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On Joint Distributions for Arbitrary Variables

Richard G. Baraniuk and Leon Cohen

Abstract—There has been considerable interest in the problem
of joint representations for variables other than time and fre-
quency. In this letter, we compare the methods of Cohen and of
Baraniuk and Jones and show their equivalence for variables that
have the same commutator as time and frequency. In addition,
we report the following very general result: All pairs of variables
connected by a unitary transformation have joint distributions
that are functionally equivalent.

I. INTRODUCTION AND CONCLUSION

ARGENAU and Hill [1] were perhaps the first to

attempt to extend the idea of the Wigner distribution
to physical variables other than time and frequency (position
and momentum in quantum mechanics), and since that time,
a number of special cases have been considered. Recently
Cohen [2]-[4] and Baraniuk and Jones {51, [6] have presented
methods for obtaining joint representations for arbitrary phys-
ical quantities; both are based on associating variables with
operators. In this note, we compare these two approaches and
demonstrate their equivalence when the two new variables
correspond to operators that are related to the time and
frequency operators by a unitary transformation. In addition,
we generalize this result by showing that all joint distributions
whose variables are related by a unitary transformation have
the same functional form. The importance of this result is
that it shows how pairs of variables can be grouped into
classes whose joint distributions are functionally equivalent
and, therefore, share equivalent properties. We first briefly
describe the two approaches.

Cohen Method: The procedure of Cohen [2]~[4], which is
based on the methods of Cohen [7] and Scully and Cohen
[8], generalizes the standard relation between a characteristic
function and its corresponding density. Suppose we have two
variables a and b associated with the Hermitian operators A
and B, respectively. We seek a joint distribution P(a,b) that
indicates the energy content of signals in terms of both @ and
b simultaneously.

The characteristic function for a and b is given by

M(a, B) = (e?*+iFb) = // eI*e+iPbp(q.b) da db. (1)
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Hence, the distribution is obtained from M(a, 8) by Fourier
inversion

P@t) = 7 [[ M), dadp. @

The characteristic function is an average (the average of
e?*+iBb) and can be. computed directly from the signal by

. averaging the characteristic function operator M(q, 3) by way

of
M(a, 8) = (M(a, B)) = / S (OM(a, B)s(t) dt.  (3)

These equations can be combined, as in the time frequency
case [7], to yield the triple integral form

P(a,b) = 4—17;2- /// s* () M(a, B)s(t)e=124=3% 4t ey dp.

C))
The unitary characteristic function operator M(c, 8) is
formed by combining exponentiated versions of the Hermitian
operators A and B associated with the variables a and b. As
in the time-frequency case, there are many possibilities for
orderings of e’*4 and €/%5 in M(a, 8). The way to handle
the possible orderings is to choose one particular ordering and
introduce a kernel function ¢(a, () to generate the remaining
ones [2]-{4], [7]. This leads to a general class of distributions
for the variables a and b. Here, we choose the symmetrical
ordering

M(a, B) = ¢(a, f)e?>A+3PE ®)
giving

M(a,B) = #(a, ﬁ)(eiaA+jﬁB> (©6)

for the generalized characteristic function. The general class
of distributions for the variables a and b is thus given by

P(a) = g3 [ dlasp)(eroarsoB)einasit 4o 4g )
= 377 [[[#a)5" ) eoasioe
x s(t)e™7*2=3% gt do dg. 8)
The marginal distributions
/ P(a,b)db = |F(a)|?, / P(a,b)da = |[FB)? (9)

correspond to the true densities of a and b, provided the kernel
satisfies ¢(0, 8) = ¢(a,0) = 1. These densities are obtained
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by projecting the signal onto the eigenfunctions u(a,t) and
v(b,t) of the Hermitian operators A and B

F(a) = /s(t)u*(a, tydt, F(b)= /s(t)'u"‘(b, t) dt. (10)

We point out that densities can be computed directly from the
signal, thereby circumventing the eigenfunctions, using

IF(a)f = .21? / Ma(8),e~7%d8,

M, (0) = / 8*(t)ef%4s(t) dt an

for a and a similar result for b. The equivalence of the two
methods for obtaining densities was shown by Margenau and
Cohen in [9]. The structural similarity between (11), which
apply to one variable, and (2) and (3), which apply to two
variables, should be noted, because these results generalize to
an arbitrary number of variables [2]-[4].

Baraniuk and Jones Method: As derived in [5] and [6],
this approach begins with the generalized time-frequency
representation [7]

Oty ) = 1 /// 5* (w)eIaT+iBW

x s(u)p(a, B)e 7" Pedy da df  (12)
which is obtained from Cohen’s general method in (8) by
employing the Hermitian time and frequency operators 7
and W. The actions of 7 and W in the time domain are
Ts(t) = ts(t) and Ws(t) ~js(t). The time and
frequency marginals

/ Colt,w)dw = Js(2)]? / Colt,w) dt = |S@) (13)

where S(w) denotes the Fourier transform of s(t), result from
projecting the signal onto the eigenfunctions of 7 and W,
respectively.

Substituting a unitarily transformed signal Us(¢) for s(t) in
(12) and replacing t,w by a’, b’ yield a new distribution

Cus(a',b') = *///Lls*(u)e"”“"w

x Us(u)p(a, B)e™7% 38 gy da dB (1)
having
/ Cusla', )t = [Us(a')2,
[ et vy’ = s 1)

for marginals, where F is teh Fouirier transfom operator, and
FUs(b') is the Fourier transform of the transformed signal.
Note that in this procedure, we do not have complete control
over both variables o' and ' because the unitary operator I
provides only a single degree of freedom.

II. COMPARISON

We now show that the Baraniuk and Jones procedure can
be used to obtain the same joint distributions as the Cohen
procedure when the desired variables a and b are related to
the time and frequency operators 7 and W by a unitary
transformation U{/; that is, when

A=U'TU, B=uU'wu, 16)

where T denotes the adjoint. For a unitary transformation, recall
that Ut = U1, Before we start, it is important to observe
that the commutator of A and B must equal j, which is the

commutator of 7 and W. This follows from
[AB =UT WU =U""ju = ;. (17)

Hence, since the commutator [A, B] commutes with both .4
and B, we have that {2], [4]

IXA+IBB _ jaB/2,iBA,iBB (18)
In addition, note that, in general, we have
4 =u~le Ty, &P =y-1eMy,  (19)

We now start with the Cohen procedure and calculate the
characteristic function for ¢ and b from (6) .

M(a,B) = d)(a,ﬂ)/s;(t)ej“"‘*'jﬂBs(t)dt 20)

= ¢(a, ﬂ)/s"‘(t)ej"’ﬂ/zej‘“‘ejws(t)dt‘(21)
= 8(a.0) [ 5 Q0 U Ty)
x (U1ePVU) s(t)dt (22)
, = é(a, B) / Us* () THMYsydt.  (23)

The final step follows from (18) and the definition of the ad-
joint. Substituting this result into (2) to obtain the distribution,

we find
P(a,b) = Z7lr_2 / / / Us* (£)eTT+iPWys(1)

X ¢(a, B)e"I**~ifdy dB dt

which is identical to (14) except for the notation of the
variables of integration. This demonstrates the equivalence of
the two procedures when (16) holds.

(24)

IIl. EXAMPLE

As an example, consider the two operators A = logt and
(T W + WT) representing log time and scale, respec-
tlvely While joint distributions of .4 and B could be derived
using the general Cohen approach, these operators satisfy
[A,B] = j [2]-[4] and are therefore a valid operator pair
for the simpler Baraniuk and Jones procedure.! In particular,
'One of us (L.C.) would like to express his appreciation to Drs. A.
Papandreou and G. F. Boudreaux-Bartels for an insightful conversation
regarding this example and for pointing out that the joint distributions for
these variables may be obtained by the Cohen procedure. Such distributions
have been considered in [2]-[6], [10)-[14]. We also point out that log time

and log frequency operators have been studied by a number of authors [2)-[6],
(10].
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utilizing the unitary transformation

log t)

Us(t) = e/ 2s(e?), U s(t =L, t>0
(t) (¢') (t) 7

in (16) yields the operators A = logt and B = %(T W +
WT), respectively. The marginals of the distribution Cy,(a, b)
from (14), computed by employing this { in (15), are given by

25

/ P(a,b)db = [Us(a)[ = e[s(c?)|? 26)
and
jbt 2 iblog u U ?
- —-J - —Jologu _
/P(a, b)da = U‘Us(t)e dt| = ‘/s(u)e 7
27

Equation (27) corresponds to the marginal for scale given in
[2]-{4] and [11]-[14].

IV. GENERALIZATION

Suppose now that we have two totally arbitrary quantities a
and b represented by two operators .A and B and that we have
obtained their joint distribution P, (a, b) by way of the Cohen
procedure. Suppose, also, that we have two new quantities a’
and b’ represented by the operators A’ and B’ and wish to
obtain their joint distribution P,y (a’,b’). This can be simply
done if the two new operators are related to the old operators
via a unitary transformation of the form

A =utAu, B =u'Bu. (28)

We note that in such a case, the commutator relations are
left invariant; that is, if [A,B] = C, then [4’,B'] = C’ with
¢ = utcu.

To obtain the distribution P,y (a’,b’), we need merely
transform the signal by the unitary transformation I before
computing Poy(a,b). To see that this is the case, first recall
that the distribution P,y (a’,b’) is given by

, 1 3
Pav(@ ) = 75 [[[ O Mav(a,6)
x s(t)e™9°¢ "3 4t do dB.  (29)

However, the characteristic function operators M, and M,
are related by

Moy (e, B) = U Map(a, B) U. (30)
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Substituting (30) into (29), we obtain

Py (a',b) = ?41? ///s*(t) U Map(a, B) U)

x s(t)e™7¢ 3P 4t do dB @30
1 *
=iz // Us*(t)Mgp(a, BIU
x s(t)e™%' =38 gt doy dp (32

which is precisely the distribution Pyp(a,b) computed using
the preprocessed signal Us(t).
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