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Pseudo Affine Wigner Distributions:
Definition and Kernel Formulation
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Abstract—In this paper, we introduce a new set of tools have many desirable theoretical properties but, unfortunately,
for time-varying spectral analysis: the pseudo affine Wigner two primary drawbacks as well. First, their bilinearity results
distributions. Based on the affine Wigner distributions of J. and P. in copious interference terms in the time—frequency plane

Bertrand, these new time-scale distributions support efficient on- - . .
line operation at the same computational cost as the continuous [see Fig. 1(b)] [4], [S]. Second, due to their complicated

wavelet transform. Moreover, they take advantage of the pro- formulation, efficient implementations suitable for long time
portional bandwidth smoothing inherent in the sliding structure  series have not been developed for most of these TSD's. As

of their implementation to suppress cumbersome interference a result, few affine Wigner distributions have been employed
components. To formalize their place within the echelon of the in real-world applications

affine class of time-scale distributions (TSD'’s), we introduce and In this paper, we attack both of these limitations simul-

study an alternative set of generators for this class. - N )
_ _ S _ taneously by introducing a set of (smoothgmheudo affine
anlglggi); T‘ng:/ZQSAﬁ'”e Wigner distributions, time-frequency  \vigner distributionsLike the pseudo Wigner TFD, these new
’ ' TSD’s are based on a short-time window that not only controls
the tradeoff between localization and interference attenuation
I. INTRODUCTION but also provides an efficient on-line computational algorithm.

IME-VARYING spectral representations, which analyzérhe p;eudo affine Wigngr distributions permit a continuous

signals in terms of joint time and frequency coordinate§@nsition between the interference-free scalogram and the
have proven useful in a wide variety of fields. Most represef!gh-resolution affine Wigner distributions and, thus, should
tations of current interest belong to either (or both of) Cohen@P€n UP new application areas to these powerful tools [see
class [1] or the affine class [2], [3]. The time—frequenc}9- 1(¢) and (d)]. _
distributions (TFD's) of Cohen’s class are covariant to time After reviewing the background of TFD's and TSD's in
and frequency shifts of the signal. Classical TFD's such as tRgction Il, we derive the pseudo and smoothed pseudo affine
spectrogram, Wigner distribution, and pseudo Wigner dischgner dlstrlbupons in Section Ill. In S_ect|on IV, we consider
bution have been applied to the analysis of narrowband rad&€ir Place within the echelon of the affine class of TSD’s. The
communications, and locally harmonic signals. The timaisual formulation of the affine class, as the affine correlation
scale distributions (TSD's, also callaffine time—frequency of the Wigner distribution with a kernel function [3], turns out

distributiong of the affine class, in contrast, are covariarf® P€ inappropriate for studying the pseudo affine Wigner dis-

to time shifts and scale changes of the signal. This propeffjPutions. We will see that a more natural way of proceeding

makes TSD's natural for applications such as wideband radS o replace the Wigner distribution in this formulation with
and sonar and self-similar signal analysis. a set of canonical generating TSD’s. We close in Section V

The simplest time-scale representation is the continuolfi{h @ discussion and conclusions.
wavelet transform It has the advantage of being a linear
expansion of the signal onto a set of analyzing functions, yet
its very linearity precludes desirable theoretical properties such Il. BACKGROUND ON TIME—FREQUENCY
as correct marginal distributions and perfect localization. To AND TIME-SCALE ANALYSIS
illustrate the resolution limitations of the wavelet transform,

in Fig. 1(a), we plot its squared magnitude (referred to as th In this section, we briefly review the elements of the theory
9. ' pio q . 9 o?TFD’s and TSD'’s that we will employ in the sequel. TFD’s
scalogram) for a simple test signal.

The quadraticaffine Wigner distributiongproposed in [2] and TSD's are two-dimensional (2-D) functions of timand

are high-resolution alternatives to the wavelet transform. Thg}(/aquencyf that |nd|cat_e how the_fr_equ_ency content of ,a
signal x changes over time. Our distinction between TFD’s
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Fig. 1. Time-scale distributions (TSD's) of a test signal composed of a hyperbolic 8hirpf) = e’27~!"/ (component A), a third-order Hermite

function (component B), and a Lipschitz singularity:(t) = |t — to|~%1 (component C). TSD's are plotted in equal-energy contours with the horizontal

axis corresponding to time and the vertical axis corresponding to frequency. (a) The scalogram (squared magnitude of the wavelettrgnsfo)m
computed using a Morlet wavelet of quality factor@ = 2. (b) Unitary Bertrand distributiorPl(U)(t., f). (c) Pseudo Bertrand distributioﬁ’éo)(t,f)

computed using a Morlet wavelet ¢f = 8. (d) Smoothed pseudo Bertrand distribution computed using the same wavelet and a Gaussian frequency window
G of @ = 1. The pseudo and smoothed pseudo Bertrand distributions permit a continuous transition between the (low-resolution but interference-free)
scalogram and the (high-resolution but interference-ridden) Bertrand distribution.

of x result in translations o€, including theWigner distribution[1], [6]
2(t) (- to) e . .
I I (1) W,(t, f) = /x(t + 5)37* (t - 5)6_12”07 dr (3)
Ca}(tv f) - Cw(t = to, f - fO) _ K * _ K 27wt
- X(f+2)X (f 2)e dv.  (4)

The simplest TFD is thepectrogram which is the squared

magnitude of the short-ime Fourier transfdrm This TFD can be interpreted as a short-time Fourier trans-

_ . —ionfr form with the window matched to the signal. In addition
Se(t, f) = [ a(r)w (T —t)e dr. @ o time—frequency shift covariance, the Wigner distribution
supports additional covariances to scale changes and to linear
The classical time—frequency resolution tradeoff of the SPe¢hirp modulations and convolutions [1], [6].
trogram, which is controlled by the analysis windaw has  2) pseudo Wigner DistributionAlthough the Wigner dis-
prompted the development of more advanced bilinear TFDigibution has many desirable properties, it also has two major
1 o ) . _limitations. First, it does not support on-line operation, since
Unless specified, bounds of integration run freawso to +oco. In this . lculati . h . . LS d. its i
paper, we will consider only analytic signals for whiéh(f) =0V f < 0, 'FS C?‘ cu atlon requires the 'entlre .S|gna - Seconda, Its interpreta-
with X the Fourier transform of the time signal tion is complicated by nonlinear interference components [1],
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[6]. The pseudo Wigner distributioackles both limitations W,(t, f). The kernel corresponding to the smoothed pseudo
simultaneously. Wigner distribution (7) is the separable forfiy,wa(t, f) =

The pseudo Wigner distribution [7] is a sliding version of the(¢) H(f). The kernel for the Stankovic smoothed pseudo
Wigner distribution obtained by inserting a window functiotWigner distribution (8) is

h into (3)
HSsde(tv f) = g(t) Ww(tv f) (10)

—~ _ Z * _ Z —27 fr
W.t. f) = /h(T)ﬂj (H_ 2)31j (t 2)6 dr. () meaning that this TFD strikes a balance in smoothing be-

Loosely speaking, this TFD is equivalent to the Wigndiveen the pseudo Wigner distributign() = 6(¢)] and the
distribution of the time windowed signat(7)\/h(21 —t), spectrogramy(t) = 1].

meaning that large amounts of data can be treated online.

Stankovic has noted that the pseudo Wigner distribution cBn Time-Scale Analysis with the Affine Wigner Distributions
also be written as the “matched-filter” correlation of the short- 1) Affine Wigner Distributions:A TSD €, of a signalz
time Fourier transform [using window(7) = \/h(27)] with  is time-scale covariantor affine covariantif time shifts and

itself [8] scale changes of result in translations and scale changes of

— , Q. [2], [3]

v * v 127vt
x\Yy = x ) o z ’ - = . 6

Walt, f) /s (¢ f+2)S (1 2)e dv. (6) ) <t_t0>

. . . wWt) — ==
This formula echoes the structure of (4) with the Fourier Va o
transform of the signal simply replaced by its short-time l l (12)
Fourier transform. Thus, we can identify the pseudo Wigner t—to
distribution as one of the two fundamental bilinear TFD’s L, f) — @ <Tvaf>-

derived from the short-time Fourier transform:
The spectrogram results from squaring the short-time
Fourier transform; the pseudo Wigner distribution re-
sults from a self-correlation of the short-time Fourier
transform across frequency.

Like a TFD, a TSD measures the joint time—frequency content
of a signal. We use the terminology TSD/TFD merely to dif-
ferentiate the time-scale covariance of affine class distributions
from the time—frequency shift covariance of Cohen’'s class
distributions.

The time windowing in (5) acts as a smoothing in the fre- g gimplest TSD is thecalogram which is the squared
guency domain; therefore, the pseudo Wigner distribution SURagnitude of the continuous wavelet transform?[3]
presses the Wigner distribution interference components that

oscillate in the frequency direction. Time direction smoothing Du(t, f) = f1/2/ e(T) W [f(r — )] dr
can be implemented by convolving (5) with a lowpass function N

1 =fi2 / X()U*(v/f) ¥ dy. (12)
= T T 0
Wa(t, f E/ u—t/h'ra:u—i——a:* U— =
(& 1) Q(‘ ) (") ( 2) ( 2) The scalogram has a proportional-bandwidth time—frequency
x ¢~ 7T dr du. (7) resolution tradeoff controlled by the analysis wavelet that

. i ... parallels that of the spectrogram [3]. This limitation prompted
'I_'hezresult IS k”OW” as tmamoothed_ pseudo ngner _d's_t”bu'the development of more advanced bilinear TSD'’s, including
tion.© An alternative approach to time smoothing limits th

fthe i Lin (6) with a | f i6nis %he affine Wigner distributionsf J. and P. Bertrand [2], [9].
range of the integral in (6) with a lowpass functih(8] There are an infinite number of affine Wigner distributions,
= _ VN s LAY T each labeled by an indek € IR. The kth affine Wigner
Walt: 1) = /G(V) Se (t’ I+ 2)51‘ (t’f 2)6 v distribution of an analytic signat is defined in terms of its

) _ Fourier transformX as [2]
Note that the TFD’s (7) and (8) are not equivalent in general.

. 3) Cohen’s Class:The spectrogram, Wigner distribu- P&t ) zf/ X[e(w) f] X*[Me(=w) f]
tion, (smoothed) pseudo Wigner distribution, and all other ‘
time—frequency shift covariant TFD’s belong@mhen’s class x 2 () Wy du, >0 (13)

of TFD’s. The Wigner distribution can be interpreted as the. ) » ) )
central, generating member of this class, with each CoheMh 1 (u) an arbitrary positive, continuous function, and

class TFDC obtained via the 2-D correlation [1] o=t — 1\ Y *D)
A(u) = <k —— ) . k#£0,1 (14
C.(t, ) :// Wo(r,)(r —t,v— f)drdv  (9) e —1
Sk(u) = )\k(u) - )\k(—u) (15)
with II the kernelof C. The spectrogram kernel is the Wigner 3Usually, the wavelet transform is expressed as a function of a time variable
distribution of the analysis window itselfllpec(t, f) = t and a scale variable. Here, we will use the reparameterization of scale

as inverse frequency = fo/f suggested in [3] and assume without loss of
2We will abuse notation and employ the same tilde symbol (a8l generality that the center frequengy of the wavelet) equals 1 Hz.
to denote all “pseudo” distributions. The particular form in use will be clear Equivalently,constant-Qwith the Q factor defined as analysis frequency
from context. over analysis bandwidth.
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A (u)

Fig. 2. Graphs of the function;(u) versusu for various values of the
index k.

Taking limits ask — 0,1, we obtain
_ % ue
S l—ew’ U —

)\o(u)

A (1) = exp <1 +

). (16)

Fig. 2 illustrates the behavior of thg, function. This function
has the symmetry property

Ar(—u) = e Ap(u).

e 1

(17)

In addition to time-scale covariance, each affine Wigner
distribution P(*) has a third, “extended” covariance to trans-
formations along a power-law (or logarithmic) group delay
matched to the index

X)) — O

! ’ (18)
(k) (k) “
PO — P t- L],

The phase spectra take different forms depending on

k£0,1 Ou(f) = cLif*
k=0 (I)o(f) = C(Lo + kdp In f)
k=1 @1(f) = Cf(Ll +1n f)

with ¢, dp, x, and Ly, real constants (see [2] for details). As a
result, the index; controls the geometry of the affine Wigner
distributions [4], [5]. The functions;, controls the localization,
marginal, and unitarify properties of P(*). (Note that since
ux IS arbitrary, for eactk, there are infinitely many different
P*) TSD’s.)
Several classical TSD's live within the affine Wigner frame-
work:
1) & = 2—Wigner Distribution: In this case\;(u) =
1 + tanh(u/2) and &(u) = 2tanh(u/2). This choice
results in TSD’s with extended covariance along straight

| Ja(t)y*(t) dt|?

(19)

5A  distribution P if =

ffPJ_(t,f)Pg(t,f)dtdf

is  unitary
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line pathst = (d/df )®2(f) < f in the time—frequency
plane.

More  specifically,  choosing pa(u)
Mo (w) Ao (=) (d/du)éa(u)]t/? 1 — tanh®(u/2)
yields the Wigner distribution (4) (for analytic signals).
This particular P@ TSD is unitary and satisfies the
time, frequency, and linear chirp marginals.

k = 1/2—D-Distribution: In this case\/2)(u) =

[1 + tanh(u/4)]* and £ 9)(u) = 4tanh(u/4). This
choice results in TSD’s with extended covariance along
square-root-hyperbolic paths = (d/df)®,,2(f) o
f~1/% in the time—frequency plane.

Choosing i /»(u) = 1 — tanh?*(u/4) yields the D-
distribution of Flandrin [4], [5], [10].

k = 0—Bertrand Distribution: In this case\g(u) =
—u/(e”* — 1) and &(u) = w. This choice results
in TSD’s with extended covariance along hyperbolic
time—frequency paths = (d/df)®o(f) o« 1.

Choosingpo(u) = [Ao(u)Xo(—u)]!/? yields the uni-
tary Bertrand distribution [9], [11]

(0) = .
PO, f) _f/QSiIlh(U//2) X{
x X*{ fue™/?

2sinh(u/2)
This particularP(® TSD is unitary and localizes in time
and along hyperbolic group delays. It marginalizes to
frequency when integrated over time and to the Mellin
transform [2], [6] when integrated along hyperbolic
pathstf = c.

4 k —1—Unterberger Distribution: In this case,
Ai(u) = e*/? and &_1(u) 2sinh(u/2). This
choice results in TSD’s with extended covariance along
time—frequency paths of the form= (d/df )®_1(f) x
2

Choosing pi—1(u) = cosh(u/2) yields the active
Unterberger distribution [4], [5], [12]

2)

3)

fuet/?
2 Sinh(u/2)}

} ¢ . (20)

Pé‘l)(t,f) =f COSh(g) X(e“/2 f) X*(@—(U/Q) f)

% 6i47rtf sinh(u/2) du

3o ()

« i2mtflv=(1/7)] dr. (21)
This TSD localizes in time and along hyperbolic square
group delays and satisfies the frequency marginal.

5) k = *oo—Margenau-Hill Distribution: The Marge-
nau—Hill distribution [1], [2] arises as the arithmetic
mean of the distribution®(>> and P(=>°) parameter-
ized by

M) = lim  Ay(u) = Uw) + e Ul-u)  (22)
A(u) = lim Ap(u)=Ul=u) +e"Uln)  (23)
Ex(u) =t (24)
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with U the Heaviside unit step function. This TSD We first rewrite the general form (13) in the time domain
is time localized and has correct time and frequency

marginals. ngk)(t, f) :f/ /Jk(u)|:/$(7') 2T A (u) f(T—t) d’/':|
In addition to these examples, there exist an infinite number .
of unexplored affine Wigner distributions of other ordérs y |:/$(7_/)e—i27r)\k(—'u)f(‘r’—t) d’/'/:| du. (26)
Currently, most of these distributions are hardly accessible,

howe_ver, due to a lack of simple algorithms for their COMy g cjear from this expression that at every pditit /) in the
putation. time—frequency plane, the affine Wigner distribution depends

2) Affine Class: The scalogram, the affine Wigner dIStrIbu'on the entire signat. Since on-line operation requires that we

tions, and all other bilinear time-scale covariant diStribUtio%nsider the signal only in a sliding interval, we introduce a
belong to theaffine classof TSD’s. As in Cohen’s class, window function, in (26) to obtain ’

the Wigner distribution = P(®) is usually taken as the
central generating member of this class, with each affine TSB* (¢, f)

2 obtained via the 2-D affine correlation [3] | |

Q(t, f) = //OOO Wa(T,v) H|:f(7' — 1), %} dvdr  (25) N |:/$(7'/) RLFAR(—w)(r' — £)] e~ 2 A (=D d’/'/:| "

with II the kernel of2. The scalogram kernel is the Wigner X du. (27)

distribution of the analysis wavelet: I1;..;o = W, [3], [13]. .
4 ¢ ! v B [13] The dependence df on the analysis frequency guarantees

P®) affine covariance to time shifts and scale charlgBy.
I1l. PSEUDO AFFINE WIGNER DISTRIBUTIONS analogy to the pseudo Wigner distribution, we call these new

. . P . JSD’s pseudo affine Wigner distributions
The affine Wigner distributions (13) have great potential as , ; o
g (13) g P The pseudo affine Wigner distributions can be formulated

flexible tools for time-varying spectral analysis. They possess at fth let t f Introducing the band
number of desirable theoretical properties, including the abiliy erms of the wavelet transtorm. Introducing the bandpass

to match a large class of different signal types. Unfortunatelff2Velet functiony(r) = h(r) ¢'?77, we can reorder (27) as
their promise is offset by two major practical limitations. First, S0k .

the entire signal enters into the calculation of these TSD’s PRt 1) :f/“k(“)[/x(ﬂz/’ [f Ak () (T —t)]dT}

at every point(t, f) in the time—frequency plane, precluding

their on-line operation with long signals. Second, due to their X |:/.’17(7'/) P*[f A (=u)(7" = t)] d’/'/:| du
nonlinearity, interference components arise between each pair

of signal components, complicating their interpretation (recall _ px () D, Jt, A(w)f]

Fig. 1) [4], [5]. As a result, few affine Wigner distributions Ar(u) Mg (—u) ’

have been applied in practice (aside from in [14]). x DX[t, (=) f] du (28)

In this section, we attack these limitations by introduc-
ing a set of (smoothedpseudo affine Wigner distributionswith D,, the wavelet transform (12) computed with wavelet
[15]. These new TSD’s offer not only asymptotically thelhis generalized “matched filter” correlation of the wavelet
same properties as the affine Wigner distributions but al§@nsform with itself echoes the structure of (13) with the
support efficient on-line operation and suppress troublesofn@urier transform of the signa&l replaced by its wavelet trans-
interference components. Our derivation relies on the strofffm D-. It also parallels the expression (6) that holds for the
ana|ogy between time_frequency and time-scale ana|ysis gﬁlﬂg)rt—time Fourier transform and pseudo Wigner distribution.
is inspired by the pseudo Wigner distribution. Thus, we can identify the pseudo affine Wigner distribution as
one of the two fundamental bilinear TSD’s derived from the
wavelet transform:
) i i The scalogram results from squaring the wavelet trans-

) Rgcal] from Sec“?” II-A that we tha'” the p;eudp Wigner form; the pseudo affine Wigner distribution results from
d|§tr|but|o_n (5) _by introducing a wmdovy func_t|on into the a generalized self-correlation of the wavelet transform
Wigner distribution (3). An analogous windowing procedure across frequency.
leads to the pseudo affine Wigner distributions. In contrast to_. _ . _
the pseudo Wigner case, however, this windowing must beFlg. 3 illustrates the chusmg effect of the generalized self-
frequency-dependent to ensure that the resulting TSD remaj relation (28) on a time SI.'Ce of the wavelet transform.

0 compute the self-correlation at frequengy we scale

ffi ianf. A It, th hing in f irec- .
affine covarian®.As a result, the smoothing in frequency direc d warp Do (t, f) to the function Dut, Ax(u)f] and then

tion is proportional bandwidth, rather than constant-bandwidf ) . ; .
as in the pseudo Wigner distribution. compute the inner product overbetween this function and its

reversed twinD%[¢, Ax(—u)f]. In contrast with a simple affine

A. Derivation

6Rioul and Flandrin consider the same covariance requirements in their Suppressing tha,. (+«) factors ink in (27) yields a different distribution
definition of the affine pseudo Wigner distribution [3]. In this paper, wevith similar covariance properties. However, this formulation does not appear
generalize their definition to the entire class of affine Wigner distributions.to admit an efficient implementation.
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Fig. 3. Computation of the pseudo affine Wigner distribution from the wavelet transform, emphasizing the focusing effect of the generalized matched
correlation underlying (28). (a) Wavelet transform (real par)(¢, f) of the singularity (component C) from Fig. 1. (Note that the frequency axis runs from

top to bottom in this mesh plot.) (b) Pseudo affine Wigner distribuﬁé%) (t, f) of the same signal. Consider the computation (28) of a time ﬁf(%(fl )
of this distribution in the vicinity of the singularity. (c) Scaled and warped wavelet transfdgfin; , Ao (u) f] plotted versus: for f = 0.25, f = 0.15, and

f = 0.05. (d) Result of the generalized matched correlatla(ﬁ))(tl, f) compared with the corresponding time slice of the scalog@m(¢1, f)|2.

correlation, the function is not only scaled but also reshapdte smoothed pseudo affine Wigner distributiorfsee
before computing the inner product. Fig. 1(d)].
Even though the pseudo and smoothed pseudo affine Wigner
] . ] distributions are smoothed versions of the affine Wigner dis-
B. Time—Frequency Smoothing Interpretation tributions, they can still have resolution exceeding that of
The time windowing introduced in (27) acts as a prathe scalogram [recall Fig. 1(a)]. This resolution enhancement
portional bandwidth frequency smoothing that suppresses @empared with the scalogram is due precisely to the action
terference components oscillating in the frequency directionf. the generalized self-correlation in (29); rather than simply
Compare, for example, the pseudo Bertrand distribuf§h ~ squaring the wavelet transform, we match-filter it.
of Fig. 1(c) with the unitary Bertrand distributio®©) of _
Fig. 1(b). C. Implementation
To suppress interference terms oscillating in the time direc-The pseudo affine Wigner distributions can be interpreted as
tion, we must smooth in that direction [as in (7)] or windowsliding versions of the original affine Wigner distributions, and
the dual variable [as in (8)]. The introduction of a lowpasas a result, they are naturally suited for on-line operation with
function G in (28) limits the integration with respect to long signals. To construct a pseudo affine Wigner distribution,
(loosely speaking, the dual variable of the produf}, and we simply compute the wavelet transform of the signal and
thus performs proportional-bandwidth time smoothing of thiaen, at each time point, perform the generalized frequency
TSD. We call the resulting time-scale distributions correlation (28) or (29). The fast Mellin transform is a con-
venient tool for implementing this correlation efficiently [16],
[17]. The algorithm runs as follow’:

k) _ pi (1)
Pl‘ (t’ f) - / ( ) ) (u))\ (—u) D, [t’ Ak (u)f] 8Matlab code for computing the smoothed pseudo affine Wigner distribu-
k k tions is available from Rice University DSP home page at www.dsp.rice.edu
x DX[t, A\p(—u) f]du (29) and INRIA at www.syntim.inria.fr/fractales/software/TFTB/.
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1)

2)

3)

Compute the wavelet transfordd, (¢, f) of the signal the smoothed pseudo affine Wigner distributions to con-
using wavelety(7) = h(r) ™. Samples should be trol interference components through time—frequency
spaced uniformly in time and exponentially in frequency. smoothing. More generally, however, our approach al-
At each timet, for a range ofu, rescaleD,(t, f) to lows us to efficiently approximate all (unsmoothed)
D, [t, \(£u)f] using the Mellin transform [17], which affine Wigner distributions, even for unusual values of
maps scale changes to simple phase shifts. Since the the indexk for which the algorithm proposed in [17]
Mellin transform of a functionz(v) equals the Fourier does not apply directly. In the limit as the bandwidth
transform ofe?/2z(e), a fast Fourier transform (FFT) of the wavelets falls to zero, we haveP® —
applied to an exponentially spaced set of frequency  p{¥). Therefore, a pseudo affine Wigner distribution
samples ofD,.(¢, f) implements a fast Mellin transform. (28) computed using a narrowband wavelet will closely
At each timet, compute the inner product (28) or (29) approximate its corresponding affine Wigner distribu-
with respect tou. tion, including its marginal and extended covariance

Using a fast algorithm for the computation of the wavelet (18) properties. [In general, a (smoothed) pseudo affine
transform [17], [18], the computational cost of this procedure  Wigner distribution will not possess all possible theoret-

is O(MNlog M) for N time and M frequency samples, ical properties of the affine Wigner TSD’s; however, we
which is on the same order as the cost for the spectrogram, could constrain the choice of the wavelgtto preserve
pseudo Wigner distribution, and scalogram. certain of them.]

In approximating an affine Wigner distribution, our

D. Examples goal is not to suppress interference components but

1)

2)

3)

4)

rather to preservethem. Fig. 6 illustrates the close
agreement between the approximate affine Wigner dis-
tributions P~ and P{” and the theoretical loci of
the true distributions as determined by the geometric
construction rules of [4] and [5]. To obtain these TSD'’s,
we employed a narrowband wavelet@f= 130 in (28).

k = 2—Affine Pseudo Wigner Distribution:In this
case, (13) reduces to the ordinary Wigner distribution,
and (29) becomes the “affine smoothed pseudo Wigner
distribution” of Rioul and Flandrin [3].

k = 0—Pseudo Bertrand Distribution: In the particu-

lar case of the unitary?(®) distribution (20), the special
form for uo(w) cancels they/Ao(u)Ao(—u) factor in
(28), leaving us with a much simpler expressionflﬁP).

The result is the pseudo Bertrand distribution of [16].

In Fig. 1, we demonstrated the performance of this
new TSD on a synthetic test signal. In Fig. 4, we Like all affine Wigner distributions, the pseudo affine
plot the Wigner, Bertrand, scalogram, and smoothatfigner distributions belong to the affine class of TSD’s that,
pseudo Bertrand TSD’s of the echo-location chirp cis defined in (25), revolves around the Wigner distribution
the large brown baEptesicus FuscusThe approximate W = P(2). Unfortunately, this formalism becomes awkward
hyperbolic localization of the smoothed pseudo Bertranghen we try to derive an analytic form for the kerndl
distribution matches the chirping nature of the sigeorresponding to a pseudo affine Wigner distribution. In this
nal, whereas the proportional-bandwidth time—frequen®gction, we investigate an alternative canonical formulation
smoothing suppresses the interference components tlwaitthe affine class in which the kernels corresponding to the
swamp both the Wigner and Bertrand distributions. pseudo affine Wigner distributions have an easily identifiable,
k = —1—Pseudo Unterberger Distribution: Due to closed form.
their affine covariance properties, TSD’s have a unique For eachk € R, we will replace W in (25) with an
ability to analyze low frequencies with good frequencglternative, matched generator TS *) that provides a
resolution and high frequencies with good time resolwatural framework for the affine Wigner gistributiod%(’@
tion. The active Unterberger distribution, furthermoreand the pseudo affine Wigner distributiod¥*). With this
is time localized and preserves the scaling properties méw formalism, all affine class TSD’s can be written as
signal components [19], making it ideal for the study of
transients. The primary drawback of this bilinear TSD o0 *) v
is the existence of interference components between {2 (t: f) = // W (7, v) H[f(T_t)v ﬂ dvdr  (30)
transient events. 0

The pseudo Unterberger distribution smooths inter-, . i *)
ference components in the frequency direction whiiwith a different kernelI for each choice of generatdy'*/.
preserving the correct scaling structure across frequency.

In Fig. 5, we compare the performance of this new TSR, Affine Wigner Generators

to the pseudo Wigner TFD and scalogram on a machmeAny TSD that is continuously invertiblerdgular in the
fault signature.

k = 45—Approximate Affine Wigner Distributions:termmOlogy of [20]) can play the role of¥"* in (30).

. . . -~ ~'In particular, W) does not have to be unitary. For the
Up to this point, we have emphasized the ability o ffine Wigner distributions, Fourier transformation of (13)

IV. PsSeubDoO AFFINE WIGNER
DISTRIBUTIONS AND THE AFFINE CLASS

9 Assuming that the length of the wavelet at maximum dilation i®6f7).  followed by reparameterization using (15) and (17) leads to
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@) (b)

(c) (d)
Fig. 4. TSD’s of the echo-location chirp of the large brown Egtesicus FuscusHorizontal axis corresponds to time and vertical axis to frequency.
(a) Wigner distributionPﬁZ). (b) Unitary Bertrand distributiorPﬁO). (c) Scalogram D;|2. (d) Smoothed pseudo Bertrand distributiB_éO).

the inversion formula (forX as a function ofw) and correspond to the special chojeg(u) = (d/dw)éx(u) in
d (13)1° with this generator installed in (30), the kernel corre-
w 1 du (u) (x) fo sponding to the (smoothed) pseudo affine Wigner distribution
X" o) =7y / =\ P™ can be written in closed f
“(fo)  plw) PYEN) can be written in closed form as

with f, a constant such thak'(f,) # 0. This inverse is k() An(=w)

continuous, provided the ter@(w) in front of the integral A(v)] -, )\k( v) 2 (o
remains bounded from above and below, Witk ¢ < C(u) < x ¥ f)\k(u) v f)\k( ) H) dudy.
oo. The affine Wigner distributions thus provide a family of (33)

generators for the affine class.
In Appendix A, we single out the affine Wigner generators
most natural for studying the pseudo affine Wigner distrib®- Examples
tions. These generators take the form Each differentk € R yields a different generatof (¥)

*) . matched to the specific geometry of the affine Wigner distri-
W =1 [ XX (-]

; wy A&k (u) OWith g1y, (u) = (d/du)ég(u), the termC(u) in front of the integral in
27t fEg HE k ) g
x e r fetw) du du (32) (31) reduces to a constant.
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Fig. 5. Time-varying spectral representations in a machine fault monitoring application. (a) Five thousand samples of a time series acquired from an
accelerometer axially mounted on a main condensate pump rotating at 892 r/min. The sampling rate was 50 kHz. (b) Pseudo W@uec&rﬁmted

using a 1024-point sliding window. This Cohen’s class TFD is not scale covariant; hence, it cannot reveal both the low-frequency rotationats@mgonen

the high-frequency transients. (The horizontal axis corresponds to time and the vertical axis to normalized frequency in a logarithmic scalegréo) S

| Dy |2 computed using a Mexican hat wavelet. This affine class TSD is scale covariant but suffers from low resolution. (d) Pseudo Unterberger distribution

Pé D computed using the same Mexican hat wavelet (Ghg 1 ). This TSD localizes both the fundamental rotation frequency and the transient events.
(Data taken from the “NRad” test data set courtesy of J. Allen of NCCOSC and D. Lake of the Office of Naval Research.)

butions P*) and the pseudo affine Wigner distributioR"). permits us to write the scalogram as an affine correlation of
Examples include the following. two Wigner distributions [3], [13f
1) k. = 2—Wigner Distribution: Using po(u) = o0 v
(d/du)éx(u) = 1 — tanh®(u/2) in (13), we retrieve  |Dx(t, f)I? =/ Wa(T,v) Wu’)|:f(7__t)7?:| dvdr. (34)
the Wigner distribution (4) and the usual affine class 0
definition (25). The Wigner distribution is the soleThis formula generalizes to the generatd¥s*) of (32). To
unitary generator of the form (32) (see Appendix Bee this, note that settinG(u) = &(u) reduces (29) to the
for the proof). scalogram and (33) to
2) k = 0—Nonunitary Bertrand Distribution: Using ‘ )
po(w) = (dfdu)éo(u) = 1 in (13), we obtain a UMt /) =W, f)

(nonunitary) Bertrand distribution. _ .
3) & = —1—Active Unterberger Distribution: Using :f/)"“(v) A(=0) Y [fA ()] 7 [fAr(=0)]

por(u) = (d/du)§1(u) = cosh(u/2) in (13), x 2T ) gy, (35)

we encounter the active form of the Unterberger .

distribution. This TSD is the sole generator of the fornere, W (*) is thepassive fornj2], [12] of the generatobV *).

(32) that is time localized according to the definition ofAlthough the active form W) is nonunitary in general, it
[2] (see Appendix C for the proof). cooperates with its passive form to produce the isometry-like

The scalogram has a dlﬁere.nt r.epresentatlf)n In te.rms. of _eaChIn [21], J. and P. Bertrand also consider affine smoothing of the affine
generator. Recall that the unitarity of the Wigner distributiowigner distributions to obtain positive TSD's.
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Fig. 6. Accurate approximation of affine Wigner distributions using pseudo affine Wigner distributions. Horizontal axis corresponds to timiearakisert
to frequency. The test signalis a sinusoidal frequency modulatiarit) = exp[—i f;! cos(27 fmt)]. (@) Predicted locus of the true distributicﬂi_‘r’) as
determined using the geometric construction rules of [4] and [5]. (b) Approximate affine Wigner distrilENlich?r)l computed as in (28) using a narrowband
wavelet of @ = 130. (c) Predicted locus of the true distributidh,(,5). (d) Approximate affine Wigner distributioﬁ,ﬁm.

relation [2] implementations have limited their impact on time-varying
00 2 signal analysis. By overcoming these limitations, the pseudo
// WP, f) Wék)(t,f) df dt = ‘ /x(u)y*(u) du and smoothed pseudo affine Wigner distributions should
0 open up new application areas to these powerful tools. In
(36) particular, the flexible wavelet-based structure underlying

In this case, (30) simplifies to these new TSD’s allows a continuous transition in smooth-
- ing between affine Wigner distributions and scalograms.

\D.(t, )2 :// W (r,v) /W(,k)[f(f—t),z} dv dr Moreover, to tune the pseudo affine Wigner distributions
0 v f to the local characteristics of the signal, we can adapt the

(37) wavelet ¢ in the sliding algorithm using the techniques

of [22].

The introduction of alternative generators for the affine class
of TSD'’s simplifies the kernel formulation of the pseudo affine
Wigner distributions. In addition, the concept of alternative

Although the affine Wigner distributions have manygenerators could aid in the analysis and design of new affine
attractive properties, interference terms and lack of efficiedistributions matched to particular classes of signals.

which is a natural generalization of (34).

V. CONCLUSIONS
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APPENDIX A Solution of the differential equatiop} = & or, after
PSEUDO AFFINE WIGNER KERNELS simplification,
We will derive an affine Wigner generatd# (*) for use
in (30) that provides a closed-form expression for the kernel e (1) A (—u) = i[)\k(u) — (=) (45)
k) corresponding to the smoothed pseudo affine Wigner du
distribution P*),

ubject to the constraint (17) will characterize the set of affine
igner generators of the form (32) that are unitary.
By decomposing the functioky,(«) into the sum of its even

Plugging the frequency-domain formulation of the wavel
transform (12) into (29) followed by the change of variables

v = 60X (u) part e(u) and odd parb(u), we can rewrite (45) as
Y = 9)\k(—u) , (38)
with JacobianM = O (u) A (—u) e2(u) = o*(u) + 2io(u) (46)
(8, u) N du
leads to Ao and rewrite (17) as
(k) _ e K )‘k v )‘k —-v
o= [f[Gtmeo § 3R e(u) = ofu) = ¢~ 1) + o) @)
. < AR (W)
X XA (X A (o)l {f)\k(u)} or, equivalently, as
l/)‘k(_v) —i2wvtsy (v) ”
% ‘P{ f)\k(—u)} ¢ A dv du.(39) o(w) = e(u) tanh g (48)

Now, using the identity
‘ If we substitute (48) into (46) and solve fofu), we obtain
XA ()] X wAn(—v)] = /ngk)(f, v) ™) g (40)

20\ _ 2(UN | 2 i
for the natural generator (32), we obtain (41), shown at the 0”(u) = tanh (2) [O (u) + 2du0(“) (49)
bottom of the page, which is of the form (30) with an affine
transformed version of the kernel (33) in square brackéfs. or, equivalently

APPENDIX B S ot Y 1
UNITARY GENERATORS d_{ ( )} _ 22 — (50)
u | o(u %
We will show that the only generator of the form (32) that 2tanh”

is unitary is the usual Wigner distributidff = P from (4).
In a unitary affine Wigner distribution, the functign, takes Using the change of variables = tanh(x/2), the unique
on the special form [2] solution of this equation is

: d 12
p¥ (u) = {)\k(u) Ar(—u) @[)\k(u) - )\k(—u)]} . (42) o(u) = tanhg (51)
On the other hand, affine Wigner generators of the form (32},-p, implies, from (48), that(u) = 1.

are characterized by Thus, any affine Wigner distribution that is both unitary and

d a generator of the form (32) must be based ok dunction
1 () = 7 (W) (43)  of the form
d
= D) = (=)l (44) Ao(u) = 1+ tanh g (52)
In both cases, the functioky, must also possess the symmetry
property (17). which is true only fork = 2 (Wigner distribution). O

B0 = [T Wi | % et 2

A () Ar(—u)

v Ak(v)} {V Ak(—”)} 27(v) ) F (T—)x (v)
x Ul = U*| — T T Y dudu | dv d 41
[f (@)Y LT M=) ' )
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APPENDIX C
TIME-LOCALIZED GENERATORS

Using methods similar to those in Appendix B, we will

demonstrate that the only generator of the form (32) that [E%]

time localized is the active Unterberger distributigt{—1)
with 121 (1) = cosh(u/2) [2], [12]. In a time-localized affine
Wigner distribution, the functiop,;, takes on the special form
(2], [17]

() = D) M- 2

k() = A(—u)].  (53)

Solution of the differential equationt = & or, after
simplification,

Ak(u) Ap(—u) =1 (54)

subject to (17) will characterize the set of affine Wigner
distributions that are simultaneously time localized and natural
generators. Imposing (17) yields the unique solution to (54)2y)

Me(w) = e/? (55)
which holds only fork = —1 (active form of the Unterberger [22]
distribution). |
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