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a b s t r a c t

Consider aWiener processW on a circle of circumference L. We prove the rather surprising
result that the Laplace transform of the distribution of the first time, θL, when the Wiener
process has visited every point of the circle can be solved in closed form using a continuous
recurrence approach.
© 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC

BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Consider a Wiener process on a circle of circumference L. The distribution of the first time, θL, when the Wiener process
has visited every point of the circle is equivalent, via the natural bijection between and interval of the form [b, b+ L) on the
real line and a circle of circumference L, to the distribution of the first timewhen the range of theWiener process on the real
line is of length L. This distribution is well-known and it has the following Laplace transform: [see, for example, (Borodin
and Salminen, 2002), p. 242]

E

e−sθL


=

1

cosh2

L


s
2

 , s ≥ 0. (1)

Feller (1951), in writing about the range of a Wiener process, did so using explicit probability density calculations. Imhof
(1986) discovered Laplace transform for the first time, θL, when theWiener process has visited every point of the circle, again
via explicit probability density calculations. Further computations employing the Laplace transform for θL were presented
in Vallois (1993). However, in departure from these previous works, we prove the result in Eq. (1) using a continuous
recurrence setup. We do so by calculating the left hand side in terms of random variables representing how long it takes
to cover a range of length L, given that one is already at an endpoint of a range of length a (which counts as being covered
already). This is the idea behind the definition of θa,L, which is defined in Section 2.
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Key to our recurrence will be the concept of a switchback. Imagine we pick some a ∈ R+ that is less than L. Consider
the maximum, Ma, of W until the first visit to the point, −a on the negative half-axis. (Here, Ma > 0; otherwise, the
process would have moved directly from 0 to −a, which occurs w.p. 0) We call the time of this first visit τ−a. We say that a
‘‘switchback’’ occurs when W hits −a before the length of the range, a + Ma, is L. Formally, let 1a,L be the indicator random
variable for the event of a switchback, defined as follows:

1a,L =


1 if inf{t : 0 ≤ t < ∞ |Wt = −a} ≤ inf{t : 0 ≤ t < ∞ |Wt = L − a}
0 otherwise.

After a switchback, the process continues from −a with a starting range of Ma + a (i.e., the interval [−a,Ma] has been
covered). By translation and reflection invariance, as well as the symmetry of Brownianmotion, wemay just as well assume
that we are at the point 0 and have covered the interval [−(a + Ma), 0]. We then repeat the process and say that a second
switchback occurs if we reach −(a + Ma) before covering a range of length L. To summarize:
Step 1: We start our process at the right hand end of [−a, 0] and we consider this interval as already being covered. Ma is
the maximal value attained before the time τa that we first hit −a. The total range is a + Ma. If Ma ≥ L − a, then we have
covered an interval of length L before reaching −a, and no switchback occurs. If not, a switchback occurs and we continue
to Step 2.
Step 2:We have covered a range of length a+Ma. Without loss of generality, we consider the interval [−(a+Ma), 0] to have
been covered. Let −(a+Ma) := −a′, and start the process on the right hand end of [−a′, 0]. IfMa′ ≥ L−Ma′ , no switchback
occurs. Otherwise, another switchback occurs and we continue to Step 3.
Step 3: We have covered a range of length a′

+ Ma′ . Without loss of generality, we consider the interval [−(a′
+ Ma′), 0] to

have been covered. Let −(a′
+ Ma′) be called −a′′, and start the process on the right hand end of [−a′′, 0]. If Ma′′ ≥ L − a′′,

a switchback occurs. Otherwise, continue Step 3 recursively until a range of length L has been covered.
Steps 1–3 are illustrated in Fig. 1.
In Section 3 we prove that the recurrence can be solved in closed form. In Section 4 we prove that the number ν = νa,L,

of switchbacks before covering an interval of length L has a Poisson distribution with parameter λ = log L
a . Thus, as a ↓ 0,

the number of switchbacks goes to infinity at a logarithmic rate.

2. Solving the recurrence

Weproceed to solve for the recurrence. First, consider aWiener processW (t), t ≥ 0. For each fixed, a > 0, letMa denote
the maximum positive value ofW (t) before the first hitting time of −a. Assuming that L − a is positive, we have

P (Ma ≤ y) = P

τ−a < τy


=

y
a + y

,

by the logic of the gambler’s ruin.
Let I(t) be the range of theWiener process up to time t . Define θa,L to be the random variable representing the time until

I(t) ∪ [−a, 0] has length L. We proceed by defining

f (s, a, L) := E

exp


−sθa,L


, (2)

where f (s, a, L) is considered a function of awith s and L being held constant. By abuse of notation, we label f (s, a, L) as f (a).
Let us define the following functions

F(s, y) = E

exp (−sτ−a) 1τ−a<τy


and G(s, y) = E


exp


−sτy


1τy<τ−a


. (3)

We now employ the well-known fact (see Borodin and Salminen, 2002, amongst other sources), that for any c ,

exp

cW (t) −

c2

2
t


t ≥ 0 (4)

is a martingale. If s =
c2
2 , we easily obtain the following standard and well known forms of F(s, y) and G(s, y) (see Borodin

and Salminen, 2002, amongst other sources),

F(s, y) =
sinh cy

sinh (c(a + y))
and G(s, y) =

sinh ca
sinh (c(a + y))

. (5)

Continuing from above, our goal is to write a recurrence for f (a) in terms of f (a + y) for 0 < y ≤ L − a. To do so, we
define f (a) using indicator functions. With the process starting at 0, let the first indicator function represent the case of a
switchback, in which −a is hit before the length of the range is L. Let the second indicator function denote the case of no
switchback. We may then write

f (a) = E

exp


−sθa,L


1τ−a<τL−a

  
switchback

+ E

exp


−sθa,L


1τL−a<τ−a

  
no switchback

. (6)
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Fig. 1. Illustration of Steps 1–3 in Section 1.

Letting y = L − a, and using the expression for G(s, y) in equation (5), we have:

G(s, L − a) =
sinh ca
sinh cL

, (7)

which is exactly the ‘‘no switchback’’ term. To calculate the switchback term, we integrate over all possible values of Ma,
from 0 to L − a, using y as a dummy variable. f (a) becomes:

f (a) =
sinh ca
sinh cL

+

 L−a

0
f (a + y)

d
dy

F(s, y) dy , 0 < a ≤ L. (8)

We note that it is possible for a to be L since the original definition of f (s, a, L) gives f (L) = 1.
This recurrence structure is an integral equation. The key idea is that Eq. (8) shows that the expected time it takes to get

from point a to point b, conditional on starting at a left most point of an interval, can be found by integrating over all possible
left most points of the subsequent path.

Remark 2.1. This continuous recurrence approach presents an enormously valuable alternative to a direct density
calculation. This approach should be helpful in many applied statistical settings in which such a calculation is intractable!

3. A closed form solution for the recurrence

Theorem 3.1. The recurrence structure in Eq. (8) can be solved in closed form. Letting a ↓ 0, we obtain f (0) =
1

cosh2

L
√

s
2

 .
Proof. Using the expression for F(s, y) in equation (5) we have

f (a) =
sinh ca
sinh cL

+

 L−a

0
f (a + y)

d
dy


sinh cy

sinh c(a + y)


dy, 0 < a ≤ L. (9)

Differentiating, we obtain:

f (a) =
sinh ca
sinh cL

+

 L−a

0

c sinh ca
sinh2 c(a + y)

f (a + y)dy, 0 < a ≤ L.
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Finally, substituting x = a + y gives the integral equation

f (a) =
sinh ca
sinh cL

+

 L

a

c sinh ca
sinh2 cx

f (x)dx, 0 < a ≤ L.

Fortunately, this is easy to solve: we divide by sinh ca and let

g(x) =
f (x)

sinh cx
to arrive at:

g(a) =
1

sinh cL
+

 L

a

c
sinh cx

g(x)dx, 0 < a < L. (10)

Differentiating with respect to a, we obtain the following differential equation for g

g ′(a) = −
c

sinh ca
g(a). (11)

Noting that f (L) = 1,

g(L) =
1

sinh cL
. (12)

We now have that

g(a) =
1

sinh cL
exp

 L

a

c
sinh cu

du


,

which is a unique solution to Eq. (11) with (12) as its initial condition.
Further,

f (a) =
sinh ca
sinh cL

exp
 L

a

cdu
sinh cu

du


.

We now let a ↓ 0. The limit is

f (0) = E [exp (−sθL)] = lim
a→0

exp
 L

a


c

sinh cu
−

c cosh cu
sinh cu


du


. (13)

Combining the fractions, integrating, and letting c =
√
2s, we obtain

f (0) = E [exp (−sθL)] =
2

1 + cosh cL
=

1

cosh2

L


s
2

 . (14)

Since by Oberhettinger and Badii (1973)
∞

0
exp (−st) exp


−

a2

2t


a

√
2π

t−
3
2 dt = exp


−a

√
2s


, (15)

we can expand

cosh2


s
2

−1
in powers of e−

√
2s to obtain an infinite series representation of the density of θ1. Namely, for

L = 1, we can write:
∞

0
e−stp

θ1
(t)dt = 4 exp


−

√
2s

 
1 + exp


−

√
2s

−2

=

∞
n=0

4(−1)n(n + 1)exp

−(n + 1)

√
2s


. (16)

Since the Laplace transform is invertible, it suffices to find a formula for p
θ1

(t) that makes the above equation true. If we
take

p
θ1

(t) =

∞
n=0

4
(−1)n(n + 1)2

√
2π t

3
2

exp


−
(n + 1)2

2t


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and plug this into the left hand side of (16), then using (15) gives us the equality (16). Since the amount of time to cover a
range of length L is equal to L2 multiplied by the amount of time to cover a range of length 1, we write: θL ∼ L2θ1. Thus, the
density of θL is

p
θL

(t) =
p

θ1
( t
L2

)

L2
. � (17)

4. The number of switchbacks

The result that the number of switchbacks is distributed as a Poisson randomvariable comes naturallywhen one accounts
for the Markov and scaling properties of Brownian motion. The formal proof of the result follows.

Theorem 4.1. The number of switchbacks has a Poisson distribution with parameter λ = log
 L
a


.

Proof. The argument that the number of switchbacks has a Poisson distribution with parameter λ = log
 L
a


is similar to

the argument in Section 3 used to obtain the distribution of θL. We begin by defining

f (a) = f (a, L, t) = E [tνL,a ] , (18)

where t is a dummy variable and νL,a is the number of switchbacks starting from an endpoint of an interval of length a > 0
before the interval grows to length L. νL,a = 0 with probability a

L and

P (Ma ≤ y) =
y

a + y
.

We rewrite f (a) as we did in Section 3, splitting it up by indicator random variables which account for whether or not a
switchback has occurred. If no switchbacks have occurred, νL,a = 0, and thus:

E

tνL,a1Ma>L−a


= E


1Ma>L−a


=

a
L
. (19)

Employing Eq. (19) and recalling that a switchback occurs whenMa < L − a, we write:

f (a) =
a
L

+

 L−a

0
tνL,y+aP (Ma ∈ dy) dy,

which simplifies to

f (a) =
a
L

+

 L−a

0
tf (a + y)

d
dy


y

a + y


dy.

Thus,

f (a) =
a
L

+ t
 L−a

0
f (a + y)

a
(a + y)2

dy =
a
L

+ at
 L

0

f (x)
x2

dx. (20)

It is straightforward to verify directly, or to use the differential equation argument used above, to find the Laplace transform
of θL, so that

f (a) = exp

ln


L
a


(t − 1)


.

Since the above is the form of the Laplace transform of the Poisson distribution, we have the desired result that the number
of switchbacks is distributed Poisson with mean λ = ln

 L
a


. �
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