
RICE UNIVERSITY

A Computational Model of Routine Procedural Memory

by

Franklin Patrick Tamborello, II

A THESIS SUBMITTED
IN PARTIAL FULFILLMENT OF THE
REQUIREMENTS FOR THE DEGREE

Doctor of Philosophy

Michael D. Byrne, Associate Professor,
Psychology and Computer Science

David M. Lane, Associate Professor,
Psychology, Statistics, and Management

Philip T. Kortum, Professor in the Practice,
Psychology

James L. Dannemiller, Lynette S. Autry Professor
Psychology

H. Albert Napier, Professor
Management and Psychology

HOUSTON, TEXAS
MAY 2009

APPROVED, THESIS COMMITTEE:

ABSTRACT

A Computational Model of Routine Procedural Memory

by

Franklin Patrick Tamborello, II

Cooper and Shallice (2000) implemented a computational version of the Norman and

Shallice’s (1986) Contention Scheduling Model (CSM). The CSM is a hierarchically

organized network of action schemas and goals. Botvinick and Plaut (2004) instead took

a connectionist approach to modeling routine procedural behavior. They argued in favor

of holistic, distributed representation of learned step co-occurrence associations. Two

experiments found that people can adapt routine procedural behavior to changing

circumstances quite readily and that other factors besides statistical co-occurrence can

have influence on action selection. A CSM-inspired ACT-R model of the two experiments

is the first to postdict differential error rates across multiple between-subjects conditions

and trial types. Results from the behavioral and modeling studies favor a CSM-like

theory of human routine procedural memory that uses discrete, hierarchically-organized

goal and action representations that are adaptable to new but similar procedures.

ACKNOWLEDGMENTS

I wish to acknowledge my advisor, Mike Byrne, for all his mentoring not only during

my dissertation project, but throughout all my years as a graduate student. Thank you,

Carissa Chang and Adam Purtee for your assistance with data collection. Thank you also

to Rick Cooper and Jay McClelland for your helpful comments. Thank you, Lynsey, my

wife, Mom, Dad, Angy, and Melissa, my family, and to my friends for your patience,

moral support, and love. I could not have done it without you all.

This work was funded by Office of Naval Research grants #N00014-03-1-0094 and

#N00014-06-1-0056. The views and conclusions expressed are those of the author and

should not be interpreted as representing the official policies or endorsements, either

expressed or implied, of the ONR, the U.S. government, or any other organization.

TABLE OF CONTENTS

1. Introduction
 9

1.1. The Contention Scheduling Theory of Human Action Selection
 11

1.1.1. Modeling Human Error in Contention Scheduling
 16

1.1.1.1. Capture Errors
 17

1.1.1.2. Omission and Anticipatory Errors
 17

1.1.1.3. Perseverative Errors
 18

1.1.1.4. Object Substitution Errors
 18

1.2. A Recurrent Connectionist Approach to Selection of Routine Sequential Action

 18

1.2.1. Modeling Human Error in a Simple Recurrent Connectionist Network
 22

1.2.1.1. Capture Errors
 23

1.2.1.2. Omission and Anticipatory Errors
 24

1.2.1.3. Perseverative Errors
 24

1.2.1.4. Object Substitution Errors
 24

1.3. Recent Developments in the Debate Over Schema versus PDP Representation of
Routine Action Selection
 25

1.4. Other Theories of Action Selection
 26

1.5. Recent Empirical Findings
 33

2. Behavioral Studies
 41

2.1. Experiment 1
 43

2.1.1. Introduction
 43

2.1.2. Method
 43

2.1.2.1. Participants
 44

2.1.2.2. Design
 44

2.1.2.3. Materials
 44

2.1.2.4. Procedure
 49

2.1.2.4.1. Training Session
 51

2.1.2.4.2. Testing Session
 52

2.1.3. Experiment 1 Results
 55

2.1.4. Experiment 1 Discussion
 59

2.2. Experiment 2
 61

2.2.1 Introduction
 61

2.2.2. Method
 63

2.2.2.1. Design
 64

2.2.2.2. Materials
 65

2.2.2.2.1. Transporter Task
 66

2.2.2.2.2. Jammer Task
 68

2.2.2.3. Procedure
 69

2.2.2.3.1. Training Session
 69

2.2.2.3.2. Testing Session
 69

2.2.3. Experiment 2 Results
 71

2.2.4. Experiment 2 Discussion
 80

2.3. Behavioral Studies Discussion
 84

3. AN ACT-R model inspired by the contention scheduling model
 86

3.1. ACT-R
 86

3.2. Overview of an ACT-R Model of the Star Trek Tasks
 88

3.3. ACT-R Model Methods
 92

3.3.1. Introduction
 92

3.3.2. Influences of the Contention Scheduling Model
 93

v

3.3.3. Implementation of a Cognitive Miser and Handling Procedure Change
 94

3.3.4. Error Generation and Recovery
 95

3.3.4.1 Error Generation
 96

3.3.4.2. Error Recovery
 99

3.3.4.3. Error Recovery Strategy Choice
 101

3.4. ACT-R Model Results
 102

3.5. ACT-R Model Discussion
 109

3.5.1 Summary
 109

3.5.2. Comparison with the SRN Model
 112

4. General Discussion
 113

4.1. Unresolved Issues
 118

4.2. Future Work
 120

5. References
 122

6. Appendix A: LSA cosines for Phaser control labels
 127

7. Appendix b: Subject Instructions
 131

7.1. Aural Instructions, Day 1
 131

7.2. Aural Instructions, Day 2
 131

7.3. Written Instructions, Day 2
 131

7.4. Written Instructions, Day 2, Change Onset Instructions
 132

8. Appendix c: Additional methods detail for the behavioral study
 134

8.1. Main Control
 134

8.2. Additional Phaser Detail
 136

8.3. The Navigation Task
 137

8.4 Additional Transporter Task Detail
 138

9. Appendix D: Experimenter Script
 140

vi

X84 Experimenter Script
 140

Starting the Day
 140

Subject Arrival
 140

Day 1
 140

Day 2
 141

Finishing up the Day
 141

Other Things to Know
 141

10. Appendix E: Additional Detail Regarding Shared Task representations and Handling
of Task Procedure Change
 142

11. Appendix F: Model Parameter Values
 145

vii

LIST OF TABLES

Table 1. Tasks, Manipulations, and Major Findings from Unpublished Star Trek
Procedure Experiment 30

Table 2. Phaser Subtasks and Steps 41

Table 3. Transporter Subtasks and Steps 59

Table 4. Transporter and Jammer Subtask Order Execution Frequencies 72

Table 5. Experiment Conditions and Model Runs 97

Table A1. Control Label LSA Cosines for the Semantically-Related Conditions,
Within-Subtasks 119

Table A2. Control Label LSA Cosines for the Semantically-Related Conditions,
Between-Subtasks 120

Table A3. Control Label LSA Cosines for the Semantic Control Condition,
Within-Subtasks 121

Table A4. Control Label LSA Cosines for the Semantic Control Condition,
Between-Subtasks. 122

Table A5. Model Global Parameter Values 137

Table A6. Model Chunk Parameter Values: Base Levels. 138

Table A7. Model Chunk Parameter Values: Strengths of Association. 139

Table A8. Model Chunk Parameter Values: Similarities 150

viii

1. INTRODUCTION

Humans regularly engage in complicated tasks composed of many steps. How do we

know which step to perform when its time comes? How are we so good at performing

these tasks quickly, and typically without error, once they have been learned and

routinized? Once a task has been learned and becomes routine, why do we still

occasionally fail in our performance? I intend to discuss several theories of human action

selection in the literature and how they account for normal performance and error. I will

include discussion of some of our own recent data and how it relates to the above issues.

Discussion of the relevant literature begins with the Norman and Shallice (1986)

contention scheduling model and its instantiation as a formal computational model by

Cooper and Shallice (2000). Next Botvinick and Plaut’s (2004) simple recurrent network

(SRN) computational model of action selection will offer a contrasting view of action

selection and task sequence representation. The literature review continues with other

theories concerned with action selection, namely GOMS and production system theories

of human cognition, using ACT-R as an example. Discussion will conclude with some

recent data from our own lab.

This dissertation’s aim will be to answer some questions concerning human

representation of routine action left unresolved by the literature. Are task memory

structures organized simply by their statistical properties, as the SRN claims, or might

some of the other cognitive and perceptual-motor process play a role in task

representation as well? What happens when the routine procedure changes? Why do

people err in routine procedures and how do they recover from those errors to finish the

task?

1

The dissertation includes two experiments and a computational model of each of

those experiments. The first experiment’s aim was to determine whether people might

delineate portions of a task by means other than learning which steps tend to occur

together and which do not. Such means may include semantic factors such as semantic

relatedness of step names. The second experiment was designed to delineate subtasks by

statistical co-occurrence, but then destroy one subtask grouping by re-ordering its steps.

The two computational model accounts in the literature, one a contention scheduling

model (CSM, Cooper & Shallice, 2000), the other a simple recurrent network (SRN,

Botvinick and Plaut, 2004), each embody a different approach to human routine

procedure representation. Whereas the CSM posits localist representations arranged into a

hierarchy mirroring the task, the SRN claims distributed, holistic representation. The

former is flexible in how old actions learned can transfer to new, similar tasks while the

latter uses a statistical learning process to delineate subsequences of actions that may

transfer.

Neither model specifies exactly how it performs many of the ancillary cognitive

functions that go into producing actions, such as visual perception, recollection of facts,

or manipulating the environment. The CSM, however, does at least specify how it may

interact with other such cognitive systems to produce a wide range of human behavior.

The SRN makes little effort at cognitive integration. As it is likely that other cognitive

factors, like visual perception, have some role to play in human action production, it is

desirable to instantiate a theory of action selection within a framework that can support

those other cognitive processes. Therefore, since the CSM is amenable to working with a

2

generalized cognitive framework it will be mated to ACT-R so that interaction with other

cognitive, perceptual, and motor processes may be examined together.

1.1. The Contention Scheduling Theory of Human Action Selection

Norman and Shallice (1986) put forward their contention scheduling model of skilled

behavior as a symbolic interactive activation network. CSM claimed that people represent

actions as schemas, which are associated representations of: trigger conditions, the

actions themselves, how to perform the actions, any sub-schemas for any sub-steps of the

procedure, and completion conditions. Norman and Shallice use the example of driving a

car to illustrate schema interaction:

…when the source schema for a task such as driving an automobile has been

selected, all its component schemas become activated, including schemas for such

acts as steering, stopping, accelerating, slowing, overtaking, and turning. Each of

these component schemas in turn acts as a source schema, activating its own

component schemas (braking, changing gear, signaling, and so on). (p. 6)

Together these representations form a strand of autonomous and self-sufficient

processing structures, a “horizontal thread,” that can generally carry out a well-learned

task without need for attentional intervention (see Figure 1). While the component

schemas might specify actions at an intermediate level (e.g., “change from second gear to

third gear”), they leave the details associated with the lower-level actions entailed by the

intermediate actions (e.g., “reach for gear lever”) to other psychological processing

structures, such as manual motor skills.

3

Scheduling of action, and thus selecting from competing, similar, schemas is handled

by contention scheduling. The sets of potential source schemas compete with one another

in the determination of their activation value, then selection takes place on the basis of

activation value alone. Competition is effected through lateral activation and inhibition

among activated schemas. Importantly, the contention scheduling theory of action

selection posits that “attention” is just another source of schema activation or inhibition

originating in higher-order cognitive processes. These processes are involved in things

like motivation and directed, effortful types of cognition like problem solving and

selection of non-routine actions. Attention is not inherent to routine action selection. Nor

is attention required to monitor actions in progress, but it can influence action selection

by being a source of activation and inhibition input into the contention scheduling

process from the Supervisory Attention System (SAS) – and that is its sole means of

influencing the action selection process. Activation and inhibition from the SAS thus

forms a “vertical thread” of influence tied to all schemas in the contention scheduling

system. Thus the combination of horizontal and vertical threads enables a major feature

of Norman and Shallice’s contention scheduling theory: two levels of control, deliberate

conscious control and automatic contention scheduling (Figure 2).

SENSORY-

PERCEPTUAL

STRUCTURES

Sensory

Information
TRIGGER

DATA BASE

Component Schemas

PSYCHOLOGICAL

PROCESSING

STRUCTURES

External &

Internal

Actions

Figure 1. Horizontal thread from Norman & Shallice’s (1986) contention scheduling model of human action selection.

4

This feature is important for a number of reasons, one being that deliberate conscious

control is often too slow to allow for the speed of many of our skilled behaviors.

Additionally, trigger conditions can sometimes overwhelm influences from the SAS, as in

the Stroop task. Perhaps most importantly, Norman and Shallice argue, is that certain

types of errors seem to indicate that deliberate conscious control is not always required

for action. In particular, “capture errors” occur when a person begins one task, and

through inattention and/or distraction switches, before completion of the original task, to

a new task that is at least as familiar as the original task. Reason and Mycielska (1982)

documented an example of a capture error in a diary study they conducted. When passing

SCHEMAS

SENSORY-

PERCEPTUAL

STRUCTURES

Sensory

Information
TRIGGER

DATA

BASE

PSYCHOLOGICAL

PROCESSING

STRUCTURES

External &

Internal

Actions

VERTICAL THREADSHORIZONTAL

PROCESSING THREADS

Motivational

influence on

activation

Attentional resources

add to or decrease

activation values

Figure 2. The overall system: Vertical and horizontal threads. When attention to particular tasks is required, vertical
thread activation comes into play. Attention operates upon schemas only through manipulation of activation values,
increasing the values for desired schemas, decreasing (inhibiting) the values for undesired ones. Motivational variables
are assumed to play a similar role in the control of activation, but working over longer time periods. To emphasize that
several tasks are usually active, with the individual components of each task either being simultaneous or overlapping
in time, this figure shows five different horizontal threads. Some means of selecting the individual schemas at
appropriate times while providing some form of conflict resolution becomes necessary. The interactions among the
various horizontal threads needed for this purpose are indicated by the lines that interconnect schemas from different
threads.

5

through his back porch on the way to get his car out, a subject stopped to put on his

Wellington boots and gardening jacket as if to work in the garden. The new task captures

the action selection of the person. Norman and Shallice argue that because attention, as

far as action selection is concerned, is just another source of activation for contention

scheduling, if it falls off at the wrong moment, activation from other sources select the

wrong schema. According to Norman and Shallice, the Reason and Mycielska example

reiterates the important point that the SAS is a separate system from the contention

scheduling system that it oversees.

Cooper and Shallice (2000) instantiated the contention scheduling theory of control of

routine actions as a computational cognitive model. They identified three levels of action

at which humans operate: The lower level is mainly composed of the biomechanics of

movements and the physical properties of targets, such as reaching and grasping. The

intermediate level is composed of collections of lower-level actions, the actions at this

level are completely specified, and they are specified to accomplish one and only one

goal, such as making a cup of coffee. The higher level is composed of scripts and

“memory organization packets” – typically groups of subgoals capable of being paused,

interrupted, and resumed, to carry out some routine procedure. Higher levels of action

control might direct activities such as going to a restaurant or visiting a doctor’s office. It

is at the intermediate level of action that Cooper and Shallice aimed their instantiation of

the contention scheduling theory of routine action selection.

Cooper and Shallice’s (2000) goal was twofold: first, to demonstrate the contention

scheduling’s viability as a theory of action selection in neurologically-intact individuals,

and second, to further validate it as a theory of human action selection in routine tasks by

6

lesioning it and comparing its output to the behavior of two types of action

disorganization syndrome patients reported by Schwartz et al. (1991, 1995, & 1998). The

task Cooper and Shallice modeled was the same preparation of a cup of instant coffee

observed by Schwartz et al.

The coffee preparation task is a relatively simple, seven-step procedure one might

follow in the preparation of a typical cup of instant coffee. Cooper and Shallice (2000)

conceptualized it as having a hierarchical structure with one superordinate goal (prepare

instant coffee), three subgoals (sugar into coffee, milk into coffee, and grinds into coffee),

and two equivalent, alternative methods for two of its subgoals (add sugar from packet/

bowl, add coffee from jar/packet).

For purposes of modeling, the hospital room environment in which Schwartz et al.’s

patients were observed while making coffee was abstracted in Cooper and Shallice’s

(2000) study to be an 8 x 4 grid representing just the tray upon which coffee-making

materials and implements would have been placed. Objects had features representing

contents (for packets and containers), state (open or closed), and position. Schema

selection is largely driven by the representation of the environment and, at the lower

action level, by ordering constraints that are specified as symbolic preconditions. For

example, if “add sugar” has been selected as the active subgoal, the only action possible,

given the described state of the environment, will be “pick up spoon.” Schemas that may

achieve this goal receive excitation from the environment – schemas specify arguments,

or what objects they may operate on or with (e.g., a spoon must be in hand in order to

stir). Once an object has been picked up (normally, a spoon), symbolic preconditions

prevent top-down excitation from immediately triggering inappropriate actions, such as

7

“put down.” Instead, environmental triggering biases selection toward “dip spoon,”

which is selected and then inhibited. Similar processes then lead to the selection and

inhibition of “empty spoon,” which fulfills the precondition of “put down,” and allows

top-down excitation to trigger that schema. The “add sugar” subgoal is then completed,

and the environment triggers another subgoal, perhaps “add milk.” Additionally, because

two schemas may potentially receive the same amount of total excitation, noise is added

to each schema’s activation to prevent ties and to lend some degree of stochasticity to the

model’s behavior.

1.1.1. Modeling Human Error in Contention Scheduling

The intermediate level of action in which Cooper and Shallice’s (2000) contention

scheduling model operates corresponds closely with the rule-based level of human

behavior identified in Rasmussen’s (1983, Rasmussen & Jensen, 1974) skill-rule-

knowledge hierarchy. The skill-rule-knowledge hierarchy categorizes human error

according to three levels of cognition at which the errors occur, as well as for

deconstructing task environments into components that fall into each level as a way to

grasp a priori factors that might induce human error (Reason, 1990). The skill-based

level of human performance encompasses very low-level cognition such as stored

patterns of stimulus representations and physical motions. Errors at this level mainly stem

from variability of physical force, space, and temporal coordination. The rule-based level

consists of IF-THEN rules of actions to take when learned, pre-defined conditions are

met. Errors at the rule-based level include the misclassification of situations leading to the

application of the wrong rule or an incorrect recall of the action component of a rule.

Finally the knowledge-based level of cognition refers to the conscious, attention-directed

8

processes that often rely upon stored knowledge or the effortful transformation of

knowledge. Actions at this level must be planned on-line, using conscious analytical

processes. Errors at this level arise from resource limitations (“bounded rationality”) and

incomplete or incorrect knowledge.

James Reason greatly expanded upon the skill-rule-knowledge hierarchy in his 1990

book, Human Error. Reason begins with the notion that traits that enable fast and flexible

human cognition in most environments can become detrimental when misapplied. Reason

coined the term “cognitive balance sheet” as a metaphor for human cognitive strengths

being in some situations weaknesses. All systematic human error is a result of the

misapplication of some cognitive process at one of the three levels of the skill-rule-

knowledge hierarchy. The errors modeled by the CSM fall within the realm of lapses as

defined by Reason (1990), and the list below describes all the different error types that

the CSM accounts for.

1.1.1.1. Capture Errors

Capture errors can occur in CSM’s output when an environmental source of activation

becomes too strong relative to the top-down activation the schema receives. Capture

errors can also occur when schema competition is inappropriately resolved, such as when

self-activation in the schema network is very high.

1.1.1.2. Omission and Anticipatory Errors

Omission errors result when a schema simply is not activated past threshold, and

hence not selected. Schemas also might fail to be selected, or their execution prohibited,

by the inability to select appropriate object arguments or resources for the corresponding

actions. The former scenario may result in an entire subtask failing to be executed. The

9

latter scenario may result in an anticipation error, wherein an action that should have been

performed later in a sequence is attempted before its preconditions have been satisfied.

1.1.1.3. Perseverative Errors

Perseverative errors may arise if self activation is too great or if lateral inhibition is

insufficient. In these cases schemas fail to be deselected at the appropriate time. Apparent

perseveration may also arise in the case of a perseverative object substitution, such as if

the representation of an object remains active even after that object’s use.

1.1.1.4. Object Substitution Errors

Object, as well as place, substitution errors may arise when the schema’s correct

arguments do not have the most active representations when the schema is selected. This

may occur when, for example, noise is high and/or the excitation of object

representations by schemas is insufficient.

In summary, CSM proposes that different error types result from the actions of

different representational structures. These structures each produce errant behavior due to

the interactions of activation influences from task, environment, and top-down sources.

1.2. A Recurrent Connectionist Approach to Selection of Routine Sequential Action

Botvinick and Plaut (2004) take a radically different approach in their theory of

human action selection in routine sequences. Rather than proposing a symbolic

interactive activation network, Botvinick and Plaut argued for a parallel distributed

processing (PDP) approach to action sequence representation and selection. PDP

approaches are characterized by the distributed representation of information which

emerges out of the entire network of simple processes. This is in contrast to CSM’s

approach with its discrete, isolable structures that embody representations. Also

10

characteristic of PDP, detailed mechanisms must develop through learning, and because

of that they are tied to the structure of their task domains. In particular, Botvinick and

Plaut take issue with hierarchical models of human cognition, like Cooper and Shallice’s

(2000) CSM, saying it is unlikely that the brain is structured such that it mirrors its

environment. Instead, they advocate a general learning mechanism capable of learning

from samples of its environment and representing what it needs to know in networks of

simple structures, with behavior emerging from the interaction of network constituents.

Schemas and goals, they argue, are epiphenomenal.

The basic principle underlying PDP models is that the activation of each node is

based on excitation and inhibition received from nodes linked to it through weighted

connections (Botvinick and Plaut, 2004). Often the nodes are segregated into three layers,

with a first layer carrying a pattern of activation representing some input to the system.

Activation propagates from this input layer through an internal or hidden layer, which

transforms the input, sending a pattern of activation to an output layer whose nodes

together represent the system’s response to the input. A network is “recurrent” when

loops or circuits can be traced through its set of connections. Recurrency gives the

network a representation which reflects task demands in the context of prior internal

states (Elman, 1990). In the simple recurrent network (SRN), every hidden node is

connected to all nodes in both the input and output layers. Additionally, in Botvinick and

Plaut’s SRN every unit in the hidden layer was connected to every other unit in the

hidden layer (see the diagram depicted in Figure 3). A critical aspect of recurrent

connectivity is that it allows information to be preserved and transformed across time.

11

Each step of processing carries information about the state of the system at the previous

time step, thus the system is sensitive to temporal context.

Botvinick and Plaut (2004) trace their assumptions concerning task structure back to

Lashley (1951). In the early 1950’s, researchers often viewed sequential behavior and

tasks as having a strictly linear structure (Botvinick & Plaut, 2004). Lashley rejected this

notion and claimed that tasks and behaviors that perform those tasks usually have some

degree of hierarchical structure, since identical and nearly-identical behaviors are often

performed in different contexts to perform the same or nearly-same tasks. Any cognitive

representations of the tasks might not need to assume a hierarchical structure themselves,

but they must be able to account for task context. A model of human action selection,

therefore, does not necessarily need to mirror a task’s structure in its own structure – the

two structures are separate. Indeed, Botvinick and Plaut reject the notion that a cognitive

representation’s structure must mirror the structure of the thing it represents.

Botvinick and Plaut echo Lashley’s sentiment that some actions appear in multiple

contexts (e.g., stirring sugar or honey into tea, stirring sugar or cream into coffee: stirring

is essentially the same). The problem with associationist accounts is that there is no

forms of selection: Which action? and Which object to act upon?”

Because computational models of action have often dealt with

tasks that do not involve direct physical action on objects (e.g.,

language tasks), they have typically focused only on the first of

these two forms of selection. Thus, a central question facing

models of routine naturalistic action is how objects are identified

as targets for action.

One promising hypothesis in this regard is that targets for action

are specified indexically. That is, actions are directed toward

whatever object is currently at the system’s focus of orientation,

for which orientation can mean the point of visual fixation or, more

generally, the focus of attention. This strategy, otherwise known as

a “deictic” (Agre & Chapman, 1987; Ballard, Hayhoe, Pook, &

Rao, 1997) or “do-it-where-I’m-looking” (Ballard, Hayhoe, Li, &

Whitehead, 1992) strategy, has seen wide application in engineer-

ing and robotics (McCallum, 1996; Whitehead & Ballard, 1990).

More important, it has been proposed as a model for how objects

are selected as targets for action in human behavior (Agre &

Chapman, 1987; Ballard et al., 1997, see also Kosslyn, 1994;

Pylyshyn, 1989; Ullman, 1984).

The three-layer recurrent network architecture described earlier

lends itself naturally to the use of indexical representation. One

need only assume that the input layer, now interpreted as carrying

a representation of the perceived environment, conveys informa-

tion about which object is currently the focus of attention. Units

selected in the model’s output layer, now understood as represent-

ing actions, can be interpreted as directed toward that object. One

potential implementation of this approach is diagrammed in Fig-

ure 3. Here, the input layer contains a segment labeled fixated

object, which specifies the visual features of the object currently at

the focus of visual attention. The units in the output layer corre-

spond to actions to be directed toward this object.

Some actions involve objects not only as targets but also as

instruments or tools. Again following previous deictic models

(e.g., Ballard et al., 1992), we assume that this role is assigned to

whatever object the agent currently has in hand. Accordingly, the

input layer in Figure 3 includes a second portion labeled held

object, which specifies the features of this object. Just as the

fixated object is interpreted as the target for action, the held object

(if any) is interpreted as the implement to be used.

Because, within this framework, actions are directed at whatever

object is currently the focus of attention, selecting a new target for

action necessarily involves shifting that focus to a different object.

To this end, computational models using indexical representations

typically involve not only manipulative actions (actions that in-

volve transformation of the environment) but also perceptual ac-

tions, which serve to reorient to the system toward a new object

(see Whitehead & Ballard, 1990). This can be understood as either

a physical reorientation, such as an ocular saccade, or a covert

change of focus accomplished through attentional adjustments.

Units representing such perceptual actions can be incorporated into

the output layer of the architecture diagrammed in Figure 3, with

each unit representing an action such as “fixate the spoon.”

Given this framework, sequential action on objects takes the

form of a rough alternation between perceptual actions, which

orient the system toward a target object, and manipulative actions,

during which the object is acted on. Evidence for such an alterna-

tion in human behavior has been provided by several studies of

hand–eye coordination (Ballard et al., 1992; Hayhoe, 2000; Land,

Mennie, & Rusted, 1998).

Implementing the Perception–Action Loop

An important aspect of naturalistic sequential action is that each

movement, by altering the environment, can impact the perceptual

input the system receives next. This can be captured in a model by

interposing a functional representation of the environment between

the model’s outputs and its subsequent inputs. The implementation

diagrammed in Figure 3 incorporates such a simulated workspace.

This maintains a representation of the state of various objects in

the environment, updates this in response to each action, and if

appropriate, yields a new input pattern to the layers representing

the objects currently fixated and held.

Modeling Task Acquisition

The focus of the present research is on routine behavior. As

such, we are more concerned with the outcome of learning than

with the learning process itself. Nevertheless, a central claim of the

present account is that experience plays a critical role in shaping

the representations and mechanisms that support sequential behav-

ior. Thus, the issue of learning provides an important part of the

background for the account.

In human behavior, the acquisition of sequential routines can

occur by a variety of means: explicit instruction, trial and error,

problem-solving methods, and so on. Two methods that appear to

be particularly important in everyday life are learning through

prediction and learning with scaffolding. As characterized by

Schank (1982), much of our knowledge about action sequences is

gained through a process of continual prediction making; learning

occurs when our predictions about actions and events turn out to be

erroneous. One instance of such prediction-based learning would

be learning through observation, during which the learner follows

the performance of an individual already familiar with the task and

attempts to predict his or her actions at every step. Scaffolding

Figure 3. Architecture of the overall model. Open arrows indicate that

every unit in the sending layer is connected to every unit in the receiving

layer. (See text for details, including the number of units included in each

layer.) From “Representing Task Context: Proposals Based on a Connec-

tionist Model of Action,” by M. Botvinick and D. C. Plaut, 2002, Psycho-

logical Research, 66, p. 300. Copyright 2002 by Springer. Adapted with

permission.

400 BOTVINICK AND PLAUT

Figure 3. Architecture of the overall SRN model from Botvinick & Plaut (2004). Open arrows indicate that every unit
in the sending layer is connected to every unit in the receiving layer.

12

accounting for context and the selection of one action in multiple contexts. Clearly many

tasks have a hierarchical or quasi-hierarchical structure that capture some measure of task

context – the appearance of one subtask in many supertasks. The problem then becomes

one of how to select a task appropriate to some representation of a context. However,

Botvinick and Plaut are suspicious of models such as Cooper and Shallice’s wherein

mental representations mirror task structures. They argued that task structure and context

should be captured in a distributed representation by a generalized learning mechanism.

Botvinick and Plaut (2004) applied their SRN model to the same coffee preparation

task used by Cooper and Shallice (2000). In Botvinick and Plaut’s (2004) model, each

node in the input layer corresponded to each object present on the breakfast tray.

Additionally, they experimented with having their model prepare tea as well as coffee,

and so the model had two additional nodes: one to represent an instruction to prepare

coffee, the other, an instruction to prepare tea. Tea preparation was added to demonstrate

a theory which could account for tasks which have overlapping steps, such as “pour

water” and “add sugar.”

Training the model involved running it on a trial, then propagating an error signal

backward through the network in order to adjust inter-node connection weights. After

many thousands of cycles of attempting the task and adjusting weights, the model could

produce both coffee and tea preparation sequences, including two alternates of both tasks

in which sugar was obtained either from packets or from a bowl.

At test, the SRN model was given a simulated environment, and in some cases also an

activation of an instruction node (either “prepare coffee” or “prepare tea”). Activation

propagated from input nodes to hidden nodes, which in turn would transform the input

13

and pass on a pattern of activation to the output. The simulated environment changed

according to the SRN’s output, which in turn closed the model’s perception-action loop

by triggering a new pattern of activation in the model’s input layer. The perception-action

cycle continued until the task was complete, at which time the model took no further

action.

1.2.1. Modeling Human Error in a Simple Recurrent Connectionist Network

To the SRN, a subtask is distinguished solely statistically, that is by the sample

procedures the SRN is exposed to during training. Subtasks are determined by local

associations and by branch points. The local associations come from each of its steps

always being associated with one particular next step. The branch point is the end of the

subtask where the next step performed could be from one of several different subtasks.

Botvinick and Plaut’s (2004) SRN account of routine action selection was driven by the

statistical nature of its learning algorithm and the network’s holistic representation of the

task context. Steps that always appeared together in a particular order became represented

as one subtask, while whole subtasks might vary in the order of their appearance in

training. The SRN’s context representation was composed of the task’s main goal and the

steps accomplished. The SRN used distortion of propagated activation of the context

representation to account for human error. Specifically, the SRN posited that distortion

occurring in the middle of a subgoal leads to capture errors at the end of that subgoal

when the context representation begins to resemble another task’s context.

Botvinick and Plaut (2004) assume that all lapses result from a degradation of

representation of task context, “An error occurs when the network is in some situation

calling for some action and distortion causes its context representation to resemble a

14

pattern the model has learned to associate with a different situation and a different

action.” (p. 409) Therefore their strategy for modeling error in routine tasks is to

introduce noise into the activation pattern of the hidden layer during performance of the

coffee/tea task. They found that lapses such as capture errors and omissions tended to

occur when people were supposed to perform some action that came at the boundaries of

subtasks within the hierarchical structure of the task (as opposed to the structure of the

task’s representation within the model). For example, in the coffee making task capture

errors were more common on the first or last step of the sugar subtask (e.g., “grasp

spoon” or “open container”) than on some step in the middle of the sugar subtask (e.g.,

“scoop sugar” or “stir”). Furthermore, capture errors were more likely to occur if the

capturing task had been performed more times than the captured task. The errors resulted

from degradation of the model’s representation of task context, and the model tended to

respond on the basis of a representation’s similarity to a more familiar action.

1.2.1.1. Capture Errors

For example, in the coffee making task capture errors were more common on the first

or last step of the sugar subtask (e.g., “grasp spoon” or “open container”) than on some

step in the middle of the sugar subtask (e.g., “scoop sugar” or “stir”). Furthermore,

capture errors were more likely to occur if the capturing task had been performed more

times than the captured task. The errors resulted from degradation of the model’s

representation of task context, and the model tended to respond on the basis of a

representation’s similarity to a more familiar action.

In particular, Botvinick and Plaut (2004) found that their model was susceptible to

context representation disruption, and then capture error, when noise was introduced in

15

the middle of a subtask. When context confusions occur, the effects tend to be felt at

branch points (subtask boundaries), or junctures at which the immediately preceding

actions and/or environmental context bear associations with subsequent actions other than

the correct sequence for that task. An error in performance occurs at the branch point

even though a drift in contextual representation may have begun several steps earlier,

toward the middle of a subtask. In fact, the SRN model’s account of context

representational drift predicts that capture errors are more likely to result when distraction

occurs in the middle of a subtask, rather than immediately before a branch point.

Apparently context representation is particularly vulnerable to distortion near the middle

of a subtask, because the SRN model’s pre- and post-step contextual representations

become more similar in the middle of a subtask compared to at the beginning or end of

the subtask. Indeed, their model’s account predicted empirical findings in a later study by

Botvinick and Bylsma (2005).

1.2.1.2. Omission and Anticipatory Errors

Omission and anticipatory errors resulted from exactly the same mechanism that

caused capture errors. It just so happened that the distorted contextual representation

resembled the context for a sequence from later in the same task, rather than from another

task as in capture errors (e.g., leaving out the sugar subtask and skipping directly to

cream adding and then to drinking).

1.2.1.3. Perseverative Errors

Similarly, perseverative errors occurred when the inserted action sequence happened

to come from earlier within the task being performed.

1.2.1.4. Object Substitution Errors

16

Curiously, the SRN model exhibited no object substitution errors when subjected to

low levels of noise thought to mimic distraction in neuro-intact individuals, but did

produce a small number of object substitution errors when subjected to high levels of

noise in a simulation of neurologically impaired patients with action disorganization

syndrome.

1.3. Recent Developments in the Debate Over Schema versus PDP Representation of

Routine Action Selection

Psychological Review published an article by Cooper and Shallice (2006a) in reply to

Botvinick and Plaut’s (2004) account of action selection. Cooper and Shallice contrast the

PDP account with their own CSM account, concluding that abstract, symbolic

representations of causal elements of behavior, namely goals and schemas, are necessary

to reproduce the range of flexible behavior seen in humans. Cooper and Shallice also

criticize the SRN theory of action selection for being too dependent upon its training

context to be able to generalize a routine task to a new environment or interface or to be

able to interchange action subsequences as humans often do. Cooper and Shallice also

criticize the SRN model for saying nothing about the role of distractor objects in action

selection or about how object substitution errors may occur in neuro-intact individuals.

Botvinick and Plaut (2006), in the same issue, claim that Cooper and Shallice (2006)

mistook several superficial implementational issues for fundamental theoretical positions,

underestimated the computational power of recurrent networks as a class, and in some

ways mischaracterized the relationship between the SRN and CSM accounts.

The debate published in that issue of Psychological Review concluded with a brief

retort by each side. Cooper and Shallice (2006b) raise concerns with several of the

17

implementational adjustments of Botvinick and Plaut (2006) and criticize the other

authors for not examining potential interactions of their adjustments. Furthermore,

Cooper and Shallice maintain their position that the SRN model is not a sufficiently

abstract account of routine action selection, that SRN does not produce any action

subsequence which it does not encounter in its training environment, which is

problematic, they argued, because humans do produce novel subsequences. Cooper and

Shallice maintain that goals are essential to many human behaviors, particularly because

goals typically direct routine actions. And they criticize the SRN account for saying little

about the relationship between routine and non-routine action selection systems.

Botvinick and Plaut (2006) reply that the link between errant behavior and prior

experience is a strength of their model, rather than a weakness. For the SRN model, the

training set is of paramount importance because the SRN model is a kind of statistical

sampling and acting machine. What can vary in the test set varies in the training set, and

the training set is a representative sample of the test set. So learning any specific task

takes place within the context of learning a broad variety of other tasks. Botvinick and

Plaut assert this kind of learning by broad statistical sampling is an important strength of

their theory because it possesses strong ecological validity. Finally they concluded that

moving forward will likely involve building a theory of non-routine action selection and

connecting it with a theory of routine action selection. But, they said, there is

frustratingly little empirical account of how a non-routine action selection system might

work alone or in concert with a routine action selection system in humans.

1.4. Other Theories of Action Selection

18

GOMS (Card, Moran, and Newell, 1983; John, 2003) and production systems such as

ACT-R (Anderson et al., 2004) incorporate implicit theories of human action control for

routine procedures. GOMS, Goals Operators Methods and Selection rules, is a framework

for analyzing tasks humans engage in and making quantitative predictions about

performance given a particular interface with which to accomplish that task. GOMS is

based on a stage model of human information processing, and as such it is dependent

upon a psychological framework. The fundamental assumption GOMS makes is that both

the task structure and the cognitive architecture are necessary to describe and predict

human performance.

GOMS was in particular designed to model and predict skilled human performance of

routine tasks, and all of its predictions carry the assumptions that the behavior being

modeled is both skilled and routine. Therefore, like Cooper and Shallice’s contention

scheduling model, all behavior is conceived as being completely goal-directed. Methods

(actions) are well-learned sequences of subgoals and operators (low-level actions) that

can accomplish a goal (John, 2003). When more than one method is possible, selection

rules specify under what circumstances which method is selected. It is assumed that,

because GOMS models skilled behavior, the most efficient method will be selected.

As GOMS was conceived as an engineering tool for predicting completion times and

suggesting designs for task and interface structures in the skilled performance of tasks, it

generally has little to say about human error. This is rooted in the fact that humans

generally commit few errors when engaged in a well-practiced routine behavior, and so

Card, Moran, and Newell (1983) approximated skilled, nearly-error-free human behavior

in their engineering model by simply not being concerned by it. But this is not to say that

19

GOMS cannot be applied to the study of erroneous action selection. In fact, a recent

study by Wood and Kieras (2002) applied GOMS to a system redesign task and found

that it could function as a tool to predict human error and mitigate factors contributing to

it in the design of system interfaces.

Wood and Kieras’ (2002) approach assumes a modified version of the five distinct

error stages described by Card, Moran and Newell (1983):

1) Error. The user makes a mistake.
2) Detection. The user is aware an error has occurred.
3) Identification. The user identifies the error’s type.
4) Correction. The user corrects the effects of the error.
5) Resumption. The user resumes normal tasks.

Wood and Kieras’ (2002) general framework for error recovery specifies the

infrastructure needed to model erroneous behavior (Figure 4). Once a GOMS model has

been constructed, its static and dynamic aspects may be examined by the modeler to

identify sources of error. These sources can be procedural or non-procedural, where

procedural aspects stem from the effects of the action sequences in the methods and non-

procedural aspects arise from perceptual-motor factors. In particular, Wood (2000)

described several error types that may be identified by GOMSL (Kieras, 1999) analysis,

how patterns in the GOMSL analysis identify the potential error, and suggests remedial

design guidelines.

20

For example, after describing what a capture error is, Wood describes the GOMSL

pattern of output for that error and design guidelines for remediating interface factors that

may contribute to inducing capture error in the user’s performance:

Pattern. The general pattern includes a sequence of steps that are used to

accomplish multiple task goals, followed by a Decide (the divergence point), and

ending with different action sequences. Capture errors are most likely when the

action sequences are dominated by well-practiced motor actions.

GOMSL Example.

Method_for_goal: Save file

Step 1. Keystroke “:”.

Step 2. Keystroke “w”.

tasks. In their observations of experiment subjects
performing a typing task, they noted several interesting
results regarding human error. The first result was that
errors occurred in 36% of the experimental tasks. This
indicates the pervasiveness of human error and the
importance of designing to accommodate it. The second
result was that the occurrence of an error in a task
doubled the average task time. The errors and their
correction accounted for an average of 26% of total task
time. For one subject, error time accounted for 50% of
the time to complete the tasks. Moreover, if an error
required real problem solving to correct (e.g. finding
one’s place in a large text file), task time was increased
by an order of magnitude. These results tell us that
recovery methods need to be efficient and that they need
to be designed such that their use does not require
problem solving. A third result was that subjects tended
to follow a common path during error recovery. CMN
noted that when subjects committed errors, they seemed
to progress through five distinct error stages as
described in the following excerpt:

1)

Error

. The user makes a mistake.
2)

Detection

. He becomes aware of the error.
3)

Reset

. He resets the editor to allow correction.
4)

Correction

. He undoes the effects of the error.
5)

Resumption

. He resumes error-free activity. (p. 177)

Although these stages were adequate to describe the
behavior observed by CMN, several aspects limit their
general applicability to other domains. For instance,
accurate error-detection and identification was assumed
to occur after an error was committed. Sellen and
Norman (1992) point out that error identification is not
always easy or obvious for users. They recommend that
designers and modelers consider error identification
separately from detection to better focus on how
interfaces can support detection and identification.

A further weakness in the CMN stages is that their
Reset stage may not always be possible or necessary. It
assumes that users can easily back up, both mentally and
within a task, to enable error correction. This is not
always possible or desired. Despite these weaknesses,
CMN describes a useful approach to error modeling that
is structured around specific user mental-stages.

To help generalize the CMN approach, we adopt the
following modified structure of user error states:

 1.

Error

. The user makes a mistake.
 2.

Detection

. The user is aware an error has occurred.
 3.

Identification

. The user identifies the error’s type.
 4.

Correction

. The user corrects the effects of the error.
 5.

Resumption

. The user resumes normal tasks.

We refer to this structure of states collectively as error
recovery stages. This differs from the CMN structure in
two fundamental ways. First their Reset stage has been
removed and is considered an implicit part of the error
correction stage, if a reset is used at all. Second, error

identification is split from detection to allow better focus
on the identification process.

An important characteristic of the recovery stages is
that the user’s progression through them is not
necessarily a linear process. How and why users move
from one stage to another is critical to understanding
error recovery. To clarify this process, we can view the
user’s progression through the recovery stages as
movement between a set of mental states.

Figure 1 illustrates how the recovery stages fit into a
simple state diagram of the user’s mental-states during
error recovery. From the user’s perspective, the error
recovery model is straightforward. During normal,
routine performance, the human does everything right
and continuously executes correct actions. I refer to this
as the

Normal

 state. But, when an error occurs, the
human enters a Quasi-Normal state where everything
seems normal, but where some failure is imminent. The
transition between the

Normal

 and

Quasi-Normal

 states
reflects the Error stage. The user can continue
performing correct actions within the

Quasi-Normal

state until the user detects that something is wrong,
prompting him or her to recover. This transition from the

Quasi-Normal

 state to the

Recovery

 state reflects the
Detection stage. Once in

Recovery

, the user identifies
the error (the Identification stage) and takes the
necessary corrective actions (the Correction stage).
When error correction is complete, the user returns to
normal operations (the Resumption stage).

Two additional transitions reflect the nonlinear
nature of error recovery. The first of these occurs when
the user detects an error as the action is performed (as
with the CMN errors). In these cases, the user jumps
immediately to the Recovery state. This transition can
occur from any state, including Recovery. The second
transition type can occur when an undetected error
occurs during the Recovery state. Here, the user reenters
a quasi-normal state, where error correction seems to be
proceeding, but where another failure is imminent.

Movement through the mental states can be

Figure 1.

A general framework for error recovery.
The state diagram illustrates user mental states
while moving through error recovery stages.

Correct
Actions

Normal

Quasi-
NormalRecovery Correct

Actions

Correct
Actions

Undetected Error

Res
um

pt
io

n

Detected Error

Undetected Error

Det
ec

te
d

Er
ro

r
Identification

Correction
and

Detected
Errors

Figure 4. Wood and Kieras’ (2002) general framework for error recovery. The state diagram illustrates user mental
states while moving through error recovery stages.

21

Step 3. Decide: If “finished writing” then

! Keystroke “q”.

Step 4. Return-with-goal-accomplished.

This classic example (Norman, 1983) from the UNIX vi text editor shows a

method for saving a file that includes the option of quitting after saving. To save

the document, the user must type the sequence “:w”. To save and quit, the user

must type “:wq”. If the save-and- quit sequence is used much more than the save

sequence, the user will have a tendency to save-and-quit when the intention is to

save and continue.

Design Guidelines. Norman (1983) and Lewis and Norman (1986) suggest three

possible guidelines to minimize capture errors. First, minimize overlapping action

sequences when possible. Second, if that is not possible, put in a verification

check at the divergence point. In the above example the system could force the

user to confirm quitting. The third guideline is to provide adequate system state

information to the user. Although not relevant to the example given here, system

state information can sometimes cue the user that the system is in a different state

than expected.

Wood’s and Kieras’ (2000; Wood & Kieras, 2002) effort forms the beginning of an

engineering approach to identifying and mitigating human error by addressing error-

inducing elements of interfaces and tasks early in the design process. While such work

surely possesses much practical value, its level of analysis is not meant to discover the

cognitive mechanisms responsible for human action sequence representations and how

they produce correct and errant behavior.

22

ACT-R, however, is a cognitive architecture intended to be a generalized theory of

human cognition (Anderson et al., 2004). As such it must be concerned with those

mechanisms of human action selection and their resultant correct and errant behaviors.

ACT-R is a hybrid production system which uses symbols to transmit information

between distal modules, each responsible for different types of computation (e.g., visual

perception, motor movements). The modules themselves use subsymbolic processes to

govern their computations. Production systems use a collection of IF-THEN rules to

specify actions to be taken and their preconditions. In ACT-R, these preconditions can

come from any of a number of sources, including sensory information and goals. Like

contention scheduling, production systems in general and ACT-R in particular govern

their action selection based on discrete, symbolic knowledge structures. But in ACT-R’s

case, some governance, such as conflict resolution when multiple actions match a set of

preconditions, relies on processes dependent upon continuous, subsymbolic processes

which often act upon the symbolic structures.

Lebiere, Anderson, and Reder (1994) demonstrated that human-like errors can be

successfully generated by a production system, in their case, a model built on the ACT-R

cognitive architecture. Errors modeled were from an algebra task wherein subjects had to

memorize a digit span of 2, 4, or 6 digits and then solve a linear equation before recalling

the digits. Equations were simple or complex, with one or two transformations required

to solve. Human errors increased both with increasing equation complexity and

increasing digit span, the factors being additive. Most errors occurred in algebraic

transformations (such as in forgetting to invert a sign), though many others were

arithmetic errors where subjects retrieved the wrong fact in the addition or multiplication

23

table. The authors replicated errors of omission (such as forgetting to invert signs) by

applying a latency threshold for the retrieval of declarative memory facts. Retrievals

failed if a fact did not receive enough activation from its source context. Errors of

commission (like arithmetic errors) resulted from allowing for imperfect retrieval from

long term memory. The wrong fact was retrieved if it partially-matched the context and

the stochastic nature of its activation computation happened to give it a higher activation

than the correct fact.

Byrne (2003) highlighted other mechanisms in ACT-R that could be used to model

human error, particularly for predicting human error in routine procedures. One area

likely to yield errors, even when the “correct” knowledge is known by the operator, is the

procedural memory mechanism. ACT-R chooses productions based on their utility, but

the process is noisy. Thus when there are multiple viable alternatives, ACT-R will choose

stochastically from among them, possibly choosing an action that fails to achieve the

current goal. Likewise, ACT-R’s declarative system provides rich ground for potential

error generation as Lebiere, Anderson, and Reder (1994) described.

Chung and Byrne (2008) implemented Byrne’s (2003) framework in a computational

model of a routine procedure. The procedure had been designed to induce a particular

type of error, postcompletion error (Byrne & Bovair, 1997) wherein operators neglected

to take a step required after the main goal of the task has been accomplished. Chung and

Byrne used a declarative memory mechanism based on Lebiere, Anderson, and Reder’s

(1994) retrieval latency threshold to mimic human operators’ postcompletion error rate.

Chung and Byrne’s human data showed that postcompletion error is eliminated if a

highly-salient and sufficiently specific cue is used to aid retrieval of memory for the

24

postcompletion step. They were able to show that the cue works by making it

immediately accessible to the model’s simulated visual system. The cue appeared just-in-

time with the postcompletion step. The model had a production specifying that if the cue

object were to appear, then perform the postcompletion step.

1.5. Recent Empirical Findings

Cooper and Shallice (2006a, 2006b) alluded to the possibility that objects in the

environment could have important consequences for action selection, since often our

actions are performed on some object or using some object as a tool. Objects all exist in

space, and how they are arranged in space can impact human performance of routine

tasks, both in terms of speed and error commission.

Recent data from our laboratory indicated one factor particularly important to

performance of routine procedures, visual layout. Chung (2006) found that users relied

much more on the spatial layout of interface control elements (checkboxes, radio buttons,

etc.) to guide their action selection than they relied upon control element labels or goal

structure. Chung’s study employed two experiments each using two quasi-isomorphic

procedures performed with software interfaces, Phaser and Transporter. Participants

trained on both tasks and then tested one week later. Experiment 1 changed both

interfaces halfway through testing, with the Phaser’s labels each being changed to a row

of X’s (Figure 5).

The Transporter interface was laid out so that controls were grouped into clusters by

subtask (Figure 6). Controls in the Transporter’s first subtask’s cluster were mixed

together so that there was no clear relationship between their spatial arrangement and the

order in which they were used. Initially the second subtask’s cluster was arranged so that

25

the first control to be used in that subtask was the bottom-most element in the cluster,

with subsequent actions using the next-lower control. The cluster for the third subtask

was laid out top-to-bottom. After the interface change, the positions of controls within

each of these clusters reversed so that the second cluster became top-to-bottom and the

third cluster bottom-to-top. The first cluster reversed the order of its controls, going from

top to bottom.

26

!"#

#

#

#

!"#$%&'()*#$%&'(#)'*+,%(-#.)'/01%23'#.1%4')#526')7%0'8#

#

#

!"#$%&'(+*#$%&'(#)'*+,%(-#.+46/01%23'#.1%4')#526')7%0'8#

Figure 5a. Label removal: Pre-change Phaser interface.

!"#

#

#

#

!"#$%&'()*#$%&'(#)'*+,%(-#.)'/01%23'#.1%4')#526')7%0'8#

#

#

!"#$%&'(+*#$%&'(#)'*+,%(-#.+46/01%23'#.1%4')#526')7%0'8#
Figure 5b. Label removal: Post-change Phaser interface.

27

!"#

#

#

!"#$%&'()*#$%&'()#*+%,-./#01.2*+%,-.#31%,45'1).1#6,).17%*.8#

#

#

#

!"#$%&'(+*#$%&'()#*+%,-./#0'4)2*+%,-.#31%,45'1).1#6,).17%*.8#

Figure 6a. Layout change: Pre-change Transporter interface.

!"#

#

#

!"#$%&'()*#$%&'()#*+%,-./#01.2*+%,-.#31%,45'1).1#6,).17%*.8#

#

#

#

!"#$%&'(+*#$%&'()#*+%,-./#0'4)2*+%,-.#31%,45'1).1#6,).17%*.8#
Figure 6b. Layout change: Post-change Transporter interface.

28

Chung found that removing control labels in the Phaser resulted in only a slight and

non-reliable increase for error rate on the first step of the task, while there was no change

in error rate for other steps. The pattern was the same for Phaser task step response times.

As for the Transporter, error rate did increase with the change in layout, particularly on

the first step. There were no effects of layout change on Transporter response times,

however.

In Experiment 2, the Transporter changed from its down-up layout to one in which all

three clusters had controls arranged in a top-to-bottom order. Chung found that error

frequencies were lower for several steps for the post-change Transporter than for the pre-

change Transporter. For the Phaser, since controls were not arranged with all of one

subtask’s controls in the same cluster, color-coding was added such that all controls of the

same subtask were highlighted in the same color. If subjects used task structure to guide

their action selection, then providing visual interface cues regarding subtask groupings

should have aided performance. Instead, Chung found that error frequencies drastically

increased after the Phaser interface change, despite subject reports stating that they used

color coding and felt as though their performance improved because of it. Chung

speculated that globally useful rules specifying the next location at which an action is to

be performed can help navigation in interfaces used for routine procedures because

cognition is conserved relative to interfaces that do not lend themselves to such rules.

Other work (e.g., Fu & Gray, 2004; Gray & Boehm-Davis, 2000; Gray et al., 2006) has

demonstrated the humans tend to behave in locally-efficient manners that conserve

cognitive and perceptual-motor resources during interactive behavior. If humans are such

“cognitive misers,” as Gray asserts, then it is likely that people would draw upon global

29

navigation rules during interactive behavior and integrate those rules into their skilled

routines.

Other recent but as yet unpublished data from a later experiment employing the

Phaser and Transporter tasks continued to examine the role spatial layout may have in

human performance of routine procedures. Table 1 lists the tasks, manipulations, and

major findings from this latter experiment. From the empirical data reported by Chung

(2006) and from the subsequent experiment, it seems clear that spatial layout of an

interface used for a routine task can have profound effects on human performance of that

routine task.

Table 1
Tasks, Manipulations, and Major Findings from Unpublished Star Trek Procedure
Experiment

Task Manipulation Major Findings

Phaser move clusters subjects slower on some steps by
200 – 500 ms per step

Phaser move clusters & move buttons
within clusters

subjects generally slower by 500 –
1,000 ms per step

Transporter add extraneous buttons subjects generally slower by 500
ms per step

Transporter move clusters, move buttons within
clusters, & add extraneous buttons

subjects' error rate generally jumps
from 0% – 5% to 15% – 20% and
slower by 1000 – 2000 ms, per step

GOMS is not likely to provide an explanation for how people really go about

selecting routine actions because it was simply not designed for the task of advancing

basic cognitive science theory, though as an engineering model GOMS will certainly

benefit from such advancements. CSM may be in a better position to advance to more

ranges of behavior because of its more abstract level of specifications, though at low-

30

levels of computation SRN may very well provide explanation. ACT-R perhaps is in the

best position to integrate action selection in routine and non-routine behaviors because it

is a generalized theory of human cognition.

As an example of the importance of using a generalized theory of human cognition,

bear in mind one of Cooper and Shallice’s (2006a, 2006b) criticisms of the SRN model,

that objects not fixated or grasped during training effectively do not exist. ACT-R has

enough of a simulated visual system to be potentially influenced by distractor objects in

the environment. It is difficult to imagine how the SRN model would mimic human 500

ms increased response time as an effect of having extraneous buttons added to the

Transporter. The layout change data from our lab clearly indicate a strong influence of

visuo-spatial features of the interface on action selection human performance and error

and therefore seems like a fruitful space for exploration. Other recent work (Gray & Fu,

2004; Gray et al., 2006) indicates that people are flexible in how they accomplish their

tasks at small time scales, typically five seconds or less, and use combinations of their

own memory and the perceptual-motor properties of their environment to achieve close to

optimal efficiency in their performance at that time scale. If that is true and visuo-spatial

factors can influence action selection, as the CSM account indicates, then people may use

their environment as cues for the selection of actions. Indeed, CSM actually includes

environmental triggers, or cues, as one source of potential schema activation.

Furthermore, Chung and Byrne (2008) found that cuing by the interface mitigated

postcompletion errors. It therefore seems evident that perceptual-motor factors do play an

important, interactive, role in action selection.

31

How are actions and action sequences represented? The CSM and SRN accounts both

offer views that are impressive in the range and depth of behavior they explain. SRN

offers an account of generalized statistical learning of action sequences that is

compelling, but CSM, being more abstracted, seems as though it would explain a larger

range of behaviors at the rule-level of human behavior and is possibly in a better position

to interface with other cognitive systems that would handle the knowledge- and skill-

levels. The ultimate test of our grasp of action selection and errors thereof, at all three

levels of the skill-rule-knowledge hierarchy, is likely to come from the practical value of

engineering tools designed to assess those issues. GOMS is making promising progress in

that respect, and feedback regarding the predictive efficacy of tools like GOMS will give

us useful information about how well we know these phenomena.

How do environmental factors like spatial layout and task structure influence action

selection? It is clear from work like Chung (2006) and Chung and Byrne (2008) that

spatial layout does impact human performance of routine procedures. It may be that in

learned action sequences, the representations of where those actions occur are tightly

coupled with the representations of the actions themselves, as evidenced by Chung’s

findings from the Transporter task.

What can human error tell us about how actions and action sequences are represented,

and how spatial layout and task structure influence action selection? The fact that subjects

in Chung’s (2006) Transporter clicked the wrong control object with no accompanying

increase in response time, rather than taking more time to make certain the right control

object was found, indicates a lack of speed-accuracy tradeoff. Instead, subjects appeared

to have a high willingness to act based on sequential action-location information alone.

32

Once a corpus of human error-related factors such as spatial layout change has been built,

design guidelines may be established that can inform the design of interfaces that have a

low incidence of inducing operator error.

It is clear that more empirical work needs to be done to map the spatial and task

structure factors that influence human action selection, and how those factors contribute

to selection of the wrong action. Clearly a foundation built in a generalized theory of

human cognition is needed in order bind these factors and their interactions together.

ACT-R has already showed promise as a tool for investigating human action sequence

representations and error in routine action. Further study should use a combination of

extensive empirically-acquired behavioral data and cognitive modeling to map these

factors and tie them together into a cohesive account of human action selection.

2. BEHAVIORAL STUDIES

I performed two experimental studies and two modeling studies aimed at obtaining

the kind of empirical behavioral data and insight from modeling to begin to tie

perceptual-motor and cognitive factors into a cohesive account of human action selection.

General theories of cognition, such as ACT-R, come with mechanisms for generating

cognitive, perceptual, and motor predictions that are all based upon empirical research.

Many general theories of human cognition, like ACT-R, have theories of perceptual and

motor processes for good reason: human cognition is situated within those systems and

uses those systems to exchange information with the world. Mating a framework like

ACT-R with a successful theory of action selection will provide us with a richer view of

routine procedural behavior than what a theory of routine procedural behavior alone

could provide us.

33

If we are to move toward that cohesive account of human action selection, we should

test whether CSM and SRN are basically correct in their accounts of sequential human

task performance in the presence of the perceptual-motor factors discussed by the likes of

Chung (2006) and Chung and Byrne (2008). To that end, the two experiments I

performed used a version of Byrne and Bovair’s interactive Star Trek-themed procedural

task. Byrne and Bovair’s task, being formulated specifically for research, were novel

procedures for the subjects. The procedures were set in the fictional world of Star Trek to

encourage engagement of the undergraduate participants (Byrne, Maurier, Fick, &

Chung, 2004). The experiments manipulated the structures of the two tasks tasks in order

to test the CSM and SRN accounts of human task representation.

The first experiment tested the SRN’s assumption that subtasks are delineated strictly

on the basis of step co-occurrences. Experiment 1, using Byrne and Bovair’s Phaser task,

presented all subtasks in the same order on every trial, but segregated them by perceptual

means such as grouping and by semantic means such as object label similarity. If,

however, representations of task structure are entirely based on step associations and a

holistic representation of task context as the SRN claims, then manipulating step order

within a subtask should completely destroy humans’ ability to perform that subtask. Thus

Experiment 2, using Byrne and Bovair’s Transporter and a new task, the Jammer.

Experiment 2 delineated subtasks by co-occurrence as the SRN assumes, but it also

reordered the steps within one subtask in two conditions. In one other condition, it

manipulated the order of subtasks within the procedure.

Experiment 2 ran concurrently with Experiment 1, using the same subjects. To the

subjects, the Experiment 2 tasks – the Transporter and the Jammer – appeared as one

34

experiment together with the tasks of Experiment 1. Thus, design, procedures, materials,

and participants for Experiment 2 were identical to those for Experiment 1 except as

noted.

2.1. Experiment 1

2.1.1. Introduction

Experiment 1 used the Star Trek Phaser procedure (Byrne & Bovair, 1997; Chung,

2006; Chung & Byrne, 2008) to manipulate subtask delineation. Experiment 1’s Phaser

procedure put one, partially-completed subgoal on hold while the subject started and

completed one other subtask. Then the subject returned to the first subtask to complete it.

Subtask coherence was established by placing all controls for each subtask within their

own cluster within one bounded area of the interface and using semantically-similar step

names as measured by Latent Semantic Analysis.

The intervening subtask used step names that were all similar to each other, but

dissimilar to the paused subtask. One group of subjects trained on this procedure from the

outset. Another group trained on a procedure that kept all subgoals intact, then after

completing one-half of the trials during the testing session, the procedure changed to the

intervening-subtask procedure. Still a third, control group received the intact condition

throughout training and testing. A fourth group of subjects worked with a semantic

control version of the basic Phaser in which no control label was similar to any other

control label. Furthermore, the Phaser task did not adhere to the SRN’s working

definition of a subtask: subtask order never varied, and subtasks were delineated only by

spatial arrangement of control objects and semantic relatedness of object labels.

2.1.2. Method

35

2.1.2.1. Participants

Ninety-two Rice University undergraduates participated in Experiment 1 to earn

either course credit or $25.00. All subjects who finished the experiment were eligible for

the cash prize competition. Five subjects dropped out of the study or were removed due

to technical error with the experiment software. The remaining 87 subjects had a mean

age of 19.9 (1.5) years and 48 of them were male, 39 were female.

2.1.2.2. Design

Experiment 1 used four between-subjects conditions for the Phaser task. The Phaser

conditions were basic Phaser (no intervening subtask), trained subtask pausing, untrained

subtask pausing, and a semantic control version of the basic Phaser.

2.1.2.3. Materials

As in previous studies using the Star Trek paradigm, Experiment 1 used a set manuals

of five or six pages to instruct subjects on the experiment’s procedures. The manuals

featured an overview of the procedure, detailed instructions complete with example

figures, and a chart illustrating the task’s procedure. Copies of all manuals are available

for download from this dissertation project’s website, http://chil.rice.edu/tambo/

dissertation/ .

Experiment 1 was programmed in Lisp and run in the Macintosh Common Lisp

(MCL) environment version 5.1 on eMac Macintosh computers running Macintosh OS X

10.2 and 10.3 and each equipped with a standard Apple single-button mouse, standard

Apple QWERTY keyboard, and Sony MDR-201 headphones. Subjects also participated

in a web-based post-experiment survey displayed in Microsoft Internet Explorer version

5.2.3 (see Appendix C). The entire experiment code base and supporting files necessary

36

to run the experiment may be downloaded from http://chil.rice.edu/tambo/dissertation/.

The eMacs used CRT displays that measured 43 cm diagonally in a 4:3 aspect ratio. The

display resolution was 1024 px by 768 px.

The Phaser interface, as in previous Star Trek experiments, was a single-screen

display with controls grouped into clusters (Figure 7a & b). That is, all interface elements

used by subjects to complete one trial were visible on-screen at once. The interface

elements consist of checkboxes, radio buttons, buttons, a rising thermometer-style gauge

to indicate battery Generator level, a clickable horizontal slider for inputing a focus

value, a crosshairs with moving target dot, display of time elapsed during the current

trial, and feedback display.

Controls used for each subtask appeared within close proximity for each other and

within boxes drawn in the interface’s background, clearly establishing perceptual

grouping of the control objects. Objects that were not used for input, namely the elapsed

time and the feedback display, appeared in their own boxes. Interface display background

not occluded by some interface element was colored medium-gray. See figures 7a and 7b

for the semantically-similar groups and semantic control versions of the Phaser interface.

37

Figure 7a. Phaser interface, semantically-similar control object groups.

38

Except in the semantic control condition, all controls for each subtask, such as

charging the battery, carried names in the manuals and in interface labels that were

semantically similar to each other but not similar to control names for other subtasks.

Latent Semantic Analysis (LSA) established semantic relatedness. LSA is is a general

theory and method for extracting and representing the contextual-usage meaning of

words by statistical computations applied to a large corpus of text (Landauer & Dumais,

1997; Landauer, Foltz & Laham, 1998). It operates on the principle that the aggregate of

all the word contexts in which a given word does and does not appear provides a set of

mutual constraints that largely determines the global similarity of meaning of words and

sets of words to each other.

Figure 7b. Phaser interface, semantic control condition.

39

LSA uses singular value decomposition (SVD) to distill a corpus of text into the

optimal number of dimensions used to assess similarity ratings. SVD takes as its input a

matrix of words and the contexts in which those words appear. Cells represent the

transformed raw frequencies with which a given word appeared in a given context, as per

Equation 1. The log of the object’s frequency + 1 is divided by the object’s measured

information entropy. The effect of this transformation is to weight each word occurrence

directly by an estimate of its importance in the passage and inversely with the degree to

which knowing that a word occurs provides information about which passage it appeared

in (Landauer, Foltz, & Laham, 1998).

The output from SVD can be used to calculate similarity measures between any

combination of two words and/or contexts (paragraphs) compared, which take the form

of cosines between the vectors of the factors incorporating those words or contexts.

Highly-similar terms might share a cosine of 0.6, while unrelated terms would have a

cosine near 0 and dissimilar terms would have a negative cosine.

Tables A1 and A2 in Appendix A list the within-subtasks and between-subtasks

cosines for labels used in the semantically-related labels conditions, respectively. Tables

A3 and A4 in Appendix A list those values for the semantic control conditions. The

within-subtasks cosines measure the semantic similarity of individual labels against other

labels in the same subtask while the between-subtasks cosines measure semantic

€

log(f +1)

− plog(p)
i=1

n

∑

(1)

40

similarity of all of the terms in one subtask taken as one text against all of the terms in

another subtask taken as one text. It is evident from the cosine values in Tables A1 – A4

that in the semantically-related conditions the control labels are indeed similar to each

other within subtasks but not between subtasks and that in the semantic control condition

the control labels are not semantically similar to each other within- or between-subtasks.

2.1.2.4. Procedure

As in Byrne and Bovair (1997), Chung (2006), and Chung and Byrne (2008), the

Phaser task was a sequence of 12 actions performed using an interactive computer

interface. Each step consisted of an action such as clicking a button or moving a target

onto a crosshairs. The basic Phaser step order followed that used in previous studies

except with names changed to manipulate semantic relatedness within and between

subtasks. Table 2 lists the steps and subtasks of the basic Phaser task.

Table 2
Phaser Subtasks and Steps

Subtask Step

Charge Batteries 1. Click “Electrical” checkbox

2. Click “Generator” button

3. Wait for power meter to fill to within a pre-determined range, then
click “Kilowatts” button

4. Click “Electrical” checkbox

Set Focus 5. Click “Lens” radio button

6. Click on the horizontal slider

7. Check “Focus” checkbox

41

Table 2
Phaser Subtasks and Steps

Track the Target 8. Click “Cannon” radio button

9. Click “Shot” button

Fire the Phaser 10. Move target to crosshairs, press spacebar to shoot. If the
Romulan vessel was destroyed, then proceed to step 11. If the
Romlan vessel was not destroyed, then return to step 1.

11. Click “Shot” button

12. Click “Main” button

In the Phaser, the subtasks are to Generator the battery, set the focus, track the target,

and shoot. For the version of the Phaser that paused the battery charging subtask,

participants clicked the “Generator” button, then performed all steps of the set focus

subtask. Only when subjects successfully completed the set focus subtask did the power

meter begin to fill. Subjects then waited for the power meter to fill and then clicked “Stop

Charging” and then clicked “Electrical.” The trained subtask pausing condition used this

Phaser throughout the training and testing sessions. Subjects in the untrained subtask

pausing condition trained with the basic Phaser procedure and used it for the first half of

their Phaser trials during the test phase. However, halfway through their test session

instructions appeared notifying subjects in this condition of the onset and nature of the

procedure change. From that point forward they used the paused charging subtask Phaser

procedure. The semantic control version of the Phaser used the basic Phaser procedure.

The only difference between the basic Phaser and the semantic control Phaser was the set

of labels that appeared next to the control objects.

42

To recap, the basic Phaser procedure followed the steps in Table 2. The semantic

control version of the Phaser used the same procedure, but used a different set of labels to

provide a control condition where semantic similarity of labels could not be used to group

steps into subtasks. The trained intervening subtask version of the Phaser used,

throughout the experiment, a Phaser procedure in which subjects completed the first two

steps of the Generator batteries subtask, then completed the set focus subtask, then

completed the remaining two steps of the Generator batteries subtask. Subjects in the

untrained intervening subtask version of the Phaser used the basic Phaser procedure in

training and in the first seven trials of the experiment. Before the onset of the eighth

Phaser test trial, the experiment displayed a message indicating that the Phaser procedure

was to change and what the new Phaser procedure would be – the intervening subtask

procedure. Subjects then used the intervening subtask procedure for the remaining seven

Phaser trials. A detailed experimenter script provided explicit instructions for the three

experimenters to follow when running Experiment 1 and Experiment 2. The experimenter

script is included in Appendix B.

2.1.2.4.1. Training Session

When beginning the experiment’s training session, participants received instructions

aurally from the experimenter (Appendix A). They each also received a packet of

manuals: one which described how points are earned during the testing phase, and what

the cash prizes were for the top three performers in their experiment group; one which

described the “Main Control” interface and provided an overview of the experiment; one

for each of the tasks they were to train on in the experiment (e.g., Phaser, Transporter,

etc.). After receiving verbal instructions and their training packets, subjects read

43

instructions from the computer (Appendix A). The written instructions reiterated the

experimenter’s verbal instructions. When they had finished reading the written

instructions, subjects clicked continue to go to Main Control.

Before attempting a task for the first time, subjects read the manual for that task.

During the first attempt, subjects kept the manual out for reference while they performed

the task. Once they had completed one trial successfully, they returned the manual to the

experimenter so that it was no longer available for reference. Participants then continued

training as Main Control directed them until they had reached training criterion for that

task. Training trials were blocked by trial type so that subjects trained intensively on one

task until they had correctly completed four trials. These four correct training trials could

be non-consecutive. Upon completion of training, an appointment was set for each

subject to return and complete the testing phase four to ten days hence.

2.1.2.4.2. Testing Session

As with the training sessions, testing sessions began with oral and written instruction

(Appendix A). After instruction, participants began performing the Star Trek tasks

immediately. Once again, Main Control gave trial-by-trial instruction on which task to

perform next. Trial types appeared in random order during the testing phase, all in one

block. Subjects performed 12 trials of the Phaser task and 8 trials of the Navigation task.

Main Control gave non-specific error feedback at the conclusion of each trial, only

indicating how many errors had been made during the previous trial. When subjects erred

the computer emitted a buzzer sound and the state of the interface did not progress until

they performed the correct action.

44

Subjects also performed a concurrent working memory letter task during the testing

session. As in previous studies (Chung, 2006; Chung & Byrne, 2008), its function was to

increase working memory load during task performance and thereby elicit a sufficient

number of errors to study. Throughout the testing session participants heard randomly

ordered letters spoken through the headphones at a rate of one letter every three seconds.

A tone presented randomly at intervals ranging from 9 to 45 seconds, accompanied with a

response dialog window that popped up on top of the primary Star Trek task window.

That is, the letter recall task interrupted the Phaser, Navigation, Main Control, or

whatever else it was that the subject was doing at the time. Participants then recalled the

last three letters in presentation order and typed them into the response dialog window.

Subjects heard a warning buzzer as feedback in the event of incorrect letter string recall.

The instructions displayed on-screen before the beginning of the experiment warned

participants in the untrained intervening subtask condition that some of the interface they

were to use might change during the experiment. The instructions only stated that a

change would take place during the course of the experiment, it did not specify the nature

of the change. Before the onset of the eighth trial in the untrained intervening subtask

group, a message popped up on screen. The message warned that the Phaser procedure

was about to change and it specified the new order of steps to be performed.

As extra incentive for performing to the best of their abilities, all subjects were

eligible for cash prizes based on a competitive scoring system. The experiment’s test

session awarded points based on correct performance, with bonuses for fast performance.

Participants earned 25 points for each correct step performed, and a penalty of 50 points

for each incorrect action performed. A bonus of 100 additional points was awarded for

45

each Phaser trial completed in less than 20 seconds. The Navigation task had a 100-point

bonus for trials completed in under 10 seconds. Finally, 200 points were deducted from

the participant’s score for every letter recall trial performed incorrectly. The subject’s

current score was visible at all times during the testing session in the lower-right corner

of the screen. All points counted toward a final score and the three participants with the

highest scores received cash prizes of $25 for top score, $15 for second-highest score, or

$10 for third-highest score.

46

2.1.3. Experiment 1 Results

Two dependent measures of interest are error frequencies and step completion times.

Error frequencies measured the number of times that a subject made any error at all on a

given step divided by the number of presentations of that step. It is important to note that

this definition excludes repeated or compound errors. In other words, if on the

“Generator” step the subject makes multiple errant clicks before clicking the “Generator”

button, the error count for that step would be one. The error count was then divided by

the number of times the experiment had the subject perform that step. Furthermore, not

all steps furnished meaningful or interesting data. For instance, error frequencies for the

“shoot” step were ignored because it was actually composed of a sequence of actions that

resulted in one data event, namely multiple key presses to move the target onto the

crosshairs and then hitting the space bar to shoot. Step completion times for some steps

likewise were not analyzed.

For the procedure-change Phaser, subjects committed 15% more errors on the second

“Electrical” step following the change in procedure (Figure 8), interaction contrast of the

second “Electrical” step versus all other steps of interest t(17) = -2.26, p = 0.04. For the

three no-change Phasers, the same step induced subjects to produce a step completion

time that was 400 ms longer in the intervening subtask Phaser condition relative to the

two non-intervening subtask conditions, simple main effect ANOVA with contrast

(intervening subtask Phaser versus non-intervening subtask Phaser and semantic control

Phaser) F(2, 62) = 4.45, p = 0.02 (Figure 9). No other effects were reliable, including

effects of semantic grouping by label.

47

E
le

c
tr

ic
a

l

G
e

n
e

ra
to

r

K
ilo

w
a

tt
s

E
le

c
tr

ic
a

l

L
e

n
s

s
lid

e
r

F
o

c
u

s

C
a

n
n

o
n

S
h

o
t

0

0.05

0.1

0.15

0.2

0.25

0.3

E
rr

o
r

F
re

q
u

e
n

c
y

Step

Before Procedure Change

After Procedure Change

Figure 8. Error frequency in procedure-change Phaser task.

48

Generator Electrical Lens Focus Cannon Shot
0

700

800

900

1000

1100

1200

1300

1400

1500

1600

M
e

a
n

 S
te

p
 C

o
m

p
le

ti
o

n
 T

im
e

 (
m

s
)

Step

Interveninig Subtask

Non-Intervening Subtasks

Semantic Control

Figure 9. Step completion times for the three no-change Phasers.

Some consideration of error effects that include repeated errors is in order. By

considering not only error frequency, but also error severity, some sense of how many

attempts it took subjects to recover from errors can be had. The next several analyses

consider total error rates per trial type, per condition. The total error rate is equal to the

total number of errors committed divided by presentations of task steps. Subsequently

this error measure will form the basis of evaluation for an ACT-R model of Experiments

1 and 2.

Figure 10 shows the per-condition trial type error rate obtained from Experiment 1.

The no-procedure change conditions did not differ reliably from each other, F(2, 62) =

49

0.40, p = 0.68, but the pre-procedure change Phaser did have a higher error rate than the

post-procedure change Phaser, t(17) = 2.21, p = 0.04. As Figure 11 shows, most of the

decrease in error rate came in the postcompletion steps, the second “Electrical” and the

second “Shot” steps.

Figure 10. Error rates from each condition of Experiment 1.

B

B

B

B

B

s
ta

ti
c
,

in
te

rv
e

n
in

g
 s

u
b

ta
s
k

p
ro

c
e

d
u

re
 c

h
a

n
g

e
,

p
re

-c
h

a
n

g
e

p
ro

c
e

d
u

re
 c

h
a

n
g

e
,

p
o

s
t-

c
h

a
n

g
e

n
o

n
-i
n

te
rv

e
n

in
g

s
e

m
a

n
ti
c
 c

o
n

tr
o

l

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

50

Figure 11. Error rates by step for the Phaser task before procedure change and after procedure change. Error bars
represent standard error of the mean.

2.1.4. Experiment 1 Discussion

For the Phaser, in both static and procedure change conditions, intervening the focus

subtask in the middle of the Generator subtask seemed to disrupt subjects' ability to

perform the second “Electrical” step of the Phaser Generator subtask. It is likely that this

step is vulnerable to increased error because it is a postcompletion step for the Generator

subtask. The second “Electrical” step is a postcompletion step because once subjects have

E
le

c
tr

ic
a

l

G
e

n
e

ra
to

r

K
ilo

w
a

tt
s

E
le

c
tr

ic
a

l

L
e

n
s

s
lid

e
r

F
o

c
u

s

C
a

n
n

o
n

S
h

o
t

s
h

o
o

t

S
h

o
t

M
a

in

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60

M
e

a
n

 T
o

ta
l

E
rr

o
r

R
a

te

Step

Before Procedure Change

After Procedure Change

51

stopped charging the battery, the appropriate course of action for participants is to

proceed to “Lens” in the non-intervening subtask procedure or “Cannon”, in the case of

the intervening subtask procedure.

It may be the case that when the time comes to remember to click “Electrical”,

subjects instead mistakenly recall that the next step is “Lens” (or “Cannon”). This is

because the two steps are similar in that they follow closely the completion of the main

goal of the charging subtask, that is, to complete charging of the battery as signified by

clicking “Kilowatts.” In fact, a modeling effort by Chung and Byrne (2008) found that

just such a declarative memory similarity combined with a high working memory load

can explain the relatively high error rates of postcompletion steps.

It may be that a pronounced postcompletion effect appeared at the second “Electrical”

step because of additional memory load requirements imposed by the intervening

subtask. Chung and Byrne (2008) found that they could simulate observed

postcompletion effects in an ACT-R model by making the similarity between the two

chunks that encoded the postcompletion step and its subsequent step relatively high.

Because of a combination of that and the high working memory load demands of the task,

the chunk encoding the subsequent step would sometimes be retrieved in place of the

chunk encoding the postcompletion step, and the model would generate a postcompletion

error.

The same mechanism could be at work in the second “Electrical” step. If in the case

of this second “Electrical” step, during the non-intervening procedure the memory load

may be below a critical threshold. But when the procedure changes, the subject has to use

some additional working memory capacity in maintaining an instruction to perform a

52

different procedure. The extra working memory consumed may be enough to push the

subject past the critical threshold and induce postcompletion error.

This pattern of results is problematic for the SRN account because it has no notion of

a limited-capacity working memory. Error performance in the SRN stems from

degradation of its contextual representation, but the model provides no source for the

degradation. Neither does the SRN provide a way to model step similarity and

consequently step confusability. Also, because it predicts very rigid task representation

the SRN would likely not be able to cope with the procedure change version of the Phaser

task. Clearly performance suffered in terms of error frequency for the second “Electrical”

step after the Phaser procedure change, yet also the total error rate decreased after the

procedure change. The SRN would not have predicted this differential effect.

The complete lack of an effect due to semantic associations in the labels is perhaps

not so surprising in light of Tamborello, Chung, & Byrne’s (2008) finding that people

seem to not actually use labels once they have acquired skill in this type of task. When

examined from the perspective of the Soft Constraints Hypothesis (Gray et al., 2006),

people are likely not using labels at the skilled stage of performance because reading is

relatively slow compared to other retrieval cues available in the Phaser task. These cues

include global spatial layout, shape of local button clusters, and relative position within

the cluster.

2.2. Experiment 2

2.2.1 Introduction

If subtasks can be delineated by means other than statistical co-occurrence of steps,

such as spatial grouping and semantic similarity as manipulated in Experiment 1, then

53

rearranging the order of steps within a statistically-delineated subtask should not

catastrophically impair task performance. To test this second hypothesis, Experiment 2

used the Star Trek Transporter interface. Experiment 2 delineated subtasks by statistical

co-occurrence, as per Botvinick and Plaut’s (2004) claim. However, the ordering of steps

within one of those subtasks will change for one group of subjects half-way through the

testing phase. Another condition imposed different orders of subtasks between the

Transporter and Jammer tasks.

The purpose of having a second task, the Jammer, on the Transporter interface was to

make human performance on the two tasks susceptible to a class of human error termed

mode errors. A mode is a common architecture for grouping several machine

configurations under one label. The set of modes in a control system corresponds to a set

of unique machine behaviors and the operator can engage those distinct behaviors by

switching between modes (Degani, Shafto, & Kirlik, 1999). Action slips can occur when

a machine configuration is incorrectly perceived as being in one mode when it is in fact in

another mode. In these instances, operators form incorrect intentions and acting upon

those incorrect intentions produces a mode error. This is in effect the mechanism by

which Cooper and Shallice’s CSM generates capture errors – activation from

environmental cues to incorrect schemas overwhelms activation from the correct action’s

schema and the wrong action is selected. Mode errors, then, are a particular case of

capture errors induced by a machine’s interface when that interface provides the wrong or

ambiguous perceptual cues.

When subjects performed the Transporter and Jammer tasks, there were no cues in the

environment to remind them which task they were engaged in; they had only the

54

instruction from Main Control, which disappeared from view once they clicked Main

Control’s “Transporter” or “Jammer” button to begin that task. In such a task context, it is

likely that mode errors may occur when state information about the task falls out of

working memory because of working memory demands imposed by the Transporter/

Jammer task and the letter update recall task.

Working memory effects, such as task demands on working memory that contribute

to mode errors, could potentially be simulated by the SRN by degrading its contextual

representation. But there are other patterns of results that could be problematic for the

SRN account. The SRN is very rigid in the action sequences that it outputs. It has no way

to reorder steps within a subtask. Any error rate short of total impairment in the procedure

change condition would therefore pose a problem to the SRN.

Also, any elevated error rate in the no-procedure change, different-scanner Jammer

without similar error increases in that same condition’s Transporter task would be

difficult for the SRN. All error in the SRN stems from degradation of its contextual

representation, which should affect both tasks equally. But a high error rate in one task

accompanied by low error rate in another task would indicate another source for error.

Turning to the CSM, results that would be hard for it to explain include catastrophic

error rates for the procedure-change Jammer task. CSM posits that the hierarchical

structure of task representation combined with the dynamic nature of action selection

should allow for some degree of adaptation to the new procedure. Very high error rates in

the post-procedure change Jammer would counter-indicate that kind of account of human

task representation and action selection.

2.2.2. Method

55

2.2.2.1. Design

Experiment 2 used the Transporter task as well as an additional task, the Jammer,

which was performed on the Transporter’s interface. The Jammer is exactly the same task

as the Transporter, except in name and as described for the different conditions. All

subjects performed both the Transporter and the Jammer tasks.

Experiment 2 incorporated a four-level between-subjects design. Experiment 2

manipulated whether subjects received a Jammer task that was identical to the

Transporter task, a Jammer task that had a different sequence of buttons to click in the

scanner subtask, a Jammer that changed during the test session from same-Jammer to

different-scanner-Jammer, or a Jammer that had its frequency subtask come before the

scanner subtask.

The Transporter task was the same for all conditions, but the Jammer changed on a

between-subjects’ condition basis. The four conditions of Experiment 2 were control,

trained step reordering, and untrained step reordering, and subtask reordering. Subjects in

the control condition had one scanner subtask to perform, with the ordering of steps the

same for both Transporter and Jammer. Subjects in the trained step reordering condition

performed the scanner subtask steps in one order for the Transporter and in another order

for the Jammer. Subjects in the untrained step reordering condition, like in the Phaser’s

untrained intervening subtask condition, performed the first half of their test trials using

the control scanner ordering for both tasks, then using the changed scanner step ordering

for the second half of their Jammer test trials. Subjects in the subtask reordering

condition had a fixed order for performing subtasks in both the Jammer and the

56

Transporter, but in the Jammer, they used a subtask order which differed from that in the

Transporter.

2.2.2.2. Materials

Experiment 2 used largely the same materials as Experiment 1, except of course it had

its own set of manuals and its own interactive computer interfaces for the Transporter and

Jammer tasks. Like the Phaser, the Transporter had a single-screen interactive interface

composed of GUI control elements arranged into clusters. The GUI control elements used

in the Transporter interface consisted of buttons, radio buttons, check boxes, a scanner

bull’s eye, two small text fields, a tracking area, a time elapsed display, and a status

feedback display. The Jammer task used the same interface device as the Transporter.

Figure 12 presents the Transporter/Jammer interface used in Experiment 2.

57

2.2.2.2.1. Transporter Task

As in previous studies using the Star Trek tasks, the Transporter task was structurally

isomorphic with the Phaser task (Byrne, Maurier, Fick, & Chung, 2004; Chung, 2006),

but not visually isomorphic. Table 3 lists the steps and subtasks for the Transporter.

Figure 12. Transporter/Jammer interface.

58

Table 3
Transporter Subtasks and Steps

Subtask Step

Scan for the
Homing Signal

1. Click “Scanner On” radio button

2. Click “Active Scan” radio button

3. Wait until the scanner homes in on a valid signal, indicated by
four scanner dots gradually disappearing, one by one, until only one
scanner dot remained. Then click “Lock Signal” radio button

4. Click “Scanner Off” radio button

Set the
Transporter
Frequency

5. Click “Enter Frequency” button

6. Type a two-digit frequency integer into the text field

7. Check “Accept Fequency” checkbox

Synchronize 8. Check “Transporter Power” checkbox

9. Click “Synchronous Mode” button

Energize 10. Track the mouse cursor onto the moving target within the
tracking area, then click on the target. The task did not advance
unless the mouse click fell within the area occupied by the moving
target.

11. Click “Synchronous Mode” button

12. Click “Main Control” button

In the Transporter, the subgoals were to scan for the homing signal, set the

Transporter frequency, synchronize the Transporter with the homing signal, and energize

the Transporter. Each time participants performed the Transporter or Jammer during the

training session, the experiment first displayed a message indicating in which order to

perform the subtasks. For the first three between-subjects conditions, the scanning

subtask was always first, followed by either the frequency or synchronization subtasks,

59

then the remainder of those two subtasks, then the energization subtask. Subjects trained

on the Transporter for three trials in each subtask ordering. The training manual for the

first thee conditions of the Transporter and Jammer stated that the task could be

performed in either subtask order and explained how to do so. During the testing session,

subjects were free to perform the Transporter subtasks in whichever order they preferred

each time they did a trial.

For the fourth between-subjects condition, the static reordered subtask condition, the

experiment did not specify a subtask order for the trial because Transporter and Jammer

subtasks were always performed in the same order for each trial, for both Transporter and

Jammer. In this condition subjects trained to a criterion of four correct trials, as for the

Phaser and the Navigation tasks.

Like the Phaser, the Transporter task also used a probabilistic function to determine

whether or not to re-start the trial for the subject. Transporter trials repeated for the same

reasons and with the same consequences as the Phaser.

2.2.2.2.2. Jammer Task

The Jammer task was an exact duplicate of the Transporter task with the following

exceptions: The first between-subjects group trained and tested using a Jammer that had a

different step order for the scanning subtask, “Active Scan,” “Scanner Off,” “Lock

Signal,” and “Scanner On.” The second condition used a Jammer that actually was an

exact duplicate of the Transporter as a control group. The third condition trained with the

Transporter-duplicate Jammer and also used that for the first half of the experiment trials,

then switched to the reordered scanner steps Jammer. The Jammer procedure switch used

the same method as the Phaser that changed half-way through the experiment.

60

The fourth condition used a Transporter and Jammer that had only one subtask order.

That is, unlike the other versions of the Transporter and Jammer tasks, subjects in this

condition were not free to choose whether to perform the frequency subtask before the

synchronization subtask or vice versa. The Jammer in this condition had subtasks occur

in a different order than the Transporter: Set the Transporter Frequency, Scan for the

Homing Signal, Synchronize, and Energize.

2.2.2.3. Procedure

2.2.2.3.1. Training Session

Subjects trained for six trials each on the variable subtask versions of the Jammer and

Transporter tasks, three times in each subtask order of each task. The order in which the

experiment had subjects perform each subtask order was randomized. Before the training

trial started the experiment software displayed a message indicating which subtask order

to use during that trial. Subjects thus became familiar with performing the Transporter

and Jammer tasks in both possible subtask orders. Subjects in the fourth, static subtask

order condition trained to four correct trials each on the Transporter and Jammer.

2.2.2.3.2. Testing Session

The testing procedure for Experiment 2 proceeded as for Experiment 1 but with the

following exceptions. Subjects performed 12 trials each of the Transporter and Jammer

tasks. As for Experiment 1, instructions displayed on-screen before the beginning of the

experiment warned participants in the untrained reordering condition of the change in the

procedure they were to perform. The instructions only stated that a change in the

procedure would take place, they did not specify the nature of the change. Before the

onset of the seventh trial in the untrained reordering group, a message popped-up on

61

screen. The message warned that the Jammer procedure was to change, and it specified

the new order of steps to be performed in the scanning subtask. Scoring remained the

same for Experiment 2 except that the 100-point bonus cut-off occurred after 13 seconds

for both the Transporter and Jammer. The instructions for the variable subtask order

conditions of the Transporter/Jammer reiterated that subjects were free to use whichever

subtask order they preferred on each Transporter or Jammer trial.

Since Experiment 1 and Experiment 2 ran concurrently, using the same subjects,

every subject in Experiment 1’s trained intervening subtask Phaser condition also ran in

Experiment 2’s Jammer trained reordering Transporter condition. Likewise, Experiment

1’s untrained intervening subtask Phaser condition ran with Experiment 2’s Transporter

and identical Jammer condition; Experiment 1’s basic Phaser condition ran with

Experiment 2’s Jammer untrained reordering Transporter condition; Experiment 1’s

semantic control Phaser condition ran with Experiment 2’s Jammer subtask reordered

Transporter condition. Based on prior experience with the Star Trek task paradigm

(Chung, 2006; Chung & Byrne, 2008; Byrne, Maurier, Fick, & Chung, 2004) it seemed

unlikely that there would be any confounding effects from pairing certain versions of the

Phaser with certain versions of the Transporter-Jammer, except perhaps from having a

relatively difficult Phaser paired with a relatively difficult Transporter-Jammer. Therefore

the experiment conditions were paired so as to prevent any one group of subjects from

receiving a relatively more difficult set of tasks.

All subjects participated in a brief post-experiment survey. The survey asked

questions about demographics, general computer and internet usage, questions specific to

62

the experiment, and questions specific to the between-subjects conditions. A copy of the

survey is available at http://chil.rice.edu/tambo/dissertation/.

2.2.3. Experiment 2 Results

The same dependent measures were used for Experiment 2 as for Experiment 1.

Likewise, some steps were excluded from analysis. Furthermore, any analysis involving

the step factor incurred moderate to very large sphericity violations, all Greenhouse-

Geisser ε < 0.65. Howell (2002, p. 523) says the literature generally supports the use of

Pillai's Trace, so those analyses used the Pillai's Trace MANOVA.

A condition by task by step MANOVA revealed effects of the different-scanner

subtask Jammer (Figure 13). For the static different-scanner Jammer task, subjects

committed 18% more errors on the second step, “Scanner Off”, than they did for the

second step, “Active Scan”, on the same-scanner Jammer task (Figure 14). There was an

interaction effect of condition by step Pillai’s Trace = 0.55, F(8, 29) = 4.47, p < 0.01 and

of task by step Pillai’s Trace = 0.57, F(8, 29) = 4.77, p < 0.01. The condition by task

interaction was also reliable, F(1, 36) = 6.96, p = 0.01. Furthermore, the condition by task

by step interaction was reliable, Pillai’s Trace = 0.54, F(8, 29) = 4.26, p < 0.01 with the

effect obviously being driven by the different-scanner Jammer, as further analyses show.

63

Figure 13. Error frequencies for no-procedure change, different Jammer condition.

Figure 14. Error frequencies for no-procedure change, same Jammer condition.

S
c
a
n
n
e
r

O
n

A
c
ti
v
e
 S

c
a
n

L
o
c
k
 S

ig
n
a
l

S
c
a
n
n
e
r

O
ff

E
n
te

r
F

re
q
u
e
n
c
y

ty
p
e
 f
re

q
u
e
n
c
y

A
c
c
e
p
t
F

re
q
u
e
n
c
y

T
ra

n
s
p
o
rt

e
r

P
o
w

e
r

S
y
n
c
h
ro

n
o
u
s
 M

o
d
e

s
h
o
o
t

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.350.35

E
rr

o
r

F
re

q
u

e
n

c
y

Step

Transporter

Jammer

S
c
a
n
n
e
r

O
n

A
c
ti
v
e
 S

c
a
n

L
o
c
k
 S

ig
n
a
l

S
c
a
n
n
e
r

O
ff

E
n
te

r
F

re
q
u
e
n
c
y

ty
p
e
 f
re

q
u
e
n
c
y

A
c
c
e
p
t
F

re
q
u
e
n
c
y

T
ra

n
s
p
o
rt

e
r

P
o
w

e
r

S
y
n
c
h
ro

n
o
u
s
 M

o
d
e

s
h
o
o
t

0

0.05

0.1

E
rr

o
r

F
re

q
u

e
n

c
y

Step

Transporter

Jammer

64

Examining only the Jammer task, the simple main effect of condition on error was

reliable, F(1, 36) = 6.52, p = 0.02, and there was an interaction with step, Pillai’s Trace =

0.52, F(8, 29) = 4.00, p < 0.01. A contrast revealed the source of the difference in error

rates between the two Jammers to be the second step of the different-Jammer, “Scanner

Off,” versus the second step of the same-Jammer, “Active Scan,” F(2, 36), = 37.66, p <

0.01. Examining the effect of task at the different-Jammer level of condition, a reliable

effect was apparent, F(1, 19) = 9.60, p < 0.01, and that effect was different for at least

one step, Pillai’s Trace = 0.74 F(8, 12) = 4.24, p = 0.01. The step that differed was again

the second one for each task, Transporter’s “Active Scan” versus Jammer’s “Scanner

Off”, contrast t(19) = -6.07, p < 0.01. There were no reliable effects of the static different-

Jammer and same-Jammer on step response times.

For the procedure change Jammer, there was a main effect of procedure change both

on error rate and step completion times for the Jammer task, but no effects on the

Transporter task (Figure 15). Change by task by step ANOVAs examined effects on both

dependent measures. For error, there was a main effect of procedure change, F(1, 20) =

11.67, p < 0.01, and an interaction of procedure change with task, F(1, 20) = 6.16, p =

0.02, such that error rates were worse in the post-change Jammer relative to pre-change

Jammer and the Transporter. The effect of task was reliable in the post-change trials, F(1,

20) = 5.20, p = 0.03, such that after the procedure change, the Jammer had higher rates of

error than the Transporter. Furthermore the effect of procedure change on the Jammer

task was reliable, F(1, 20) = 10.17, p < 0.01. A contrast on the step variable revealed that

it was the all steps of the scanner subtask together driving the effect of change, t (20) =

65

-3.03, p < 0.01. There was no simple main effect of change on error rates in the

Transporter task.

Figure 15. Error frequencies for procedure change Jammer and its accompanying Transporter task.

As regards the Jammer procedure change’s effects on step completion times, there

was a main effect of task, F(1, 20) = 24.08, p < 0.01, and an interaction of procedure

change and task, F(1, 20) = 23.73, p < 0.01 (Figure 16). The effect on step completion

time of the procedure change was different for some steps, Pillai’s Trace = 0.62, F(7, 14)

= 3.24, p = 0.03, as was the effect of task, Pillai’s Trace = 0.51, F(5, 16) = 3.29, p = 0.03.

S
c
a
n
n
e
r

O
n

A
c
ti
v
e
 S

c
a
n

L
o
c
k
 S

ig
n
a
l

S
c
a
n
n
e
r

O
ff

E
n
te

r
F

re
q
u
e
n
c
y

ty
p
e
 f
re

q
u
e
n
c
y

A
c
c
e
p
t
F

re
q
u
e
n
c
y

T
ra

n
s
p
o
rt

e
r

P
o
w

e
r

S
y
n
c
h
ro

n
o
u
s
 M

o
d
e

s
h
o
o
t

0

0.05

0.1

0.15

0.2

0.25

0.3

0.350.35
E

rr
o

r
F

re
q

u
e
n

c
y

Step

Transporter, pre-change

Transporter, post-change

Jammer, pre-change

Jammer, post-change

66

The task by procedure change by step interaction was also reliable, Pillai’s Trace = 0.61,

F(5, 16) = 5.07, p < 0.01. The simple main effect of change for the Jammer task was

reliable, F(1, 20) = 9.48, p < 0.01, the change by step interaction was reliable, Pillai’s

Trace = 0.58, F(5, 16) = 4.36, p = 0.01, and that interaction effect was driven by a pre-/

post-change difference in step completion times for the steps in the Jammer’s scanner

subtask, contrast t(20) = -6.06, p < 0.01. Furthermore, the simple main effect of task in

the post-change trials was reliable, indicating higher error rates, post-change, for the

Jammer task, F(1, 20) = 45.20, p < 0.01, and the simple interaction of task by step, post-

change, was also reliable, Pillai’s Trace = 0.66, F(5, 16) = 6.10, p < 0.01. There was no

simple main effect of change on step completion times in the Transporter task. No effects

on error rate or RT were observed for the different subtask order Jammer and its

accompanying Transporter task.

67

Figure 16. Step completion times for procedure change Jammer and its accompanying Transporter task.

Turning to total error rate, the no-procedure change different-scanner subtask Jammer

task elicited a higher error rate from subjects than did the other no-procedure change

Jammer conditions, contrast F(1, 59) = 9.28, p < 0.01. Neither the procedure change

Jammer nor any condition of the Transporter task produced effects of error rate. Figure

17 plots Jammer error rates while Figure 18 plots Transporter error rates.

S
c
a

n
n

e
r

O
n

A
c
ti
v
e

 S
c
a

n

S
c
a

n
n

e
r

O
ff

E
n

te
r

F
re

q
u

e
n

c
y

A
c
c
e

p
t

F
re

q
u

e
n

c
y

T
ra

n
s
p

o
rt

e
r

P
o

w
e

r

S
y
n

c
h

ro
n

o
u

s
 M

o
d

e

0

600

800

1000

1200

1400

1600

1800

2000

2200

2400

2600

2800

3000

3200

S
te

p
 C

o
m

p
le

ti
o

n
 T

im
e

 (
m

s
)

Step

Transporter, pre-change

Transporter, post-change

Jammer, pre-change

Jammer, post-change

68

Figure 17. Error rates from the Jammer task of Experiment 2.

B

B B

B

B

s
ta

ti
c
,

d
if
fe

re
n

t-
s
c
a

n
n

e
r

s
ta

ti
c
,

s
a

m
e

-s
c
a

n
n

e
r

c
h

a
n

g
e

 p
ro

c
e

d
u

re
,

p
re

-c
h

a
n

g
e

c
h

a
n

g
e

 p
ro

c
e

d
u

re
,

p
o

s
t-

c
h

a
n

g
e

s
ta

ti
c
 s

u
b

ta
s
k
 r

e
o

rd
e

ri
n

g

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

69

Figure 18. Error rates from the Transporter task of Experiment 2.

Finally, subjects hardly varied the order in which they chose to execute the frequency

and power subtasks of the Transporter and Jammer in those conditions in which they had

that choice, observed N (frequency, then power) = 1448, observed N (power, then

frequency) = 187, expected N = 817.5. It is likely that the effect may have been due either

to the spatial arrangement of the Transporter interface or to the presentation order of the

B

B
B

B

s
ta

ti
c
,

d
if
fe

re
n

t-
s
c
a

n
n

e
r

s
ta

ti
c
,

s
a

m
e

-s
c
a

n
n

e
r

c
h

a
n

g
e

 p
ro

c
e

d
u

re

s
ta

ti
c
 s

u
b

ta
s
k
 r

e
o

rd
e

ri
n

g

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

70

instructions for the frequency and power subtasks in the training manuals. The

Transporter interface was laid out such that the frequency controls were always closer to

the previously performed subtask’s controls, the scanner. Thus subjects may simply have

been reaching for the thing closest at hand at the time, a prediction of the Soft Constraints

Hypothesis (Gray et al., 2006).

A subsequent experiment tested the two hypotheses by manipulating the Transporter

layout such that either the frequency or the power control cluster was closer to the

scanner cluster and subjects received training manuals that either presented the frequency

subtask before the power subtask or the power subtask before the frequency subtask. The

results match the prediction of the Soft Constraints Hypothesis – that is, subjects tended

to simply reach for the closest control cluster (Table 4). The Soft Constraints Hypothesis

would predict this proximity effect because given the choice of moving the cursor to the

near cluster or to the far cluster, the user saves time by going from neighboring cluster to

neighboring cluster rather than crisscrossing across the entire screen.

71

Table 4
Transporter and Jammer Subtask Order Execution Frequencies

Groupings Frequency, then
Power

Power, then
Frequency

Expected

The two frequency-closer
groups

309 162 235.5

The two power-closer
groups

97 288 192.5

The two frequency-first
manual groups

185 242 213.5

The two power-first
manual groups

221 208 214.5

Note. Frequencies by between-subjects conditions are as follows: frequency-closer layout with frequency-first manual =
216, frequency-closer layout with power-first manual = 255, power-closer layout with frequency-first manual = 211,
power-closer layout with power-first manual = 174, expected = 214.

2.2.4. Experiment 2 Discussion

That the error rate was reliably higher in the different Jammer than in the same

Jammer is not surprising, but it is surprising that the error rate was not also high in the

Transporter task that accompanied the different Jammer. Participants trained with both

procedures and performed both procedures on the same interface. Yet somehow

Transporter performance did not suffer even though cues indicating the identity of the

current task were scant: A brief message and a button label indicated Transporter or

Jammer in main control, the sound effect of the shoot action differed between the two

tasks, and status messages differed between the two tasks. There was no cue available

during the completion of the scanner subtask to remind subjects which of the two tasks

they were to perform. So if the effect of change on error rates and RT is evident for the

Jammer and not for the Transporter then it seems to imply a relationship between a global

72

task representation (e.g., “do Transporter”) and a representation of the local action or

subtask if subjects are able to keep straight the scanner subtask of the Transporter but not

the scanner subtask of the Jammer.

Additionally, because the two tasks share so much information, namely interface

objects, the locations of those objects, and procedures aside from the scanner subtask,

then it may be that encoding of the two tasks can be accomplished more efficiently by

using one representation for both tasks in the places where they overlap. The task

representations then will only differ where the tasks differ. For example, it may be that

subjects have declarative representations that say in effect, “The Jammer scanner is

different from the Transporter scanner. If my goal is to do the Transporter, then start with

“Scanner On.” If my goal is to do the Jammer, then start with “Active Scan.” And so

perhaps sometimes the task representation structure does in some way mirror the task

structure.

Why, then, should the error rates have been higher in the Jammer’s scanner steps than

the Transporter’s if the two procedures each have their own differentiated representations

for those steps? The worse performance in the Jammer’s scanner could have been due to

a semantic confound in the labels. The scanner labels, originally written for the

Transporter procedure, were “Scanner On,” “Active Scan,” “Lock Signal,” and “Scanner

Off,” in order for the Transporter. The Jammer’s order was “Active Scan,” “Scanner Off,”

“Lock Signal,” and “Scanner On.” It may possibly have been confusing having a step

indicating an “off” action as the second of four steps in the scanner subtask and having a

step indicating an “on” action as the last step. Thus it could be that a differentiated task

73

representation combined with a confusing order for step names yielded relatively poorer

performance for the Jammer.

This combination of differentiated procedure representation and semantic confusion

may explain why the subtask-reordered Jammer did not incur any performance hit. In this

case, step ordering within subtasks remained the same for the Transporter and Jammer so

this Transporter-Jammer pair of tasks would not have been susceptible to confusing

confounds like performing an “off” action second in a series of four actions. Yet there

was little in the nature of the frequency and scanner subtasks to imply that one should

inherently come before the other. This implies that using order-neutral step names within

a subtask might extinguish the confusion effect within a subtask, and vice-versa for

between-subtasks.

The Phaser interface had no distractor objects while the Transporter interface had 14

of them, and the Transporter task always had the lowest error rates, 0.03 – 0.05 compared

to the Phaser's 0.07 – 0.13. So having distractor objects certainly was not sufficient to

induce error on its own, though anecdotally it seems that once an error was committed on

the Transporter interface, subjects often clicked the distractor objects within a long

sequence of clicking wrong things before finally getting back on track. This is likely

simply because there were more possible buttons to click at a time when subjects were

apparently just clicking randomly until they stumbled upon the right button. Although

data from our own lab indicated that adding extraneous buttons does adversely impact

performance (Table 1), the distinction appears to be in whether the extraneous buttons

were there to begin with or were added halfway through the testing phase. So far it seems

74

that distractor objects do play a role in action selection, but it is not immediately clear

exactly what that role may be.

Experiment 2’s results are compatible with the CSM account, but not with the SRN’s.

The higher error frequencies of the different scanner subtask Jammer relative to the

Transporter task or the same scanner subtask Jammer is explainable in terms of schema

activations. Top-down activation from the Supervisory Attention System can provide

enough activation to the right schemas at the right times to differentiate performance in

the Transporter and Jammer. But because the Jammer’s scanner steps have semantically

order-incongruous names, in order, “Active Scan,” “Scanner Off,” “Lock Signal,” and

“Scanner On,” the Supervisory Attention System directs some top-down activation to the

wrong Jammer step because of semantic confusion from the step labels.

The CSM should be able to account for the procedure change condition of

Experiment 2 because of its ability to direct top-down activation to schemas. When the

Jammer procedure changes, the CSM’s Supervisory Attention System can set goals to

perform the steps of the scanner subtask in the new order according to the procedure

change instructions. As the time comes to perform each scanner step in the new order, the

SAS can transmit enough top-down activation via the vertical threads (see Figure 2) to

select the appropriate schema.

While the SRN can also explain the lack of error effects in the Transporter task, it

cannot explain the pattern of effects observed in the Jammer. The SRN’s context

representation should provide enough top-down differentiation of action selection in the

two tasks so that Transporter error frequencies would not increase even in the no

procedure change different scanner subtask Jammer condition. But again, as in the case of

75

the procedure change Phaser, the SRN has no way to cope with procedure change in the

Jammer.

Additionally, because it is so narrow in scope the SRN would have failed to predict

the difference in error frequencies between the no procedure change different scanner

subtask Jammer and the no procedure change same scanner subtask Jammer. As far as the

SRN is concerned an action is an action and there are no other factors involved in their

selection besides the co-occurrence associations that it learned during training.

2.3. Behavioral Studies Discussion

What do the behavioral data have to say about the nature of routine procedure

representation and action selection? The lack of error increase for any Phaser step except

for the second Electrical – the power subtask’s postcompletion step – casts a doubtful

shadow on a type of an account that is inflexible, holistic, and purely associative since

one discrete step was affected. The results from the static, different subtask order

Transporter and Jammer also pose a problem for the SRN account of routine procedure

representation. An SRN-type model could perform the two tasks with a low error rate by

choosing the first step based on activation from an instruction node, “do Transporter” or

“do Jammer.” Then when the first subtask is complete, the second subtask is chosen

based on the contextual representation. But then those instruction input nodes and the

contextual representation together effectively are goals in the CSM sense of the term:

they are globally task-relevant representations that direct action selection, particularly in

the absence of environmental cues.

For the procedure change Phaser and Jammer, clearly performance suffered, but

clearly not to catastrophic extents. True, such changes to procedure are beyond the scope

76

of SRN, but that is part of the SRN's problem. Procedure change is important. If you

drive the same route to work every day, but one day find it blocked by construction,

calling in "construction" is not going to appease your boss. People can and do adjust their

routine procedures all the time. How those adjustments are made is an important

component of the larger question of "How do people represent routine procedural

memory?"

How do people adapt representations of routine procedures to the changing

circumstances of the world? The SRN is simply too restrictive in scope to be useful. The

CSM at least hints at how activation from higher-order motivational and attentional

processes can reorder schemas within what usually constitutes one routine behavior and

call on schemas from outside that behavior to assist in adjusting to changing

circumstances.

An ACT-R model of the behavioral data will need to account for the Phaser’s second

“Electrical” postcompletion error and account for the scanner steps’ error rate in the

Jammer and not in the Transporter. The Phaser charging subtask postcompletion error

will likely be due to a mechanism like the one modeled by Chung and Byrne (2008),

wherein a combination of thinly-spread activation and chunk similarity results in the

retrieval of the subsequent step’s chunk instead of the correct one. Modeling of the

Transporter and Jammer data is likely to be more of a challenge as a solution to the one

interface, two tasks, error effect in only one task phenomenon is not readily at hand. But a

solution involving one shared basic representation with lower-level representations

denoting task divergences would be a good starting point.

77

3. AN ACT-R MODEL INSPIRED BY THE CONTENTION SCHEDULING MODEL

The ACT-R model operated in a behavioral loop that retrieved an action

representation from declarative memory, performed the specified action, and then verified

that the action it performed was the correct one. If the action performed was correct, then

the model retrieved the next action representation. In the case of an incorrect action, the

model entered an error recovery mode.

Procedural memory indicated which action representation to retrieve at any given

time. Action representations encoded the visual location and features of the object with

which the action was performed as well as the nature of the action (e.g., click, read). The

split in what part of the task was represented in declarative memory versus procedural

memory was a design decision informed by the Contention Scheduling Model (Cooper &

Shallice, 2000). Errors generated by the model were due to misretrievals, which occurred

for a variety of reasons. Once an error had been committed, the model had two strategies

that it could apply in its attempt to resume correct performance of the current task.

3.1. ACT-R

A brief introduction to ACT-R is in order. ACT-R is a hybrid cognitive architecture. A

cognitive architecture is a framework used for creating models of human behavior. The

cognitive architecture specifies the resources and constraints that are invariant in human

cognition as established by the general consensus of the relevant literature. ACT-R is

hybrid in the sense that it combines features of two very different approaches to modeling

human cognition: the production system and the association network. Production systems

match patterns of conditions to actions to be performed. Knowledge is represented as if-

then rules, productions, with each production specifying a set of conditions to which it

78

will match and one or more actions the system will perform when that production is

performed, or fires. Processing proceeds in a serial fashion with one production firing at

any given time.

Association networks arrange knowledge representation structures into nodes that

each refer to one or many other nodes. Given an activation source, the association

network propagates the activation through the nodes’ associations and outputs the node

with the highest activation. Processing occurs in parallel with activation spreading

through all nodes of the network simultaneously.

ACT-R apportions different types of cognitive processing into modules. Procedural

knowledge and actions are effected in the procedural module, which operates as a

production system. Declarative knowledge is housed in the declarative module, which

operates as an association network. The declarative module’s association network is a

theory of human declarative memory. A production may specify a retrieval request, that

is, a command to the declarative module to retrieve a fact.

Other cognitive and perceptual/motor faculties, such as vision and hearing, are

implemented in other modules. Each module has a buffer with which it may make a small

amount of information, a chunk, available to the rest of the system at any one time. Each

chunk has one or more slots, or places to store references to other chunks or specific

values. The procedural module acts as the central coordinator of all of the modules,

reading (or sometimes writing) the contents of their buffers and instructing them to

perform actions such as to retrieve a declarative memory or to move visual attention.

Two other modules bear mentioning. The goal module holds a special chunk, the goal

chunk, which keeps track of one’s current intentions (Anderson, 2007, pp. 20, 53). The

79

goal module is particularly important because its slots encode control state information

that matches to productions. That way different productions can match to internal states

of the model independently of external stimuli. The goal chunk also acts as an activation

source for the declarative module.

The other module worth mentioning is the imaginal module. The imaginal module is

typically used to store and perform transformations on problem state information

(Anderson, 2007, pp. 20, 53). An example of its use is when solving an equation such as

3x - 7 = 5, it might hold a representation of an intermediate equation such as 3x = 12.

ACT-R is both a computational psychological theory and a software package which

instantiates the theory in a computer program. The program takes as its inputs

productions and declarative chunks relevant to a task, a simulated environment in which

to perform that task (such as a software GUI), and parameters which adjust computational

processes. ACT-R outputs a time-stamped behavior sequence.

ACT-R is important because it brings together accounts of many psychological

phenomena into one unifying account that can explain a wide variety behaviors in a wide

variety of contexts. ACT-R is computational, meaning that its processes are formally

specified and produce qualitative and quantitative characterizations of behavior. Because

ACT-R encompasses what is generally agreed to be invariant about human cognition, a

model which produces output that resembles human behavior can be used to make

inferences about psychological processes responsible for those behaviors.

3.2. Overview of an ACT-R Model of the Star Trek Tasks

The interplay of the procedural and declarative modules, giving ACT-R its hybrid

nature, was particularly important in the model that I constructed of the two Star Trek

80

task experiments. The procedural module performed the actual selection of each action.

As task context changed with completion of each step, a production matched to that

context and fired, selecting an action to perform. Information necessary for the

performance of that action, such as the action type and object to use (e.g., click a button,

read a status message) was represented in the declarative module. The interplay came in

the procedural module selecting an action and requesting the retrieval of information

about that action from the declarative module. Then the procedural module acted

according to the action representation retrieved by the declarative module.

Ideally the model would have accounted for quantities at all levels examined in the

behavioral data, but modeling human error in 14 separate variations of an experiment

paradigm was a significant undertaking. Working top-down worked well for a project

where there were many variations on a theme to cover, particularly because people do

seem to be cognitive misers and were thus likely to employ the same strategies in all the

cases where they could (Gray et al., 2006). Therefore it was important to first address and

constrain the basic behavior in the Star Trek task paradigm.

First and at the highest level came issues that were common to all variations on the

experiment paradigm: How did people perform the basic task? And more specifically,

how were their memory representations of the basic task structured to allow them to

perform it? Next came consideration of issues specific to each trial type within each

condition, such as: What mechanism generated the postcompletion error on the second

“Electrical” step in the Phaser? Why were subjects producing more errors in the

Jammer’s scanner subtask than the Transporter’s? Once the basic model was built,

81

variations of that model could address the variations of the experiment paradigm that

produced these specific error patterns.

Since the CSM’s basic structure was modular and hierarchical, it seemed as though a

schema network might be built to tackle the Star Trek task. The schema network was

programmed in an ACT-R model as productions and declarative chunks. The CSM’s

approach focused on how familiar action sequences arose out of hierarchical knowledge

structures, schemas. It was an approach predicated on the assumption that knowledge

structures mirror the structures that they represent, at least as far as action sequences are

concerned. These structures were given to ACT-R as productions and declarative chunks

representing acquired knowledge of a task and the objects used for that task.

The ACT-R model ran on the same experiment software program used to test human

subjects. Since CSM did make allowances for interactions with other cognitive systems,

it was in a much better position to take this sort of integrated cognitive modeling

approach than the SRN model. Although Cooper and Shallice's system specified how it

may interact with other cognitive and perceptual-motor processes, it did not specify how

those things operate. However, ACT-R does. The knowledge structures that CSM

proposed were given to ACT-R as its acquired knowledge input in the form of declarative

memory chunks (including goal chunks) and productions. Goal chunks are simply

declarative memory chunks that have a special context: When held in the goal module

and made available to the other ACT-R modules via its buffer, it can act as a source of

spreading activation to other declarative chunks and productions can match to it.

For the two procedure-change conditions, the ACT-R model needed a way to acquire

knowledge of the new procedure as the human subjects did. In the human experiments,

82

subjects read instructions that appeared on screen before the procedure change took

place. How ACT-R can do this, and thus potentially how people can do this, has been

addressed by Taatgen, Huss, and Anderson (2008). In brief, their model stored

instructions as declarative memory, retrieved them step by step according to the model’s

productions, and interpreted them and carried them out using other productions.

Furthermore, whenever the model failed to retrieve an instruction specifying what action

to take it had a body of operators from which it could randomly choose. Taatgen, Huss,

and Anderson’s model fit data from an experiment examining two types of instructions in

a complex aviation task and successfully predicted results from a second experiment. The

problem of how to acquire and act upon instructions is non-trivial and has been addressed

by such efforts as Taatgen, Huss, and Anderson. Therefore that process was abstracted in

the model as explained in the model’s methods section.

Two other issues remained outside the scope of the model, semantic manipulation of

control labels in Experiment 1 and flexible subtask execution order in Experiment 2.

Since there was no effect of semantic manipulation of control labels in the human data,

no modeling effort was made to address such experimental manipulations. Also, the issue

of flexible execution of the frequency and power subtasks of the Transporter and Jammer

tasks was ignored in the model since all effects of subtask order execution seemed to be

explainable in terms of Gray et al.’s (2006) Soft Constraints Hypothesis.

The focus of the modeling effort was on human task memory mechanisms that give

rise to error. More particularly, why did error rates differ to the degrees that they did

between conditions and trial types? Finally, although the ACT-R model generated step

completion times as it ran the experiment, those step completion times remained outside

83

the scope of the modeling project. This was because most of the effects obtained in the

behavioral studies were in errors rather than step completion times. This restriction also

served to keep the size of the modeling project within tractable limits.

I examined total errors, rather than only non-repeat errors. By examining total errors

committed the model was constrained not only in the frequency of non-repeat errors

committed, but also constrained in the degree to which the model continued to commit

errors before it resumed the correct procedure. Thus it was important that the model

incorporated error recovery behavior. The error rates studied therefor came from the total

errors committed divided by the number of presentations of that trial type, by condition.

Those rates were also be computed for the human participants for the sake of comparison

of the model’s output to human data, as discussed in the results sections of the two

experiments.

3.3. ACT-R Model Methods

3.3.1. Introduction

At its most basic level, the model worked using a behavioral loop inspired by the

CSM theory. The model used a goal hierarchy to maintain a contextual representation

both of which step within the task it was currently performing and the status of its

progress through that step. For each step performed, the model used activation spreading

from its goal representation to retrieve from declarative memory information necessary to

perform that step. This declarative memory representation included such descriptors of

the action as where it was to occur, the action type (e.g., click or read), and visual

information about any object that the action required. The model then shifted attention to

the visual location specified by the declarative memory representation and performed the

84

specified action. Finally, the model verified that the action just performed was the correct

action and incremented its goal representation to the next step. The model generated

errors using the subsymbolic processes of ACT-R’s declarative module to occasionally

retrieve incorrect action representation chunks from declarative memory. The model

recovered from errors by a simple mechanism that either tried to retrieve the originally

requested action representation again or tried to retrieve an action representation pertinent

to another step.

3.3.2. Influences of the Contention Scheduling Model

The ACT-R model used an explicit, hierarchical goal structure meant to keep track of

its progress through the Star Trek Tasks at multiple levels, as in the CSM. Together

pattern-matching, schema-like productions and the hierarchical goal representations held

in the goal and imaginal buffer chunks formed the basis for the model’s structure and

behaviors.

Both the goal and imaginal chunks each contained two slots assigned to maintain goal

and task context information. The two slots in each chunk simultaneously represented

different levels of the model’s performance through the task space. For instance, the

state-global slot of the goal chunk represented the current task step. The state-local slot

encoded the current phase of the basic behavioral loop. The model cycled through the

basic behavioral loop each time it accomplished one of the task steps, with the two goal

representations controlling behavior at each level. The imaginal chunks slots represented

the top-level context, such as “Do Jammer,” and also the current step. The imaginal

chunk also had a third slot which encoded the current task interface.

85

The top-level context representation stored in the imaginal buffer encoded the current

task’s goal, such as to perform the Transporter or Jammer task. Transporter and Jammer

productions matched to the contents of the top-level context slot of the imaginal chunk at

steps in the two tasks where they differed from each other (where applicable). For

example, the productions that enabled the model to perform the procedure change for the

Jammer checked the top-level context slot of the imaginal chunk. When that value

indicated the post-procedure change Jammer task, then the model requested the retrieval

of the change instruction chunk which specified which action should be performed at that

point.

The value of the current step slot of the imaginal chunk was set by the productions

that verified correct action performance, and only by the those productions. Since the

verify productions only fired in the case of a correctly performed step, the current step

slot provided a reliable representation of the model’s place in the task – the last correct

step performed triggered goal representation of the next step to perform.

The current interface was a reference to the interface type that the model was

currently working with, Phaser or Transporter. The current interface had implications for

action affordances and therefore what action representation chunks may have applied.

Action representation chunks had corresponding interface slots to indicate to which

interface they could apply. The interface slot was specified in retrieval requests made for

action representation chunks, and the interface value was taken from the chunk in the

imaginal buffer. This prevented the model from retrieving action representation chunks

that were inappropriate to its current context.

3.3.3. Implementation of a Cognitive Miser and Handling Procedure Change

86

The model incorporated an economy of task representation that enabled it not only to

use one representation for steps shared by tasks, as in the Transporter and Jammer, but

also enabled it to adapt old procedure representations to post-change procedures. Because

the model used a hierarchical arrangement of discrete goals, as in the CSM account,

subgoals and their actions were modular. Thus one subgoal could be a component of

more than one supergoal. This meant that for the Jammer task that was identical to the

Transporter task, the model’s top-level goal for the Jammer task referenced the subgoals

for the Transporter task. In other words, the same-Jammer task was composed of

Transporter subgoals and action representations.

Discrete, hierarchical goals also enabled the model to cope with procedure changes.

When the experiment instructed the model to change procedures, such as going from the

non-intervening subtask Phaser to the intervening subtask Phaser, the model simply

altered the order in which it executed the relevant subgoals. More detail regarding the

model’s shared task representations and handling of task procedure changes is included in

Appendix E.

3.3.4. Error Generation and Recovery

It was necessary to enable an error recovery mechanism in the model because trials

did not end for subjects when they erred, and thus they might commit multiple errors

(repeats aside) during the course of one trial. Furthermore, because subjects committed

errors in the tasks – indeed, that was the point of the experiments – and because they

were not allowed to continue with the task until they had recovered from their errors,

error recovery was thus an important part of the Star Trek tasks and a behavior that must

have been addressed by the model.

87

3.3.4.1 Error Generation

ACT-R can model error that is both systematic and stochastic because it is a hybrid

cognitive architecture that combines a production system with an associative network

system, its declarative module (Anderson et al., 2004). Error can therefore arise as a

consequence of either system. Error in the current model was caused by noisy declarative

retrieval processes that can sometimes return the wrong representation.

ACT-R’s declarative module retrieves the chunk with the highest activation. The fact

that several components contribute to a chunk’s activation means that the chunk with the

highest activation is not necessarily the one referenced in the retrieval request

specification. Equation 2 describes how activation is computed for any given chunk i at

the time that it is being evaluated for retrieval. Activation is the sum of a base level

activation term, a spreading activation term, a partial-matching term, and noise.

Spreading activation is essentially the total amount of activation source available

divided by the number of occupied slots in the source chunk (here, the goal chunk) times,

for each slot value that refers to the target chunk, the strength of association to the target

chunk. Chung and Byrne (2008) simulated high working memory loads by occupying

three slots of the goal chunk with dummy chunks that “stole” activation available for the

retrieval request since they were in the goal chunk but did not refer to the target

declarative chunk. Those three slots acted like the state information used for the working

memory letter recall task. Chung and Byrne’s technique was adopted for this ACT-R

model.

iiiii PSBA ε+++=
(2)

88

The model ran with partial matching enabled. This means that when ACT-R

attempted a retrieval, if a chunk in a slot specified in the retrieval request did not match

the chunk in the corresponding slot of the chunk under consideration, then ACT-R

calculated a mismatch penalty. The idea is that chunks not matching the retrieval

specification get penalized by some amount of activation proportional to how dissimilar

they are to the retrieval specification. That mismatch penalty is equal to the similarity

between the two chunks times the match scale parameter. The match scale parameter was

set to 1.8 as an empirical fit.

Retrieval transient noise is a feature of the ACT-R theory based on decades of

cognitive psychological research and as such is meant to embody a basic property of

human declarative memory. ACT-R can be configured to run with some user-specified

amount of noise added to the computation of chunk activation in the retrieval process.

Noise is a transient component which is computed each time a retrieval request is made

and it is generated from a logistic distribution with a mean of 0 and a standard deviation

as specified by the activation noise parameter. The activation noise parameter of this

project’s model was set to 0.23, which is in a fairly conventional range for ACT-R models

(Chung & Byrne, 2008).

Other global parameters set for this model controlled aspects of chunk retrieval.

Maximum associative strength, the maximum strength of association between two

chunks, was set to 2. Retrieval threshold was set to -2 which meant that virtually all

retrieval requests would result in something being retrieved. Appendix F contains several

tables detailing global and chunk parameters, their values, and reasons for setting them to

their values.

89

Parameters for many individual chunks were fit empirically. For example, some

action representation chunk base levels, B in Equation 2, were set manually. While base

levels defaulted to 0, the two postcompletion steps of the Phaser had lower base levels.

The relatively lower base levels of these and other chunks decreased the likelihood that

these action representation chunks would be retrieved upon request, thereby increasing

the likelihood of error at these steps to rates that approximated those found in the human

data. The action representation chunk for the second instance of “Electrical” was set to

-1.2 and the action representation chunk encoding the second “Shot” step was set to -1.1.

The base levels for three of the Transporter interface’s action representation chunks,

“Scanner On”, “Scanner Off”, and the second instance of “Synchronous Mode”, were all

set to -0.4.

Chunk similarity defaulted to the maximum difference, which was set to -10. This

was useful as a way to prevent chunks appropriate to one task interface from being

retrieved while the model was performing a task with another interface. That is, like

having the “interface” slots in the imaginal chunk and the action representation chunks, it

prevented chunks encoding Transporter steps from being retrieved during a Phaser trial.

Typically, chunks within a subtask had similarities set to -0.95 while chunks in different

subtasks within the same task had similarities of -1. Certain chunks encoding steps that

seemed to be confused with each other by the subjects, such as in a postcompletion step,

had higher similarity. For example, because clicking “Main” is appropriate when the task

is complete and the participants know that the target was destroyed (therefore completing

the main task), the second “Shot” and the “Main” chunks are given a higher-than default

similarity, meaning that when one is requested, the other can sometimes be retrieved in its

90

place. This was even more likely when working memory load is high (Chung & Byrne,

2008). High chunk similarities can also encode things like a semantic confusion effect of

doing "Scanner Off" second, after “Active Scan” and before “Scanner On” in the scanner

subtask. These chunk similarities had values as high as -0.7.

For the particular change instruction chunk that was supposed to be retrieved by

association with a particular action representation chunk, the strength of association

ranged from 1 to 2. For change instruction chunks not to be retrieved by a particular

action representation chunk, that value ranged from -0.5 to 0.5. Again, all non-default

chunk parameters were fit empirically.

Probability of generating an error became higher when two chunks must be retrieved

for the completion of one step, as in the different-scanner Jammer task. The model could

retrieve the wrong change instruction chunk, in which case it would have an instruction

indicating the performance of a wrong step. Of course, if the model had retrieved the

correct change instruction in the first place it could still misretrieve the action

representation chunk indicated by the change instruction chunk.

3.3.4.2. Error Recovery

Neither Cooper and Shallice (2000) nor Botvinick and Plaut (2004) discussed error

recovery. But recovery from errors is an important component behavior of executing

routine procedures because life does not stop when you reach for the cream having meant

to reach for the sugar as it did in these two models of coffee making. A model

implemented in the CSM theory could possess schemas that encode error recovery

procedures. Botvinick and Plaut, however, restricted the scope of their modeling effort so

much that they left out any consideration of error recovery in routine procedures. Their

91

model only generated the initial selection of the routine actions. Furthermore, in order for

the SRN to be effective at error recovery it would have had to learn correct action outputs

for every possible error state context.

The experiment emitted a buzzer sound whenever subjects erred in the Star Trek

tasks. The model used this feedback to trigger initiation of an error recovery procedure.

There were two error recovery strategies that it could perform: One was to simply try

again to retrieve the action representation chunk indicated by the step state information in

the goal chunk. Another strategy was to instead try to retrieve some other action

representation chunk that was not the one indicated by the step state information in the

goal chunk (James McClelland, personal communication, October 20, 2008). In either

case, once the model had retrieved an action representation chunk it resumed the basic

behavioral loop.

Additional failures could result from other circumstances. If the model simply failed

to retrieve any action representation chunk it could likewise opt to make the same

retrieval request again or try to retrieve some other action representation chunk. If the

model committed an error while acting on a change instruction, it could try again to

retrieve a change instruction chunk using problem state information encoded in the

current step slot of the imaginal chunk. The model could use the value of that slot to

attempt again to retrieve the appropriate change instruction. Additionally, if the model

was trying to recover from an error it could try to retrieve an applicable action

representation chunk at random.

The ubiquity of the “if error, try retrieval” procedure, in one form or another, acted as

a sort of catch-all mechanism to ensure that the model did not stop running until it had

92

finished its task. Additionally, having the model retrieve random, unspecified (within the

constraints of being appropriate to the current task interface) action representation chunks

served to generate a sort of “lost” behavior wherein the model simulated a long chain of

errant and seemingly random clicks until it had hit upon the correct action. This type of

random clicking behavior has often been informally observed in the human data from the

Star Trek tasks.

3.3.4.3. Error Recovery Strategy Choice

Both Experiments 1 and 2 induced time pressure to perform as the experiment

awarded significant bonus points for finishing trials of each task within certain time

limits. ACT-R’s utility learning mechanism already takes into account the passage of

time, but not time pressures induced by the task such as in Experiments 1 and 2. Time

pressure mattered for deciding whether to try again to retrieve an action representation

chunk indicated by goal information within the goal chunk or to abandon that goal

information and try instead to retrieve a random action representation chunk and perform

its indicated action. Fundamentally the model tried to pick the error recovery strategy

with the shortest expected time to lead to a correct step execution. Both error recovery

strategies were encoded by productions that competed with each other, with the higher-

utility production usually winning selection. ACT-R learns the utility of each production

according to Equation 3.

Production utility learning occurs when a reward is triggered, and all productions that

have fired since the last reward are updated. The effective reward of a production i is the

() () () ()[]11 −−+−= nUnRnUnU iiii α

(3)

93

reward value received at time n minus the time since the selection of production i

(Anderson, 2007, pp. 160 – 1). The learning rate, α, was left at ACT-R’s default, 0.2.

Experiment reward points for subjects were directly translated into reward units for ACT-

R such that the model received 25 units of reward for every step that the model

completed correctly and -50 units of reward for every error that it committed. Constant

time pressure worked by triggering a reward of -5 reward units for every second that

elapsed during a trial. Thus the model’s choice of error recovery strategy should have

been sensitive to the passage of time and to reward signals emanating from the task

interface in the form of the presence or absence of the warning buzzer as a consequence

of each action performed by the model. However, it should be noted that this particular

model has not been evaluated against another similar model that did not implement a

constant time pressure mechanism.

3.4. ACT-R Model Results

Examination of results of the present model will focus on the per-condition trial type

error rate measure developed from the behavioral studies. This measure will be used to

assess what the experiment and model results have to say about how people structure task

representations and how those representations contribute to human error. Most of the

effects observed in the two behavioral studies were in some measure of error and not in

step completion times, and therefore the most meaningful pattern of results between per-

condition trial types of the model would be measured by relative error rates.

Model development focused on per-condition trial type error rates, rather than only

non-repeat error frequencies. This measure of error ensured that the model’s error

recovery procedures allowed the model to recover within a range of number of mistakes

94

comparable to humans because it included the degree to which the model selected

random, wrong actions while trying to recover from the initial error. It is an easy way to

compare the degree of random action selecting in the model’s output to the subjects’.

Error recovery is an important component of the task and will be captured implicitly by

setting total error rate, rather than non-repeat error, as the modeling criterion dependent

measure.

One separate model ran for each condition of the two experiments. All models were

identical to each other to the extent that their experimental conditions were identical. The

models differed from each other only as a function of their differing tasks. For example,

in simulating the postcompletion step of the Phaser’s charging subtask, chunk similarities

were high for the second “Electrical” chunk and whatever chunk encoded the step that

came after it. That step was “Lens” in the non-intervening subtask version of the Phaser

and it was “Cannon” in the intervening subtask Phaser.

All four models used the same values for global parameters. Declarative memory

consisted of 48 chunks of 7 chunk types, not including chunks that encoded change

instructions because they were not applicable to all experiment conditions. Except as

noted previously, chunk parameters remained identical across the four models, and for

every chunk in every model this included parameters controlling base levels, chunk

similarities, and strengths of association.

Productions remained identical across the four models to the extent that procedures

remained identical across the four experiment conditions. All four models had identical

productions encoding the basic behavioral loop, error recovery procedures, and

procedures for acting on change instructions, where applicable. The only productions to

95

vary between the models were the productions that selected the next actions to perform.

Although, notably, these productions were identical for the Transporter and Jammer tasks

to the extent that the Transporter and Jammer tasks were identical.

Each model ran 400 times on its version of the experiment, though data from some

model runs was discarded because of software crashes. Since the ACT-R models were

stochastic processes, 400 runs should be a more than sufficient size to obtain stable

means for error quantities. Table 5 enumerates experiment conditions and how many

model runs in each condition contributed data to analyses. Finally, it seems like a

reasonable target criteria for assessing a model that spans all 14 per-condition trial types

of two experiments would be to generate error rates that fall between the 25th and 75th

percentiles of the human error rates.

96

Table 5
Experiment Conditions and Model Runs

Experiment 1 Condition Experiment 2 Condition Runs N

No procedure change, intervening
subtask Phaser

No procedure change, different
scanner subtask Jammer

400

Procedure change Phaser Identical Jammer 386

No procedure change, non-
intervening subtask Phaser

Procedure change Jammer 392

Semantic control Phaser Jammer, different subtask order 397

Figures 19 – 21 compare mean error rates between human data and the model’s

results. The error rate for any given trial type in a condition was equal to the sum of all

errors, including repeats, across all twelve steps divided by the sum of all step

presentations, or instances of opportunity for error. The model deviated from the subject

means by a maximum per-condition trial type error proportion of 0.033 and by a

minimum of 0.0007, with a median deviation of 0.0166.

97

Figure 19. Phaser error rate, by condition of Experiment 1. Box plots represent human data distributions with means
depicted as dots within boxes. Model means are depicted as adjacent, lone dots. R2 for model prediction of human data
= 0.755.

B

B
B

B

B

B

B
B

B
B

s
ta

ti
c
,

in
te

rv
e

n
in

g
 s

u
b

ta
s
k

m
o

d
e

l

p
ro

c
e

d
u

re
 c

h
a

n
g

e
,

p
re

-c
h

a
n

g
e

m
o

d
e

l

p
ro

c
e

d
u

re
 c

h
a

n
g

e
,

p
o

s
t-

c
h

a
n

g
e

m
o

d
e

l

n
o

n
-i
n

te
rv

e
n

in
g

m
o

d
e

l

s
e

m
a

n
ti
c
 c

o
n

tr
o

l

m
o

d
e

l

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

98

Figure 20. Jammer error rate, by condition of Experiment 2. Box plots represent human data distributions with means
depicted as dots within boxes. Model means are depicted as adjacent, lone dots. R2 for model prediction of human data
= 0.989.

B B

B

B

B

B

B
B

B

B

s
ta

ti
c
,

d
if
fe

re
n

t-
s
c
a

n
n

e
r

m
o

d
e

l

s
ta

ti
c
,

s
a

m
e

-s
c
a

n
n

e
r

m
o

d
e

l

c
h

a
n

g
e

 p
ro

c
e

d
u

re
,

p
re

-c
h

a
n

g
e

m
o

d
e

l

c
h

a
n

g
e

 p
ro

c
e

d
u

re
,

p
o

s
t-

c
h

a
n

g
e

m
o

d
e

l

s
ta

ti
c
 s

u
b

ta
s
k
 r

e
o

rd
e

ri
n

g

m
o

d
e

l

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

99

Figure 21. Transporter error rate, by condition of Experiment 2. Box plots represent human data distributions with
means depicted as dots within boxes. Model means are depicted as adjacent, lone dots. R2 for model prediction of
human data = 0.278.

B

B B

B B B

B

B

s
ta

ti
c
,

d
if
fe

re
n

t-
s
c
a

n
n

e
r

m
o

d
e

l

s
ta

ti
c
,

s
a

m
e

-s
c
a

n
n

e
r

m
o

d
e

l

c
h

a
n

g
e

 p
ro

c
e

d
u

re

m
o

d
e

l

s
ta

ti
c
 s

u
b

ta
s
k
 r

e
o

rd
e

ri
n

g

m
o

d
e

l

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

100

3.5. ACT-R Model Discussion

3.5.1 Summary

What aspects of the model were important for its ability to vary between error

proportions of roughly 0.02 to 0.12 in a wide variety of experimental conditions? What

do each of those aspects have to say about human task representations and how they give

rise to the qualities and quantities of error observed? Most of all, how was it that

essentially the same model was able to match error performance in 14 trial types across 4

between-subjects conditions?

That models that were identical to each other to the extent that their tasks were

identical to each other were able to match all human error rates from the Star Trek tasks

says something significant both about the nature of human action selection and modeling

of human error. The ACT-R model’s inheritance of hierarchical goal representations from

the Contention Scheduling Model of Cooper and Shallice (2000) contributed much to its

ability to capture a wide range of behaviors in the Star Trek tasks. Productions functioned

much like the schemas of the CSM account. The productions responded most often to

representations about the internal state of the model, rather than representations of the

state of the external worlds, within both the task at the global level and within the

individual step at the local level.

Schemas matching to internal task representations at more than one level of behavior

created a hierarchical goal representation. This hierarchy of goals was important to model

functioning because it enabled behavior that was both efficient for routine tasks and

adaptable when situations changed. The adapted behavior was fairly robust, enabling

performance that selected the correct action more often than not.

101

Reflecting this multi-level reality of Star Trek task completion, the model

implemented an explicit, hierarchical goal structure meant to keep track of its progress

through the task at both levels. Together the hierarchical goal representations held in the

goal and imaginal chunks and the pattern-matching, schema-like productions formed the

basis for the model’s structure and behaviors. Consequently, the model was able to match

not just the correct behavior, but the errors generated in the right proportions in 14

separate trial types, including conditions with changing procedures and confusing tasks

that shared steps and interfaces, and it was able to recover from errors to finish trials.

Clearly the model has captured something important not only to the representation of

routine behaviors, but also error in routine procedural behavior, recovery from those

errors, and adaptation of routine behaviors to changing circumstances.

The cognitive mechanisms that produced correct performance in all of the trial types,

practiced, automatic procedural memory selecting the action to perform and then

requesting retrieval of declarative knowledge describing parameters of the action, were

flawed. The nature of the flaws produced error rates that matched humans’. The flaws lied

in the performance of the declarative memory system. The declarative memory system

has a difficult task to perform for us, which is essentially to store all facts that we come

across and at some unknown future time reproduce those facts on-demand.

Our minds simply cannot contain unlimited storage and so the declarative system

makes the problem tractable by performing a triage on facts (Anderson, 2007, chap. 3).

Those facts that are associated to more other facts and that get used relatively more often

stay. Those facts that do not have associations with many other facts and that do not get

used often go. And often facts that are similar to each other can sometimes be

102

interchanged. These features of the human declarative memory sometimes become

hinderances to human performance when a needed fact is triaged out of our memory and

becomes inaccessible just when we need it for performing a step in a task.

Setting certain chunk parameters to just the right values tuned the misretrieval

probabilities so that the model would generate error in the right proportions. Ideally these

chunk parameters that were fit to the data should reflect some micro-phenomena

occurring with those particular steps, such as the confusability of a postcompletion step

with its subsequent step as Chung and Byrne (2008) had found.

Meanwhile, the high strength of association between step names that triggered

retrieval of change instructions ensured a high likelihood of retrieval of the right change

instruction chunk, contributing to total error in appropriate proportions. The steps

affected by procedure change, and especially by procedure change and susceptibility to

mode errors, did not elicit catastrophic failure of subjects to perform them. Quite the

contrary, subjects were able to perform these steps under very difficult circumstances the

majority of the times they were presented with them. The combination of productions that

requested the retrieval of the change instruction chunks and acted on them and the

strength of association between the chunk encoding the flagged step and the chunk

encoding the procedure change instruction enabled the model to perform the procedure

change tasks and operate the dual-mode Transporter and Jammer task interface with

nearly the same proportions of errors generated as humans.

The change instruction procedure enabled the model to adapt an extant routine

procedural task representation to an instructed procedure change with only limited

increase in error proportion. The model’s procedure assumed that subjects entered the

103

experiment testing session with the procedural knowledge necessary to hold a reference

to a future step in working memory, to compare it to a goal representation, and then to

use that reference to retrieve a declarative memory representation encoding an instruction

indicating a different step to perform instead and then to do that new step.

This is not so far-fetched an assumption. Things happen all the time in daily life that

disrupt the routine procedures we engage in. The telephone may ring just as you are about

to pour a spoonful of sugar into your coffee. People cope. The model used just two

productions plus a small amount of declarative knowledge to cope with procedural

change and it did so with similar error proportion consequences as subjects. It therefore

seems likely that humans may adapt to changing or otherwise difficult circumstances with

simple, pre-packaged sub-routines that attempt to match task states to declarative

knowledge. This is a very important feature of the ACT-R model because it allowed the

model to match human error rates across the wide range of conditions and trial types

present in the behavioral studies. Furthermore this is a very important feature of human

procedural behavior because it allowed subjects in the behavioral studies to cope with the

wide range of conditions and trial types present in the behavioral studies, including the

procedure changes. Even with procedure changes, mean error rates for subjects never

exceeded 0.13 for any trial type.

3.5.2. Comparison with the SRN Model

Botvinick and Plaut’s (2004) SRN model, on its own, provides a parsimonious

explanation of the very narrowly-defined behavior it is asked to explain – but its fault lies

in its very narrowly-defined scope to begin with. It cannot even provide a complete

account of human action in routine procedures because it does not account for error

104

correcting behavior. Nor does it generate meaningful quantitative measures of error in a

wide variety of contexts. The ACT-R model had only two isomorphs of one task, but it

was able to handle five distinct versions of those (Phaser non-intervening, Phaser

intervening, Transporter & same-Jammer, different-scanner Jammer, rearranged subtasks

Jammer) effectively and can easily be expanded to handle many different and non-

isomorphic tasks using the same approaches used here.

The SRN could never have adapted to novel changing circumstances because it only

outputs behavioral patterns that it has acquired in training. One issue is the holistic nature

of its contextual representation. Because it can only use one, indivisible representation of

its context, it cannot form novel combinations of context representation at one level, such

as task, with context representation at another level, such as step. Because CSM and

ACT-R use separate, discrete representations for each level of behavior, they can perform

old steps in new task contexts.

Another problem for the SRN type of account of routine procedural behavior is the

postcompletion error observed for the second “Electrical” step of the charging subtask of

the Phaser tasks. While working memory effects on error might be explainable by the

SRN in terms of contextual representation degradation in general, the postcompletion

effect particular to that step would not be explainable by such a mechanism. This is

because the postcompletion effect depends on two discrete action representations being

similar to each other and the SRN lacks discrete action representations.

4. GENERAL DISCUSSION

It was important that each ACT-R model handle all the same between-subjects

conditions as each of the subjects because it was only by constraining the models in that

105

way that they were able to address effectively the issues of task representation, error

generation, error recovery, and procedure change. The results of the behavioral and

modeling studies showed that hierarchical goal information does matter for cognitive

control across contexts within a task. Also, perceptual-motor considerations weigh on

action selection, as the Soft Constraints Hypothesis (Gray, Sims, Fu, & Schoelles, 2006)

predicts and as we saw in Experiment 2 with regard to subtask order execution in the

Transporter and the Jammer.

The interface displays used in the studies are fairly typical of GUIs in that they

feature clusters of interactive buttons of a variety of styles (e.g., checkboxes and radio

buttons). Previous work with the Star Trek paradigm (e.g., Chung & Byrne, 2008; Byrne

& Bovair, 1997; Byrne, Maurier, Fick, & Chung, 2004) has explored various

manipulations of the interface (see Table 1) and has found similar patterns of error and

response slow-down. Therefore it is likely that the results observed are not idiosyncratic

to the particular task environment used in Experiments 1 and 2.

Most of the effects observed in the behavioral data seemed to have roots in memory

mechanisms, such as might be explained by spreading activation combined with high

similarity between certain steps. The ACT-R model, using memory structures inspired by

CSM, generated per-condition trial type error rates similar to subjects' by just such

mechanisms. The model also suggested methods for dealing with tasks that have shared

or even duplicated procedures, procedure changes, and recovery from errors.

It is important that the representations supporting human behavior remain flexible

enough to adapt to changing circumstances. Having multiple, discrete, hierarchically-

organized goal and context representations enables behavior that is both routine – in the

106

sense of being practiced, skilled and to some degree automatic – and flexible to some

degree by placing contextual representations into several pieces that are each coherent

and discrete.

A connectionist approach like the SRN, with its holistic task context representation,

cannot represent its place within its task independently from representing an arising need

to activate error correcting behaviors on the occasion of an error commission. The SRN

can only output behaviors that it has learned to associate with the input states to which it

has been exposed during its training. So it would have to learn error correction behaviors

separably for every step in the task. It cannot generalize behaviors and thus it cannot

produce old behaviors in new contexts. Similarly connectionist approaches cannot call

upon previously-known mini-procedures to harvest new knowledge and apply them to

transform old procedures into new procedures that adapt to a changing task environment.

Though isolated cognitive theories may make some contribution to the body of

knowledge, theories that integrate across a wider range of behaviors and conditions are

likely to make better contributions to our advancement of human behavior and

performance. In the real world, routine procedural memory, working memory, visual

perception, and motor systems – to name just a few examples – all work in concert within

the context of at least the given task and artifact. By constraining theories to account for a

wide range of phenomena we can speak to how those cognitive subsystems interact to

give the full range of human behavior. As mentioned in the ACT-R model’s discussion

section, the SRN model fails to provide accounts of postcompletion error generation,

error recovery behavior, and adaptation to procedure change. I opted not to build the

107

connectionist model that I had originally proposed on the basis of the SRN’s inability to

address these important phenomena.

The work performed in the behavioral and modeling studies is important for what it

says about the nature of human task representation and predicting human error. Human

task performance seems to rely on discrete goal representation at more than one level.

One goal represents micro-level activities like retrieving action representations and

making movements while another goal level represents progress through steps of the task

space. Error occurs regularly, mostly as a consequence of recalling the wrong action

representation. Fortunately, people have a few pre-packaged strategies that they can rely

upon to recover from the errors that they commit. Finally, the multi-level discrete goal

representations allow for efficient and flexible action execution that can adapt to changing

circumstances.

The ACT-R model that addresses those phenomena is a first step toward developing

cognitive engineering tools that can predict not only human error probabilities but also

the behavior of humans immediately post-error as well as in reaction to changing

circumstances. Cognitive engineering models that can account for these phenomena can

be used to evaluate new procedures and tools for high-performance, high-risk domains

like aviation, air traffic control, and medicine well before they are put into operation. That

way the models can find procedure and tool designs and implementations that pose high

risk for inducing error in human operator performance. Cognitive engineering models

lacking accounts of task representation structure, error generation, error recovery, and

adaptation to change will not be able to perform these important design evaluation tasks

for us.

108

The results gleaned from the human and modeling studies have important practical

implications for designers of human-machine interfaces. Human subjects produced the

lowest error rates in the Transporter task, the same-scanner Jammer and the reordered

subtask Jammer while error rates were relatively high in all versions of the Phaser. Closer

analysis revealed that the Phaser’s relatively high error rate was due to the presence of

two postcompletion steps in that procedure. The model replicated Chung and Byrne’s

(2008) postcompletion error mechanism wherein working memory constraints on

spreading activation to declarative memory coupled with similarity between the

postcompletion action representation and the representation of the subsequent action

increased probability of error commission at the postcompletion step. Interface and task

designers therefore should avoid the inclusion of postcompletion steps (or any other

closely-related neighboring steps) in their procedures. Should that be unavoidable,

designers should make minimization of demand on working memory at that point in the

procedure their top priority.

All error commission by the models were caused by misretrieval of action

representations. Misretrievals stemmed from the failure of sufficient activation to spread

from references to the correct action representation in the models’ goal chunk to the

correct action representation chunk in declarative memory. More source activation would

have been available to propagate to declarative memory had it not been divided over so

many task goals, including representations of current letters for the letter recall task. Here

the goal chunk was analogous to human working memory. The models’ explanation for

error in the Star Trek tasks suggests that working memory should be viewed as one of the

109

most scarce resources available to the operator. As such, a relatively very high premium

should be placed on demand for its use in task environments.

4.1. Unresolved Issues

Though the ACT-R models made an important advance in our understanding of

human procedural representation, they were a first attempt at this domain. Refinements

remain to be made in order to explain all of the behaviors observed in the two

experiments.

First, the model committed no distractor object errors such as was observed in human

data during long chains of errors on some single steps. However, this issue could be fairly

easily remedied by instantiating a loop that looks for a button and clicks it without having

first tried to request the retrieval of a chunk encoding that button.

Another issue regards shared task representations. Why did the structure of all

Transporter interface tasks derive from the Transporter task? That is, why was the

Jammer task represented in terms of departures from the Transporter task and not vice

versa? It is more cognitive miserly to think of two tasks in terms of one task and how the

other is different. Probably it could just as easily have been the Transporter task

represented in terms of departures from the Jammer.

There is room for improvement in control of retrieval for task-appropriate action

representations. The model used two methods to prevent the retrieval of inappropriate

action representation chunks: interface slots in the action representation chunks and in the

imaginal chunk and large chunk dissimilarity between chunks appropriate to different

interfaces. Having two methods to prevent inappropriate chunk retrieval is redundant.

Probably one of those methods would have sufficed. Future work might examine whether

110

both methods are really necessary or whether it might be more parsimonious to use one

or the other.

The ACT-R model examined error at a very shallow level compared to its

examination in the human data. Since error at the trial type level is composed of error at

each of the steps, it would have been preferable to tune the model’s performance down to

the step level. Analysis of the step completion time data also would be helpful for

providing some explanation for the human effects of step time completion. Finally, many

chunk parameters were set empirically. It would have been better if they had instead been

set a priori based on theoretical motivations.

These things were not made first priority for the modeling effort for two reasons.

First, establishing one goal, to match error rates of the 14 per-condition trial types, made

the modeling problem tractable. Secondly, by starting with the high-level, quantitative

characterization of human performance and error in the experiments, a common

description for human representation of routine procedures could be made across all trial

types in all four conditions of the two experiments.

Another issue of project scope involved the notion of error in the Star Trek task

paradigm. It is important to point out that the Star Trek task environment is a very

simplistic one in terms of error commission and error feedback. The most complicated

deviation from correct procedure possible is the clicking of a single button since the

experiment simply does not allow further action until the correct action is performed.

Seldom do people have such a check on the growth of error severity or get immediate

feedback informing them that they have committed an error in the task that they were

trying to perform. This is a real limitation of the task paradigm. However despite that

111

limitation subjects still made a significant number of errors and in meaningful patterns,

such as the postcompletion errors in the Phaser task. Even more complex error recovery

scenarios like real fault diagnosis are important areas, but they lie beyond the scope of the

current effort.

4.2. Future Work

The most obvious goal for a future modeling effort would be to extend the current

project’s model down to the same level of analysis used for the behavioral data – down to

the per-step error frequencies and step completion times measured in the behavioral

studies. Then the model could provide both the wide-ranging account of the current

project’s model and the detailed per-step explanation of Chung and Byrne’s (2008)

model.

Not very many global parameters were fitted, and that is good because using non-

default parameter values often bring with them assumptions about cognitive mechanisms.

But many chunk parameters were fitted and these parameters were important to model fit.

This may present an obstacle to being able to generalize the model to other tasks because

of the number of chunk parameters that were empirically fit to the behavioral data after

the fact.

On the other hand, the psychological phenomena embodied in many of those

parameters would have originated from the training session and the subsequent week

intervening between it and the test session. A better model should be able to eliminate

fitting those parameters by also modeling the training session and the intervening week.

Hopefully a refined model could generalize to other tasks to explain error generation,

error recovery, and coping with the not-so-routine. Although Card, Moran, and Newell

112

(1983) discussed how to extend GOMS to model some erroneous behaviors and simple

error correction behavior, they did not discuss why the errors arose in the first place.

Hopefully, eventually, findings from this model about the causes of human error in

routine procedures can feedback into cognitive engineering models like GOMS to say

something useful about human error probabilities given a task, an interface, and the pre-

existing user knowledge brought to bear on the task. Then such engineering models can

be put to use designing safer and more economical human-machine systems and

procedures.

Finally, future modeling efforts should explore fit metrics that are not dependent on

the number of subjects run in each condition. Such a future model might be intended to

fall within the average intra-individual deviation, thus passing a sort of Turing test for

model fit.

113

5. REFERENCES

Anderson, J. R. (2007). How can the human mind occur in the physical universe? New

York, NY: Oxford University Press.

Anderson, J. R., Bothell, D., Byrne, M. D., Douglass, S., Lebière, C., & Qin, Y. (2004).

An integrated theory of the mind. Psychological Review, 111, 1036-1060.

Anderson, J. R., Reder, L. M., & Lebiere, C. (1996). Working memory: Activation

limitations on retrieval. Cognitive Psychology, 30, 221 – 256.

Anderson, J. R., Taatgen, N. A., & Byrne, M. D. (2005). Learning to achieve perfect time

sharing: Architectural implications of Hazeltine, Teague, and Ivry (2002). Journal of

Experimental Psychology: Human Perception and Performance, 31(4), 749-761.

Botvinick, M., & Plaut, D. C. (2004). Doing without schema hierarchies: A recurrent

connectionist approach to normal and impaired routine sequential action.

Psychological Review, 111, 395 – 429.

Botvinick, M. M., & Bylsma, L. M. (2005). Distraction and action slips in an everyday

task: Evidence for a dynamic representation of task context. Psychonomic Bulletin &

Review, 12 (6), 1011 – 1017.

Botvinick, M. M., & Plaut, D. C. (2006a). Such stuff as habits are made on: A reply to

Cooper and Shallice (2006). Psychological Review, 113 (6), 917 – 928.

Byrne, M. D. (2003). A mechanism-based framework for predicting routine procedural

errors. In R. Alterman & D. Kirsh (Eds.) Proceedings of the Twenty-Fifth Annual

Conference of the Cognitive Science Society. Austin, TX: Cognitive Science Society.

Byrne, M. D., & Bovair, S. (1997). A working memory model of a common procedural

error. Cognitive Science. 21(1), 31-61.

114

Byrne, M. D., Maurier, D., Fick, C. S., & Chung, P. H. (2004). Routine procedural

isomorphs and cognitive control structures. In C. D. Schunn, M. C. Lovett, C. Lebiere

& P. Munro (Eds.), Proceedings of the Sixth International Conference on Cognitive

Modeling (pp. 52-57).

Card, S. K., Moran, T. P., & Newell, A. (1983). The psychology of human-computer

interaction. Hillsdale, NJ: Lawrence Erlbaum.

Chung, P. H. (2006). Changing the interface with minimal disruption: The roles of layout

and labels. Doctoral dissertation, Rice University, Houston, TX.

Chung, P. H., & Byrne, M. D. (2008). Cue effectiveness in mitigating postcompletion

errors in a routine procedural task. International Journal of Human-Computer

Studies, 66, 217-232.

Cooper, R. P., & Shallice, T. (2000). Contention scheduling and the control of routine

activities. Cognitive Neuropsychology, 17, 297–338.

Cooper, R. P., & Shallice, T. (2006a). Hierarchical schemas and goals in the control of

sequential behavior. Psychological Review, 113, 887–916.

Cooper, R. P., & Shallice, T.(2006b) Structured representations in the control of behavior

cannot be so easily dismissed: A reply to Botvinick and Plaut (2006). Psychological

Review, 113, 929 – 931.

Degani, A., Shafto, M., Kirlik, A. (1999). Modes in human-machine systems: Constructs,

Representation, and classification. The International Journal of Aviation Psychology,

9, 125-138.

Elman, J. L. (1990). Finding structure in time. Cognitive Science, 14, 179 –211.

115

Fennell, K., Sherry, L., Roberts, R. J., & Feary, M. (2006). Difficult access: the impact of

recall steps on flight management system errors. International Journal of Aviation

Psychology, 16(2), 175-196.

Fu, W. T., & Gray, W. D. (2004). Resolving the paradox of the active user: Stable

suboptimal performance in interactive tasks. Cognitive Science, 28, 901–935.

Gray, W. D., & Boehm-Davis, D. A. (2000). Milliseconds matter: An introduction to

microstrategies and to their use in describing and predicting interactive behavior.

Journal of Experimental Psychology: Applied, 6 (4), 322 – 335.

Gray, W. D., & Fu, W. T. (2004). Soft constraints in interactive behavior: The case of

ignoring perfect knowledge in-the-world for imperfect knowledge in-the-head.

Cognitive Science, 28, 359 – 382.

Gray, W. D., Sims, C. R., Fu, W. T., Schoelles, M. J. (2006). The soft constraints

hypothesis: A rational analysis approach to resource allocation for interactive

behavior. Psychological Review, 113 (3), 461 – 482.

Howell, D. C. (2002). Statistical methods for psychology. Pacific Grove, CA, USA:

Duxbury.

John, B. E. (2003). Information processing and skilled behavior. In J. M. Carroll (Ed.)

HCI models, theories, and frameworks: Toward a multidisciplinary science. San

Francisco: Morgan-Kaufmann (pp. 55 – 101).

Kieras, D. E. (1999). A guide to GOMS model usability evaluation using GOMSL and

GLEAN3 (Technical Report). Ann Arbor: University of Michigan.

116

Landauer, T. K., and Dumais, S. T. (1997). A solution to Plato’s problem: The Latent

Semantic Analysis theory of the acquisition, induction, and representation of

knowledge. Psychological Review, 104, 211 – 240.

Landauer, T. K., Foltz, P., and Laham, D. (1998). Introduction to latent semantic analysis.

Discourse Processes, 25, 259 – 284.

Lashley, K. S. (1951). The problem of serial order in behavior. In L. A. Jeffress (Ed.),

Cerebral mechanisms in behavior: The Hixon symposium (pp. 112–146). New York:

Wiley.

Lebiere, C. & Anderson, J. R. (1993). A Connectionist Implementation of the ACT-R

Production System. In Proceedings of the Fifteenth Annual Conference of the

Cognitive Science Society, pp. 635-640.

Norman, D. A., & Shallice, T. (1986). Attention to action: Willed and automatic control

of behavior. In R. Davidson, G. Schwartz, & D. Shapiro (Eds.), Consciousness and

self regulation: Advances in research and theory (Vol. 4, pp. 1–18). New York:

Plenum Press.

Rasmussen, J. (1983). Skills, rules, and knowledge: Signals, signs, and symbols, and

other distinctions in human performance models. IEEE Transactions on Systems,

Man, and Cybernetics, 13 (3), 257 – 266.

Rasmussen, J., & Jensen, A. (1974). Mental procedures in real-life tasks: A case study of

electronic trouble shooting. Ergonomics, 17 (3), 293 – 307.

Reason, J. (1990). Human error. Cambridge, UK: Cambridge University Press.

Reason, J. T., & Mycielska, K. (1982). Absentminded? The psychology of mental lapses

and everyday errors. Englewood Cliffs, NJ: Prentice-Hall.

117

Schwartz, M.F., Montgomery, M.W., Buxbaum, L.J., Less, S.S., Carew, T.G., Coslett,

H.B., Ferraro, M., Fitzpatrick-De Salme, E.J., Hart, T., & Mayer, N.H. (1998).

Naturalistic action impairment in Closed Head Injury. Neuropsychology, 12(1), 13 –

28.

Schwartz, M.F., Montgomery, M.W., Fitzpatrick-De Salme, E.J., Ochipa, C., Coslett,

H.B., & Mayer, N.H. (1995). Analysis of a disorder of everyday action. Cognitive

Neuropsychology, 12(8), 863 – 892.

Schwartz, M.F., Reed, E.S., Montgomery, M.W., Palmer, C., & Mayer, N.H. (1991). The

quantitative description of action disorganisation after brain damage: A case study.

Cognitive Neuropsychology, 8(5), 381–414.

Taatgen, N. A. (2005). Modeling parallelization and flexibility improvements in skill

acquisition: From dual tasks to complex dynamic skills. Cognitive Science, 29(3),

421-455.

Taatgen, N. A., Huss, D., & Anderson, J. R. (2008). The acquisition of robust and flexible

cognitive skills. Journal of Experimental Psychology: General, 137(3), 548-565.

Wood, S. D. (2000). Extending GOMS to human error and applying it to error-tolerant

design. (Doctoral Dissertation, University of Michigan, 2000). UMI Microform No.

9991016.

Wood, S. D., & Kieras, D. E. (2002). Modeling human error for experimentation,

training, and error-tolerant design. Proceedings of The Interservice/Industry Training,

Simulation & Education Conference.

118

6. APPENDIX A: LSA COSINES FOR PHASER CONTROL LABELS

Table A1
Control Label LSA Cosines for the Semantically-Related Conditions, Within-Subtasks

Subtask 1

“Generator” “Electrical” “Kilowatts”

“Generator” 0.69 0.3

“Electrical” 0.69 0.21

“Kilowatts” 0.3 0.21

Mean LSA Cosine 0.4 0.45 0.26

Subtask 2

“Focus”

“Lens” 0.71

Subtask 3

“Shot”

“Cannon” 0.47

119

Table A2
Control Label LSA Cosines for the Semantically-Related Conditions, Between-Subtasks

“Generator
Electrical

Kilowatts”

“Lens Focus” “Cannon Shot” “Main”

“Generator
Electrical
Kilowatts”

-0.02 -0.03 0.03

“Lens Focus” -0.02 0.02 -0.02

“Cannon Shot” -0.03 0.02 0.03

“Main” 0.03 -0.02 0.03

Mean LSA
Cosine

-0.01 -0.01 0.01 0.01

120

Table A3
Control Label LSA Cosines for the Semantic Control Condition, Within-Subtasks

Subtask 1

 “Smokey” “Entomologist” “Filmmaker”

“Smokey” 0.05 -0.01

“Entomologist” 0.05 0.07

“Filmmaker” -0.01 0.07

Mean LSA Cosine 0.02 0.06 0.03

Subtask 2

“Reflecting”

“Solenoid” -0.06

Subtask 3

“Headings”

“Redcoats” 0.01

121

Table A4
Control Label LSA Cosines for the Semantic Control Condition, Between-Subtasks.

“Entomologist
Smokey

Filmmaker”

“Solenoid
Reflecting”

“Redcoats
Headings”

“Drafty”

“Entomologist
Smokey
Filmmaker”

0.01 0.01 -0.02

“Solenoid
Reflecting”

0.01 0.02 0.01

“Redcoats
Headings”

0.01 0.02 0.02

“Drafty” -0.02 0.01 0.02

Mean LSA
Cosine

0 0.01 0.02 0

122

7. APPENDIX B: SUBJECT INSTRUCTIONS

7.1. Aural Instructions, Day 1

Welcome to Star Fleet Academy. Today you will train on several procedures, and

before you leave today we will set an appointment for you to return next week

and test on those procedures. Main Control is on-screen, and it will direct your

training today. On your left is a set of manuals. There is a manual for Main

Control, as well as another manual that tells you how you will earn points during

the testing session next week and what the cash prizes are for the top three

performers in your training group. Please read both manuals before you begin.

There is also a manual for each task you will train on. As you come to each task

for the first time, please read its manual in its entirety. Then keep the manual as

reference while you attempt to do a trial of the task. After you’ve completed one

trial without committing any errors, the computer will ask you to return that

manual to me. At that time, please do so and then continue training as Main

Control instructs you. Do you have any questions?

7.2. Aural Instructions, Day 2

Today we will test you on the procedures you learned last week, but in addition

there will be a letter recall task for you to perform while you are performing those

other tasks. Doing both at the same time is fairly difficult, but please just do the

best that you can. Go as fast as you can while committing as few errors as you

can. At the end there will be a brief questionnaire.

7.3. Written Instructions, Day 2

PLEASE READ THESE INSTRUCTIONS CAREFULLY

123

In order to ensure that our pilots are able to operate all systems in any field

situation, we will be testing your on-the-fly thinking and ability to adapt. Being

able to operate Starfleet systems under any external circumstance is imperative,

particularly in emergency situations. Some of the interfaces you will be using may

change halfway through the examination, and the system will warn you of this

change. Please do your best to continue with the tasks and complete them as you

did previous to the change.

Additionally, your ability to monitor and recall information will be tested. Please

be sure to wear the headphones during the experiment. While you are doing the

tasks that you trained on during the last session, please pay attention to the

alphabet letters recited. Be ready at any time to recall the last three letters that you

have heard, in the order in which you heard them. A “recall” window will pop up

when it is time for you to recall those three letters. A warning tone will be played

to notify you of an incorrect recall.

After completing the experiment you will be asked to complete a brief

questionnaire.

7.4. Written Instructions, Day 2, Change Onset Instructions

As explained previously, system controls in the next task will now be changed in

the following trials to simulate an emergency situation in which console damage

has been sustained. Please do your best to complete the tasks as before.

124

Your next task is the Phaser. Now, instead of clicking “Electrical”, “Generator”,

“Kilowatts”, and “Electrical” as before, you will now click “Electrical”,

“Generator”, then “Lens”, the focus slider, and “Lens”. Then battery Generator

meter will begin to fill, indicating that the battery is charging. As before, wait for

the meter to reach an appropriate level, then click “Kilowatts” and finally

“Electrical”.

125

8. APPENDIX C: ADDITIONAL METHODS DETAIL FOR THE BEHAVIORAL

STUDY

8.1. Main Control

The Main Control interface of the experiment functioned as a coordinator of training

and of testing. During the training phase of the experiment, Main Control displayed a

message indicating to the subject which task to train on. When subjects erred in the

procedures they were training on, the task window returned them to Main Control. At this

point Main Control displayed a message indicating which step in the procedure should

have been performed. For example, if a subject was training on the Phaser task and

clicked “lens” when “focus” should have been clicked, the Phaser task would abort, Main

Control would come back on-screen, and Main Control would display the message,

“Click the ‘focus’ button.” When subjects correctly finished a trial, Main Control

displayed how many trials they had completed successfully and what task to train on for

the next trial. Figure 22 shows Main Control during training.

126

During the testing session, Main Control again indicated which task to perform for

each trial. At the conclusion of each trial, Main Control indicated how many seconds it

took to complete that trial and how many times the subject had erred. During the testing

session Main Control never displayed messages indicating which action should have been

performed at a given step in a task as it did during the training session. Additionally, if

the subject completed the trial fast enough to earn bonus points, Main Control displayed a

message stating such. See the Testing Session subsection for an explanation of the

rationale and mechanics of the scoring system. Figure 23 shows Main Control during

testing.

Figure 22. Main Control, training.

127

8.2. Additional Phaser Detail

For all Phaser versions, there was some chance that the experiment would require the

subject to repeat much of the trial. After subjects shot the Phaser, the experiment software

displayed an outcome message in the status box on the lower-left of the screen, “Romulan

vessel destroyed,” “Romulan vessel hit but not destroyed,” or “Phaser missed Romulan

vessel.” In the first case, subjects had only to click “Shot” and “Main” to finish the Phaser

task. The latter two cases were equivalent and meant that subjects had to perform the

Phaser task all over again. This resulted in another trial’s worth of data, but it did not

count toward trial count for the sake of procedure change in the untrained intervening

subtask condition.

Figure 23. Main Control, testing.

128

The Phaser hit or miss was an independent event governed by the following rules

presented in decreasing order of priority. There was a 1% chance of scoring a hit

regardless of the distance from the crosshairs to the target. Firing the Phaser when the

target was more than 70 pixels from the crosshairs resulted in a miss. Otherwise the

Phaser hit the target when a randomly chosen integer from the set {0, 99} was less than

or equal to the lesser of 85 or 95 minus the crosshairs-to-target distance times one plus

the focus value of the Phaser divided by 20, where the focus value of the Phaser was the

distance from the nearest point on the left edge of the interface to the position clicked on

the focus slider.

8.3. The Navigation Task

The Star Trek set of tasks uses a “Navigation” task as a filler. The Navigation task is a

simple arithmetic task wherein the subjects were to compare a “Programmed Heading” to

a “Current Heading” and compute the difference for the X-, Y-, and Z-coordinates.

Subjects first clicked the “Confirm Course” button, then subtracted the current heading

from the programmed heading, entering the difference for each coordinate into the three

“Course Correction” fields. A three-axis graph plotted the programmed and current

headings mostly to add an engaging, interactive component to the task. However, when

the differences between both sets of X, Y, and Z values were zero a quick glance at the

graph, showing overlapping headings, could tell the user that the courses are the same

faster than subjects could read all six values and make three comparisons. Figure 24

displays the Navigation task’s interface.

129

8.4 Additional Transporter Task Detail

Transporter and Jammer trials re-started for the same reasons and with the same

consequences as the Phaser. That is, re-starting the trial resulted in more data being

collected from subjects and subjects had to start the Transporter task over again after

clicking the target and then clicking “Synchronous Mode”. Upon clicking “Synchronous

Mode” after having clicked the Transporter target, the Transporter displayed one of these

three status messages: “Beam successful--return to main control,” “Beam failed--jammed

by hostile signal,” or “Beam failed--beam too weak.” The last two messages both

indicated a miss and that it would be necessary to repeat the trial. For the conditions in

which subjects were free to choose which order to perform the frequency and

Figure 24. The Navigation interface.

130

synchronization subtasks, they were also free to choose which order to perform these

subtasks when the trial repeated.

The Transporter determined hits and misses according to the following rules, in order

of decreasing priority. If the subject had clicked “Lock Signal” before all but one of the

scanning dots had disappeared from the scanner display, then the Transporter missed. If

the absolute value of the difference between the number entered for the frequency minus

a randomly chosen integer from the set {0, 99} was less than 41, then the Transporter hit.

If that difference was less than 90, then the Transporter missed. If that difference was 90

or greater, then the probability of a hit was 0.5.

131

9. APPENDIX D: EXPERIMENTER SCRIPT

X84 Experimenter Script

Starting the Day

• Login to the eMacs
• Load X84.lisp
• Get out the subject registry and folders for consent and debriefing forms.

Subject Arrival

Greet and ask whether today is their first day or second day of participation.

Day 1

• Credit or pay?
• Give two copies of appropriate consent form:

• “Please read it over and ask me any questions you may have. If you agree to
participate, please fill out one copy, give that to me and keep the other for your
records. Then please fill out the next available line on this form”

• Indicate the X84 registration form
• Retrieve the appropriate manual set, place it next to a station’s keyboard.
• Begin the experiment program: type “(begin-experiment)” and hit return.
• Give instructions:

• “Welcome to Star Fleet Academy. Today you will train on several procedures, and
before you leave today we will set an appointment for you to return next week to
test on those procedures. Main Control is on-screen, and it will direct your training
today. On your left is a set of manuals. There is a manual for Main Control, as well
as another manual that tells you how you will earn points during the testing session
next week and what the cash prizes are for the top three performers in your training
group. Please read both manuals before you begin. There is also a manual for each
task you will train on. As you come to each task for the first time, please read its
manual in its entirety. Then keep the manual as reference while you attempt to do a
trial of the task. After you’ve completed one trial without committing any errors, the
computer will ask you to return that manual to me. At that time, please do so and
then continue training as Main Control instructs you. Do you have any questions?
… Please begin when you are ready.

• Let them run, collecting manuals as needed
• Subject finishes:

• Set appointment for next week
• If subject participates for pay, pay for day one ($10)

• Upload the day’s data files to the server, /Public/X Support/X84 Frank Trek Semantic
Space/X84 Data/. Please be sure to put data from each eMac into its appropriate sub-
folder.

132

Day 2

• Name?
• Find his name on the subject assignment sheet for condition & subject numbers.

• Start the experiment program.
• Give instructions:

• “Today we will test you on the procedures you learned last week, but in addition
there will be a letter recall task for you to perform while you are performing those
other tasks. Doing both at the same time is fairly difficult, but please just do the best
that you can. Go as fast as you can while committing as few errors as you can. At
the end there will be a brief questionnaire. When you are ready to begin, please read
the instructions on-screen and begin.”

• Subject finishes:
• Thank for participation, give debriefing sheet.
• If subject participates for pay, pay for day two ($15)

Finishing up the Day

• Put away all paper work
• Count the cash left, contact Frank if there is $50 or less
• Copy all data from today to the appropriate folder on the server
• Logout from eMacs

Other Things to Know

• Be prepared for an experiment crash: Use command-. on the error window or
command-w on the errant task window to get back to Main Control. Then have the
subject click the button for the task he was performing when the experiment crashed.
Once the task resumes, X84 should be fine. If not, try to contact Frank (http://
chil.rice.edu/labonly/contact.html has lab members’ contact information). If no luck,
then apologize and reschedule. Try to copy the text of the error message and get that to
Frank, as well as any information you can gather about what was going on at the time
of the crash.

• If the subject asks a question to which you don’t know the answer, and Frank’s not
around, tell him he can email Frank or Dr. Byrne (contact information on Experimetrix)
or the debriefing form, but only give him the debriefing form if he’s finished day 2.

133

10. APPENDIX E: ADDITIONAL DETAIL REGARDING SHARED TASK

REPRESENTATIONS AND HANDLING OF TASK PROCEDURE CHANGE

The same mechanism handled the shared representation of the Transporter and

Jammer tasks as well as procedure change in the Jammer and Phaser tasks. For the static

different-Jammer, the model had three productions specific to the Jammer and five

“change instruction” chunks, named for the role that they played in handling procedure

change. These change instruction chunks specified a Transporter step to be interrupted,

the Jammer step to perform instead, and the next step of the basic Transporter procedure

to be interrupted. Since the different-Jammer task was identical to the Transporter task

but with some steps rearranged, the goal chunk for the different-Jammer flagged a

Transporter action that occurred in a different order in the different-Jammer by placing

another copy of a reference to that action in a third state slot. When the model got to that

flagged step at the retrieve phase of the RFMAV loop, as indicated by a coinciding of the

“retrieve” local state and an equality of the global state value and the flagged step value,

the “flagged-step-Jammer” production matched.

Instead of requesting the retrieval of a action representation chunk, the flagged-step-

Jammer production requested the retrieval of a change instruction chunk with a current-

flag slot value equal to the value of the flagged step. Once that change instruction chunk

had been retrieved, the “got-change instruction-Jammer” production fired. This

production set the global state value to the Jammer step to be performed instead and

directed the model back to the retrieve phase of the RFMAV loop. Assuming the change

instruction retrieval request resulted in the retrieval of the correct change instruction

chunk, the model then continued through the RFMAV loop with the correct Jammer step.

134

That step’s corresponding verify production would set the global state slot to the next step

appropriate for the Transporter task.

For example, if the model was beginning the different-scanner version of the Jammer

task the correct first step would be “active scan,” whereas the correct first step of the

Transporter task was “scanner on.” The flagged-step-Jammer production would match to

the condition wherein both the global state and flagged-step slots of the goal chunk are

set to “scanner on.” The flagged-step-Jammer production then would request the retrieval

of the change instruction chunk that had “scanner on” in its flagged-step slot. That chunk

would have another slot, do-step, specifying the action that the model should perform

instead, “active scan,” as well as the identity of the next Transporter step to flag – the

Transporter step that would follow “active scan,” “lock signal.” The model would then

continue its way around the RFMAV loop until it got to the retrieval phase with the

global state and flagged-step slots of the goal chunk set to “lock signal.”

When the model came back around to the retrieve phase with the global state of “lock

signal,” the global state would be equal to the flagged step indicated by the last retrieved

change instruction chunk, and so the flagged-step-Jammer production fired and the model

progressed again through its change instruction side loop. Once the model had completed

the scanner subtask, it would have advanced to a portion of the Jammer task that was

identical to the Transporter task, and so effectively it just performed the Transporter task.

Because of the model’s reliance on this change instruction mechanism, it performed two

retrievals for every Jammer step that is different from the Transporter step, instead of one

retrieval per step that is the norm for the other tasks. Retrieving chunks from declarative

memory was a noisy process fraught with error, and this was the genesis for the different-

135

Jammer’s relatively high error rate in its scanner subtask. Finally, there was a third

change instruction production that handled error recovery in the case of the model

committing an error while operating on a change instruction. It will be discussed in the

section regarding error recovery.

For the procedure-change tasks, the model operated as above except that it started the

experiment run with only the productions and not the declarative chunks encoding the

procedure change knowledge. When the procedure change occurred, the experiment

software performed an abstracted version of the change instruction presentation – it

simply added the change instruction chunks to the model’s declarative module. The

experiment also changed the goal chunk to reflect the changed context of the task. With

those three components in place, the productions, the change instruction chunks, and the

procedure-change goal context, the model could then perform the new version of the

Jammer or Phaser task.

136

11. APPENDIX F: MODEL PARAMETER VALUES

Table A5
Model Global Parameter Values

Parameter Value Reason

egs (expected gain s) 2 empirical fit

mp (mismatch penalty) 1.8 empirical fit

ans (activation noise
standard deviation)

0.23 empirical fit

mas (maximum associative
strength)

2 empirical fit

rt (retrieval threshold) -2 ensured that most retrieval
requests would return
some chunk

ol (optimized learning) 4 used by declarative
module to implement a
computationally simple
form of the base level
learning equation

md (maximum difference) -10 ensured that action
representation chunks for
the wrong interface would
not be retrieved

137

Table A6
Model Chunk Parameter Values: Base Levels.

Chunk Value Reason

second instance of the
“Electrical” step

-1.2 empirical fit

second instance of the
“Shot” step

-1.1 empirical fit

scanner on -0.4 empirical fit

scanner off -0.4 empirical fit

second instance of the
“Synchronous Mode” step

-0.4 empirical fit

138

Table A7
Model Chunk Parameter Values: Strengths of Association.

Condition & Task Chunk A Chunk B Value Reason

No procedure change, different
scanner subtask Jammer

scanner on
change
instruction

scanner on 1.6 empirical fit

No procedure change, different
scanner subtask Jammer

lock signal
change
instruction

lock signal 1.6 empirical fit

No procedure change, different
scanner subtask Jammer

enter frequency
change
instruction

enter
frequency

1.6 empirical fit

No procedure change, different
scanner subtask Jammer

scanner off
change
instruction

scanner off 1.6 empirical fit

No procedure change, different
scanner subtask Jammer

active scan
change
instruction

active scan 1.6 empirical fit

No procedure change, different
scanner subtask Jammer

scanner on scanner on
change
instruction

1.6 empirical fit

No procedure change, different
scanner subtask Jammer

lock signal lock signal
change
instruction

1.6 empirical fit

No procedure change, different
scanner subtask Jammer

enter frequency enter
frequency
change
instruction

1.6 empirical fit

No procedure change, different
scanner subtask Jammer

scanner off scanner off
change
instruction

1.6 empirical fit

No procedure change, different
scanner subtask Jammer

active scan active scan
change
instruction

1.6 empirical fit

139

Condition & Task Chunk A Chunk B Value Reason

No procedure change, different
scanner subtask Jammer

scanner on
change
instruction

lock signal 0.4 empirical fit

No procedure change, different
scanner subtask Jammer

scanner on
change
instruction

enter
frequency

0.4 empirical fit

No procedure change, different
scanner subtask Jammer

scanner on
change
instruction

scanner off 0.4 empirical fit

No procedure change, different
scanner subtask Jammer

scanner on
change
instruction

active scan 0.4 empirical fit

No procedure change, different
scanner subtask Jammer

lock signal
change
instruction

scanner on 0.4 empirical fit

No procedure change, different
scanner subtask Jammer

lock signal
change
instruction

enter
frequency

0.4 empirical fit

No procedure change, different
scanner subtask Jammer

lock signal
change
instruction

scanner off 0.4 empirical fit

No procedure change, different
scanner subtask Jammer

lock signal
change
instruction

active scan 0.4 empirical fit

No procedure change, different
scanner subtask Jammer

enter frequency
change
instruction

scanner on 0.4 empirical fit

No procedure change, different
scanner subtask Jammer

enter frequency
change
instruction

lock signal 0.4 empirical fit

No procedure change, different
scanner subtask Jammer

enter frequency
change
instruction

scanner off 0.4 empirical fit

140

Condition & Task Chunk A Chunk B Value Reason

No procedure change, different
scanner subtask Jammer

enter frequency
change
instruction

active scan 0.4 empirical fit

No procedure change, different
scanner subtask Jammer

scanner off
change
instruction

scanner on 0.4 empirical fit

No procedure change, different
scanner subtask Jammer

scanner off
change
instruction

lock signal 0.4 empirical fit

No procedure change, different
scanner subtask Jammer

scanner off
change
instruction

enter
frequency

0.4 empirical fit

No procedure change, different
scanner subtask Jammer

scanner off
change
instruction

active scan 0.4 empirical fit

No procedure change, different
scanner subtask Jammer

active scan
change
instruction

scanner on 0.4 empirical fit

No procedure change, different
scanner subtask Jammer

active scan
change
instruction

lock signal 0.4 empirical fit

No procedure change, different
scanner subtask Jammer

active scan
change
instruction

enter
frequency

0.4 empirical fit

No procedure change, different
scanner subtask Jammer

active scan
change
instruction

scanner off 0.4 empirical fit

No procedure change, different
scanner subtask Jammer

lock signal scanner on
change
instruction

0.4 empirical fit

No procedure change, different
scanner subtask Jammer

enter frequency scanner on
change
instruction

0.4 empirical fit

141

Condition & Task Chunk A Chunk B Value Reason

No procedure change, different
scanner subtask Jammer

scanner off scanner on
change
instruction

0.4 empirical fit

No procedure change, different
scanner subtask Jammer

active scan scanner on
change
instruction

0.4 empirical fit

No procedure change, different
scanner subtask Jammer

scanner on lock signal
change
instruction

0.4 empirical fit

No procedure change, different
scanner subtask Jammer

enter frequency lock signal
change
instruction

0.4 empirical fit

No procedure change, different
scanner subtask Jammer

scanner off lock signal
change
instruction

0.4 empirical fit

No procedure change, different
scanner subtask Jammer

active scan lock signal
change
instruction

0.4 empirical fit

No procedure change, different
scanner subtask Jammer

scanner on enter
frequency
change
instruction

0.4 empirical fit

No procedure change, different
scanner subtask Jammer

lock signal enter
frequency
change
instruction

0.4 empirical fit

No procedure change, different
scanner subtask Jammer

scanner off enter
frequency
change
instruction

0.4 empirical fit

No procedure change, different
scanner subtask Jammer

active scan enter
frequency
change
instruction

0.4 empirical fit

142

Condition & Task Chunk A Chunk B Value Reason

No procedure change, different
scanner subtask Jammer

scanner on scanner off
change
instruction

0.4 empirical fit

No procedure change, different
scanner subtask Jammer

lock signal scanner off
change
instruction

0.4 empirical fit

No procedure change, different
scanner subtask Jammer

enter frequency scanner off
change
instruction

0.4 empirical fit

No procedure change, different
scanner subtask Jammer

active scan scanner off
change
instruction

0.4 empirical fit

No procedure change, different
scanner subtask Jammer

scanner on active scan
change
instruction

0.4 empirical fit

No procedure change, different
scanner subtask Jammer

lock signal active scan
change
instruction

0.4 empirical fit

No procedure change, different
scanner subtask Jammer

enter frequency active scan
change
instruction

0.4 empirical fit

No procedure change, different
scanner subtask Jammer

scanner off active scan
change
instruction

0.4 empirical fit

Procedure change Phaser, post-
change

kilowatts kilowatts
change
instruction

2.5 empirical fit

Procedure change Phaser, post-
change

cannon cannon
change
instruction

2.5 empirical fit

Procedure change Phaser, post-
change

lens lens change
instruction

2.5 empirical fit

143

Condition & Task Chunk A Chunk B Value Reason

Procedure change Phaser, post-
change

kilowatts
change
instruction

kilowatts 2.5 empirical fit

Procedure change Phaser, post-
change

cannon change
instruction

cannon 2.5 empirical fit

Procedure change Phaser, post-
change

lens change
instruction

lens 2.5 empirical fit

Procedure change Phaser, post-
change

kilowatts cannon
change
instruction

-0.5 empirical fit

Procedure change Phaser, post-
change

kilowatts lens change
instruction

-0.5 empirical fit

Procedure change Phaser, post-
change

cannon kilowatts
change
instruction

-0.5 empirical fit

Procedure change Phaser, post-
change

cannon lens change
instruction

-0.5 empirical fit

Procedure change Phaser, post-
change

lens kilowatts -0.5 empirical fit

Procedure change Phaser, post-
change

lens cannon -0.5 empirical fit

Procedure change Phaser, post-
change

cannon change
instruction

kilowatts -0.5 empirical fit

Procedure change Phaser, post-
change

lens change
instruction

kilowatts -0.5 empirical fit

Procedure change Phaser, post-
change

kilowatts
change
instruction

cannon -0.5 empirical fit

144

Condition & Task Chunk A Chunk B Value Reason

Procedure change Phaser, post-
change

lens change
instruction

cannon -0.5 empirical fit

Procedure change Phaser, post-
change

kilowatts lens -0.5 empirical fit

Procedure change Phaser, post-
change

cannon lens -0.5 empirical fit

Procedure change Jammer, post-
change

scanner on
change
instruction

scanner on 1 empirical fit

Procedure change Jammer, post-
change

lock signal
change
instruction

lock signal 2 empirical fit

Procedure change Jammer, post-
change

enter frequency
change
instruction

enter
frequency

1.3 empirical fit

Procedure change Jammer, post-
change

scanner off
change
instruction

scanner off 2 empirical fit

Procedure change Jammer, post-
change

active scan
change
instruction

active scan 1.6 empirical fit

Procedure change Jammer, post-
change

scanner on scanner on
change
instruction

1 empirical fit

Procedure change Jammer, post-
change

lock signal lock signal
change
instruction

2 empirical fit

Procedure change Jammer, post-
change

enter frequency enter
frequency
change
instruction

1.3 empirical fit

145

Condition & Task Chunk A Chunk B Value Reason

Procedure change Jammer, post-
change

scanner off scanner off
change
instruction

2 empirical fit

Procedure change Jammer, post-
change

active scan active scan
change
instruction

1.6 empirical fit

Procedure change Jammer, post-
change

scanner on
change
instruction

lock signal 0.2 empirical fit

Procedure change Jammer, post-
change

scanner on
change
instruction

enter
frequency

0.5 empirical fit

Procedure change Jammer, post-
change

scanner on
change
instruction

scanner off 0.2 empirical fit

Procedure change Jammer, post-
change

scanner on
change
instruction

active scan 0.4 empirical fit

Procedure change Jammer, post-
change

lock signal
change
instruction

scanner on 0.6 empirical fit

Procedure change Jammer, post-
change

lock signal
change
instruction

enter
frequency

0.5 empirical fit

Procedure change Jammer, post-
change

lock signal
change
instruction

scanner off 0.2 empirical fit

Procedure change Jammer, post-
change

lock signal
change
instruction

active scan 0.4 empirical fit

Procedure change Jammer, post-
change

enter frequency
change
instruction

scanner on 0.6 empirical fit

146

Condition & Task Chunk A Chunk B Value Reason

Procedure change Jammer, post-
change

enter frequency
change
instruction

lock signal 0.2 empirical fit

Procedure change Jammer, post-
change

enter frequency
change
instruction

scanner off 0.2 empirical fit

Procedure change Jammer, post-
change

enter frequency
change
instruction

active scan 0.4 empirical fit

Procedure change Jammer, post-
change

scanner off
change
instruction

scanner on 0.6 empirical fit

Procedure change Jammer, post-
change

scanner off
change
instruction

lock signal 0.2 empirical fit

Procedure change Jammer, post-
change

scanner off
change
instruction

enter
frequency

0.5 empirical fit

Procedure change Jammer, post-
change

scanner off
change
instruction

active scan 0.4 empirical fit

Procedure change Jammer, post-
change

active scan
change
instruction

scanner on 0.2 empirical fit

Procedure change Jammer, post-
change

active scan
change
instruction

lock signal 0.2 empirical fit

Procedure change Jammer, post-
change

active scan
change
instruction

enter
frequency

0.5 empirical fit

Procedure change Jammer, post-
change

active scan
change
instruction

scanner off 0.2 empirical fit

147

Condition & Task Chunk A Chunk B Value Reason

Procedure change Jammer, post-
change

lock signal scanner on
change
instruction

0.2 empirical fit

Procedure change Jammer, post-
change

enter frequency scanner on
change
instruction

0.5 empirical fit

Procedure change Jammer, post-
change

scanner off scanner on
change
instruction

0.2 empirical fit

Procedure change Jammer, post-
change

active scan scanner on
change
instruction

0.4 empirical fit

Procedure change Jammer, post-
change

scanner on lock signal
change
instruction

0.6 empirical fit

Procedure change Jammer, post-
change

enter frequency lock signal
change
instruction

0.5 empirical fit

Procedure change Jammer, post-
change

scanner off lock signal
change
instruction

0.2 empirical fit

Procedure change Jammer, post-
change

active scan lock signal
change
instruction

0.4 empirical fit

Procedure change Jammer, post-
change

scanner on enter
frequency
change
instruction

0.6 empirical fit

Procedure change Jammer, post-
change

lock signal enter
frequency
change
instruction

0.2 empirical fit

148

Condition & Task Chunk A Chunk B Value Reason

Procedure change Jammer, post-
change

scanner off enter
frequency
change
instruction

0.2 empirical fit

Procedure change Jammer, post-
change

active scan enter
frequency
change
instruction

0.4 empirical fit

Procedure change Jammer, post-
change

scanner on scanner off
change
instruction

0.6 empirical fit

Procedure change Jammer, post-
change

lock signal scanner off
change
instruction

0.2 empirical fit

Procedure change Jammer, post-
change

enter frequency scanner off
change
instruction

0.5 empirical fit

Procedure change Jammer, post-
change

active scan scanner off
change
instruction

0.4 empirical fit

Procedure change Jammer, post-
change

scanner on active scan
change
instruction

0.2 empirical fit

Procedure change Jammer, post-
change

lock signal active scan
change
instruction

0.2 empirical fit

Procedure change Jammer, post-
change

enter frequency active scan
change
instruction

0.5 empirical fit

Procedure change Jammer, post-
change

scanner off active scan
change
instruction

0.2 empirical fit

149

Table A8
Model Chunk Parameter Values: Similarities

Condition & Task Chunk Pair Value Reason

No procedure change,
intervening subtask
Phaser

second instance of
shot, main control

-0.7 empirical fit,
simulation of post
completion error

No procedure change,
intervening subtask
Phaser

second instance of
electrical, cannon

-0.7 empirical fit,
simulation of post
completion error

No procedure change,
different scanner
subtask Jammer

scanner on, active
scan

-0.75 empirical fit

No procedure change,
different scanner
subtask Jammer

scanner on, lock
signal

-0.85 empirical fit

No procedure change,
different scanner
subtask Jammer

scanner on,
scanner off

-0.85 empirical fit

No procedure change,
different scanner
subtask Jammer

active scan, lock
signal

-0.9 empirical fit

No procedure change,
different scanner
subtask Jammer

active scan,
scanner off

-0.9 empirical fit

No procedure change,
different scanner
subtask Jammer

lock signal,
scanner off

-0.72 empirical fit

No procedure change,
different scanner
subtask Jammer

second instance of
synchronous
mode, main
control

-0.9 empirical fit

No procedure change,
different scanner
subtask Jammer

scanner on, enter
frequency

-0.9 empirical fit

150

Condition & Task Chunk Pair Value Reason

No procedure change,
different scanner
subtask Jammer

active scan, enter
frequency

-0.9 empirical fit

No procedure change,
different scanner
subtask Jammer

lock signal, enter
frequency

-0.9 empirical fit

No procedure change,
different scanner
subtask Jammer

scanner off, enter
frequency

-0.7 empirical fit

Procedure change,
intervening subtask
Phaser, pre-change

second instance of
shot, main control

-0.7 empirical fit,
simulation of post
completion error

Procedure change,
intervening subtask
Phaser, pre-change

second instance of
electrical, lens

-0.7 empirical fit,
simulation of post
completion error

Procedure change,
intervening subtask
Phaser, post-change

second instance of
electrical, lens

-1 empirical fit

No procedure change,
same scanner subtask
Jammer

scanner on, active
scan

-0.75 empirical fit

No procedure change,
same scanner subtask
Jammer

scanner on, lock
signal

-0.85 empirical fit

No procedure change,
same scanner subtask
Jammer

scanner on,
scanner off

-0.85 empirical fit

No procedure change,
same scanner subtask
Jammer

active scan, lock
signal

-0.9 empirical fit

No procedure change,
same scanner subtask
Jammer

active scan,
scanner off

-0.9 empirical fit

151

Condition & Task Chunk Pair Value Reason

No procedure change,
same scanner subtask
Jammer

lock signal,
scanner off

-0.72 empirical fit

No procedure change,
same scanner subtask
Jammer

Transporter power,
first instance of
synchronous mode

-0.75 empirical fit

No procedure change,
same scanner subtask
Jammer

second instance of
synchronous
mode, main
control

-0.9 empirical fit

No procedure change,
same scanner subtask
Jammer

scanner off, enter
frequency

-0.7 empirical fit

No procedure change,
no intervening
subtask Phaser

second instance of
shot, main control

-0.7 empirical fit,
simulation of post
completion error

No procedure change,
no intervening
subtask Phaser

second instance of
electrical, lens

-0.7 empirical fit,
simulation of post
completion error

Procedure change
Jammer, pre-change

scanner on, active
scan

-0.75 empirical fit

Procedure change
Jammer, pre-change

scanner on, lock
signal

-0.85 empirical fit

Procedure change
Jammer, pre-change

scanner on,
scanner off

-0.85 empirical fit

Procedure change
Jammer, pre-change

active scan, lock
signal

-0.9 empirical fit

Procedure change
Jammer, pre-change

active scan,
scanner off

-0.9 empirical fit

Procedure change
Jammer, pre-change

lock signal,
scanner off

-0.72 empirical fit

Procedure change
Jammer, pre-change

second instance of
synchronous
mode, main
control

-0.9 empirical fit

152

Condition & Task Chunk Pair Value Reason

Procedure change
Jammer, pre-change

scanner on, enter
frequency

-0.9 empirical fit

Procedure change
Jammer, pre-change

active scan, enter
frequency

-0.9 empirical fit

Procedure change
Jammer, pre-change

lock signal, enter
frequency

-0.9 empirical fit

Procedure change
Jammer, pre-change

scanner off, enter
frequency

-0.7 empirical fit

Semantic control
Phaser

second instance of
shot, main control

-0.7 empirical fit,
simulation of post
completion error

Semantic control
Phaser

second instance of
electrical, lens

-0.8 empirical fit,
simulation of post
completion error

Jammer, different
subtask order

scanner on, active
scan

-0.75 empirical fit

Jammer, different
subtask order

scanner on, lock
signal

-0.85 empirical fit

Jammer, different
subtask order

scanner on,
scanner off

-0.85 empirical fit

Jammer, different
subtask order

active scan, lock
signal

-0.9 empirical fit

Jammer, different
subtask order

active scan,
scanner off

-0.9 empirical fit

Jammer, different
subtask order

lock signal,
scanner off

-0.72 empirical fit

Jammer, different
subtask order

second instance of
synchronous
mode, main
control

-0.9 empirical fit

Jammer, different
subtask order

scanner on, enter
frequency

-0.9 empirical fit

153

Condition & Task Chunk Pair Value Reason

Jammer, different
subtask order

active scan, enter
frequency

-0.9 empirical fit

Jammer, different
subtask order

lock signal, enter
frequency

-0.9 empirical fit

Jammer, different
subtask order

scanner off, enter
frequency

-0.7 empirical fit

Note: Unless otherwise listed in this table, action representation chunks appearing
within the same subtask had a similarity value of -0.95 and action representation
chunks appearing in different subtasks within the same task had a similarity value of -1.
Action representation chunks not appearing in this table or this note defaulted to the
maximum different global parameter value, -10. These were action representation
chunk pairs that were not applicable to tasks using the same interface, such as
“electrical” and “scanner on.”

154

