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Pseudo Affine Wigner Distributions:
Definition and Kernel Formulation
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Abstract— In this paper, we introduce a new set of tools
for time-varying spectral analysis: the pseudo affine Wigner
distributions. Based on the affine Wigner distributions of J. and P.
Bertrand, these new time-scale distributions support efficient on-
line operation at the same computational cost as the continuous
wavelet transform. Moreover, they take advantage of the pro-
portional bandwidth smoothing inherent in the sliding structure
of their implementation to suppress cumbersome interference
components. To formalize their place within the echelon of the
affine class of time-scale distributions (TSD’s), we introduce and
study an alternative set of generators for this class.

Index Terms— Affine Wigner distributions, time-frequency
analysis, wavelets.

I. INTRODUCTION

T IME-VARYING spectral representations, which analyze
signals in terms of joint time and frequency coordinates,

have proven useful in a wide variety of fields. Most represen-
tations of current interest belong to either (or both of) Cohen’s
class [1] or the affine class [2], [3]. The time–frequency
distributions (TFD’s) of Cohen’s class are covariant to time
and frequency shifts of the signal. Classical TFD’s such as the
spectrogram, Wigner distribution, and pseudo Wigner distri-
bution have been applied to the analysis of narrowband radar,
communications, and locally harmonic signals. The time-
scale distributions (TSD’s, also calledaffine time–frequency
distributions) of the affine class, in contrast, are covariant
to time shifts and scale changes of the signal. This property
makes TSD’s natural for applications such as wideband radar
and sonar and self-similar signal analysis.

The simplest time-scale representation is the continuous
wavelet transform. It has the advantage of being a linear
expansion of the signal onto a set of analyzing functions, yet
its very linearity precludes desirable theoretical properties such
as correct marginal distributions and perfect localization. To
illustrate the resolution limitations of the wavelet transform,
in Fig. 1(a), we plot its squared magnitude (referred to as the
scalogram) for a simple test signal.

The quadraticaffine Wigner distributionsproposed in [2]
are high-resolution alternatives to the wavelet transform. They
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have many desirable theoretical properties but, unfortunately,
two primary drawbacks as well. First, their bilinearity results
in copious interference terms in the time–frequency plane
[see Fig. 1(b)] [4], [5]. Second, due to their complicated
formulation, efficient implementations suitable for long time
series have not been developed for most of these TSD’s. As
a result, few affine Wigner distributions have been employed
in real-world applications.

In this paper, we attack both of these limitations simul-
taneously by introducing a set of (smoothed)pseudo affine
Wigner distributions. Like the pseudo Wigner TFD, these new
TSD’s are based on a short-time window that not only controls
the tradeoff between localization and interference attenuation
but also provides an efficient on-line computational algorithm.
The pseudo affine Wigner distributions permit a continuous
transition between the interference-free scalogram and the
high-resolution affine Wigner distributions and, thus, should
open up new application areas to these powerful tools [see
Fig. 1(c) and (d)].

After reviewing the background of TFD’s and TSD’s in
Section II, we derive the pseudo and smoothed pseudo affine
Wigner distributions in Section III. In Section IV, we consider
their place within the echelon of the affine class of TSD’s. The
usual formulation of the affine class, as the affine correlation
of the Wigner distribution with a kernel function [3], turns out
to be inappropriate for studying the pseudo affine Wigner dis-
tributions. We will see that a more natural way of proceeding
is to replace the Wigner distribution in this formulation with
a set of canonical generating TSD’s. We close in Section V
with a discussion and conclusions.

II. BACKGROUND ON TIME–FREQUENCY

AND TIME-SCALE ANALYSIS

In this section, we briefly review the elements of the theory
of TFD’s and TSD’s that we will employ in the sequel. TFD’s
and TSD’s are two-dimensional (2-D) functions of timeand
frequency that indicate how the frequency content of a
signal changes over time. Our distinction between TFD’s
and TSD’s stems from their covariance properties: TFD’s are
covariant to time and frequency shifts, whereas TSD’s are
covariant to time shifts and scale changes.

A. Time–Frequency Analysis with the Wigner Distribution

1) Wigner Distribution: A TFD of a signal is
time–frequency shift covariantif time shifts and modulations

1053–587X/98$10.00 1998 IEEE
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(a) (b)

(c) (d)

Fig. 1. Time-scale distributions (TSD’s) of a test signal composed of a hyperbolic chirpXA(f) = ei2�� ln f (component A), a third-order Hermite
function (component B), and a Lipschitz singularityxC(t) = jt � t0j

�0:1 (component C). TSD’s are plotted in equal-energy contours with the horizontal
axis corresponding to time and the vertical axis corresponding to frequency. (a) The scalogram (squared magnitude of the wavelet transformDx(t; f))
computed using a Morlet wavelet of quality factorQ = 2. (b) Unitary Bertrand distributionP (0)

x (t; f). (c) Pseudo Bertrand distributionP (0)
x (t; f)

computed using a Morlet wavelet ofQ = 8. (d) Smoothed pseudo Bertrand distribution computed using the same wavelet and a Gaussian frequency window
G of Q = 1. The pseudo and smoothed pseudo Bertrand distributions permit a continuous transition between the (low-resolution but interference-free)
scalogram and the (high-resolution but interference-ridden) Bertrand distribution.

of result in translations of

(1)

The simplest TFD is thespectrogram, which is the squared
magnitude of the short-time Fourier transform1

(2)

The classical time–frequency resolution tradeoff of the spec-
trogram, which is controlled by the analysis window, has
prompted the development of more advanced bilinear TFD’s,

1Unless specified, bounds of integration run from�1 to +1. In this
paper, we will consider only analytic signals for whichX(f) � 0 8 f < 0,
with X the Fourier transform of the time signalx.

including theWigner distribution[1], [6]

(3)

(4)

This TFD can be interpreted as a short-time Fourier trans-
form with the window matched to the signal. In addition
to time–frequency shift covariance, the Wigner distribution
supports additional covariances to scale changes and to linear
chirp modulations and convolutions [1], [6].

2) Pseudo Wigner Distribution:Although the Wigner dis-
tribution has many desirable properties, it also has two major
limitations. First, it does not support on-line operation, since
its calculation requires the entire signal. Second, its interpreta-
tion is complicated by nonlinear interference components [1],
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[6]. The pseudo Wigner distributiontackles both limitations
simultaneously.

The pseudo Wigner distribution [7] is a sliding version of the
Wigner distribution obtained by inserting a window function

into (3)

(5)

Loosely speaking, this TFD is equivalent to the Wigner
distribution of the time windowed signal ,
meaning that large amounts of data can be treated online.
Stankovic has noted that the pseudo Wigner distribution can
also be written as the “matched-filter” correlation of the short-
time Fourier transform [using window ] with
itself [8]

(6)

This formula echoes the structure of (4) with the Fourier
transform of the signal simply replaced by its short-time
Fourier transform. Thus, we can identify the pseudo Wigner
distribution as one of the two fundamental bilinear TFD’s
derived from the short-time Fourier transform:

The spectrogram results from squaring the short-time
Fourier transform; the pseudo Wigner distribution re-
sults from a self-correlation of the short-time Fourier
transform across frequency.

The time windowing in (5) acts as a smoothing in the fre-
quency domain; therefore, the pseudo Wigner distribution sup-
presses the Wigner distribution interference components that
oscillate in the frequency direction. Time direction smoothing
can be implemented by convolving (5) with a lowpass function

(7)

The result is known as thesmoothed pseudo Wigner distribu-
tion.2 An alternative approach to time smoothing limits the
range of the integral in (6) with a lowpass function[8]

(8)
Note that the TFD’s (7) and (8) are not equivalent in general.

3) Cohen’s Class:The spectrogram, Wigner distribu-
tion, (smoothed) pseudo Wigner distribution, and all other
time–frequency shift covariant TFD’s belong toCohen’s class
of TFD’s. The Wigner distribution can be interpreted as the
central, generating member of this class, with each Cohen’s
class TFD obtained via the 2-D correlation [1]

(9)

with thekernelof . The spectrogram kernel is the Wigner
distribution of the analysis window itself:

2We will abuse notation and employ the same tilde symbol (as inWx)
to denote all “pseudo” distributions. The particular form in use will be clear
from context.

. The kernel corresponding to the smoothed pseudo
Wigner distribution (7) is the separable form

. The kernel for the Stankovic smoothed pseudo
Wigner distribution (8) is

(10)

meaning that this TFD strikes a balance in smoothing be-
tween the pseudo Wigner distribution and the
spectrogram .

B. Time-Scale Analysis with the Affine Wigner Distributions

1) Affine Wigner Distributions:A TSD of a signal
is time-scale covariant, or affine covariant, if time shifts and
scale changes of result in translations and scale changes of

[2], [3]

(11)

Like a TFD, a TSD measures the joint time–frequency content
of a signal. We use the terminology TSD/TFD merely to dif-
ferentiate the time-scale covariance of affine class distributions
from the time–frequency shift covariance of Cohen’s class
distributions.

The simplest TSD is thescalogram, which is the squared
magnitude of the continuous wavelet transform [3]3

(12)

The scalogram has a proportional-bandwidth time–frequency
resolution tradeoff4 controlled by the analysis wavelet that
parallels that of the spectrogram [3]. This limitation prompted
the development of more advanced bilinear TSD’s, including
the affine Wigner distributionsof J. and P. Bertrand [2], [9].

There are an infinite number of affine Wigner distributions,
each labeled by an index . The th affine Wigner
distribution of an analytic signal is defined in terms of its
Fourier transform as [2]

(13)

with an arbitrary positive, continuous function, and

(14)

(15)

3Usually, the wavelet transform is expressed as a function of a time variable
t and a scale variablea. Here, we will use the reparameterization of scale
as inverse frequencya = f0=f suggested in [3] and assume without loss of
generality that the center frequencyf0 of the wavelet equals 1 Hz.

4Equivalently,constant-Q, with theQ factor defined as analysis frequency
over analysis bandwidth.
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Fig. 2. Graphs of the function�k(u) versusu for various values of the
index k.

Taking limits as , we obtain

(16)

Fig. 2 illustrates the behavior of the function. This function
has the symmetry property

(17)

In addition to time-scale covariance, each affine Wigner
distribution has a third, “extended” covariance to trans-
formations along a power-law (or logarithmic) group delay
matched to the index

(18)

The phase spectra take different forms depending on

(19)

with , , , and real constants (see [2] for details). As a
result, the index controls the geometry of the affine Wigner
distributions [4], [5]. The function controls the localization,
marginal, and unitarity5 properties of . (Note that since

is arbitrary, for each , there are infinitely many different
TSD’s.)

Several classical TSD’s live within the affine Wigner frame-
work:

1) —Wigner Distribution: In this case,
and . This choice

results in TSD’s with extended covariance along straight
5A distribution P is unitary if j x(t) y�(t) dtj2 =
Px(t; f)Py(t; f) dt df .

line paths in the time–frequency
plane.

More specifically, choosing

yields the Wigner distribution (4) (for analytic signals).
This particular TSD is unitary and satisfies the
time, frequency, and linear chirp marginals.

2) —D-Distribution: In this case,
and . This

choice results in TSD’s with extended covariance along
square-root-hyperbolic paths

in the time–frequency plane.
Choosing yields the D-

distribution of Flandrin [4], [5], [10].
3) —Bertrand Distribution: In this case,

and . This choice results
in TSD’s with extended covariance along hyperbolic
time–frequency paths .

Choosing yields the uni-
tary Bertrand distribution [9], [11]

(20)

This particular TSD is unitary and localizes in time
and along hyperbolic group delays. It marginalizes to
frequency when integrated over time and to the Mellin
transform [2], [6] when integrated along hyperbolic
paths .

4) —Unterberger Distribution: In this case,
and . This

choice results in TSD’s with extended covariance along
time–frequency paths of the form

.
Choosing yields the active

Unterberger distribution [4], [5], [12]

(21)

This TSD localizes in time and along hyperbolic square
group delays and satisfies the frequency marginal.

5) —Margenau–Hill Distribution: The Marge-
nau–Hill distribution [1], [2] arises as the arithmetic
mean of the distributions and parameter-
ized by

(22)

(23)

(24)
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with the Heaviside unit step function. This TSD
is time localized and has correct time and frequency
marginals.

In addition to these examples, there exist an infinite number
of unexplored affine Wigner distributions of other orders.
Currently, most of these distributions are hardly accessible,
however, due to a lack of simple algorithms for their com-
putation.

2) Affine Class:The scalogram, the affine Wigner distribu-
tions, and all other bilinear time-scale covariant distributions
belong to theaffine classof TSD’s. As in Cohen’s class,
the Wigner distribution is usually taken as the
central generating member of this class, with each affine TSD

obtained via the 2-D affine correlation [3]

(25)

with the kernel of . The scalogram kernel is the Wigner
distribution of the analysis wavelet: [3], [13].

III. PSEUDO AFFINE WIGNER DISTRIBUTIONS

The affine Wigner distributions (13) have great potential as
flexible tools for time-varying spectral analysis. They possess a
number of desirable theoretical properties, including the ability
to match a large class of different signal types. Unfortunately,
their promise is offset by two major practical limitations. First,
the entire signal enters into the calculation of these TSD’s
at every point in the time–frequency plane, precluding
their on-line operation with long signals. Second, due to their
nonlinearity, interference components arise between each pair
of signal components, complicating their interpretation (recall
Fig. 1) [4], [5]. As a result, few affine Wigner distributions
have been applied in practice (aside from in [14]).

In this section, we attack these limitations by introduc-
ing a set of (smoothed)pseudo affine Wigner distributions
[15]. These new TSD’s offer not only asymptotically the
same properties as the affine Wigner distributions but also
support efficient on-line operation and suppress troublesome
interference components. Our derivation relies on the strong
analogy between time–frequency and time-scale analysis and
is inspired by the pseudo Wigner distribution.

A. Derivation

Recall from Section II-A that we obtain the pseudo Wigner
distribution (5) by introducing a window function into the
Wigner distribution (3). An analogous windowing procedure
leads to the pseudo affine Wigner distributions. In contrast to
the pseudo Wigner case, however, this windowing must be
frequency-dependent to ensure that the resulting TSD remains
affine covariant.6 As a result, the smoothing in frequency direc-
tion is proportional bandwidth, rather than constant-bandwidth
as in the pseudo Wigner distribution.

6Rioul and Flandrin consider the same covariance requirements in their
definition of the affine pseudo Wigner distribution [3]. In this paper, we
generalize their definition to the entire class of affine Wigner distributions.

We first rewrite the general form (13) in the time domain

(26)

It is clear from this expression that at every point in the
time–frequency plane, the affine Wigner distribution depends
on the entire signal . Since on-line operation requires that we
consider the signal only in a sliding interval, we introduce a
window function in (26) to obtain

(27)

The dependence of on the analysis frequency guarantees
affine covariance to time shifts and scale changes.7 By

analogy to the pseudo Wigner distribution, we call these new
TSD’s pseudo affine Wigner distributions.

The pseudo affine Wigner distributions can be formulated
in terms of the wavelet transform. Introducing the bandpass
wavelet function , we can reorder (27) as

(28)

with the wavelet transform (12) computed with wavelet.
This generalized “matched filter” correlation of the wavelet
transform with itself echoes the structure of (13) with the
Fourier transform of the signal replaced by its wavelet trans-
form . It also parallels the expression (6) that holds for the
short-time Fourier transform and pseudo Wigner distribution.
Thus, we can identify the pseudo affine Wigner distribution as
one of the two fundamental bilinear TSD’s derived from the
wavelet transform:

The scalogram results from squaring the wavelet trans-
form; the pseudo affine Wigner distribution results from
a generalized self-correlation of the wavelet transform
across frequency.

Fig. 3 illustrates the focusing effect of the generalized self-
correlation (28) on a time slice of the wavelet transform.
To compute the self-correlation at frequency, we scale
and warp to the function and then
compute the inner product overbetween this function and its
reversed twin . In contrast with a simple affine

7Suppressing the�k(�u) factors inh in (27) yields a different distribution
with similar covariance properties. However, this formulation does not appear
to admit an efficient implementation.
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(a) (b)

(c) (d)

Fig. 3. Computation of the pseudo affine Wigner distribution from the wavelet transform, emphasizing the focusing effect of the generalized matched
correlation underlying (28). (a) Wavelet transform (real part)Dx(t; f) of the singularity (component C) from Fig. 1. (Note that the frequency axis runs from
top to bottom in this mesh plot.) (b) Pseudo affine Wigner distributionP

(0)
x (t; f) of the same signal. Consider the computation (28) of a time sliceP

(0)
x (t1; f)

of this distribution in the vicinity of the singularity. (c) Scaled and warped wavelet transformDx[t1; �0(u)f ] plotted versusu for f = 0:25, f = 0:15, and
f = 0:05. (d) Result of the generalized matched correlationP

(0)
x (t1; f) compared with the corresponding time slice of the scalogramjDx(t1; f)j2.

correlation, the function is not only scaled but also reshaped
before computing the inner product.

B. Time–Frequency Smoothing Interpretation

The time windowing introduced in (27) acts as a pro-
portional bandwidth frequency smoothing that suppresses in-
terference components oscillating in the frequency direction.
Compare, for example, the pseudo Bertrand distribution
of Fig. 1(c) with the unitary Bertrand distribution of
Fig. 1(b).

To suppress interference terms oscillating in the time direc-
tion, we must smooth in that direction [as in (7)] or window
the dual variable [as in (8)]. The introduction of a lowpass
function in (28) limits the integration with respect to
(loosely speaking, the dual variable of the product), and
thus performs proportional-bandwidth time smoothing of the
TSD. We call the resulting time-scale distributions

(29)

the smoothed pseudo affine Wigner distributions[see
Fig. 1(d)].

Even though the pseudo and smoothed pseudo affine Wigner
distributions are smoothed versions of the affine Wigner dis-
tributions, they can still have resolution exceeding that of
the scalogram [recall Fig. 1(a)]. This resolution enhancement
compared with the scalogram is due precisely to the action
of the generalized self-correlation in (29); rather than simply
squaring the wavelet transform, we match-filter it.

C. Implementation

The pseudo affine Wigner distributions can be interpreted as
sliding versions of the original affine Wigner distributions, and
as a result, they are naturally suited for on-line operation with
long signals. To construct a pseudo affine Wigner distribution,
we simply compute the wavelet transform of the signal and
then, at each time point, perform the generalized frequency
correlation (28) or (29). The fast Mellin transform is a con-
venient tool for implementing this correlation efficiently [16],
[17]. The algorithm runs as follows:8

8Matlab code for computing the smoothed pseudo affine Wigner distribu-
tions is available from Rice University DSP home page at www.dsp.rice.edu
and INRIA at www.syntim.inria.fr/fractales/software/TFTB/.
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1) Compute the wavelet transform of the signal
using wavelet . Samples should be
spaced uniformly in time and exponentially in frequency.

2) At each time , for a range of , rescale to
using the Mellin transform [17], which

maps scale changes to simple phase shifts. Since the
Mellin transform of a function equals the Fourier
transform of , a fast Fourier transform (FFT)
applied to an exponentially spaced set of frequency
samples of implements a fast Mellin transform.

3) At each time , compute the inner product (28) or (29)
with respect to .

Using a fast algorithm for the computation of the wavelet
transform [17], [18], the computational cost of this procedure
is for time and frequency samples,9

which is on the same order as the cost for the spectrogram,
pseudo Wigner distribution, and scalogram.

D. Examples

1) —Affine Pseudo Wigner Distribution:In this
case, (13) reduces to the ordinary Wigner distribution,
and (29) becomes the “affine smoothed pseudo Wigner
distribution” of Rioul and Flandrin [3].

2) —Pseudo Bertrand Distribution: In the particu-
lar case of the unitary distribution (20), the special
form for cancels the factor in
(28), leaving us with a much simpler expression for .
The result is the pseudo Bertrand distribution of [16].

In Fig. 1, we demonstrated the performance of this
new TSD on a synthetic test signal. In Fig. 4, we
plot the Wigner, Bertrand, scalogram, and smoothed
pseudo Bertrand TSD’s of the echo-location chirp of
the large brown batEptesicus Fuscus. The approximate
hyperbolic localization of the smoothed pseudo Bertrand
distribution matches the chirping nature of the sig-
nal, whereas the proportional-bandwidth time–frequency
smoothing suppresses the interference components that
swamp both the Wigner and Bertrand distributions.

3) —Pseudo Unterberger Distribution: Due to
their affine covariance properties, TSD’s have a unique
ability to analyze low frequencies with good frequency
resolution and high frequencies with good time resolu-
tion. The active Unterberger distribution, furthermore,
is time localized and preserves the scaling properties of
signal components [19], making it ideal for the study of
transients. The primary drawback of this bilinear TSD
is the existence of interference components between
transient events.

The pseudo Unterberger distribution smooths inter-
ference components in the frequency direction while
preserving the correct scaling structure across frequency.
In Fig. 5, we compare the performance of this new TSD
to the pseudo Wigner TFD and scalogram on a machine
fault signature.

4) —Approximate Affine Wigner Distributions:
Up to this point, we have emphasized the ability of

9Assuming that the length of the wavelet at maximum dilation is ofO(M).

the smoothed pseudo affine Wigner distributions to con-
trol interference components through time–frequency
smoothing. More generally, however, our approach al-
lows us to efficiently approximate all (unsmoothed)
affine Wigner distributions, even for unusual values of
the index for which the algorithm proposed in [17]
does not apply directly. In the limit as the bandwidth
of the wavelet falls to zero, we have

. Therefore, a pseudo affine Wigner distribution
(28) computed using a narrowband wavelet will closely
approximate its corresponding affine Wigner distribu-
tion, including its marginal and extended covariance
(18) properties. [In general, a (smoothed) pseudo affine
Wigner distribution will not possess all possible theoret-
ical properties of the affine Wigner TSD’s; however, we
could constrain the choice of the waveletto preserve
certain of them.]

In approximating an affine Wigner distribution, our
goal is not to suppress interference components but
rather to preserve them. Fig. 6 illustrates the close
agreement between the approximate affine Wigner dis-
tributions and and the theoretical loci of
the true distributions as determined by the geometric
construction rules of [4] and [5]. To obtain these TSD’s,
we employed a narrowband wavelet of in (28).

IV. PSEUDO AFFINE WIGNER

DISTRIBUTIONS AND THE AFFINE CLASS

Like all affine Wigner distributions, the pseudo affine
Wigner distributions belong to the affine class of TSD’s that,
as defined in (25), revolves around the Wigner distribution

. Unfortunately, this formalism becomes awkward
when we try to derive an analytic form for the kernel
corresponding to a pseudo affine Wigner distribution. In this
section, we investigate an alternative canonical formulation
for the affine class in which the kernels corresponding to the
pseudo affine Wigner distributions have an easily identifiable,
closed form.

For each , we will replace in (25) with an
alternative, matched generator TSD that provides a
natural framework for the affine Wigner distributions
and the pseudo affine Wigner distributions . With this
new formalism, all affine class TSD’s can be written as

(30)

with a different kernel for each choice of generator .

A. Affine Wigner Generators

Any TSD that is continuously invertible (regular in the
terminology of [20]) can play the role of in (30).
In particular, does not have to be unitary. For the
affine Wigner distributions, Fourier transformation of (13)
followed by reparameterization using (15) and (17) leads to
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(a) (b)

(c) (d)

Fig. 4. TSD’s of the echo-location chirp of the large brown batEptesicus Fuscus. Horizontal axis corresponds to time and vertical axis to frequency.
(a) Wigner distributionP (2)

x . (b) Unitary Bertrand distributionP (0)
x . (c) ScalogramjDxj2. (d) Smoothed pseudo Bertrand distributionP (0)

x .

the inversion formula (for as a function of )

(31)

with a constant such that . This inverse is
continuous, provided the term in front of the integral
remains bounded from above and below, with

. The affine Wigner distributions thus provide a family of
generators for the affine class.

In Appendix A, we single out the affine Wigner generators
most natural for studying the pseudo affine Wigner distribu-
tions. These generators take the form

(32)

and correspond to the special choice in
(13).10 With this generator installed in (30), the kernel corre-
sponding to the (smoothed) pseudo affine Wigner distribution

can be written in closed form as

(33)

B. Examples

Each different yields a different generator
matched to the specific geometry of the affine Wigner distri-

10With �k(u) = (d=du)�k(u), the termC(u) in front of the integral in
(31) reduces to a constant.
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(a) (b)

(c) (d)

Fig. 5. Time-varying spectral representations in a machine fault monitoring application. (a) Five thousand samples of a time series acquired from an
accelerometer axially mounted on a main condensate pump rotating at 892 r/min. The sampling rate was 50 kHz. (b) Pseudo Wigner TFDWx computed
using a 1024-point sliding window. This Cohen’s class TFD is not scale covariant; hence, it cannot reveal both the low-frequency rotational components and
the high-frequency transients. (The horizontal axis corresponds to time and the vertical axis to normalized frequency in a logarithmic scale.) (c) Scalogram
jDxj2 computed using a Mexican hat wavelet. This affine class TSD is scale covariant but suffers from low resolution. (d) Pseudo Unterberger distribution
P

(�1)
x computed using the same Mexican hat wavelet (andG � 1 ). This TSD localizes both the fundamental rotation frequency and the transient events.

(Data taken from the “NRad” test data set courtesy of J. Allen of NCCOSC and D. Lake of the Office of Naval Research.)

butions and the pseudo affine Wigner distributions .
Examples include the following.

1) —Wigner Distribution: Using
in (13), we retrieve

the Wigner distribution (4) and the usual affine class
definition (25). The Wigner distribution is the sole
unitary generator of the form (32) (see Appendix B
for the proof).

2) —Nonunitary Bertrand Distribution: Using
in (13), we obtain a

(nonunitary) Bertrand distribution.
3) —Active Unterberger Distribution: Using

in (13),
we encounter the active form of the Unterberger
distribution. This TSD is the sole generator of the form
(32) that is time localized according to the definition of
[2] (see Appendix C for the proof).

The scalogram has a different representation in terms of each
generator. Recall that the unitarity of the Wigner distribution

permits us to write the scalogram as an affine correlation of
two Wigner distributions [3], [13]11

(34)

This formula generalizes to the generators of (32). To
see this, note that setting reduces (29) to the
scalogram and (33) to

(35)

Here, is thepassive form[2], [12] of the generator .
Although theactive form is nonunitary in general, it
cooperates with its passive form to produce the isometry-like

11In [21], J. and P. Bertrand also consider affine smoothing of the affine
Wigner distributions to obtain positive TSD’s.
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(a) (b)

(c) (d)

Fig. 6. Accurate approximation of affine Wigner distributions using pseudo affine Wigner distributions. Horizontal axis corresponds to time and vertical axis
to frequency. The test signalx is a sinusoidal frequency modulationx(t) = exp[�i f�1

m
cos(2�fmt)]. (a) Predicted locus of the true distributionP (�5)

x as
determined using the geometric construction rules of [4] and [5]. (b) Approximate affine Wigner distributionP

(�5)
x computed as in (28) using a narrowband

wavelet ofQ = 130. (c) Predicted locus of the true distributionP (5)
x . (d) Approximate affine Wigner distributionP (5)

x .

relation [2]

(36)

In this case, (30) simplifies to

(37)

which is a natural generalization of (34).

V. CONCLUSIONS

Although the affine Wigner distributions have many
attractive properties, interference terms and lack of efficient

implementations have limited their impact on time-varying
signal analysis. By overcoming these limitations, the pseudo
and smoothed pseudo affine Wigner distributions should
open up new application areas to these powerful tools. In
particular, the flexible wavelet-based structure underlying
these new TSD’s allows a continuous transition in smooth-
ing between affine Wigner distributions and scalograms.
Moreover, to tune the pseudo affine Wigner distributions
to the local characteristics of the signal, we can adapt the
wavelet in the sliding algorithm using the techniques
of [22].

The introduction of alternative generators for the affine class
of TSD’s simplifies the kernel formulation of the pseudo affine
Wigner distributions. In addition, the concept of alternative
generators could aid in the analysis and design of new affine
distributions matched to particular classes of signals.
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APPENDIX A
PSEUDO AFFINE WIGNER KERNELS

We will derive an affine Wigner generator for use
in (30) that provides a closed-form expression for the kernel

corresponding to the smoothed pseudo affine Wigner
distribution .

Plugging the frequency-domain formulation of the wavelet
transform (12) into (29) followed by the change of variables

with Jacobian
(38)

leads to

(39)

Now, using the identity

(40)

for the natural generator (32), we obtain (41), shown at the
bottom of the page, which is of the form (30) with an affine
transformed version of the kernel (33) in square brackets.

APPENDIX B
UNITARY GENERATORS

We will show that the only generator of the form (32) that
is unitary is the usual Wigner distribution from (4).
In a unitary affine Wigner distribution, the function takes
on the special form [2]

(42)

On the other hand, affine Wigner generators of the form (32)
are characterized by

(43)

(44)

In both cases, the function must also possess the symmetry
property (17).

Solution of the differential equation or, after
simplification,

(45)

subject to the constraint (17) will characterize the set of affine
Wigner generators of the form (32) that are unitary.

By decomposing the function into the sum of its even
part and odd part , we can rewrite (45) as

(46)

and rewrite (17) as

(47)

or, equivalently, as

(48)

If we substitute (48) into (46) and solve for , we obtain

(49)

or, equivalently

(50)

Using the change of variables , the unique
solution of this equation is

(51)

which implies, from (48), that .
Thus, any affine Wigner distribution that is both unitary and

a generator of the form (32) must be based on afunction
of the form

(52)

which is true only for (Wigner distribution).

(41)
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APPENDIX C
TIME-LOCALIZED GENERATORS

Using methods similar to those in Appendix B, we will
demonstrate that the only generator of the form (32) that is
time localized is the active Unterberger distribution
with [2], [12]. In a time-localized affine
Wigner distribution, the function takes on the special form
[2], [17]

(53)

Solution of the differential equation or, after
simplification,

(54)

subject to (17) will characterize the set of affine Wigner
distributions that are simultaneously time localized and natural
generators. Imposing (17) yields the unique solution to (54)

(55)

which holds only for (active form of the Unterberger
distribution).
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Paulo Gonçalvès (S’94–M’96) graduated from
the Signal Processing Department of ICPI, Lyon,
France, and received the Masters (DEA) and Ph.D.
degrees in signal processing from the Institut
National Polytechnique, Grenoble, France, in 1990
and 1993.

While working toward the Ph.D. degree, he was
with Ecole Normale Suṕerieure, Lyon. In 1994,
he was a Postdoctoral Fellow at Rice University,
Houston, TX. He then joined the research group
FRACTALES at INRIA, Rocquencourt, France,

where he is currently a Charg´e de Recherche. His research interests are in the
application of affine time–frequency representations to multifractal signals
and image processing.

Richard G. Baraniuk (M’93–SM’97) received the
B.Sc. degree in 1987 from the University of Mani-
toba, Winnipeg, Man., Canada, the M.Sc. degree in
1988 from the University of Wisconsin, Madison,
and the Ph.D. degree in 1992 from the University
of Illinois, Urbana–Champaign, all in electrical en-
gineering.

In 1986, he was a Research Engineer with Omron
Tateisi Electronics, Kyoto, Japan. After spending
1992 and 1993 with the Signal Processing Labo-
ratory of Ecole Normale Supérieure, Lyon, France,

he joined Rice University, Houston, TX, where he is currently an Associate
Professor of Electrical and Computer Engineering. His research interests lie
in the area of signal and image processing and include wavelet theory and
time–frequency analysis.

Dr. Baraniuk received a NATO Postdoctoral Fellowship from NSERC
in 1992, a National Young Investigator Award from the National Science
Foundation in 1994, and a Young Investigator Award from the Office of
Naval Research in 1995.


