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Abstract

Complex discrete wavelet transforms have significant advantages over real wavelet transforms

for certain signal processing problems. Two approaches to the implementation of complex

wavelet transforms have been proposed earlier. Both approaches require discrete-time allpass

systems having approximately linear-phase and (fractional) delay. This paper compares the

results when different allpass systems are used. In the earlier work, maximally flat delay allpass

systems were used. In this paper, it is shown that an allpass system designed according to the

minimax criterion yields improvements for the complex discrete wavelet transforms.
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1 Introduction

Although the Discrete Wavelet Transform (DWT) is a powerful signal-processing tool, it has three

disadvantages that undermine its usage in many applications. First, it is shift sensitive because

input-signal shifts generate unpredictable changes in DWT coefficients. Second, the DWT suffers

from poor directionality because DWT coefficients reveal only three spatial orientations. Third,

DWT analysis of real signals lacks the phase information that accurately describes non-stationary

signal behavior. To overcome these problems, Kingsbury [20, 19] created the Dual-Tree Wavelet

Transform (DTWT), a redundant, complex wavelet transform with excellent directionality, reduced

shift sensitivity and explicit phase information. Because of these advantages, the DTWT yields

excellent results in applications where redundancy is acceptable [6, 32]. The DTWT is redundant

because it consists of a pair of filter banks that simultaneously operate on the input signal and

provide two wavelet decompositions. The wavelets associated with the filter banks are a Hilbert

pair. This property is critical since it provides the advantages of reduced shift sensitivity, improved

directionality and explicit phase information. However, the design of Kingsbury’s DTWT filters is

complicated because it requires an iterative optimization over the space of perfect-reconstruction

filter banks.

To simplify and generalize the DTWT design procedure, Selesnick [40, 41] proposed a new

method to obtain filters that may be used in a DTWT. He demonstrated that arbitrary-length

DTWT filters with specified number of vanishing moments may be generated from the spectral

factorization of a certain halfband filter. In addition, he proved that the wavelets associated with

the DTWT are a Hilbert pair if the halfband filter has a fractional-delay allpass factor. Selesnick’s

technique applies to the design of orthogonal, biorthogonal and IIR DTWTs.

A limitation of the DTWT approach to complex wavelet transform implementation is that the

DTWT is redundant because transform coefficients require more storage space than the input signal.

This disadvantages the DTWT since redundant transforms cannot be used in applications such

as image/video compression where parsimonious signal representations are crucial. To overcome

this disadvantage Fernandes et al. [8] subsequently defined projection-based Complex Wavelet

Transforms (CWTs), a new framework for the implementation of complex wavelet transforms. In

this framework, the input signal is projected onto a signal-space so that its real and imaginary parts

form a Hilbert pair. The complex wavelet transform is then implemented by computing the DWT

of the projected signal. Because the redundancy of the projection may be controlled explicitly, both

redundant as well as non-redundant complex wavelet transforms are obtainable. The projection

filters that implement orthogonal, non-redundant CWTs must be generated by the modulation of
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a lowpass filter that is the sum of allpass polyphase components with fractional delay.

In this paper, we shall first briefly explain the theory behind fractional-delay allpass filters.

Then we shall describe the projection-based and DTWT approaches to the implementation of

complex wavelet transforms. In each case, we shall show that minimax allpass filters provide better

performance than maximally flat allpass filters.

2 Fractional-Delay Allpass Systems

The procedures presented in this paper for the design and implementation of complex discrete

wavelet transforms (DWT) depend on the design of allpass systems. Specifically, the projection-

based complex DWT described in Section 3 requires the design of a (modulated) lowpass filter

realized as the sum of two allpass systems,

H(z) = A0(z
2) + z−1A1(z

2). (1)

Section 4 requires the design of an allpass system that approximates a delay of 0.5 samples.

The design of a lowpass filters realizable as a sum of allpass systems has been described in

several papers [37, 34, 1, 2, 15, 25, 31, 33, 35]. It turns out, that the design of the lowpass filter in

(1) requires again an allpass system that approximates a fractional delay. Therefore, the design of

such an allpass system is common to both types of complex DWTs described below.

The allpass system A(z) has the frequency response ej θ(ω) and it is desired that the phase

response θ(ω) approximates the linear function of frequency: θ(ω) ≈ −τ ω. There are several

methods to design allpass systems with general phase responses [4, 10, 17, 18, 24, 26, 27, 28, 29,

36, 48] but the earlier implementations of complex DWT of [41, 8] employ allpass systems designed

according to the maximally-flat criterion [9, 14, 43, 46, 21]. However, as will be illustrated in

Sections 3 and 4, the complex DWTs can be improved by using allpass systems designed according

to the minimax (or Chebyshev) design criterion. In this case, an allpass system A(z) is sought so

as to minimize the maximum of the (weighted) error function,

max
|ω|≤0.5π

|θ(ω) + τ ω|.

For this approximation problem, several authors has presented iterative Remez-like ex-

change algorithms for the design of allpass filters and allpass sums according to

the Chebyshev criterion [11, 16, 22, 23, 38, 36]. In the examples presented be-

low, we used Matlab programs by Lang and Schüßler that are available on the web

at http://www-nt.e-technik.uni-erlangen.de/∼hws/programs/halfbandfilters/ and at
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Figure 1: Allpass system.

http://www.dsp.rice.edu/software/allpass.shtml. Figure 1 illustrates the error functions

of allpass systems designed according to the maximally-flat and minimax criteria.

3 Projection-Based Complex Wavelet Transforms

In 1999, Kingsbury [20] developed the Dual-Tree Wavelet Transform (DTWT), a complex wavelet

transform that has improved directionality and reduced shift sensitivity when compared to the Real

Wavelet Transform (RWT 1) [3]. One explanation for the DTWT advantages is that the DTWT

coefficients may be related to an analysis obtained from the DWT associated with an analytic2

wavelet [7]. In 2000, Fernandes et al. [8] devised a different method to obtain complex wavelet

coefficients that may also be related to DWT analysis with an analytic wavelet. They argued that

such an analysis may be performed on L2(IR → IR)3 signals by first projecting the input signal onto

the Hardy space4 and then computing its wavelet transform using the DWT associated with a real

wavelet. Fernandes [7] proved that these projection-based Complex Wavelet Transforms (CWTs)

1The acronym RWT (Real Wavelet Transform) refers specifically to the DWT of a real-valued function. Since we

consider only DWTs implemented with real filters, RWT coefficients are always real.
2Analytic functions have frequency responses that vanish over negative frequencies.
3Usually, the notation L2(IR) represents the space of square-integrable, complex-valued functions on the real line.

To differentiate between complex-valued and real-valued functions, we shall denote this functional space by L2(IR → IC)

and we shall use the notation L2(IR → IR) to represent the subspace of L2(IR → IC) that is comprised of real-valued

functions.
4The classical Hardy space H2(IR → IC) is defined by

H
2(IR → IC)

4

= {f ∈ L
2(IR → IC) : F (ω) = 0 for a.e. ω < 0, where F is the Fourier transform of f}.
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also improve directionality and have reduced shift sensitivity when compared to the RWT. One

advantage of the projection-based approach over the DTWT approach is that transform redundancy

may be controlled explicitly by selecting between redundant and non-redundant projection methods.

In particular, the projection-based framework allows for the creation of directional, non-redundant

complex wavelet transforms with potential benefits for video/image coding systems.

In this section, we shall first explain the redundant, projection-based complex wavelet transform.

Next we shall show how the projection can be made non-redundant to implement a non-redundant

complex wavelet transform. This non-redundant complex wavelet transform is orthogonal if and

only if allpass filters are used in the projection stage. We compare the performance of maximally

flat allpass filters and minimax allpass filters in the projection stage and we shall demonstrate that

the minimax allpass filters provide better directionality than the maximally flat allpass filters.

3.1 The Redundant Complex Wavelet Transform

In [7], Fernandes explained why the DWT of the Hardy-space projection of an L2(IR → IR) function

has more directionality, phase information and shift insensitivity than the DWT of the function

itself. However, since it is impossible to compute such a projection, he defined the Softy space, a

new function space that approximates the Hardy space. The redundant Complex Wavelet Trans-

form (CWT) of an L2(IR → IR) function is defined to be the DWT of its Softy-space projection,

as depicted in Figure 2. The projection filter h+ is used to project an L2(IR → IR) function f

onto the Softy space. This filter has a passband over [0, π] and a stopband over (−π, 0) so that it

retains positive frequencies and suppresses negative frequencies. The filtering implements a pro-

jection onto an approximation to Hardy space because Hardy-space functions vanish over negative

frequencies. Next, we compute f+
d , the DWT of the Softy-space projection f+. We define f+

d to be

the projection-based, redundant CWT. This function will then undergo application-specific process-

ing followed by an Inverse DWT (IDWT). An inverse-projection filter g+ returns the L2(IR → IR)

processed function f̂ .

As shown in Fig. 3, the filter bank that computes the CWT is easily implemented by passing c,

the scaling coefficient sequence associated with f , through the projection filter h+ before feeding it

to a DWT filter bank. After application-specific processing, the inverse CWT is implemented with

the inverse DWT followed by an inverse projection filter g+, where H+(z)G+(z) is a halfband filter

satisfying certain conditions [7, Pg. 23].
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Figure 2: f+ is the Softy-space projection of f , and f+
d is the Complex Wavelet Transform (CWT)

of f .

3.2 The Non-Redundant CWT

In the preceding section, we introduced the CWT as the DWT of f+, the Softy-space projection

of an L2(IR → IR) function f . Since f+ approximates fH , the Hardy-space projection of f , the

CWT exhibits explicit phase information, reduced shift sensitivity and improved directionality. The

reduced shift sensitivity is obtained at the expense of a small amount of data redundancy introduced

by the projection filter. The redundancy is incurred because the projection of a real-valued signal

will be complex valued in general. However, redundancy is unacceptable in applications such as

data compression. Therefore, to obtain a directional, non-redundant CWT, we shall now develop

the non-redundant projection: a projection that incurs no data redundancy while projecting an

L2(IR → IR) function onto a function space that approximates Softy space. We shall refer to

the DWT of the non-redundant projection of an L2(IR → IR) function as “the non-redundant

CWT”. This transform has improved directionality and offers explicit phase information. It does

not however have reduced shift sensitivity. Therefore, the non-redundant CWT is targeted at

applications such as data compression in which a non-redundant transform is more important than

reduced shift sensitivity.

Apart from creating the non-redundant CWT, the non-redundant projection has another signifi-

cant application. In [7], we demonstrate that the non-redundant projection may be used to improve
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Figure 3: Filter-bank implementation of the Redundant CWT and its Inverse

transforms such as the undecimated DWT and the Double-Density DWT [42]. We achieve the im-

provement by enhancing directionality and providing useful phase information without increasing

redundancy and while preserving shift-invariance properties.

3.2.1 Defining the Non-Redundant Projection

In Section 3.1 we used the projection filter h+ to define the Softy-space projection of an L2(IR → IR)

function. However, the complex coefficients of h+ introduce data redundancy into the CWT. To

eliminate this data redundancy which is unacceptable in certain applications, we now propose the

non-redundant projection scheme shown in Fig. 4. As depicted in the figure, we define the non-

c h+ c+ ↓ 2 c̃+

N Real Scaling Coefficients

(= N Real Numbers)

N Complex Scaling Coefficients

(= 2N Real Numbers)

N

2
Complex Scaling Coefficients

(= N Real Numbers)

Figure 4: The non-redundant projection consists of a projection filter followed by a downsam-

pler. This projection is non-redundant because c̃+ has the same storage requirement as c (N real

numbers).

redundant projection to be the concatenation of a projection filter and a downsampler (elimination

of odd-indexed scaling coefficients). The downsampler eliminates the redundancy created by the
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projection filter that generates complex scaling coefficients from real scaling coefficients. Observe

that the scaling-coefficient sequences c and c̃+ can both be represented by N real numbers within

a digital computer; therefore, there is no data redundancy in the scaling-coefficient sequence c̃+.

In [7], we prove that the non-redundant projection of an L2(IR → IR) function with a lowpass

characteristic is approximately equal to the Softy-space projection of a low resolution version of

the function. This result is significant because it empowers the non-redundant projection with the

directionality and phase information associated with the Softy-space projection.

3.2.2 The Non-Redundant CWT and Its Inverse

Figure 5: Filter-bank implementation of the Non-Redundant CWT and its Inverse. The symbols

1
he ,

1
ho represent the filters 1

He(−z) ,
1

Ho(−z) respectively.

Now that we have defined the non-redundant projection and examined its properties, we are

ready to introduce the non-redundant CWT. We refer the reader to Figure 5. The scaling coeffi-

cient sequence c undergoes a non-redundant projection that outputs c̃+. The DWT of c̃+ is c̃+d the

non-redundant CWT of c. In [7], we demonstrate that the non-redundant CWT is an orthogonal

transform if it uses an orthogonal DWT along with a projection filter h+ that is created by modu-

lating a lowpass filter having allpass polyphase components. Specifically, H+(z) = H0(−jz) where

H0(z) = He(z2) + z−1Ho(z2), and He(z),Ho(z) are allpass filters selected to create the lowpass

filter h0. Thus orthogonality places a design constraint on the projection filter h+.

To invert the non-redundant CWT, we first compute ̂̃c+, the inverse DWT of c̃+d . Finally,

we must invert the non-redundant projection. In [7], we prove that the block labeled “inverse

non-redundant projection” in Fig. 5 operates on ̂̃c+ to invert the non-redundant projection. This
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block separates the real and imaginary components of ̂̃c+ and passes them through filters 1/He(−z)
and 1/Ho(−z) respectively. Note that these are allpass filters because H e(z) and Ho(z) are the

allpass polyphase components of H0(z). The outputs of 1/He(−z) and 1/Ho(−z) are the polyphase

components of the reconstructed scaling coefficient sequence ĉ.

3.2.3 Designing the Projection Filter

As seen above, orthogonality places a design constraint on h0 the lowpass filter that is modulated

to generate h+. Another design constraint that becomes evident in Section 3.4 is that H 0(z) must

be a root-halfband filter so that H0(z)H0(z−1) + H0(−z)H0(−z−1) = 1. The design of lowpass

filters satisfying these two constraints has been reported previously [30, 39, 34]. In this paper, we

shall use these reported techniques to generate two different projection filters and then compare

the non-redundant CWTs that use these filters. The first projection filter h+
maxflat is created by

modulating a maximally flat, allpass-sum, lowpass filter designed by Selesnick [39]. The second

projection filter h+
minimax is generated by modulating the minimax, allpass-sum, lowpass filter

described in Schuessler and Steffen’s article [34].

The first maximally flat projection filter is given by

H+
maxflat(z) = H0

maxflat(−jz), (2)

where

H0
maxflat(z) = He

maxflat(z
2) + z−1Ho

maxflat(z
2),

and He
maxflat(z),H

o
maxflat(z) are allpass polyphase components of H0

maxflat(z) given by

He
maxflat(z) =

0.1056 + z−1

1 + 0.1056z−1
,

Ho
maxflat(z) =

0.5279 + z−1

1 + 0.5279z−1
.

Similarly, for the minimax projection filter, we have

H+
minimax(z) = H0

minimax(−jz), (3)

where

H0
minimax(z) = He

minimax(z2) + z−1Ho
minimax(z2),

and He
minimax(z),Ho

minimax(z) are allpass polyphase components of H0
minimax(z) given by

He
minimax(z) =

0.1874 + z−1

1 + 0.1874z−1
,

Ho
minimax(z) =

0.6562 + z−1

1 + 0.6562z−1
.
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Figure 6: Magnitude Responses of Minimax and Maximally Flat Projection Filters

Figure 6 compares the magnitude responses of the minimax and maximally flat projection

filters. Observe that the transition band of the minimax projection filter is sharper than that of

the maximally flat projection filter, although both filters have equal computational complexity. In

Section 3.5, we shall demonstrate that a two-dimensional non-redundant CWT using the minimax

projection filter has better directionality than a comparable non-redundant CWT with a maximally

flat projection filter. In the next section, we motivate the two dimensional (2D) extension of the

non-redundant CWT by discussing the poor directionality of the 2D RWT.

3.3 Poor Directionality in the RWT

The separable two-dimensional (2D) RWT is a powerful image-processing tool, but in some ap-

plications its poor directionality is a serious disadvantage because the 2D RWT can distinguish

between only three different orientations of spatial features: horizontal, vertical and diagonal. In

Fig. 7, we illustrate the poor directionality of the RWT. Fig. 7(a) shows an image of a disc to

which we apply a level-one RWT and obtain the HL,LH,HH subbands shown in Figs. 7(b), (c), (d).

Observe that the RWT subbands differentiate between only three feature-orientations: horizontal,

vertical and diagonal features. In this section, we explain the poor directionality of the 2D RWT

based on the Fourier-plane tiling associated with its subbands. In the next section, we introduce

the two-dimensional extension of the non-redundant CWT. The Fourier-plane partitioning of this
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(a) (b) (c) (d)

Figure 7: (a) Disc Image, (b) RWT HL subband: Vertical edges, (c) RWT LH subband: Horizontal edges,

(d) RWT HH subband: Diagonal edges

transform is responsible for the improvement in directionality: it enables distinctions between six

spatial feature-orientations at +15,+45,+75,−75,−45,−15 degrees.

π

π−π

−π

LL1

HH2HH2

HH2HH2

HH1

HH1HH1

HH1

LH2

LH1

LH2

LH1

HL1 HL2HL2 HL1

−ωy

+ωy

−ωx +ωx

Figure 8: Fourier-plane partitioning obtained from a separable two-level 2D RWT.

Figure 8 shows the Fourier-plane partitioning obtained from a separable, two-level 2D RWT.

The HH2 subband is associated with diagonally-oriented spatial features at scale 2 and concentrates

its energy in the four blocks labeledHH2. High energy at the output of the filter in theHH2 subband

indicates the presence of this class of features. The HH2 blocks in the upper-left and lower-right

corners indicate features whose gradients are oriented at −45 degrees, while those in the upper-

right and lower-left corners indicate feature-gradient orientations of +45 degrees [13]. Since all four

blocks are associated with the output of a single filter in the RWT, we cannot differentiate between

these two orientations. Similarly, feature-gradient orientations at +15 degrees and −15 degrees are
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indistinguishable from their wavelet coefficients since they are both associated with energy in the

HL2 subband. Features with gradients oriented at +75 degrees and −75 degrees suffer a similar

fate. It is evident that the poor directionality of the RWT is due to positively- and negatively-

oriented blocks both being associated with the same subband. In the following section, we introduce

the two-dimensional non-redundant projection that will decouple these blocks, thereby improving

directionality.

3.4 Improving directionality with the 2D non-redundant CWT

In Section 3.2 we defined the non-redundant CWT, a wavelet transform that offers phase informa-

tion without incurring any data redundancy. We shall now extend this transform to two dimensions

so that it may be applied to images. This will provide improved directionality without any addi-

tional redundancy.

Fig. 9 illustrates the two-dimensional extension of the non-redundant CWT. In [7, Pg. 73], we

argue that for signals with a lowpass frequency-domain characteristic, the frequency-domain action

of the non-redundant projection is similar to that of the redundant projection. Therefore, while

discussing the directionality of the non-redundant CWT we shall ignore the downsamplers in Fig. 9.

To explain the 2D non-redundant CWT, we shall first extend the non-redundant projection to two

dimensions. Next, we shall describe how 2D DWTs are applied to the projection to obtain the 2D

non-redundant CWT.

3.4.1 The 2D Non-Redundant Projection

A one-dimensional L2(IR → IR) function is fully described by its positive frequencies in the Fourier

domain. Since the negative frequencies carry redundant information they may be zeroed out thereby
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yielding the Hardy-space image of the function. Similarly, for real-valued two-dimensional images,

the lower half-plane of the Fourier transform carries redundant information. We may eliminate

this redundant information to obtain a complex-valued spatial image with phase information by

filtering the columns of the image with a projection filter h+
y as shown in Fig. 9. The subscript “y”

indicates that the projection filter h+ is applied along the image columns.

To eliminate the redundant information contained in the negative vertical frequencies, we use

the projection filter h+
y to project the image columns onto an approximation to the Hardy space.

In one dimension, elimination of redundant information along the negative half-line of the Fourier

plane provides phase information. However, eliminating the negative vertical half-plane in the two-

dimensional Fourier plane and then performing the DWT does not improve DWT directionality.

To do so, we must decouple the positive, horizontal frequencies from the negative, horizontal

frequencies.

We show how this may be done in Figure 9. The h+
y projection filter retains the positive vertical

frequencies. The h+
x filter is a projection filter that operates along the rows of the h+

y filter’s output

and retains the positive horizontal frequencies. Therefore the output from the h+
x filter is associated

with the block labeled “h+
x output” in Fig. 10. This block contains the positive-vertical, positive-

horizontal frequencies.

h+
x outputh−x output

redundant block

(discarded by h+
y )

−ωy

+ωy

−ωx +ωx

π

π−π

−π

Figure 10: Fourier-plane partitioning after 2D Softy-space projection.

Recall that the h+
x projection filter retains positive frequencies and suppresses negative frequen-
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cies. The h−x projection filter performs a similar operation: it retains negative horizontal frequencies

and suppresses positive horizontal frequencies. The output from this filter is associated with the

block labeled “h−x output” in Fig. 10. This block contains the positive-vertical, negative-horizontal

frequencies. Therefore the “projection” module in Fig. 9 eliminates the redundant negative-vertical

frequencies and decouples the positive horizontal frequencies from the negative horizontal frequen-

cies, as is evident in Fig. 10.

3.4.2 The 2D Non-Redundant CWT and its Inverse

Having defined the 2D extension of the Softy-space projection, we are ready to define the 2D

non-redundant CWT. This is easily done by performing 2D DWTs on the images output by the

“projection” module in Fig. 9. Applying a 2D two-level DWT to the output of the h+
x filter

partitions the “ h+
x output” block of Fig. 10 into the subbands with the “+” superscripts in Fig. 11.

Similarly the 2D two-level DWT applied to the h−x filter output yields the subbands with the “-”

superscripts in Fig. 11. The decoupled HL+,HH+, LH+, LH−,HH−,HL− subbands provide the 2D

non-redundant CWT with better directionality than the RWT. We shall examine the directionality

of these subbands in Section 3.5. Now we shall describe the inverse 2D non-redundant CWT.
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1
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2
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(discarded by h+
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−ωy
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π
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Figure 11: Fourier-plane partitioning of the 2D two-level CWT.

To invert the non-redundant 2D CWT, we propose the structure shown in Fig. 12. The blocks

labeled “2D IDWT” invert the 2D DWTs that were applied to the decoupled images. Next we must
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y
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y

represent the filters 1
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operating along the image columns.

invert the non-redundant projections applied along the image rows. Recall that the projection filter

h+ is a root-halfband filter. This design constraint allows h+
x and h−x to constitute the analysis

bank of a 2-band decimated filter bank [47, 45]. Therefore the corresponding synthesis filter bank

comprised of filters g+ and g− will invert this analysis filter bank and output ŝ. As explained in

Section 3.2.2 the filters 1/He(−z), 1/Ho(−z) operate on the real and imaginary parts of rows in

ŝ to invert the non-redundant projection operation performed by h+
x followed by a downsampler.

Finally, we recombine the polyphase outputs of the filters 1/H e(−z), 1/Ho(−z) and obtain x̂,

the reconstructed image. In the next section, we explain the improved directionality of the non-

redundant 2D CWT.

3.5 Directionality of the 2D Non-redundant CWT

The 2D non-redundant CWT has improved directionality because, at each scale, it provides the six

directional subbandsHL+,HH+, LH+, LH−,HH−,HL− shown in Fig. 11. As explained in Section 3.4,

these decoupled subbands describe feature-gradients oriented at +15,+45,+75,−75,−45,−15 de-

grees, respectively. We illustrate this improved directionality in Fig. 13(a)–(f) where we show

the directional, level-one subbands of the 2D non-redundant CWT applied to the disc image in

Fig. 7(a). On comparing to the RWT disc-decomposition in Fig. 13(b)–(d), it is clear that the

directionality of the 2D CWT is significantly better than that of the 2D RWT which has only three

directional subbands: horizontal, vertical and diagonal.

We created the 2D non-redundant CWT decomposition in Figs. 13 (a)–(f) by using the maxi-

mally flat projection filter h+
maxflat described in Equation 2. However, the directionality of the de-

composition is improved slightly if the minimax projection filter of Equation 3 is used instead. The

15



(a) (b) (c) (d) (e) (f)

(g) (h) (i) (j) (k) (l)

Figure 13: (a) HL+
maxflat subband: +15◦ feature-gradients, (b) HH+

maxflat subband: +45◦ feature-

gradients, (c) LH+
maxflat subband: +75◦ feature-gradients, (d) LH−

maxflat subband: −75◦ feature-

gradients, (e) HH−
maxflat subband: −45◦ feature-gradients, (f) HL−maxflat subband: −15◦

feature-gradients, (g) HL+
minimax subband: +15◦ feature-gradients, (h) HH+

minimax sub-

band: +45◦ feature-gradients, (i) LH+
minimax subband: +75◦ feature-gradients, (j) LH−

minimax

subband: −75◦ feature-gradients, (k) HH−
minimax subband: −45◦ feature-gradients, (l)

HL−minimax subband: −15◦ feature-gradients.

directional subbands obtained from the decomposition with this filter are shown in Figs. 13(g)–(l).

The improvement in directional selectivity is evident from a comparison of corresponding subbands

in the two decompositions. For example, Figs. 13(e) and (k) show the HH− subbands from the

non-redundant CWT using maximally flat and minimax projection filters respectively. Recall that

the HH− subband reveals feature-gradient orientations at −45 degrees. Therefore, the upper-right

and lower-left quadrants of the HH− subbands should be dark because the input disc image has

+45 degree feature-gradient orientations in these locations. Careful examination of Figs. 13(e) and

(k) shows that these quadrants are indeed darker in Fig. 13(k) than in Fig. 13(e). To make the com-

parison easier, we placed the upper-right quadrant of Fig. 13(e) in the upper half of Fig. 14 and the

upper-right quadrant of Fig. 13(k) in the lower half of Fig 14. Clearly, the upper-right quadrant of

Fig. 13(k) is suppressed to a greater extent than the upper-right quadrant of Fig. 13(e). Therefore,

we conclude that the minimax projection filter provides a 2D non-redundant CWT decomposition

with better directional selectivity than that obtained using a maximally flat projection filter with

the same computational complexity.
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Figure 14: The upper half of the figure shows the upper-right quadrant of the HH− subband from

the 2D non-redundant CWT using a maximally flat projection filter. The lower half of the figure

shows the corresponding quadrant from a 2D non-redundant CWT with a minimax projection filter.

4 Dual-Tree Complex Wavelet Transform

Let the real filters h0(n), h1(n) represent a conjugate quadrature filter (CQF) pair [44]. That is,

the autocorrelation of the lowpass filter h0(n) is halfband:

ph(2n) = δ(n) =





1, n = 0

0, n 6= 0,
(4)

where

ph(n) := h0(n) ∗ h0(−n)

and the highpass filter is given by: h1(n) = (−1)n h0(M − n) where M is an odd integer. Let the

real filters g0(n), g1(n) represent a second CQF pair. The real-valued scaling function φh(t) and

the real-valued wavelet ψh(t) associated with the pair (h0(n), h1(n)) are defined implicitly by the

following pair of equations:

φh(t) =
√

2
∑

n

h0(n)φh(2t− n) (5)

ψh(t) =
√

2
∑

n

h1(n)φh(2t− n). (6)

The real-valued scaling function φg(t) and wavelet ψg(t) associated with the pair (g0(n), g1(n)) are

defined similarly.

Notation: The Z-transform of h(n) is denoted by H(z). The discrete-time Fourier transform of
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Figure 15: The 1-D dual-tree wavelet transform is implemented using a pair of filter banks operating

on the same data simultaneously. The upper iterated filter bank represents the real part of a complex

wavelet transform, the lower one represents the imaginary part. The transform is an expansive (or

oversampled) transform (or frame).

h(n) will be denoted by H(ejω),

H(ejω) =
∑

n

h(n) e−j n ω.

The Fourier transform of ψ(t) is denoted by Ψ(ω) = F{ψ(t)}.

4.1 Hilbert Pairs

To implement a complex wavelet transform, Kingsbury suggested using two independent wavelet

transforms operating in parallel on the same data. Then a complex-valued wavelet ψ(t) can be

obtained as

ψ(t) = ψh(t) + j ψg(t)

where ψh(t) and ψg(t) are both real-valued wavelets. Note that a complex transform implemented

in this way is not critically-sampled because two independent wavelet transforms are required.

The benefits of complex wavelet transforms depend on the spectrum of the complex-valued

wavelet ψ(t) being single sided (Ψ(ω) = 0 for ω ≤ 0). To have this property, it is required that the

wavelet ψg(t) be the Hilbert transform of the wavelet ψh(t). Specifically,

Ψg(ω) =





−j Ψh(ω), ω > 0

j Ψh(ω), ω < 0
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which we denote as

ψg(t) = H{ψh(t)}. (7)

One question which arises is, how should the two lowpass filters h0(n) and g0(n) satisfying the

CQF properties above be designed so that the corresponding wavelets form a Hilbert pair? The

wavelets are defined only implicitly through the equations (5,6), but using the infinite product

formula it was shown in [40] how the two lowpass filters can be chosen. Namely, it was shown that

if H0(ω) and G0(ω) are lowpass filters with

G0(ω) = H0(ω) e−j 0.5 ω for |ω| < π, (8)

then the wavelets corresponding to these filters form a Hilbert transform pair. Informally, if in the

time-domain we have g0(n) = h0(n−0.5), then ψg(t) = H{ψh(t)}. If it is desired that both lowpass

filters h0(n) and g0(n) be FIR, then it is impossible to satisfy (8) exactly and an approximation

must be made.

The widely used wavelets constructed by Daubechies are based on CQF filters the transfer

functions of which have a specified number of zeros at z = −1. The delay condition (8) is an

additional constraint which must be included into the design of filters h0(n) and g0(n). In [41],

the Daubechies construction is modified so that the delay condition (8) can be included. With this

modification, pairs of compactly supported wavelets with vanishing moments can be obtained that

approximately satisfy the Hilbert property (7).

The construction described in [41] requires an allpass system A(z) which approximates a half

sample delay, and it is suggested that a maximally flat delay allpass system be used. However, any

allpass system with an approximately constant delay of a half sample can be used. The better the

allpass system approximates the constant delay of a half sample, the closer the resulting pair of

wavelets will be to a Hilbert transform pair. In particular, an allpass system designed according

to the minimax (Chebyshev) criterion can be used. The examples presented here will show that

using allpass systems of this type yields pairs of wavelets which more closely satisfy the condition

(7). Consequently, the spectrum Ψ(ω) of the complex-valued wavelet ψ(t) will more accurately

approximate zero for ω < 0.
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4.2 Orthogonal Solutions

To obtain a pair of lowpass filters h0(n), g0(n) satisfying the CQF condition (4) and the delay

condition (8), it was proposed in [41] that they have the following form:

H0(z) = F (z)D(z) (9)

G0(z) = F (z) z−L D(1/z). (10)

By appropriately designing the transfer function D(z) of degree L, the delay condition (8) can be

approximately satisfied. H0(z) and G0(z) have F (z) in common, which will be determined below.

From (9, 10) we have

G0(z) = H0(z)
z−LD(1/z)

D(z)

where we can recognize the transfer function

A(z) :=
z−LD(1/z)

D(z)

is an allpass system, |A(ejω)| = 1. Therefore |G0(e
jω)| = |H0(e

jω)|, |G1(e
jω)| = |H1(e

jω)|, and by

the infinite-product formula |Ψg(ω)| = |Ψh(ω)|. If the allpass system A(z) is an approximate half-

sample delay, A(ejω) ≈ e−j 0.5 ω, then the delay condition (8) is approximately satisfied: G0(e
jω) ≈

H0(e
jω)e−j 0.5 ω. Note that because it is not practical to ask that A(ejω) ≈ e−j 0.5 ω for all |ω| < π, it

is necessary to specify some band over which the this approximation is accurate. Since G0(e
jω) and

H0(e
jω) are lowpass filters, we will ask of the allpass system that A(ejω) ≈ e−j 0.5 ω for |ω| < 0.5π.

We therefore propose designing D(z) by designing an allpass system A(z) according to the

minimax criterion. The desired phase of A(z) is −0.5ω. The design of A(z) so as to minimize

max
|ω|≤0.5π

|phase ofA(z) + 0.5ω|

can be performed using the allpass approximation algorithms referenced in Section 2.

We will ask of H0(z) and G0(z) that they have K zeros at z = 1 and in addition zeros at

z = e± j ωo. This additional null in the stop-band of the lowpass filter can improve the flexibility of

the design procedure. The two lowpass filters then have the following form:

H0(z) = Q(z) (1 + z−1)K (1 + 2 cos(ωo) z
−1 + z−2)D(z), (11)

G0(z) = Q(z) (1 + z−1)K (1 + 2 cos(ωo) z
−1 + z−2) z−LD(1/z). (12)
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The problem now is to find Q(z) so that h0(n) and g0(n) satisfy the CQF conditions (4). Because

h0(n) and g0(n) have the same autocorrelation function:

P (z) := Ph(z) = Pg(z) (13)

= Q(z)Q(1/z) (z + 2 + z−1)K (z + 2 cos(ωo) + z−1)2D(z)D(1/z). (14)

we can follow Daubechies construction to obtain Q(z) using a spectral factorization approach as in

[44]:

1. Find a symmetric sequence r(n) of minimal length [r(n) = r(−n)] such that

V (z) = R(z) (z + 2 + z−1)K (z + 2 cos(ωo) + z−1)2D(z)D(1/z)

is the transfer function of a halfband filter. That is, v(2n) = δ(n).

The sequence r(n) can be obtained by solving a square system of linear equations. Setting

S(z) := (z + 2 + z−1)K (z + 2 cos(ωo) + z−1)2D(z)D(1/z)

we can write the halfband condition as

δ(n) = [↓2] (s ∗ r)(n) (15)

=
∑

k

s(2n− k) r(k). (16)

In matrix form, we have a square matrix which has the form of a convolution (Toeplitz)

matrix with every second row deleted.

2. Set Q(z) to be a spectral factor of R(z),

R(z) = Q(z)Q(1/z). (17)

Because Q(z) is given by spectral factorization, it is not unique. Like Daubechies construction,

there are different solutions with varying degree of symmetry. We have assumed here that

spectral factorization is possible. In [12] Gopinath has proven that when D(z) is a maximally-

flat delay polynomial (and the stopband null ωo is absent) then spectral factorization is always

possible. We have found that when the minimax criterion is used to design D(z) then in our

examples the spectral factorization of R(z) has also been possible.

Example: With K = 2, L = 2, and ωo = 0.8π the filters h0(n) and g0(n) are of length 12. The

magnitude of the frequency response |H0(e
j ω)| and the zeros of H0(z) are shown in Figure 16. We
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Figure 16: Frequency response of h0(n)

used in (17) a mid-phase spectral factorization to make the wavelets more symmetric than they

would be otherwise. The wavelets ψh(t) and ψg(t) are shown in Figure 17. The figure also shows

the magnitude of the complex wavelet |ψ(t)| where ψ(t) = ψh(t) + j ψg(t). The envelope, shown as

a dashed line, does not have the oscillatory behavior the wavelets themselves have. In the second

panel of the figure, the magnitude of the spectrum of the complex wavelet, |Ψ(ω)|, is also shown.

Note that Ψ(ω) ≈ 0 for ω < 0 which verifies that the two wavelets form an approximate Hilbert

pair. The third panel of the figure shows a magnification of |Ψ(ω)|. The dashed line shows |Ψ(ω)|
when a maximally-flat delay polynomial D(z) of degree 2 is used in the design procedure. It can

be seen that when the maximally-flat polynomial is used, instead of one designed according to the

minimax criterion, the approximation suffers. With the minimax type, |Ψ(ω)| approximates zero

for negative frequencies with substantial improvement — the error is reduced by over a factor of

two.
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Figure 17: A pair of wavelets which form an approximate Hilbert pair. The complex wavelet

ψ(t) = ψh(t) + j ψg(t) has a spectrum Ψ(ω) which is approximately single sided. The dashed curve

in the lower panel illustrates the solution corresponding to a design based on the maximally-flat

delay allpass system. The solution obtained with a minimax delay allpass system approximates

more accurately the Hilbert pair property.
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4.3 Biorthogonal Dual-Tree

In the biorthogonal case, we have the dual scaling functions and wavelets by φ̃h(t), ψ̃h(t), φ̃g(t),

and ψ̃g(t). With the biorthogonal solution, the complex wavelet ψ(t) = ψh(t) + j ψg(t) will have a

symmetric magnitude: |ψ(−t)| = |ψ(t)|, as will the dual complex wavelet ψ̃(t) = ψ̃h(t) + j ψ̃g(t).

The dual scaling function φ̃h(t) and wavelet ψ̃h(t) are given by the equations,

φ̃h(t) =
√

2
∑

n

h̃0(n) φ̃h(2t− n) (18)

ψ̃h(t) =
√

2
∑

n

h̃1(n) φ̃h(2t− n). (19)

The dual scaling function φ̃g and wavelet ψ̃g are similarly defined.

The goal will be to design the filters so that both the primary (synthesis) and dual (analysis)

wavelets form approximate Hilbert transform pairs,

ψg(t) = H{ψh(t)} and ψ̃g(t) = H{ψ̃h(t)}.

If we define the product filters as

ph(n) := h̃0(n) ∗ h0(n) (20)

pg(n) := g̃0(n) ∗ g0(n), (21)

then the biorthogonality conditions can be written as

ph(2n+ no) = δ(n) (22)

pg(2n+ no) = δ(n). (23)

That is to say, ph, pg must both be halfband. Without loss of generality, we can assume that no is

an odd integer. In that case, the highpass filters are given by the following expressions [5, 47].

h1(n) := (−1)n h̃0(n) (24)

h̃1(n) := −(−1)n h0(n) (25)

g1(n) := (−1)n g̃0(n) (26)

g̃1(n) := −(−1)n g0(n) (27)
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We will look for solutions of the form

h0(n) = f(n) ∗ d(n) (28)

h̃0(n) = f̃(n) ∗ d(L− n) (29)

g0(n) = f(n) ∗ d(L− n) (30)

g̃0(n) = f̃(n) ∗ d(n). (31)

The problem is to find f(n) and f̃(n) such that (i) the biorthogonality conditions (22,23) are

satisfied, (ii) the wavelets have K vanishing moments (K̃ vanishing moments for the dual wavelets),

and in addition zeros at z = e±j ωo . and (iii) the wavelets form an approximate Hilbert transform

pair.

To obtain the half sample delay, needed to ensure the approximate Hilbert property, we choose

d(n) to come from an allpass filter as before,

A(z) =
z−LD(1/z)

D(z)
≈ z−1/2 around z = 1.

To ensure the vanishing moments properties, we take F (z) and F̃ (z) to be of the form,

F (z) = Q(z) (1 + z−1)K (1 + 2 cos(ωo) z
−1 + z−2) (32)

F̃ (z) = Q̃(z) (1 + z−1)K̃ (1 + 2 cos(ωo) z
−1 + z−2) (33)

where K + K̃ is odd. K denotes the number of vanishing moments of the primary (synthesis)

wavelets, and K̃ denotes the number of vanishing moments of the dual (analysis) wavelets. The

product filters ph and pg are then given by

P (z) := Ph(z) = Pg(z) (34)

= Q(z) Q̃(z) (1 + z−1)K+K̃ (z + 2 cos(ωo) + z−1)2D(z)D(1/z) z−L. (35)

To obtain the required halfband property, we find a symmetric odd-length sequence r(n) so that

R(z) (1 + z−1)K+K̃ (z + 2 cos(ωo) + z−1)2D(z)D(1/z) z−L

is halfband. The symmetric sequence r(n) can be obtained by solving a linear system of equations

as in Section 4.2. We can then obtain Q(z) and Q̃(z) by factoring R(z),

R(z) = Q(z) Q̃(z), (36)

where both q(n) and q̃(n) are symmetric. As q(n) and q̃(n) are symmetric, so are f(n) and f̃(n).

It follows that h0(n) and g0(n) are related by a reversal, g0(n) = h0(N − 1 − n), and similarly,
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g̃0(n) = h̃0(N − 1 − n). Therefore, h0, h̃0, g0 and g̃0 have approximately linear phase (because

d(n) does) in addition to satisfying the condition (8) approximately. Note that the symmetric

factorization (36) is not unique — many solutions are available. Also note that the sequences f(n)

and f̃(n) do not need to have the same length.

Example: With K = K̃ = 2, L = 2, and ωo = 0.8π we can take the synthesis filters h0(n)

and g0(n) to be of length N = 13. The analysis filters h̃0(n) and g̃0(n) will then be of length

11. Figures 18 and 19 illustrate the analysis and synthesis wavelets respectively, obtained from a

symmetric factorization. The first panel of each figure also shows the magnitude of the complex

wavelet |ψ(t)| where ψ(t) = ψh(t) + j ψg(t). In the second panel of each figure, the magnitude of

the spectrum of the complex wavelet, |Ψ(ω)|, is also shown. These plots of |Ψh(ω) + jΨg(ω)| and

likewise |Ψ̃h(ω) + j Ψ̃g(ω)| show that they approximate zero for ω < 0, which verifies that the two

wavelets form an approximate Hilbert pair. The third panel of the figures show a magnification

of |Ψ(ω)| and |Ψ̃(ω)|. The dashed line shows |Ψ(ω)| when a maximally-flat delay polynomial D(z)

of degree 2 is used in the design procedure. It can be seen that when the polynomial designed

according to the minimax criterion is used, instead of the maximally-flat type, the approximation

is substantially improved. For both the analysis and synthesis complex wavelets, the minimax

type, |Ψ(ω)| approximates zero for negative frequencies with substantial improvement — the error

is reduced by over a factor of two.

5 Conclusion

Complex Discrete Wavelet Transforms (DWTs) provide three significant advantages for signal pro-

cessing applications: they have reduced shift sensitivity with low redundancy, improved direction-

ality and explicit phase information. To implement a low-redundancy complex DWT, Selesnick

[40, 41] proposed a filter design technique for Kingsbury’s Dual-Tree Complex Wavelet Transform

[20, 19]. Selesnick’s method creates a Hilbert wavelet pair with specified vanishing-moments by

spectral factorization of a halfband filter containing a fractional-delay allpass factor. In Section 4,

we demonstrate that both orthogonal and biorthogonal wavelet-pairs approximate a Hilbert pair

with less than half the error when a minimax fractional-delay allpass factor is used instead of the

maximally-flat allpass factor proposed earlier by Selesnick. Because the advantages of complex

DWTs arise from the Hilbert-pair relationship, the improvement in approximation implies that the

advantages of the low-redundancy dual-tree complex DWT will be more pronounced when minimax

allpass systems are incorporated into the design procedure.
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Figure 18: An approximate Hilbert pair of analysis wavelets. The dashed curve in the lower panel

illustrates the solution corresponding to a design based on the maximally-flat delay allpass system.

The solution obtained with a minimax delay allpass system approximates more accurately the

Hilbert pair property.
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Figure 19: An approximate Hilbert pair of synthesis wavelets. The solution obtained using a

maximally-flat allpass illustrated with a dashed line, does not provide as accurate an approximation

to the Hilbert pair property as the solution obtained using the minimax allpass system.
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In Section 3, we discuss the projection-based approach to complex DWTs. This method allows

the implementation of low-redundancy complex DWTs as well as non-redundant complex DWTs.

The low-redundancy complex DWT provides the same advantages as the DTWT. On the other

hand, the non-redundant complex DWT is a parsimonious signal representation with improved

directionality and explicit phase information. In particular, it is useful in applications such as im-

age/video compression, where parsimonious signal representations are crucial. In earlier research,

Fernandes [7] showed that the non-redundant complex DWT is orthogonal if the associated pro-

jection filter is generated by the modulation of a lowpass filter that is the sum of allpass polyphase

components with fractional delay. In Section 3.2, we demonstrate that the directionality of the non-

redundant complex DWT is visibly improved by using minimax allpass filters instead of maximally

flat allpass filters in the projection-filter design.

To conclude, we emphasize that both low-redundancy complex DWTs and non-redundant com-

plex DWTs may be designed with fractional-delay allpass systems. These complex DWTs offer

several significant advantages to signal processing applications. In both transforms, these advan-

tages are more pronounced when minimax fractional-delay allpass systems are used instead of

maximally flat fractional-delay allpass systems.
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[21] T. I. Laakso, V. Välimäki, M. Karjalainen, and U. K. Laine. Splitting the unit delay. IEEE

Signal Processing Magazine, 13(1):30–60, January 1996.

[22] M. Lang. Allpass filter design and applications. In Proc. IEEE Int. Conf. Acoust., Speech,

Signal Processing (ICASSP), volume 2, pages 1264–1267, Detroit, May 9-12 1995.

[23] M. Lang. Allpass filter design and applications. IEEE Trans. on Signal Processing, 46(9):2505–

2514, September 1998.

[24] M. Lang and T. Laakso. Simple and robust method for the design of allpass filters using least-

squares phase error criterion. IEEE Trans. on Circuits and Systems II, 41(1):40–48, January

1994.

[25] S. Lawson. A new direct design technique for ALP recursive digital filters. In Proc. IEEE

Int. Symp. Circuits and Systems (ISCAS), volume 1, pages 499–502, Chicago, May 3-6 1993.

[26] K. Matsuyama, M. Okuda, and M. Ikehara. Approximation of group delay response using

weighted least square method. In Proc. IEEE Int. Symp. Circuits and Systems (ISCAS),

volume 2, pages 197–200, Atlanta, May 12-15 1996.

[27] T. Q. Nguyen, T. I. Laakso, and R. D. Koilpillai. Eigenfilter approach for the design of allpass

filters approximating a given phase response. IEEE Trans. on Signal Processing, 42(9):2257–

2263, September 1994.

[28] S.-C. Pei and J.-J. Shyu. Eigenfilter design of 1-D and 2-D IIR digital all-pass filters. IEEE

Trans. on Signal Processing, 42(4):966–968, April 1994.

[29] S.-C. Pei and C.-C. Tseng. Two novel methods for complex allpass filters design using remez

exchange algorithm. In Proc. IEEE Int. Symp. Circuits and Systems (ISCAS), volume 2, pages

173–176, Atlanta, May 12-15 1996.

[30] S.-M. Phoong, C. W. Kim, P. P. Vaidyanathan, and R. Ansari. A new class of two-

channel biorthogonal filter banks and wavelet bases. IEEE Transactions on Signal Processing,

43(3):649–665, March 1995.

31
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[36] H. W. Schüßler and P. Steffen. On the design of allpasses with prescribed group delay. In

Proc. IEEE Int. Conf. Acoust., Speech, Signal Processing (ICASSP), volume 3, pages 1313–

1316, Albuquerque, April 3-6 1990.
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