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ABSTRACT

Improved Spectral Calculations for Discrete Schrödinger Operators

by

Charles Puelz

This work details an O(n2) algorithm for computing spectra of discrete Schröd-

inger operators with periodic potentials. Spectra of these objects enhance our un-

derstanding of fundamental aperiodic physical systems and contain rich theoretical

structure of interest to the mathematical community. Previous work on the Harper

model led to an O(n2) algorithm relying on properties not satisfied by other aperiodic

operators. Physicists working with the Fibonacci Hamiltonian, a popular quasicrystal

model, have instead used a problematic dynamical map approach or a sluggish O(n3)

procedure for their calculations. The algorithm presented in this work, a blend of

well-established eigenvalue/vector algorithms, provides researchers with a more ro-

bust computational tool of general utility. Application to the Fibonacci Hamiltonian

in the sparsely studied intermediate coupling regime reveals structure in canonical

coverings of the spectrum that will prove useful in motivating conjectures regarding

band combinatorics and fractal dimensions.
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Chapter 1

Background and Literature Review

Mathematical models of quantum systems present fascinating and subtle computa-

tional challenges. This thesis seeks to enable difficult spectral calculations of quantum

mechanical operators by proposing an O(n2) computational tool of general utility and

applying this tool to study a mathematical model of a quasicrystal, the Fibonacci

Hamiltonian.

A typical finite difference approximation of the time-independent part of the

Schrödinger equation, the canonical PDE in quantum mechanics, yields a special

type of operator known variously as a Hamiltonian, tight-binding model, or discrete

Schrödinger operator. Researchers in different fields study this object in several ways.

Physicists interested in numerical simulations of quantum waves restrict the domain

of this operator to a finite-dimensional subspace and evolve an initial state on a finite

dimensional “lattice” with artificial absorbing boundary conditions. Mathematicians

directly handle the infinite-dimensional operator with the goal of proving carefully

formulated conjectures. Although different disciplines employ distinct approaches,

researchers in both fields agree that spectra of these operators offer crucial insight

into the modeled physical systems and contain rich structure interesting in its own

right. First, working from the Schrödinger equation, I explain how one arrives at the
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quantum model studied in this thesis.

1.1 Periodic Schrödinger operators

The Schrödinger Equation

ı~
∂

∂t
Ψ(x, t) = (∆ + V (x, t)) Ψ(x, t).

models the motion of a particle in a quantum mechanical setting. Here ~ is Planck’s

constant, V (x, t) is the potential, and |Ψ(·, t)|2 is the time dependent probability

density of the quantum particle at time t. In the following, ~ is scaled to 1 and the

potential is time-independent.

Let H := ∆ + V (x). A separation of variables approach with the assumption

Ψ(x, t) = ψ(x)φ(t) results in a constant E and two equations, one in position, and

one in time:

Hψ = Eψ (1.1)

∂φ

∂t
=
−ıE

~
φ. (1.2)

The first equation is known as the Time Independent Schrödinger Equation

(TISE) and the operator H is called the Hamiltonian. To numerically approximate

solutions to (1.1), it is natural to study another operator H : `2(Z) → `2(Z), a
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discretization of H. Redefine ψ ∈ `2(Z) and take

(Hψ)n = ψn−1 + vnψn + ψn+1. (1.3)

The discrete approximation to the potential is {vn} ∈ `∞(Z), and a finite difference

approximation to the Laplacian ψn+1 − 2ψn + ψn−1 provides the off-diagonal terms

in (1.3). (The scaling of the diagonal by 2 simply shifts the spectrum of H and is

absorbed into the formula for vn.) This form of “approximation” to the Hamiltonian,

called a Jacobi operator, serves as a fundamental quantum mechanical model and is

the central focus of this work.

Definition 1.1. Let {an}, {bn} ∈ `∞(Z). A Jacobi operator J : `2(Z)→ `2(Z) is

defined as

(Jψ)n = an−1ψn−1 + bnψn + anψn+1

for all ψ ∈ `2(Z).

With the canonical basis {en} defined with 1 in the nth component and 0 other-

wise, J can be displayed as the infinite dimensional tridiagonal matrix:
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J =



. . . . . . . . .

a−2 b−1 a−1

a−1 b0 a0

a0 b1 a1

. . . . . . . . .


.

The sequences {an} and {bn} are called the Jacobi parameters, and when {an}

is the constant sequence of 1’s so J takes the form of equation (1.3), the operator is

called a discrete one-dimensional Schrödinger operator.

A systematic study of the spectrum of particular Schrödinger operators provides

significant physical insight into the corresponding quantum systems.

Definition 1.2. The spectrum of J, denoted σ(J), is the following set of values:

σ(J) = {λ : J− λI does not have a bounded, densely defined inverse}.

The spectrum of J can be calculated from finite matrices if the Jacobi parame-

ters satisfy a periodicity condition (see e.g. Teschl [28, pp. 119–121]). My algorithm,

described in Chapter 2, comes directly from this reformulation of the spectral cal-

culation as a finite dimensional eigenvalue computation. More precisely, the Jacobi

operator J is called q-periodic provided there exists q ∈ Z+ such that an = an+q and

bn = bn+q for all n ∈ Z. If such periodicity conditions hold, then the spectrum of J is

the union of q intervals whose endpoints are the eigenvalues of two matrices:
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J± =



b1 a1 ±a0

a1 b2
. . .

. . . . . . . . .

. . . bq−1 aq−1

±a0 aq−1 bq


.

Theorem 1.1. (see e.g. Teschl [28, pp. 119–121]) Let J be a q-periodic Jacobi oper-

ator with parameters {an} and {bn}. Then

σ(J) =

q⋃
k=1

[E2k−1, E2k]

where the E1 < E2 ≤ E3 < E4 ≤ · · · ≤ E2q−1 < E2q comprise σ(J+) ∪ σ(J−).

The quasicrystal model investigated in Chapter 3, formulated as a Jacobi operator,

contains aperiodic structure that falls qualitatively between the extremes of periodic

and random. In turn, it is relevant to first understand a fundamental distinction

between random and periodic quantum systems.

1.2 Random and Periodic Quantum Models

The potential sequence {vn} in (1.3) encodes properties of the quantum system to be

modeled: researchers have thoroughly investigated the fundamental cases of periodic

and random potentials. For an example of the former potential, take vn = 1 if n

is even and 0 if n is odd. For an example of the latter, take vn to be a uniform
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random number between 0 and 1 for each n. A periodic potential may be interpreted

physically as a perfect crystal or pristine physical system, while a random potential

is often meant to simulate a system with impurities, or imperfections. Understanding

transport through random potentials is significant from a modeling perspective since

experimental apparati are often far from ideal systems and contain “random” impu-

rities in their construction. In turn, theoretical models designed to simulate these

experiments must take into account these impurities, and a good understanding of

their effects in quantum systems is of crucial importance. Not surprisingly, periodic

and random models exhibit different electronic transport properties.

The underlying distinction between these two types of models is the following:

electrons transport well in periodic systems and poorly in random systems. Transport

in periodic systems is called ballistic in certain contexts, and lack of diffusion in

random systems is termed Anderson localization after the scientist Phillip Anderson,

who wrote the seminal paper in this area [2]. The latter term refers to a literal

localization in space of an electron wave spreading through the lattice.

Figure 1.1 displays an initial delta function evolved in time on both a periodic

and random lattice. This simulation was performed in Matlab by truncating the

Hamiltonian to an order 1001 tridiagonal matrix, and evolving the initial state in

time with the matrix exponential as given below:

Ψ(x, t) = exp

(
− ı

~
Ht

)
Ψ(x, 0).-
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If the snapshots of the wavefunction on the random lattice are plotted on a log-

linear scale, one would observe an exponential envelope encasing the wavefunction.

This phenomenon is termed exponential localization, meaning that the tails of the

wavefunction decay in a roughly exponential fashion. The snapshots on each row

correspond to the same time and were chosen to demonstrate diffusion in the periodic

case and, as Anderson described it, the “absence of diffusion” in the random case [2].

0 200 400 600 800 1000
0

0.5

1
t =0

Random

0 200 400 600 800 1000
0

0.05 t = τ1

0 200 400 600 800 1000
0

0.05 t = τ2

0 200 400 600 800 1000
0

0.05 t = τ3

0 200 400 600 800 1000
0

0.5

1

lattice site

|ψ
|2 t =0

Periodic

0 200 400 600 800 1000
0

0.02

0.04 t = τ1

0 200 400 600 800 1000
0

0.02

0.04 t = τ2

0 200 400 600 800 1000
0

0.02

0.04 t = τ3

Figure 1.1 : Four snapshots in time of an evolving wave. Diffusion occurs in the
periodic lattice, and localization occurs in the random lattice.
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1.3 Quasiperiodic Quantum Models

Several relevant quantum mechanical models have potentials that are determinstic,

but not periodic, and so they fall in between the two extremes of periodic and ran-

dom: these are called quasiperiodic or aperiodic models. It is natural to wonder how

electrons move in these aperiodic structures: do they localize like in the random case,

diffuse as in the periodic case, or something in between? Answers to this question

are often elusive and model dependent. Gaining insight into electronic properties

of quasiperiodic systems is the motivation for my computational work discussed in

Chapter 2.

Two of the more popular quasiperiodic Schrödinger operator models are the Al-

most Mathieu operator and the Fibonacci Hamiltonian. The Almost Mathieu opera-

tor, also called the Harper model in the physics literature, has the potential

vn = λ cos(2πσn+ θ),

with λ > 0 and σ irrational. This potential {vn} is not periodic, and hence provides

an example of a sequence in between the periodic and random. In the words of the

luminous physicist D.J. Thouless, this model “describe[s] the quantum theory of an

electron confined to a plane with a periodic potential in the plane and a uniform

magnetic field perpendicular to the plane” [29]. Although not a focus, I mention

this model since it has been the center of extensive research, some of which sets a
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precedent for my computational work. I will detail this information in the coming

sections.

This work focuses on the Fibonacci Hamiltonian, perhaps one of the more popular

quasicrystal models. Quasicrystals are peculiar objects that have attracted recent

interest in part due to their unique structure: deterministic but lacking translational

symmetry. A Penrose tiling of R2, depicted in Figure 1.2, provides a famous example

of such a pattern.

Figure 1.2 : Section of a Penrose tiling of the plane. This pattern is an example of a
tiling that lacks translational symmetry, like the aperiodic structure of quasicrystals.
Picture taken from: http://en.wikipedia.org/wiki/File:Penrose_sun_3.svg

and http://en.wikipedia.org/wiki/Penrose_tiling

http://en.wikipedia.org/wiki/File:Penrose_sun_3.svg
http://en.wikipedia.org/wiki/Penrose_tiling
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Nadia Drake has written a nice historical overview of quasicrystals [11]. Synthetic

quasicrystals appeared in labs in the 1980s, most notably in the Nobel prize winning

work of Dan Shechtman [11]. Also during this time, Sütő and others led foundational

theoretical research on models of quasicrystals, in particular the Fibonacci Hamil-

tonian [24, 25]. While experimentalists like Shechtman could produce these objects

in labs, a lingering question remained: do quasicrystals “exist in nature” [11]? This

question was answered only recently with works published by Steinhardt et al. : these

scientists reported their discovery of a rocks found in Russia containing quasicrystals,

and concluded they most likely came from an extraterrestrial source [11]. This recent

discovery, along with foundational experimental and theoretical work begun in the

1980s, has pushed quasicrystals and their corresponding mathematical models to the

forefront of research in mathematical physics.

The Fibonacci Hamiltonian is an example of a quasiperiodic model meant to

capture the deterministic and nonperiodic structure of quasicrystals. With λ > 0 and

φ = 1
2
(1 +

√
5), the potential is

vn = λχ[1−φ−1,1)(nφ
−1 mod 1).

The coupling constant λ scales the strength of the potential relative to the nearest-

neighbor terms, and much research focuses on the weak coupling (λ→ 0) and strong

coupling (λ → ∞) regimes. Following the notation in the literature, let Σλ be the

spectrum of the Fibonacci Hamiltonian. As rigorously shown by Sütő, the spectrum
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Σλ is a Cantor set of measure zero for all λ > 0 [25]. For completeness, I include the

following definition (see Willard [33, p. 217]).

Definition 1.3. A Cantor set Σ ⊂ R is perfect, compact, and totally-disconnected.

Sütő proved several useful facts linking the spectrum of this model to spectra of

closely related periodic Schrödinger operators. More precisely, let {Fk} be a Fibonacci

sequence of numbers (Fk = Fk−1+Fk−2) with F0 = 1 and F1 = 1, and consider another

Schrödinger operator with potential

v(k)
n = λχ[1−Fk−1/Fk,1)(nFk−1/Fk mod 1).

In this case, one obtains the periodic Schrödinger operator by replacing the irrational

number φ in the formula for vn with a rational approximation Fk/Fk−1. As explained

in the following theorem, this particular choice of a rational approximant yields peri-

odic operators whose spectra, denoted σk, relate to the original Cantor spectrum Σλ

in a well-understood way.

Theorem 1.2. (Sütő 1987, 1989.) For all λ > 0, Σλ is a measure zero Cantor set

and the sets σk satisfy

σk ∪ σk+1 ⊂ σk−1 ∪ σk (1.4)

Σk =
⋂
k≥1

σk ∪ σk+1. (1.5)

It is known that Σλ is a dynamically defined Cantor set for λ large enough and
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small enough; see Definition 5.2 and Corollary 5.6 in the survey paper by Damanik,

Embree, and Gorodetski for a summary of results [8]. Further, the authors conjecture

that for all λ > 0, Σλ is dynamically defined. The precise definition given in the survey

follows below [8]. Let B ⊂ R be a closed interval.

Definition 1.4. (From [8]) A dynamically defined Cantor set Σ ⊂ B satisfies the

following:

there exist strictly monotone contracting maps ψ1, ψ2, . . . , ψj : B → B so that

ψk(B) ∩ ψl(B) = ∅ provided k 6= l,

and with B1 = ψ1(B) ∪ · · · ∪ ψj(B), Bn+1 = ψ1(Bn) ∪ · · · ∪ ψj(Bn) one has

Σ =
⋂
n≥1

Bn.

A simple example of such a Cantor set is the famous “middle thirds” Cantor set,

obtained by iteratively removing the middle third from a sequence of intervals, and

then intersecting the remaining sets. In this case, B = [0, 1] and the contracting maps

used in the construction are ψ1(x) = 1
3
x and ψ2(x) = 1

3
x+ 2

3
.

The Cantor structure of the spectrum as formulated in Theorem 1.2 is a profound

result and perhaps surprising at first glance. Peering at this operator instead through

the lens of dynamical systems enhances one’s intuition: values in the spectrum Σλ

(and covers σk ∪ σk+1) relate to bounded iterates of a particular map. This fact was
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also shown by Sütő [24].

Theorem 1.3. (Sütő 1987.)

Fix λ > 0 and E ∈ R. Let {xk} be a sequence of numbers with the initial conditions

x−1 = 2, x0 = E, x1 = E − λ, and satisfying xk+1 = xkxk−1 − xk−2. Then:

σk = {E : |xk(E)| ≤ 2} and

Σλ = {E : sup
k
|xk(E)| <∞}.

Although the algorithm I present in Chapter 2 is general, the motivation for my

computational work applied to the Fibonacci Hamiltonian relies on the theoretical

foundation provided by Theorems 1.2 and 1.3. More precisely, to enable numerical

calculations, one takes the covers σk ∪ σk+1 as approximations to the original Can-

tor spectrum Σλ, and then from these covers extracts approximations of interesting

quantities. These “interesting quantities,” like fractal dimensions, provide physical

insight into quasicrystals and thus encourage a careful study of the spectrum Σλ.

1.4 Why study the spectrum?

Physicists and mathematicians glean useful theoretical and physical intuition by

studying the spectrum of quantum models. The work of physicists has related fractal

dimensions of spectra to time dependent quantities associated with the wave function

Ψ(x, t) (see e.g. [17, 18, 23, 32]). Numerical results suggest a connection between
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temporal behavior and fractal dimensions of spectra and of the wave functions, al-

though I note that some researchers have provided numerical evidence weakening the

former connnection in certain contexts [32]. Regardless, spectral computations are

useful in studying “crictical level statisitics” of relevant quantum models [6, 22, 26].

More recently, mathematicians have developed rigorous results for time-dependent

behavior: see the work of Damanik et al. for a result incoporating the fractal dimen-

sion of the spectrum [9]. In addition, theoreticians work to rigorously explain the

mathematical beauty inherent in models and their spectra; the Fibonacci Hamilto-

nian is a prime example of such a model containing rich theoretical structure, as

touched upon in Theorems 1.2 and 1.3. Thus, future work on such models and their

spectra will refine our understanding of the electronic properties of quasicrystals and

other aperiodic systems, lead to real world applications, and reveal interesting math-

ematics. My computational work will aide in these endeavors. First, I will discuss

previous computational work on quasiperiodic Schrödinger operator models.

1.5 Previous computational work on aperiodic models

In this section I detail the computational work done for approximating the spectrum

of versions of the Harper model and Fibonacci Hamiltonian. The general theme for

numerical calculations is to take a rational approximant to the irrational parameter

appearing in the formula for the potential, and then compute the spectrum of the

corresponding periodic Schrödinger operator. One hopes that the spectrum of the



17

periodic operator accurately approximates the original spectrum. More specifically, in

the Fibonacci Hamilonian, φ is approximated by Fk/Fk−1, and in the Harper model,

σ is approximated by a nearby rational, p/q, in both cases resulting in a periodic

potential. For the Fibonacci and Harper models, Theorem 1.2 provides a way to

tackle the spectral calculation of the periodic operator with an eigenvalue algorithm

applied to J±. In the Fibonacci case, Theorem 1.3 provides an additional method to

compute the spectrum via a root-finding algorithm for xk(E)− 2 and xk(E) + 2 [8].

Obtaining a “good approximation” to the Cantor spectrum (for example, in the

sense of equations (1.4) and (1.5) for the Fibonacci Hamiltonian) requires large k,

or equivalently considering periodic approximations to the potential of increasingly

long period. Figures 1.3 and 1.4 demonstrate the convergence of the covers σk ∪ σk+1

to the Cantor spectrum for the Fibonacci model by displaying exponential decay of

interval widths and minimum gap widths. Here, k = 25, so the largest eigenproblem

to be solved is of size F26 = 196, 418. Thus, approximating the spectrum Σλ via

the eigenvalues of J± leads to an extremely large eigenvalue problem. Further, for λ

sufficiently small, one can can consider even larger problems due to the slower decay of

band sizes in the covers σk ∪σk+1. Such large-scale computations are not solvable via

common algorithms requiring O(n3) floating point operations (flops). For example,

an application of the QR algorithm first requires O(n3) flops to reduce J± to similar

tridiagonal matrices, then O(n2) flops to compute the eigenvalues.

In light of the challenge of largescale eigenvalue computations, physicists per-
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forming calculations for Fibonacci-type models have often resorted to a study of

latter method: the dynamical map (e.g. [18, 20, 22]). As explained in the paper by

Damanik et al., computations in this context present their own challenges [8]. The

authors note that in the Fibonacci Hamiltonian model, the polynomial in E, xk(E),

has coefficients quickly tending to infinity as k tends to infinity. Further, the slope

of xk(E) becomes arbitrarily large in the regions where it is bounded in magnitude

by 2, since the intervals in the spectrum of the periodic approximations converge to

a Cantor set. These properties destroy the utility of root-finding calculations.

Researchers have directly tackled the large-scale eigenvalue problem for the Harper

model by constructing a similarity transformation converting J± to tridiagonal form;

an application of the QR algorithm computes the eigenvalues of this tridiagonal re-

duction in O(n2) flops. Partial work toward this end can be seen in the early paper

of Thouless [29]. In 1997, Lamoureux published a paper detailing a complete con-

struction of the similarity transformation for a more general class of matrices, and

the Harper model fits this mold [21]. Takada et al. presented a solution in 2004,

as applied to a different but closely related version of the Harper model, apparently

unaware of Lamoureux’s work [26]. The work of Lamoureux and Takada et al. rely

on special properties of the potential that do not hold for the Fibonacci Hamiltonian.

Since calculation with the dynamical map can be problematic, recent numerical

work for the Fibonacci Hamiltonian uses an eigenvalue algorithm applied directly to

J±; these computations appear for example in the research of Mandel and Lifshitz and
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Damanik, Embree, and Gorodetski [8, 12, 13]. My work provides these researchers

and others with a tool to push these numerical computations to higher, more accurate

levels (in the sense of approximating the spectrum of the quasiperiodic operator).

The algorithm detailed below computes the spectrum of J± in O(n2) flops with O(n)

storage and requires no assumptions on the Jacobi parameters. It can be applied to

any periodic Schrödinger operator whose spectrum approximates an aperiodic model.

To the best of my knowledge, this is the first available O(n2) algorithm available for

calculation of the covers σk ∪ σk+1 for the spectrum of the Fibonacci Hamiltonian.
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Chapter 2

Algorithm for Computing Schrödinger Spectra

dddFollowing from the previous section, to approximate the Cantor spectrum Σλ by

the canonical covers σk ∪ σk+1, I wish to compute all the eigenvalues of matrices of

the structure

J± =



b1 a1 ±a0

a1 b2
. . .

. . . . . . . . .

. . . bq−1 aq−1

±a0 aq−1 bq


. (2.1)

The proposed algorithm is formulated with the notation given above. Recall that

the 2q sorted eigenvalues of (2.1) give the end-points of the intervals comprising the

spectrum of the q-periodic Jacobi operator with parameters {an} and {bn}. The

corners entries ±a0 complicate reduction of J± to tridiagonal form via orthogonal

transformations. For example, a naive implementation that uses Givens rotations

to “push” the corner entries inward fills in much of the upper and lower portions

of the matrix with nonzero values. As noted, working from the structure of the

almost Mathieu model, Lamoureux and Takada et al. were able to elegantly avoid this
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difficulty by building orthogonal matrices transforming J± to tridiagonal form [21, 26].

These approaches utilize certain properties of the almost-Mathieu potential and are

not immediately generalizable to other operators like the Fibonacci Hamiltonian.

Instead of utilizing an explicitly constructed orthogonal transformation, my al-

gorithm splits J± into a tridiagonal plus low-rank modification. This technique

maintains generality: it can be used to compute the spectrum of any periodic Ja-

cobi operator, and has a similar flavor to previous work in eigenvalue computations

[3, 4, 5, 15].

I will begin with a detailed discussion of the algorithm, called Algorithm 1, fol-

lowed by some timing results. This chapter concludes with two tests of the algorithm.

The first test applies Algorithm 1 to special matrices for which I have a closed form

for their eigenvalues, and the second to the Fibonacci Hamiltonian model to compute

σk ∪ σk+1.
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2.1 Algorithm

This algorithm is presented for the matrix J+; the one for J− is a simple modification.

First, consider the splitting

J+ =



b1 − a0 a1

a1 b2
. . .

. . . . . . . . .

. . . bq−1 aq−1

aq−1 bq − a0


︸ ︷︷ ︸

T

+ww∗

with w =
√
a0(e1 + en).

Let the diagonalization of T be denoted QDQ∗, with Q unitary. Then J+ is

similar to D + zz∗, where z = Q∗w. With this notation, the algorithm takes the

following form. Names of relevant LAPACK routines are included [1].
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Algorithm 1: Computing spectrum of a periodic Jacobi operator

1. Compute all eigenvalues of T with the QR algorithm (DSTERF.f).

2. Sequentially compute the eigenvectors of T via inverse iteration, and

store the first and last components. The vector z is calculated from

these stored components (DSTEIN.f).

3. For the eigenvalues of D such that the corresponding component of z

is nonzero, solve the secular equation associated with D + zz∗ with a

Newton-type method (DLAED4.f plus code to account for deflation).

2.2 Explanation of subparts

It can be shown that each step in Algorithm 1 takes O(n2) flops. Below, I detail some

important facts and references for each subpart: QR iteration, inverse iteration, and

root-finding for the secular equation. For details regarding this standard material in

numerical linear algebra, see [30, pp. 202–233] and [10].

2.2.1 QR algorithm

The QR iteration for eigenvalue computations is an iterative method based on taking

the QR factorization of a matrix. At its simplest, the iteration takes the following

form.

DSTERF.f
DSTEIN.f
DLAED4.f
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QR iteration

1. Reduce A to upper Hessenberg form B (tridiagonal if A is Hermitian).

2. Let B(0) := B. Iterate until B(n) converges to an upper triangular matrix

(diagonal if A is Hermitian):

(a) QR factorization: Q(n)R(n) = B(n−1).

(b) B(n) := R(n)Q(n). Go to (a).

Several important modifications vastly improve convergence. Implementations

of this algorithm factor a shifted matrix at step 2(a), and with minor additions,

convergence is achieved in O(n2) operations. Further if λl and λ̃l are the exact and

computed eigenvalues, and εmach is machine epsilon, then

|λl − λ̃l|
‖A‖

= O(εmach).

I use LAPACK’s DSTERF.f, a QR algorithm for symmetric tridiagonal matrices,

in my implementation of Algorithm 1.

2.2.2 Inverse iteration

The inverse iteration procedure for computing eigenvector components corresponding

to an eigenvalue γ in second step of Algorithm 1 is simply the power method applied

to the matrix (A− αI)−1. Here α ≈ γ, implying the eigenvalue of largest magnitude

DSTERF.f
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is 1/(γ − α) and the power method converges to the corresponding eigenvector.

Inverse iteration

Let x(0) be an initial normalized vector. Iterate until convergence:

1. Solve (A− αI)y(n) = x(n−1) for y(n).

2. x(n) = y(n)/‖y(n)‖. Go to 1.

Now assume A is tridiagonal. In this case, steps 1 and 2 cost O(n) flops. With α

chosen as the computed eigenvalue from step 1, the convergence to the corresponding

eigenvector is extremely fast, given suitable spacing between the eigenvalues [10, pp.

212, 231]. In turn, the cost for inverse iteration to compute all eigenvectors is O(n2)

flops.

The caveat is the condition of “suitable separation” of the eigenvalues; nearby

eigenvalues can yield inaccurately calculated eigenvectors. Further, as depicted in

Figures 1.3 and 1.4, the Fibonacci model naturally yields close eigenvalues, since

they approximate a set of measure zero. I remark here that I have not experienced

difficulties with inverse iteration in the sense of numerical problems in step 2 polluting

the final computed eigenvalues, but the proximity of the eigenvalues in my application

means we should be vigilant for such problems. Demmel notes that research has

indicated the possibility “that inverse iteration may be ‘repaired’ to provide accurate,

orthogonal eigenvectors without spending more than O(n) flops per eigenvector ” [10,
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p. 231]. In turn, future work may result in an improvement of Algorithm 1, step 2,

with a more robust but equally efficient algorithm for eigenvectors.

My implementation of Algorithm 1 uses LAPACK’s DSTEIN.f, a routine specilized

for eigenvector calculations via inverse iteration for symmetric tridiagonal matrices.

2.2.3 Secular equation and timing results

Step 3 of Algorithm 1 requires computation of the eigenvalues of a diagonal matrix

plus a symmetric rank-one modification. That is, compute δ so that

det(D + zz∗ − δI) = 0. (2.2)

Several facts allow one to rewrite (2.2) in an equivalent form called the secular

equation. Note that in this context, the eigenvalues of the matrices D and D + zz∗

are real, since the former is similar to a Hermitian matrix and the latter itself is

Hermitian.

Lemma 2.1. det(I + xy∗) = 1 + y∗x. ∗

Proof. Begin with the following matrix equation: I 0

y∗ 1


I −x

0 1 + y∗x

=

I −x

0 1


I + xy∗ 0

y∗ 1

.

Taking the determinant of both sides and using the properties

∗I thank Danny Sorensen for showing me the simple proof presented here.

DSTEIN.f


29

� det(AB) = det(A) det(B);

� det(A) = product of the eigenvalues of A;

results in the equation

1 + y∗x = det

I + xy∗ 0

y∗ 1

 = det(I + xy∗) .

Lemma 2.2. Let d1 < d2 < · · · < dn and δ1 ≤ δ2 ≤ · · · ≤ δn be the eigenvalues of

D and D + zz∗ respectively, where D is diagonal. Then, if every component of z is

nonzero, we have d1 < δ1 < d2 < δ2 < · · · < dn < δn.

For a discussion of the latter lemma, see Wilkinson [31, pp. 94–98]. From this

point, without loss of generality I assume that all the entries of z are nonzero. (If

the jth component is equal to zero, then dj ∈ σ(D + zz∗) with eigenvector ej, and

the remaining problem can be split into two independent smaller problems.) This

reduction in dimension of the eigenproblem is sometimes called deflation. Let δ ∈

σ(D + zz∗). By Lemma 2.2, D− δI is invertible and one can write

D + zz∗ − δI = (D− δI)(I + (D− δI)−1zz∗).

In turn, by Lemma 2.1, equation (2.2) is satisfied if and only if

g(δ) := 1 +
n∑
j=1

|zj|2

dj − δ
= 0. (2.3)

• 
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Equation (2.3) is called the secular equation. In this light, the eigenvalues of

D+zz∗ can be calculated by a root-finding algorithm applied to this equation. Work

towards developing a sufficiently fast root-finder arose from the rank-one modification

to the symmetric eigenproblem, and later from the need to find zeros of (2.3) as a

substep of the divide-and-conquer eigenvalue algorithm [7]. Thus, Bunch, Nielsen,

and Sorensen built an efficient Newton-type iteration by creating a rational function

approximant to g(δ) [5] (summarized in [10, pp. 221–223] and [30, pp. 229–232]).

The LAPACK routine DLAED4.f encodes this particular root-finding algorithm and

is what I use in my implementation of Algorithm 1.

I supplemented this routine with code to handle the case when a component of z

is zero and the problem deflates. More precisely, if a component |zi| ≤ εmach, the code

bypasses the root-finding procedure and the corresponding eigenvalue of D + zz∗ is

taken to be the unperturbed diagonal entry di of D.

Timing results for Algorithm 1 applied to compute σk for the Fibonacci Hamilto-

nian are displayed in Figure 2.1. Interestingly, step 2 and 3 both take greater time

than the QR iteration for T. This observation suggests that step 2 and 3 may be

implemented in parallel for greater efficiency.

DLAED4.f
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Figure 2.1 : Timing results for Algorithm 1 applied to the Fibonacci model with
double precision arithmetic. Displayed are the timing results for individual tests
along with the total time.

2.3 Testing and some comparisons

2.3.1 Gear matrices

In 1969 paper, C.W. Gear carefully calculates closed-form expressions for the eigen-

values of matrices that are tridiagonal plus small modifications to their first and last

rows [14]. Such examples include the matrices J± with the Jacobi parameters an = 0

and bn = 1. Using his notation, let an even number N be the order of the matrix.

----B--

--+--

----e--

; 
; 

; 

; 
; 

; 

; 

; 
; 

; 

; 
; 

; 
; 

; 

; 
; 

; 

; 

; 
; 

; 

; 
; 

; 
• ; 
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The eigenvalues are given as follows:

σ(J+) =

{
2 cos

(
2kπ

N

)
, 1 ≤ k < N/2

}
∪ {−2, 2}

σ(J−) =

{
2 cos

(
(2k − 1)π

N

)
, 1 ≤ k ≤ N/2

}
.

Tables 2.1, 2.2, 2.3, and 2.4 below compare the eigenvalues computed from Al-

gorithm 1 with the theoretical eigenvalues: the first six eigenvalues are displayed

along with the error.† ‡ Note that for these matrices of relatively large order, the

eigenvalues computed with Algorithm 1 in double precision match to 15 digits of the

theoretical eigenvalues. In the quadruple precision case for J−, the root-finding for

the secular equation failed for two eigenvalues: this problem only arose for the Gear

example and did not occur in computations for the Fibonacci Hamilonian. I believe

this issue is minor, and perhaps some fine tuning in the deflation code would remedy

the problem.

†Fortran code and subroutines may be compiled to run in quadruple precision by promoting all
double precision data types to real*16. This was accomplished in my implementation with the
following script: http://icl.cs.utk.edu/lapack-forum/viewtopic.php?f=2&t=2739
‡In my testing of these matrices from Gear, I used an sorting subroutine from the following

website: http://jean-pierre.moreau.pagesperso-orange.fr/

double
precision
real*16
http://icl.cs.utk.edu/lapack-forum/viewtopic.php?f=2&t=2739
http://jean-pierre.moreau.pagesperso-orange.fr/
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Table 2.1 : First several eigenvalues of J+ computed with Algorithm 1 double preci-
sion, N = 100, 000.

exact computed error
−2.0000000000000000 −2.0000000000000004 0.0000000000000004
−1.9999999960521582 −1.9999999960521588 0.0000000000000007

- −1.9999999960521586 0.0000000000000004
−1.9999999842086329 −1.9999999842086331 0.0000000000000002

- −1.9999999842086331 0.0000000000000002
−1.9999999644694242 −1.9999999644694242 0.0000000000000000

- −1.9999999644694242 0.0000000000000000
−1.9999999368345323 −1.9999999368345325 0.0000000000000002

- −1.9999999368345323 0.0000000000000000
−1.9999999013039569 −1.9999999013039578 0.0000000000000009

- −1.9999999013039573 0.0000000000000004

Table 2.2 : First several eigenvalues of J− computed with Algorithm 1 double preci-
sion, N = 100, 000.

exact computed error
−1.9999999990130395 −1.9999999990130397 0.0000000000000002

- −1.9999999990130395 0.0000000000000000
−1.9999999911173560 −1.9999999911173560 0.0000000000000000

- −1.9999999911173556 0.0000000000000004
−1.9999999753259889 −1.9999999753259894 0.0000000000000004

- −1.9999999753259892 0.0000000000000002
−1.9999999516389386 −1.9999999516389391 0.0000000000000004

- −1.9999999516389384 0.0000000000000002
−1.9999999200562049 −1.9999999200562055 0.0000000000000007

- −1.9999999200562051 0.0000000000000002
−1.9999998805777879 −1.9999998805777885 0.0000000000000007

- −1.9999998805777881 0.0000000000000002
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Table 2.3 : First several eigenvalues of J+ computed with Algorithm 1 in quadruple
precision, N = 100, 000.
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Table 2.4 : First several eigenvalues of J− computed with Algorithm 1 in quadruple
precision, N = 100, 000.
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2.3.2 Fibonacci model

I now describe numerical results for the Fibonacci Hamiltonian. Most of the calcu-

lations in this thesis fall in the less-studied intermediate coupling regime, where λ

is neither close to zero nor very large (i.e. λ is bounded away from 0 but less than

4). This range of λ values allows for implementation of Algorithm 1 in double pre-

cision, since band widths shrink more slowly for smaller values of λ (see Figures 1.3

and 1.4). Thus, calculations may be taken to higher levels than shown in this work,

as long as λ is sufficiently small to avoid exponentially close eigenvalues. In turn,

quadruple precision calculations may be used to tackle larger values of the coupling

strength (greater than 4) to resolve differences in close-by eigenvalues. It is possible

to compile LAPACK routines to run in quadruple precision, but computational time

increases in this extended precision.

I have included Tables 2.5, 2.6, 2.7, and 2.8 displaying the 5 middle computed

eigenvalues of the matrices J± for the Fibonacci Hamiltonian with k = 20 and λ =

2, 8. Values in the middle of the spectrum are chosen given the qualitative assumption

that substantial clustering occurs in this region. Four different methods are shown:

Algorithm 1 in double and quadruple precision (“Alg. 1d” and “Alg. 1q” respectively

in the tables below), Matlab’s eig, and the LAPACK routine DSYEV.f compiled to

run in quadruple precision.

Note that the eigenvalues for this application will be close together, since they

approximate the Cantor spectrum of measure zero of the Fibonacci Hamiltonian. One

eig
DSYEV.f
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Table 2.5 : Five middle eigenvalues in σ(J+) for the Fibonacci Hamiltonian with
λ = 2. The order of J+ is 10, 946 (k = 20). Displayed are the computed eigenvalues
from four separate codes, two in double precision and two in quadruple precision.

Alg. 1d 1.429235757432078 4

eig 1.429235757432 107
Alg. 1q 1.4292357574320782330720391457131554
DSYEV.f 1.4292357574320782330720391457131529

Alg. 1d 1.42925333089613 50

eig 1.4292533308961 62
Alg. 1q 1.4292533308961349521011449450318725
DSYEV.f 1.4292533308961349521011449450318734

Alg. 1d 1.429288026199825 8

eig 1.4292880261998 44
Alg. 1q 1.4292880261998256521516529349150777
DSYEV.f 1.4292880261998256521516529349150796

Alg. 1d 1.42930620097212 20

eig 1.4293062009721 42
Alg. 1q 1.4293062009721217677616261343470380
DSYEV.f 1.4293062009721217677616261343470403

Alg. 1d 1.429340897878959 0

eig 1.4293408978789 83
Alg. 1q 1.4293408978789593473717581090306448
DSYEV.f 1.4293408978789593473717581090306467

obtains more digits of accuracy for λ = 2 as compared to λ = 8, since the eigenvalue

spacing decays more gradually with the level number k for smaller values of λ. The

digits highlighted in grey are those of the eigenvalues computed in double precision

that agree with the digits of the eigenvalues computed in quadruple precision.

eig
DSYEV.f
eig
DSYEV.f
eig
DSYEV.f
eig
DSYEV.f
eig
DSYEV.f
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Table 2.6 : Five middle eigenvalues in σ(J+) for the Fibonacci Hamiltonian with
λ = 8. The order of J+ is 10, 946 (k = 20). Notice that these eigenvalues are closer
together than for λ = 2 in Table 2.5.

Alg. 1d 7.1233218906775 511

eig 7.12332189067 9813
Alg. 1q 7.1233218906775077259052027990441278
DSYEV.f 7.1233218906775077259052027990441371

Alg. 1d 7.123321890896 7313

eig 7.12332189089 8212
Alg. 1q 7.1233218908966885297296485295470743
DSYEV.f 7.1233218908966885297296485295470851

Alg. 1d 7.123321893816 1196

eig 7.123321893816 916
Alg. 1q 7.1233218938160852861910276823143882
DSYEV.f 7.1233218938160852861910276823144151

Alg. 1d 7.1233218939197 620

eig 7.1233218939 20583
Alg. 1q 7.1233218939197272777658699006219234
DSYEV.f 7.1233218939197272777658699006219527

Alg. 1d 7.1233218968391 663

eig 7.1233218968 40594
Alg. 1q 7.1233218968391240547230659524326977
DSYEV.f 7.1233218968391240547230659524327108

eig
DSYEV.f
eig
DSYEV.f
eig
DSYEV.f
eig
DSYEV.f
eig
DSYEV.f
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Table 2.7 : Five middle eigenvalues in σ(J−) for the Fibonacci Hamiltonian with
λ = 2. The order of J− is 10, 946 (k = 20).

Alg. 1d 1.4292404547761508

eig 1.4292404547761 90
Alg. 1q 1.4292404547761508434229558244154517
DSYEV.f 1.4292404547761508434229558244154530

Alg. 1d 1.429249324211662 8

eig 1.4292493242116 83
Alg. 1q 1.4292493242116629518885897087185001
DSYEV.f 1.4292493242116629518885897087185007

Alg. 1d 1.4292934828231283

eig 1.4292934828231 48
Alg. 1q 1.4292934828231283292165371593409164
DSYEV.f 1.4292934828231283292165371593409164

Alg. 1d 1.429300744352445 5

eig 1.4293007443524 59
Alg. 1q 1.4293007443524456179224176321016020
DSYEV.f 1.4293007443524456179224176321016049

Alg. 1d 1.429344904720694 1

eig 1.429344904720 721
Alg. 1q 1.4293449047206944219368822628772715
DSYEV.f 1.4293449047206944219368822628772715

eig
DSYEV.f
eig
DSYEV.f
eig
DSYEV.f
eig
DSYEV.f
eig
DSYEV.f
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Table 2.8 : Five middle eigenvalues in σ(J−) for the Fibonacci Hamiltonian with
λ = 8. The order of J− is 10, 946 (k = 20).

Alg. 1d 7.12332189068856 54

eig 7.1233218906 90949
Alg. 1q 7.1233218906885593314445002636774535
DSYEV.f 7.1233218906885593314445002636773942

Alg. 1d 7.1233218908903 284

eig 7.12332189089 1762
Alg. 1q 7.1233218908903082601007337396589646
DSYEV.f 7.1233218908903082601007337396589792

Alg. 1d 7.1233218938274 385

eig 7.12332189382 8312
Alg. 1q 7.1233218938274520441700214641767623
DSYEV.f 7.1233218938274520441700214641767823

Alg. 1d 7.1233218939083 329

eig 7.12332189390 9189
Alg. 1q 7.1233218939083605197868768550743002
DSYEV.f 7.1233218939083605197868768550743202

Alg. 1d 7.1233218968455 265

eig 7.12332189684 7012
Alg. 1q 7.1233218968455043244062521287398769
DSYEV.f 7.1233218968455043244062521287398831

eig
DSYEV.f
eig
DSYEV.f
eig
DSYEV.f
eig
DSYEV.f
eig
DSYEV.f
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Chapter 3

Application: Fibonacci Hamiltonian

This chapter details an application of Algorithm 1 for computing the canonical covers

σk ∪ σk+1 of the spectrum Σλ of the Fibonacci Hamiltonian. These calculations al-

low for extrapolating approximations to fractal dimensions from the canonical covers

and formulating combinatorial statements for the bands in σk in the coupling regime

λ ∈ (0, 4]. Approximate dimensions inform conjectures regarding the regularity and

mononoticity of the exact dimensions as functions of λ. Combinatorial results aid

in approximating dimensions from the canonical covers, increase our physical un-

derstanding of quasicrystals, and unveil beautiful structure of theoretical interest.

Relevant examples include the work of Killip et al., who present a complete descrip-

tion of the combinatorics for λ > 4 and then apply their result to derive bounds

on quantum particle dynamics [19]. Similarly, Damanik, Embree, Gorodetski and

Tcheremchantsev utilize these combinatorics to extrapolate bounds on fractal dimen-

sions as λ → ∞; they then relate the box-counting dimension to the time evolution

of an initial delta function [9]. My numerical work arises from the same motivations,

but focuses on the less-studied intermediate coupling regime. Section 3.1 contains

work on fractal dimensions and section 3.2 examines interval combinatorics.
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3.1 Fractal dimensions

There are several ways to measure the dimension of a fractal subset of R. I study the

box-counting and Hausdorff dimensions. Let A ⊂ R.

Definition 3.1. Let ε > 0 and MA(ε) = #{n ∈ Z : [nε, (n + 1)ε) ∩ A 6= ∅}. The

upper and lower box-counting dimensions of A are respectively

dim+
B A := lim sup

ε→0

logM(ε)

− log ε

dim−B A := lim inf
ε→0

logM(ε)

− log ε
.

When the two limits above are equal, their limit, denoted dimB A, is the box-counting

dimension of A.

Definition 3.2. Let ∆ > 0 and consider a set of intervals {Cl}l≥1, such that A ⊂⋃
l≥1Cl and |Cl| ≤ ∆. Given

hα(A) := lim
∆→0

inf
∆-covers

∑
l≥1

|Cl|α

with α ∈ [0, 1], the Hausdorff dimension is

dimH A := inf{α : hα(A) <∞}.

The fractal dimensions of the spectrum Σλ reveal electronic transport properties

of the Fibonacci Hamiltonian. For example, Theorem 3 in the paper of Damanik
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et al. describes bounds the evolution of a portion of a wavepacket by a quantity

involving a fractal dimension [9]. In addition, these dimensions give insight into the

topological characteristics of spectra of two and three dimensional Fibonacci models.

More precisely, higher dimensional models have spectra that are set sums of the one-

dimensional spectrum Σλ. For two and three dimensions,

σ(H2d,λ) = Σλ + Σλ

σ(H3d,λ) = Σλ + Σλ + Σλ.

Since the one dimensional spectrum is a Cantor set, what can be said about the set

sum of the spectrum with itself? Damanik and Gorodetski relate the structure of the

spectrum of the two-dimensional model with the box-counting dimension: σ(H2d,λ) is

a Cantor set provided the upper box-counting dimension is less than 1/2 [8]. Further,

more subtle scenarios arise: the sum of a Cantor set with itself may form a Cantorval,

an object with similarities to Cantor set and intervals. Definitions and related open

problems may be found in the last section of the survey article [8].

Lastly, questions regarding regularity (and mononiticity) of the dimensions (with

respect to λ) and the relationship between the two dimensions in the intermediate

coupling regime remain open. In this section I discuss approximating dimensions of

Σλ from the covers σk ∪ σk+1 with a goal of shedding light on these open problems.
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3.1.1 Approximating the Hausdorff dimension

I develop approximations to the Hausdorff dimension from the covers σk ∪ σk+1 in

a way derived from the work of Halsey et al. [16]. Papers from Kohmoto et al.

and Tang et al. demonstrate an application of this approach to quasiperiodic models

[20, 27], although they compute a different but related object (the “f − α” curve of

the spectrum).

To approximate the Hausdorff dimension, let {Bj,k}Nk
j=1 be an enumeration of the

bands in the cover σk ∪ σk+1. With the bands σk ∪ σk+1 and σk+1 ∪ σk+2, construct

the following function:

gk(α) =

Nk∑
j=1

|Bj,k|α −
Nk+1∑
j=1

|Bj,k+1|α.

The approximate Hausdorff dimension is α̃k such that gk(α̃k) = 0. One can view

σk ∪ σk+1 and σk+1 ∪ σk+2 as ∆-covers, where k is taken large enough so that ∆ is

sufficiently small. In turn, the assumption that both sums “suitably approximate”

the limit hα(Σλ) implies: ∑Nk

j=1 |Bj,k|α∑Nk+1

j=1 |Bj,k+1|α
≈ 1.

Enforcing equality of this ratio, I seek an approximate Hausdorff dimension as a root

of gk in [0, 1]. This root-finding procedure is done with Matlab’s fzero function.

Table 3.1 depicts the approximate dimension calculated from successively higher levels

for four values of λ; one observes convergence as k increases since the sets σk ∪ σk+1

fzero
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Table 3.1 : Approximate Hausdorff dimension α̃k computed with the covers σk∪σk+1

and σk+1 ∪ σk+2. Note the convergence of the approximation to the dimension as the
level k increases.

k λ = 1 λ = 2 λ = 3 λ = 4
3 0.6291847216 0.5462641412 0.5509223280 0.4880251151
4 0.7717876114 0.6387171661 0.4962734864 0.4360752232
5 0.7687008005 0.5980307042 0.5245905225 0.4643367675
6 0.7853861811 0.6175207019 0.5099061560 0.4489717534
7 0.7707783314 0.6081066010 0.5177173248 0.4575388294
8 0.7803899153 0.6128945234 0.5135325765 0.4527265647
9 0.7767175230 0.6104874494 0.5157963293 0.4554547177
10 0.7714623010 0.6117021346 0.5145673349 0.4539025279
11 0.7735535776 0.6110879386 0.5152374261 0.4547889870
12 0.7725063848 0.6114005132 0.5148714885 0.4542820205
13 0.7729999110 0.6112412695 0.5150716978 0.4545724092
14 0.7728023687 0.6113225062 0.5149620869 0.4544059893
15 0.7728869425 0.6112810399 0.5150221437 0.4545014247
16 0.7728465217 0.6113022263 0.5149892285 0.4544466855
17 0.7728647751 0.6112913969 0.5150072741 0.4544780900
18 0.7728569242 0.6112969343 0.5149973793 0.4544600723
19 0.7728604870 0.6112941023 0.5150028057 0.4544704110
20 0.7728588318 0.6112955508 0.5149998295 0.4544644829
21 0.7728595719 0.6112948098 0.5150014635 0.4544678747
22 0.7728592431 0.6112951888 0.5150005739 0.4544659127
23 0.7728593933 0.6112949949 0.5150010568 0.4544670354

24 0.77285 93247 0.61129 50942 0.51500 07784 0.45446 53981

better approximate the Cantor spectrum.

Figure 3.1 shows the approximate Hausdorff dimension as a function of λ. At

this level of resolution in λ, the dimension appears to be monotone and contains no

jumps; these observations support conjectures regarding regularity and monotonicity

(i.e. Corollary 5.6 of [8] for a statement about regularity).

Damanik et al. derived upper and lower bounds on the the Hausdorff dimension

for λ > 16 [9]. In their notation, with Su(λ) = 1
2

(
λ − 4 +

√
(λ− 4)2 − 12

)
and

- - - -
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Figure 3.1 : Approximate Hausdorff dimension calculated from the covers σk ∪ σk+1

with k = 23, 24. At this resolution in λ, the dimension appears smooth and monotone.
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Figure 3.2 : Approximate Hausdorff dimension calculated from the covers σk ∪ σk+1

with k = 13, 14. Also plotted are the upper and lower bounds proven in [9].
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Sl(λ) = 2λ+ 22, they proved

dimH Σλ ≥
log(1 +

√
2)

logSu(λ)

and

dimH Σλ ≤
log(1 +

√
2)

logSl(λ)
.

As a check of this method of approximation, I have plotted the approximate

dimension and the bounds in Figure 3.2.

3.1.2 Box-counting dimension

Several conjectures regarding the box-counting dimension of Σλ require some numer-

ical insight. For both λ→ 0 and λ > 16, the box-counting and Hausdorff dimensions

are equal, but less is known in the intermediate coupling regime (see [8]). Generally,

the fractal dimensions of a set A ⊂ R satisfy

dimH A ≤ dim−B A ≤ dim+
B A.

For the spectrum Σλ, Damanik et al. conjecture the equality of the dimensions for

any λ > 0 [8].

In addition, numerical work may reveal critical λ values at which transitions in

the spectrum of higher dimensional models occur, i.e. λ for which the upper box-

counting dimension is equal to 1/2. Assuming dimB Σλ = dimH Σλ for all λ, Figure
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Table 3.2 : Approximation of λ such that dim Σλ = 1/2. This critical coupling
strength is determined by approximating the Hausdorff dimension as discussed in
section 3.1.1, and then determining a root of dimH Σλ − 1/2 in the interval [3, 4].

k root of dimH Σλ − 1/2
5 3.358132165787465
6 3.136023908556593
7 3.252443323604985
8 3.188369245375197
9 3.223061231166874
10 3.203897752346325
11 3.214420790092100
12 3.208597301692052
13 3.211813603439293
14 3.210032038473626
15 3.211018258537230
16 3.210471722049607
17 3.210774542902178
18 3.210606689833002
19 3.210699725856641
20 3.210648145088315
21 3.210676725662388
22 3.210661023369781

3.1 suggests the dimension takes the value 1/2 for λ ≈ 3. Table 3.2 more precisely

investigates this critical value of λ in the following way. I created a function taking

λ 7→ (approximation of dimH Σλ) by efficiently computing the covers σk ∪ σk+1 and

σk+1∪σk+2 with Algorithm 1, and then from these covers, extracting an approximation

to the Hausdorff dimension as described in section 3.1.1. The values displayed in Table

3.2 are the roots of this function in the interval [3, 4].

The relevant data collected from the covers σk ∪ σk+1 for approximating the box-

counting dimension are particular sequences of infima for each λ. More precisely,



50

define the function (refer to Definition 3.1)

fk,λ(ε) =
logMσk∪σk+1

(ε)

− log ε
.

From Figures 3.3 and 3.4, one is hopeful that the sequence infε∈(0,1) fk,λ(ε) converges

to the box-counting dimension of Σλ. These figures appear in the survey paper by

Damanik, Embree, and Gorodetski, but without averaging over ε-grids. Their plots of

fk,λ appear highly discontinuous, especially for larger values of ε. I compute the value

of the function fk,λ at ε with averaging by shifting the ε-grid by (j−1)ε/N , where N is

the number of realizations. For each j = 1 . . . N , I compute a number − logMj/ log ε,

where Mj is the number of intervals in the shifted grid that nontrivially intersect

σk ∪ σk+1; fk,λ(ε) is taken as the average over these values. With averaging, the

resulting plots of fk,λ appear smoother and thus facilate more accurate calculation of

the infε∈(0,1) fk,λ(ε).

The approximate Hausdorff dimension as computed in section 3.1.1 is plotted as

a dashed line in Figures 3.3 and 3.4 with the plots of fk,λ to visualize the connection

between the Hausdorff and box-counting dimensions. In all cases the dashed line

provides a lower bound on the infima. Table 3.3 displays the sequence of minima

for four values of the coupling strength: the convergence is agonizingly slow. From

Figure 3.4 one expects quicker convergence for the largest value λ = 4, but even

in this case I think we cannot expect even one digit of accuracy (for example, the

first digit should be 4 if we assume equality of Hausdorff and box-counting). I have
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Table 3.3 : Minima of fk,λ. Observe the slow convergence.

k λ = 1 λ = 2 λ = 3 λ = 4
3 1.0336903744 1.0209104937 1.0076755514 0.9743044183
4 1.0298323720 1.0121711018 0.9750578638 0.8869700670
5 1.0257606630 1.0033435987 0.9105012908 0.8142126618
6 1.0217885452 0.9773356592 0.8530686632 0.7561537168
7 1.0177107027 0.9389940411 0.8076428267 0.7123968591
8 1.0136620162 0.9051927594 0.7713904183 0.6781950504
9 1.0096087392 0.8762657167 0.7424399454 0.6516463581
10 1.0055581702 0.8516590139 0.7191551380 0.6306586165
11 1.0015053675 0.8307835418 0.6997014118 0.6132573124
12 0.9926301691 0.8127909835 0.6836084473 0.5990907457
13 0.9801915271 0.7972557922 0.6698542777 0.5871119859
14 0.9683264590 0.7838296563 0.6580566159 0.5767359169
15 0.9573907069 0.7720219604 0.6479480903 0.5679433502
16 0.9473481269 0.7616242588 0.6389600669 0.5602246539
17 0.9381934358 0.7524384294 0.6310986318 0.5534476596
18 0.9298621989 0.7442777202 0.6241512593 0.5474899996
19 0.9222036498 0.7369202702 0.6179423360 0.5421397650
20 0.9152117058 0.7303213762 0.6124022678 0.5373821539
21 0.9088144785 0.7243886430 0.6074011038 0.5330849001
22 0.9029047270 0.7189831426 0.6028683696 0.5292093050
23 0.8974529262 0.7140279227 0.5987629541 0.5256806365
24 0.8924307768 0.7095202193 0.5950086222 0.5224711129

attempted Richardson extrapolation and other techniques, with no luck as of yet.

My hope is that future work will lead to a robust extrapolation approach or other

method for approximating the box-counting dimension from the covers σk∪σk+1, and

in turn clearly reveal a relationship with the Hausdorff dimension. The combinatorics

of the intervals in the canonical covers, discussed in the next section, will aid in this

endeavor and expose some theoretically interesting structure.



52

10
−13

10
−11

10
−9

10
−7

10
−5

10
−3

10
−1

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

ε

f
k
,λ
(
ε
)

k = 25

k = 3

10
−13

10
−11

10
−9

10
−7

10
−5

10
−3

10
−1

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

ε

f
k
,λ
(
ε
)

k = 25

k = 3

Figure 3.3 : Plot of fk,λ(ε) for λ = 1 (top) and λ = 2 (bottom). The dashed line
indicates the approximate Hausdorff dimension computed with the covers σk ∪ σk+1,
k = 24, 25.
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Figure 3.4 : Plot of fk,λ(ε) for λ = 3 (top) and λ = 4 (bottom). The dashed line
indicates the approximate Hausdorff dimension computed with the covers σk ∪ σk+1,
k = 24, 25.
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3.2 Interval Combinatorics

A deep understanding of the combinatorial properties of the bands in σk will provide

crucial insight into the spectrum Σλ. In particular, precise combinatorics will refine

extrapolation techniques for fractal dimensions. For example, the work of Damanik et

al. demonstrates an application of combinatorial properties for λ > 4 to approximate

the box-counting dimension as λ→∞ [9]. I am seeking statements of the same flavor

as Lemma 3.1 below (from [19]) in the intermediate coupling regime λ ∈ (0, 4]. The

authors of [19] first define two types of bands in σk.

Definition 3.3. If Ik ⊂ σk is in σk−1, then Ik is a type A band. If Ik ⊂ σk is in σk−2,

then Ik is a type B band.

Then they proved the following lemma.

Lemma 3.1. Assume λ > 4. Every type A band in σk contains only one type B band

in σk+2 and no others. Every type B band in σk contains only one type A band in

σk+1 and two type B bands in σk+2 lying on either side of the band in the previous

level.

This statement may be visualized in Figure 3.5. It follows immediately that the

number of bands in σk ∪ σk+1 is 2Fk, provided λ > 4. The proof of Lemma 3.1 relies

on the fact that for λ > 4,

σk ∩ σk+1 ∩ σk+2 = ∅ for all k,
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Figure 3.6 : Measure of the intersection σk ∩ σk+1 ∩ σk+2.

which follows from the trace map and the equivalence E ∈ σk ⇐⇒ |xk(E)| ≤ 2 (see

Theorem 1.3).

I am interested in the intermediate values of the coupling strength greater than

zero but less than 4; little is known regarding the combinatorial properties of the

bands in σk (and the covers σk ∪ σk+1) in this regime. Can precise statements like

Lemma 3.1 be made for smaller values of λ? How do the bands in σk relate to bands

in higher levels?

Figure 3.6 verifies a nontrivial intersection of three consecutive σk sets for λ values
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less than 4. Apparently the measure of the overlap eventually decays exponentially,

with more rapid decay for larger λ values: the behavior of bands in three consecutive

spectra approach the behavior proven for λ values greater than 4. Further, only λ

values less than 3 are depicted in Figure 3.6 because my calculations suggest that σk∩

σk+1 ∩ σk+2 = ∅ for λ > 3. How does this overlap behavior affect the combinatorics?

An investigation of the number of intervals in the covers σk∪σk+1 reveals interest-

ing structure. Table 3.4 exhibits the number of intervals in the canonical covers for

various λ values less than 4. It appears that the sequence of the number of intervals

eventually becomes Fibonacci regardless of the coupling strength, although further

calculation is necessary for λ < 0.75. This observation resonates with the intuition

that less overlap among consecutive σk sets leads to accumulation of more bands in

the covers.

Accurately counting the number of intervals in the numerically obtained set union

σk ∪ σk+1 presents a subtle challenge in light of floating point error and theoretically

distinct eigenvalues that appear numerically “close.” Hence for completeness, I have

included Figure 3.7, which displays the minimum distance between end-points of

intervals in σk and end-points of intervals in σk+1. The figure indicates several close

eigenvalues for smaller k but nothing problematic for larger k that would disrupt the

observed Fibonacci recurrence.

In light of the eventual Fibonacci recurrence (Nk = Nk−1 +Nk−2, not necessarily

with the convential Fibonacci starting values) depicted in Table 3.4, it is natural to
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Table 3.4 : Number of intervals in σk ∪ σk+1.

k λ = 0.25 λ =0.5 λ =0.75 λ =1 λ =1.25 λ =1.5 λ =1.75 λ =2 λ =4.1
1 1 1 1 1 1 1 1 1 2
2 1 1 1 1 2 2 2 2 4
3 1 1 3 3 3 3 4 4 6
4 2 3 4 4 5 6 6 6 10
5 3 5 6 7 8 10 10 10 16
6 5 7 10 11 13 16 16 16 26
7 9 13 16 19 22 26 26 26 42
8 15 21 26 30 36 42 42 42 68
9 23 33 42 48 58 68 68 68 110
10 37 53 68 78 94 110 110 110 178
11 60 87 110 126 152 178 178 178 288
12 97 141 178 204 246 288 288 288 466
13 157 227 288 330 398 466 466 466 754
14 253 367 466 534 644 754 754 754 1220
15 411 595 754 864 1042 1220 1220 1220 1974
16 665 963 1220 1398 1686 1974 1974 1974 3194
17 1075 1557 1974 2262 2728 3194 3194 3194 5168
18 1739 2520 3194 3660 4414 5168 5168 5168 8362
19 2815 4078 5168 5922 7142 8362 8362 8362 13530
20 4555 6598 8362 9582 11556 13530 13530 13530 21892
21 7371 10676 13530 15504 18698 21892 21892 21892 35422
22 11925 17274 21892 25086 30254 35422 35422 35422 57314
23 19295 27950 35422 40590 48952 57314 57314 57314 92736
24 31221 45224 57314 65676 79206 92736 92736 92736 150050
25 50517 73174 92736 106266 128158 150050 150050 150050 242786
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Figure 3.7 : Minimum distance between end-points of the intervals in σk and end-
points of the intervals in σk+1.
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Figure 3.8 : Maximum level k (≥ 3) at which the number of intervals in σk ∪ σk+1

does not obey the recurrence Nk = Nk−1 +Nk−2.

investigate the point at which the recurrence appears in the sequence of number of

intervals. This is done as follows: for a fixed λ, build a vector containing the number

of intervals in σk ∪ σk+1 for k = 1, . . . , 14. Then, pick the maximum level (starting

with k = 3) so that Nk 6= Nk−1 + Nk−2. Figure 3.8 shows this maximum level for a

fine mesh of λ values.

One can also investigate the number of intervals in the canonical covers as a

function of λ. The figures given in the survey paper by Damanik, Embree, and

Gorodetski elegantly display the canonical covers (k is fixed) as a functions of λ so

---

-------

I I I I I I I I 
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Figure 3.9 : Number of intervals in σk ∪ σk+1 for several values of k.

that one clearly sees splitting of one interval into multiple intervals as λ increases [8].

Figure 3.9 demonstrates that this splitting occurs in a self-similar fashion. It appears

the plateaus for a fixed k developing in between the more prominent plateaus form

in systematic way, i.e. for k = 8, see the regions 1 < λ < 1.5 and 2.5 < λ < 3.
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Chapter 4

Concluding Remarks and Future Work

This work presents an O(n2) algorithm for computing the spectra of periodic Jacobi

operators and presents an application to a quasicrystal model, the Fibonacci Hamil-

tonian. More precisely, the sets σk, spectra of related periodic Jacobi operators, form

a cover σk ∪ σk+1 for the Cantor spectrum of the Fibonacci Hamiltonian. Thus, by

efficiently computing the sets σk with Algorithm 1, the Cantor spectrum may be ap-

proximated with the canonical covers. The sets σk ∪ σk+1 allow one to numerically

grasp the complicated Cantor structure of the spectrum with a goal of informing

conjectures and gaining physical insight into quasicrystals.

The application of Algorithm 1 to the Fibonacci model focused on the less-studied

intermediate coupling regime λ ∈ (0, 4]. Future numerical work includes determining

a more robust way of extrapolating the box-counting dimension from the canonical

covers.

These numerical calculations motivate theoretical questions that require further

investigation. What can be said about the regularity and monotonicity of the box-

counting and Hausdorff dimensions in the intermediate coupling regime? Can one

develop a closed-form expression for the fractal dimension from plots like Figure

3.1? Further, with perhaps more digits to the approximation in Table 3.2, can one
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conjecture and prove at what critical value of λ the dimension is equal to 1/2? This

endeavor naturally leads to further numerical and theoretical investigation of the two-

and three-dimensional Fibonacci Hamiltonians.

Future work will also incorporate a theoretical investigation of the combinatorics

of the intervals in the sets σk for λ in the intermediate coupling regime. I would like

to rigorously explain the behavior observed in Figure 3.9 and Table 3.4. Can one

prove that for any λ > 0, the number of intervals in the canonical covers eventually

obeys the Fibonacci recurrence? As a starting point, one can quickly show that for

λ > 2,

σk ∩ σk+1 ∩ σk+2 ∩ σk+3 = ∅ for all k

by using the trace map. It would be interesting to use the above result and arguments

adapted from Killip et al. to prove a statement similar to Lemma 3.1 [19]. Further,

can one show that for λ > 3, σk ∩ σk+1 ∩ σk+2 = ∅?. I hope a better understanding

of the combinatorics will help answer questions regarding fractal dimensions and in

turn, contribute to our knowledge of quasicrystals.
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