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Abstract

The stability of arch and shell structures with random imperfections subjected to
random loading is investigated. Arches are analyzed under different types of transverse
loads while axial and/or pressure loading are considered for cylindrical shells. A
probabilistic analysis of the randomness in the geometric imperfections along with the
uncertainty in both loading and material properties is presented. The study investigates the
effect of spatial variability of the different random parameters in the problem on the
buckling load and the associated displacements. The imperfection sensitivity is studied for
several geometrical configurations of the arches and shells and for various values of the
statistical parameters for the random shape imperfections.

One- and two-dimensional random fields are introduced with different types of
autocorrelation functions to characterize the structures and the imperfections. A sufficient

number of terms is considered using two series expansion methods to express the field in




terms of its spectral decomposition. The first employs the Karhunen-Loeve theorem where
the autocorrelation coefficient function is expanded in terms of its eigenvalues and
eigenfunctions, while the second method utilizes any complete set of orthogonal
functions. These techniques are compared with both the midpoint and local averaging
methods for random field discretization and prove to be more computationally efficient
within a given level of accuracy.

Both first- and second-order reliability methods (FORM/SORM) along with Monte
Carlo simulation are used to evaluate different modes of instability based on the buckling
load or the associated diéplacements. The probability density and the cumulative
distribution functions of the buckling load are presented for various distributions of the
imperfections. The sensitivity of the buckling load and the postbuckling displacements to
different parameters is also presented. An extensive parametric study through many
numerical examples is performed to establish a better understanding of the effects of the

spatially variable imperfections on the buckling of arches and shells.
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Chapter 1

Introduction

1.1 Motivation and Scope

The buckling resistance of arch and shell structures has become one of the major areas
of current interest in structural mechanics. This is due to the fact that buckling represents a
critical mode of failure for this wide category of structures. In many arch and shell
problems, the theoretical buckled form is in a condition of unstable equilibrium, and a new
position of equilibrium can exist at a greatly reduced buckling load. Thus, the theoretical
bifurcation or limit buckling load calculated by classical theory is rarely attained in
experiments or practical structures. Furthermore, imperfections in shell geometry, material
properties and applied loads reduce the buckling load significantly below the classical
value.

The present investigation is concerned with improving the characterization of buckling
loads and their imperfection sensitivity by treating imperfections as random fields. Then,
the methods of reliability theory can be used to calculate the statistical distributions of
buckling loads. Before elaborating on the methods of analysis, a brief review of both

arches and shells stability methods and of reliability theories will be presented.



1.2 Research Objectives

The goal of this research is to develop a rigorous, versatile and efficient method of
stability analysis of arch and shell structures with random geometric, material and loading
imperfections. The structures considered are:

a- Shallow circular arches under concentrated or distributed loads.

b- Circular cylindrical shells under pressure and/or axial loads.

To conduct this study, a theoretical analysis combined with powerful numerical tools is
developed for studying the response of the structures both in the deterministic and
probabilistic senses. The proposed methods are capable of treating the shell stability
problem accurately and efficiently, considering spatially variable imperfections and taking
into account the nonlinear behavior. The methods are capable of analyzing the

postbuckling behavior and determining the sensitivity of the solutions to each single

parameter.

1.3 Review of Stability and Reliability Theories

The stability of arch and shell structures received considerable attention after Koiter
proposed his theory in 1945 concerning the general initial postbuckling behavior of elastic
bodies under static conservative loads. In this theory, the stability of equilibrium at the
bifurcation point is thoroughly clarified on the basis of the energy criterion and then the
initial postbuckling behavior is asymptotically analyzed. This analysis leads to the
classification of bifurcation points into three types, that is, asymmetric, unstable

symmetric, and stable symmetric forms. Further, the effect of initial imperfection is taken
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into consideration, clarifying the imperfection sensitivity of the structure in connection
with the type of the bifurcation point.

In the early 1960’s the interest in a general theory sprang up almost simultaneously in
the United States and in England. In the United States, the Koiter theory was reconstructed
by Budiansky (1974) and Hutchinson and Koiter (1970) in a form more suitable for
application to elastic continua. They conducted numerous researches on the initial
postbuckling behavior as well as the imperfection sensitivity of a variety of shell
structures. In England, on the other hand, another general theory of elastic stability was
initiated by Thompson (1967) in terms of generalized coordinates of the discrete elastic
system, which has been extensively developed by Thompson and Hunt (1973) and their
associates at University College, London. Based on a similar theory, a comprehensive
study was performed by Britvec (1973) on the buckling behavior of various frame
structures, while the Thompson theory has been further refined and extended by Huseyin
(1975).

The stability of thin, shallow arches has received extensive treatment in the literature.
While the behavior can be modeled by reasonably straightforward and uncomplicated
equations, arches are capable of exhibiting both limit-point and bifurcation-type buckling.
The bifurcation buckling behavior is strongly affected by imperfections in the shape of the
arch and the material properties.

Analysis of buckling and postbuckling behavior of shallow arches dates back to
Biezeno and Grammel (1939) where they considered the stability of arches under a central

concentrated load. More recent work on the same problem was done by Fung and Kaplan
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(1952) and Dickie and Broughton (1971). The deterministic analyses of Gjelsvik and
Bodner (1962) and Schreyer and Masur (1966) are of particular relevance to the work
presented herein. The former investigated the clamped shallow circular arch under center
point loading using the energy method, while the latter obtained and solved the governing
differential equations for the same problem.

The circular cylindrical shell constitutes a fundamental element in light-weight
structures, thus making the determination of the buckling load one of the most crucial
problems for the design and development of these structures. Hence, numerous researches
have been conducted on this subject. The first complete presentation of shell analysis was
done by Love (1888). Love also had major contributions to shell theory in his book on the
theory of elasticity (Love, 1927). Following that, the basic equations for shell analysis
were established by Flugge (1932) and Donnell (1933). Early work by Karman and Tsien
(1941) studied the postbuckling behavior of cylindrical shells under compression by
applying the Ritz procedure to the Donnell nonlinear equations.

The buckling load of imperfect cylindrical shell highly depends on the extent and
shape of the initial imperfections. For shells with different boundary and loading
conditions, various responses and behaviors are obtained. The nonlinear analysis of
imperfect cylindrical shells represents one of the best known examples of the very
complicated stability behavior for thin-walled structures.

A central decision in buckling analyses of imperfection sensitive structures is the
choice of an appropriate imperfection form. In particular, either deterministic or

probabilistic approaches can be employed. Deterministic methods furnish a precise
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technique in the exploration of the mechanisms involved in the imperfection sensitivity,
whereas probabilistic methods may provide the key to acceptable design criteria.

The effect of random imperfections and loads on the buckling behavior of shallow
arches has been studied by many researchers. They recognized that if imperfections are
random quantities, then the buckling load must be expressed in statistical terms. These
studies include the work done by Sankar and Ariaratnam (1971) who obtained analytical
expressions for calculating the probability of the snapping of an arch in a specified time
interval under lateral loading that varies randomly with time. A recent study by
Palassopoulos (1995) presents a method for incorporating stochastic imperfections in the
Finite Element Method formulation for evaluating the buckling strength of imperfection-
sensitive arches. However, the previous work does not provide a complete statistical
distribution for the buckling load or extend the analysis to postbuckling deflections.

Probabilistic methods of analysis of cylindrical shells were initiated by Bolotin (1962),
who recognized that both applied loads and initial geometry imperfections should be
treated as random variables. His work was followed by a number of general analyses for
single-mode systems by Roorda (1969) and Hansen and Roorda (1974). These papers
investigated critical load and initial imperfection statistics as well as rudimentary
reliability theory concepts. In addition, Amazigo (1969) considered the influence of
axisymmetric random imperfections in an infinite cylindrical shell.

Many different approaches were suggested for methods used to model the existing
imperfections. Tennyson, et. al., (1971) proposed the measurement of a number of axial

imperfection profiles of cylindrical shells and the use of measured quantities in the
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asymptotic results given by Amazigo (1969). On the other hand, based on an examination
of a great deal of experimental work, Roorda (1971) has suggested that the statistics of the
initial imperfections depend on the radius to thickness ratio R/t of the shell. Both of these
design concepts assume that the design imperfections are axisymmetric. This assumption
is based on the hypothesis that axisymmetric imperfections are of primary importance.
Furthermore, it has been suggested that it is impractical for a designer either to determine
the statistics of a complete mapping of a shell surface or even to use such information if it
was obtained. The extent of accuracy of such suggestion is investigated in the current
study.

Reliability theory provides a useful framework for modeling probabilistic structural
problems. The application of probability-based methods to structural analysis was first
developed by Ang and Cornell (1974). At the same time Ravinadra et al. (1974) used the
safety index method for the design of structural members. In these analyses, the physical
variables are taken to be random variables and the reliability with respect to a given failure
mode is simply defined as the probability that the set of these random variables lies in the
safe region. Different methods of probabilistic simulations, mainly Monte Carlo
simulation, can be used to evaluate the failure probability. However, simulation methods
are limited to small one-dimensional stability problems, e.g., beam-columns and frames,
because of the computational complexity associated with analyzing larger problem.

The theory and methods of structural reliability have developed significantly during
the last decade. In this period research on both philosophical and conceptual issues, as

well as reliability and sensitivity computation methods has taken place. Extensive
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developments in the reliability methods (Madsen et al. 1986, Melchers 1987, Der
Kiureghian et al. 1986, 1987) enabled the use of versatile and efficient algorithms to
estimate the probability of failure replacing simulations methods. The field now has
reached a stage where the use of the developed methodology is becoming widespread.

The early studies were based on the mean-value first-order second-moment
(MVFOSM) method which had the basic disadvantage of lacking invariance with respect
to the formulation of the limit-state function. Elishakoff, et.' al., (1987) applied the first-
order second-moment (FOSM) reliability method to the buckling of cylindrical shells.
However, they considered the effect of imperfections on the buckling load only, without
extending to postbuckling behavior or studying the complete statistical distribution.
Arbocz and Hol (1991) combined the same FOSM method with a finite element analysis
of the stability problem of axially loaded cylindrical shells. The FOSM method had the
advantage of being invariant to the formulation of the limit-state function but, on the other
hand, lacked both comparativeness properties and completeness where it could not
account for information beyond second moments.

First- and second-order reliability methods, commonly referred to as FORM and
SORM, were introduced recently by Augusti et al. (1984) and Madsen et al. (1986) and
were used by Der Kiureghian and Liu (1986) to approximately evaluate the probability of
failure for any general problem. Either one of these methods can be briefly described as a
transformation from the basic set of random variables into a standard normal vector where
the limit state surface is approximated. Then the probability of failure is computed

according to the approximating failure surfaces; a plane in FORM and a quadratic surface
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in SORM. These methods showed wide acceptance in different fields of stability problems
as they have a more analytical basis and require less computational time than simulation
methods.

However, the application of FORM/SORM along with Monte Carlo simulation to get
a complete description of the response of imperfect shells and arches under buckling loads
is yet to receive the needed attention. System reliability analysis is another important issue
to be considered when a structure has more than one potential mode of failure which is the

case for the stability problem of shallow arches and shells as will be shown in this study.

1.4 Outline of the Thesis

The present research is focused on developing a general method that can provide
information on the reliability against ipstability of arch and shell structures with random
imperfections and random loads. The cases under study employ a variety of theoretical
formulations and solution techniques. This allows the treatment of a large class of shells
and arches for buckling loads under general imperfections in geometry, material and
loading.

The first part of this dissertation, presented in Chapter 2, deals with the definitions and
the methods of analysis used in the reliability theory. The formulation of the limit-state
functions defining the failure of the structures is discussed along with the different
techniques to evaluate and analyze the failure criteria. The use of random fields to
represent the continuous imperfect properties of the structures is introduced. Different
methods for the discretization of the random fields are presented.

The second part of this dissertation, presented in Chapter 3, deals with the buckling of
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shallow circular arches. First, the deterministic buckling loads for different modes of
instability are obtained using a nonlinear analysis. The arches are analyzed for different
degrees of shallowness under various loads and boundary conditions. The postbuckling
behavior for arch is studied for both symmetric or asymmetric responses using series
expansions to obtain closed-form solutions by energy minimization.

The third part of this dissertation, presented in Chapter 4, deals with the buckling of
cylindrical shells. They are first analyzed using the general shell theory based on the
equations given by Flugge, then, nonlinear Donnell’s theory is applied because of its
relative simplicity and practical accuracy. The analysis in each case is based on the
minimization of the total potential energy of the shell with respect to the virtual
displacement consistent with the geometrical constraints along the boundaries.

In both second and third parts of this dissertation, the analysis starts by considering the
behavior of the structures under deterministic loads and with deterministic geometrical
and material imperfections. After reviewing the stability analysis methods, reliability
theory is introduced into the problem by considering random fields to model the
imperfections and various techniques to discretize the continuous fields. As a result, the
buckling load is a random variable with statistical properties that depend on the statistical
distribution of the imperfections. Different autocorrelation functions are employed to
describe the spatial variability of the imperfections. An interface technique is established
between the algorithms developed to analyze the shells and the general reliability code

CALREL (Liu et al., 1989).

Both first- and second-order reliability methods (FORM/SORM) are used to evaluate
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different modes of failure for the cylindrical shell and the arch based on the buckling load
or the associated displacements. Monte Carlo simulation (MCS) is used for comparison
matters in some of the smaller problems. Both the probability density and the cumulative
distribution functions of the buckling load are presented for different distribution inputs.
The sensitivity of the buckling load and the postbuckling displacements to different
parameters are also presented.

Throughout the analysis, different types of loading are presented along with a
parametric comparison between the different cases. For the arch case, various possibilities
of a concentrated load at the apex of the arch or a radial varying or uniform loads are
presented. Cylindrical shells under either pressure or axial loading or both of them are
analyzed for different types of boundary conditions.

For the case of the cylindrical shells, the effects of the imperfections on the stability
behavior are included in the analytic formulation and treated by the Galerkin method. The
geometric imperfections are modeled in a general form by a two dimensional Fourier
series. Complete solutions first are developed for the deterministic case by considering the
coefficients of the series representing the imperfection to be known parameters and
solving for the coefficients of the response of the shell under end loads and pressure.

An extensive parametric study is performed in the form of numerical examples to
establish a better understanding of the effects of the spatially variable imperfections on the
buckling of arch and shell structures. The different aspects of the responses are discussed
and compared with results from other methods. This shows how the reliability theory can

be used as a versatile tool in identifying realistically the behavior of almost any shell
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structure under buckling.

The imperfection sensitivity of the arch is evaluated from consideration of the
distribution of the buckling load for various values of the shallowness parameter. Different
height to thickness ratios are considered for the cylindrical shell. In both cases, the effect
of different fields on imperfections are considered with special emphasis on the sensitivity
of the buckling loads with respect to the various parameters identifying the imperfection
configuration and distribution.

Some of the practical applications of the theory are discussed. These include the
techniques proposed for the measurement and characterization of the initial imperfections
and their statistical distribution. Suggested methods of experimental verification are
presented. And finally, some proposed methods for specifying the allowed imperfections

in design code are considered.



| Chapter 2
Reliability Theory

2.1 Introduction

The methodology used in the probabilistic analysis in this research is reviewed herein
to the extent necessary to understand the formulation. Three reliability methods are
discussed namely, first- and second-order reliability methods (FORM and SORM,
respectively) and Monte Carlo simulation (MCS). FORM and SORM were developed in
the past decade to access the safety of structural components and structural systems while
MCS has been widely used for more than 50 years. A complete discussion of the
development and history of reliability methods can be found in Der Kiureghian and Liu

(1986), Madsen et al. (1986) and Melchers (1987).

2.2 Concepts of Component Reliability

The structural reliability problem is often formulated in terms of a vector of basic
random variables X = (X, X,, ..., X,), describing the uncertain components of
interests in the problem. These include quantities such as loads, environmental factors,
material properties, structural dimensions, and variables introduced in the problem to

account for modeling and prediction errors. A limit-state function g(X) (also known as the
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performance function) is a scalar function describing the limiting state of the structure in
terms of X.

The limit-state function is, by convention, formulated such that g(X) <0 denotes the

failure of the structure whereas g(X) 20 denotes its survival. The boundary between the

failure and safe sets
g(X) =0 2.1
is an n-dimensional hypersurface and is termed as the limit-state surface.

In order to illustrate the introduction of a limit state function in the stability problem,
we will start by discussing the classic example of the load-resistance problem. In this
case, the limit-state function is formulated as

g=R-S§ (2.2)
in which R is the resistance of a given structure and § is the load applied to the structure.
Both the resistance and the load are assumed random due to any uncertainty in the
problem. For each realization, the g-function can be either negative, indicating that the
structure failed to resist the load, or positive, indicating that the structure survived the
applied load. A general assumption in this classic example is the uncoupling of the
random variables since each of them usually depends on certain parameters different from
the other.

In arches and shells stability problems, various kinds of imperfections are inherent in
the analysis. These can be categorized into geometric, material and loading imperfections.
All of them have different levels of uncertainties, hence can be modeled as random

quantities. Uncoupling two quantities defining the load and resistance is not a straight
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forward task in this case. The instability (failure) of structures can be formulated in terms
of excess deflection or excess loading capacity as given by the limit-state function

g(X) = C,-C(X) (2.3)
where C, is a specified target value of a certain parameter C, which may be the buckling
load or the maximum deflection (at buckling), and C(X) is the value of this same
parameter evaluated for the state X. Thus P, from reliability analysis expresses the
probability that the random variable C exceeds C.. In other words, the failure is equivalent

to the failing of the structure to meet the design standards regrading the load or the

deflection.

2.3  Probability of Failure
By definition, reliability is based on estimating the probability of failure, which is

given by the n-fold integral

Pf = P[g(X)<0] = P[C,£C(X)] = I fx(x)dx (2.4)
2(X)<0

in which P[...] is the probability operator, the vector x is any realization of the random
vector X, and fy(x) is the joint probability density function (PDF) of X.

By varying the value of C, in Eq. 2.3 and repeating the reliability calculation, one
obtains P, (C)) and the cumulative distribution function (CDF) for the failure load or
deflection. The probability density function (PDF) can then be obtained either by
differentiating the CDF or (better) by using the sensitivity output that is easily computed
during the FORM analysis as will be discussed later in this chapter.

A number of problems exists in the process of evaluating the integral in Eq. 2.4 for
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continuous structural problems. The first difficulty is the existence of many random
variables which increase the number of the dimensions in the problem space making the
integration process very time consuming. A second problem results from the boundaries
defined by the g-function which usually have a complex formulation. Problems arise when
for each realization of the random variables corresponding to a single point in the domain,
a very lengthy numerical routine needs to be evaluated as in the case of cylindrical shells
analysis. Other difficulties are due to the magnification of numerical inaccuracies because
of the small numbers for the probability of failure in structural problems together with the
lack of complete information concerning the probabilistic distribution of the random
variables.

Many approximation methods have been used over the years to overcome most of
these difficulties. This includes first-order and mean-value first-order second-moment
(MVFOSM) reliability methods. However FORM and SORM have shown in recent years
to be good approximation methods for evaluating the failure probability. They have an
advantage over previous methods which lacked invariance with respect to the formulation
of the limit-state function, where different formulations of the same problem would lead to
different failure probabilities. Some of the previous methods also lacked comparativeness
properties and many lacked completeness where they could not account for information
beyond second moments. Compared with simulation techniques, FORM and SORM have
the advantage of obtaining good approximations in a tiny fracture of the time required

with simulation methods such as MCS.
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2.4 First- and Second-Order Reliability Methods

The primary purpose of reliability methods is to valuate in the n-fold integral in Eq.
(2.4). The use of FORM and SORM as approximation methods was discussed by Augusti
et al. (1984), Madsen et al. (1986) and Bjerager (1990).

A number of steps are included in the use of FORM and SORM. First, the vector of the
random variables X is transformed into the vector of uncorrelated standard normal variates
U (zero mean, unit variance and zero correlation) as illustrated in Fig. 2.1. The
transformation U = T(X) is generally a non-linear one-to-one mapping existing for random
variables having continuous strictly increasing joint cumulative distribution function
(CDF). In other words, the original joint PDF is transformed from the physical space (x-
space) to the standard normal space (u-space). Then Eq. (2.4) becomes

P, = j (27)~"/2 exp(—%uTu)du (2.5)
G(U)<0
in which G(U) is the limit-state function in the standard normal space. This transformation
depends on the distribution of the vector X and on the correlation between the variables.
For statistically independent Gaussian variables, the transformation reduces to a linear
mapping of the random variables. On the other hand, for non-Gaussian variables, the
distributions are assumed to be of the Nataf type as discussed later in this chapter.

The transformation to the u-space has a number of advantages including that the PDF
is rotationally symmetric. Also the PDF decays exponentially with the square of the
distance from the origin so that integrating at the design point, defined in the next

paragraph, should give good accuracy.
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The second step is finding the point u*, called the design point, which is the nearest
point on the limit state surface G(U) = 0 to the origin. The design point is considered to
have the highest likelihood of failure amongst all points in the failure region. The next step
is to approximate the nonlinear limit-state surface in the u-space by a tangent surface at
the design point. The distance (in space) between the origin and the design point is called
the reliability index, B since it turns out to be a basis for estimating the failure probability.

The design point has a practical significance. Since the probability density in the u-
space decays exponentially with u, the primary contribution to the probability integral in
Eq. (2.5) comes from the part of the failure region closest to the origin. Therefore, the
design point is an optimum point to approximate the surface G(U) =0.

In the FORM approximation, the tangent surface at the design point is a hyper-plane as

shown in Fig. 2.2, and the corresponding first-order approximation is

PfEPfFORM = (- (2.6)

where @(...) is the standard normal cumulative distribution function.

The SORM approximation is obtained by replacing the limit-state surface by a hyper-
parabolic surface at u*. The corresponding second-order approximation of the failure
probability is obtained in terms of the reliability index and the principal curvatures of the
hyper-parabolic surface. Several exact and approximate schemes are available to fit the
approximating surface to the original one based on point or curvature fitting. In the current
study, two methods are used. First, the asymptotic exact formula given by Breitung (1984)

m=1

P,=P;  =®(-B) ] {1+Bx;}" @7

i=1
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Where X, i = 1, 2,..., m-1 are the principal curvatures of the fitting paraboloid at the
design point in the u-space with the sign convention that curvatures are positive when the

surface curves away from the origin.

The second formula used is given by Tvedt (1988) which is an exact and numerically

feasible than Eq. 2.7. Here the failure probability is approximated by

had m-1
PfEPfSORM - () Re[i(%)llz j exp{(t-l; B)2/2} { l‘[ (1 _tKj)—l/Z} dt:| (2.8)

0 j=1
in which ¢(...) is the standard normal probability density function, x; defined as before,
and i is the imaginary unit. During the study, results calculated based on Breitung formula
were in a better agreement with results obtained by simulation methods.

The computational effort encountered in SORM is higher than that in FORM.
However, the results of the latter can significantly depart from the true solution for cases
where the limit-state surface has a significant curvature around the design point. Such
cases occur for highly nonlinear structures as for the case of the buckling of shells making
it important to obtain the second-order approximation. However, in either of the two
methods, usually much of the computational effort is in finding the design point. Thus, the

relative increase in the total processing time for using SORM instead of FORM is

generally small.

2.5 Design Point
The most time consuming aspect of the reliability analysis based on FORM or SORM

is the determination of the design point. This especially happens for higher dimensions
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problems and when long algorithms are included in the formulation of the g-function. The
design point determination is the solution of a nonlinear constrained optimization problem
in the from of

Minimize |u|
. 2.9)
Subjectto G(u) = 0

Many algorithms exist for this problems, including the HL-RF method, which was
originally developed by Hasofer and Lind (1974) and later modified by Rackwitz and
Fiessler (1978). Other methods include the feasible direction method, the gradient
projection method and the modified HL-RF which was later developed by Liu and Der
Kiureghian (1986).

A comparison between different optimization algorithms was done by Liu and Der
Kiureghian (1991), based on the generality, robustness, accuracy, efficiency and capacity
of the methods. They concluded that the HL-RF required the least amount of computation
and storage in each iteration and it converges in a few cycles. Hence it will be used
throughout this analysis.

The algorithm starts by selecting an initial point, x,, in the x-space, which may be the
mean point, then transform it to the u-space using the aforementioned one-to-one

mapping. A sequence of points is constructed based on the following procedure

u = [au +-—-—-——G(ui)
i+1 = i*i |Vu G(ut)l

] of (2.10)

in which

Vi G(u))

R 2.11
' Ivu G(",‘)' ( )

ol
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is a unit vector pointing in the negative gradient direction, and

V, G(u) = (aiulc(u), ...... ,%G(u)) 2.12)

is the gradient vector which can be estimated in terms of the gradient vector in the x-space,

V. g(x), as follows

Vi G(u) = {Vx g(0)} uyx (2.13)
in which J, , is the Jacobian of the transformation from the physical to the standard-
normal space. The algorithm usually converges to the design point in a few iterations. The
reliability index is then evaluated as

B = o* u* (2.14)
in which ou* is a unit normal vector at the design point directed towards the failure region

as shown in Fig. 2.2.

Care should be taken in choosing the initial point because of the possibility of the
existence of a number of local minima. In such cases, more than one initial point should be
tried in order to reach the global minimum. For extremely noisy or complex limit-state
surfaces, using a number of starting points or the use of a smoothing algorithm usually
improves the optimization process. Converging to a local minimum value and evaluating
the failure probability on this basis would result in incorrect information regarding the

behavior or safety of the structure under consideration.

2.6 Sensitivity Measures

Measures of sensitivity are easily obtained as a part of the FORM analysis.
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Sensitivities are in the form of first-order derivatives of the reliability index and the first-
order approximation of the probability of failure with respect to the input random
variables, as well as to the deterministic parameters included in the g-function. The
sensitivity measures show the relative importance of each random variable or
deterministic parameter on the behavior of the structure.

One measure of sensitivity is the partial derivative of  which can be obtained either in

the standard-normal space as

_[9B_ B
VB = [au,’ ...... , au,,] = oF (2.15)
where
« o _ YuGW*) (2.16)
|V G(u)]

or in the physical space as

VB = (V,‘*B)Ju*’x,, = oc*Ju,,'x* (2.17)
in which Ju*' o Is the Jacobian of the transformation from the physical to the standard-
normal space evaluated at the design point.

The aforementioned sensitivity in the u-space is evaluated with no additional
computational effort since o* is readily available during the obtaining of the design point.
However, the sensitivity in the x-space would be more physically meaningful. Der
Kiureghian and Ke (1985) normalized the sensitivity measure in Eq. 2.17 in order not to

be dependent on the units of x*. This is known as the unit gamma sensitivity vector
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_ (Vx*B)D

Y= m (2.18)

in which D is the diagonal matrix of the standard deviations of X.

Since choosing the appropriate probabilistic distribution plays an important role in the
reliability results, a good measure of sensitivity is with respect to the parameters of the
distribution function. This include the mean, standard deviation, and correlation
coefficients of the random variables. Writing the joint PDF of the basic random variables
as fy(x) = fx(x,0), where 0 is the vector of distribution parameters, then the

sensitivity can be given as (Madsen et al. 1986)

VB = oc*Ju*’ 0], (2.19)

and by applying the chain rule
VoP; = ~0(-B(8))VoB (2.20)
where J us0|, is the matrix containing the partial derivatives of the transformation with

respect to O evaluated at the design point. This particular equation is sometimes difficult to
evaluate for certain distributions.

The other important set of sensitivities which can be obtained is with respect to the
deterministic parameters in the g-function. This include C, defined in Eq. (2.3) which
shows the sensitivity of the reliability index with respect to variations in the chosen target
load. Information about the sensitivity with respect to the correlation length of the used
autocorrelation function is also important. Writing the limit-state function as
g(x) = g(x, ®), where @ is the vector of deterministic parameters, then the sensitivity

can be written as (Madsen et al. 1986)
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D S x
VB = IV G(u*)lvm g(x*, w) (2.21)

u
and by applying the chain rule

VoP; = —(-B()) Vo (2.22)

Applying Eq. (2.21) to Eq. (2.3) to evaluate the sensitivity with respect to C, gives the

simplified formula

1
Ve B= /—mm—— (2.23)
! |Vu* G(u*)'
2.7 Monte Carlo Simulation Methods
During this study, comparisons and verifications of the reliability results using FORM
and SORM are accomplished based on Monte Carlo simulation (MCS) method. The
comparison is usually done for smaller dimension problems because of the length of the

computation time associated with MCS.

The method used is the so-called zero-one indicator-based Monte Carlo simulation

which works by defining an indicator function, I(x), such that

1) = 1 if g(X)<0 (Fail) @224
“lo if g(X)>0 (Safe) ‘

Then, the probability of failure is estimated based on the indicator function according

to the following expression

P, = | fx(®)de = [I1(x)fy(x)dx = E[I(x)] (2.25)
g(X)<0 X

in which E[...] is the expectation operator.
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By performing N Monte Carlo simulations by random selection of the prescribed joint
probability density of the vector X, an estimate of the probability of failure P ¢ is given as
follows
N
P = ElPjl = 53 p, (2.26)
i=1
where

p; = I(x)) (2.27

in which x; denotes the i simulation.

An unbiased estimate of the variance of P ¢ can be given by
2 1 y
A -~ - 2
1P = o 1).2](;), Pp) (2.28)
i=

By increasing the number of simulations, higher accuracy is reached in evaluating the
probability of failure. A threshold is considered for the value of the coefficient of variation
of the estimate of P, in order to determine the stopping criterion for MCS procedure. The

coefficient of variation is given by

cov.[P/l= uld) (2.29)
Py
where
-P;) P
o2[P] = P—f(—lN—P—f—)st if P, is small (2.30)

Thus for small P, the number of Monte Carlo simulations required can be calculated as
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1
= (2.31
P,(cov.[Pf])? )

For an assumed example threshold of a c.0.v. of 0.1, the number of simulations required is

about 100/P,.

2.8 System Reliability

When a structure may fail partly or totally in more than one mode, the reliability
problem is said to be a system reliability problem. If the structure has such properties that
it always fails totally according to its weakest mode, the reliability will be smaller than
calculated for each single mode. This is a so-called series system effect, and this is the
difference between component reliability, where only one failure mode in considered, and
system reliability, where more than one mode are considered.

System reliability is considered in the analysis of the buckling of shallow arches and
cylindrical shells. For the arch, both symmetric (limit-load) and antisymmetric (snap-
through) buckling can occur in the structure. Similarly, for cylindrical shells, more than
one mode of failure is possible based on the number of circumferential waves in the
critical buckling load. The initial geometric configuration and the amount of imperfection
are the factors determining which mode will occur, and since the geometric imperfections
are treated as random variables, the same arch or shell may buckle in more than one mode.
For this case, the state of the system is described by the state of its components as Eq.
(2.3) becomes

gi(X) = C,-C(X). (2.32)

where g,(X), i=1,...,n, defines each mode of failure. The threshold C, can be the same if the
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failure mode is assumed to be the exceeding of a certain deflection or stress, or more than
one threshold can be used for the case of combing failure modes based on deflections

along with stresses. The failure, F, for a series systems can then be given as

F=0)gi(X)<0 (2.33)

The failure probability of series systems is calculated in terms of upper and lower
bounds. First-order bounds make use of the individual component failure probabilities
only, while second-order bounds make use of individual probabilities along with the
intersection probabilities defined as

Pfu = P[g{(X)<0M g;(X)<0] (2.34)

2.8.1 Unimodal Bounds

This is the simplest case where first-order lower P, and upper P, bounds are obtained

as

n
= max(Py)

i =

=
t~
I

(2.35)

~
N
I

n
= min[z Pf,’ l]

i=1

2.8.2 Bimodal Bounds

One formula for the second-order bounds is given by Ditlevsen (1979) as
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n i-1

i=2 Jj=1
., (2.36)
i-1
Py=Pp+ 2, {Pf, - max Pf,,}
i=2 B
2.8.3 Reliability Index for Bounds
Reliability indices for the lower B, and upper B, bounds are given as
-1
B, = -2 (Py)
Y 2.37)
BU =-® (Pp)

2.9 Random Field Discretization

Analysis based on the aforementioned reliability theory is founded on introducing
randomness into structural problems in the form of discrete random variables. However,
description of structure geometry, loading, and material properties usually involves
continuous functions for which uncertainties may be specified in terms of random fields.
Thus, before undertaking reliability analysis, the random fields must be transformed into
sets of discrete random variables.

The proposed discretization approach is based on the use of mean, variance and
autocorrelation coefficient functions of a given random field. The dimension of the vector
X of random variables for reliability analysis depends on the number of random variables
used in the selected discretization technique. Thus, the number of random variables
required for accurate discretization affects the computational effort in the reliability

analysis.
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Following the notation of Li and Der Kiureghian (1993), we consider a
multidimensional Gaussian random field v(z) defined on the domain Q of physical space
where z € Q as shown in Fig. 2.3. One of the most common and convenient ways to
represent the field is through its mean function ju(z), variance function ¢ (z), and the
autocorrelation coefficient function p(z, z') . Also let v, [v=v,,v,,....,,], denote a vector of
Gaussian random variables with a mean vector | and a covariance matrix X,, through
which the random field is to be described.

Four methods of discretization for the random field are considered within the scope of
this study. The simplest of the four is the midpoint (MP) method (Der Kiureghian and Ke,
1988) where the field within the domain €, of element k is described by a single random
variable representing the value of the field at a central point z; of the element. The field
value within the element is assumed to be a constant, i.e.,

Mz) = v(zy) ;s z€ Q (2.38)
where #(z) is an approximating vector consisting of a set of random variables which
represent the discretized random field v(z). The mean vector | and the covariance matrix
., of #(z) are readily available from the mean, variance, and autocorrelation coefficient
functions of the field evaluated at the element central points.

The second method considered is the local averaging (LA) method (Vanmarcke and
Grigoriu, 1983) where the approximating field within each element is described in terms

of the local average of the field over the element, ¥, ie.,

Wz) = [v(@dQ/ [dQ =7, zeQ, (2.39)
Q Q,
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The mean vector [ and the covariance matrix X, of #(z) in this case are obtained in
terms of integrals of the moment functions of the random field over the elements
(Vanmarcke 1983).

The realization of the random field based on both MP and LA methods is a stepwise
function with discontinuity along the element boundaries. One might expect a somewhat
smaller discontinuity in the latter method because of the averaging process. However, a
relatively fine mesh is required in both methods for accurate representation of the field.

The third method of random field discretization is the series expansion method based
on the Karhunen-Loeve (KL) theorem (Lawrence, 1987, and Spanos and Ghanem, 1989).
In this method the random field is expressed in terms of its spectral decomposition as

r
P(z) = Wz) +0(2) 3 ENifi(2) s zeQ (2.40)

i=1
where ; is a set of independent standard normal variates (zero mean, unit variance, zero
correlation) and A; and f(z) are the eigenvalues and eigenfunctions of the correlation

function obtained from the integral equation

[p@z 2 fi(z)dz = Myfi(2) (2.41)
Q

where the eigenfunctions are normalized to satisfy

[fi0f 2)dz = §; (2.42)
Q

where

1 i =
8y = =g (2.43)
J 0 if i#j
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Theoretically, an infinite series (r — o) is required for the complete representation of the
random field in Eq. 2.40. However, usually only a few of the terms with the largest
eigenvalues are enough to represent the field. The KL method requires the numerical
evaluation of the eigenfunctions of the autocorrelation coefficient kernel in general.
However, if the exact eigenfunctions are available, the KL method does not require a
discretization of the domain €, and it is found to be the most efficient method of the four
techniques considered here for discretizing the random field, i.e., it requires the smallest
number of random variables to describe the field within a given level of accuracy as will
be seen in the numerical analysis. The normal distribution for &, is only valid if the
random field is Gaussian. For other distributions of the random field, the distribution of E_,,-
is very complicated and unknown. Analysis based only on the distribution moments is
feasible in this case.

The final method, proposed by Zhang and Ellingwood (1994), uses a series expansion
(SE) similar to that of Eq. 2.40 but with f{(z) replaced by any set of orthogonal functions in
the generalized Fourier-type series form

r
M) = W)+ Y neh(z); zeQ (2.44)
i=1
where 1), is a vector of zero-mean random variables, ¢; is a vector of constant deterministic
variables to be determined, and h,(z) is a given complete set of orthonormal functions.
Using the definition of the covariance function C(z,z') of the random field v(z), along

with the orthonormality of A,(z), it follows that
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Con = | [ €z 21y (2INy(2)d2dz’ = cppe,EN,M, ] (2.45)
QQ

Thus, Eq. 2.45 provides a set of equations for the variables c; and the covariances E[n; .
The use of the SE method has an advantage over the KL method in general, in that no
integral equation need to be solved. For simplicity, 1; can be taken to have unit variance
and then C,, is given by Eq. 2.45 form =n.

All existing methods of discretization relate w(z) to 9(z) through a linear
transformation, thus assuming # is Gaussian preserves the Guassianity of v(z). Many non-
Gaussian random fields are transformable to Gaussian fields through nonlinear marginal
transformations such as Nataf-type model (Nataf, 1962). Basically, the Nataf model uses
the values of the marginal distributions and the correlation coefficients between the non-
Gaussian variables in the in x-space to obtain the distribution and the correlation of the

variables in the u-space. For a simple case of statistically independent variables, the
transformation takes the form
u; = O [Fy(x;)] (2.46)
where (Ifl (...) is the inverse of the standard normal cumulative distribution function and
Fy(x;) is the cumulative distribution function (CDF) of the variable x;. The application of
this model was explained by Der Kiureghian and Liu (1986). This model makes use of the
first two moments only of the probability distribution.
However, probabilities in structural reliability problems are often very small, making
results sensitive to the tail regions of the probability distributions which are more affected

by higher moments of the distribution. Therefore, for a non-Gaussian random field, a
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direct application of these nonlinear transformations may not provide sufficient accuracy
in tail probabilities, even if the first two moments are accurately represented. However, in
most cases, the distribution of #(z) would be nearly Gaussian due to the central limit

theory, regardless of the distribution of v(z) (see Li and Der Kiureghian, 1993).

2.10 Boundary Conditions

If the value of the random field is restricted at the boundary of the domain €2, then the
random field is inhomogenous and this must be taken account of in the discretization. The
SE method discretizes the random field using a set of complete orthogonal basis functions
which satisfy the boundary conditions. Therefore, the SE method requires no further
consideration. However, for the arch under study, when using the MP, LA or KL methods
to discretize the field, special considerations are necessary.

The random field representing the imperfections is considered to have a known mean
function and a known autocorrelation function for random variations about the mean. This
way the random field can be considered, strictly speaking, homogenous in the second
moments only, i.€, the variance function is taken to be a constant while the mean function
can vary from a point to another. This can be considered as a superposition of a
homogenous random field, with a zero mean, representing the imperfection and a
deterministic function specifying the mean imperfection along the arch. The

autocorrelation coefficient function for the random field can be described by

P(z,2) = p,(2, z')+‘i(i)-‘;izQ (247)
)

where p,(z, 2') is a homogenous autocorrelation function for the random field with zero



33

mean, while p(z, z') is inhomogenous because of its dependence on the mean values at
z, 2’ . However, if boundary conditions are enforced on the random field, then p,(z, z')
need not to be homogenous.

For cylindrical shells, the two-dimensional random fields defining the geometrical
imperfection is strictly homogenous in the circumferential direction as the cylindrical
shell is continuous. However, in the axial direction, we are faced with problem of
considering the effect of the boundary conditions on the homogeneity of the random field.
Thus, the boundary conditions effects are analyzed in a one-dimension only for both the
arch and the cylindrical shell.

For the arch, one possible approximation is to ignore the effect of the boundaries
entirely in the discretization process. In another approach, (believed to be novel), we
postulate that the small initial curvature K(8) of the imperfection is a homogenous random
field. Then, by integrating twice, the imperfection in the arch is given by the

inhomogenous function

00
w(0) = | [K(6")d0'd8" +C,6+C, (2.48)
-B B

where 8 is the polar angle measured from the center of the arch and C; and C, are random
coefficients computed for each realization of the imperfections so as to satisfy the
boundary conditions, e.g., w(£B) = 0 where B is one-half the included angle of the arch.
The relation between the autocorrelation functions for K(6) and #w(0) can be determined

by a differential equation. A similar relation for the imperfections W in the cylindrical

shell in the axial direction x can be given by
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W(x) = [[K(x")drdx"+ Cix+C, (2.49)
00

Comparison of results will determine the magnitude of error from neglecting the
inhomogeneity in the first approach. The use of Eq. 2.48 or Eq. 2.49 is not required in the

SE method if the expansion functions k,(z) satisfy the boundary conditions.
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i’ One-to-one mapping - 2 Gu)<0
u)<
gx)=0 G(u)=0
g(x)<0 G(u)>0
g(x)>0 joint PDF Standard Normal
Joint PDF
Xy U
Physical Space Standard Normal Space
Figure 2.1  Nonlinear transformation of the physical space into

the standard normal space
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SORM

Failure Surface G(u)=0

Failure Domain G(u)<0
Safe Domain G(u)>0 \

*

o

Standard Normal PDF

> Uy

Figure 2.2 FORM and SORM approximations to the failure
surface in the standard normal space



Figure 2.3 Random field mesh
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Chapter 3
Stability of Shallow Arches

3.1 Introduction

The buckling resistance of shallow arch-type structures subjected to a random
transverse load is investigated. A probabilistic analysis of the randomness in the geometric
imperfections along with the uncertainty in the loading and the material properties is
presented. The study investigates the effect of spatial variability of different random
parameters in the problem on the buckling load and the associated displacements.

In the present study, we first review the deterministic analysis methods for the
instability of shallow arches. The plane buckling loads for different modes of instability of
the arch under various loads and boundary conditions are obtained by nonlinear energy
analysis. The mode of instability depends on a dimensionless shallowness parameter. For
large values of this parameter, the perfect arch bifurcates into an unsymmetric mode
shape. For small values of the shallowness parameter, the perfect arch reaches a limit load
in a symmetric mode shape. Imperfections lead to a limit load instability in both cases
with stronger imperfection sensitivity in the unsymmetric case.

Next, considering initial imperfections to be random fields with known autocorrelation

coefficient functions over the arch, characterization of the random buckling load is treated

38
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as a problem in structural reliability theory. Various types of autocorrelation coefficient
functions are used to better characterize the structure and the imperfections. The random
field for the imperfection is discretized by the following methods: a) Midpoint (MP)
method; b) Local averaging (LA) method; c) Karhunen-Loeve (KL) theorem; d) Series
expansion (SE) method. In the first three of these methods, special calculations are taken
to account for inhomogeneity of the autocorrelation function due to end conditions.

Both first- and second-order reliability methods (FORM/SORM) along with Monte
Carlo simulation with the aid of the deterministic energy method are used to evaluate
different modes of failure based on the buckling load or the associated displacements.
Numerical results are presented to compare the convergence of the four discretization
methods and evaluate the effect of the non-stationarity. The probability density and the
cumulative distribution functions of the buckling load are presented for different
distribution inputs. The imperfection sensitivity of the arch is evaluated from
consideration of the distribution of the buckling load for various values of the shallowness
parameter. An extensive parametric study is performed to establish a better understanding

of the effects of the spatially variable imperfections on the buckling arch-structure.

3.2 Deterministic Stability Analysis

Let us consider a shallow circular arch of rectangular cross section, which generalizes
readily to other cross sections. Both ends of the arch are either pinned or clamped and the
arch is subjected to a radial or a concentrated loading as shown in Fig. 3.1. In view of the

shallowness assumption, the elastic axial membrane strain, €, is given by
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1 2
£ = E(u,e—w)+2R2(we) @3.1)
and the change in curvature, k, by
1
K = 7 W 3.2)

in which 0 is the polar angle measured from the center of the arch, R is the radius of the
arch, u is the tangential displacement and w is the radial displacement.
The initial geometric imperfections are specified as deviations from the perfect

circular shape by the function #(0) . The axial strain can then be written as

£ = ltg=W)+=o5(wo+ 2w o) (3.3)

2R?
in which w and u now are the elastic displacements measured from the imperfect arch, and
the change in curvature is still given by Eq. 3.2.
The total potential energy H of the system can be written in the dimensionless form
p
1

=3 j £2d0 + —— 24R2 K2d0 - =m Q(P, W) (3.4)
-5

where t is the thickness and & is the width of the arch, E is Young’s modulus, B is one-half
the included angle of the arch, P is the radial load, and the work term Q (Fw) depends on
the manner of loading.

Two methods of solution can be applied at this point, an exact solution based on the
governing differential equations obtained from Eq. 3.4, which will be used for an
introductory case involving only a one-variable imperfection. The second method is based

on a series solution obtained directly from minimization of H and allows a better
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representation of the complete spatial geometric imperfection.

3.3 Exact Stability Solution
For tangential equilibrium, the variation of the energy H, given by Eq. 3.4, with
respect to the displacement « must be zero, thus

€a=0
0 (3.5)

e =C
in which C is a constant proportional to the compressive membrane force in the arch.

Schreyer and Masur (1966) suggested a convenient form for C as

C = ———p? (3.6)

where p is a constant independent of 0.
For radial equilibrium, the variation of the total energy H, given by Eq. 3.4, with
respect to the displacement w must be zero. Substituting for € from Eq. 3.5 and Eq. 3.6,

with the use of Eq. 3.1, into Eq. 3.4, and differentiating, yields

4 2
a% 40200 = (P, p) (3.7)
where the function ©(P, p) is dependent on the loading case under consideration. The
previous differential equation can be reduced to a simpler form by introducing M = po.
Thus Eq. 3.7 can be written as

4 2
%+% = O(P) (3.8)

in which the function @(P) depends on the loading case considered.
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In the general case, the behavior pattern of the arch with a defined initial imperfection
at its apex, and linearly varying on both sides till it vanishes at the supports, is similar to
that of an arch under an antisymmetric loading component (Masur and Lo 1972). Based
on this criterion, it is instructive and convenient to separate any load P into its symmetric
and antisymmetric components by setting

P(0) = P(0)+P,(0)

3.9
Ps(e) = Ps(_e) Pa(e) = —Pa(_e)
Thus, a general solution of Eq. 3.8 may be expressed in the form
w = wi(n)+w,n)
4 2
dw, dw, — o(P 0) =
E +%‘ - s( s) Ws( )— Ws("e) (3.10)
4 2
dw, dw,
-(jﬁ +-(E‘l— = ea(Pa) Wa(e) = —wa(—e)

where the functions ®,(P,) and ©,P,) are loading functions in the same way as the
function ©(P) based on the use of the symmetric and antisymmetric components,
respectively, of the applied load. Although the governing equation is nonlinear, a linear
superposition of the displacements is feasible at this stage since the nonlinearity of the
problem will me taken care of later in the analysis.

As earlier described, linear initial geometric imperfection or load position
imperfection will result in analyzing a stability problem with a combination of both

symmetric and antisymmetric loading components, even if the original applied load was

symmetric.
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3.3.1 Uniform Radial Loading
The loading function Q(Pw) in this case will be

B
Q(P,w) = j pwdb (3.11)
-

where p = P/2p is the intensity of the pressure per unit length acting on the arch. The

governing equation will be in the form

d4 d2
w.dw _ ¢q
Tt (3.12)
where = pf and
24R3B3P
~4RB? 3.13
E1by2 B (3.13)
The general solution of Eq. 3.12 is
2_
w=2M2=2) 4 ¢ cosn + Cysinn +Can + Cy (3.14)

22

and by substituting the following boundary conditions in the solution

w= -j—:‘{- =0 atmn ==y for clamped ends
2 (3.15)
dw .
w=——=0 atn== for hinged ends
an’ n Y g

a set of four simultaneous equations in terms of C,, C;, C;, C, and ¢ (in terms of y) are
obtained. The fifth equation may be obtained by applying the boundary condition u = 0 at

N = xy and using Eq. 3.5 and Eq. 3.1 as
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Y
1 _ 2p2
-z—l-;jedn = (3.16)
thus
Y 72 ¥
ijdn-ZRsz( ) 6RE - 0. (3.17)

Using the value of w from Eq. 3.14 in the previous relation gives a quadratic in terms of g.
In order to get the load-deflection relation, we start by setting a value for ¥, solve for g
from the previous quadratic, then obtain w and P from Eq. 3.14 and Eq. 3.13 respectively.

This gives two points on the load-deflection curve (starting from both ends).

3.3.2 Center Point Normal Loading
The loading function Q(Pw) in this case will be
Q(P,w) = Pw, (3.18)
where w, is the deflection at the center point of the arch and P is the magnitude of the

concentrated load. The governing equation will be in the form

2

4
dw dw 1 12PRB

= 2L —-R 3:' 3.19
dn4+ n? 'yz[ Eby 8(m) - Rp G.19)

The general solution of Eq. 3.19 is

1
w= F{Cl(l —cosm) + Cp(n—cosm) + Cyn + Cy}

22 afy-1)- (P {10

(3.20)

in which
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0 n<o0

Lm0 3.21)

um) = {

The aforementioned boundary conditions and the additional relation given by Eq. 3.17 still

applies.

3.3.3 Linearly Varying Radial Loading

The loading function Q(P,w) in this case will be
p B
Q(P,w) = 32 jﬂ Owdo (3.22)

where P is the total radial load acting on the arch. The governing equation will be in the

form

4 2
dw  dw 1 (q+ RB?) 2]
Law 1 _R 3.23
dn*  dn? 72[ 2y P (3.23)

The general solution of Eq. 3.23 is

w = C cosm + C,sinn + Cyn + Cy (3.24)
3 RP2r, m?
+(g+R 2[_11_.__11_]4.__[1__]
@+ R = 5al* L 72

The aforementioned boundary conditions and the additional relation given by Eq. 3.17 still

applies.

3.3.4 Limit-load vs. Bifurcation Buckling

For a general shallow arch with unsymmetrical conditions either in the boundaries or

in the loading, the previous solutions yield only one equilibrium path and the
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corresponding buckling load.

The limit buckling load is the maximum load P associated with a symmetrical
deformation, whereas the bifurcation load is the load at which the deformation bifurcates
into an unsymmetrical form from a previous symmetric shape. For initially symmetric
arches, with symmetric boundary conditions and loads, both the limit buckling load, P,
and the bifurcation buckling load, P, can be determined numerically. Example load versus
center deflection curves are shown in Fig. 3.2 for a typical case in which bifurcation
buckling occurs first.

Depending on the value of A, the perfect arch would buckle either symmetrically or
unsymmetrically. In order to determine which type of buckling actually takes place, the
corresponding deflections, w; and w;, must be examined. Although P, is always less than
P, If w, <w, then the arch deformation will bifurcate unsymmetrically. Otherwise, the
bifurcation occurs in the unstable region (w;, >w)), and symmetric limit buckling occurs
first. In the last case, the arch passes into a transitional asymmetric equilibrium path after
it has already buckled along a symmetrical equilibrium path, and the governing buckling
load is P,.

Schreyer and Masur (1971) showed that for arches with clamped ends, under uniform
radial loading, the buckling mode depends on the value of i and A as follows:

1. For A<2.85,i.e. ¥,,,, <T, no buckling occurs.
2. For 2.85<A<5.02,i.e. ®<Y,,,, < 1437, only symmetric buckling occurs.

3. For 5.02<A<5.74,ie. ¥,,, 2 1.43n, antisymmetric bifurcation occurs but the arch

is still governed by the symmetric buckling criterion.
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4. For A>5.74,i.e. ¥,,,, > 1.437, only antisymmetric buckling occurs.

Where A is a geometric parameter given by

2 (3.25)

i

~

< PR
Tt

in which h is the height of the arch.
The previous relations are valid for a perfect arch with no imperfections. Depending
on the amount of the initial imperfection and its standard deviation, the arch can buckle in

either mode for each single realization of the random numbers in the same problem.

3.3.5 Numerical Results

The buckling behavior of three shallow arches with the properties defined in Table 3.1

are studied. Numerical values are considered for the geometrical parameters and for the

Table 3.1: Arch properties

Young’s
Arch B Modulus, E A . R : b !
Number || degree . inch inch inch
1b/in.2
1 30 29E6 2.69 3.65 1.00 0.37
2 30 29 E6 5.48 3.65 1.00 0.18
3 30 29 E6 7.31 3.65 1.00 0.14

modulus of elasticity rather than using dimensionless solutions, as considered later in the
chapter, in order to facilitate studying the effects of both uncertainties in material and
geometric quantities on the buckling load without any normalizations. Load-deflection

curves were obtained for each case. Various combinations of loadings and boundary
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conditions are considered. An example loading case is considered for the three arches
under a combination of a uniformly distributed radial loading combined with a linearly
varying load. Both the modulus of elasticity and the magnitude of the linear loading are

considered as random variables with statistical properties as shown in Table 3.2. The

Table 3.2: Random variables

Random Mean Variance
Variable T o?
E 29E6 0.25
P, 1.0 0.50

consideration of a random variable representing the amount of the varying load allows for
considering uncertainty in the loading amount and position and can also be integrated in
order to allow for consideration of an initial geometric imperfection.

A basic analysis is first done using the mean values of the random variables. Load-
deflection curves are shown in Fig. 3.3 for the case of clamped ends arch. The relation is
plotted between the center deflection #w, and the load P* = P.R/BbEt? while the
relation between the axial force 1y in the arches and the load applied is shown in Fig. 3.4.
Different values for the mean of the linear varying load u(P,) are considered and the
resulting response are plotted in Fig. 3.5 and Fig. 3.6. The mean values considered are 0,
0.2,....,1.0. The highest mean value correspond to the most inner curves.

The reliability code CALREL is used to evaluate the probability of failure of the arch
using the form given by Eq. 2.3. Two failure criteria are considered based on exceeding a

defined threshold for the load applied or for the resulting deflection. Both symmetric and



49

antisymmetric modes of failure are considered. This gives a total of four limit-state
functions where any of them can be considered individually as the failure criteria or a
combination of two or more formulating a series system reliability problem.

Results will be shown for the failure probability of an arch with clamped ends and
having the geometric configuration number 2 given in Table 3.1 where a small change in
the value of A would change the buckling mode of the arch. The complete statistical
distribution of the buckling load or the resulting deflection can be obtained by varying the
value of the threshold C, as defined by Eq. 2.3 over a range of values and evaluating the

failure probability for each value. Then the CDF can be evaluated as
FPI(C,) = 1-Py(C) (3.26)

where F PJ(C‘) is the value of the CDF based on a given value of the threshold C,.

The CDF is shown in Fig. 3.7 for the aforementioned case giving the distribution of
the buckling load for the unsymmetric mode only. The PDF can be obtained by computing
the gradients of the CDF, Fig. 3.8, or better by using the values of the sensitivity with
respect to limit state parameter which is readily available during FORM analysis as shown
in Fig. 3.9. The effect of considering the randomness in the modulus of elasticity as well
does not have a large effect on the results as shown in Fig. 3.10. The effect of changing the
mean of the linear loading component is shown in Fig. 3.11, while the effect of changing
the variance is shown in Fig. 3.12.

The previous graphs were plotted for an arch with clamped ends. In order to compare
the effect of the boundary conditions, we will consider an arch with hinged supports and

having same values for all other parameters as the clamped arch. The loads are normalized
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by dividing by the value of the buckling load of the perfect arch, P*,,, in each case. The
CDFs are obtained for both of them as shown in Fig. 3.13.

Considering both symmetric and antisymmetric modes for the buckling of the same
arch and using bimodal bounds for the failure probabilities, the CDFs can be obtained as
shown in Fig. 3.14. The distribution is shown for the case of considering the symmetric
buckling load alone and for the considering the average of the bounds on the probability of
failure for the two modes. The figure clearly shows the increase in the failure probability
when considering the two modes especially in the lower range of the curve as the

bifurcation load is lower than the limit-buckling load.

3.4 Series Stability Solution

The solution technique given in the previous paragraphs has the advantage of working
with a closed form formula for obtaining the buckling load and the deflections. This makes
it easier and less time consuming for the reliability analysis. However, the exact method
can not be applied easily for a general type of imperfections defined at every single point
along the arch. Hence the need for a series solution appears in order to be able to expand
the initial shape of the arch in terms of Fourier coefficients up to a sufficient accuracy.

The axial membrane strain and the change in curvature are given by Eq. 3.4 and Eq.
3.2 respectively. For tangential equilibrium, the variation of the total energy with respect

to the displacement u must be zero. Therefore, the axial strain is found to have a constant

value given by
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B
SR N P B =
¢ = 2R[3.[ [W 2R .e+2W,eW.e)]d9 (3.27)

Substitution of this value for € into the energy expression given by Eq. 3.4 yields the total

energy H as a function of w in the form

B 2
= 4_132_[_3{ [ [w——(w29+2w9we)]d9} 24R2 j W2 640 - EleQ(P w) (3.28)

We expand both w and # in generalized Fourier series as

w = i A,w, () (3.29)
n=1
and
W= 2 C,w,(5) (3.30)
n=1
where
¢ =0/B (3.31)

in which A, and C, are the amplitudes of the appropriate basis function w,(§) . Then Eq.

3.28 becomes

S AR R

2

24xf [Z“n n, cc] dG - Q(P*, w)

where
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HA B2R PR
H¥ = —, A=%*—, P*= 3.33
B3 t BbEL? (3.33)
and
All Cll
a, = E'B_z" Cp = E—ﬂz (3.34)
For any position of equilibrium, the potential energy is stationary, i.e.,
*
9H* _ (3.35)

The basis functions w,,({) in the series defined by Eq. 3.29 and Eq. 3.30 depend upon
the end conditions of the arch. Preferably w,({) should satisfy all geometric and natural

boundary conditions in order to minimize the number of terms required. The following

basis functions are used:

Both ends pinned:
w,(§) = sin [”—2"(1 + c)] (3.36)

Both ends clamped:

wa(8) = 5 [(=1)"*1+ cos(nn§)] (3.37)

DN —

The loading function Q (Pw) is substituted in Eq. 3.32 depending on the typical
loading case as discussed before.

Upon substituting the relevant orthogonal series expression, Eq. 3.36 or Eq. 3.37, and
the appropriate loading function into Eq. 3.32, the equilibrium condition Eq. 3.35yields a
set of n simultaneous nonlinear algebraic equations for a,, ... ,a, for a given P *. Solution of

this set of equations is carried out numerically using the iterated Newton-Raphson
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method. Alternatively one may fix w, and solve for P*, thus obtaining the complete load-
deflection curve.

The same technique used for the case of the exact stability solution for considering
whether symmetrical or antisymmetrical buckling criterion will occur still applies for this
method of analysis. A complete agreement in the results is obtained between both

methods of analysis for the case of a simple geometric imperfection at the midpoint of the

arch.

3.5 Random Field Discretization

The application of the reliability theory to the stability of arches involving continuous
random fields for modeling geometrical or material imperfection requires the use of any of
the discretization techniques mentioned in the previous chapter. The objective is to put the
problem in a form that can be analyzed using the component or system reliability theory.
The proposed approach is based on the use of mean, variance and autocorrelation
coefficient functions of an assumed known random field to characterize the initial
imperfection distribution. Thus, the geometric configuration and the material properties of
the arch are defined using a one-dimensional random field for each, which are then
discretized using a grid of random-field elements and nodes or as a series.

Four examples of autocorrelation functions are considered. Exact eigenfunctions and

eigenvalues are available for the first two of them while a numeric algorithm is used for

the other two.
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3.5.1 First Degree Exponential Autocorrelation Coefficient Function
Consider the kernel defined by the kernel equation

p(z,2) = eclz-2l (3.38)
where ¢ is a parameter setting the correlation length and z, z' are any two points on the
arch. The correlation length, 8, is defined as the length at which the correlation value is
e-1,ie., p(8) = e~! and is given for this kernel as 8 = 1/c. This kernel is related to a
first order Markovian process and is used extensively in earthquake engineering.
Realizations of this process are considered on the interval [-a, +a]. A closed form solution
for the eigenvalues and eigenfunctions for this kernel is given by Van Trees (1968) as

forn odd

e (3.39)
2
W, +c

cos(®,z)
= 3.40
Ia(2) sin(20,a) ( )

20

a+
n

and for n even

2c
¥
Aty = ey (3.41)

i *
f*u(z) = Sin(@%y2) (3.42)

J sin(20*,a)
a.— ——————

2%,

where ©, and ©*, are the solutions to the transcendental equations

c-otan(wa) = 0 (3.43)
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and

o* - ctan(w*a) = 0 (3.44)

3.5.2 Triangular Autocorrelation Coefficient Function
Consider the function defined as
p(z,2") = 1-dlz-z| (3.45)
where d is a parameter which can be used to adjust the distance |z —z'| of null correlation
between z and z'. The correlation length is given for this kernel as 6 = (1/d)(1 - e 1.
This kernel represents a linear decrease in correlation with separation, which may be
useful for certain guality control considerations arising from this study. The formulas for

the eigenvalues and eigenfunctions for this kernel are given by Spanos and Ghanem

(1989) as
for n odd
_ 2
g = (—0—30'_2 (3.46)
0,a\ .
cos(®,z) + tan (—2—-) sin(®,,z)
fu(2) = oo (3.47)
w,a sin(2w,a 1 w,a
o ZnZ) |9 - =20 ) o —sin? —n
ﬁ+ [tan( 2 ) l](z o, )+wnsm (mna)tan( 3 )
and for n even
- 24 (3.48)

nT L k22
o,*%c
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cos(w*,z)

Ja , Sin20*,a)

fi(z) = (3.49)

2" 20,

where @, and w*, are the solutions to the transcendental equations

tan(mé'a) = - (22_ a) (3.50)
"\

and

w*, = (n- 1)’5”, n=2,4,6,... (3.51)

3.5.3 Second Degree Exponential Autocorrelation Coefficient Function
Consider the function defined as
p(z,2) = ele@-2)P (3.52)
where c is a parameter used to adjust the correlation length and z, z' are any two points on

the arch. The correlation length, 8, is given for this kernel as & = 1/c.

3.5.4 Sinusoidal Autocorrelation Coefficient Function

Consider the function defined as

sin[c(z—2")] (3.53)

p(z,2) = c(z-7)

where the parameter c is used to adjust correlation length. For the last two kernels there is

no closed-form solution for the eigenvalues and eigenfunctions of the KL expansion.
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3.6 Numerical Results

Results are presented for the stability of shallow arches with various combinations of
loadings and boundary conditions. The geometrical imperfection in the arch is assumed to
be a one-dimensional Gaussian random field defined in terms of its autocorrelation
coefficient function, mean function, and variance function. The four forms of
autocorrelation coefficient function defined earlier are used in the computations. We will
consider only the random field representing the geometrical imperfection, i.e., the
modulus of elasticity is considered to have a deterministic constant value throughout the
arch

The random fields are discretized into sets of random vectors using the
aforementioned four discretization techniques. Based on each discretization, a set of
random variables is introduced into the reliability code CALREL, which calculates
estimates for the reliability index, the failure probability and sensitivity measures based on
either FORM, SORM or MCS. For each realization of the random variables required by
CALREL, a complete deterministic analysis of stability of the arch is performed in order
to compute the buckling load and the associated displacements, i.e., in each realization,
the imperfections are expanded in terms of Fourier series and a deterministic solution is
obtained based on the arch configuration in this realization of the random variables.

Two failure criteria are considered based on exceeding a defined threshold for either
the applied load or for the resulting deflection. The limit state functions are given by Eq.
2.3. Both symmetric (limit load) and antisymmetric (bifurcation) modes of failure are

possible. This again gives a total of four possible limit-state functions, any of which may
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be considered individually or in various combinations of two or more. In the later case we
have a series system reliability problem.

Based on a deterministic analysis of an arch with clamped ends under radial loading, a
value of A = 5.74 in Eq. 3.32 is the defining limit between buckling in either symmetric or
asymmetric modes. For A >5.74, antisymmetric (bifurcation) buckling occurs first,
whereas for A < 5.74 the arch will buckle symmetrically first. Therefore, we choose the
values A = 7.31, 5.74, 5.19 to illustrate the influence of the geometric configuration on the
buckling modes. Deterministic dimensionless load-deflection curves for a perfect clamped
arch are shown in Fig. 3.15 for the relation between P* and the center deflection
W, = w/2h where h s the rise of a perfect arch.

The mean function of the imperfection random field is considered to be the given
function w(0) . The imperfections are specified as a ratio of imperfection to arch thickness
as W = w/t. Two forms of mean imperfection functions are considered in the analysis.
The first is a symmetric higher harmonic mean function while the second field is a second
order antisymmetric function. Three different amplitudes are considered for the mean
function in each case. For the symmetric imperfection field, values of W, =0.5, 1.0 and
1.50 are considered as shown in Fig. 3.16.

The deterministic load-deflection curves are plotted for the perfect arch and for the
arch under the mean values of the three symmetric geometric imperfection random fields
as shown in Fig. 3.17, Fig. 3.18, and Fig. 3.19 for values of A = 7.31, 5.74, 5.19

respectively, 6 2 = 0.5 and 8/L = 0.25 for the triangular autocorrelation function. The

corresponding CDFs are plotted in Fig. 3.20, Fig. 3.21, and Fig. 3.22.
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The CDFs are shown in Fig. 3.23 for the distribution of the buckling load for the
imperfection fields with the variance values of 62 = 0.05, 0.25, 0.5, 0.75 and 1.0. The
PDFs shown in Fig. 3.24 can be obtained by computing the gradients of the CDFs or
(better) by using the values of the sensitivity with respect to the parameter of the limit-
state function which is readily available from the FORM analysis.

The second type of random fields representing the imperfection has a sinusoidal
antisymmetric mean function as shown in Fig. 3.25 for the values of the dimensionless
maximum imperfection W, = 0.5, 1.0 and 1.50 (at { = £0.5). The deterministic load-
deflection curves are plotted for the perfect arch and for the arch under the mean values of
the three antisymmetric geometric imperfection random fields as shown in Fig. 3.26, Fig.
3.27, and Fig. 3.28 for values of A = 7.31, 5.74, 5.19 respectively. For the random
imperfections, the corresponding CDFs for the buckling load are plotted in Fig. 3.29, Fig.
3.30, and Fig. 3.31. Values of 62 = 0.5 and &/L = 0.25 for the triangular autocorrelation
function are used in these computations. From these graphs, it can be seen that the mode
shapes of the mean functions affect the response greatly in the case of bifurcation
buckling. An antisymmetric imperfection lowers the buckling load much more than a
comparable symmetric imperfection. However, the limit buckling load remains almost
unchanged for different types of imperfection fields with the same amplitude. Further, a
narrower distribution is obtained for the buckling load under antisymmetric imperfection
showing less sensitivity towards uncertainties in the shape in this case. The corresponding

PDF:s for the buckling load are plotted in Fig. 3.32

A sufficient number of random variables must be employed in the discretization of the
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random field in order to obtain an accurate value of the reliability index for the buckling
load. Here, we compare the computational times for convergence of the various
discretization methods. Computational effort depends strongly on the number of random
variables. Computational time also depends on the efficiency of the computational
algorithm. For the sake of comparison, let us consider an arch with clamped ends with A=
574, 62 = 0.5, 8/L = 0.25 and W, = 0.5 throughout the following calculations. For
analysis based on the triangular autocorrelation coefficient functions, where exact forms
of the eigenvalues and eigenfunctions are available, the KL method requires the least
number of random variables to obtain a convergent reliability index as shown in Fig. 3.33.
Slightly more random variables are needed for the SE method. Since there is no need to
evaluate the eigenfunctions in the KL method, the SE and KL methods take a nearly equal
computational time. Both MP and LA methods require a much higher number of random
variables and three to four times the computational time to obtain the converged value of
the reliability index. The average size of the mesh used to discretize the random field in
both MP and LA methods is one half the correlation length. Less finer meshes were
sufficient in some cases of study. As expected, the four methods converge to nearly the
same value for the reliability index.

For the case of the sinusoidal autocorrelation function given by Eq. 3.53, there is no
available exact formulation for the eigenvalues and eigenfunctions in the KL method. An
IMSL FORTARN 77 library subroutine is used to evaluate them numerically. This
strongly affects the efficiency of the KL discretization method in that discretization of the

random field requires a fine mesh for numerical accuracy. This takes away the advantage
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of the KL method. A comparison between convergence of the various discretization
methods, shown in Fig. 3.34, indicates that the SE method is the most efficient technique
for the sinusoidal autocorrelation function.

A comparison is made between the values of the probability of failure obtained using
FORM, SORM and MCS. For MCS, 10,000 simulations were required to obtain a reliable
estimate of the failure probability while less than 15 iterations were needed for
convergence to the design point when using FORM and SORM. As shown in Fig. 3.35,
SORM and MCS results appear to be in a very good agreement. As expected, SORM
requires only a small fraction of the processor time required for MCS. On the other hand,
the increase in the processor time for using SORM instead of FORM is in the range of 5-
15%. Thus, FORM could be used to provide an initial estimate of the failure probability,
while for a small additional effort, a better estimate may be obtained using SORM.

The effect of the correlation length on the failure probability was studied. Three values
of the correlation length 8/L = 0.25, 0.5 and 0.75 are considered in the autocorrelation
functions for the cases where 0<|z—2z|<L. For the clamped arch, considering the
triangular autocorrelation coefficient function and using the KL method, a comparison is
shown in Table 3.3 for different values of the mean and variance of the imperfection. A
similar comparison is shown in Fig. 3.36 for the same case. The failure probability is
relatively insensitive to the correlation length in this case.

The table also illustrates the effect of the non-stationarity in the autocorrelation
function due to the boundary conditions on the failure probability. The effect of the non-

stationarity in the autocorrelation function due to the boundary conditions on the failure
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probability, which is mentioned in paragraph 2.10, is checked for the same previous arch

dimensions. For the case of an arch with clamped ends, the difference between applying

Table 3.3: Values of P, for the buckling load of the clamped arch under uniformly
distributed loading for different correlation lengths (C, = 6.35)

P K
Mean Variance 8/L=0.25 8/L=0.75
Stationary Non Stationary Non
Stationary Stationary

_ 0.25 0.956 0.954 0.933 0.928
W=0.5

1.0 0.912 0.919 0.892 0.902

Te Lo 0.25 0.561 0.560 0.542 0.544

o 1.0 0.549 0.552 0.531 0.534

T LS 0.25 0.023 0.030 0.002 0.002

' 1.0 0.112 0.118 0.072 0.077

Eq. 2.48 to compensate for the non-stationarity of the function near the supports, and
between neglecting this effect is shown in Fig. 3.37. The same comparison is shown in
Fig. 3.38 for the case of an arch with pinned supports. As seen from theses figures and
from Table 3.3, the effect non-stationarity of the autocorrelation function is very small in
most of the cases considered. The application of the same Eq. 2.48 to the solution using
the SE method gave perfect agreement between the results obtained for either stationary or
non-stationary effects. This again proves that the SE method requires no additional
considerations.

The previous graphs were plotted for an arch with clamped ends. In order to compare

the effect of the boundary conditions, we consider an arch with hinged ends and having
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same values for all other parameters as the clamped arch. The loads are normalized by
dividing by the value of the buckling load of the perfect arch, P*,,, in each case. The
CDFs for both arches are plotted in Fig. 3.39 where the buckling load of the hinged arch is
seen to be more sensitive to the uncertainties in the geometrical imperfections.

Results presented in all previous figures are for pressure loading. A similar

probabilistic behavior and the same types of sensitivities were obtained for other types of

loading.



Figure 3.1
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Figure3.7 Cumulative distribution function for the unsymmetric
buckling load of the arch under imperfect uniformly
distributed loading.
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Figure 3.10 Cumulative distribution function for the symmetric buckling

load of the arch under uniformly distributed loading with
random E and loading.
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Figure 3.11 Cumulative distribution function for the symmetric buckling
load of the arch under uniformly distributed loading for
different mean values of the load imperfection.
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Figure 3.12 Cumulative distribution function for the symmetric buckling

load of the arch under uniformly distributed loading for
different variances of the load imperfection
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Figure 3.13 Cumulative distribution functions for the symmetric
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Figure 3.15 Relation between the uniform pressure and the deflection at
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Figure 3.16 Values of the mean functions for three different fields of
symmetric geometric imperfection along the arch with
clamped ends.
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Relation between the uniform pressure and the deflection at
the middle of a clamped shallow circular arch with A = 5.74
for different degrees of symmetric imperfection W.
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the middle of a clamped shallow circular arch with A = 5.19
for different degrees of symmetric imperfection W.
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Figure 3.20 Cumulative distribution function for the buckling pressure
of a clamped arch with A = 7.31, for different symmetric
geometric imperfection configurations (Straight lines
represent the deterministic cases with imperfection functions
equal to the mean imperfections).
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Figure 3.21 Cumulative distribution function for the buckling pressure
of a clamped arch with A = 5.74 for different symmetric
geometric imperfection configurations (Straight lines
represent the deterministic cases with imperfections equal to

the mean of imperfection functions).
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Figure 3.22 Cumulative distribution function for the buckling pressure
of a clamped arch with A = 5.19 for different symmetric
geometric imperfection configurations (Straight lines
represent the deterministic cases with imperfections equal to
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Figure 3.24 Probability density function for the unsymmetric buckling
load of the clamped arch under uniformly distributed
loading for different variances of the symmetric shape
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Figure 3.25 Values of the mean functions for three different fields of
antisymmetric geometric imperfection along the arch with
clamped ends.
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Figure 3.27 Relation between the uniform pressure and the deflection at
the middle of a clamped shallow circular arch with A =5.74
for different degrees of antisymmetric imperfection W.
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Figure 3.29 Cumulative distribution function for the buckling pressure
of a clamped arch with A = 7.31, for different antisymmetric
geometric imperfection configurations (Straight lines
represent the deterministic cases with imperfections equal to
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Figure 3.30 Cumulative distribution function for the buckling pressure
of a clamped arch with A = 5.74 for different antisymmetric
geometric imperfection configurations (Straight lines
represent the deterministic cases with imperfections equal to
the mean of imperfection functions).
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Figure 3.31 Cumulative distribution function for the buckling pressure
of a clamped arch with A = 5.19 for different antisymmetric

geometric imperfection configurations (Straight lines
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Figure 3.35 Effect of the reliability method used on the reliability index
for a clamped ends arch under pressure loading using SE
method.
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Figure 3.38 The effect of the non-stationarity of the autocorrelation

coefficient function on the reliability index for a pinned
ends arch under pressure loading using KL method
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Chapter 4
Stability of Cylindrical Shells

4.1 Introduction

The analysis of the stability of circular cylindrical shells represents one of the best
known examples of the very complicated stability behavior that can occur in thin-walled
structures. The presence of initial geometric imperfections in cylindrical shells is
recognized as a dominant factor in reducing the buckling load sighiﬁcantly below the
classical value obtained from linear theory. Due to the importance of cylindrical shells in
different types of civil, marine and aerospace structures, their behavior under various
loading conditions has received an enormous amount of research in the past.

For analysis of stability of cylindrical shells, the displacements, rotations and strains
are not small enough in comparison with unity to allow the use of linear theories. For the
considered cases, where deformations are accompanied by small strains and large
rotations, the linear stress-strain relations remain valid, but the nonlinear effect of the
rotations need to be considered in the displacement-strain relations. Further, the
equilibrium conditions have to be examined in the deformed state. The fundamental
deterministic analysis is based on two nonlinear theories given by Flugge (1932) and

Donnell (1933).
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In the present analysis, nonlinear geometric behavior in the buckling of cylindrical
shells is considered. The deterministic buckling loads for different modes of instability are
obtained using various energy minimization techniques. The shells are analyzed for
different shapes and amounts of geometric imperfections. Both axial compression and/or
uniform pressure loadings are considered with different boundary conditions. The
postbuckling behavior is studied for all possible responses depending on the chosen initial
imperfections of the shell.

A probabilistic analysis of the randomness in the geometric imperfections and the
uncertainties of the material properties is presented. The study investigates the effect of
the random spatial variability of these parameters on the buckling load and the associated
displacements.

Two-dimensional random fields are introduced with different types of autocorrelation
coefficient functions to characterize the material properties and the geometrical
imperfections. These random fields are discretized using two forms of the series expansion
method with a sufficient number of terms. The first technique employs the Karhunen-
Loeve theorem to express the field in terms of its eigenfunctions while in the other
technique the field is expanded in terms of its spectral decomposition using a set of
trigonometric functions. These techniques are compared with both the midpoint and the
local averaging methods and prove to be more computationally efficient within a given
level of accuracy.

Both first- and second-order reliability methods (FORM/SORM) are used to evaluate

different modes of failure based on the buckling load or the associated displacements. The
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probability density and the cumulative distribution functions of the buckling loads are
presented for different distribution inputs. The sensitivity of the buckling load and the
postbuckling displacements to different parameters is also presented. An extensive
parametric study is performed to establish a better understanding of the effects of the

spatially variable imperfections on the buckling of cylindrical shells.

4.2 Deterministic Stability Analysis

We shall consider moderately large deformations of a circular cylindrical shell with
radius R, length L, and thickness ¢. The shell is made of a homogenous, isotropic and
elastic material with a modulus of elasticity E, and Poisson’s ratio v. The coordinate
system is taken along the middle surface of the shell as shown in Fig. 4.1, and the

displacement components are denoted by U, V and W respectively.

4.3 Analysis Based on Flugge’s Equations

The basic nonlinear equations derived by Flugge (1932) are applicable to problems
with any buckling configuration, including the Euler buckling of long shells under axial
compression.

Flugge’s theory is based on the following set of assumptions:

General shell theory assumptions:

1. The shell is sufficiently thin, i.e., /R « 1 and t/L « 1, so that 0(1%) terms can be

neglected in the derivation of the governing equations.

2. Hooke’s law holds as the stress-strain relationship.

3. The strains € are sufficiently small, i.e., € « 1, so that the shell remains elastic.
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Kirchhoff-Love hypothesis assumptions:
4. Straight lines normal to the middle surface before deformation remain straight and
normal to the middle surface with their length unchanged after deformation.
5. In-plane displacements are infinitesimal, i.e., |U| « ¢ and |V] «¢.
6. The shell is in a state of plane stress.
Flugge’s assumptions:
7. The rotations are moderately small, but the effect of their products and squares on
the mid-surface strains are retained.
8. The curvature changes are small enough to allow linearized expressions for the
strain-displacement relations for bending strains.
9. In stress resultants expressions, terms with orders higher than (#/R)* are neglected
compared to the unity.
10. Equations of equilibrium are referred to the deformed geometry.
The governing nonlinear differential equations for a perfect shell were developed by
Flugge based on a variational principle. Introducing the initial geometrical imperfection

component W into the equations, we have the equilibrium equations

N (1+U )] + [N, (1+U )] +(NU ) + (N U ) @.1)
+p,—p(W, +W,) =0

[N, {14V, ~R(W+W)H +N,{1+ V,-R (W+W)H, (4.2)
~1
SR e My ) H(NV ) (N, V)
FRN (W AT )+ py=(p+RNDI(W, + W)+ R'vi=o0



~1 ~1 —
Mx,xx"'(Mxy"'Myx)'xy"‘My,),y'i‘R Ny{l +V’y—R (W+W)}

FANW + W)+ N (W, + W) -R 'V},
+{N (W + W)+ N LW+ W,)-R'V1},
+RN LV 4 p{1+ U +V + R (W+W)} =0

with the boundary conditions

N,=pX* or U
N, -RM,, = p* or V
Mx'x+(Mxy+Myx)’y = p,* or W
M, =M/* or w

W*
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(4.3)

(4.4)

(4.5)

(4.6)

4.7

where p,, p, and p are the x, y and z components, respectively of the distributed forces per

unit area of the shell, and the stress resultants per unit length, acting along the x = const.

and y = const. are defined as

t/2

NX’ ny - J. (cx’ Txy)(l - %)dz,
-t/2

/2

wNy = | (T, 0))dz,
-t/2

t/2

Mxr Mxy I (Gx’ Txy)(l - I%)Zdz ,
-t/2

t/2

M),x, My = j ('cyx, O'y)zdz.
-t/2

(4.8)

4.9)

(4.10)

@.11)

The stress components G, 0, and T,, are related to the strain components g, €, and ¥,



108

using Hooke's law for the state of plane stress, namely

.- E
o, = I—-_—-v—z-(ex+vey), (4.12)

= £ 4.13

o, = 1—_—\’2(ey+vex), 4.13)

T _E (4.14)

v = i)
The nonlinear strain-displacement relations are given by Flugge (1932) and Yamaki

(1984) for the perfect shell. The corresponding relations for the imperfect shell are given

by
e, = U, ,~2W  +¢&,, (4.15)
=y R w - Lw 4.16
€ = V"R T R=z" T (4.16)
_R-z R R
Y, = 522y R_ZU_y—(l+1T_-z-)zW,x),+nyo, (4.17)
where
1,.,,2 2 2 —
€ = E[U”‘-'- V'x+(W'x+W’xW,x)], (4.18)
1,,,2 -1 2 1,2
€y = E[U,),+{V'),—R W}l +{Wy+R V1, 4.19)

-1 = -— -1
Yoo =UU,+ V.{V,-R Wh+W W +W W, +W W + R VW, . (420)
Thus, using Hooke’s law and the previous strain-displacement relations, the stress
resultants can be obtained in terms of the displacements after performing the integrations

in Eq. 4.8 to Eq. 4.11.
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Since the boundary conditions of the shells are usually defined in terms of specified
values for the displacements or rotations at the ends, a displacement approach will be
considered to obtain the solution. For a typical case of a complete shell hinged in both the

tangential and the radial directions at both ends, the displacement components can be

introduced as

[ oo

v=3y 3 Amncos(mf—x)cos('%N), (4.21)

m=1 n=1

o0 oo

. (mux) . (ny
V= Z Zansm(-—L—)sm(ﬁ ), (422)

m=1 n=1

00 [ -]

w=Y ¥ c,,,,,sin('-'lzﬂ‘)cos(’%zv), (4.23)
m=1 n=1
and the imperfection as
W= > Dm"sin('-n—LE)cos('%N). (4.24)

m=1 n=1
where D,,, are known parameters based on the chosen imperfection while A,,,, B, and C,,,
are unknown coefficients.

The next step is to substitute for the values of the deflections and the imperfection in
the three governing equations, along with obtaining the values of the stress resultants
starting with the expanded displacements and applying Hooke’s law. Due to complexity of
the equations, a numerical procedure is developed for the analysis based on discretizing
the shell and applying Galerkin method to obtain a set of cubic equations in the unknown

parameters. An iterated Newton-Raphson method, from an IMSL FORTRAN 77
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subroutine, is then used for solving the equations. The terms were usually kept till the
tenth term and convergence of the solution was checked in each case. The equations
obtained are general for any value of N. In the solution, only one value was considered at a
time.

The linearized Flugge’s equations, were compared with the nonlinear equations.
Typical results for obtaining the linear buckling load are shown in Fig. 4.2 and Fig. 4.3
under either a uniform hydrostatic pressure or an axial loading applied to a perfect
clamped cylindrical shell. It should be noted that the mathematical complexity in the

linear case is a tiny fraction of the analysis required to evaluate the nonlinear buckling

behavior.

4.4 Analysis Based on Donnell’s Equations

Donnell’s nonlinear theory of circular cylindrical shells was established by Donnell
(1933). Owing to its relative simplicity and practical accuracy for many cases, the theory
has been widely used for analyzing both buckling and postbuckling problems.

The shell equations given by Donnell have a deficiency that makes them inapplicable
to the analysis of the deformations of a cylinder in which the magnitude of the in-plane
displacements are of the same order as that of the normal deflection. This deficiency
affects the buckling of a long cylindrical shell with a circular circumferential wave number
less than four.

Donnell’s theory still uses the general shell theory assumptions and the Kirchhoff-
Love hypothesis assumptions, given by items number 1-6 in the previous section, in

addition to the following set of assumptions:
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Donnell’s approximations:
1. Out-of-plane displacement is of the same order as the shell thickness, i.e.,
W = 0(1).
2. The derivatives of W are small and can be neglected compared to unity but their

squares and products are of the same order as the strains € considered herein, i.e.,

BB 16

3. Curvature changes are small and the influence of the in-plane displacements on

oW

dx

2
%" %" , (g_;") } = 0(e) (4.25)

them is negligible.
4. Shear resultants are negligible in the tangential force equilibrium equations.
The governing nonlinear differential equations are given by Donnell, based on a
variational principle, as

Ny +Ny +p, =0 (4.26)

Ny x+ Ny ,+p, = 0 (4.27)

Xy, x

4 -1 =
DVAW -R-IN,-N W ~2N W ~NW —p+pW +pW, =0 (428)

where p,, p. and p are the x, y and z components, respectively of the distributed forces per
unit area of the shell. The stress resultants per unit length, acting along the x=const. and

y=const. are defined as

t/2

NoNyNy = [ (6,0,1,)dz (4.29)
-t/2

where o, and o, are the stresses in the shell in the x, y directions and <,, is the shear stress
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in the x-y plane. The flexural rigidity of the shell is defined as

Et3
D= —— 4,30
12(1 -V2) ( )

The boundary conditions are given along the boundaries x = 0 and x = L in terms of

prescribed displacements, rotation or loads as

N,=p* or U=U* (4.31)
N,, = p,* or V=V (4.32)
M, +2M,, +NW +N W, =p* or W= W (4.33)
M, =MxX or W,= WX (4.34)

where p,’, p,* and p* are components of the external loads, per unit length, applied along
the edges and U*,V*,W" and W," are the prescribed values of the displacement components
and the rotation, respectively, along the edges. Various boundary conditions can be
constructed by selecting one condition from each pair of the previous equations.

For all cases under study, p, = p, = 0, which enables the use of the stress function F

defined as

N, =F N.,=-F_. (4.35)

¥ XX xy Xy

N,=F,,
Thus, the governing equations can be obtained in a more convenient form in terms of the

stress function instead of the stress resultant as a compatibility condition given by
2
VAF+ Et(R7'W , - W sy + W W ) =0, (4.36)

and an equilibrium equation given by

DV4W -R-F , ~F W +2F W ~F W —p=0. (4.37)
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The strain-displacement relations for analysis based on Donnell’s equations were given by

Yamaki (1984).

4.4.1 Imperfection Modeling
Denoting the initial geometric imperfection as W and introducing it into the previous

derivation, the Donnell type basic equations governing the finite deformation of the shell

become
VAF + EHRW (- Wy + W W, (4.38)
—2W W+ W oW + W W, )=0
and
DVAW =R'F , —F , (W + W) 1, (4.39)

—F (W4 W), +2F  (W+ W)y-p=0(W) =0

Both Wand W are expanded in generalized Fourier series as

00 oo

W= 2 Z @y Wonn» (4.40)
m=1 n=1
W= Z z CrunW i s (4.41)

m=1 n=1
where c,, are known parameters based on the chosen imperfections while 4, are the

unknown coefficients, and W,, is a complete set of basis functions chosen to satisfy the

boundary conditions of the shell at x = ié—'. For built-in ends

W, = %[(—1)’"” + cos(znznx)]cos(%N), (4.42)

and for simply supported ends
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W, = sin I:nm(-z + 0.5)] cos (%N), 4.43)

where N is the number of waves in which the shell buckles in the circumferential direction.

A general solution for the stress function F is obtained by substituting Eq. 4.40 and
Eq. 4.41 into the first of the two governing equations, Eq. 4.38, and integrating
analytically, we are able to get F in a series form. The homogenous boundary conditions
on the stress function are satisfied during the integration step. These conditions for a
cylindrical shell subjected to axial or pressure loading and clamped to stiff end plates

along both edges, x = il—f , are

2
U,=V, =0
. ’) ’y (4.44)
ie. F,—VF, =F  +Q2+V)F, =0
and
2nR 2R
j N,dy =0, j N.dy = I(p) (4.45)
0 0
. 2nR  _ 2nR _
ie. F,x|y=0 =0, 1!«jy|y=0 = II(p) (4.46)

where I1(p) depends of the type of loading considered as

II(p) = -xR?%p for pressure loading @.47)
II(p) = -P for axial loading '

where P is the axial load applied on the shell.

Thus, the expressions for W and F are obtained. The final step is applying the Galerkin

method to Eq. 4.39, which leads to
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a
=

V(W)W . dxdy = 0, r=1273,... s=1,23,.. (4.48)

ey NI

Zg ™=

[ 517wl

where W, are given from Eq. 4.42 and Eq. 4.43. Performing integration, we finally obtain
a set of cubic equations in a,,. Solution of this set is carried out using the iterated Newton-
Raphson method and thus determining the unknown deflections.

For a chosen problem with a deterministic field of imperfections, the analysis based on
Flugge'’s equations required 15 minutes of computing time on a Sun SparcStation 5
machine, mostly because of the size of iterations required to solve the resulting set of
equations. On the other hand, a solution in a very good agreement based on Donnell’s
equation was obtained in less than one minute for the same problem. Since application of
the reliability theory requires solving the deterministic stability problem for many
realizations, only Donnell nonlinear equations are used in the reliability analysis, and the

results are applicable to cases where the buckling mode has N 2 4.

4.5 Random Field Discretization

As in the previous chapter, continuous random fields are used for modeling
geometrical and material imperfections. The same discretization techniques previously
mentioned are used. Thus, the geometric configuration and the material properties of the
shell are defined using a two-dimensional random field for each, which are then
discretized using a grid of random-field elements and nodes or a series expansion.

Two types of autocorrelation functions are considered. The eigenfunctions and

eigenvalues are obtained numerically for both of them.
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4.5.1 First Degree Exponential Autocorrelation Coefficient Function
Consider the kernel defined by the equation
p(x,y,x,y) = e-lx=xl+ecly-yD) (4.49)
where ¢, and ¢, are parameters used to adjust the correlation length in the axial and

circumferential direction respectively, and (x, y), (x', y') are any two points on the shell.

Two, loosely named, correlation lengths, 6, and 8,, are given for this kernel as 8x = 1/c
and 8, = 1/¢,.
A more widely used formulation for the first degree exponential autocorrelation
function is defined in the form
p(x, %, y) = el (4.50)

as

"2 2

d = d(x=x)"+(y-) (4.51)
where the correlation is based on the absolute distance between the points without
reference to the directions. The first formulation allows for studying the effect of having

two different correlation magnitudes in different direction as will be shown later in the

analysis.

4.5.2 Triangular Autocorrelation Coefficient Function

Consider the function defined as

1=(c(lx=x|+c,ly-y) if >0
p(x, 3, x,Y) = { ! 2 (4.52)

0 otherwise

where ¢, and ¢, are parameters used to adjust the distances |x— x| and |y -/ of null
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correlation between any two points on the shell, namely (x, y) and x', y'. The correlation
lengths in the axial and circumferential direction are defined as o, = (1/c))(1 —-e 1)
and 5y = (1/c2)(1—e“) respectively. This kernel represents a linear decrease in
correlation, which may be useful for some quality control problems which is an
application of the results of this study.

The linear autocorrelation function can be given by a more widely used formulation in

the form

—cld  if Jdl<t
C

p(x,y, x,y) = (4.53)

0 otherwise

where d is given by Eq. 4.51 defining the absolute distance between the points without

reference to the directions.

4.6 Numerical Examples
Calculations were carried out for three geometric configurations for the cylindrical

shells. A geometric parameter, z, representing the relative length of the shell

2
z:ﬁTﬁ% (4.54)

where v is Poisson’s ratio (v = 0.3 here). The values 50, 100, 500 for z were considered
during the analysis in order to study different cases of either short or long cylindrical
shells. A value of R/t = 400 is considered throughout the analysis. This value was
considered in order to be able to compare the results obtained herein with similar

experiment work given by Yamaki (1984).
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The geometrical imperfection in the shells is assumed to be a two-dimensional
Gaussian random field defined in terms of its autocorrelation coefficient function, mean
function, and variance function. The two types of autocorrelation coefficient functions
defined by Eq. 4.49 and Eq. 4.52 are used. The correlation lengths in both of Eq. 4.49 and
Eq. 4.52 are chosen as 0.25L in the longitudinal directional and 1.5R in the circumferential
directional which is slightly less than one quarter of the circumferential length of the
cylinder. A value of 0.25L is considered for the correlation length in Eq. 4.50 and Eq. 4.53.
The mean function is considered to be defined in terms of a chosen value of the
imperfections all over the shell. Three different fields of imperfections are considered with
maximum amplitudes of the initial imperfections having the values W, = 0.2¢, 0.4 and
0.6. The expansions of the mean functions for the fields, with increasing imperfections, in
Fourier series, as defined in Eq. 4.41, are shown in Fig. 4.4, Fig. 4.5 and Fig. 4.6,
respectively. These expansions are evaluated for the case of a cylindrical shell having
clamped ends for which the basis functions are given in Eq. 4.42. The variance function is
considered to be constant and having a value of 0.5.

The modulus of elasticity E(x) is assumed to be a homogeneous Gaussian random field
with a constant mean function having a value of 29 x 10° Ib/in.? and a constant variance of
0.25. The two types of autocorrelation coefficient functions defined earlier are also used
for this case with correlation lengths of 8, = 0.25L and &, = 1.5R in the longitudinal and
circumferential directions respectively.

The random fields are discretized into sets of random vectors using the earlier

mentioned four methods. Based on each discretization, a set of random variables is
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introduced in the reliability code CALREL, which is then used to provide an estimate for
the reliability index, failure probability and sensitivity measures based on FORM and
SORM. The use of MCS proved to be very time consuming even in combination with

Donnell’s equation rather than Flugge’s.

4.6.1 Pressure Loading

The limit state functions considered in the probabilistic analysis are based on the form
given by Eq. 2.3. Two failure criteria are considered based on exceeding a defined
threshold for the load applied or for the resulting deflection. This again allows for the
possibility of either considering a component or system reliability problem.

Compared with the arch buckling problem considered in the previous chapter, the
number of random variables required for the buckling of cylindrical shells is much higher.
This makes it extremely important to use the most efficient method for discretizing the
random fields. For sake of comparison, we will consider a clamped ends cylindrical shell
and we will consider only the random field representing the geometrical imperfection, i.e.,
the modulus of elasticity is considered to have a deterministic constant value throughout
the shell.

The complete statistical distribution of the buckling load or the resulting deflection can
be obtained by varying the value of the threshold C, over a range of values and evaluating
the failure probability for each value. Then the CDF can be evaluated as

Fp(C) = 1-P(C) (4.55)

where F P[(C,) is the value of the CDF based on a given value of the threshold C,.
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The analysis is carried out using nonlinear Donnell’s equations and the relations
between the pressure and the deflection, edge shortening, or the volume change are
obtained for different wave numbers in the circumferential direction, N. The lowest
buckling load for different values of N is considered to be the critical buckling load.
Depending on the value of the geometrical parameter, z, and based on a considerable
number of problems analyzed, a certain range of N is considered for each problem as

shown in Table 4.1. More than one value of N can be considered for the same shell as each

Table 4.1: Values of N for the lowest buckling loads.

N
z Pressure Loading Axial Loading
Min. Max. Min. Max.
50 21 25 16 21
100 17 20 15 19
500 11 14 11 17

value will account for a different buckling mode with a combination of two or more
required in order to obtain the lowest possible buckling load at every stage throughout the
buckling process. This is another important aspect requiring the use of system reliability
methods in order to take into account different modes of failure.

During the reliability analysis, the complete deterministic solution for the stability of
the shells is carried out in order to compute the buckling load and the associated
displacements for each realization of the random variables, i.e., in each realization, the

imperfections are expanded in terms of Fourier series and a deterministic solution is
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obtained based on the shell configuration in this realization of the random variables.

Before discussing the probabilistic behavior of the shells, the difference between the
three types of imperfection fields considered during the analysis is checked
deterministically. The deterministic relations between the pressure K, = PRL%/T?D,
and the relative edge shortening A = AR/Lt, where A is the axial edge shortening, are
plotted under the mean values of the three geometric imperfection configurations
considered in the analysis as shown in Fig. 4.7, Fig. 4.8 and Fig. 4.9 for values of z = 500,
100 and 50, respectively. The relations are plotted for N = 13, 19 and 23 respectively
which give the lowest buckling loads for these configurations. The effect of increasing the
geometric imperfection magnitude is clear in comparison with the perfect shell response.

Using Eq. 4.55, the CDFs for the distribution of the buckling load under the random
imperfection fields are obtained. The effect of changing the dimensions of the shell or the
length to radius ratio on the response is shown in Fig. 4.10 for clamped shells under the
same imperfection distribution. On the other hand, the effect of considering various
imperfection distributions on the same shell with z= 500 is shown in Fig. 4.11.

To compare the effect of the mode shape of the mean function of the random field
representing the imperfections on the behavior of the shells, we will consider a simplified
function for the mean based on a single value of N. For the case of z = 500, where the
critical N value is 13, we shall consider two types of imperfection fields. The first random
field has a mean function with N = 13 with the maximum amplitudes of W, = 0.2¢, 0.4 and
0.6¢. The second field has N = 15 with the maximum amplitudes of W, = 0.2¢, 0.4¢ and

0.6¢. The distributions for both cases are plotted in Fig. 4.12 and Fig. 4.13 respectively. It
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can be seen that an imperfection shape similar to that of the critical buckling mode lowers
the bulking load considerably. However, the buckling load also becomes less sensitive to
the uncertainties in the imperfections since the distributions are narrower in Fig. 4.12 than
in Fig. 4.11. For an imperfection shape (W) with a value of N other than the critical value,
the buckling behavior is very similar to that of a shell under a general random field W)
with the same maximum amplitude.

Due to the fact that no exact forms are available for the eigenvalues and eigenfunctions
of the autocorrelation functions for the two-dimensional case, the KL method does not
prove to be superior to either the MP or LA methods in terms of efficiency. On the other
hand, the SE method shows a better convergence rate for the reliability index within a
lower number of random variables as shown in Fig. 4.14. For a number of problems, the
number of random variables required using the SE method is usually in the order of 50-
75% of that required using the other three methods. As expected, the four methods
converge to almost the exact same reliability index.

A comparison is made between the values of the probability of failure obtained using
FORM and SORM. As shown in Fig. 4.15 for the shell with clamped ends, FORM results
appear to be in an acceptable agreement with SORM. Since FORM solutions were
obtained in a very short computing time, as it required less than 15 iterations to converge,
it can be used to provide an initial estimate of the failure probability. For the cases under
study, SORM required a 4-15% increase in the computational time over FORM. Also, this
analysis shows the efficiency of using SORM compared to MCS as almost the same

results can be obtained using the former in a small fraction of the processor time required
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for the latter.

The values of the probability of failure based MCS were obtained for only three values
of the coefficient C, in the limit state function. The difference between theses values and
results based on SORM showed to be less than 0.5% of the probability of failure. This
agrees with the good agreement between MCS and SORM previously shown for the arch
buckling problem. It should be emphasized here that around 10,000 simulations are
required to get a reliable estimate of the failure probability using MCS which requires a
tremendous computing time compared with the 15 iterations needed for FORM/SORM.

In order to obtain a complete statistical representation of the buckling load, in the form
of a CDF, it is required to obtain the value of the failure probability for a large number,
namely 100 in the current analysis, of limit state functions by changing the value of C,.
Based on the previous comparisons, only SORM results and the use of the SE method
were considered in all the examples.

The effect of the non-stationarity in the autocorrelation function which is mentioned in
paragraph 2.10 is checked for a shell with clamped ends. The difference between applying
Eq. 2.49 to compensate for the non-stationarity of the function near the supports, and
between neglecting this effect is shown in Fig. 4.16 for a shell with z =500 under
imperfection mode number 1.

The type and properties of the autocorrelation coefficient function used in the analysis
play an important role in affecting the failure probability. Considering a clamped ends
shell and identical values for the correlation lengths and only changing the type of

correlation from exponential to linear has the effect shown in Fig. 4.17 on the results. It
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can be concluded that the higher the correlation between the points, shown for the linear
function, the lower is the resulting buckling loads.

Another effect of the correlation properties is shown when changing the correlation
lengths in both the axial and circumferential directions as shown in Fig. 4.18 and Fig. 4.19
respectively. As before, we can still see that higher correlation between the points results
in lower buckling loads. It is worth noting here that, as shown from the figures, the change
in the correlation lengths in the circumferential direction affects the buckling behavior

much more, up to 50% in some cases, than the same change in the axial direction.

4.6.2 Axial Loading

The same principles considered in the previous analysis for the case of pressure
loading will be used herein. Some of the parameters checked for the previous case will be
considered again along with various other parameters which seem to have more effect on
the case of axial loading compared with pressure loads.

The difference between the three types of imperfection fields considered before is
checked deterministically first for the three geometric configurations of the shell. The
relations between the axial load and the edge shortening are plotted for the mean values of
the geometric imperfection fields considered in the analysis as shown in Fig. 4.20, Fig.
4.21 and Fig. 4.22 for values of z = 500, 100 and 50, respectively. The relations are plotted
for N = 15, 17 and 18 respectively which give the lowest buckling loads for these
configurations. The effect of increasing the geometric imperfection magnitude is again
clear in comparison with the perfect shell response. The value of the axial buckling ratio,

¥, considered in all the graphs is a normalized value of the buckling load, P, by dividing it
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by the classical value, P, for the case of N=0 as

2
z=L,  p,= AL (4.56)
Pcl

BV
for the case of a clamped shell.

The CDFs for the three geometric configurations under the same imperfection
distribution are shown in Fig. 4.23 illustrating the effect of changing the length to radius
ratio on the buckling behavior. On the other hand, the effect of considering various
imperfection distributions for the same shell is shown in Fig. 4.24. A behavior similar to
that in the case of pressure loading is obtained when considering other types of functions
for the mean of the imperfections.

Solutions based on the Donnell’s equations are expected to be inaccurate for long
shells which buckle in small number of circumferential waves because of the assumptions
included in the derivation. Yamaki (1984) showed that the error in the Donnell solutions is
only significant when the number of the buckled waves N is equal or less than 4. He
showed also that the error is less than 1% for cases where N equals 5 and 6. This confirms
the applicability of Donnell solutions for the analysis as they are practically accurate for
all the cases considered in the study. A comparison between the buckling behavior for the
shell based on the two solutions together with the linear Flugge’s equations is shown in
Fig. 4.25. This clearly represents the excellent agreement between both nonlinear
methods.

The possibility that having more than one value of N corresponding to the lowest

buckling load because of the uncertainty in the imperfections is checked for a clamped
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cylindrical shell with z = 100. The shell is analyzed for both values of N = 17, 19. The first
of these two values corresponds to the critical buckling load under the mean values of the
imperfection while the second value corresponds to the second lowest buckling load under
the same imperfections. The CDFs are for theses two cases are compared with the CDF
resulting from considering a series system with two limit state functions based on the
lowest buckling load for the two values of N as shown in Fig. 4.26. It can be easily
concluded that considering N = 19 results in higher buckling loads than for N = 17. On the
other hand, the values of buckling loads for the series system is lower in general than that
of any of the two N’s and is closer to that of the most critical one, that is N=17.

A comparison between the different techniques used for random field discretizations is
shown in Fig. 4.27. Also CDFs based on both FORM and SORM are shown in Fig. 4.28.
These two comparisons agree with the conclusion made earlier that the SE method proves
to be the most efficient discretization technique for the cases under study in this chapter
and that SORM displays the ability to give both accurate and efficient results compared
with FORM and MCS.

The effect of the non-stationarity in the autocorrelation function is checked for a shell
with clamped ends. The difference between applying Eq. 2.49 to compensate for the non-
stationarity of the function near the supports, and between neglecting this effect is shown
in Fig. 4.29 for a shell with z =100. As in the case of pressure loading, the error in
neglecting the non-stationarity of the autocorrelation function is minimal.

The same discussion mentioned in pressure loading case regarding the effects of the

type and properties of the autocorrelation coefficient function on the buckling behavior
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applies here. Considering a clamped ends shell and changing the correlation function from
exponential to linear with the same correlation lengths has the effect shown in Fig. 4.30 on
the results.

The effect of the correlation length is checked here in more than one way. First using
the autocorrelation function defined in Eq. 4.50, where the direction of the correlation
does not come into question, the effect of changing the correlation length is shown in Fig.
4.31.

Alternatively, when using the autocorrelation function defined by Eq. 4.49, we can see
in Fig. 4.32 and Fig. 4.33 that the change in the correlation lengths in the circumferential
direction affects the buckling behavior more than the same change in the axial direction.
This also still agrees with the previous conclusion that higher correlation between the
points results in lower buckling load.

The uncertainty in the value of the modulus of elasticity of the shell material has a
slight effect on the buckling behavior of the shell compared with uncertainties in shape as
shown in Fig. 4.34. This also agrees with the previously illustrated results for the buckling
behavior of shallow arches where the geometric imperfections are the dominant factor in
lowering the buckling loads.

The effect of the boundary conditions of the shell is shown in Fig. 4.35 where the
probabilistic distributions of the buckling load are plotted for both cases of clamped ends
and hinged ends cylindrical shell having the same dimensions and under the same
imperfection. The same conclusions made till now regarding the buckling behavior of

clamped cylindrical shells applies when comparing the same parameters affecting either
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hinged-hinged or hinged-clamped shells.

4.6.3 Combined Loading

The same previous methods of analysis, namely Donnell’s nonlinear equations, can be
used to obtain practically accurate solutions for cases of combined hydrostatic pressure
and axial loading. Axial compression can be combined with either external or internal
pressure on the shell. The possibility of buckling also exists for the case of a cylinder
under both axial tension and external pressure.

As an example of this case, we shall look at the case of a clamped cylindrical shell
under an increasing axial loading combined with various ratios, o, of the hydrostatic
pressure. The deterministic behavior of a shell with z = 500 and with the imperfection
configuration number 1 is shown in Fig. 4.36 for o = -3.0, 0, 0.3. This accounts for both
cases of internal and external pressures. The buckling load, as expected, increases with the
application of internal pressure and decreases with external pressure.

The probabilistic distribution for three values of o. is shown in Fig. 4.37. It can be seen
that the effect of existence of the pressure makes almost parallel shifts for the CDF curve
which is equivalent to changing the values of the mean of the distribution of the buckling
load.

For the previous case of combined loading and for most of other cases, the stochastic
behavior of the buckling load is the same as that for the case of either an axial load or a

hydrostatic pressure only. The same criteria and conclusions previously established still

apply for these cases.
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Figure 4.2  An example of the buckling diagram for a clamped perfect
cylindrical shell under hydrostatic pressure using linear
Flugge’s equations for different values of k = 2/ 12 R2
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Figure 4.3  An example of the buckling diagram for a clamped perfect
cylindrical shell under axial compression using linear
Flugge’s equations (k = £/ 12 R?* = 10"%).
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Figure 4.4  Series coefficients of the Fourier expansion of the mean
function for the geometric imperfection configuration
number 1 (W, = 0.2t) of a clamped cylindrical shell.
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Figure 4.6  Series coefficients of the Fourier expansion of the mean
function for the geometric imperfection configuration
number 3 (W, = 0.6t) of a clamped cylindrical shell.
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Figure 4.7 Effect of deterministic initial geometric imperfections on the
typical postbuckling behavior of a clamped cylindrical shell
under pressure loading for z = 500.
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Figure 4.8  Effect of deterministic initial geometric imperfections on the
typical postbuckling behavior of a clamped cylindrical shell
under pressure loading for z = 100.
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Effect of deterministic initial geometric imperfections on the
typical postbuckling behavior of a clamped cylindrical shell
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Figure 410 Cumulative distribution function for the buckling pressure
of a clamped cylindrical shell for different geometric
configurations under imperfection field W, = 0.2t.
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Figure 4.11 Cumulative distribution function for the buckling pressure
of a clamped cylindrical shell for different amplitudes of the
geometric imperfection configuration W,.
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Figure 4.12 Cumulative distribution function for the buckling pressure
of a clamped cylindrical shell for different amplitudes of the
geometric imperfection configuration W, (N =13).
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Figure 4.13 Cumulative distribution function for the buckling pressure
of a clamped cylindrical shell for different amplitudes of the
geometric imperfection configuration W; (N = 15).
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discretizations methods for clamped ends cylindrical shell

under pressure loading.

90

142



143

Figure 4.15 Effect of the reliability method used on the CDF for a
clamped ends cylindrical shell under pressure using SE
method.
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Figure 4.16 The effect of the non-stationarity of the autocorrelation
coefficient function on the CDF for a clamped ends
cylindrical shell under pressure using KL method.
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Cumulative distribution function for the buckling pressure
of a clamped cylindrical shell for different autocorrelation
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Figure 4.18 Cumulative distribution function for the buckling pressure
of a clamped cylindrical shell for different values of the
exponential correlation length in the axial direction.
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Figure 4.19 Cumulative distribution function for the buckling pressure
of a clamped cylindrical shell for different values of the
exponential correlation length in the circumferential

direction.
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Figure 4.20 Effect of deterministic initial geometric imperfections on the

typical postbuckling behavior of a clamped cylindrical shell
under axial loading for z = 500.
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Figure 4.21 Effect of deterministic initial geometric imperfections on the
typical postbuckling behavior of a clamped cylindrical shell
under axial loading for z = 100.
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Figure 4.23 Cumulative distribution function for the buckling axial load
of a clamped cylindrical shell for different geometric
configurations under imperfection field W, = 0.4t.
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Figure 4.24 Cumulative distribution function for the buckling axial load
of a clamped cylindrical shell for different amplitudes of the
geometric imperfection configuration W,.
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Figure 4.25 Cumulative distribution function for the buckling axial load
of a clamped cylindrical shell for different methods of
deterministic stability analysis.

153



(&)

Fy

154

! ! ! ! ; ! !

0'9 TN ......... ‘ PPN Series System .......... ........ ......... .......... ‘ ....... -

P U SO SV SOOI SOOI O V7 SHO0/48 WO USSR S

Y3 ISUOO VOO SPSPONS SYROOIS SSNOE 0 A SRS RIS SOOI SRt

Qoo N AT e e o

04k ......... ......... .......... ...... / .......... .......... e ........ .

] AR O T O A T e T
02F ......... .......... .......... ......... .......... .......... .......... Z=100'

% | S SRS SRS S/ VS S B S By =i15R

Figure 426 Cumulative distribution function for the buckling axial load
of a clamped cylindrical shell for different values of N and
for a series system.



155

; : i ; ; i i :
0 10 20 30 40 50 60 70 80 20 100
Number of Random Variables

Figure 4.27 Rate of convergence of the reliability index for different
discretizations methods for clamped ends cylindrical shell
under axial loading.
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Figure 4.28 Effect of the reliability method used on the CDF for a
clamped ends cylindrical shell under axial loading using SE
method.
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Figure 4.29 The effect of the non-stationarity of the autocorrelation
coefficient function on the CDF for a clamped ends
cylindrical shell under axial loading using KL method.
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Figure 4.30 Cumulative distribution function for the buckling pressure

of a clamped cylindrical shell for different autocorrelation
coefficient functions.
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Figure 4.31 Cumulative distribution function for the buckling axial load
of a clamped cylindrical shell for different values of the
absolute exponential correlation length.
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of a clamped cylindrical shell for different values of the
exponential correlation length in the circumferential
direction.
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Figure 4.33 Cumulative distribution function for the buckling axial load
of a clamped cylindrical shell for different values of the
exponential correlation length in the axial direction.



0.1

1 T I | T ! I
0_9_ .......... .......... .......... ......................... :
: ‘Random geometric /
0'8 e ......... impel'fectionsand YRR & R SRR SLERAAR -
: ‘material properties I
07k P T U TR 4 ST TN PP DTN P -
0.6F - SUURTUUTUR SUUPIUUU NUURPRURU SUUPPRUPUE 5 (FUORPRUURPRY AVPSUPOY UTPPPRPE PR
- : :
S : .
LL'D‘:_,OS_ ........ ........................................ / ............
04F ..................................... Jr e i
03k .................................
0'2_ ........ 5............................... =
L

Figure 4.34 Effect of the randomness in the modulus of elasticity of the

material of a clamped cylindrical shell on the buckling under
axial loading.

162



0.9

0.8

0.7

0.6

F, (C)
2

04
0.3
0.2

0.1

Figu

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

: ngedEnds? 5
e Clamped e ds ................. J

) Weos
L SEREEPPRY RRTERPRTE beeofe P CARERPPRE L e e Z'='100

: i § / i : i .5, ‘025L
L B B oS SRR L Lo ST e 5.A=,.1..5R_

R Y A R R

=

re 4.35 Cumulative distribution function for the buckling axial load
of both clamped and hinged cylindrical shells under
imperfection field W, = 0.4t.

163



164

500 ! ! ! ! ! ! T T T
450f - ......... ......... .......... .......... .......... ......... .......... .......... ........

P S N U ST ST SO SO ST ST SO

R T R L T IR O

w

L

(=]
T

w

[=]

(=]
T

P (Axial load)
N
3
2
Il
1
w
S

Figure 4.36 Effect of initial geometric imperfection field W, = 0.2t on the
typical postbuckling behavior of a clamped cylindrical shell
under combined axial and pressure loading for z = 500.
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Chapter 5

Summary and Conclusions

The buckling failure of shallow circular arches and cylindrical shells with random
parameters has been studied by the methods of reliability analysis. Several important
issues related to the development of adequate and computationally efficient models of
engineering uncertainties were considered in this dissertation. The uncertain parameters
considered included the initial geometric imperfections, material properties, and load
distributions. A probabilistic approach for the spatial modeling of the random variables
based on the use of one- and two-dimensional random fields was considered. Numerical
calculations of the probability distribution for the buckling load has been carried out by
the methods of FORM, SORM, and MCS with the aid of the deterministic nonlinear
energy method. Results indicate that uncertainty in the random imperfections can have a
significant effect on the probabilistic stability load.

In the present study, we first started by presenting the deterministic analysis methods
for the instability of shallow arches and cylindrical shells. The buckling loads for different
modes of instability under various loads and boundary conditions were obtained by
nonlinear energy analysis. The mode of instability depends on a dimensionless geometric

parameter. The initial geometric configuration and the imperfections distributions are the

166



167

main factors affecting the stability behavior and buckling modes of both arches and shells.

Characterization of the random buckling load has been treated as a problem in
structural reliability theory. The initial imperfections have been modeled as random fields
with known variances, mean functions, and autocorrelation coefficient functions over the
arch and the shells. The ra1.1d0m fields for the imperfection were discretized by the
following methods: a) Midpoint (MP) method; b) Local averaging (LA) method; c)
Karhunen-Loeve (KL) theorem; d) Series expansion (SE) method. In the first three of
these methods, special calculations had to be taken to account for non-stationarity of the
autocorrelation function due to end conditions. FORM and SORM have been used for
evaluating the probability distributions and were compared to MCS in some cases.
Numerical results have been presented for a number of examples to compare the
convergence of the four discretization methods and to evaluate the effect of the non-
stationarity. In the following sections, we list general conclusions of the work presented in

the previous chapters.

5.1 Stability of Shallow Arches

For the arch case, the imperfection sensitivity with respect to the various uncertain
parameters has been evaluated from consideration of the distribution of the buckling load
for various values of the shallowness parameter A. For higher values of A, where
asymmetric (bifurcation) buckling takes place, the arch showed more sensitivity regarding
uncertainty in the geometric imperfection. On the other hand lower sensitivities were
obtained for lower values of A, where symmetric (limit load) buckling occurs.

The uncertain initial shape for the geometric imperfections, modeled by the mean
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function of the random field, had a considerable effect on the buckling behavior. For an
antisymmetric mean function, higher reductions in the bifurcation load were obtained
compared with a symmetric function having the same maximum amplitude. Changes in
the shape of the mean function did not affect the limit buckling load as much. Higher
variance of the imperfections resulted, as expected, in wider distributions of the buckling
load.

For the arch, the failure probability is relatively insensitive to the correlation length.
Also, changes in the type of the autocorrelation function did not strongly affect the
buckling behavior. The difference between including the effect of the non-stationarity of

the autocorrelation function near the ends, and neglecting this effect is very small in this

case.

5.2 Stability of Cylindrical Shells

Deterministic analysis of the buckling of cylindrical shells based on the use of
nonlinear Donnell’s equations showed to be in excellent agreement with the general shell
theory for values of N higher than 3. The shells showed very comparable imperfection
sensitivities in both cases of pressure and axial loading.

The buckling behavior was seen to be quite sensitive to the parameters defining the
random field representing the geometrical imperfections. Higher reductions in the
buckling loads were obtained when specifying the imperfection field with a mean function
having the same N as that of the most critical buckling mode.

The effect of the correlation factors of the imperfections was quite large on the

behavior of the shells. Generally, higher correlation resulted in lower buckling loads. The
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increase in the correlation was modeled by either increasing the correlation length or
changing from exponential to linear autocorrelation functions. Changes in the correlation
length in the circumferential direction had larger effects on the buckling loads than

comparable changes in the axial direction.

5.3 General Conclusions

It can be concluded that the Karhunen-Loeve (KL) method proves to be the most
efficient method for random field discretization for cases where exact formulas are
available for evaluating the eigenfunctions of the correlation kernel. The series expansion
(SE) method is more efficient in cases where the KL method requires lengthy numerical
analysis to evaluate the spectral decomposition of the field.

FORM and SORM results were obtained for all cases and were compared and tested
against MCS results for many of the problems considered. Both FORM and SORM
required a small fraction of the computational time needed for MCS. FORM results were
obtained with the least processor time but showed high diversity from MCS in many
occasions. Thus, FORM can be used only as a quick first approximation for the failure
probability. SORM, on the other hand, for a little additional computational effort over
FORM, proves to be in very good agreement with MCS. Hence, SORM can be
recommended for obtaining good estimates of the failure probabilities.

In all cases, the uncertainty in the material properties, modeled in terms of a random
field representing the modulus of elasticity, and the uncertainty in the loading distribution,
were seen to be less important factors in affecting the buckling behavior compared with

the geometrical uncertainties.
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5.4 Applications and Future Research

The interface between complicated highly nonlinear deterministic solution methods
and reliability theory techniques introduced in this study can basically be applied to any
structural problem assuming it has a complete deterministic solution and the ability to be
formulated in terms of a limit-state function. An extension of the current work to the
problems of stability of stiffened circular cylindrical shells and to the snap-through
buckling of shallow spherical caps is an immediate addition to the present research.

An important issue in the present study is the modeling of imperfections for design
purposes. Data obtained from large numbers of samples is needed for a reliable
representation of the imperfections with realistic parameters and distributions for the
random field. The construction of a data bank with sufficient numbers of field
measurements for different structures would be a step for a rigorous modeling of the
imperfections. An example data bank for imperfections was given by Arbocz (1979) for
some types of shell structures.

The techniques used in measurements of imperfections is also another open field for
research. Advanced inspection methods together with efficient data interpretation
programs would allow for obtaining reliable and realistic statistical characterization for
structures.

Based on applying stochastic analysis methods to describe failure of structures under
various types of imperfections, many limitations on quality control assessment can be
introduced. Limits for the acceptable allowances in the imperfections in structural

dimensions and configurations can be established based on probabilistic distribution
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curves similar to those included in the present study.

The proposed methods could be viewed as generalized, computationally efficient,
modeling techniques that can be extended to any structural component. Design procedures
can be developed based on the mathematical modeling of engineering uncertainties. This
allows more information to be incorporated in the design codes resulting in more
economical designs with better safety margins. Thus, future research effort is needed to
implement reliability based design procedures and inspection techniques to the same level

at which analysis methods have reached.
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Appendix 1

Notation

The following sympols are used in this thesis:

X The vector of basic random variables

g(X) The limit-state function

n The number of random variables

R The resistance of a given structure

S The load applied on a given structure

Pl...] The probability operator

C, A defined target value of a certain parameter

(60, 4] The value of a parameter evaluated based on the randomness of the input
variables

Fx(x) The joint probability density function (PDF) of X

U A vector of uncorrelated standard normal variates

T(..) A linear one-to-one mapping

G The limit-state function in the standard normal space

u* The design point

B The reliability index
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First-order reliability method

Second-order reliability method

Monte Carlo simulation

First-order second-moment reliability method

A unit normal vector at the design point

The standard normal cumulative distribution function

The probability of failure

The probability of failure approximated according to FORM
The probability of failure approximated according to SORM
The principal curvatures of the fitting paraboloid at the design point
The standard normal probability density function

The gradient vector

The Jacobian of the transformation from the physical to the standard-
normal space

The unit gamma sensitivity vector

A diagonal matrix of the standard deviations of X

A zero-one indicator function

The expectation operator

An estimate of the probability of failure based on MCS
Number of Monte Carlo simulations

A lower bound on the reliability index

An upper bound on the reliability index
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A lower bound on the probability of failure

An upper bound on the probability of failure

A multidimensional Gaussian random field

The domain in which a random field is defined

The mean function of a random field

The variance function of a random field

The autocorrelation coefficient function of a random field
The covariance function of a random field

Midpoint discretization method

Local averaging discretization method

Series expansion method based on the Karhunen-Loeve theorem
A set of independent standard normal variates

The eigenvalues of the correlation kernel

The eigenfunctions of the correlation kernel

A general series expansion method

A vector of zero mean random variables

A vector of constant coefficients

A complete set of orthogonal deterministic functions

The change in the curvature of a structure under loading
The elastic axial membrane strain

The polar angle coordinate measured from the center of the arch

The radius of the arch



o 3 =

-~

Q(Pw)

o)

The tangential displacement component

The radial displacement component

The tangential component of the initial geometric imperfections
The radial component of the initial geometric imperfections
The total energy of a structural system

The modulus of elasticity for the material of the structure

The thickness of the arch

The width of the arch

The total load acting on the arch

A loading function for the load applied on the arch

The Dirac delta symbolic function
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