) = €m I'mn bmn(n) (651)

The latter function is the counterpart of the vector of displacement coeflicients {dyn }

in the analysis of the layered system.

6.5.1 Vertical Sloshing Displacements

On substituting equation (6.50) into equation (6.18), the vertical displacement of the
liquid at any point and time, d(¢,7,0,t), is found to be

d(¢,m,,0,t) = —R i f: 6mn(n) l‘]]ll((/\/\’:f)) Am;(t) cosf (6.52)

m=1 n=1

As is true of the coefficients in the corresponding expressions for layered systems, the

coefficients 6,,, can be shown to satisfy the relations

o0

> bmn(n) = €m (6.53)

and

> 2_: bmn(n) =1 (6.54)
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For a homogeneous liquid with 8 = 0, for which there is only one vertical mode of
vibration for each horizontal mode, the quantities Dmn(n), Tiny Omn(n) and Apn(t)
are denoted by D (1), T'my 6m(n) and An(2), respectively. The free-surface value of
6., is then evaluated from equations (6.47) and (6.51) to be 6,,(1) = €m, and equation
(6.52) reduces, as it should, to (see, for example, [65])

d(¢,1,0,t) =~R i €m I(AmE)) m(t )cos() (6.55)

m=1 g

6.5.2 Hydrodynamic Pressures

On substituting equation (6.19) into equation (6.10) and making use of equation (6.4),

the hydrodynamic pressure may be expressed as

O o=Bn
p(&,n,0,t) = { £ig(t) e — = Z X aDa; 7.t) {;1((/\/\':‘5))} poRcosd  (6.56)

Furthermore, on substituting equation (6.50) into this expression, making use of the
relation

Amn(t) = WhalEg(t) = Amn(?)] (6.57)
which is obtained by substituting equation (6.48) into equation (6.46), and grouping
terms with similar temporal variations, the hydrodynamic pressure can be expressed

as the sum of two components : an impulsive component, p, given by

P (&n,0,t) =— [e-ﬁﬂg Z Z Cmn( J‘ (’}\"‘5))] poR cost &,(t) (6.58)

m=1 n=1

and a convective component, p¢, given by

p°(&,m,0,1t) [Z Z Conn( /\mﬁ)) Amn(t )] poR cost (6.59)

m=1n=

in which

_Iie 2 Obmn(n)
Cmn(ﬂ)— H /\ Cmn an (660)

The impulsive component represents the effect of the portion of the liquid that may
be considered to move as a rigid body in synchronism with the tank wall, while the
convective component represents the effect of the liquid undergoing sloshing action.
It should be observed that the pressures in equations (6.58) and (6.59) are expressed
in terms of the base value of the liquid density, p,, rather than the density value at

the height being considered.
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Simplification for impulsive pressures

In the form presented in equation (6.58), the evaluation of the impulsive component
of response requires the prior evaluation of the convective components. The impulsive
component can also be evaluated independently of the convective by letting
[e 0]
= Crinbmn(n) (6.61)
n=1

and rewriting equation (6.58) in the form of a single series as

. R & 1 demdi(Mn \
p'(E,n,O,t)=—e’ﬁ"[ —T{-mZ ™ ;n }1((A 5))] poR cos0 i, (t) (6.62)

It can be shown that the function e, (n) may be determined without prior knowledge

of the 6,,n(n) functions from the differential equation

0%en, Oem A H 2 H
e ( X ) S (6.63)
subject to the boundary conditions
(em)n=0 = 0 (6.64)
and p i
e
= = €ndm— (6.65)
( 677 )1’—1 R

Equation (6.63) is obtained by substituting equation (6.50) into equation (6.24), mak-
ing use of the relation defined by equation (6.57), grouping the terms involving &(¢),
and finally making use of equations (6.26) and (6.61). Equations (6.64) and (6.65)
are derived by proceeding similarly with equations (6.22) and (6.23).

The solution of equation (6.63) is given by

enli) = T8 AR [b emi 1 . by g7 ﬂ] (6.66)
where
. 2
aml,m2 g \Iﬂ4 + (‘—R—) (6.67)
_ Bamae*m? + (A H/R)?
bl B Um1€%m — dpypetm? (6.68)
and

am 2
by = — Bamie®™ + (AnH/R) (6.69)

Apm1€9m — (poedm?2




134

Wall pressures

The impulsive and convective components of the hydrodynamic pressures induced
against the tank-wall are determined from equations (6.62) and (6.59) by letting £ =
1. The total wall pressure at an arbitrary height may be expressed in the form

p(1,n,0,t) = — [ t) + Z Z Cmn (N ] ) | poR cosf (6.70)
m=1n=1

where the dimensionless function c,(n) for the impulsive component of the pressure

is determined from equation (6.62) to be

= e [1- 5 35 L Len] (6.71)

and the corresponding functions for the convective components are determined from
equation (6.60). From equations (6.60), (6.61) and (6.71), it now follows that

co(m) + Z Zcmn = P (6.72)

m=1n=1
For a homogeneous system (8 = 0), equation (6.66) yields

sinh(Anz/R)

en(2) = em o RO/ R) (6.73)

and equation (6.71) reduces, as it should, to the well-established expression (see, for

example, [65
163]) & cosh(Amz/R)

=2, en cosh(A H/ R)

m=1

in which the mth term of the summation represents the coefficient ¢ (z) for the

(6.74)

convective component of the pressure.

6.5.83 Tank Forces

Base shear

The base shear or total hydrodynamic force exerted on the tank wall is obtained by
integrating equation (6.70) over the tank-height. The result may be expressed in the

form
o0 (e 0]

Qu(t) = moig (1) + D D MmnAmn(t) (6.75)

m=1 n=1
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where m,, the impulsive component of the liquid mass, is given by

mo= ([ colmdn) ponBOH (6.76)

and Mmmyn, the convective component associated with the mth horizontal and nth

vertical sloshing mode of vibration, is given by

mnn = ([ eman)dn) por R2H (6.77)

From equations (6.76) and (6.77), and with the aid of equation (6.72), it can finally
be shown that
o) 1
Mot D Y Mupn = ( / e“ﬁ”dn) pomR*H =my (6.78)
m=1n=1 °
where m; is the total mass of the contained liquid.
The integrals in equations (6.76) and (6.77) and those in the expressions for base
moments presented in the following two sections can be evaluated readily. The re-
sulting expressions are lengthy and are not presented, but comprehensive numerical

solutions for both the base shear and base moment are given in later sections.

Moment above base

The moment induced by the hydrodynamic wall pressure at a section of the tank

immediately above its base may conveniently be expressed in the form
M(t) = mohofg(t) + 3 D Mmnhmn Amn(t) (6.79)
m=1n=1

where the coefficient m,h, for the impulsive component is given by

1
moho = (/0 (1) ndn) pomR*H? (6.80)

and the coefficient My hmy for the convective component associated with the mth

horizontal and n th vertical mode of vibration is evaluated from
1
MmnPmn = (/o cmn(n)ndn) pom REH? (6.81)

From the latter two expressions and from equation (6.72), it follows that

00 00 1
Moho + D Y Munnhmn = ( /0 e'ﬂ”ndn> pomREH? = myhy (6.82)

m=1n=1
where m;h; represents the moment above the tank base induced by an unit horizontal

acceleration when the entire liquid is presumed to act as a rigid mass.
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Foundation moment

In addition to the moment defined by equation (6.79), the foundation moment, M'(t),
includes the effect of the hydrodynamic pressure exerted on the tank base. The latter
effect is determined by appropriate integration of the base values of the hydrodynamic
pressures defined by equation (6.58) or (6.62) and equation (6.59). The resulting

expression may be written as

M(t) = mobliygt) + 33 Mumnhinn Ama(t) (6.83)

m=1n=1

where the coefficient m,k, for the impulsive component of the moment is given by

= I_R$ 1 Oen 4
Mohty = Moho + [4 H ,,; 3 o | g Pl (6:54)

and the coefficient my,,h!,, for the convective component associated with the mth

horizontal and n th vertical mode of vibration is given by

RCE, 0d
! — v Xmn mn
mmnhmn - mmnhmn + [H A?n an

] pom R? (6.85)
n=0
From equations (6.84) and (6.85), and with the aid of equations (6.61) and (6.82), it

can further be shown that

! = s ! poﬂ-Rl‘ ?
mohly + 3 Y Mumnhiy, = miby + =—— = muhy (6.86)
m=1 n=1 4
where myhj represents the foundation moment induced by a unit horizontal accelera-
tion when the entire liquid is considered to act as a rigid mass. It should be kept in
mind that the base pressure in this case increases linearly from zero at the center to

poRcosh at the junction of the base and wall.

6.6 Numerical Solutions

The numerical solutions presented in this section are for the free vibrational char-
acteristics and for the response to horizontal base shaking of systems with different
slenderness ratios, H/R, and different liquid density ratios, p1/p,.
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6.6.1 Sloshing Frequencies and Modes

Mention has already been made of the fact that unlike a homogeneous liquid which
for a prescribed horizontal mode of vibration has a single vertical mode, an inhomoge-
neous liquid has an infinite number of vertical modes, each with a distinct frequency.

Fig. 6.3 shows the variation with the density ratio p1/p, of the frequency coeffi-
cients Cy, for the fundamental horizontal and first three vertical modes of vibration
of systems with H/R values in the range between 0.5 and 2. It is observed that the
highest frequency coefficient C;; for the fundamental horizontal and vertical mode
of vibration of the inhomogeneous system is smaller than that for the corresponding
homogeneous system. However, the difference is quite small, especially for larger val-
ues of p1/p, and H /R. By contrast, the coefficients Cy, for n > 2 are significantly
smaller than those for n = 1 and quite sensitive to variations in py/p,. These trends
may be explained by examining the modal displacement amplitudes, Din(n)-

Fig. 6.4 shows the first three vertical modes of vibration corresponding to the
fundamental horizontal mode for systems with H/R = 1 and three values of p1/po
in the range between 0.1 and 1. Each mode is normalized such that its maximum
amplitude is unity. It is observed that the n th vertical mode of vibration is associated
with n — 1 zero crossings. Since the vertical motion of the liquid is zero at these
sections, the natural frequency of the system for this mode must equal that of a
system with the same density distribution and a depth equal to the distance from the
free surface to the uppermost level of zero amplitude. Forn > 1, these effective depths
are but small fractions of the total depth, H, and decrease with increasing p1/po. The
associated natural frequencies, which, based on equation (6.40) for a homogeneous
liquid, are expected to be proportional to the effective liquid depth must, therefore,
also be small and decrease with increasing p1/p,. For n = 1, on the other hand, the
more rapid decays in the displacement amplitudes with depth are obtained for the
smaller values of p1/p,. A decrease in p1/po in this case is associated with a reduced
effective depth for the system, and hence a reduced natural frequency. However, the
differences are quite small, and for values of p1/po in the range between 0.25 and 1,
the fundamental natural frequencies of the inhomogeneous and homogeneous systems
may be considered to be the same. These trends are representative of those obtained
for the higher order horizontal modes of vibration (higher values of m) as well.

Table 6.1 lists the values of ymn for the first two horizontal and first three vertical

modes of vibration of systems with several combinations of H/R and p1/p,. For the
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results marked with asterisks, the condition defined by equation (6.34) is not satisfied,
and y1; was evaluated from equation (6.35) rather than from equation (6.33). The
frequency coeflicients, Cy;, and modes of vibration, Du(ﬂ), for these cases must,
therefore, be evaluated from equations (6.38) and (6.36) rather than from equations
(6.32) and (6.30).

6.6.2 Sloshing Displacement Coefficients

Of special interest in practice is the sloshing motion of the liquid at its free sur-
face, as the maximum surface displacement is needed to define the freeboard that
must be provided to prevent the liquid from overflowing or impacting the roof. This
displacement is obtained by letting 7 = 1 in equation (6.52).

The displacement coefficients 61,,(1) for the fundamental horizontal and first three
vertical modes of vibration are presented in Fig. 6.5. The results are plotted in a
manner analogous to that employed in Fig. 6.3 as a function of the density ratio
p1/po for three values of H/R in the range from 0.5 to 2. These data along with
corresponding data for additional systems and for the second horizontal mode of
vibration are listed in Table 6.2. The following trends are worth noting :

1. The surface displacement coefficients are relatively insensitive to the value of
H/R but increase substantially with decreasing p1/p.. The latter trend is con-
sistent with that reported in Chapter 3 for layered systems, and is attributed
to the fact that, the larger the variation in liquid density, the greater is the
sloshing action induced.

2. The corresponding coefficients for the second horizontal mode of vibration, m =
2, are significantly smaller than those for the fundamental mode, m = 1, and
the sum of the coeflicients over n for each horizontal mode satisfies equation
(6.53). Furthermore, when all the horizontal modes of vibration are considered,
the algebraic sum of the coefficients, in agreement with equation (6.54), is unity.

It should be realized that the relative contributions of the various modes of vi-

bration to the surface sloshing motion depend not only on the relative values of the
displacement factors &, (1) but also on those of the corresponding pseudoaccelera-
tions, Amn(t). The latter quantities depend, in turn, on the characteristics of the

ground motion and the natural frequencies of the system itself.
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6.6.3 Hydrodynamic Pressures

Shown in the left part of Fig. 6.6 are the heightwise variations of the function c¢,(7)
in equation (6.71) for the impulsive component of the hydrodynamic wall pressure.
These plots are for a tank with H/R = 1 and liquids with density ratios p;/p, in
the range between 0.1 and 1. Also shown are the corresponding functions ¢;;(7) and
c12(n) for the fundamental horizontal and first two vertical sloshing modes. As would
be expected (recall that the pressures are expressed in terms of the base value of the
liquid density rather than that at the level being considered), the functions c,(7) and
e11(n) decrease with decreasing py/p,. Furthermore, consistent with the distributions
of the modal displacement amplitudes displayed in Fig. 6.4, the function ¢1,(n) for
the n th vertical mode of vibration exhibits n — 1 changes in sign.

The interrelationship of the hydrodynamic response for the inhomogeneous and
homogeneous systems can be better appreciated by rewriting equation (6.70) for the
wall pressure in the form

oo

p(1,7,0,t) = — | To(n)&y(t) + f: Emn (1) Amn () | pavR cost (6.87)

m=1n=1

where p,, represents the average value of the liquid density, given by

— e B
puy = Lo L —77) (6.8)
B
and the functions &,(7) and &n.(7) are related to the functions ¢,(7) and cmn(n) in
equation (6.70) by
Po

c = £ Co an Cmn = —— Cmn .
o(m) o (n) d (n) = (m) (6.89)

The variations of &(7) and &(n) are displayed in Fig. 6.7 for the values of p1/p,
and H/R considered previously in Fig. 6.6. It is observed that these functions are
still sensitive to variations in liquid density, but that for values of p,/p, in the range
between 0.25 to 1, the areas under the individual curves are close to each other.
It follows that, despite the indicated differences in the pressures themselves, the
total hydrodynamic wall force or base shear for the inhomogeneous and homogeneous

liquids can be interrelated simply. This matter is considered further in the following

section.
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6.6.4 Hydrodynamic Tank Forces

Fig. 6.8 shows the variations with p1/p, and H/R of the impulsive and fundamental
convective masses, m, and my1, in the expression for the hydrodynamic base shear.
These masses are normalized with respect to the total liquid mass, m;. Normalized
values of the corresponding base moment coeflicients, moh, and mi1h11, and of the
foundation moment coefficients, m,h! and my1h},, are plotted in Figs. 6.9 and 6.10,
respectively. It should be reemphasized that these three sets of normalized quantities
express the hydrodynamic base shear and base moments as fractions of those com-
puted on the assumption that the entire liquid acts as a rigid mass. The normalizing
quantities are naturally different for tanks of different proportions and contents. The
normalized values of m, and mq; for additional systems, along with the corresponding
values of mya, ma; and myg, are presented in Table 6.3, and the normalized values of
the base and foundation moment coefficients are presented in Tables 6.4 and 6.5.
Examination of the data presented in these figures and tables reveals the following

trends :

1. For values of py /p, in the range between 1 and about 0.25, the normalized values
of m, and m,,; may, for all practical purposes, be considered to be the same.
This result, which is consistent with the prediction made from the pressure
profiles displayed in Fig. 6.7, is generally valid over the entire range of H /R
examined. Incidentally, the seismic response of systems normally encountered
in practice is dominated by m, and, to a lesser degree, by mi; and mg;. On
recalling that within the range of p1/p, considered, the sloshing frequencies,
w1, and the spectral values of the associated pseudoaccelerations, Am1(t), also
are insensitive to variations in the density ratio, it is concluded that, when
normalized with respect to the value computed on the assumption that the entire
liquid in the tank acts as a rigid mass, the total hydrodynamic wall force or base
shear for an inhomogeneous liquid is practically equal to that for a homogeneous
liquid. The same is also true of the moment induced above the tank base.
These two effects may, therefore, be evaluated from well-established procedures
for homogeneous liquids. This approximation, however, is not adequate for the
foundation moment, particularly for tanks with low values of H/R and p1/p,.
The latter moment is dominated by the hydrodynamic pressures exerted on the
tank base, and, as already demonstrated, these pressures may be substantially

different for inhomogeneous and homogeneous systems.
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2. For values of p1/p, less than about 0.25, the fraction of the liquid that acts
impulsively is generally smaller for the inhomogeneous system than the homo-
geneous system. The large density gradients in this case increase the proportions
of the liquid participating in the convective or sloshing actions. This increase,
however, does not necessarily increase the convective force coefficients associ-
ated with the fundamental sloshing mode of vibration. For a given horizontal
mode of vibration and a prescribed response, it is the sum of the coefficients for

all the vertical modes that generally increases.

6.7 Approximation of Continuous Systems with Layered
Systems

It is instructive to compare equation (6.19) for the continuous system with the cor-
responding expression for the discrete, layered system examined in Chapter 3. The
potential function ; for the j th layer of the latter system is given by

R Dum j c0shAmj — Dpnjo1 coshAm(c; = 1;)| J1 (Amé)
¥i = mz=:1 Am sinhAno; J1(Am) cosd (6.90)

where o; = H;/R and 1; = z;/R. Note that unlike the distance coordinate 7 em-
ployed in the analysis of the continuous system, which is normalized with respect to
the liquid depth, H, the coordinate n; is normalized with respect to the tank radius,
R. Note further that as the layer-height, H; = Az, is decreased, a; = Az/R tends
to zero, the cosh functions in equation (6.90) tend to unity, the sink function tends
to AmAz/R = A (H/R)A7, and equation (6.90) becomes the finite-difference coun-
terpart of equation (6.19). It can similarly be shown that the equations of motion for
the layered system (equation 28 of Chapter 3) are merely the finite-difference coun-
terparts of equation (6.20). It follows that, contrary to the view expressed in [10], the
representation of the continuous system as a multi-layered system is indeed a valid
approximation. Additional relevant information on this subject may be found in [6]

and [84].

6.7.1 Numerical Comparisons

The ability of the multi-layered systems considered in Chapters 3 and 4 to closely
approximate the response of systems with continuous variations in liquid density is
demonstrated in this section for a system with H/R = 1 for which the density variation
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is defined by equation (6.1). For the solutions presented herein, 8 is taken as 1.386
so that p1/p, is 0.25. For the discretized solutions, the liquid is approximated by N
uniform layers of equal thicknesses and density values equal to those determined from
the continuous distribution at mid-heights of the substitute layers. The convergence
of the natural frequencies of sloshing motion for the system examined herein is studied
in Table 6.6. The values of C;; through Cj3 for the continuous density variation are
compared with those obtained for several discrete representations using values of NV in
the range between 5 and 50. It is clear that the results for the discrete representations
converge quite rapidly to those for the continuous, and that good approximations are
obtained with as few as 10, or even fewer, layers.

The convergence of the corresponding modes of vibration would not be expected
to be as rapid but, as indicated in Fig. 6.11, good approximations are again obtained
with only 10 layers. Defined by the maximum vertical displacements of the liquid at
the layer interfaces, the indicated modes are for m = 1 and n = 1, 2 and 3. The
displacements of points within a layer may be determined from the interfacial values
either by interpolation or, more precisely, from the expression governing the response
of the layer under consideration.

Comparisons similar to those presented in Table 6.6 are made in Table 6.7 for the
coeficients dy; through dgs in the expression for the surface sloshing displacements
of the liquid induced by horizontal base shaking (equation (3.54) of Chapter 3). The
convergence rates for these results are again quite rapid.

Fig. 6.12 shows the heightwise variations of the impulsive component of wall
pressure and of the convective components associated with the fundamental horizontal
and first three vertical modes of vibration. The dashed lines represent the exact
solutions for the continuous density variation, whereas the solid lines represent the
solutions for the approximating layered systems with N = 10 and N = 50. The results
for both the layered and continuous systems are expressed in terms of the base value
of the liquid density, p,. It is seen that the impulsive pressures for the layered system
with N = 10 are practically indistinguishable from those of the continuous system.
By contrast, the convective pressures of the layered system converge less rapidly, and
a much larger number of layers is required to achieve comparable accuracy.

It is worth noting that both the natural frequencies and the modes of vibration of
the discrete systems converge to those of the continuous system more rapidly than do
the corresponding convective pressures. Two factors are responsible for the improved
convergence : (1) Unlike the convective wall pressures that are discontinuous at the
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interfaces, the modal displacements are continuous; and (2) the natural frequencies
are relatively insensitive to inaccuracies in the corresponding modes of vibration.
Table 6.8 gives the normalized values of the impulsive and of the first six convective
masses computed for layered systems with values of N ranging from 5 to 50. Also
listed are the corresponding exact solutions for the continuous variation in density.
Tables 6.9 and 6.10 give the corresponding moment coefficients for sections above and
below the tank base, respectively. It can be seen that the solutions for the discrete
systems do converge to those of the continuous system; that the rates of convergence
of the results are quite rapid; and that good agreement is obtained with as few as ten

uniform layers.

6.8 Conclusions

With the information presented herein, the free vibrational characteristics and the
response to horizontal base shaking of rigid cylindrical tanks containing liquids of a
density that decays exponentially with depth may be evaluated readily. The compre-
hensive numerical solutions that have been presented provide valuable insights into
the underlying response mechanisms and into the effects and relative importance of
the numerous parameters involved. The principal conclusions may be summarized as
follows :

1. Unlike a homogeneous liquid, which for a given horizontal natural mode of vi-
bration has a single vertical mode, the inhomogeneous liquid examined has an
infinite number of such modes, each associated with a distinct frequency. The
latter frequencies are smaller than the corresponding frequency of the homoge-
neous liquid.

2. For any horizontal mode of vibration, the nth vertical mode of the inhomoge-
neous liquid has n — 1 zero crossings and its frequency decreases with increasing
values of n.

3. For a specified horizontal mode of vibration, any two vertical modes satisfy the
orthogonality relation defined by equation (6.42).

4. When normalized with respect to the pressures computed on the assumption
that the entire liquid acts as a rigid mass, the coefficients in the expression for
the impulsive and all convective components of the hydrodynamic wall pressures
add up to unity. The same is also true of the corresponding coefficients for base

shear and base moments in the tank.
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5. The impulsive component of response may be obtained either by evaluating
all the convective components and subtracting their sum from the response
computed on the assumption that the entire liquid acts as a rigid mass, or,
independently, without the prior evaluation of the convective effects.

6. When normalized with respect to the result computed on the assumption that
the entire liquid in the tank acts as a rigid mass, the total hydrodynamic wall
force or base shear for an inhomogeneous liquid with values of p;/p, in the range
between 1 and 0.25 may be considered to be equal to that for a homogeneous
liquid. The same is also true of the moment induced above the tank base.
These two effects may, therefore, be evaluated from well-established procedures
for homogeneous liquids. This approximation, however, may not be adequate
for the foundation moment, particularly for broad tanks with high gradients in
liquid density.

7. The finite-difference representations of the equations for the response of the
continuous system examined here reduce to the same as the expressions for
the response of the layered, discrete system studied in Chapters 3 and 4. The
solutions for the latter systems may hence be used to accurately evaluate the
responses of systems with arbitrary and continuous variations in liquid density.



Table 6.1: Values of v, for systems with different H/R and p;/p,

Values of Yyun

p1/po m =1 m=2
n=1 n=2|n=3| n=1 | n=2|n=3
H/R=10.5
1 0.9206 2.6657
0.75 | 0.7025 | 3.2241 | 6.3277 | 2.5200 | 3.1947 | 6.3218
0.5 0.1668 | 3.3343 | 6.3894 | 2.3132 | 3.2691 | 6.3757
0.25 | 0.8285* | 3.5080 | 6.4918 | 1.9514 | 3.3953 | 6.4662
0.1 1.2237* | 3.7127 | 6.6212 | 1.4393 | 3.5596 | 6.5825
H/R =0.75
1 1.3809 3.9986
0.75 1.2123 | 3.2171 | 6.3266 | 3.8547 | 3.1766 | 6.3157
0.5 0.9475 | 3.3194 | 6.3868 | 3.6520 | 3.2265 | 6.3613
0.25 | 0.1657 | 3.4837 | 6.4870 | 3.3038 | 3.3133 | 6.4386
0.1 0.9723* | 3.6818 | 6.6141 | 2.8423 | 3.4320 | 6.5396
H/R =1
1 1.8412 5.3314
0.75 1.6880 | 3.2090 | 6.3251 | 5.1876 | 3.1653 | 6.3098
0.5 1.4631 | 3.3017 | 6.3834 | 4.9849 | 3.1991 | 6.3472
0.25 1.0314 | 3.4537 | 6.4806 | 4.6383 | 3.2582 | 6.4112
0.1 0.3663* | 3.6422 | 6.6045 | 4.1802 | 3.3400 | 6.4958
H/R=15
1 2.7618 7.9972
0.75 | 2.6164 | 3.1931 | 6.3214 | 7.8533 | 3.1539 | 6.3007
0.5 2.4105 | 3.2655 | 6.3747 | 7.6506 | 3.1713 | 6.3254
0.25 | 2.0512 | 3.3886 | 6.4643 | 7.3040 | 3.2017 | 6.3678
0.1 1.5484 | 3.5497 | 6.5796 | 6.8459 | 3.2433 | 6.4246
H/R =2
1 3.6824 10.6629
0.75 | 3.5385 | 3.1803 | 6.3172 { 10.5190 | 3.1489 | 6.2950
0.5 3.3358 | 3.2351 | 6.3648 | 10.3163 | 3.1593 | 6.3117
0.25 | 2.9861 | 3.3303 | 6.4453 | 9.9697 | 3.1773 | 6.3404
0.1 2.5208 | 3.4595 | 6.5502 | 9.5116 | 3.2016 | 6.3789

* 711 evaluated from equation (6.35

instead of equation (6.33).
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Table 6.2: Surface displacement coefficients for systems with different
H/R and p1/p,

. Values of épn(1)
p1/po m=1 m=2
n=1|n=2|n=3|n=1|n=2|n=3
H/R =0.5
1 |0.8368 0.0729

0.75 | 0.8790 | -0.0514 | 0.0132 | 0.0762 | -0.0038 | 0.0009
0.5 | 0.9451 | -0.1345 | 0.0380 | 0.0814 | -0.0101 | 0.0026
0.25 | 1.0787 | -0.3113 | 0.1014 | 0.0925 | -0.0242 | 0.0074
0.1 | 1.3039 | -0.6319 | 0.2440 | 0.1121 | -0.0509 | 0.0186

H/R =0.75

1 0.8368 0.0729
0.75 | 0.8788 | -0.0505 | 0.0126 | 0.0755 | -0.0028 | 0.0007
0.5 | 0.9449 | -0.1327 | 0.0365 | 0.0797 | -0.0077 | 0.0020
0.25 | 1.0791 | -0.3085 | 0.0982 | 0.0887 | -0.0189 | 0.0059
0.1 | 1.3065 | -0.6289 | 0.2383 | 0.1053 | -0.0413 | 0.0156

H/R =1

1 0.8368 0.0729
0.75 | 0.8778 | -0.0487 | 0.0119 | 0.0750 | -0.0021 | 0.0005
0.5 | 0.9429 | -0.1286 | 0.0345 | 0.0782 | -0.0056 | 0.0015
0.25 | 1.0766 | -0.3017 | 0.0940 | 0.0850 | -0.0138 | 0.0046
0.1 | 1.3055 | -0.6205 | 0.2306 | 0.0974 | -0.0307 | 0.0126

H/R=15

1 0.8368 0.0729
0.75 | 0.8737 | -0.0426 | 0.0100 | 0.0743 | -0.0011 | 0.0002
0.5 | 0.9332 | -0.1140 | 0.0298 | 0.0764 | -0.0031 | 0.0008
0.25 | 1.0589 | -0.2734 | 0.0835 | 0.0805 | -0.0076 | 0.0027
0.1 | 1.2825 | -0.5784 | 0.2107 | 0.0875 | -0.0167 | 0.0080

H/R =2

1 0.8368 0.0729
0.75 | 0.8684 | -0.0351 | 0.0081 | 0.0739 { -0.0007 | 0.0001
0.5 | 0.9195 | -0.0949 | 0.0247 | 0.0755 | -0.0019 | 0.0004
0.25 | 1.0290 | -0.2316 | 0.0718 | 0.0784 | -0.0046 | 0.0016
0.1 |1.2301 | -0.5035 | 0.1872 | 0.0830 | -0.0101 { 0.0052
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Table 6.3: Normalized values of effective masses in expression for base
shear of systems with different H/R and p;/p,

mo
me

my nmpy
mg

my
mye

ma2
me

0.25
0.1

0.75
0.5
0.25
0.1

0.75
0.5
0.25
0.1

0.75
0.5
0.25
0.1

0.75
0.5
0.25
0.1

0.2999
0.2926
0.2804
0.2559
0.2211

0.4391
0.4320
0.4181
0.3866
0.3374

0.5475
0.5435
0.5323
0.5009
0.4453

0.6858
0.6887
0.6862
0.6656
0.6145

0.7627
0.7698
0.7736
0.7640
0.7249

H/R =05

0.6601
0.6665 | 0.0015
0.6713 | 0.0085
0.6672 | 0.0320
0.6396 | 0.0785

H/R =0.75

0.5340
0.5407 | 0.0016
0.5476 { 0.0089
0.5516 | 0.0331
0.5405 | 0.0801

H/R=1

0.4322
0.4358 | 0.0016
0.4401 | 0.0092
0.4442 | 0.0341
0.4408 | 0.0817

H/R=15

0.3006
0.2972 | 0.0016
0.2927 | 0.0092
0.2866 | 0.0344
0.2802 | 0.0826

H/R =2

0.2270
0.2193 | 0.0015
0.2092 | 0.0085
0.1940 | 0.0320
0.1789 | 0.0782

0.0271
0.0268
0.0265
0.0261
0.0256

0.0182
0.0175
0.0165
0.0150
0.0135

0.0137
0.0128
0.0117
0.0099
0.0080

0.0091
0.0083
0.0072
0.0056
0.0039

0.0068
0.0062
0.0052
0.0039
0.0025

0.0001
0.0008
0.0030
0.0072

0.0001
0.0007
0.0027
0.0066

0.0001
0.0006
0.0021
0.0054

0.0001
0.0003
0.0013
0.0033

0.0000
0.0002
0.0008
0.0021
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Table 6.4: Normalized values of coefficients in expression for overturning
moment at a section immediately above tank base of systems
with different H/R and p,/p,

pL mgh, myjhy; | myohys | myihgy | mgghgs

Po m¢ehy mgh, mgh, mghy m¢h,
H/R = 0.5
1 10.2394 | 0.7031 0.0365

0.75 { 0.2398 | 0.7244 | -0.0190 | 0.0369 | -0.0014
0.5 | 0.2388 | 0.7534 | -0.0431 | 0.0376 | -0.0030
0.25 | 0.2332 | 0.7980 | -0.0753 | 0.0389 | -0.0050
0.1 | 0.2200 | 0.8417 | -0.0958 | 0.0410 | -0.0057

H/R = 0.75

1 |0.3520 | 0.6053 0.0277
0.75 | 0.3550 | 0.6236 | -0.0185 | 0.0274 | -0.0010
0.5 {0.3566 | 0.6495 | -0.0418 | 0.0270 | -0.0022
0.25 | 0.3524 | 0.6919 | -0.0722 | 0.0264 | -0.0034
0.1 | 0.3357 | 0.7384 | -0.0902 | 0.0258 | -0.0032

H/R =1

1 |0.4425 | 0.5235 0.0223
0.75 | 0.4495 | 0.5368 | -0.0177 | 0.0217 | -0.0007
0.5 | 0.4559 | 0.5565 | -0.0397 | 0.0208 | -0.0015
0.25 | 0.4574 | 0.5908 | -0.0677 | 0.0193 | -0.0022
0.1 | 0.4429 | 0.6326 | -0.0826 | 0.0175 | -0.0016

H/R=15

1 |0.5664 | 0.4094 0.0160
0.75 | 0.5800 | 0.4134 | -0.0152 | 0.0152 | -0.0004
0.5 | 0.5954 | 0.4199 | -0.0337 | 0.0141 | -0.0008
0.25 | 0.6111 | 0.4333 | -0.0556 | 0.0123 | -0.0011
0.1 | 0.6101 | 0.4540 | -0.0632 | 0.0100 | -0.0004

H/R =

1 |0.6445 | 0.3367 0.0124
0.75 | 0.6609 | 0.3346 | -0.0124 | 0.0117 | -0.0002
0.5 | 0.6811 | 0.3321 | -0.0270 | 0.0107 | -0.0005
0.25 | 0.7061 | 0.3294 | -0.0428 | 0.0090 | -0.0006
0.1 | 0.7181 | 0.3291 | -0.0432 | 0.0069 | -0.0001
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Table 6.5: Normalized values of coefficients in expression for foundation
moment of systems with different H/R and p,/p,

21 moh:, mii h’” m12h'12 m21h'21 mgzhlzz

Po my¢h, mehy m¢h), mgh), m¢h),
H/R =0.5

1 10.2927 | 0.6869 0.0131

0.75 | 0.2632 | 0.6616 | 0.0316 | 0.0118 | -0.0001
0.5 | 0.2241 | 0.6212 | 0.0745 | 0.0101 | 0.0000
0.25 | 0.1668 | 0.5454 | 0.1381 | 0.0079 | 0.0005
0.1 |0.1113 | 0.4470 | 0.1967 | 0.0058 | 0.0013

H/R = 0.75

1 |0.4369 | 0.5402 0.0148
0.75 | 0.4120 | 0.5319 | 0.0178 | 0.0134 | -0.0003
0.5 | 0.3729 | 0.5150 | 0.0468 | 0.0115 | -0.0005
0.25 | 0.3028 | 0.4748 | 0.0994 | 0.0087 | -0.0002
0.1 |0.2195 | 0.4096 | 0.1595 | 0.0060 | 0.0006

H/R =

1 |0.5263 | 0.4508 0.0149
0.75 | 0.5129 | 0.4465 | 0.0077 | 0.0135 | -0.0004
0.5 | 0.4858 | 0.4373 | 0.0247 | 0.0117 | -0.0006
0.25 | 0.4241 | 0.4133 | 0.0646 | 0.0089 | -0.0005
0.1 {0.3324 | 0.3695 | 0.1218 | 0.0060 | 0.0003

H/R=15

1 10.6226 | 0.3575 0.0131
0.75 | 0.6266 | 0.3519 | -0.0028 | 0.0120 | -0.0003
0.5 | 0.6237 | 0.3428 | -0.0006 | 0.0105 | -0.0005
0.25 | 0.5960 | 0.3246 | 0.0184 | 0.0081 | -0.0005
0.1 | 0.5246 | 0.2958 | 0.0629 | 0.0053 | 0.0001

H/R =2

1 |0.6785 | 0.3048 0.0110
0.75 | 0.6902 | 0.2972 | -0.0061 | 0.0101 | -0.0002
0.5 | 0.7003 | 0.2858 | -0.0097 | 0.0089 | -0.0004
0.25 | 0.6979 | 0.2652 | -0.0023 | 0.0069 | -0.0004
0.1 |0.6571 | 0.2369 | 0.0301 | 0.0046 | 0.0001
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Table 6.6: Values of frequency coeflicients C,,, for layered and continuous
systems with H/R = 1 and p,/p, = 0.25

N Cu Ciz Cia Ca Ca2 Cas
5 0.9549 | 0.4136 | 0.2556 | 0.9999 | 0.4595 | 0.3631
10 0.9539 | 0.4049 | 0.2407 { 0.9999 | 0.4394 | 0.3345
20 0.9537 | 0.4027 | 0.2371 | 0.9999 | 0.4342 | 0.3273
30 0.9536 | 0.4023 | 0.2364 | 0.9999 | 0.4332 | 0.3260
50 0.9536 | 0.4021 | 0.2361 | 0.9999 | 0.4327 | 0.3253
Cont. System | 0.9536 | 0.4019 | 0.2359 | 0.9999 { 0.4325 | 0.3249

Table 6.7: Values of surface displacement coefficients d,, for layered and
continuous systems with H/R = 1 and p1/p, = 0.25

N du dyi2 di3 day daz das

5 1.0634 | -0.2767 | 0.0681 | 0.0831 | -0.0118 | 0.0029

10 1.0732 | -0.2954 | 0.0872 | 0.0845 | -0.0133 | 0.0041

20 1.0757 | -0.3001 | 0.0923 | 0.0849 | -0.0137 | 0.0044

30 1.0762 | -0.3010 | 0.0933 | 0.0850 | -0.0138 | 0.0045

50 1.0764 | -0.3014 | 0.0938 | 0.0850 | -0.0138 | 0.0045
Cont. System | 1.0766 | -0.3017 | 0.0940 | 0.0850 | -0.0138 | 0.0046

Table 6.8: Normalized values of effective masses in expression for base
shear of a continuous system with H/R = 1, p,/p, = 0.25 and
its N-layered approximation

N mo my my; m3 my; myy ma3
me mg mg myg my my mg
5 0.5022 | 0.4431 | 0.0338 | 0.0023 | 0.0099 | 0.0023 | 0.0001
10 0.5007 | 0.4439 | 0.0340 | 0.0026 | 0.0099 | 0.0022 | 0.0001
20 0.5004 | 0.4441 | 0.0341 | 0.0027 { 0.0099 | 0.0022 | 0.0001
30 0.5003 | 0.4442 | 0.0341 | 0.0027 | 0.0099 | 0.0022 | 0.0001
50 0.5003 | 0.4442 | 0.0341 | 0.0027 | 0.0099 | 0.0022 | 0.0001
Cont. System | 0.5003 | 0.4442 | 0.0341 | 0.0027 | 0.0099 | 0.0021 | 0.0001
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Table 6.9: Normalized values of coefficients in expression for overturning
moment at a section immediately above tank base for a con-
tinuous system with H/R = 1, p;/p, = 0.25 and its N-layered

approximation
N mohy | myphyy | myohys | myghya | mgzhgy | moghpe | mypghos
mghy meh, mghy m¢hy mghy m¢hy mehy
5 0.4557 | 0.5861 | -0.0645 { -0.0023 | 0.0192 | -0.0019 | -0.0002
10 0.4565 | 0.5896 | -0.0669 | -0.0026 | 0.0193 | -0.0021 | -0.0002
20 0.4567 | 0.5905 | -0.0675 | -0.0026 | 0.0193 | -0.0022 | -0.0002
30 0.4567 | 0.5907 | -0.0676 { -0.0027 | 0.0193 | -0.0022 | -0.0002
50 0.4568 | 0.5908 | -0.0676 | -0.0027 | 0.0193 | -0.0022 | -0.0002
Cont. System | 0.4568 | 0.5908 | -0.0677 | -0.0027 | 0.0193 | -0.0022 | -0.0002

Table 6.10: Normalized values of coefficients in expression for foundation
moment of a continuous system with H/R = 1, p/p, = 0.25
and its N-layered approximation

!
m221122

!
m231123

N moh:, muh;1 mlghlw m13h'13 mglhlm
m¢h) meh m¢hy m¢h), m¢h, m¢h) m¢h),

5 0.4541 | 0.4390 | 0.0619 | 0.0222 { 0.0095 | -0.0005 | 0.0000

10 0.4391 | 0.4276 { 0.0651 | 0.0277 | 0.0092 | -0.0005 | 0.0001

20 0.4313 | 0.4208 | 0.0653 | 0.0289 | 0.0090 { -0.0005 | 0.0001

30 0.4287 | 0.4184 | 0.0652 | 0.0290 | 0.0090 | -0.0005 | 0.0001

50 0.4266 | 0.4164 | 0.0650 | 0.0290 | 0.0090 | -0.0005 | 0.0001
Cont. System | 0.4234 { 0.4133 | 0.0646 | 0.0289 | 0.0089 | -0.0005 | 0.0001
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Figure 6.8 Normalized values of impulsive and fundamental convective
masses for systems with different H/R and p,/p,
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Figure 6.9 Normalized values of coefficients for impulsive and
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Chapter 7

Effects of Basemat Flexibility for Vertically
Excited Liquid Storage Tanks

7.1 Introduction

In the numerous studies to date that have dealt with the dynamic response of tank-
liquid systems, it has been assumed that the foundation of the tank-liquid system is
rigid. Previous studies and tests for actual buildings have, however, indicated that
the assumption of rigid foundations may not be generally valid and that it may be
necessary to take the foundation flexibility into consideration while computing the
dynamic response, [25, 79, 81]. Such trends are also indicated in preliminary tests
for buried high-level waste storage tanks, [42]. The objectives of this chapter are
two-fold:

e To assess the adequacy of the rigid base assumption for liquid storage tanks

subjected to vertical ground excitations, and

o To assess the effects that any deformation of the base-plate may have on the

induced hydrodynamic effects in the tank.

In general, the problem considered requires taking into account the effects of
fluid-structure-soil interaction, with due provision for the flexibilities of the tank-
wall, base-plate and the soil medium. The intention of the present study is to obtain
an engineering insight into the problem and suitable simplifications are made to en-
able an exploratory study. The soil is represented by a set of mutually independent
Winkler springs and the effects of tank-wall flexibility are implicitly neglected. The
model considered provides rigorously for the fluid-plate interaction effects while ap-
proximately accounting for the interaction of the base-plate and soil. The effects of
these approximations on the results are also indicated in the study.
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7.2 System Considered

The system considered is shown in Fig. 7.1(a). It is a vertical, circular cylindrical
tank of radius R that is anchored to a flexible base plate. The thickness of the base
plate is denoted by ¢, its density by p,, the modulus of elasticity by £, and Poisson’s
ratio by v,. The liquid height is denoted by H and its mass density by p;. The mass
density of the soil is denoted by p,, its shear modulus by G, and Poisson’s ratio by
vs. The free-field ground motion is considered to be a uniform, vertical excitation,
the instantaneous acceleration of which is denoted by &,(t), and the corresponding
velocity and displacement by @,(t) and w,4(t), respectively. Points within the tank are

defined by the cylindrical coordinates r, § and z.

7.2.1 Model Considered

The simplified model of the system is shown in Fig. 7.1(b). The tank-wall and roof
are considered to be rigid in axial vibration and their inertia is represented by a
mass m distributed along the circumference of the plate. For underground tanks, m
may also be considered to include the inertial effects of the soil surcharge and the
surrounding soil.

The supporting soil is represented by a set of Winkler springs, the stiffness & of
which is taken equal to the static vertical stiffness per unit area of a rigid footing
resting on an elastic halfspace,
4G,

= TR —v,) (7.1)

k

This simplified representation for the soil makes no provision for the effects of plate-

flexibility on the dynamic stiffness and more importantly, for the damping due to

radiation. The nature of the induced damping and its effect on the magnitude of the
induced response is also studied later.

The constraint offered by the wall at its junction to the base plate is represented

by a rotational spring. Two cases are considered for the stiffness of this spring denoted

by 4 : (1) Hinged case, (1 = 0), and (2) Fixed case, (1 = 00).

7.3 Method of Analysis

Complicating the analysis for the model considered herein is the fact that the magni-
tude and distribution of the hydrodynamic liquid pressures induced on the plate are
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unknown. The analysis is implemented herein by an energy procedure, making use
of the Rayleigh-Ritz method in combination with Lagrange’s equations of motion.

7.3.1 Deflection Configuration

The vertical component of the relative displacement, w = w(§,1), is taken in the form

N
w(§,t) = wo(t) + Zl W (2) ¥n(€) (7.2)
n=
where £ = r/R; wo(t) represents the rigid-body displacement of the plate relative to
the free-field ground motion, ,4(t); w,(t) are time-dependent generalized coordinates
with units of length; and ,(£) is the nth approximating function satisfying the
geometric boundary conditions of the edge-supported plate.
For the hinged case, ¥, (&) satisfies the conditions of zero displacement at the edge,
finite displacement and zero slope at the center and is taken in the form,

n(€) = Jo(an€) (7.3)

where the superscript h denotes the hinged condition; Jo is the bessel function of first
kind and zero order; and o! is the nth root of Jo(e) = 0. The first three of these
roots are

ol = 2.405 al = 5.520 off = 8.654 (7.4)

For the fixed support, ¥, (£) satisfies the conditions of zero displacement and zero
slope at the edge, finite displacement and zero slope at the center. The shape function
is taken in the same form as the n th mode-shape of a clamped circular plate,

Jo(ed€)  Io(cf€)
Jo(ed) ~ Tolad) (7:5)

where the superscript f denotes the fixed condition; Iy is the modified bessel function

of first kind and zero order, and of is the n th root of

PiE) =

Ji(a@)lo(e) + Jo(e@)1(a) =0 (7.6)
The first three of these roots are

of =3.196 of = 6.306 of =9.439 (1.7)
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7.3.2 Strain Energy

The strain energy of the system includes two components : the energy stored in the
springs, S,, given by
1
o=k [ w(g,0)?ede (7.8)

and the energy of the deformed base-plate, S,, given by

nD, ! |[0*w 7 (10w 0%w) (10w
Sp = 7 /0 [(W) + (E'gg) + 2v (652) (20—6)] £d¢ (7.9)
where D, = E,t3/12(1 — v2).

7.3.3 Kinetic Energy

The kinetic energy of the system includes three components : (1) the energy of the
base-plate, T}, given by
1
1, = mpj) w(E,t)? £ dE (7.10)

where m,, is the mass of the base-plate = mp,t, R?. (2) the energy of the end-mass,
Tem, given by .

Tem = 5 Mem w(1,t)? (7.11)
where men is the total end-mass = 2r R, and (3) the kinetic energy of the liquid,

T, given by
=0 [ 4%¢ (7.12)

where S refers to the bounding surfaces of the hquld, ¢ is a velocity potential function
describing the flow characteristics of the liquid; 0¢/0n describes the velocity normal
to each surface. The derivation for ¢ is summarized in Appendix C and the final

expression is given by
_ . 2dnm Jo(Am&) sinhrp(H — 2)/R
# = tho(t) (H =) +Z“’" {26" AR B 0w coshA R
(7.13)

where

en= [ Unle) €t (1.14)
dum = [ 9n(6) JolAn) € (7.15)
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and ), is the mth root of J;(A\) = 0. The expressions for e, and dy,, for the hinged
and fixed conditions of edge-support are given in Appendix C. With ¢ determined, the
kinetic energy can be obtained from equation (7.12), as also indicated in Appendix

C.

7.3.4 External Work

The external forces acting on the system include the distributed rigid-body inertias of
the plate and liquid, and the concentrated inertia due to the end-mass. The external

work done on the system is then given by
1 N
Wews = = [om 4 ) [ )+ 25 n 0000+ )] 2 (710
n=1

where m; is the mass of the liquid = mp;R2H. The negative sign indicates that the

inertia forces and the displacement are in opposite directions.

7.3.5 Equations of Motion

The differential equations of motion for the system are obtained by repeated appli-
cation of Lagrange’s equation,
o (oT or as ow,
S ) o e e (7.17)
ot \ dw; ow; Ow; ow;
wherei = 0,1, ..., N; the dot superscript denotes differentiation with respect to time;
T is the total kinetic energy = T), + Tem + T1; S is the total strain energy = Sp + Ss;

and W, is the external work.
Substituting the relevant expressions into equation (7.17), and carrying out the
indicated partial differentiations for 7 = 0,1,..., N, the equations of motion can be

written in matrix form as,
[M]{®} + [K]{w} = =[M]{1,0,...,0}7 &, (t) (7.18)
where {w} is the vector of generalized displacement coordinates and is given by
{w} = {wo,w1,..., wn}" (7.19)
[M] is the mass matrix of size (N 4 1) x (N 4 1) and its elements are as follows:

Moo = My
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mo; = mt(l — Bem)e; for i#0

tanhA, H/R dindjm
)\m JO(’\ )

mi; = my [2ﬂpg,, + 46 (e e+ — Vi Z )] for 7,7 A0 (7.20)

m=1
where m; = (my+mp+men ) is the total mass of the system; fer, is the ratio of the end-
mass to the total mass = me.n/my; By is the ratio of the plate mass to the total mass
= m,/my; B is the ratio of the liquid mass to the total mass = my/m; = 1 — By — fem;
e; and d;y, are defined by equations (7.14) and (7.15) respectively; and g; is given by

1
gi = [ w(©wie)¢de (7.21)
For the hinged and fixed edge conditions considered, g;; is evaluated to be
Ji(al)Ji (et
gl = —1(—)21(—1—)5;]' g = 6 (7.22)

where §;; represents the Kronecker delta symbol.

1 for i=7j
5 = 7.23
! {0 for i#j (7.23)

[K] is the stiffness matrix of size (N +1) x (N 4 1) and its elements are as follows:
koo = WkR2
koi = TkR*e; for i #0

D, D, .
ki; = 2rkR? [( + ma, aJ) gij + kR4(U” )hij] for 7,7 #0 (7.24)
where h;; is given by

(7.25)

0
For the hinged and fixed edge conditions considered, this reduces to

My = eiogh(i)di(ey)  h=0 (7.26)
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7.4 Free Vibration

The equations of free-vibration are deduced from equation (7.18) by setting its right-

hand side to zero, letting {w(t)} = {}e™* and solving the resulting characteristic
value problem

[K]{#} = w*[M]{b} (7.27)

This results in a system of (V + 1) natural modes of vibration, and (N + 1)

associated circular natural frequencies. The modes are real-valued and can be shown

to satisfy the orthogonality relations

{’i’p}T[M]{ﬁ)q} = {'pr}T[K]{"bq} =0 for p#gq (7.28)

7.4.1 Numerical Solutions

The circular natural frequency associated with the kth mode of vibration of the

system can be conveniently expressed in the form

wkR?

my

wi = Cy (7.29)
where C is a dimensionless frequency coefficient that depends on H/R, D,/kR*, Bem,
By, vp and the edge-support condition. The radial variation of the associated modal
base plate displacement is evaluated by substituting {i;} into equation (7.2) and is
expressed in the form N
Wi(€) = o+ Y Wentn(E) (7.30)
n=1
where 1y, denotes the nth modal displacement amplitude associated with the kth
mode of vibration.
For the solutions presented herein, H/R is considered to vary between 0.5 and
2, the relative plate mass f, is taken to be in the order of 0.1 and the relative end-
mass fem is assumed to vary between 0 and 0.5. The larger values of Bem, can be
considered to be representative of tanks that are buried underground. The relative
stiffness parameter, D,/kR?, is a function of several variables and has a wide range
of variation. Using the value of k defined by equation (7.1), D,/kR* can be expressed

in the form, ,
Dp_lr_Ep(_tB) 1—v,
kRt~ 48G, \R/ 1—u? (7.31)
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On assuming t,/R to vary between 0.03 and 0.075, using the relation G, = p,v? with
ps = 3.416 1b/ ft3, and the shear-wave velocity v, assumed to vary between 400 ft/sec
and 1200 ft/sec, taking v, = 1/3, and assuming the material of the base-plate to
be concrete, it is found that D,/kR* can vary between 0.02 and 0.00001, with most
values typically in the range of 0.01 to 0.001.

The frequency coeflicients for the first two modes of vibration are presented in
Figs. 7.2 and 7.3 for the hinged and fixed conditions of edge-support respectively.
The results are plotted as a function of B, ranging from 0 to 0.5 and for values of
D, /kR* ranging between 0.02 and 0.0005. H/R is taken as 1.0, B, as 0.1 and v, as
0.17. The associated modal displacement configurations are presented in Figs. 7.4
and 7.5 for values of D,/kR* = 0.02 and 0.001 respectively. The following trends can
be noted from the data presented :

o The fundamental mode of vibration is typically associated with a significant
rigid-body component of motion. For the case of zero end-mass (Bem = 0), the
system undergoes rigid-body motion irrespective of the plate flexibility or the
edge-support condition and the associated frequency coefficient is unity. For in-
creasing values of B, and decreasing values of D,/kR*, the flexural component
of the plate deformation increases, especially at the vicinity of the plate-edges
and the associated frequency coefficient decreases monotonically from unity.

¢ The second mode of vibration is typically associated with a significant flexural
component of motion. The associated frequency coefficient decreases signifi-
cantly as the relative flexibility of the plate increases. For increasing values of
Bem and decreasing values of D,/kR?, the central portion of the plate exhibits
more uniform, rigid-body like motion and the frequency coefficient C; tends to
unity.

¢ The end-constraint condition has a tremendous influence on the free-vibrational
characteristics of the system. The mode shapes are altered significantly by
preventing the edge from rotating and the associated natural frequencies are

increased significantly.

Numerical values of the fundamental and second frequency coefficients for the
systems considered and for additional values of H/R are presented in Tables 7.1 and
7.2 respectively. Both the hinged and fixed conditions of edge-support are considered.
It is seen that, in general, both frequency coefficients increase with increasing H/R.
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However, the effect on the fundamental frequency coeflicient is very slight and for all
practical purposes, Cy can be considered to be independent of H/R.

7.4.2 Further Simplification

As pointed out before, the evaluation of the added modal masses for the liquid is the
issue complicating the analysis of the fluid-structure interaction problem. I'requently,
this complication is resolved by simply assuming that the liquid inertia acts uniformly
and lumping it with the plate inertia. This was the approach used in [42]. It is desir-
able to check the accuracy of such simplified solutions with the more exact solutions
presented in the previous section.

The solution for this simplified problem can be obtained by solving exactly the
governing differential equations of an equivalent elastically supported plate. The mass
of this equivalent plate incorporates the original plate mass and the liquid mass. Such
an exact solution also provides a means of checking the accuracy and the rate of
convergence of the solutions obtained by the energy procedure. The latter solutions
for this simplified problem are obtained by simply putting §; = 0 in the elements of
the mass matrix.

The exact procedure for solving the free-vibration problem is shown in Appendix
C. Frequency coefficients for the first two modes of vibration obtained by this exact
method are shown in Tables 7.3 and 7.4 respectively. Ben is taken as 0.5, D,/kR*
is taken equal to 0.02 and 0.001, and both hinged and fixed conditions of edge-
support are considered in these tables. Approximate solutions obtained by the energy
procedure are also included in these tables. The number of approximating functions

used for these solutions are varied between 3 and 10. It is seen that :

e The values of the fundamental frequency coefficients evaluated for the equivalent
plate are close to the corresponding frequency coefficients in Table 7.1 that were
evaluated by accounting for the fluid-structure interaction effects. This follows
from the fact that the first mode typically has a large rigid-body component
and the liquid does behave more or less uniformly in this case. The frequency
coefficients for the second mode, however, differ significantly from those in Table
7.2 and this follows from the fact that the second mode typically has a large
flexural component and the associated liquid inertia is not generally uniform.

e The agreement in the results between the exact and the energy solutions is
excellent. This is particularly true for the fixed case, where using only three
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terms is sufficient to give satisfactory agreement for the frequency coefficients.
The rate of convergence for the fundamental frequency is somewhat slower than

that for the second frequency.

7.5 Forced Vibration

With the natural frequencies and modes of vibration of the system established, its
response to an arbitrary lateral excitation may be obtained by the modal superpo-
sition method. In this approach, the vector {w(t)} of the generalized displacement
amplitudes of the liquid is expressed as a linear combination of the characteristic

vectors, {wy}, as
N+1

{w(®)} = ;.2:':1 {br} qr(t) (7.32)

in which gi(t) is a generalized time-dependent coordinate corresponding to the kth
mode of vibration. Substituting equation (7.32) into equation (7.18), premultiplying
the resulting expression by {}7, and making use of the orthogonality properties of
the natural modes defined by equation (7.28), one obtains

Gr(t) + wi gu(t) = =T 84(1) (7.33)

in which T\ is a dimensionless factor given by

(@&} T[MI{1,0,...,0)7
Iy = . . 7.34
b= T M (i) (734
The solution of equation (7.33) is then given by
L'y
qi(t) = ——5 Aw(t) (7.35)
Wi

in which Ag(t) represents the pseudoacceleration function defined by
t
Ar(t) = wi /o Bg(T) sinwi(t —7) dr (7.36)

For a base-excited single-degree-of-freedom oscillator with a circular frequency wy,
the pseudoacceleration A(t) represents the product of the square of wy and the
deformation of the oscillator, Ux(t), i.e, Ax(t) = —wiUk(t). The maximum value of

Ax(t) is the quantity displayed on a pseudoacceleration response spectrum.
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From equations (7.32) and (7.35) one obtains,

N+1 N+1

Z I {wk} Z Iy {w;,} U},(t) (7.37)

From the latter part of equation (7.37), it can be shown that

N+1

Z L'y {wk} = {1a0’0’°"10}T (738)
k=1

The proof is as follows : Consider the limiting case of a very flexible system, i.e., wy —
0. The relative base displacement for such a system is proportional to the ground
displacement, i.e., {w(t)} = —z,4(){1,0,...,0}T. Similarly, the modal deformation
Uy (t) for each of the (N +1) modes is equal to —z,(t). On substituting these relations
into the latter part of equation (7.37), one obtains equation (7.38).

It is also desirable to compute the vector of modal acceleration amplitudes, {@(t)}.
This may be obtained by double differentiating equation (7.37) with respect to time,

= ()

=—ZFdw} (7.39)

Now, on substituting the relation A(t) = w? ('vg(t) - Ak(t)) into the above expres-
sion and making use of equation (7.38), one obtains

N+1
{w(t)} = —#,(t) {1,0,...,0}" + 3_ Ty {ibe} Ax(t) (7.40)
k=1
7.5.1 Hydrodynamic Pressure
The liquid pressure, p(r, z,t), is given by
) d¢
D2, 0) = pig(8)(H = 2) + prsy (7.41)

where the term proportional to the ground acceleration is included since the velocity
potential function ¢ is only associated with the relative motion of the base plate.
Now, on substituting equation (7.13) for ¢ into equation (7.41), one obtains

p<e,n,t)=le(fég(t)+wo() )+ 2 0(0)(2en(1 = 14

2dpm Jo(Am€) sinhA H/R(l -

Z m J8(Am)  coshAnH/R ) (7.42)
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where = z/H. On substituting for wo and w, from equation (7.40) into the above
expression and grouping together the terms that are proportional to each modal
acceleration, equation (7.42) can be written in the form,

N41

p(é" U,t) = PIH ;; Ck(fan)Ak(t) (743)

where c(£,7) defines the heightwise and radial variations of the pressure distribution
associated with the k& th mode of vibration of the system and is given by

&) = T [t = 1)+ 32 e {2en (1 =24

n_

nm JO(’\mg) sinhA H/R(l - )
Z Am JE(Am) coshA, H/R }] (7.44)

It can be shown that the wall pressure coefficients must satisfy the relation

N+1

> alln)=(1-7) (7.45)

k=1
The proof follows by considering the limiting case of a very rigid system, i.e., wy — oo.
In this case, Ax(t) = &,(t). Substituting this into equation (7.43) and equating the
resulting expression to the wall-pressure distribution for a rigid tank which is given
by prigia(n,t) = pi H Z4(t) (1 — 1), one obtains equation (7.45). In a similar manner,
the base pressure coefficients can be shown to satisfy the relation

N41

> a(6,0) =1 (7.46)

k=1
7.5.2 Numerical Solutions

Hydrodynamic wall and base pressure distributions for the hinged and fixed conditions
of edge-support are presented in Figs. 7.6 and 7.7 for values of D,/kR* = 0.02 and
0.001 respectively. The solutions are for values of A, ranging from 0 to 0.5, H/R =
1.0, B, = 0.1 and v, = 0.17. Distributions for the fundamental mode are shown as
solid lines while those for the second mode are shown as dashed lines. The following
trends are worth noting :
e The first two modal pressure coefficients are the only dominant contributors
to the response and higher modal terms can be neglected. Furthermore, the
solutions presented approximately satisfy equations (7.45) and (7.46).
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o For flexible plates with zero end-mass, the fundamental wall pressure tends to
the linear rigid-tank distribution and the corresponding second modal pressure
reduces to zero. Increasing values of B, and decreasing values of D,/kR* cause
a decrease in the fundamental modal pressure component and a corresponding

increase in the second modal pressure component.

o The edge-support condition drastically alters the magnitudes of the pressure
distributions. Clamping the edge of the plate results in solutions that are closer
to the rigid-tank pressure distributions. For larger values of f.n, and smaller
values of D,/kR"*, the hinged and clamped solutions vary by as much as 50 %.

Fundamental wall pressure distributions for the cases considered and for additional

values of H/R are tabulated in Tables 7.5 and 7.6 for values of B, = 0.3 and 0.5
respectively. Since the pressure distributions are more or less linear from the top to
roughly half the tank height, only values over the bottom half are tabulated. It is seen
that the effect of increasing H/R is to decrease the fundamental modal component
and to increase the second component. This follows from the fact that the effect of
increasing the slenderness ratio is to increase the liquid pressures acting near the edge
of the plate. This, in turn, can be interpreted as an increase in the end-mass ratio
Bem, thereby reducing the fundamental modal pressure contribution.

7.5.3 Implication of Results

In order to understand the implications of the solutions presented, it is necessary to
compare the response of the elastically supported systems with flexible base plates to
that of similarly supported systems with rigid base plates. The hydrodynamic wall
pressure for the latter systems, p, = p,(9,1), is given by

pr(myt) = pmHA(t) (1 —n) (7.47)

where A,(t) is the pseudoacceleration function corresponding to the natural frequency
of the system, w, = \/TkR2/m,.

For the purpose of establishing the relative magnitudes of the effects, it can be
assumed that the natural frequencies are typically such that the spectral values of
A.(t) for the rigid systems and of A;(t) and As(t) for the flexible systems fall in
the amplified, nearly constant portion of the pseudoacceleration response spectrum.
The maximum hydrodynamic wall pressure for the flexible system is then obtained
by combining the first two modal terms of equation (7.43) by the sum-of-the-squares
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rule,
pmaw(l,n) = leAmax ( Cl(n)2 + c2(7])2) (748)

where Apqg is the spectral value of the modal pseudoaccelerations. Now, on making
use of the relation ¢;(n) + ca(n) = (1 — ), and comparing equation (7.48) with the
maximum value of equation (7.47), it follows that the response of systems with flexible
base-plates is generally smaller than the corresponding response of systems with rigid
base-plates.

It should, however, be noted that the above conclusion has been based on the
assumption of no radiational damping. The damping mechanisms for the rigid and
flexible systems may be quite different and the corresponding responses may be sig-
nificantly affected by the different damping values. It is necessary to provide for
the effects of radiational damping and re-evaluate the implications of the results pre-

sented.

7.6 Incorporation of Damping

In general, the computation of the damping effects requires a precise evaluation of
the tractions at the interface of the flexible plate and soil. The solution of the mixed-
boundary value problem for this evaluation is quite complicated and is beyond the
scope of this study. The intent of this section is to develop a simple and rational
scheme by which the effects of radiational damping can be incorporated while retain-

ing the essential features of the model previously considered.

7.6.1 Outline of method

The equation of motion for the undamped tank-liquid-soil system vibrating in the

k th mode is rewritten as
mil(t) + KUA(E) = —miy (1) (7.49)

This equation is obtained by substituting equation (7.37) into equation (7.18), premul-
tiplying the resulting expression by I’y {x}”, and using the orthogonality properties
of the modes, defined by equation (7.28). The coefficients m} and k} are then given
by

. (fwT{1,0,...,07)°

my = - . kX = wim; 7.50
b T ] () = (7:50)
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On making use of the relation Ui(t) = —&,(t) + Ax(t), equation (7.49) reduces to the
form m}Ak(t) = —kiUi(t). It follows that m} represents the effective modal mass
when the system responds to the vertical ground motion in the the kth mode of
vibration and &} represents the associated effective modal stiffness for the system. It

can further be shown that

N1 N+1
Y my=m, Y kp = nkR? (7.51)
k=1 k=1

The above relations are obtained by postmultiplying the transpose of equation (7.38)
by [M]{1,0,...,0}7 and [K]{1,0,...,0}7 respectively.

With the effective modal masses and stiffnesses established, the elastically sup-
ported flexible system vibrating in the first and second modes (k=1,2) is replaced by
equivalent elastically supported rigid systems having identical values of mj and k.
This is tantamount to equating the total transmitted modal forces for the flexible and
equivalent rigid systems or equating the total kinetic and strain energies for the two
systems. It should be noted, however, that the displacements of the two systems are
different : while the displacement of the equivalent rigid system is the motion of the
SDOF oscillator defined by equation (7.49) and is equal to Uy(t), the displacement
of the flexible system is evaluated by substituting the kth term of equation (7.37)
into equation (7.2) and varies over the length of the plate. The degree of agreement
between the displacement values for the two systems forms a rough indicator of the
accuracy of the equivalent replacement.

The types of equivalent rigid foundations used are based upon limiting trends
revealed by the modal displacement configurations previously displayed in Figs. 7.4
and 7.5 for the flexible plate. Related studies for flexible circular and rectangular
plates, [27, 28, 33, 38, 39, 47, 80], are used to verify the equivalent models. Previously
established damping values for the equivalent rigid foundations are then used to
compute the damping ratios ¢; and (; for the first two modes of the flexible system.

With the damping ratios defined, the hydrodynamic pressure is again evaluated
from a two-mode expansion of equation (7.43), with the pseudoacceleration function
Ai(t) given by

w

\/'l—k—gq /0lt &4(7) exp[—Cuwr(t — 7)) sinfwor(t — )] dr (7.52)
— Gk

where (; is the modal damping and @y, is the kth damped circular natural frequency

Ax(t) =

of the system.
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The remainder of this section deals with the evaluation of the damping ratios (i
and (;.

7.6.2 Damping for fundamental mode of vibration

For increasing values of the end-mass and plate flexibility, the fundamental mode ex-
hibits a large flexural component near the plate edges and the center of the plate does
not move significantly. This indicates that in such cases, the elastically supported sys-
tem vibrating in the fundamental mode essentially acts as a perimeter loaded plate
and the central portion of the plate is ineffectively utilized. This suggests that the
system can be modeled as an elastically supported ring foundation with a suitably
defined radius. A similar replacement of a perimeter loaded flexible rectangular foun-
dation by a rigid foundation with a hole in the center has also been suggested in [27].
The equivalent replacement is further corroborated by the close similarity between
the impedance functions for edge-loaded flexible rectangular and circular plates (see
References [27] and [39] respectively) to those for rigid ring foundations, [68].

The mass of the equivalent ring foundation is taken as m} and its stiffness as &j.
The radius of the equivalent ring foundation, AR, is then evaluated by equating the
total stiffness due to the supporting Winkler springs to &7, i.e.,

k(nR?—nR}) = k; (7.53)

where k is defined by equation (7.1) and R; is the inner radius of the ring foundation.

Values of the equivalent AR/R obtained by use of equation (7.53) for edge-loaded
plates (Bem = 1), are presented in Table 7.7 for different values of D,/kR*. Both
hinged and fixed conditions of edge-support are considered. Approximate values of
AR/R obtained by a visual comparison between the results for impedance functions
presented in [27] and [39] with those in [68] are also included in the table. It should
be noted that the latter comparisons are only available for the hinged case. The

following trends are worth noting :
e For an infinitely rigid plate, the radius of the equivalent ring foundation reduces,

as it should, to unity. As D,/kR*' decreases, the radius of the equivalent ring
tends to zero. For the hinged case, the results obtained from the present analysis
match quite well with those obtained from the literature analysis for most values
of D,/kR*, and the agreement deteriorates only for very small values of D,/kR".
e Clamping the edge of the plate significantly increases the value of AR/R, in-
dicating that the radiational damping in this case is larger than that for the
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hinged case and that, for many values of D,/kR*, the damping will not be
significantly different from that for a rigid disc. This observation is further
corroborated by the trends of the displacement configurations presented before
and also by solutions available in the literature : Solutions presented by Lin [38]
for clamped plates indicate that even for relatively flexible plates (D,/kR* ~
0.0025), there is no significant reduction in the damping. On the other hand,
recent solutions presented by Liou and Huang [39] for hinged plates indicate
a significant reduction in the damping values even for relatively rigid plates

(D,/kR* = 0.05).

With the dimensions of the equivalent ring foundation established, the damping
due to the supporting Winkler medium is approximately evaluated from solutions
for a ring foundation supported on an equivalent half-space. The properties of the
equivalent half-space are taken such that the stiffness of the ring foundation resting
on that half-space is ky. Making use of previously established solutions, [68], the
damping action of the medium is then represented by a dashpot coefficient ¢! given

by R
¢f = B1(Hot)1 (7.54)

where f; is the damping coefficient for the ring foundation and is a function of AR/R;
(Kst)1 is the static stiffness of the equivalent half-space, and is given by

(1&’51)1 = k;‘/al (7.55)

where o is the stiffness coefficient for the ring foundation and is a function of AR/R.

The damping ratio {; is then evaluated to be

4 _ b, [tkEBR_ B VI fBem
4= 5 = 2 T o 2 O VB (7.56)

where C is the fundamental frequency coefficient, and B is a dimensionless mass

ratio given by

_l=vs(my+my)  w(l—vw,) (pH  pptp
B = i v i PN, + ;) (7.57)
Values of (; are presented in Table 7.8 for the hinged and fixed conditions of

edge-support. The results are obtained for values of .y, ranging from 0 to 0.5, values
of D,/kR* ranging between oo and 0.001, and values of H/R equal to 0.5, 1 and
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2. For these three values of H/R, B is taken as 0.25, 0.45 and 0.9 respectively. S,
is taken as 0.1 and v, as 0.17. The values of a; and B; for the different values of
equivalent AR/R are obtained by interpolating between the values tabulated in [68]
for the static case (zero exciting frequency). The following trends are worth noting :

o For Ben = 0, since the spring-supported flexible plate moves uniformly, the
associated damping values are independent of the plate flexibility and are equal
to that for a rigid disc. Furthermore, as anticipated, the values of ¢; for clamped
plates are significantly larger than those for hinged plates and are not as sensitive
to variations in the plate flexibility.

o For increasing values of B., and decreasing values of D,/kR*, (i decreases
monotonically. The decrease is significant for the hinged case with values of
Bem in the range of 0.3 to 0.5 and D,/kR* in the range of 0.002 to 0.001.
Furthermore, for changing values of H/R, (i is largely affected only by the

respective changes in VB, i.e., {; = (J\/B"/B. This relation follows from the
fact that the fundamental mode shapes and associated frequency coeflicients

are relatively insensitive to H/R.

7.6.3 Damping for second mode of vibration

For increasing values of the end-mass and plate flexibility, the second mode exhibits
a relatively large rigid-body component of motion near the center of the plate and
the edges do not move significantly. This indicates that in such cases, the system can
be modeled as an elastically supported rigid disc with a suitably defined radius.

The suggested replacement may not be adequate for systems with small values
of the end-mass or for relatively rigid systems since both the central part of the
flexible plate and the edges participate in the motion. The agreement between the
displacement values of the flexible and the equivalent disc systems in these cases
may be expected to be quite poor. However, the contribution of the second mode
is negligibly small in these cases and it is considered unnecessary to develop more
sophisticated models for the modal damping values (,.

The mass of the equivalent disc is taken as m} and its stiffness as k3. The radius
of the equivalent disc, R, is then evaluated by equating the total stiffness due to the

supporting Winkler springs to k3, i.e.,

TkR2, = k; (7.58)
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It can be shown that the equivalent radius, R.,, evaluated from equation (7.58) is
related to the radius of the equivalent ring foundation, AR, evaluated from equation
(7.53) by
R, +ARX R (7.59)

The above expression follows from the relation &k} + k3 =~ kR

With the dimensions of the equivalent disc defined, the damping due to the
Winkler medium is approximately obtained from solutions for a disc foundation sup-
ported on an equivalent half-space, the properties of which are taken such that the
stiffness of the disc foundation resting on that half-space is k3. Making use of pre-
viously established solutions, [71], the damping action of the soil is then represented
by a dashpot coefficient cj given by

.\ Re
¢; = Pa(Kat)2 " ?

(7.60)

8

where f; represents the damping coefficient for the equivalent disc foundation; and
(K,); represents the static stiffness of the equivalent half-space and is given by
(Ks)2 = kj/cg, where oy represents the stiffness coefficient for the equivalent disc

foundation.
The damping ratio for the second mode of vibration, ¢; is then evaluated to be

cs rkR2 R, Reo /1= Bem
Values of (; are presented in Table 7.9 for the combination of parameters con-
sidered before in Table 7.8. Both hinged and fixed conditions of edge-support are
considered. It should be noted that for the second mode, values of (3 are only defined

for non-zero values of B, and finite values of D,/kR*. It is seen that :

e For increasing values of B, and decreasing values of D,/kR*, the damping
ratios (; increase. This is related to the corresponding increase in the radii of
the equivalent disc foundations. For values of fem in the range of 0.3-0.5, values
of (; may be even larger than the damping values for infinitely rigid plates
presented in Table 7.8. This follows from the fact that even though the dashpot
coefficient ¢} for the flexible plate is smaller than that for a rigid disc, the value
of the associated modal mass m} in equation (7.61) is also smaller.

¢ The effect of increasing H/R is to decrease the damping value. Furthermore,
the damping values for the fixed case are smaller than those for the hinged case

and the latter results are more sensitive to variations in the parameters.
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7.6.4 Implication of results

The maximum hydrodynamic wall pressure for the rigid system is given by
pr,mam(la 77) = leAr,ma:c(]- - 77) (762)

where Ay maz is the spectral pseudoacceleration value evaluated for the damping in-
duced for a rigid disc. The corresponding value of the maximum hydrodynamic wall

pressure for the flexible system is given by

pmas(11) = o (Ver(@) Arimae)? + (calm) Az (7.63)

where Ay maz (k= 1,2) is the spectral pseudoacceleration value for the kth mode of
vibration and is evaluated for a damping value (x.

The values of Ajmar and Agmas are generally larger or are of the same order of
magnitude as A;maz. The values of c1(n) and cy(n) vary depending on the edge-
support condition and the values of fem, H/R and D,/kR*, as shown in Tables 7.5
and 7.6. It follows that, depending on the relative magnitudes of the spectral pseu-
doacceleration values and the relative contributions of the modal pressure coefficients,
the response of the flexible systems can be larger or smaller than the corresponding
response of systems with rigid base-plates. Based on studies for several typical tank-
liquid systems found in practice, it is found that base flexibility typically causes an
increase when the modal components are combined by taking the numerical sum, but
when they are combined by the SRSS rule indicated in equation (7.63), the hydrody-
namic wall pressures for hinged systems are generally smaller than for corresponding
rigid systems. The decrease in this case is typically in the order of 10 % to 20 %.
On the other hand, for fixed systems, the fundamental modal response dominates the
response and since the associated modal damping is reduced, the hydrodynamic wall

pressures are smaller or larger than for the rigid case, with the range of variation

about £+ 5 %.

7.7 Conclusions

With the information presented herein, the free-vibrational characteristics and the
hydrodynamic pressures induced in a vertically excited liquid storage tank with a
flexible base may be evaluated readily. The principal conclusions of the study may

be summarized as follows:
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For systems having realistic values of plate-stiffnesses and soil parameters, the
assumption that the base is rigid may not be necessarily true. Depending on
the value of the superposed end-mass, the base-plate may undergo significant
deformation and this, in turn, can influence the induced hydrodynamic effects.

The free-vibrational response of the flexible system consists of several modes
of vibration and associated natural frequencies of vibration. Only the first two
modes of vibration are, however, important in evaluating the response of the
system. Their associated frequencies are, respectively, lower and higher than
that for an elastically supported tank with a rigid base.

The first mode of vibration is typically associated with a significant rigid-body
indentation of the plate. The flexural component of the plate deformation for
this mode increases as the relative flexibility of the plate and the superposed
end-mass increase. However, the bending is confined to the vicinity of the plate
edges and the central portion of the plate does not move significantly.

The second mode of vibration is typically associated with a significant bending
of the plate. As the relative flexibility of the plate and superposed end-mass
increase, the central portion of the plate for this mode exhibits rigid-body like

motion and the edges do not move much.

The constraint condition between the tank-wall and the base plate affects the
response significantly. Clamping the edge of the plate effectively makes the
system more rigid : it increases the natural frequencies, and renders the funda-
mental pressure distribution closer to a rigid-tank linear pressure distribution.

Damping effects for the two dominant modes of vibration have been evalu-
ated approximately. The results for the fundamental mode have been obtained
by replacing the flexible system vibrating in that mode by an equivalent ring
foundation. Similarly, the results for the second mode have been obtained by
replacing the flexible system vibrating in that mode by an equivalent disc foun-

dation.
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Table 7.1: Values of frequency coefficients for fundamental mode of vi-
bration for different values of H/R, 8., and D,/kR*; 8, = 0.1

Hinged Edge Fixed Edge
L, R4

Dy/kR Bem=0| 0.1 | 03 | 05 ||Ben=0| 0.1 | 03 | 05
H/R =05

0.02 1 0.993 | 0.941 | 0.864 1 0.999 | 0.989 | 0.971

0.01 1 0.988 | 0.903 | 0.803 1 0.998 | 0.980 | 0.949

0.005 1 0.982 | 0.861 | 0.746 1 0.996 | 0.966 | 0.917

0.002 1 0.971 | 0.808 | 0.684 1 0.993 | 0.938 | 0.864

0.001 1 0.961 | 0.769 | 0.640 1 0.989 | 0.913 | 0.823

0.0005 1 0.950 | 0.728 | 0.598 1 0.985 | 0.885 | 0.781
H/R=1

0.02 1 0.994 | 0.944 | 0.868 1 0.999 | 0.990 | 0.972

0.01 1 0.990 | 0.910 | 0.809 1 0.998 | 0.981 | 0.950

0.005 1 0.985 | 0.872 | 0.753 1 0.996 | 0.968 | 0.920

0.002 1 0.977 | 0.821 | 0.690 1 0.994 | 0.944 | 0.870

0.001 1 0.970 | 0.781 | 0.646 1 0.991 | 0.922 | 0.830

0.0005 1 0.960 | 0.739 | 0.602 1 0.988 | 0.896 | 0.788
H/R =2

0.02 1 0.994 | 0.946 | 0.870 1 0.999 | 0.990 | 0.972

0.01 1 0.994 | 0.914 | 0.811 1 0.998 | 0.981 | 0.951

0.005 1 0.986 | 0.877 | 0.757 1 0.997 | 0.969 | 0.921

0.002 1 0.979 | 0.828 | 0.693 1 0.994 | 0.947 | 0.873

0.001 1 0.973 | 0.788 | 0.649 1 0.992 | 0.926 | 0.833

0.0005 1 0.964 | 0.745 | 0.604 1 0.989 | 0.901 | 0.791




Table 7.2: Values of frequency coefficients for second mode of vibration

for different values of H/R, (., and D,/kR*; 5, = 0.1

Hinged Edge Fixed Edge
4
Dy/kR Bem=0| 0.1 0.3 0.5 || Bem=0] 0.1 0.3 0.5
H/R =0.5
0.02 2.160 | 1.909 | 1.781 | 1.931 || 3.108 | 2.998 | 2.954 | 3.145
0.01 1.806 | 1.601 | 1.541 | 1.723 || 2.396 | 2.313 | 2.293 | 2.472
0.005 1.599 | 1.424 | 1.416 | 1.616 || 1.944 | 1.878 | 1.881 | 2.062
0.002 1.460 | 1.306 | 1.340 | 1.550 || 1.613 | 1.560 | 1.587 [ 1.779
0.001 1.410 | 1.260 | 1.312 | 1.525 || 1.487 | 1.438 | 1.477 | 1.676
0.0005 | 1.384 | 1.230 | 1.293 | 1.508 (| 1.419 | 1.369 | 1.415 | 1.618
H/R =1
0.02 2.766 | 2.223 | 1.925 | 2.027 || 3.984 | 3.639 | 3.355 | 3.435
0.01 2.312 | 1.860 | 1.656 | 1.800 || 3.071 | 2.806 | 2.600 | 2.695
0.005 | 2.048 | 1.647 | 1.509 | 1.681 || 2.492 | 2.276 | 2.125 | 2.240
0.002 1.870 | 1.495 | 1.410 | 1.602 || 2.068 | 1.885 | 1.778 | 1.917
0.001 1.806 | 1.425 | 1.367 | 1.567 || 1.906 | 1.730 | 1.637 | 1.791
0.0005 | 1.772 | 1.367 | 1.335 | 1.541 || 1.819 | 1.636 | 1.546 | 1.712
H/R =2
0.02 3.425 | 2.472 | 2.020 | 2.085 || 4.942 | 4.220 | 3.652 | 3.628
0.01 2.863 | 2.065 | 1.731 | 1.847 || 3.810 | 3.251 | 2.827 | 2.843
0.005 | 2.535 | 1.820 | 1.569 | 1.719 | 3.091 | 2.634 | 2.304 | 2.356
0.002 | 2.316 | 1.636 | 1.454 | 1.631 || 2.565 | 2.174 | 1.914 | 2.006
0.001 2.238 | 1.540 | 1.399 | 1.589 || 2.364 | 1.983 | 1.746 | 1.862
0.0005 | 2.196 | 1.456 | 1.357 | 1.558 || 2.257 | 1.857 | 1.631 | 1.767
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Table 7.3: Comparison of approximate fundamental frequency coeffi-
cients to corresponding exact solutions for elastically sup-

ported equivalent plate; 3., = 0.5

Hinged Fixed
D,/kR* | No. of | Energy | Exact || Energy | Exact
Terms | Soln. | Soln. Soln. | Soln.
0.02 3 0.861 | 0.856 || 0.970 | 0.970
5 0.858 0.970
10 0.857 0.970
0.001 3 0.641 | 0.624 || 0.811 | 0.806
5 0.627 0.807
10 0.625 0.806

Table 7.4: Comparison of approximate frequency coefficients for second
mode of vibration with corresponding exact solutions for elas-
tically supported equivalent plate; B, = 0.5

Hinged Fixed
D,/kR" | No. of | Energy | Exact || Energy | Exact
Terms | Soln. | Soln. || Soln. | Soln.
0.02 3 1.774 | 1.761 2.714 | 2,714
5 1.769 2,714
10 1.765 2.714
0.001 3 1.431 | 1.430 || 1.490 | 1.490
5 1.431 1.490
10 1.430 1.490
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Table 7.5: Values of wall pressure coefficients for fundamental mode of
vibration for different values of H/R, and D,/kR*; B, = 0.3,

B, = 0.1
Hinged Edge Fixed Edge
Z
H | De—0.02 | 0.005 | 0.002 | 0.001 || ;2=0.02 | 0.005 | 0.002 | 0.001
H/R =05
0 | 0975 |0.836]0.730 |0.655| 1.009 |1.011 |0.986 | 0.947
0.1] 0861 |[0.721[0.6190.548 | 0.905 | 0.900 | 0.870 | 0.830
02| 0.755 |0.621 | 0.527 | 0.462 | 0.803 |0.793 | 0.762 | 0.722
0.3| 0.653 |0.530 | 0.446 | 0.389 | 0.701 | 0.689 | 0.658 | 0.621
0.4 | 0555 |0446|0.372 (0323 | 0599 |0.587 |0.558 | 0.525
05| 0.460 |0.366|0.304 [ 0.262 | 0.499 | 0.487 | 0.462 | 0.432
1 0 0 0 0 0 0 0 0
HIR=1
0 | 0923 |0.764 |0.648 |0.565| 0.994 |0.970 | 0.929 | 0.883
0.1 | 0813 |0.653]|0.542|0.464| 0891 |0.861 |0.817 | 0.769
02| 0713 |0.562|0.461 0391 | 0.789 |0.759 | 0.714 | 0.668
0.3| 0.618 |0.481 [0.391|0.330 | 0.689 |0.659 | 0.618 | 0.576
0.4 | 0.526 |0.406 | 0.329 | 0.276 | 0.590 | 0.562 | 0.525 | 0.488
0.5| 0437 |0.335|0.270 | 0.226 | 0.491 | 0.467 | 0.435 | 0.404
1 0 0 0 0 0 0 0 0
HIR =
0 | 0.897 |0.726|0.604|0.516 || 0.986 | 0.950 | 0.901 | 0.850
0.1| 0792 |0.623|0.508 |0.427 || 0.884 | 0.844 |0.793 | 0.742
02| 0.698 |0.543|0.440 [ 0.367 || 0.784 | 0.746 | 0.698 | 0.651
0.3| 0.608 |0.471|0.380 |0.317| 0.685 |0.651 | 0.608 | 0.566
04| 0520 |0402|0.324|0.270| 0.587 |0.557 | 0.519 | 0.483
05| 0.433 |0.334]0.269 |0.224 | 0489 |0.464 | 0.432 | 0.402
1 0 0 0 0 0 0 0 0
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Table 7.6; Values of wall pressure coefficients for fundamental mode of
vibration for different values of H/R, and D,/kR*; B.. = 0.5,

Bp = 0.1
Hinged Edge Fixed Edge
Z
H|D D
H r=0.02 | 0.005 | 0.002 | 0.001 || Z=0.02 | 0.005 | 0.002 | 0.001
H/R =105
0 0.854 | 0.683 | 0.596 | 0.536 0.990 | 0.942 | 0.874 | 0.812
0.1 0.748 | 0.583 | 0.500 | 0.444 0.886 | 0.835 | 0.766 | 0.706
0.2 0.651 0.498 | 0.422 | 0.371 0.784 | 0.732 | 0.666 | 0.610
0.3 | 0.561 0.422 | 0.355 | 0.310 0.684 | 0.634 | 0.573 | 0.521
04| 0.475 |0.3530.295 | 0.256 0.584 | 0.539 | 0.484 | 0.438
05| 0.392 |0.289 | 0.240 | 0.207 0.486 | 0.446 | 0.399 | 0.360
1 0 0 0 0 0 0 0 0
H/R =1
0 0.785 | 0.586 | 0.490 | 0.428 0.967 | 0.886 | 0.797 | 0.724
0.1 0.683 | 0.491 | 0.401 | 0.344 0.864 | 0.780 | 0.692 | 0.621
02| 0594 |0.418 | 0.337 | 0.286 0.764 | 0.683 | 0.600 | 0.534
03| 0.512 |[0.355 | 0.283 | 0.239 0.666 | 0.591 | 0.516 | 0.457
0.4 0.434 |[0.2980.236 | 0.199 0.469 | 0.503 | 0.437 | 0.385
0.5 0.359 [0.244|0.193 | 0.162 0.473 | 0.417 | 0.361 | 0.317
1 0 0 0 0 0 0 0 0
H/R =2
0 0.748 | 0.534 | 0.433 | 0.370 0.954 |0.856 | 0.757 | 0.678
0.1 0.652 | 0.449 | 0.356 | 0.299 0.853 | 0.755 | 0.658 | 0.582
0.2| 0.572 |0.387 | 0.305 | 0.254 0.755 | 0.664 | 0.575 | 0.506
0.3 | 0.497 |0.334 | 0.262 | 0.218 0.660 | 0.578 | 0.499 | 0.438
04| 0.425 |0.285 | 0.223 | 0.185 0.565 |0.494 | 0.426 | 0.374
05| 0.353 |0.236 | 0.185 | 0.154 0.471 0.411 | 0.354 | 0.311
1 0 0 0 0 0 0 0 0
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Table 7.7: Values of radii of equivalent ring foundation for fundamental

mode of elastically supported flexible plate; g., = 1.0

D,/kR! Hinged Fixed
Present | Literature
00 1 1 1
0.05 0.420 0.4-0.5 0.704
0.02 0.300 0.3-0.4 0.578
0.005 0.185 ~0.2 0.391
0.002 0.146 ~0.1 0.303
0.0002 0.082 ~0.02 0.169
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Table 7.8: Values of effective damping (; for fundamental mode of vibra-
tion for different values of H/R, f.m and D,/kR*; 5, = 0.1, v,

= 0.17
Hinged Edge Fixed Edge
L, P4
Dy/kR Bem=0| 01 | 03 | 05 || Bew=0]| 0.1 | 0.3 | 0.5
H/R =0.5, B = 0.25
00 0.784 | 0.744 | 0.656 | 0.554 || 0.784 | 0.744 | 0.656 | 0.554
0.02 0.784 | 0.738 | 0.612 | 0.465 || 0.784 | 0.743 | 0.648 | 0.538
0.005 0.784 | 0.729 | 0.540 | 0.381 || 0.784 | 0.740 | 0.632 | 0.502
0.002 0.784 | 0.718 | 0.492 | 0.338 || 0.784 | 0.738 | 0.608 | 0.464
0.001 0.784 | 0.708 | 0.457 | 0.307 || 0.784 | 0.735 | 0.587 | 0.435
H/R =1, B=045
00 0.584 | 0.554 | 0.489 | 0.413 || 0.584 | 0.554 | 0.489 | 0.413
0.02 0.584 | 0.551 | 0.458 | 0.349 || 0.584 | 0.554 | 0.483 | 0.401
0.005 0.584 | 0.546 | 0.411 | 0.289 || 0.584 | 0.552 | 0.473 | 0.376
0.002 0.584 | 0.541 | 0.378 | 0.256 || 0.584 | 0.551 | 0.458 | 0.350
0.001 0.584 | 0.536 | 0.350 | 0.233 || 0.584 | 0.549 | 0.444 | 0.328
H/R=2,B =09
00 0.413 | 0.392 | 0.346 | 0.292 || 0.413 | 0.392 | 0.346 | 0.292
0.02 0.413 | 0.389 | 0.325 | 0.248 || 0.413 | 0.391 | 0.342 | 0.284
0.005 0.413 | 0.386 | 0.293 | 0.206 || 0.413 | 0.391 | 0.335 | 0.266
0.002 0.413 | 0.383 | 0.271 | 0.183 || 0.413 | 0.389 | 0.325 | 0.249
0.001 0.413 | 0.381 | 0.252 | 0.166 {| 0.413 | 0.389 | 0.316 | 0.234
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Table 7.9: Values of effective damping (; for second mode of vibration
for different values of H/R, B, and D,/kR'; B, = 0.1, v, =

0.17
Hinged Edge Fixed Edge
. R4
Dy/kR Bem=01| 03 | 0.5 || Bem=0.1| 0.3 | 0.5
H/R =105, B =025
0.02 0.188 | 0.463 | 0.599 || 0.111 | 0.294 | 0.429
0.005 0.270 | 0.588 | 0.666 | 0.139 | 0.363 | 0.499
0.002 0.335 |0.639|0.689 | 0.172 |0.431 | 0.552
0.001 0.382 | 0.667 | 0.703 | 0.200 | 0.482 | 0.585
H/R =1, B =045
0.02 0.150 | 0.355 | 0.459 || 0.098 | 0.244 | 0.346
0.005 0.193 | 0.440 | 0.509 | 0.113 | 0.288 | 0.394
0.002 0.227 |0.480 | 0.527 || 0.130 | 0.331 | 0.431
0.001 0.256 | 0.505|0.539 || 0.145 | 0.367 | 0.458
H/R=2,B =109
0.02 0.113 |0.256 | 0.330 || 0.079 | 0.186 | 0.257
0.005 0.138 |0.313]0.365 | 0.089 | 0.214 | 0.289
0.002 0.159 |0.342|0.378 || 0.099 | 0.242 | 0.314
0.001 0.178 |0.359 | 0.386 || 0.109 | 0.266 | 0.333




193

P

EpPpVpilp

GS’pS’VS

FIG.7.1(a) System Considered

|
FIG. 7.1(b) Model Considered



e

3.5 1

0.01
"9 /
: . 0.002

Figure 7. 2 Frequency coefficients for first two modes of vibration for
elastically supported flexible base plate hinged at edge;
H/R = 1.0, ,=0.1, v,=0.17



1 — o0 — 002, — 0.01
D
¢, 1—2 = 0.0005 0.001
0.8, r4 0.002 =5 505

0.6 -

4

3.51

l:I-{-Z = 0.021

\
e \ 00—
\

2.5 1

N
e
1.5 1 N 0.0005 0.001

N
|

ch

Figure 7.3 Frequency coefficients for first two modes of vibration for
elastically supported flexible base plate clamped at edge;
H/R = 1.0, B,=0.1, v,=0.17

195



196

00= M a‘Lro="2‘10="¢ 1=w'H
‘are[d a[qrxap papoddns A[[eonse[s Jo UOTIRIGIA JO SSPOUI OM] ISTY 10§ sepryrjdure Juswaoe[dsp [BPOIN 7/ am3Lj

- L
y 0 G0
€0
) : . . 0 (m
\ G0 0 G0 / ¥
“—3—
E L m.o:
OHEOQ
R L —.n
. [ 0="d .
~=10
€0
| S0 F G0
S0 0 G0 G0 0 S0

- — -y — c0

| a3pg padure]) (q) 23pg pasury (e)




197

1000 =¥ A “LI0="A‘T0="¢ ‘T =W'H
‘ojerd ojqrxey peuroddns AfTeonse[s Jo UoHeIQIA JO SIpOUI OM] IsIY 10§ sapmyjdure Juouraoe[dsip [epoN G-/ omS1]

- - - - F
5 S0 L <o L G0
€0 €0
10 10
: : . : . . 0 ()2
¥Y Qm
“\ g0 0 50 % 1 // <o 0 so \\Y X
TM — OIEu& ‘|M —
o - " o _wo R m.OI
0="¢
- L o L —vl
!
/IIOHEom_
] - G0
10 i
\ €0
: : . 9 10 @m
_
g0 0 50 S0 0 go °0 DA
-3 — - — -
. a3pg padurep) (e) L a3py pasury (e) -



198
k=1

0.8 - (a) Hinged Edge @  -——=—-—- k=2 I
i | ke P o
i Bem=0 “ 4
061, |
n R \_]

|| \‘ 0.3
0.4 1 l‘ \‘ l 05 |
cx(6,0) '
% k(€ | ]
O 2 J | \ 0-5 '3,/’ '
100 Lo 03— -]
Pt B )
0 l l' T T T 1 O---_'--:I_——l_— T OI
0 Ck(l,ﬂ) 1 1 E.) ;

1
(b) Clamped Edge

0.8 1
Bem=0 1 - I
0.6 W—I
n - 0.5 '

0.5
0.4

©
h

0.2

-— cn
e

0-

0 Ck(l,n)

Figure 7.6 Wall and base pressure distributions
tion; Systems with H/R = 1.0, ,=0.

for first two modes of vibra-
1,v,=0.17, Dp/kR4 = (.02



199
k=1
0.8 1 (a) Hinged Edge @  =—==-- k=2
[
1 /_ l3em"0 i
061, 0.1 )
no, 1 ===
I 05—~ =7 ===~
0.411 0) 4 /’/ 7 .
: Ck(&9 ) /, /,\_ 0.3 I
' i - i
024, |
| o i
~ = !
_-~
04— - op=— 01 |
0 c(1n 1 1 £ Oy
1
0.8 11\ (b) Clamped Edge
|
W\ Bem=0 .
‘| \ Bem=0 1 |
061 , ]
n \ A 0.1 !
041 c(&,0)
0.2 -
Oq T T ') 0 'F-'-'-'r—".
0 ce(1.m) 1 1

Figure. 7.7 Wall and base pressure distributions for first two modes of vibra-
tion; Systems with H/R = 1.0, B,=0.1, v,=0.17, D,/kR* = 0.001



200

Chapter 8

Effects of Roof-Liquid Impact

8.1 Introduction

The dynamic response of tank-liquid systems is generally assessed by allowing the
contained liquid to slosh freely, i.e., by presuming the tank to have sufficient freeboard
so that there is no contact between the sloshing liquid and the roof. In a number of
tanks in nuclear facilities storing high-level radioactive wastes, however, the freeboard
provided may be quite small, and the sloshing induced by a ground motion may
cause the liquid to collide with the roof. This impact can induce localized high-
magnitude pressures on the roof that vary rapidly with time. These pressures are, in
turn, transmitted to the side-wall, and this may lead to significant forces acting over
relatively small areas of the wall. Such collisions can occur repeatedly and may cause
significant damage to the roof and tank thereby allowing the liquid contents to spill
over.

There has been considerable interest in a variety of liquid-solid impact problems
over the past six decades and a number of studies have been conducted in areas
like seaplane landing, torpedo entry, ship slamming, wave impact on offshore plat-
forms/tubular members, etc, [14, 29, 30, 41, 48, 49, 51, 63, 77, 78]. The pioneering
contributions were made by Von Karman [77] and Wagner [78]. A survey of the early
literature on the subject has been given by Szebehely and Ochi [54]. Many recent
efforts have also been made to study the effects of sloshing impact in roofed tanks,
(2, 4, 31, 34, 45, 46, 53, 83). These exploratory studies have been both experimentally
and numerically based, and the main focus has been to assess the impact pressures
occurring at the junction of the tank-wall and roof.

There is need for further study of the roof-liquid impact problem. Many of the
present studies have not been comprehensive and existing knowledge has been largely
based on empirical/semi-analytical analyses. It is necessary to conveniently and ra-
tionally assess the peak impact forces and pressures that are induced on the tank-roof
and make a critical investigation of the parameters controlling the response. It is also
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necessary to estimate the impact effects that are transmitted to the tank-wall. For
the embedded systems of current interest, the effects induced on the thin side-walls
may frequently be of greater concern than those acting on the roof itself. The present
study is intended to be responsive to these needs. The objectives of the study are :
e To provide rational estimates of the impact forces and pressures acting on the
tank roof and also derive the spatial and temporal distributions of the impact
effects that are transmitted to the tank-wall.
e To assess the importance of the wall impact effects by comparing them to pre-
viously established impulsive and convective effects.

The emphasis is placed on obtaining conservative, yet realistic estimates of the peak
impact effects. The study is initially confined to two-dimensional motions in long,
rectangular tanks and the results are then used to assess the corresponding effects
in cylindrical tanks. The validity of the results is established by relating them to
limited information available in the literature. Comprehensive numerical solutions are
presented to elucidate the effects and relative importance of the parameters involved.

8.2 System Considered

The system considered is shown in Fig. 8.1. It is a vertical, cylindrical tank filled
with liquid to a height H. The liquid is considered to be incompressible, inviscid and
to be of uniform mass density p;. The tank is of a circular cross-section of radius R.
It is presumed to be anchored to a rigid moving plate at the base and to be covered
by a rigid roof at the top.

The free-board distance between the mean liquid surface and the junction of the
roof and tank wall is denoted by d,. At any angle 0, the instantaneous value of
the theoretical wall displacement is denoted by dy,(6,t). The maximum value occurs
along 6 = 0 and is denoted by dpq,. Impact occurs for values of dy,(0,t) > d,. The
instantaneous length of the roof that is intersected by the rising free-surface is denoted
by c,(6,t) and the instantaneous half-angle of the impacted area is denoted by 6,(t).
Fig. 8.2 shows the maximum values of the impacted roof areas for different values of
do/dmas-

The ground motion is considered to be horizontal and uniform and to be directed
along the § = 0 coordinate axis. The acceleration of the ground motion at any time,
t, is denoted by &,(t), and the corresponding velocity and displacement are denoted

by #,4(t) and a4(t), respectively.
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8.3 Background

Previous studies dealing with the tank roof-liquid impact problem have been both
experimentally and numerically based, [2, 4, 31, 34, 45, 46, 53, 83].

Experimental Studies [4, 31, 34, 45, 83] : These have mainly focussed on mea-
suring the peak impact pressures acting on the tank roof. Empirical/semi-analytical
expressions have also been proposed in some of these studies to predict the peak im-
pact pressure. A brief review of the more important conclusions are presented in this
section.

The peak impact roof pressure induced on cone-roofs making an angle « with the
horizontal has been evaluated by Kobayashi [31] as

[Pr]maz = p1 g cota v’ (8.1)

where v, is the velocity at the instant of initial impact. Since equation (8.1) increases
to infinity as @ — 0, a different empirical formula has been proposed for flat roofs,
[69, 31, 4],

[Prlmas = 225 py vy (8.2)

where v, is given in em/sec and (pr)maz is given in kgf/em? (1 kgf/em? = 14.23
pst).

Comparisons made by Yashiro et al in [83] between the peak pressures evaluated
from equation (8.2) and experimentally measured pressures induced by water impact-
ing a rigid flat roof have shown good agreement with one another. The experiments
have been conducted for sinusoidal base excitations with a frequency equal to the
fundamental sloshing frequency of the system. Limited information on the distri-
butions of the pressures acting on the roof and tank-wall has also been provided in
[83]. To eliminate the need to consider repeated impacts, the critical surface wave
that induces maximum impact has been experimentally identified as that reaching a
theoretical height d,, that is twice the available free-board d,.

More recently, a series of experiments have been conducted by Kurihara et al [34]
for the impact of waves in reactor vessels. Test results for three types of flat-roofed
models placed on long-period large-amplitude shaking table have been provided for
both sinusoidal and seismic ground motions. Furthermore, based on the test results, a
semi-analytical formula has been proposed for the peak impact roof pressure, [pr}maz;

a1+ do/H)(1+do/H +02R/H) 02
[Prlmes = 0.63 == TH + 04RJHY? i
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(1+d./H)
(1+d,/H + 0.4R/H)

+0.35 o Ruwyv, (8.3)
where w; is the fundamental sloshing frequency of the liquid. While the peak roof
pressures given by equation (8.3) match the experimental results in [34], they have
not been in agreement with the values predicted by equation (8.2).

General impact between two-dimensional solids and liquids has been considered
in a recent analytical study by Cointe [13]. Curvatures of both impacting surfaces
have been considered. The impact effects have been evaluated by the method of
matched asymptotic expansions and the maximum impact force has been conveniently

expressed in the form,
Rl Ra 2

R+ R (8:4)
where R; and R, are the radii of curvature of the liquid and solid respectively.

Numerical studies [2, 3, 46, 53] : A variety of methods including finite-difference
and boundary-element techniques have been recently used for the roof-liquid impact
problem. Such numerical techniques have also been used for other common solid-
liquid impact problems and a comparative analysis for the liquid-cylinder impact
problem has been presented in [26]. Currently, the most accurate and commonly
used numerical methods are extensions of finite-difference based programs, SOLA-
SURF and SOLA-VOF, originally developed for free-surface flows in {22, 23].

For the roof-liquid impact problem, the aim of the numerical studies has been to
assess the entire time history of the liquid sloshing and to model the repeated im-
pacts between the liquid and the tank roof. This has been accomplished by switching
between zero velocity and zero pressure boundary conditions for the constrained and
unconstrained liquid surfaces respectively. While this has generally resulted in mean-
ingful displacement and velocity profiles over the entire time history, [46], very little
information has been presented for the impact pressures/forces, and at the present

time, there is no general consensus or expressions for the critical impact effects.

Fmaz=27rpl

8.4 Method of Analysis

The method is formulated herein for long rectangular tanks having flat roofs and
is subsequently extended to the cylindrical case. Suitable modifications are finally

incorporated into the analysis to account for sloping roofs.
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8.4.1 Fundamental Relations and Assumptions

For cylindrical tanks, the instantaneous value of the surface displacement is given by,
(see for example, [65])
ad 2 Ap(t) Ji(Amr/R)
d(r,0,t)=R
OO =R 2 T a0
where J; = the Bessel function of the first kind and first order; A,, = the m th zero
of the first derivative of J;, of which the first three values are

cost (8.5)

A = 1.841 Az = 5.331 A3 = 8.536 (8.6)

An(t) is the instantaneous pseudoacceleration of a simple oscillator, defined by
t
Ap(t) = wn / Eo(T) stnwp(t — 1) dr (8.7)
0

where w,, is the circular natural frequency of the m th horizontal sloshing mode of

vibration, given by
AmH

w2 = tanh (—R—) A—;"zg (8.8)

In order to derive a simple and rational solution for the impact problem, it is nec-
essary to develop an appropriate model for the design impinging wave. Accordingly,
the following simplifications are made :

e The free-surface sloshing motion is predominantly harmonic in nature and the
motion has a frequency that is approximately equal to the fundamental sloshing
frequency of the system. This follows from the fact that for realistic tank-liquid
systems and ground excitations, the fundamental mode of vibration predomi-
nates the sloshing response and the associated sloshing frequency is much lower
than the dominant frequencies of the ground motion and of the tank-liquid
system.

e The critical case for maximum impact is taken to be the cycle during which
the wall displacement along the § = 0 axis reaches its theoretical maximum,
dmaz. This assumption eliminates the need to consider repeated impacts and is
believed to be more conservative than the recommendation made by Yashiro et
al [83]. dmaz is given by the relation,

dmar =0.83TR % (8.9)

where A; is the spectral value of the fundamental pseudoacceleration.



205

e The contributions of the higher modes are of increasing importance for evalu-
ating the free surface velocity and acceleration. The maximum velocity, vmaz,
and the maximum acceleration, @z, are evaluated herein by including the
contribution of the second mode and combining by the SRSS rule,

Vmae = R \/(0.837w1 ﬁ‘g—‘)z + (0.073w, i“g—'%)2 (8.10)
Gmes = R \/(0.837w% % 2+ (0.073 3 %)2 (8.11)

Based on these assumptions, the kinematics of the design impinging wave for the

cylindrical system can be expressed in the form,

Ji(Mmr/R) .
d(7'1 01 t) = dmaz‘ —1:‘(]'1(1;’\‘# smwlt cosf
’U(T, 0, t) = Unax % coswyt cosl
i _ Ji(Ar/R)
a(r,0,t) = amaz 00 sinwit cost (8.12)

As mentioned before, the impact study herein is based on a two-dimensional anal-
ysis and it is necessary to have equivalent 2-D expressions for the impinging wave.
These are obtained herein by neglecting cosf in the above expressions and replacing
Ji(Mr/R)/Ji(M) by sintx /2R, i.e.,

X

2R

d(z,t) = dipaz Stn— stnwt

. TT
v(2,1) = Upaz SIN=— cOSW1 t

2R

. TT
a(z,t) = tmax singm stnw;t (8.13)

8.4.2 Impact Effects for Flat Roofs
Long Rectangular Tanks

Impact commences at the instant when the wall-value of the displacement, d,,(t) =
d(R,t), becomes equal to the provided free-board, d,. At any later time, the length
of the roof that is covered by the rising free-surface, ¢,(t), is given by

Golt) 2 -1 (8.14)

R du(2)
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Wetting Correction : While ¢,(¢) is the intersection length between the roof and
the rising free-surface, the actual impacted length ¢(t) will be larger because the
liquid splashes and covers a larger portion of the roof. The splashing action occurs in
such a manner that the volume of liquid which would have theoretically crossed the
roof is conserved by a rearrangement of the free surface. This modification to ¢,(t),
commonly referred to as the wetting correction, was first introduced by Wagner [78]
in his studies of a wedge penetrating a quiescent free-surface. The impacted length,
c(t), is related to the intersection length, c,(t), by

c(t) = w(t) co(t) (8.15)

where w(t) is the wetting correction factor.

It is shown in Appendix D that at initial stages of impact, the wetting correction
factor for the two-dimensional case considered herein is equal to v/2. At the final
stages of impact, since the velocity with which the liquid strikes the roof is zero,
there should be no splashing and the associated wetting correction factor should
reduce to unity. On taking w(t) proportional to the instantaneous velocity of impact

and satisfying the initial and final values for w(t), one obtains

w(t) =1+ (V2 - 1)t (8.16)

Vo

where v,, is the instantaneous wall value of the sloshing velocity and v, is the associ-
ated velocity at initial impact.

Roof Impact Force : In a manner analogous to that employed by Von Karman [77]
and Wagner [78] in their studies for seaplane landing, and subsequently used for a
variety of impact problems by a number of others, [14, 15, 29, 49, 50], the force of
impact per unit normal width of the roof is given by the time rate of change of the
fluid momentum associated with the impacted portion of the roof,

0 am
Fit) = o2 [m(0) va(®)] = 57 veult) + m(t) (2 (8.17)

ot ot
where vq,(t) and aq,(t) are the vertical velocity and acceleration of impact respec-
tively, averaged over the impacted length c¢(¢). The use of average values within the
impacted region is generally valid since the impact phenomenon is very rapid, [30].
The relevant expressions for the average velocity and acceleration are given by

sin(me(t)/2R)

Van(t) = vu(t) (c()/2R) (8.18)
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sin(we(t)/2R)

(mc(t)/2R)
where v,,(t) and a,(t) are evaluated by taking « = R in the appropriate expressions
of equation (8.13).

m(t) is the effective mass of liquid impacting with the roof. It is a measure
of the liquid inertia that is affected by the impact with the roof and is commonly
referred to as the ‘virtual mass’ or the ‘added mass’. As shown in Appendix D, the
instantaneous value of m(t) for the two-dimensional roof-liquid impact problem is
approximately given by the mass of liquid contained in a quarter circle of radius ¢(t),

agy(t) = aw(t) (8.19)

m(t) = pr oft)’ (8.20)

This expression is approximate since no provision has been made for the effects of
the far-wall and of the tank-base. While these constraining boundaries tend to in-
crease the value of m(t), (see References [61, 64]), the increase is very slight for the
small values of c(t) that are normally associated with maximum impact and can be
conveniently neglected.

Using equation (8.20), the time derivative of m(t) is given by

am T 0Oc

Er T

where Oc/0t represents the velocity with which the roof is covered by the rising liquid
and is obtained by differentiating equation (8.15) with respect to time.

The instantaneous value of the impact force, Fy(t), is finally obtained by substi-

tuting equations (8.18), (8.19), (8.20) and (8.21) into equation (8.17). The maximum

impact force is then found to occur at the instant of initial impact and to be given by

(8.21)

Frmaz = pi rd V3 (8.22)

The impulse-momentum approach outlined herein has also been used in the study
by Kurihara et al [34] for evaluating the roof impact force. The significant exceptions
in the latter study are that no wetting correction factor has been employed and the
participating liquid mass m(t) has been estimated differently. The maximum roof
force by Kurihara'’s approach has been found to be

14R?

[Fr,maa:]lx’urihara = le v, (823)
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which is only about 11 % larger than that of equation (8.22). Another confirmation for
the present approach is that equation (8.22) for the half-structure considered herein
can be shown to be identical to one-half the value computed from Cointe’s formula
(equation 8.4) by putting R, = oo and R; = 02?/0%d|.=r in the latter equation.

The analytical prediction that the impact force rises instantaneously from zero to
its finite maximum value is not in agreement with experimental data which indicate
that the maximum force occurs after a small interval of time. Several factors can
be attributed for the finite rise time, [12, 48] : (1) the formation of an air cushion
between the roof and liquid surface, (2) free-surface deformation prior to impact, (3)
entrapped air in the liquid, etc. These factors might also result in a reduction in the
magnitude of the maximum force and the effect of these factors can be expected to
become more significant as the free-board d, decreases.

Zero Free-Board : For the limiting case of d, = 0, the liquid acts impulsively and
the force over the impacted portion of the roof can be conveniently evaluated from a
pressure distribution that increases linearly from 0 at the center to p; Riy(t) at the
tank-wall,

Fiimit(t) = 0.5 py R? ."ig(t) (8.24)
It is of interest to check if the above result is in the same order of magnitude as the
limiting value of the average impact force evaluated from equation (8.17). For the
latter force, on assuming that a lamina of constant length R is introduced into the
liquid, putting m = p; 7R?*/4 and dm/0t = 0, one obtains

7r
Flimit(t) = maau(t) = Z Pl R2 aau(t) (825)
where aq, is the average acceleration of the liquid. For rectangular tanks, aq.(t) is
given by
i _ g 16010 Aim(®) ,
aav(t) - R Rmz=1 2m . 1 g (8“"6)

On using the relation Ap(t) = w? (i4(t) — Am(t)), and expressing wj, in a form

similar to equation (8.8), one obtains

& m+1 2m - VrH
aay(t) = mz;l T _)1 ., ta7zlz—(———2—R—)—(wg(t) — An(t)) (8.27)

Now, Am(t) in the above equation can be taken as zero since the impact force for the
limiting case of zero free-board theoretically occurs for zero sloshing. Equation (8.25)
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is then written as

2 & (<) (@m = L)
Fiimiy = p pi R xg(t) mz___.:l (2m — 1)2 tanh 5R (828)

A comparison of the roof force values obtained from equations (8.24) and (8.28)
are presented below for values of H/R in the range from 0.3 to 2.

Values of Flim:’t/Pl R2 :'Ifg(t)
H/R | equation (8.24) | equation (8.28)
0.3 0.5 0.234
0.5 0.5 0.365
1.0 0.5 0.530
2.0 0.5 0.581

It is seen that while the impulse-momentum approach yields limiting results that are
in good agreement with the exact results for tall tank-liquid systems with H/R > 1,
the results are generally on the smaller side for broad tank-liquid systems. It should
be noted, however, that for the latter systems, the previously neglected effects of the
tank-base will be quite important. The virtual liquid mass for the lamina of length R
considered herein will be significantly increased by the base-plate and this, in turn,
should increase the associated roof force to the same order of magnitude as equation
(8.24).

Roof Impact Pressure : The average impact pressure acting on the roof, p,(t), is

given by
F(t) 7w dc

p:(t) = FOREY
At the beginning stages of impact, since the analytical value of F; is finite and ¢ — 0,
it follows that p,me; — oco. Alternately, the infinite pressure value follows from
the fact that dc/0t — oo at the beginning stages of impact. In reality, there is
no instantaneous infinite pressure and in a manner similar to the impact force, the

vau(t) + p1 7 elt) Gan(t) (8.29)

maximum pressure occurs only after a short rise time.

The magnitude of the peak impact pressure and the rise time cannot be obtained
by the simplifying assumptions involved in an irrotational, incompressible flow: The
compressibility of the liquid may be important at the beginning of impact [7, 32], when
the apparent growth velocity of the flat plate, dc/dt, is greater than the velocity of
sound in the liquid. When the compressibility is taken into account, following the



210

suggestion of Von Karman [78] for flat plate-liquid impact, the peak pressure may be
taken equal to the acoustic pressure of the liquid,

Promaz = PI1Cs Vo (8030)

where ¢, is the velocity of sound in the liquid. While the above equation accounts
for the compressibility of the liquid and yields a finite value for the peak impact
pressure, related studies dealing with flat body-water impact [76, 37] have shown
that air cushioning may cause the impact pressure to reduce to about one-tenth of
the value given by equation (8.30).

Other studies dealing with the impact of waves on flat offshore decks or walls,
[9, 51], have shown that air entrainment can have a significant effect on the peak
pressure, that the characteristics of this air entrainment are essentially random in
nature, and that the magnitude, rise time for the peak pressure are also random in
nature. In the absence of more sophisticated analyses that account for these factors,
the peak pressure acting on the roof and its rise time need to be determined from
equation (8.30) or from experimental observations, as in [34]. In the latter study,
based on the experimental data, it has been proposed that the maximum pressure be
considered to occur when the theoretical free-surface has crossed the roof to a height
of 1.05d,. This, in turn, corresponds to a value of ¢,/R = 0.2. On making use of
these values, the peak impact pressure has been obtained in the form of equation
(8.3).
Wall Impact Effects : With the roof pressure established, the instantaneous value
of the impact pressure at any point in the rectangular tank is obtained by solving for
the associated potential function ¢. The derivation is shown in Appendix D and the

final expression is given by

> 2 cosh(nry/2R) . nwc(t nr(z — R
p(z,y,t) = [ Z o osh(mrz//OR) s 21§)COS (2R )] (8.31)

where p,(t) is the impact pressure acting on the roof.

The wall impact effects per unit normal width of the rectangular tank can then
be obtained by integrating the corresponding values of the wall pressures over the
height H. For the near-wall (z = R), the wall force is given by

H n7rH . nwe(t)
Fy near(t) = Fi(t) [ t) Z 2R sin— ]

(8.32)
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and the wall moment is given by

H R & nrH
Mw,near(t) - Fr(t)H [H{ W Z=: {tanh 2R —
2R n7rc(t
nwH (1 cosh an/?R)} ] (8.33)

Similarly, for the far-wall (x = —R), the wall force is given by

_ H R & 4(-1 " n7rH . nwe(t)

Fy 5ar(t) = Fi(2) [2R o) nz=:l ) 2R sin—m ] (8.34)
and the wall moment is given by
H R X 4(- 1)" { nrH
My gar(t) = Fr(t) H [4R W n§=':1 - tanh SR
2R 1 . nmc(t)
nm H (1 cosh n7rH/2R)} Y ] (8.35)
The total effects that are transmitted to the base are then given by

Ft(t) = Fw,near(t) - Fw,far(t) N-[t(t) M, near(t) - Mw,jar(t) (836)

Cylindrical Tanks

In order to simplify the problem, the approach followed herein is to extend the two-
dimensional results to the three dimensional case after making suitable assumptions
for the circumferential variations of the impact effects. The resulting expressions are
approximate but are believed to be conservative estimates of the impact effects for
cylindrical tanks. This follows from the well-established fact that the freedom for a
liquid to move in three dimensions has the effect of reducing the participating liquid
mass and consequently the impact, [61]. An approximate measure of the degree of
conservatism of the approach is also provided.

Geometry of Impacted Area : From equation (8.12), the instantaneous value of
the half-angle of the impacted area, 0,(t), is evaluated to be

(8.37)




212

and for an angle 8 < 6,(t), the instantaneous value of the intersection length, co(4, t),

c(0,t) 2 d,
R 7 (dw(O,t)co.SG) (8.38)

The associated value of the impacted length, ¢(6,t) is then given by

is given by

c(0,t) = w(8,1) co(0,1) (8.39)

where the wetting correction factor, w(8,t), is taken in the form

vy(0,1) cosl

Yo

w(0,t) =14+ (V2 -1) (8.40)

where v, is the wall-velocity at § = 0 at the instant of impact.
Roof Impact Force : The impact force acting on the roof of the cylindrical tank is
evaluated herein by assuming the roof pressure evaluated for the rectangular tank to
have a cosine variation in the circumferential direction and then applying it over the
impacted portion of the roof,
0o(t) (R

(1) = / o /R o Pr(t) cosOr dr o (8.41)
Wall Impact Pressure : The impact pressure at any point of the cylindrical tank
is obtained by the procedure shown in Appendix D and the final expression is given
by

Pr(i = Jo(Bmo) coshfmoz/R
( 0 t [Z dmO(t JO ,Bmo) COShﬁmoH/R +
N 2ﬂ12nn Jn(Bmnf) COShﬂmnz/R
nz_:l n; g mn(t) 7 (Bon)? coshBom /R cosnf (8.42)

where, £ = r/R; J, is the Bessel function of the first kind and the n th order; Bun is
the m th zero of J.(8) = 0; and d,,,(t) is given by

bo(t) r1
/oo(t) /l_c(t)/R € Jn(Bmnt) cosnl cost d€ db (8.43)

Wall Impact Forces : With the wall impact pressure established, the associated
internal tank forces can be computed by applying the wall pressure as a static load,
and then using an appropriate shell theory. A simpler approach is to obtain an
estimate of the peak impact effects by determining the total forces that are exerted
on the wall. These total effects are obtained by appropriate integrations of the wall

impact pressure given by equation (8.42).
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The total impact force for the cylindrical system is given by

2 (H %
Fy(t) =/0 /0 p(1,0,t) cosf dz Rdf = 11:1),.(15).1%2"12::1 ﬂ,%im-l— T z?;gf) tanhﬂ"}%H
(8.44)
It should be noted that the infinite summation on n in equation (8.42) has reduced
to » = 1 in the above expression due to the orthogonality of the cosine functions.
Furthermore, it should be noted that the B factors are the same as the A, factors
used in equation (8.5) and the first three values are given by equation (8.6).

The total impact moment for the cylindrical system is given by

2 e ﬂml dml(t) ,BmlH R 1
o R G b (- eraremrm)}

(8.45)
Degree of Conservatism : It is of interest to estimate the degree of conservatism
inherent in extending the two-dimensional results to the three-dimensional case. This
is established herein by solving a simple problem exactly for the three-dimensional
case and comparing the result with the equivalent solution.

The problem considered is the axisymmetric impact of liquid on a circular disc
of instantaneous contact radius ¢,(t). It has been previously shown that the wetting
correction at the initial stages of impact for this case is w, = 4/ (see [49]) and the
associated virtual mass is m(t) = 4/3p; c(t)® (see [43, 49]), where c(t) = woco(2).
Substituting these values into equation (8.17) and simplifying, the impact pressure
at the initial stages of impact can be shown to be given by

64 R?
wtd,c,
The equivalent 2-D problem considered is the impact of liquid on a lamina of contact
length 2¢,(t). Evaluating the associated impact length, 2¢(t) = 2v/2¢,(t) and using
equation (8.22), the two-dimensional impact pressure is given by

4R*
Peq = /’l'ﬂ_"‘ do_\/i‘c'o'vo
A comparison of equations (8.46) and (8.47) then reveals that the exact pressure value

is about 73 % of the equivalent value.

% (8.46)

P=p

(8.47)

8.4.3 Impact Effects for Sloping Roofs

This section deals with the impact on a roof that makes an angle o with the horizontal.

The analysis presented herein is, however, of more general value and can be extended
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to assess the maximum impact effects for a roof with more general shape, y = h(2).
This is accomplished by defining an equivalent roof that is inclined at an angle cv,,
given by tan dey = Ymaz/Tmaz, Where Ymaz and Tpop refer to the maximum height and
projected length of the roof coming in contact with the rising liquid surface.

Long Rectangular Tanks

Let s,(t) refer to the instantaneous contact length between the sloping roof and the
rising free-surface. The horizontal projection of this length, c,(t) = s,(t)cose, is

evaluated from the relation
7 ¢o(t)
w(t —_
dy(t) cos SR

For a more general roof shape, the right hand side in equation (8.48) is replaced by
h(c,). The impacted length along the roof, s(t), is then given by an expression similar

to equation (8.15),

—d, = tanac,(t) (8.48)

_ _ i St
3(t) = w(t) so(t) = w(t) P (8.49)
where the wetting correction factor w(t) is taken in the form
w(t) =1+(\/§—1)”‘”(#‘-’53 (8.50)

Impact Effects : The impact effects are conveniently assessed herein by using the
component of the liquid moving normal to the sloping roof. The roof impact force is
defined in a manner similar to equation (8.17) as

E(1) = o (G 50 vaan(®)) = 0 %% nanl)+ 91 3 S0 annlt)  (8:51)
where vy, oy and @, q, are the components of the average liquid velocity and acceleration
normal to the sloping roof and are given by

sin(ws(t)/2R) sin(ws(t)/2R)

vn,av(t) = vn,w( ) W = 'I)w( ) (7'{'3(t)/2R) cosa (852)
and
_ sin(ws(t)/2R) _ sin(ws(t)/2R)
an,au(t) = an,w(t) W = aw(t) W cosu (853)
respectively.
The average roof pressure is then given by

p-(t) = I:r((tt)) =p g %: Un,au(t) + pi % $(t) an,au(t) (8.54)
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On evaluating 9s/8t from equations (8.48) and (8.49), and substituting in equation
(8.54), it can be shown that the maximum value of the roof pressure is given by

(Pr)maz = 1 % w, cota v} (8.55)

where w, is the wetting correction factor at initial stages of impact and is given by
w, = 14 (v/2 — 1) cosa.

It is seen that, unlike the flat roof solutions, the maximum pressure induced on
the sloping roof tends to a finite value. This follows from the fact that the growth
velocities for the two roofs vary significantly at the initial stages of impact. While
the growth rate for the flat roof is infinite, the corresponding rate for the sloping
roof is finite, Os/8t = w, v, coseca. 1t can further be noted that, with the exception
of the w, factor, equation (8.55) is identical to the one proposed by Kobayashi [31]
(equation 8.1).

With the roof pressures evaluated, the wall pressures for the systems with sloping
roofs can be evaluated by procedures similar to those used for flat-roofed systems.
The vertical component of the roof pressure, p(t) cose, acting over the horizontal
projection of the impacted length, c(t) = s(t) cosa, is used in these computations.
The final expression is similar to equation (8.31) and is not repeated here. The
associated wall forces are finally obtained by appropriate integrations of the wall

pressures.

Cylindrical Tanks

The half-angle subtended by the horizontal projection of the impacted area is again
given by equation (8.37). For an angle § < 6,(t), the horizontal projection of the

contact length, ¢,(0,1), is evaluated from the relation

T ¢o(0,1)

dw(0,1) cosd cos——o " = d, = tanacy(0,1) (8.56)
The associated impact length, s(6,1), is then defined by
_ c.(0,1)
s(0,t) = w(6,t) g (8.57)

where the wetting correction factor w(8,t) is taken in the form

0,¢) cosa cosf (8.58)

w(0,1) = 1+ (v — 1)%

Vo
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Impact Effects : Applying the two-dimensional roof pressure values evaluated in
the previous section over the impacted area of the cone-shaped roof, the roof impact

force is given by

0olt) /RE+HZ
= cosa/oa(t) a0, t) pr(t) cosf r dr d6 (8.59)
where H, is the maximum height of the roof. The wall pressures for the systems
considered can then be evaluated by applying the vertical component of the roof
pressure, p(t)cosf cosa, over the horizontal projection of the impacted area, and
solving Laplace’s equation in a manner similar to that indicated in Appendix D for
flat-roofed systems. The associated wall forces can then be obtained by appropriate
integrations of the wall pressures. The resulting expressions are quite similar to
equations (8.42), (8.44) and (8.45) and are not repeated here.

8.5 Numerical Solutions

The numerical solutions presented in this section are for the impact pressures and
forces induced on the roof and walls of rectangular and cylindrical tanks. Systems

with both flat and sloping roofs are considered.

8.5.1 Impact Effects for Flat Roofs

It is desirable to suitably normalize the response quantities and present the results in
terms of coefficients that are relatively insensitive to the tank-dimensions and wave
properties. Since maximum impact effects for flat-roofed systems typically occur at
or very close to the time of initial impact, the response quantities can be conveniently
expressed in terms of the wave velocity at initial impact, v,, and the corresponding
wave displacement, d,.

Roof Effects : Based on equation (8.22), the roof impact force for long rectan-

gular tanks is expressed in the form

2
v
Fi(t) = crg(t) pR? =2 -d— (8.60)
Similarly, for the cylindrical system, the roof force is expressed in terms of p; R v?/d,.
The temporal variations of the normalized roof forces for rectangular and cylin-

drical tank-liquid systems are presented in Fig. 8.3 for a value of d,/dnqe, = 0.5.
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The time axis is normalized with respect to the fundamental period of sloshing, 77,
so that it varies between 0 and 0.25. The velocity-squared proportional slam term
and the acceleration proportional inertia term are shown in the figure. The total roof
force, evaluated herein as a numerical sum of the two terms, is also indicated. The

following trends are worth noting:

e The slam term is predominant at the initial stages of impact and decreases
rapidly with time. On the other hand, the inertia term is small at initial stages
of impact and increases gradually with time.

o The time variation of the impact force for the cylindrical system is quite dif-
ferent from that for the long, rectangular system. While the latter force rises
instantaneously from zero to a finite value and then decreases, the former force
is zero at initial impact, increases rapidly to a maximum after a short rise time
and then decreases slowly. These differing trends follow from the fact that the
geometries of the impacted roof areas for the two systems are quite different.
Such trends have also been demonstrated in studies by Miloh [44] for liquid
impact of three-dimensional spheres and two-dimensional cylinders.

e As may be expected from equation (8.22), the maximum roof force coefficient for
the rectangular system is 4/m. On the other hand, the corresponding coefficient
for the cylindrical system and the time of its occurrence, Atp, is a function of
dy/dmaz. The variation of these quantities with dy/dmaz is studied in Table 8.1
for several values of d,/dmqr in the range between 0.1 and 0.9. The half-angle
subtended by the impacted area corresponding to the maximum roof force,
0o.m, is also tabulated. The presented data are strictly valid for a tank with
H/R =1, fi = 0.2 Hz, but due to the normalization scheme used, the force
coefficients depend mainly on d,/dq» and are relatively insensitive to the other
parameters. For most values of d,/dpaz, the following relations are found to be

valid for estimating the cylindrical roof impact effects,

At d,
Tl - 0.03dmaz‘
0om =~ 30 deg
3 ,,2
Frmaz =~ (0.55 — 0.58) ﬂ’—% (8.61)

It is also of interest to know the roof pressures at the time of occurrence of the

maximum impact force. These values, normalized with respect to p;RvZ/d,, are also
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presented in Table 8.1 for the values of d,/dpq, previously considered. It is seen that
for most cases, the roof pressure can be given by the relation,
Pron R 2 ﬂ_gﬁﬁ (8.62)
0
The critical roof pressures evaluated from equation (8.62) can be applied as static
loads over the impacted area of the roof plate and a suitable computer program can
be employed to obtain a detailed description of the stresses that are transmitted at
the roof-wall junction. Large tensile stresses at this junction may cause the roof to
separate from the wall, though this is not particularly of concern for the embedded
tanks normally encountered in nuclear facilities.

Wall Effects : At the instant impact commences, the theoretical values of the wall
forces and moments evaluated from equations (8.36) tend to infinity for rectangular
tanks with flat roofs. However, in reality, the wall effects for the rectangular tank
will also have finite maxima after a short rise time. The magnitudes of these maxima
and rise times depend strongly on effects of liquid compressibility, air cushioning, air
entrainment, etc., and are beyond the scope of this study. The present section is
devoted to a discussion of the wall impact effects for cylindrical systems.

Based on the form suggested by equation (8.44), it is found convenient to express

the total wall force for flat-roofed cylindrical systems in the form

2
Fi(t) = cuy(t) p R? %tan —/—\}%—H (8.63)

Similarly, based on equation (8.45), the total moment is expressed as

_ 3 gy Vo MH R 3 1
M(t) = cum(t)m R Hd {tanh R T nA 1 cosh A HE (8.64)

o

The temporal variations of the wall force and moment coeflicients are presented in
Fig. 8.4 for a cylindrical system with H/R =1 and do/dmaez = 0.5. Approximate so-
lutions for these coefficients obtained by applying the wall pressures for a rectangular
system over an angle of 20,(t) are also shown in the figure. Numerical values of the
maximum wall force and moment coefficients for the system considered and for addi-
tional values of H/R, d,/dmas arve presented in Tables 8.2 and 8.3 respectively. The
associated times of occurrence, At,,, and the half-angles subtended by the associated
impacted areas, 0,,, are also tabulated. The following trends are worth noting:
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e The magnitudes of the maximum force and moment coefficients are generally
in the order of unity and decrease with increasing H/R and d,/dmes. These
maxima occur a short time after the initial impact and these times are generally
smaller than those for the maximum roof force. Furthermore, the half-angle
corresponding to the time of maximum impact is about 20 degrees.

e The approximate solutions obtained from the two-dimensional wall pressures
are on the conservative side. For the system with H/R = 1 considered in Fig.
8.4, the approximate procedure over-estimates the maximum force coefficients
by about 28 % and the moment coefficients by about 18 %. The accuracy of
the procedure is further found to deteriorate with increasing H/R. For a tank
with H/R = 0.5, the errors for the force and moment coefficients are about 12
% and 8 % respectively and for H/R = 2, the over-estimation is by about 70 %

and 40 % respectively.

It is also important to know the hydrodynamic wall impact pressures that cor-
respond to the time of occurrence of the maximum wall impact effects. For the
" parameters of general interest, it is found that the pressure acting on the junction of

the tank-wall and roof, p,m(H), is given by

2
Pum(H) ~ (3 - 4) 200 (8.65)

With this junction pressure established, the associated wall pressure distributions for
the cylindrical system, pym(2), can be determined from equation (8.42). However,
this expression is very cumbersome and time-consuming to evaluate and a simpler
approach can be used to assess the vertical variation of the pressures. Based on
the fact that the two-dimensional wall pressures yield reasonable estimates of the
maximum wall effects for broad cylindrical tanks, the hydrodynamic wall pressures
acting over the impacted portion for such systems are evaluated herein from equation
(8.31) rather than from equation (8.42). The wall pressure distributions corresponding
to the time of maximum impact are shown in Fig. 8.5 for two systems with H/R =
0.5 and 1.0 respectively. d,/dmq. is taken as 0.5 in both cases. It is seen that the
trends of the impact pressure distributions are quite similar to those for convective
pressures. The pressures are a maximum at the top and decrease towards the base
and the rate of decay increases with increasing H/R.

Once the critical wall pressures are known, they can be applied as radial loads
on the shell and a suitable computer program can be employed to obtain a detailed
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description of the stresses and displacements of the shell. It should be noted that for
the small impact areas associated with the maximum wall impact forces, significant
bending stresses may be induced due to the bulging of the shell wall.

Numerical Comparisons : In the form presented, it is not clear how the impact
effects compare with the impulsive and convective effects and the relative magnitudes
of these effects are ascertained in this section. The impulsive effects are associated
with the portion that moves in synchronism with the flexible tank-wall and can be
assumed to remain unaltered by the impact. The convective effects are associated
with the portion that sloshes and will be reduced due to the impact. They are
conveniently assessed herein by assuming the maximum liquid displacement to be d,.

Two cylindrical tank-liquid systems that are representative of the storage systems
used in nuclear facilities are considered. The system dimensions and the properties
of the impacting wave are tabulated below. The wave kinematics are assessed from
equations (8.9), (8.10) and (8.11). The maximum pseudoacceleration values in these

expressions are evaluated from the response spectrum previously used in Chapter 3
(Figure 3.8),

Quantity | System 1 | System 2
H 25 ft 35 ft
R 50 ft 35 ft
fi 0.148 Hz | 0.202 Hz
dmaz 2.9 ft 3.8 ft
Vmaz 3.25 ft/s | 5.2 ft/s
Umae | 4.2 1t/s% | 7.5 ft/s®

Values of the maximum impact wall forces and moments for the systems considered
are presented in Table 8.4 for different values of d,. The associated values of the
impact pressures at the top and base are presented in Table 8.5. In order to enable
direct comparisons with the other response effects, the values of the forces, moments
and pressures are normalized with respect to m;g, m;g H and p; g R respectively.
Similarly normalized impulsive effects and associated convective effects are also given
in the tables. In evaluating the maximum impulsive effects, only the fundamental
modal contribution of the flexible tank-liquid system is considered and the spectral
value of the associated pseudoacceleration is taken as 0.83g. The following trends

are worth noting :
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o The magnitude of the impact effects increase significantly with decreasing values
of the free-board d,. This trend follows from the fact that the maximum effects
are proportional to v2/d,. On writing v, as Vpmagy/1 — d2/d?,,.., it can be shown
that, for an impacting wave with given displacement dp.z, the effect of the
free-board d, on the maximum impact response is given by

dmaz  do

-Fimpact Q@ — —

. T (8.66)

e The maximum impact effects are generally smaller than the corresponding im-
pulsive effects. For System 1 with d, = 0.3dpqz, the impact effects are in the
order of 60-90 % of the maximum impulsive effects. The corresponding range
for system 2 is 40-70 %.

o Depending on the value of d,, the impact effects are significantly larger or have
the same order of magnitude as the maximum convective effects.

¢ For small values of d,, the values of the impact pressures corresponding to the
time of occurrence of the maximum wall effects can be much larger than the
maximum impulsive or convective wall pressures. It should be remembered that
these impact pressures act over relatively small lengths (26,, ~ 40 degrees) and

may cause the flexible side-wall to bulge.

The total design forces for the tank-liquid system can be obtained by appropriately
combining the impulsive, convective and impact effects. For the impacting wave
considered herein, it is clear that the maximum impact and convective effects occur
almost simultaneously. These are added numerically and their sum is then combined

with the impulsive effects by taking the sum of the squares, i.e.,

Total = \/ Impulsive? + (Impact + Convective)? (8.67)

The values of the design forces obtained by the above equation are also shown in
Table 8.4.

8.5.2 Impact Effects for Sloping Roofs

The roof impact force coefficients, ¢,f(t), are presented in Figure 8.6 for rectangular
and cylindrical systems with sloping roofs. The roof slope angle, «, is varied between
0 and 0.3. Similar results for the total wall force and moment coefficients of cylindrical
systems are presented in Figure 8.7. The results in the figures are for System 2 with
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d, = 0.5dmaz. These data, along with additional results for the roof force, wall force
and wall moment coefficients are presented in Table 8.6 for values of d,/dmq, ranging
between 0.3 and 0.7. Both Systems 1 and 2 are considered in the table. The properties
of the systems and of the impacting waves have been tabulated in the previous section.

The following representative trends are worth noting :

e The impact effects reduce significantly with increasing values of a. The rapid
decrease is related to the corresponding decrease in the value of the roof pressure.
From equation (8.55), it is seen that the maximum roof pressure is proportional
to cot a. For the flat-roof, this value tends to infinity, and as o increases, it
decreases rapidly. Furthermore, with increasing «, the impacted roof area over
which this pressure acts is reduced and this also causes the impact effects to
decrease. For system 1, the decrease from the flat-roof solutions is in the range
of 70 % to 95 % for « ranging from 0.05 to 0.3. For system 2, the corresponding
range is 55 % to 95 %.

¢ The maximum impact effects for the systems with sloping roofs do not occur at
the initial stages of impact. The rise times are in the order of 0.037; to 0.1T3
for the cases considered.

o Unlike the flat roof solutions, the impact effects for both rectangular and cylin-
drical systems with sloping roofs behave similarly with time. The values start
at zero, increase to a maximum and then decrease gradually with time. These
trends follow from the fact that for both rectangular/cylindrical systems, the
impact effects are induced by finite roof pressures acting over gradually increas-

ing impact lengths/areas.

All the results presented herein for the sloping roofs have been normalized with
respect to the factors used before for the flat roof. While this enables one to readily
assess the relative magnitudes of the effects for different roof slopes, it should be
noted that in the form presented, the results are sensitive to the assumed values of
the tank-liquid parameters. This follows from the fact that the impact effects for the
sloping roofs are not generally proportional to v2/d,, but to a more complex function
that involves a, Vmaz, dmer and d.

In order to get a better insight into the parameters affecting the impact effects for
sloping roofed systems, a simplified analysis of the impact roof force in rectangular
systems is undertaken. On considering only the dominant slam term in equation
(8.51), writing s(t) in terms of equation (8.49), assuming the wetting correction factor
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in this expression to be v/2 and using v, 4y(t) & vu(t) cosa, the impact roof force can

be written as

F(t)~ p——a®)et)valt) (8.68)

where ¢é,(t) is the rate of change of the projected length with time and is determined
by differentiating equation (8.48),

C o Vy COSTCo /2R
Coft) = tana + wdy, /2R sinwe, /2R (8.69)

Simplifying the above expression and substituting it into equation (8.68), one obtains

Fi(t) = ™ Co Yy (8.70)
e cosa(tana + m2dyc,/4R?) )

For @ = 0, the maximum roof force occurs at initial impact and it is seen that
equation (8.70) reduces to equation (8.22). However, for non-zero values of a, the
maxima occur at later times and the impact effects depend on the roof-slope angle,
o, the associated impact velocity vym, the corresponding displacement, dy,m, and
the horizontal length, c,n, which from equation (8.48), depends on dym, do and
«. Therefore, the maximum impact effects induced on the sloping roof are largely
affected by the values of @, do, dym and vym. The latter two parameters depend
in turn on the values of dmaz, ¥maez and the time ¢,, at which the maximum impact
occurs.

A rough estimate of this rise time ¢, can be obtained by the following simplified
analysis : The cosine-shaped liquid surface is-replaced by a flat surface of instanta-
neous height d,,(t) moving with a velocity vy(t). The horizontal projection of the
impact length is then given by ¢,(t) = (dw(t) — do)cotar. The time of occurrence of
the maximum impact force can then be obtained by equating the time-derivative of
the force to zero. On defining the force approximately by equation (8.68) and dif-
ferentiating, it can be shown that c,m = —vﬁ,,m cota/2aym. On equating the above
expressions for c¢,, and expressing dy, vy and ay as dpas stnwy (), w1 dmag cOSW11
and —w? dpqz Sinw) t respectively, one obtains a quadratic expression for sinwyt,,, the

solution of which can be written as

. 1| d, d_\’
sznwltng + (d >+3 (8.71)

dmaw maxr

It should be noted that the above analysis is valid only for relatively large values of
a. This restriction on a is required because as a decreases, the flat liquid surface
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instantaneously comes in contact with a large portion of the roof and ¢, tends to a very
large value. The accuracy of the present analysis in estimating the time of maximum
occurrence is found to be good for values of o > 0.2. For values of a ranging from 0
to 0.2, it is recommended that the time of occurrence for the maximum impact effects
be estimated by using a linear interpolation between the time for initial impact and
the time evaluated from equation (8.71).

With the time of maximum occurrence known, dym, Vw,m and ¢, can be conve-
niently evaluated from the first two components of equation (8.13) and from equation
(8.48). They are then substituted into equation (8.70) to obtain the maximum impact

force.

8.6 Conclusions

With the information presented herein, the impact pressures and forces induced on
the roofs and walls of tank-liquid systems can be evaluated readily. Effects for both
rectangular and cylindrical systems have been evaluated and the influence of altering
the roof slope has been studied. Comprehensive numerical solutions have been pre-
sented in a suitably normalized form and comparisons with well-established impulsive
and convective solutions have been made. The principal conclusions of the study are
as follows :

1. The impact force is comprised of two terms : a slam term that generally varies as
the square of the velocity of impact and an inertia term that is proportional to
the acceleration of impact. The slam term usually occurs during the early stages
of impact and is the dominant contributor to the maximum impact response.

2. For a flat-roofed system, the maximum impact effects occur at the initial stages
of impact and their magnitudes are proportional to the initial velocity of impact
v, and the free-board d,.

e The peak roof force for the cylindrical system is about 0.57 py R®v?/d,.
The pressure corresponding to the time of occurrence of the maximum
roof force is approximately 2 p; Rv2/d, and it acts over an area subtending

a central angle of about 60 degrees.
e The maximum wall effects are normalized so that the associated response

coefficients are approximately unity. The pressures at the roof-wall junc-
tion corresponding to these maxima generally vary between 3 - 4 p; Rv?2/d,,
and the associated central angle is about 40 degrees.
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e The magnitude of the maximum impact forces on the wall are generally
larger than the convective effects but smaller than the impulsive effects.
The impact effects increase rapidly with decreasing free-board and for a
wave of given maximum displacement dyqz, the impact response is pro-
portional t0 (dmaz/do — do/dmaez). For small values of d,, the values of the
associated impact pressures at the roof-wall junction may be significantly
larger than either the impulsive or convective pressure.

3. For a sloping-roofed system, the maximum impact pressure tends to a finite
limit given by p; /2 cotaw, v:. The times of occurrence of the maximum im-
pact forces are much larger than those for the flat-roofs. Furthermore, the
magnitudes of the impact effects decrease significantly with increasing a. The

decrease depends strongly on the values of a, d,, dpmer and vimqg.
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Table 8.1: Values of maximum roof impact effects for flat-roofed cylin-

drical tanks with different values of d,/dpx

a—:‘t .%E.lm oa.m Crfmazx r}g‘;g";_do'
0.1 |0.002 { 29.1 | 0.578 2.04
0.2 {0.005 |29.8 | 0.577 1.96
0.3 | 0.008 {29.5 | 0.575 1.98
0.4 |0.011 | 29.6 | 0.570 1.96
0.5 | 0.014 { 29.2 | 0.563 1.99
0.6 | 0.018 | 28.8 | 0.551 2.01
0.7 | 0.021 | 27.4 | 0.528 2.12
0.8 | 0.023 | 24.3 | 0.483 2.44
0.9 | 0.020 | 18.2 | 0.387 3.36
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Table 8.2: Values of maximum wall impact force for flat-roofed cylindri-

cal tanks with different values of H/R and d,/dmqx

_do
dma:r

0om

Cwf,maz

0.1
0.3
0.5
0.7
0.9

0.1
0.3
0.5
0.7
0.9

0.1
0.3
0.5
0.7
0.9

= 0.5

21.1
20.2
20.0
19.4
15.6

21.1
21.5
21.4
20.4
15.8

21.1
22.1
21.7
20.6
15.9

0.999
0.997
0.989
0.966
0.848

0.948
0.945
0.934
0.906
0.774

0.940
0.937
0.926
0.897
0.763
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Table 8.3: Values of maximum wall impact moment for flat-roofed cylin-

drical tanks with different values of H/R and d,/d.x

;'d__,;%; A_’It‘l,_n_ aa,m Cwm,maz:
H/R = 0.5
0.1 |0.001 | 184 | 1.079
0.3 | 0.003 | 18.0 | 1.077
0.5 | 0.005 | 17.8 | 1.070
0.7 10.008 { 17.3 | 1.051
0.9 |0.012 | 14.7 | 0.948
H/R =
0.1 |0.001 184 | 1.011
0.3 {0.003 |19.5| 1.009
0.5 | 0.006 | 19.4 | 1.000
0.7 [0.009 | 18.6 | 0.976
0.9 |0.013|15.1 | 0.858
H/R =2
0.1 |0.001 | 21.1 | 0.977
0.3 |0.004 | 20.8 | 0.973
0.5 | 0.006 | 20.3 | 0.964
0.7 | 0.010 | 19.5 | 0.937
0.9 |0.013 | 154 0.811




229

Table 8.4: Comparison of maximum impact effects for representative flat-
roofed cylindrical tanks with associated impulsive and convec-
tive effects

Resp. | zo2- System 1 System 2

Coefft Impul. | Conv. | Impact | Comb. | Impul. | Conv. | Impact | Comb.
0.3 0.014 | 0.159 | 0.304 0.017 | 0.192 | 0.503

;nq—‘% 0.5 | 0.250 | 0.023 | 0.078 | 0.270 | 0.457 | 0.028 | 0.094 | 0.473
0.7 0.032 | 0.037 | 0.259 0.039 | 0.044 | 0.464
0.3 0.007 | 0.091 0.140 0.010 | 0.123 | 0.227

m—%f'ﬁ 0.5 | 0.100 | 0.012 | 0.044 | 0.115 | 0.184 | 0.017 | 0.061 | 0.200
0.7 0.017 | 0.021 0.107 0.024 | 0.029 | 0.191

Table 8.5: Comparison of impact pressures corresponding to time of oc-
currence of maximum wall forces with maximum impulsive
and convective pressures

Resp. | % System 1 System 2
Coefft Impul. | Conv. | Impact | Impul. | Conv. | Impact
0.3 0.017 | 1.191 0.033 | 2.135
2l 105 | 0 | 0029 059 0 | 0.054 | 1.053
0.7 0.041 | 0.291 0.076 | 0.529
0.3 0.012 | 0.653 0.010 | 0.693
';‘;’g% 0.5 | 0.344 | 0.020 | 0.322 | 0.614 | 0.017 | 0.339
0.7 0.028 | 0.154 0.024 | 0.162
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Table 8.6: Values of maximum roof and wall impact effects for represen-
tative cylindrical tanks with sloping roofs with different values

of @ and d,/d ey

do/dmaz System 1 System 2
Crfmaz | Cwfmaz Cym,maz | Crfimaz | Cwfmaz | Cum,maz
a=10

0.3 0.577 | 0.998 1.077 0.575 | 0.945 1.009

0.5 0.570 { 0.991 1.072 0.564 | 0.935 1.001

0.7 0.543 | 0.972 1.056 0.530 | 0.908 0.978
a = 0.05

0.3 0.162 | 0.274 0.298 0.253 | 0.402 0.430

0.5 0.179 | 0.336 0.371 0.284 | 0.478 0.516

0.7 0.139 | 0.306 0.346 0.243 | 0.457 0.502
a=0.1

0.3 0.075 | 0.140 0.156 0.149 | 0.239 0.259

0.5 0.077 | 0.164 0.186 0.162 | 0.288 0.316

0.7 0.052 | 0.127 0.148 0.123 | 0.252 0.283
a=0.2

0.3 0.026 | 0.055 0.063 0.067 | 0.115 0.127

0.5 0.025 | 0.058 0.067 0.067 | 0.130 0.147

0.7 0.015 | 0.039 0.046 0.045 | 0.098 0.112
oa =103

0.3 0.013 | 0.027 0.032 0.037 | 0.065 0.073

0.5 0.012 | 0.027 0.032 0.035 | 0.069 0.079

0.7 0.007 | 0.018 0.021 0.022 | 0.048 0.055
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Figure 8.2 Impacted Roof Areas for Different Values of d/d,.,
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Appendix A

Hydrodynamic Effects for Rigid Layered Systems

A.1 Derivation of Equation (4.12)

On substituting equations (3.24) and (4.5) for {Dn(t)} and {D,(t)} into equation
(3.28), one obtains

[A] R (% wf,m{dmn}> i'gg(t) - [A]R (ﬁ’: Whn{dmn} i"in‘(t—))

n=1 n=1 g

N
+ [B] Amg (Z{dmn}Am;(t)) = €mAm {8} F,(1) (A.1)

n=1
which on further dividing through by A, grouping the terms with similar temporal
variations, and making use of equations (3.45) and (4.10), can be written in the form

N
(140 {em) = m {5}) &5(8) = 3 (Chn 4] {dmn} = (B]{dun}) Amnlt) (A2

n=1
Since the temporal variations of the two members of the latter equation are different,
the equation can hold true only if the terms in parentheses on either side of the
equation are equal to zero. On equating the left-hand member to zero, one obtains
equation (4.12), and on doing the same with each of the right-hand members, one

obtains the additional relation,

Crn [Al {dmn} = [B] {dmn} (A.3)

A.2 Derivation of Equation (4.40)

From equation (4.9) and the expressions for the elements of the matrix [A] given
in Reference 1, the difference in the convective pressure coefficients across the jth

interface may be written as

%Cmn,j(aj) - % Cmn.j+1(0)] = CZ, [Aj.j—ldmn.j-l + A jdmn,; + Ajjr1dmn,it
(A.4)
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On applying equation (A.4) to each of the N interfaces and normalizing the results in
the form of equation (4.38), the difference in the interfacial values of the convective

pressure coefficients can be written in vectorial form as
{ = chin | = O [4] {dnn) (A5)
and, by virtue of equation (A.3), as
{en = chn} = 1B) {dmn} (A5)

On summing the latter expression over n, making use of equation (3.54) and the fact
that diag[B] = {s}, one obtains the desired equation (4.40). Finally, on summing
equation (4.40) over m and making use of equation (3.55), one obtains the additional

relation

23 {an -t} = 1o) (A7)

m=1n=1
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Appendix B

Modal Masses for Flexible Layered Systems

The distribution of the layer densities and heights for the three-layered cantilever
system under consideration is as shown in Fig. 5.1. Let ¢j~ be the impulsive potential
function for the 7 th liquid layer (j = 1,2,3) when the tank vibrates in the i th assumed

mode of vibration, ¥;(z). ¢;'. must satisfy Laplace’s equation,
Vit =0 (B.1)

and it is subjected to the following boundary conditions :
(1) Zero velocity at the tank base

(24) s .
azl z3=0
(2) Continuity of radial velocity at the tank-wall
(32) = -viiepeont (B.3)
or r=R

where z is the vertical distance measured from the tank-base; 1;(z) is the ¢ th assumed
beam mode and W;(t) is the associated generalized velocity coordinate.

(3) Zero impulsive pressure at the mean liquid surface

(). _p =0 (B.4)
(4) Continuity of vertical velocities at the j th interface; and
(9"5_?) - <__a¢§+l) (B.5)
aZj zj=H; 02j+1 2j41=0

(5) Continuity of impulsive pressures at the j th interface,

pi ({b;)z,=HJ = pj1 (4'5}"“):”1:0 (B.6)
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The solution for d)j- is conveniently obtained herein by expressing ¢3'- as the super-

position of two component solutions as
¢ = di+ (B.7)

where ¢}, is a velocity potential function associated with the motion of the tank-walls
and ¢£J- is a corresponding function providing for the relative motion of the contained
liquid and the tank-walls. This superposition approach is different from that followed
in [57] for the two-layered systems, wherein the equations for each layer are solved
directly. It is believed that the present approach is more simple to implement and is
more readily extended to the case of arbitrary number of liquid layers.

The solution for ¢} has been previously derived by Yang in his studies for homo-
geneous systems, [82], and is given by

; o < 2 Li(owr/R) (anz)
é(r, 2,t) = —W;(t) R cosf 2o @) din cos 7 (B.8)

where I is the modified Bessel function of the first kind and first order; I; is the first

derivative of I; a, and d;, are given by

(B.9)

| =

an = (20 — 1)%

and

din = %_/: ¥i(z) cos (g—;—;) dz (B.10)

respectively.
On solving Laplace’s equation for ¢ij and making use of the homogeneous bound-

ary conditions along the walls, d)ij can be written as

(€msnt) = Wi(t) Reosd [P;;w. coshAmny + QP sinh)\mn,-] Ji(Amé)  (B.11)

m=1
in which € = r/R; n; = z;/R; J1 is the Bessel function of the first kind and first order;
Am = the mth root of J; = 0; and P, ; and @}, ; are constants of integration that
need to be determined from the boundary conditions. For j = 3, this results in a total
of 6 unknowns. On satisfying equations (B.2) and (B.4) and the two components of
equation (B.5), four of these unknowns can be eliminated. Then, on replacing the
constants Pj ; and @, ; (j=1,2,3) by equivalent constants A4;, and Bi , one obtains

‘_ e e [ . coshdmm | Ji(Amé)
¢rl(£7 nl,t) - I’Vz(t) Rcosomz [Am sz'nh)\mHl/R] Jl(Am)

=1
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: 21 coshAy(Hz/R — 12) . coshApme | J1(Am€)
t 0 1 1]
Fralérmt) = =Wi(t) Reos Z=: [Am St B Om sk HaJR| 0w

i SinhAn(Hs/R —n3)| J1(Amé)
Pia(€,mst) = W, (Rcos(?Z[B cosho Ey ]Jl(/\m) (B.12)

The constants A}, and B:, are then evaluated by satisfying equation (B.6) at the
two interfaces j = 1 and j = 2. On substituting equations (B.7) and (B.8) into
equation (B.6), multiplying through by ¢ Ji(Amé) d€, integrating from 0 to 1, and
making use of the relations

1 1 : andi (AT (ctn)
2 —_ " m 2 _ ad1\Am i \En
[} €20me) e = 5= 20m) [ EROmEM () de = =57
(B.13)
the resulting system of equations for Ai, and B!, can be written in the form,
tanhA:,H,/R + tan;ff,{,pl:rg/n ﬁ#f}?ﬁ A, - X;:n
B e o2l + ps/prtanh )y Hs/ R Y;i
(B.14)
where . 2d H/R
i P2 o= 2d;; cosay Hy
e R e
i 2 Pz p3) X 2diy cosan(Hy + Ha)/R i
e (B8 B (B19)

Solving for Ai and Bi, from equation (B.14) and substituting in equation (B.12),
one obtains ¢}; (j=1,2,3).

With the potential functions established, the participating modal mass can be
computed by determining the kinetic energy of the liquid. The kinetic energy for the
j th liquid layer, T}, can be written as

N3 N3 a
A > ¢ > 5k 9¢; dS (B.16)
) =1 k=1

where S; refers to the bounding surfaces for the jth layer; ¢% is given by equation
(B.7); and 0¢%/0n is the derivative of ¢¥ in a direction normal to the boundary of
the liquid.

In equation (B.16), it is not necessary to compute the energy components associ-
ated with the two bounding interfaces j — 1 and j. This follows from the fact that
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the energy components associated with two adjacent layers along their common in-
terface are of equal but opposite magnitudes (the interfacial pressures and velocities
are equal but the normals are in opposite directions) and therefore cancel out each
other. Furthermore, the components corresponding to the tank bottom and the mean
liquid surface are zero. It follows that in order to compute the total kinetic energy, it
is only necessary to compute the kinetic energy components associated with the wall
of the tank.

The kinetic energy associated with the wall of the tank for the j th layer is evalu-
ated by substituting equations (B.7), (B.8) and the appropriate component of (B.12)
into equation (B.16). The total kinetic energy of the system, T', can then be expressed

in the form
3 N3 N3
T = ZTJ ZZm,LWWL (B.17)
i=t i=1 k=1

where m;;, is the virtual mass of the layered liquid corresponding to the deflection
functions ;(z) and ¥x(z). It is expressed as a sum of the modal mass components

for the individual liquid layers,

Mk —Z Mikj = Zp, /HJ/ (¢h+¢ ) ¥i(z) cosd RdO dz; (B.18)

J=1 i=1
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Appendix C

Vertically Excited Systems with Flexible Base

C.1 Velocity potential function ¢
¢ is given by the solution of Laplace’s equation
Vig =0 (C.1)

where, for the axisymmetric problem considered,

”? 10 0

29 29,9

vi= or? +7'Br+622

The solution of equation (C.1) must satisfy the following boundary conditions :

At the tank-base,

(C.2)

N
(?) = (6 t) = —uho(t) = 3, dn(t)n(t) (C.3)

At the tank walls, the radial velocity must vanish (since the walls have been assumed

to be rigid),
0¢ _
(5) r=R =0 (0.4)

(¢)e=n =0 (C.5)

where any sloshing action is implicitly neglected.
The solution of equation (C.1) is conveniently written in the form

and at the free-surface,

N
¢=go+ D (C.6)

n=1
where ¢ is associated with the relative rigid-body motion of the base plate and ¢,
is associated with the nth assumed mode of vibration of the base plate. It is clear

that ¢ is given by
¢o = wno(t) (H — 2) (C.7)
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The solution for ¢, is obtained by separation of variables,
¢n = Rn(r) Zn(z) T(t) (CS)

in which R, Z and T are functions of 7, z and ¢ respectively. On substituting equation
(C.8) into equation (C.1), equating the expressions in r and z to —A?/R? and +A?/R?
respectively, making use of the homogeneous boundary conditions along the walls and
at the free-surface (equations (C.4) and (C.5) respectively), one obtains

bo = Ano(®) (H = 2)+ 3 Aum(t) Jo(AmE) sinIzL}f{——z—z (C.9)

m=1
where ¢ = 7/R; A is the mth root of Jo(A) = —J1(A) = 0. The first three of these
roots are
A = 3.832 A2 = 17.016 Az =10.173 (C.10)
On solving for the unknown coefficients in equation (C.9) by putting (9¢n/02):=0 =
—1n (t)15(€), (nth component of equation C.3), one obtains

n = tn(t) | 26 (H—2) + R Z 2 Jo( k) sinhhn(H = 2)/ R]

0 Am J3(Am)  coshAnHIR (C.11)

where e, = f3 ¥n(£) £ d€ and dym = [ ha(€) Jo(Am€) € dE. For the hinged and fixed

conditions considered herein, these expressions are evaluated to be

Ji(ah) 2J1(af)
h_ Y1\%n f— n ]
e, o el _——a{lJo(ar{) (C.12)
&= apdo(Am)dier) 4 _ af Jo(Am)J1(e) [ 1 + 1 ]
" (a)? =A% i Jo(od) (ah)2 =22, (ah)?+ 22
(C.13)

C.2 Kinetic Energy

With the potential function ¢ established, T} can be computed from equation (7.12),
where S refers to the surfaces of the base-plate, tank-walls and the free-surface of the
liquid. This computation is further simplified by the fact that either ¢ or 8¢/9n are
zero for all surfaces except the base plate. On substituting for ¢ and 0¢/0z at z =

0, one obtains

T = 1n1/ [wo t) + Z W (t {2en Z 2dum Ji(/{ng)) tanh A";%H }]

n=1

o®) + 3 nlé )] 6t (C.14)

n=1
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C.3 Free Vibration of Equivalent Plate : Exact Solution

The governing differential equation for the elastically supported equivalent plate is

1d| d[ld { dw '
D, (v i (e ()} ) om0 ()

where p;, is the equivalent mass density incorporating the effect of the original plate
and the liquid. On assuming an exponential time variation for w and on suitably

written as

normalizing the above equation, one obtains

A riere o

where ¢ = r/R; w* = w/R; k* = kR'/D,; and (C*)* = w?p,/k is a frequency
coefficient. It should be noted that C* differs from the coefficient C' defined in equation

(7.29). They are related by
C? = (C*)*[L = fem] (C.17)

The boundary conditions for the normalized problem are as follows : At the center

of the plate,

»

dw
d¢
At the edge of the plate, the zero-shear condition is given by

=0 (C.18)

£=0

. s
w*|e-o is finite

Puw*  1d*w* 1 dw | Benk*(C*)w*

d¢s +Z de? - 6_2 dé ) =0 (C.19)

¢=1

The second boundary condition at the plate edge depends on the edge-support con-
dition. For the hinged case, the boundary condition is the condition of zero moment,

d2w* 1 dw*

_dfT + VpE—E =0 (C'ZO)

¢=1

while for the fixed case, the boundary condition is the condition of zero slope,

dw*

7| =" (C.21)

{=1

The solution to equation (C.16) depends on whether (C*)? is less than 1 or greater

than 1.
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C.8.1 Casel: (C*)?<1

Following the procedure outlined in [62], the general solution for equation (C.16) is

written as
w* = Dyber(ef) + Dabei(e€) + Dsker(e€) + Dykei(ef) (C.22)
where ¢ is related to the natural frequency coefficient through the expression
=k (1-(C7) (C.23)

On making use of the boundary conditions at £ = 0, one obtains
w* = Dyber(e€) + Dabei(ef) (C.24)

Hinged Support : On substituting the above expression into equations (C.19) and
(C.20), two equations in Dy and D, are obtained for the hinged case and are written

as follows :
eber” + vyber’ ebei” + vybei’ D, 0
Sber” + e2ber” — eber’  3bei’" + €2bei” — ebei’ D = 0 (C.25)
+ﬂem LE‘_;i‘l ber +,Bem LA_?';_C‘)_ bei 2

Fixed Support : The corresponding equations for the fixed case are obtained by
substituting equation (C.24) into equations (C.19) and (C.21) and are written as :

ber' bei' D, 0
S3ber” + e2ber” — eber’  €3bei" + e2bei”’ — ebei’ = (C.26)

‘*'Bem‘(—lk‘;-c4 ber ‘*’,Bemi—_‘lk‘;64 bei D 0

In equations (C.25) and (C.26), the prime notation denotes differentiation with
respect to ¢, and all functions and their derivatives are evaluated at e. '
To avoid a trivial solution, the determinant of the coefficients in equations (C.25)
and (C.26) must each equal zero. A single root for e is then obtained from the
resulting equation by trial and error. With € determined, the fundamental frequency

coefficient C} can be determined from equation (C.23).

C.3.2 Casell: (C*)?>1

In this case, the general solution for equation (C.16) can be written as

w" = D]Jo(éf) + .D2IO(€£) + D3I(o(6§) + .D4Yo(€€) (0.27)
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where ¢ is related to the natural frequency coefficient through the expression
¢ = k* ((C*)2 - 1) (C.28)
On making use of the boundary conditions at ¢ = 0, one obtains
w* = DyJo(€€) + Dalo(e€) (C.29)

The solution procedure then follows that shown for Case I and matrix expressions
similar to equations (C.25) and (C.26) can be written for the hinged and fixed cases
with Jo and I functions replacing the ber and be: functions respectively. Several roots
for € can then be evaluated for each of the determinant equations. The corresponding
frequency coefficients for the second mode of vibration are then determined from
equation (C.28). The lowest of these frequency coefficients corresponds to the second

mode of vibration.
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Appendix D

Effects of Roof-Liquid Impact

D.1 Background Information

For a general liquid-solid impact, if the impact is assumed to occur in a very short time
and is therefore considered to be an impulse, the linearized boundary condition along
the free-liquid surface can be written as ® = 0, where ® is the potential function
induced in the liquid. Then, on using the symmetry property offered by the ® =
0 surface, a section that is partially immersed in the liquid can be completed by
adding its reflection in the free surface and then allowing the liquid to flow past the
completed section. This approach, which was originally proposed by Von Karman
[77] and refined by Wagner [78], can be used to evaluate the wetting correction factor
aswell as the virtual liquid mass that participates in the impacting action.

For the roof-liquid impact problem considered herein, using the principles out-
lined above, a liquid of uniform velocity vq,(t) is presumed to flow past a lamina
of instantaneous length c(t) sticking out of a straight wall. For this lamina shape,
the associated potential function can be conveniently determined by the method of
conformal transformations, [43, 50]. The expression for ® along the surface of the

lamina is given by

D = vy, (t)y/c(t)? — X? (D.1)
and the associated velocity in a direction normal to the lamina is given by
00 () (D.2)

W=y = imajxe

where X and Y are the distance coordinates along and normal to the lamina respec-
tively.

It should be noted that the model outlined above is approximate since the ef-
fects of the base plate of the tank and of the far-wall have not been incorporated.
However, while these constraining boundaries will increase the participating liquid
mass, the effects are negligibly small for realistic tank dimensions, (see [61, 64] for

related information).
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D.2 Wetting Correction Factor

The wetting correction factor at the initial stages of impact, w,, can be determined by
evaluating the instantaneous vertical displacement induced on introducing the lamina
into the liquid moving at a velocity v,.

This displacement, n( X, t), can be evaluated from the time integral of the velocity

given by equation (D.2), which at the initial stages of impact, is written as

2o 9T e(r) (D.3)

t Vo _ c(t)
0= | T T e

The surface displacement at the edge of the lamina is then obtained by putting

X = ¢(t) into the above expression

c(t) Vo or
= /0 = ) de(r) (D.4)

where 0c(7)/d7 is evaluated by differentiating equation (8.15) with respect to time.

At the initial stages of impact, one obtains

9elr) _ w, de(r) (D.5)

or ° or
where Oc,(7)/87 is evaluated by differentiating equation (8.14) with respect to time,

dco(T) 2R Vu(T)
r 7 do(7)tanmc(7)/2R (D-6)

which, for the initial stages of impact, can be written as

dc,(t) _4R* v,
or w2 dyco(T) (D.7)

On substituting equation (D.7) into equation (D.5), and the resulting expression into

equation (D.4), one obtains

1 w2d, pelt) ¢(7) 1 nid,c(t)?
n(c(t)t) = wz 4R? / \/1 — /e d (r) = w_g 4R? (D.8)

Alternatively, the surface displacement at the edge of the lamina can also be

evaluated from the relation

n(c(t),t) = do — d(c(t), ) (D.9)
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and for initial stages of impact, this can be written in the form

N mc(t)\  w2d,c(t)?
n(c(t),t) = d, (1 —cos— ) N2 (D.10)

From equations (D.8) and (D.10), it follows that

w, = V2 (D.11)

D.3 Virtual Liquid Mass

The virtual liquid mass that participates in the impact is evaluated by determining
the additional kinetic energy that is induced by introducing the lamina of length ¢(t)

into the flow,

_ o[ 00
T=5 [ esmdx (D.12)

On substituting for ® from equation (D.1), putting ®/0Y = va,(t) within the region

of the lamina, and integrating, one obtains
T=m%dwmmy (D.13)
On expressing T in the form T = Jm(t)va,(t)?, it follows that

m(t) = pi 7 e(t)? (D.14)

D.4 Wall Pressures
D.4.1 Rectangular Tanks

Let ¢(z,y,t) be the velocity potential function induced in the tank due to the impact
of the liquid against the roof. It should be noted that ¢ will incorporate the effects
of the conditions along the boundaries of the tank and is therefore different from the
® function defined for the lamina. The function ¢ satisfies Laplace’s equation,

Vig=0 (D.15)
and is related to the impact pressure by

0
p(z,y,t) = p 5? (D.16)
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The boundary conditions to be satisfied by ¢ are : (1) the velocity at the tank

walls must be zero

0¢ =0 (D.17)
0z|,__pr
(2) the velocity at the tank base must be zero, and
9¢ =0 (D.18)
ay y=0

(3) the condition at the top is

99| (t) for R-c(t)<c<R

Oy y=H

9| _0 for -R<az<R-c) (D.19)
Ot |,y

Any free-surface deformations in the non-impacted portion are implicitly ignored in
the second part of equation (D.19). Furthermore, it is seen that the first part is a ve-
locity condition while the second part is a pressure condition. This mixed-boundary
value problem can be considerably simplified by using the previously established av-
erage pressure over the impacted portion. Equation (D.19) is therefore rewritten in

the form,

¢ = P(t) for R-c(t)<z<R
2 W
9¢
— =0 for —R<z<R-—c(t) (D.20)
Ot |,y

where p,(t), the average roof impact pressure, is given by equation (8.29).
On separating the variables of & and y, substituting in equation (D.15) and satis-
fying equations (D.17) and (D.18), the solution for ¢ is given by

' & cosh(nmy/2R)  nrm(x — R)
#(@y,t) = 7;, () cosh(nw H/2R) 3R (D-21)

where B,(t) are arbitrary functions of time. On determining them by satisfying
equation (D.20), the hydrodynamic impact pressure at any point and time can be
written in the form
c(t) & 2 cosh(nwy/2R) . nme(t) nw(z— R)
t) = pp(t) | = =
P(z,y,t) = pe(t) 2R +n=1 nr cosh(nwH/2R) STHR T oR

(D.22)
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D.4.2 Cylindrical Tanks

Let ¢(r, 0, 2, 1) be the velocity potential function induced in the cylindrical tank due to
the impact of the liquid against the roof. The function ¢ satisfies Laplace’s equation
and the boundary conditions are : (1) the velocity at the tank walls must be zero

9
or

=0 (D.23)
r=R .

(2) the velocity at the tank base must be zero, and

9¢

z=0

(3) the condition at the top is written as

% = —-—mcosa for R—c(0,t)<r <Ry —0,(t) <0<6,(t)
ot z=H P
9¢ =0 for r<R—c(0,t); —0,(t) <0 <0,(t)
ot |,_p
o¢ =0 for r<R; 0>]6:(1) (D.25)
Ot |,_y

where p,(t) is taken to be the roof pressure evaluated for the two-dimensional case
and is given by equation (8.29).

On separating the variables of r, z and 0, substituting into Laplace’s equation and
satisfying equations (D.23) and (D.24), the solution for ¢ can be written as

— o~ o Jn(ﬂmnﬁ) COSh(ﬂm"z/R)
¢=2, 2, Bl 7 5N ok B BT R)

n=0m=1

cosnd (D.26)

where ¢ = r/R; J, is the Bessel function of the first kind and the nth order; and
Bmn is the mth zero of J,(B) = 0. Bpa(t) are determined by satisfying equation
(D.25). On multiplying through by & Jn(Bma) cosnd d€ df, integrating from 0 to 1
for ¢ and from 0 to 27 for 0, and making use of the orthogonality properties of the
Bessel functions and of the cosine functions, one obtains

_plt) [ Jo(Bmo€) coshBmoz/R
p(r,0,t) = T mz=:l dmo(?) Jo(Bmo)? coshfmoH/R

= 252 Jn mn h mn R
> _2_ﬂ__".‘."n_2dmn(t) Jngzmjz ccoojhﬂﬂmnlzf// R cosnb (D.27)

-+
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where dpp(t) for n =0,...,00 is given by

dron(t) = /9o(t)

1
—0o(t) /l_c(t)m € Jn(Bmn€) cosnl cosf dE db (D.28)



