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ABSTRACT

A Computational Model of Routine Procedural Memory

by

Franklin Patrick Tamborello, II

Cooper and Shallice (2000) implemented a computational version of the Norman and 

Shallice’s (1986) Contention Scheduling Model (CSM). The CSM is a hierarchically 

organized network of action schemas and goals. Botvinick and Plaut (2004) instead took 

a connectionist approach to modeling routine procedural behavior. They argued in favor 

of holistic, distributed representation of learned step co-occurrence associations. Two 

experiments found that people can adapt routine procedural behavior to changing 

circumstances quite readily and that other factors besides statistical co-occurrence can 

have influence on action selection. A CSM-inspired ACT-R model of the two experiments 

is the first to postdict differential error rates across multiple between-subjects conditions 

and trial types. Results from the behavioral and modeling studies favor a CSM-like 

theory of human routine procedural memory that uses discrete, hierarchically-organized 

goal and action representations that are adaptable to new but similar procedures.
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1. INTRODUCTION

Humans regularly engage in complicated tasks composed of many steps. How do we 

know which step to perform when its time comes? How are we so good at performing 

these tasks quickly, and typically without error, once they have been learned and 

routinized? Once a task has been learned and becomes routine, why do we still 

occasionally fail in our performance? I intend to discuss several theories of human action 

selection in the literature and how they account for normal performance and error. I will 

include discussion of some of our own recent data and how it relates to the above issues.

Discussion of the relevant literature begins with the Norman and Shallice (1986) 

contention scheduling model and its instantiation as a formal computational model by 

Cooper and Shallice (2000). Next Botvinick and Plaut’s (2004) simple recurrent network 

(SRN) computational model of action selection will offer a contrasting view of action 

selection and task sequence representation. The literature review continues with other 

theories concerned with action selection, namely GOMS and production system theories 

of human cognition, using ACT-R as an example. Discussion will conclude with some 

recent data from our own lab.

This dissertation’s aim will be to answer some questions concerning human 

representation of routine action left unresolved by the literature. Are task memory 

structures organized simply by their statistical properties, as the SRN claims, or might 

some of the other cognitive and perceptual-motor process play a role in task 

representation as well? What happens when the routine procedure changes? Why do 

people err in routine procedures and how do they recover from those errors to finish the 

task? 
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The dissertation includes two experiments and a computational model of each of 

those experiments. The first experiment’s aim was to determine whether people might 

delineate portions of a task by means other than learning which steps tend to occur 

together and which do not. Such means may include semantic factors such as semantic 

relatedness of step names. The second experiment was designed to delineate subtasks by 

statistical co-occurrence, but then destroy one subtask grouping by re-ordering its steps. 

The two computational model accounts in the literature, one a contention scheduling 

model (CSM, Cooper & Shallice, 2000), the other a simple recurrent network (SRN, 

Botvinick and Plaut, 2004), each embody a different approach to human routine 

procedure representation. Whereas the CSM posits localist representations arranged into a 

hierarchy mirroring the task, the SRN claims distributed, holistic representation. The 

former is flexible in how old actions learned can transfer to new, similar tasks while the 

latter uses a statistical learning process to delineate subsequences of actions that may 

transfer. 

Neither model specifies exactly how it performs many of the ancillary cognitive 

functions that go into producing actions, such as visual perception, recollection of facts, 

or manipulating the environment. The CSM, however, does at least specify how it may 

interact with other such cognitive systems to produce a wide range of human behavior. 

The SRN makes little effort at cognitive integration. As it is likely that other cognitive 

factors, like visual perception, have some role to play in human action production, it is 

desirable to instantiate a theory of action selection within a framework that can support 

those other cognitive processes. Therefore, since the CSM is amenable to working with a 
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generalized cognitive framework it will be mated to ACT-R so that interaction with other 

cognitive, perceptual, and motor processes may be examined together.

1.1. The Contention Scheduling Theory of Human Action Selection

Norman and Shallice (1986) put forward their contention scheduling model  of skilled 

behavior as a symbolic interactive activation network. CSM claimed that people represent 

actions as schemas, which are associated representations of: trigger conditions, the 

actions themselves, how to perform the actions, any sub-schemas for any sub-steps of the 

procedure, and completion conditions. Norman and Shallice use the example of driving a 

car to illustrate schema interaction: 

…when the source schema for a task such as driving an automobile has been 

selected, all its component schemas become activated, including schemas for such 

acts as steering, stopping, accelerating, slowing, overtaking, and turning. Each of 

these component schemas in turn acts as a source schema, activating its own 

component schemas (braking, changing gear, signaling, and so on). (p. 6)

Together these representations form a strand of autonomous and self-sufficient 

processing structures, a “horizontal thread,” that can generally carry out a well-learned 

task without need for attentional intervention (see Figure 1). While the component 

schemas might specify actions at an intermediate level (e.g., “change from second gear to 

third gear”), they leave the details associated with the lower-level actions entailed by the 

intermediate actions (e.g., “reach for gear lever”) to other psychological processing 

structures, such as manual motor skills.
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Scheduling of action, and thus selecting from competing, similar, schemas is handled 

by contention scheduling. The sets of potential source schemas compete with one another 

in the determination of their activation value, then selection takes place on the basis of 

activation value alone. Competition is effected through lateral activation and inhibition 

among activated schemas. Importantly, the contention scheduling theory of action 

selection posits that “attention” is just another source of schema activation or inhibition 

originating in higher-order cognitive processes. These processes are involved in things 

like motivation and directed, effortful types of cognition like problem solving and 

selection of non-routine actions. Attention is not inherent to routine action selection. Nor 

is attention required to monitor actions in progress, but it can influence action selection 

by being a source of activation and inhibition input into the contention scheduling 

process from the Supervisory Attention System (SAS) – and that is its sole means of 

influencing the action selection process. Activation and inhibition from the SAS thus 

forms a “vertical thread” of influence tied to all schemas in the contention scheduling 

system. Thus the combination of horizontal and vertical threads enables a major feature 

of Norman and Shallice’s contention scheduling theory: two levels of control, deliberate 

conscious control and automatic contention scheduling (Figure 2).

SENSORY-

PERCEPTUAL 

STRUCTURES

Sensory 

Information
TRIGGER 

DATA BASE

Component Schemas

PSYCHOLOGICAL 

PROCESSING 

STRUCTURES

External & 

Internal 

Actions

Figure 1. Horizontal thread from Norman & Shallice’s (1986) contention scheduling model of human action selection.
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This feature is important for a number of reasons, one being that deliberate conscious 

control is often too slow to allow for the speed of many of our skilled behaviors. 

Additionally, trigger conditions can sometimes overwhelm influences from the SAS, as in 

the Stroop task. Perhaps most importantly, Norman and Shallice argue, is that certain 

types of errors seem to indicate that deliberate conscious control is not always required 

for action. In particular, “capture errors” occur when a person begins one task, and 

through inattention and/or distraction switches, before completion of the original task, to 

a new task that is at least as familiar as the original task. Reason and Mycielska (1982) 

documented an example of a capture error in a diary study they conducted. When passing 

SCHEMAS

SENSORY-

PERCEPTUAL 

STRUCTURES

Sensory 

Information
TRIGGER 

DATA 

BASE

PSYCHOLOGICAL 

PROCESSING 

STRUCTURES

External & 

Internal 

Actions

VERTICAL THREADSHORIZONTAL 

PROCESSING THREADS

Motivational 

influence on 

activation

Attentional resources 

add to or decrease 

activation values

Figure 2. The overall system: Vertical and horizontal threads. When attention to particular tasks is required, vertical 
thread activation comes into play. Attention operates upon schemas only through manipulation of activation values, 
increasing the values for desired schemas, decreasing (inhibiting) the values for undesired ones. Motivational variables 
are assumed to play a similar role in the control of activation, but working over longer time periods. To emphasize that 
several tasks are usually active, with the individual components of each task either being simultaneous or overlapping 
in time, this figure shows five different horizontal threads. Some means of selecting the individual schemas at 
appropriate times while providing some form of conflict resolution becomes necessary. The interactions among the 
various horizontal threads needed for this purpose are indicated by the lines that interconnect schemas from different 
threads.
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through his back porch on the way to get his car out, a subject stopped to put on his 

Wellington boots and gardening jacket as if to work in the garden. The new task captures 

the action selection of the person. Norman and Shallice argue that because attention, as 

far as action selection is concerned, is just another source of activation for contention 

scheduling, if it falls off at the wrong moment, activation from other sources select the 

wrong schema. According to Norman and Shallice, the Reason and Mycielska example 

reiterates the important point that the SAS is a separate system from the contention 

scheduling system that it oversees.

Cooper and Shallice (2000) instantiated the contention scheduling theory of control of 

routine actions as a computational cognitive model. They identified three levels of action 

at which humans operate: The lower level is mainly composed of the biomechanics of 

movements and the physical properties of targets, such as reaching and grasping. The 

intermediate level is composed of collections of lower-level actions, the actions at this 

level are completely specified, and they are specified to accomplish one and only one 

goal, such as making a cup of coffee. The higher level is composed of scripts and 

“memory organization packets” – typically groups of subgoals capable of being paused, 

interrupted, and resumed, to carry out some routine procedure. Higher levels of action 

control might direct activities such as going to a restaurant or visiting a doctor’s office. It 

is at the intermediate level of action that Cooper and Shallice aimed their instantiation of 

the contention scheduling theory of routine action selection.

Cooper and Shallice’s (2000) goal was twofold: first, to demonstrate the contention 

scheduling’s viability as a theory of action selection in neurologically-intact individuals, 

and second, to further validate it as a theory of human action selection in routine tasks by 
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lesioning it and comparing its output to the behavior of two types of action 

disorganization syndrome patients reported by Schwartz et al. (1991, 1995, & 1998). The 

task Cooper and Shallice modeled was the same preparation of a cup of instant coffee 

observed by Schwartz et al. 

The coffee preparation task is a relatively simple, seven-step procedure one might 

follow in the preparation of a typical cup of instant coffee. Cooper and Shallice (2000) 

conceptualized it as having a hierarchical structure with one superordinate goal (prepare 

instant coffee), three subgoals (sugar into coffee, milk into coffee, and grinds into coffee), 

and two equivalent, alternative methods for two of its subgoals (add sugar from packet/

bowl, add coffee from jar/packet). 

For purposes of modeling, the hospital room environment in which Schwartz et al.’s 

patients were observed while making coffee was abstracted in Cooper and Shallice’s 

(2000) study to be an 8 x 4 grid representing just the tray upon which coffee-making 

materials and implements would have been placed. Objects had features representing 

contents (for packets and containers), state (open or closed), and position. Schema 

selection is largely driven by the representation of the environment and, at the lower 

action level, by ordering constraints that are specified as symbolic preconditions. For 

example, if “add sugar” has been selected as the active subgoal, the only action possible, 

given the described state of the environment, will be “pick up spoon.” Schemas that may 

achieve this goal receive excitation from the environment – schemas specify arguments, 

or what objects they may operate on or with (e.g., a spoon must be in hand in order to 

stir). Once an object has been picked up (normally, a spoon), symbolic preconditions 

prevent top-down excitation from immediately triggering inappropriate actions, such as 
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“put down.” Instead, environmental triggering biases selection toward “dip spoon,” 

which is selected and then inhibited. Similar processes then lead to the selection and 

inhibition of “empty spoon,” which fulfills the precondition of “put down,” and allows 

top-down excitation to trigger that schema. The “add sugar” subgoal is then completed, 

and the environment triggers another subgoal, perhaps “add milk.” Additionally, because 

two schemas may potentially receive the same amount of total excitation, noise is added 

to each schema’s activation to prevent ties and to lend some degree of stochasticity to the 

model’s behavior.

1.1.1. Modeling Human Error in Contention Scheduling

The intermediate level of action in which Cooper and Shallice’s (2000) contention 

scheduling model operates corresponds closely with the rule-based level of human 

behavior identified in Rasmussen’s (1983, Rasmussen & Jensen, 1974) skill-rule-

knowledge hierarchy. The skill-rule-knowledge hierarchy categorizes human error 

according to three levels of cognition at which the errors occur, as well as for 

deconstructing task environments into components that fall into each level as a way to 

grasp a priori factors that might induce human error (Reason, 1990). The skill-based 

level of human performance encompasses very low-level cognition such as stored 

patterns of stimulus representations and physical motions. Errors at this level mainly stem 

from variability of physical force, space, and temporal coordination. The rule-based level 

consists of IF-THEN rules of actions to take when learned, pre-defined conditions are 

met. Errors at the rule-based level include the misclassification of situations leading to the 

application of the wrong rule or an incorrect recall of the action component of a rule. 

Finally the knowledge-based level of cognition refers to the conscious, attention-directed 
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processes that often rely upon stored knowledge or the effortful transformation of 

knowledge. Actions at this level must be planned on-line, using conscious analytical 

processes. Errors at this level arise from resource limitations (“bounded rationality”) and 

incomplete or incorrect knowledge.

James Reason greatly expanded upon the skill-rule-knowledge hierarchy in his 1990 

book, Human Error. Reason begins with the notion that traits that enable fast and flexible 

human cognition in most environments can become detrimental when misapplied. Reason 

coined the term “cognitive balance sheet” as a metaphor for human cognitive strengths 

being in some situations weaknesses. All systematic human error is a result of the 

misapplication of some cognitive process at one of the three levels of the skill-rule-

knowledge hierarchy. The errors modeled by the CSM fall within the realm of lapses as 

defined by Reason (1990), and the list below describes all the different error types that 

the CSM accounts for. 

1.1.1.1. Capture Errors

Capture errors can occur in CSM’s output when an environmental source of activation 

becomes too strong relative to the top-down activation the schema receives. Capture 

errors can also occur when schema competition is inappropriately resolved, such as when 

self-activation in the schema network is very high. 

1.1.1.2. Omission and Anticipatory Errors

Omission errors result when a schema simply is not activated past threshold, and 

hence not selected. Schemas also might fail to be selected, or their execution prohibited, 

by the inability to select appropriate object arguments or resources for the corresponding 

actions. The former scenario may result in an entire subtask failing to be executed. The 
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latter scenario may result in an anticipation error, wherein an action that should have been 

performed later in a sequence is attempted before its preconditions have been satisfied.

1.1.1.3. Perseverative Errors

Perseverative errors may arise if self activation is too great or if lateral inhibition is 

insufficient. In these cases schemas fail to be deselected at the appropriate time. Apparent 

perseveration may also arise in the case of a perseverative object substitution, such as if 

the representation of an object remains active even after that object’s use.

1.1.1.4. Object Substitution Errors

Object, as well as place, substitution errors may arise when the schema’s correct 

arguments do not have the most active representations when the schema is selected. This 

may occur when, for example, noise is high and/or the excitation of object 

representations by schemas is insufficient.

In summary, CSM proposes that different error types result from the actions of 

different representational structures. These structures each produce errant behavior due to 

the interactions of activation influences from task, environment, and top-down sources.

1.2. A Recurrent Connectionist Approach to Selection of Routine Sequential Action

Botvinick and Plaut (2004) take a radically different approach in their theory of 

human action selection in routine sequences. Rather than proposing a symbolic 

interactive activation network, Botvinick and Plaut argued for a parallel distributed 

processing (PDP) approach to action sequence representation and selection. PDP 

approaches are characterized by the distributed representation of information which 

emerges out of the entire network of simple processes. This is in contrast to CSM’s 

approach with its discrete, isolable structures that embody representations. Also 
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characteristic of PDP, detailed mechanisms must develop through learning, and because 

of that they are tied to the structure of their task domains. In particular, Botvinick and 

Plaut take issue with hierarchical models of human cognition, like Cooper and Shallice’s 

(2000) CSM, saying it is unlikely that the brain is structured such that it mirrors its 

environment. Instead, they advocate a general learning mechanism capable of learning 

from samples of its environment and representing what it needs to know in networks of 

simple structures, with behavior emerging from the interaction of network constituents. 

Schemas and goals, they argue, are epiphenomenal.

The basic principle underlying PDP models is that the activation of each node is 

based on excitation and inhibition received from nodes linked to it through weighted 

connections (Botvinick and Plaut, 2004). Often the nodes are segregated into three layers, 

with a first layer carrying a pattern of activation representing some input to the system. 

Activation propagates from this input layer through an internal or hidden layer, which 

transforms the input, sending a pattern of activation to an output layer whose nodes 

together represent the system’s response to the input. A network is “recurrent” when 

loops or circuits can be traced through its set of connections. Recurrency gives the 

network a representation which reflects task demands in the context of prior internal 

states (Elman, 1990). In the simple recurrent network (SRN), every hidden node is 

connected to all nodes in both the input and output layers. Additionally, in Botvinick and 

Plaut’s SRN every unit in the hidden layer was connected to every other unit in the 

hidden layer (see the diagram depicted in Figure 3). A critical aspect of recurrent 

connectivity is that it allows information to be preserved and transformed across time. 
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Each step of processing carries information about the state of the system at the previous 

time step, thus the system is sensitive to temporal context.

Botvinick and Plaut (2004) trace their assumptions concerning task structure back to 

Lashley (1951). In the early 1950’s, researchers often viewed sequential behavior and 

tasks as having a strictly linear structure (Botvinick & Plaut, 2004). Lashley rejected this 

notion and claimed that tasks and behaviors that perform those tasks usually have some 

degree of hierarchical structure, since identical and nearly-identical behaviors are often 

performed in different contexts to perform the same or nearly-same tasks. Any cognitive 

representations of the tasks might not need to assume a hierarchical structure themselves, 

but they must be able to account for task context. A model of human action selection, 

therefore, does not necessarily need to mirror a task’s structure in its own structure – the 

two structures are separate. Indeed, Botvinick and Plaut reject the notion that a cognitive 

representation’s structure must mirror the structure of the thing it represents.

Botvinick and Plaut echo Lashley’s sentiment that some actions appear in multiple 

contexts (e.g., stirring sugar or honey into tea, stirring sugar or cream into coffee: stirring 

is essentially the same). The problem with associationist accounts is that there is no 

forms of selection: Which action? and Which object to act upon?”

Because computational models of action have often dealt with

tasks that do not involve direct physical action on objects (e.g.,

language tasks), they have typically focused only on the first of

these two forms of selection. Thus, a central question facing

models of routine naturalistic action is how objects are identified

as targets for action.

One promising hypothesis in this regard is that targets for action

are specified indexically. That is, actions are directed toward

whatever object is currently at the system’s focus of orientation,

for which orientation can mean the point of visual fixation or, more

generally, the focus of attention. This strategy, otherwise known as

a “deictic” (Agre & Chapman, 1987; Ballard, Hayhoe, Pook, &

Rao, 1997) or “do-it-where-I’m-looking” (Ballard, Hayhoe, Li, &

Whitehead, 1992) strategy, has seen wide application in engineer-

ing and robotics (McCallum, 1996; Whitehead & Ballard, 1990).

More important, it has been proposed as a model for how objects

are selected as targets for action in human behavior (Agre &

Chapman, 1987; Ballard et al., 1997, see also Kosslyn, 1994;

Pylyshyn, 1989; Ullman, 1984).

The three-layer recurrent network architecture described earlier

lends itself naturally to the use of indexical representation. One

need only assume that the input layer, now interpreted as carrying

a representation of the perceived environment, conveys informa-

tion about which object is currently the focus of attention. Units

selected in the model’s output layer, now understood as represent-

ing actions, can be interpreted as directed toward that object. One

potential implementation of this approach is diagrammed in Fig-

ure 3. Here, the input layer contains a segment labeled fixated

object, which specifies the visual features of the object currently at

the focus of visual attention. The units in the output layer corre-

spond to actions to be directed toward this object.

Some actions involve objects not only as targets but also as

instruments or tools. Again following previous deictic models

(e.g., Ballard et al., 1992), we assume that this role is assigned to

whatever object the agent currently has in hand. Accordingly, the

input layer in Figure 3 includes a second portion labeled held

object, which specifies the features of this object. Just as the

fixated object is interpreted as the target for action, the held object

(if any) is interpreted as the implement to be used.

Because, within this framework, actions are directed at whatever

object is currently the focus of attention, selecting a new target for

action necessarily involves shifting that focus to a different object.

To this end, computational models using indexical representations

typically involve not only manipulative actions (actions that in-

volve transformation of the environment) but also perceptual ac-

tions, which serve to reorient to the system toward a new object

(see Whitehead & Ballard, 1990). This can be understood as either

a physical reorientation, such as an ocular saccade, or a covert

change of focus accomplished through attentional adjustments.

Units representing such perceptual actions can be incorporated into

the output layer of the architecture diagrammed in Figure 3, with

each unit representing an action such as “fixate the spoon.”

Given this framework, sequential action on objects takes the

form of a rough alternation between perceptual actions, which

orient the system toward a target object, and manipulative actions,

during which the object is acted on. Evidence for such an alterna-

tion in human behavior has been provided by several studies of

hand–eye coordination (Ballard et al., 1992; Hayhoe, 2000; Land,

Mennie, & Rusted, 1998).

Implementing the Perception–Action Loop

An important aspect of naturalistic sequential action is that each

movement, by altering the environment, can impact the perceptual

input the system receives next. This can be captured in a model by

interposing a functional representation of the environment between

the model’s outputs and its subsequent inputs. The implementation

diagrammed in Figure 3 incorporates such a simulated workspace.

This maintains a representation of the state of various objects in

the environment, updates this in response to each action, and if

appropriate, yields a new input pattern to the layers representing

the objects currently fixated and held.

Modeling Task Acquisition

The focus of the present research is on routine behavior. As

such, we are more concerned with the outcome of learning than

with the learning process itself. Nevertheless, a central claim of the

present account is that experience plays a critical role in shaping

the representations and mechanisms that support sequential behav-

ior. Thus, the issue of learning provides an important part of the

background for the account.

In human behavior, the acquisition of sequential routines can

occur by a variety of means: explicit instruction, trial and error,

problem-solving methods, and so on. Two methods that appear to

be particularly important in everyday life are learning through

prediction and learning with scaffolding. As characterized by

Schank (1982), much of our knowledge about action sequences is

gained through a process of continual prediction making; learning

occurs when our predictions about actions and events turn out to be

erroneous. One instance of such prediction-based learning would

be learning through observation, during which the learner follows

the performance of an individual already familiar with the task and

attempts to predict his or her actions at every step. Scaffolding

Figure 3. Architecture of the overall model. Open arrows indicate that

every unit in the sending layer is connected to every unit in the receiving

layer. (See text for details, including the number of units included in each

layer.) From “Representing Task Context: Proposals Based on a Connec-

tionist Model of Action,” by M. Botvinick and D. C. Plaut, 2002, Psycho-

logical Research, 66, p. 300. Copyright 2002 by Springer. Adapted with

permission.

400 BOTVINICK AND PLAUT

Figure 3. Architecture of the overall SRN model from Botvinick & Plaut (2004). Open arrows indicate that every unit 
in the sending layer is connected to every unit in the receiving layer. 
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accounting for context and the selection of one action in multiple contexts. Clearly many 

tasks have a hierarchical or quasi-hierarchical structure that capture some measure of task 

context – the appearance of one subtask in many supertasks. The problem then becomes 

one of how to select a task appropriate to some representation of a context. However, 

Botvinick and Plaut are suspicious of models such as Cooper and Shallice’s wherein 

mental representations mirror task structures. They argued that task structure and context 

should be captured in a distributed representation by a generalized learning mechanism. 

Botvinick and Plaut (2004) applied their SRN model to the same coffee preparation 

task used by Cooper and Shallice (2000). In Botvinick and Plaut’s (2004) model, each 

node in the input layer corresponded to each object present on the breakfast tray. 

Additionally, they experimented with having their model prepare tea as well as coffee, 

and so the model had two additional nodes: one to represent an instruction to prepare 

coffee, the other, an instruction to prepare tea. Tea preparation was added to demonstrate 

a theory which could account for tasks which have overlapping steps, such as “pour 

water” and “add sugar.”

Training the model involved running it on a trial, then propagating an error signal 

backward through the network in order to adjust inter-node connection weights. After 

many thousands of cycles of attempting the task and adjusting weights, the model could 

produce both coffee and tea preparation sequences, including two alternates of both tasks 

in which sugar was obtained either from packets or from a bowl.

At test, the SRN model was given a simulated environment, and in some cases also an 

activation of an instruction node (either “prepare coffee” or “prepare tea”). Activation 

propagated from input nodes to hidden nodes, which in turn would transform the input 
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and pass on a pattern of activation to the output. The simulated environment changed 

according to the SRN’s output, which in turn closed the model’s perception-action loop 

by triggering a new pattern of activation in the model’s input layer. The perception-action 

cycle continued until the task was complete, at which time the model took no further 

action.

1.2.1. Modeling Human Error in a Simple Recurrent Connectionist Network

To the SRN, a subtask is distinguished solely statistically, that is by the sample 

procedures the SRN is exposed to during training. Subtasks are determined by local 

associations and by branch points. The local associations come from each of its steps 

always being associated with one particular next step. The branch point is the end of the 

subtask where the next step performed could be from one of several different subtasks. 

Botvinick and Plaut’s (2004) SRN account of routine action selection was driven by the 

statistical nature of its learning algorithm and the network’s holistic representation of the 

task context. Steps that always appeared together in a particular order became represented 

as one subtask, while whole subtasks might vary in the order of their appearance in 

training. The SRN’s context representation was composed of the task’s main goal and the 

steps accomplished. The SRN used distortion of propagated activation of the context 

representation to account for human error. Specifically, the SRN posited that distortion 

occurring in the middle of a subgoal leads to capture errors at the end of that subgoal 

when the context representation begins to resemble another task’s context. 

Botvinick and Plaut (2004) assume that all lapses result from a degradation of 

representation of task context, “An error occurs when the network is in some situation 

calling for some action and distortion causes its context representation to resemble a 
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pattern the model has learned to associate with a different situation and a different 

action.” (p. 409) Therefore their strategy for modeling error in routine tasks is to 

introduce noise into the activation pattern of the hidden layer during performance of the 

coffee/tea task. They found that lapses such as capture errors and omissions tended to 

occur when people were supposed to perform some action that came at the boundaries of 

subtasks within the hierarchical structure of the task (as opposed to the structure of the 

task’s representation within the model). For example, in the coffee making task capture 

errors were more common on the first or last step of the sugar subtask (e.g., “grasp 

spoon” or “open container”) than on some step in the middle of the sugar subtask (e.g., 

“scoop sugar” or “stir”). Furthermore, capture errors were more likely to occur if the 

capturing task had been performed more times than the captured task. The errors resulted 

from degradation of the model’s representation of task context, and the model tended to 

respond on the basis of a representation’s similarity to a more familiar action. 

1.2.1.1. Capture Errors

For example, in the coffee making task capture errors were more common on the first 

or last step of the sugar subtask (e.g., “grasp spoon” or “open container”) than on some 

step in the middle of the sugar subtask (e.g., “scoop sugar” or “stir”). Furthermore, 

capture errors were more likely to occur if the capturing task had been performed more 

times than the captured task. The errors resulted from degradation of the model’s 

representation of task context, and the model tended to respond on the basis of a 

representation’s similarity to a more familiar action. 

In particular, Botvinick and Plaut (2004) found that their model was susceptible to 

context representation disruption, and then capture error, when noise was introduced in 
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the middle of a subtask. When context confusions occur, the effects tend to be felt at 

branch points (subtask boundaries), or junctures at which the immediately preceding 

actions and/or environmental context bear associations with subsequent actions other than 

the correct sequence for that task. An error in performance occurs at the branch point 

even though a drift in contextual representation may have begun several steps earlier, 

toward the middle of a subtask. In fact, the SRN model’s account of context 

representational drift predicts that capture errors are more likely to result when distraction 

occurs in the middle of a subtask, rather than immediately before a branch point. 

Apparently context representation is particularly vulnerable to distortion near the middle 

of a subtask, because the SRN model’s pre- and post-step contextual representations 

become more similar in the middle of a subtask compared to at the beginning or end of 

the subtask. Indeed, their model’s account predicted empirical findings in a later study by 

Botvinick and Bylsma (2005).

1.2.1.2. Omission and Anticipatory Errors

Omission and anticipatory errors resulted from exactly the same mechanism that 

caused capture errors. It just so happened that the distorted contextual representation 

resembled the context for a sequence from later in the same task, rather than from another 

task as in capture errors (e.g., leaving out the sugar subtask and skipping directly to 

cream adding and then to drinking).

1.2.1.3. Perseverative Errors

Similarly, perseverative errors occurred when the inserted action sequence happened 

to come from earlier within the task being performed.

1.2.1.4. Object Substitution Errors
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Curiously, the SRN model exhibited no object substitution errors when subjected to 

low levels of noise thought to mimic distraction in neuro-intact individuals, but did 

produce a small number of object substitution errors when subjected to high levels of 

noise in a simulation of neurologically impaired patients with action disorganization 

syndrome.

1.3. Recent Developments in the Debate Over Schema versus PDP Representation of 

Routine Action Selection 

Psychological Review published an article by Cooper and Shallice (2006a) in reply to 

Botvinick and Plaut’s (2004) account of action selection. Cooper and Shallice contrast the 

PDP account with their own CSM account, concluding that abstract, symbolic 

representations of causal elements of behavior, namely goals and schemas, are necessary 

to reproduce the range of flexible behavior seen in humans. Cooper and Shallice also 

criticize the SRN theory of action selection for being too dependent upon its training 

context to be able to generalize a routine task to a new environment or interface or to be 

able to interchange action subsequences as humans often do. Cooper and Shallice also 

criticize the SRN model for saying nothing about the role of distractor objects in action 

selection or about how object substitution errors may occur in neuro-intact individuals. 

Botvinick and Plaut (2006), in the same issue, claim that Cooper and Shallice (2006) 

mistook several superficial implementational issues for fundamental theoretical positions, 

underestimated the computational power of recurrent networks as a class, and in some 

ways mischaracterized the relationship between the SRN and CSM accounts. 

The debate published in that issue of Psychological Review concluded with a brief 

retort by each side. Cooper and Shallice (2006b) raise concerns with several of the 
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implementational adjustments of Botvinick and Plaut (2006) and criticize the other 

authors for not examining potential interactions of their adjustments. Furthermore, 

Cooper and Shallice maintain their position that the SRN model is not a sufficiently 

abstract account of routine action selection, that SRN does not produce any action 

subsequence which it does not encounter in its training environment, which is 

problematic, they argued, because humans do produce novel subsequences. Cooper and 

Shallice maintain that goals are essential to many human behaviors, particularly because 

goals typically direct routine actions. And they criticize the SRN account for saying little 

about the relationship between routine and non-routine action selection systems.

Botvinick and Plaut (2006) reply that the link between errant behavior and prior 

experience is a strength of their model, rather than a weakness. For the SRN model, the 

training set is of paramount importance because the SRN model is a kind of statistical 

sampling and acting machine. What can vary in the test set varies in the training set, and 

the training set is a representative sample of the test set. So learning any specific task 

takes place within the context of learning a broad variety of other tasks. Botvinick and 

Plaut assert this kind of learning by broad statistical sampling is an important strength of 

their theory because it possesses strong ecological validity. Finally they concluded that 

moving forward will likely involve building a theory of non-routine action selection and 

connecting it with a theory of routine action selection. But, they said, there is 

frustratingly little empirical account of how a non-routine action selection system might 

work alone or in concert with a routine action selection system in humans.

1.4. Other Theories of Action Selection
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GOMS (Card, Moran, and Newell, 1983; John, 2003) and production systems such as 

ACT-R (Anderson et al., 2004) incorporate implicit theories of human action control for 

routine procedures. GOMS, Goals Operators Methods and Selection rules, is a framework 

for analyzing tasks humans engage in and making quantitative predictions about 

performance given a particular interface with which to accomplish that task. GOMS is 

based on a stage model of human information processing, and as such it is dependent 

upon a psychological framework. The fundamental assumption GOMS makes is that both 

the task structure and the cognitive architecture are necessary to describe and predict 

human performance. 

GOMS was in particular designed to model and predict skilled human performance of 

routine tasks, and all of its predictions carry the assumptions that the behavior being 

modeled is both skilled and routine. Therefore, like Cooper and Shallice’s contention 

scheduling model, all behavior is conceived as being completely goal-directed. Methods 

(actions) are well-learned sequences of subgoals and operators (low-level actions) that 

can accomplish a goal (John, 2003).  When more than one method is possible, selection 

rules specify under what circumstances which method is selected. It is assumed that, 

because GOMS models skilled behavior, the most efficient method will be selected.

As GOMS was conceived as an engineering tool for predicting completion times and 

suggesting designs for task and interface structures in the skilled performance of tasks, it 

generally has little to say about human error. This is rooted in the fact that humans 

generally commit few errors when engaged in a well-practiced routine behavior, and so 

Card, Moran, and Newell (1983) approximated skilled, nearly-error-free human behavior 

in their engineering model by simply not being concerned by it. But this is not to say that 

19



GOMS cannot be applied to the study of erroneous action selection. In fact, a recent 

study by Wood and Kieras (2002) applied GOMS to a system redesign task and found 

that it could function as a tool to predict human error and mitigate factors contributing to 

it in the design of system interfaces. 

Wood and Kieras’ (2002) approach assumes a modified version of the five distinct 

error stages described by Card, Moran and Newell (1983):

1) Error. The user makes a mistake.
2) Detection. The user is aware an error has occurred.
3) Identification. The user identifies the error’s type.
4) Correction. The user corrects the effects of the error.
5) Resumption. The user resumes normal tasks. 

Wood and Kieras’ (2002) general framework for error recovery specifies the 

infrastructure needed to model erroneous behavior (Figure 4). Once a GOMS model has 

been constructed, its static and dynamic aspects may be examined by the modeler to 

identify sources of error. These sources can be procedural or non-procedural, where 

procedural aspects stem from the effects of the action sequences in the methods and non-

procedural aspects arise from perceptual-motor factors. In particular, Wood (2000) 

described several error types that may be identified by GOMSL (Kieras, 1999) analysis, 

how patterns in the GOMSL analysis identify the potential error, and suggests remedial 

design guidelines. 
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For example, after describing what a capture error is, Wood describes the GOMSL 

pattern of output for that error and design guidelines for remediating interface factors that 

may contribute to inducing capture error in the user’s performance:

Pattern. The general pattern includes a sequence of steps that are used to 

accomplish multiple task goals, followed by a Decide (the divergence point), and 

ending with different action sequences. Capture errors are most likely when the 

action sequences are dominated by well-practiced motor actions. 

GOMSL Example. 

Method_for_goal: Save file

Step 1. Keystroke “:”.

Step 2. Keystroke “w”.

 

tasks. In their observations of experiment subjects
performing a typing task, they noted several interesting
results regarding human error. The first result was that
errors occurred in 36% of the experimental tasks. This
indicates the pervasiveness of human error and the
importance of designing to accommodate it. The second
result was that the occurrence of an error in a task
doubled the average task time. The errors and their
correction accounted for an average of 26% of total task
time. For one subject, error time accounted for 50% of
the time to complete the tasks. Moreover, if an error
required real problem solving to correct (e.g. finding
one’s place in a large text file), task time was increased
by an order of magnitude. These results tell us that
recovery methods need to be efficient and that they need
to be designed such that their use does not require
problem solving. A third result was that subjects tended
to follow a common path during error recovery. CMN
noted that when subjects committed errors, they seemed
to progress through five distinct error stages as
described in the following excerpt:

1) 

 

Error

 

. The user makes a mistake.
2) 

 

Detection

 

. He becomes aware of the error.
3) 

 

Reset

 

. He resets the editor to allow correction.
4) 

 

Correction

 

. He undoes the effects of the error.
5) 

 

Resumption

 

. He resumes error-free activity. (p. 177)

Although these stages were adequate to describe the
behavior observed by CMN, several aspects limit their
general applicability to other domains. For instance,
accurate error-detection and identification was assumed
to occur after an error was committed. Sellen and
Norman (1992) point out that error identification is not
always easy or obvious for users. They recommend that
designers and modelers consider error identification
separately from detection to better focus on how
interfaces can support detection and identification.

A further weakness in the CMN stages is that their
Reset stage may not always be possible or necessary. It
assumes that users can easily back up, both mentally and
within a task, to enable error correction. This is not
always possible or desired. Despite these weaknesses,
CMN describes a useful approach to error modeling that
is structured around specific user mental-stages. 

To help generalize the CMN approach, we adopt the
following modified structure of user error states:

 1. 

 

Error

 

. The user makes a mistake.
 2. 

 

Detection

 

. The user is aware an error has occurred.
 3. 

 

Identification

 

. The user identifies the error’s type.
 4. 

 

Correction

 

. The user corrects the effects of the error.
 5. 

 

Resumption

 

. The user resumes normal tasks.

We refer to this structure of states collectively as error
recovery stages. This differs from the CMN structure in
two fundamental ways. First their Reset stage has been
removed and is considered an implicit part of the error
correction stage, if a reset is used at all. Second, error

identification is split from detection to allow better focus
on the identification process.

An important characteristic of the recovery stages is
that the user’s progression through them is not
necessarily a linear process. How and why users move
from one stage to another is critical to understanding
error recovery. To clarify this process, we can view the
user’s progression through the recovery stages as
movement between a set of mental states.

Figure 1 illustrates how the recovery stages fit into a
simple state diagram of the user’s mental-states during
error recovery. From the user’s perspective, the error
recovery model is straightforward. During normal,
routine performance, the human does everything right
and continuously executes correct actions. I refer to this
as the 

 

Normal

 

 state. But, when an error occurs, the
human enters a Quasi-Normal state where everything
seems normal, but where some failure is imminent. The
transition between the 

 

Normal

 

 and 

 

Quasi-Normal

 

 states
reflects the Error stage. The user can continue
performing correct actions within the 

 

Quasi-Normal

 

state until the user detects that something is wrong,
prompting him or her to recover. This transition from the

 

Quasi-Normal

 

 state to the 

 

Recovery

 

 state reflects the
Detection stage. Once in 

 

Recovery

 

, the user identifies
the error (the Identification stage) and takes the
necessary corrective actions (the Correction stage).
When error correction is complete, the user returns to
normal operations (the Resumption stage).

Two additional transitions reflect the nonlinear
nature of error recovery. The first of these occurs when
the user detects an error as the action is performed (as
with the CMN errors). In these cases, the user jumps
immediately to the Recovery state. This transition can
occur from any state, including Recovery. The second
transition type can occur when an undetected error
occurs during the Recovery state. Here, the user reenters
a quasi-normal state, where error correction seems to be
proceeding, but where another failure is imminent.

Movement through the mental states can be

 

Figure 1. 

 

A general framework for error recovery. 
The state diagram illustrates user mental states 
while moving through error recovery stages.
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Figure 4. Wood and Kieras’ (2002) general framework for error recovery. The state diagram illustrates user mental 
states while moving through error recovery stages.
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Step 3. Decide: If “finished writing” then 

! Keystroke “q”. 

Step 4. Return-with-goal-accomplished. 

This classic example (Norman, 1983) from the UNIX vi text editor shows a 

method for saving a file that includes the option of quitting after saving. To save 

the document, the user must type the sequence “:w”. To save and quit, the user 

must type “:wq”. If the save-and- quit sequence is used much more than the save 

sequence, the user will have a tendency to save-and-quit when the intention is to 

save and continue. 

Design Guidelines. Norman ( 1983) and Lewis and Norman (1986) suggest three 

possible guidelines to minimize capture errors. First, minimize overlapping action 

sequences when possible. Second, if that is not possible, put in a verification 

check at the divergence point. In the above example the system could force the 

user to confirm quitting. The third guideline is to provide adequate system state 

information to the user. Although not relevant to the example given here, system 

state information can sometimes cue the user that the system is in a different state 

than expected. 

Wood’s and Kieras’ (2000; Wood & Kieras, 2002) effort forms the beginning of an 

engineering approach to identifying and mitigating human error by addressing error-

inducing elements of interfaces and tasks early in the design process. While such work 

surely possesses much practical value, its level of analysis is not meant to discover the 

cognitive mechanisms responsible for human action sequence representations and how 

they produce correct and errant behavior.
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ACT-R, however, is a cognitive architecture intended to be a generalized theory of 

human cognition (Anderson et al., 2004). As such it must be concerned with those 

mechanisms of human action selection and their resultant correct and errant behaviors. 

ACT-R is a hybrid production system which uses symbols to transmit information 

between distal modules, each responsible for different types of computation (e.g., visual 

perception, motor movements). The modules themselves use subsymbolic processes to 

govern their computations. Production systems use a collection of IF-THEN rules to 

specify actions to be taken and their preconditions. In ACT-R, these preconditions can 

come from any of a number of sources, including sensory information and goals. Like 

contention scheduling, production systems in general and ACT-R in particular govern 

their action selection based on discrete, symbolic knowledge structures. But in ACT-R’s 

case, some governance, such as conflict resolution when multiple actions match a set of 

preconditions, relies on processes dependent upon continuous, subsymbolic processes 

which often act upon the symbolic structures. 

Lebiere, Anderson, and Reder (1994) demonstrated that human-like errors can be 

successfully generated by a production system, in their case, a model built on the ACT-R 

cognitive architecture. Errors modeled were from an algebra task wherein subjects had to 

memorize a digit span of 2, 4, or 6 digits and then solve a linear equation before recalling 

the digits. Equations were simple or complex, with one or two transformations required 

to solve. Human errors increased both with increasing equation complexity and 

increasing digit span, the factors being additive. Most errors occurred in algebraic 

transformations (such as in forgetting to invert a sign), though many others were 

arithmetic errors where subjects retrieved the wrong fact in the addition or multiplication 
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table. The authors replicated errors of omission (such as forgetting to invert signs) by 

applying a latency threshold for the retrieval of declarative memory facts. Retrievals 

failed if a fact did not receive enough activation from its source context. Errors of 

commission (like arithmetic errors) resulted from allowing for imperfect retrieval from 

long term memory. The wrong fact was retrieved if it partially-matched the context and 

the stochastic nature of its activation computation happened to give it a higher activation 

than the correct fact.

Byrne (2003) highlighted other mechanisms in ACT-R that could be used to model 

human error, particularly for predicting human error in routine procedures. One area 

likely to yield errors, even when the “correct” knowledge is known by the operator, is the 

procedural memory mechanism. ACT-R chooses productions based on their utility, but 

the process is noisy. Thus when there are multiple viable alternatives, ACT-R will choose 

stochastically from among them, possibly choosing an action that fails to achieve the 

current goal. Likewise, ACT-R’s declarative system provides rich ground for potential 

error generation as Lebiere, Anderson, and Reder (1994) described. 

Chung and Byrne (2008) implemented Byrne’s (2003) framework in a computational 

model of a routine procedure. The procedure had been designed to induce a particular 

type of error, postcompletion error (Byrne & Bovair, 1997) wherein operators neglected 

to take a step required after the main goal of the task has been accomplished. Chung and 

Byrne used a declarative memory mechanism based on Lebiere, Anderson, and Reder’s 

(1994) retrieval latency threshold to mimic human operators’ postcompletion error rate. 

Chung and Byrne’s human data showed that postcompletion error is eliminated if a 

highly-salient and sufficiently specific cue is used to aid retrieval of memory for the 
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postcompletion step. They were able to show that the cue works by making it 

immediately accessible to the model’s simulated visual system. The cue appeared just-in-

time with the postcompletion step. The model had a production specifying that if the cue 

object were to appear, then perform the postcompletion step.

1.5. Recent Empirical Findings

Cooper and Shallice (2006a, 2006b) alluded to the possibility that objects in the 

environment could have important consequences for action selection, since often our 

actions are performed on some object or using some object as a tool. Objects all exist in 

space, and how they are arranged in space can impact human performance of routine 

tasks, both in terms of speed and error commission.

Recent data from our laboratory indicated one factor particularly important to 

performance of routine procedures, visual layout. Chung (2006) found that users relied 

much more on the spatial layout of interface control elements (checkboxes, radio buttons, 

etc.) to guide their action selection than they relied upon control element labels or goal 

structure. Chung’s study employed two experiments each using two quasi-isomorphic 

procedures performed with software interfaces, Phaser and Transporter. Participants 

trained on both tasks and then tested one week later. Experiment 1 changed both 

interfaces halfway through testing, with the Phaser’s labels each being changed to a row 

of X’s (Figure 5). 

The Transporter interface was laid out so that controls were grouped into clusters by 

subtask (Figure 6). Controls in the Transporter’s first subtask’s cluster were mixed 

together so that there was no clear relationship between their spatial arrangement and the 

order in which they were used. Initially the second subtask’s cluster was arranged so that 
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the first control to be used in that subtask was the bottom-most element in the cluster, 

with subsequent actions using the next-lower control. The cluster for the third subtask 

was laid out top-to-bottom. After the interface change, the positions of controls within 

each of these clusters reversed so that the second cluster became top-to-bottom and the 

third cluster bottom-to-top. The first cluster reversed the order of its controls, going from 

top to bottom.
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Figure 5a. Label removal: Pre-change Phaser interface.
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Figure 5b. Label removal: Post-change Phaser interface.
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Figure 6a. Layout change: Pre-change Transporter interface.
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Figure 6b. Layout change: Post-change Transporter interface.
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Chung found that removing control labels in the Phaser resulted in only a slight and 

non-reliable increase for error rate on the first step of the task, while there was no change 

in error rate for other steps. The pattern was the same for Phaser task step response times. 

As for the Transporter, error rate did increase with the change in layout, particularly on 

the first step. There were no effects of layout change on Transporter response times, 

however.

In Experiment 2, the Transporter changed from its down-up layout to one in which all 

three clusters had controls arranged in a top-to-bottom order. Chung found that error 

frequencies were lower for several steps for the post-change Transporter than for the pre-

change Transporter. For the Phaser, since controls were not arranged with all of one 

subtask’s controls in the same cluster, color-coding was added such that all controls of the 

same subtask were highlighted in the same color. If subjects used task structure to guide 

their action selection, then providing visual interface cues regarding subtask groupings 

should have aided performance. Instead, Chung found that error frequencies drastically 

increased after the Phaser interface change, despite subject reports stating that they used 

color coding and felt as though their performance improved because of it. Chung 

speculated that globally useful rules specifying the next location at which an action is to 

be performed can help navigation in interfaces used for routine procedures because 

cognition is conserved relative to interfaces that do not lend themselves to such rules. 

Other work (e.g., Fu & Gray, 2004; Gray & Boehm-Davis, 2000; Gray et al., 2006) has 

demonstrated the humans tend to behave in locally-efficient manners that conserve 

cognitive and perceptual-motor resources during interactive behavior. If humans are such 

“cognitive misers,” as Gray asserts, then it is likely that people would draw upon global 
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navigation rules during interactive behavior and integrate those rules into their skilled 

routines.

Other recent but as yet unpublished data from a later experiment employing the 

Phaser and Transporter tasks continued to examine the role spatial layout may have in 

human performance of routine procedures. Table 1 lists the tasks, manipulations, and 

major findings from this latter experiment. From the empirical data reported by Chung 

(2006) and from the subsequent experiment, it seems clear that spatial layout of an 

interface used for a routine task can have profound effects on human performance of that 

routine task.

Table 1
Tasks, Manipulations, and Major Findings from Unpublished Star Trek Procedure 
Experiment

Task Manipulation Major Findings

Phaser move clusters subjects slower on some steps by 
200 – 500 ms per step

Phaser move clusters & move buttons 
within clusters

subjects generally slower by 500 – 
1,000 ms per step

Transporter add extraneous buttons subjects generally slower by 500 
ms per step

Transporter move clusters, move buttons within 
clusters, & add extraneous buttons

subjects' error rate generally jumps 
from 0% – 5% to 15% – 20% and 
slower by 1000 – 2000 ms, per step

GOMS is not likely to provide an explanation for how people really go about 

selecting routine actions because it was simply not designed for the task of advancing 

basic cognitive science theory, though as an engineering model GOMS will certainly 

benefit from such advancements. CSM may be in a better position to advance to more 

ranges of behavior because of its more abstract level of specifications, though at low-
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levels of computation SRN may very well provide explanation. ACT-R perhaps is in the 

best position to integrate action selection in routine and non-routine behaviors because it 

is a generalized theory of human cognition. 

As an example of the importance of using a generalized theory of human cognition, 

bear in mind one of Cooper and Shallice’s (2006a, 2006b) criticisms of the SRN model, 

that objects not fixated or grasped during training effectively do not exist. ACT-R has 

enough of a simulated visual system to be potentially influenced by distractor objects in 

the environment. It is difficult to imagine how the SRN model would mimic human 500 

ms increased response time as an effect of having extraneous buttons added to the 

Transporter. The layout change data from our lab clearly indicate a strong influence of 

visuo-spatial features of the interface on action selection human performance and error 

and therefore seems like a fruitful space for exploration. Other recent work (Gray & Fu, 

2004; Gray et al., 2006) indicates that people are flexible in how they accomplish their 

tasks at small time scales, typically five seconds or less, and use combinations of their 

own memory and the perceptual-motor properties of their environment to achieve close to 

optimal efficiency in their performance at that time scale. If that is true and visuo-spatial 

factors can influence action selection, as the CSM account indicates, then people may use 

their environment as cues for the selection of actions. Indeed, CSM actually includes 

environmental triggers, or cues, as one source of potential schema activation. 

Furthermore, Chung and Byrne (2008) found that cuing by the interface mitigated 

postcompletion errors. It therefore seems evident that perceptual-motor factors do play an 

important, interactive, role in action selection.
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How are actions and action sequences represented? The CSM and SRN accounts both 

offer views that are impressive in the range and depth of behavior they explain. SRN 

offers an account of generalized statistical learning of action sequences that is 

compelling, but CSM, being more abstracted, seems as though it would explain a larger 

range of behaviors at the rule-level of human behavior and is possibly in a better position 

to interface with other cognitive systems that would handle the knowledge- and skill-

levels. The ultimate test of our grasp of action selection and errors thereof, at all three 

levels of the skill-rule-knowledge hierarchy, is likely to come from the practical value of 

engineering tools designed to assess those issues. GOMS is making promising progress in 

that respect, and feedback regarding the predictive efficacy of tools like GOMS will give 

us useful information about how well we know these phenomena.

How do environmental factors like spatial layout and task structure influence action 

selection? It is clear from work like Chung (2006) and Chung and Byrne (2008) that 

spatial layout does impact human performance of routine procedures. It may be that in 

learned action sequences, the representations of where those actions occur are tightly 

coupled with the representations of the actions themselves, as evidenced by Chung’s 

findings from the Transporter task.

What can human error tell us about how actions and action sequences are represented, 

and how spatial layout and task structure influence action selection? The fact that subjects 

in Chung’s (2006) Transporter clicked the wrong control object with no accompanying 

increase in response time, rather than taking more time to make certain the right control 

object was found, indicates a lack of speed-accuracy tradeoff. Instead, subjects appeared 

to have a high willingness to act based on sequential action-location information alone. 
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Once a corpus of human error-related factors such as spatial layout change has been built, 

design guidelines may be established that can inform the design of interfaces that have a 

low incidence of inducing operator error.

It is clear that more empirical work needs to be done to map the spatial and task 

structure factors that influence human action selection, and how those factors contribute 

to selection of the wrong action. Clearly a foundation built in a generalized theory of 

human cognition is needed in order bind these factors and their interactions together. 

ACT-R has already showed promise as a tool for investigating human action sequence 

representations and error in routine action. Further study should use a combination of 

extensive empirically-acquired behavioral data and cognitive modeling to map these 

factors and tie them together into a cohesive account of human action selection. 

2. BEHAVIORAL STUDIES

I performed two experimental studies and two modeling studies aimed at obtaining 

the kind of empirical behavioral data and insight from modeling to begin to tie 

perceptual-motor and cognitive factors into a cohesive account of human action selection. 

General theories of cognition, such as ACT-R, come with mechanisms for generating 

cognitive, perceptual, and motor predictions that are all based upon empirical research. 

Many general theories of human cognition, like ACT-R, have theories of perceptual and 

motor processes for good reason: human cognition is situated within those systems and 

uses those systems to exchange information with the world. Mating a framework like 

ACT-R with a successful theory of action selection will provide us with a richer view of 

routine procedural behavior than what a theory of routine procedural behavior alone 

could provide us. 
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If we are to move toward that cohesive account of human action selection, we should 

test whether CSM and SRN are basically correct in their accounts of sequential human 

task performance in the presence of the perceptual-motor factors discussed by the likes of 

Chung (2006) and Chung and Byrne (2008). To that end, the two experiments I 

performed used a version of Byrne and Bovair’s interactive Star Trek-themed procedural 

task. Byrne and Bovair’s task, being formulated specifically for research, were novel 

procedures for the subjects. The procedures were set in the fictional world of Star Trek to 

encourage engagement of the undergraduate participants (Byrne, Maurier, Fick, & 

Chung, 2004). The experiments manipulated the structures of the two tasks tasks in order 

to test the CSM and SRN accounts of human task representation. 

The first experiment tested the SRN’s assumption that subtasks are delineated strictly 

on the basis of step co-occurrences. Experiment 1, using Byrne and Bovair’s Phaser task, 

presented all subtasks in the same order on every trial, but segregated them by perceptual 

means such as grouping and by semantic means such as object label similarity. If, 

however, representations of task structure are entirely based on step associations and a 

holistic representation of task context as the SRN claims, then manipulating step order 

within a subtask should completely destroy humans’ ability to perform that subtask. Thus 

Experiment 2, using Byrne and Bovair’s Transporter and a new task, the Jammer. 

Experiment 2 delineated subtasks by co-occurrence as the SRN assumes, but it also 

reordered the steps within one subtask in two conditions. In one other condition, it 

manipulated the order of subtasks within the procedure.

Experiment 2 ran concurrently with Experiment 1, using the same subjects. To the 

subjects, the Experiment 2 tasks – the Transporter and the Jammer – appeared as one 
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experiment together with the tasks of Experiment 1. Thus, design, procedures, materials, 

and participants for Experiment 2 were identical to those for Experiment 1 except as 

noted. 

2.1. Experiment 1

2.1.1. Introduction

Experiment 1 used the Star Trek Phaser procedure (Byrne & Bovair, 1997; Chung, 

2006; Chung & Byrne, 2008) to manipulate subtask delineation. Experiment 1’s Phaser 

procedure put one, partially-completed subgoal on hold while the subject started and 

completed one other subtask. Then the subject returned to the first subtask to complete it. 

Subtask coherence was established by placing all controls for each subtask within their 

own cluster within one bounded area of the interface and using semantically-similar step 

names as measured by Latent Semantic Analysis. 

The intervening subtask used step names that were all similar to each other, but 

dissimilar to the paused subtask. One group of subjects trained on this procedure from the 

outset. Another group trained on a procedure that kept all subgoals intact, then after 

completing one-half of the trials during the testing session, the procedure changed to the 

intervening-subtask procedure. Still a third, control group received the intact condition 

throughout training and testing. A fourth group of subjects worked with a semantic 

control version of the basic Phaser in which no control label was similar to any other 

control label. Furthermore, the Phaser task did not adhere to the SRN’s working 

definition of a subtask: subtask order never varied, and subtasks were delineated only by 

spatial arrangement of control objects and semantic relatedness of object labels.  

2.1.2. Method
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2.1.2.1. Participants

Ninety-two Rice University undergraduates participated in Experiment 1 to earn 

either course credit or $25.00. All subjects who finished the experiment were eligible for 

the cash prize competition. Five subjects dropped out of the study or were removed due 

to technical error with the experiment software. The remaining 87 subjects had a mean 

age of 19.9 (1.5) years and 48 of them were male, 39 were female.

2.1.2.2. Design

Experiment 1 used four between-subjects conditions for the Phaser task. The Phaser 

conditions were basic Phaser (no intervening subtask), trained subtask pausing, untrained 

subtask pausing, and a semantic control version of the basic Phaser. 

2.1.2.3. Materials

As in previous studies using the Star Trek paradigm, Experiment 1 used a set manuals 

of five or six pages to instruct subjects on the experiment’s procedures. The manuals 

featured an overview of the procedure, detailed instructions complete with example 

figures, and a chart illustrating the task’s procedure. Copies of all manuals are available 

for download from this dissertation project’s website, http://chil.rice.edu/tambo/

dissertation/ . 

Experiment 1 was programmed in Lisp and run in the Macintosh Common Lisp 

(MCL) environment version 5.1 on eMac Macintosh computers running Macintosh OS X 

10.2 and 10.3 and each equipped with a standard Apple single-button mouse, standard 

Apple QWERTY keyboard, and Sony MDR-201 headphones. Subjects also participated 

in a web-based post-experiment survey displayed in Microsoft Internet Explorer version 

5.2.3 (see Appendix C). The entire experiment code base and supporting files necessary 
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to run the experiment may be downloaded from http://chil.rice.edu/tambo/dissertation/. 

The eMacs used CRT displays that measured 43 cm diagonally in a 4:3 aspect ratio. The 

display resolution was 1024 px by 768 px. 

The Phaser interface, as in previous Star Trek experiments, was a single-screen 

display with controls grouped into clusters (Figure 7a & b). That is, all interface elements 

used by subjects to complete one trial were visible on-screen at once. The interface 

elements consist of checkboxes, radio buttons, buttons, a rising thermometer-style gauge 

to indicate battery Generator level, a clickable horizontal slider for inputing a focus 

value, a crosshairs with moving target dot, display of time elapsed during the current 

trial, and feedback display. 

Controls used for each subtask appeared within close proximity for each other and 

within boxes drawn in the interface’s background, clearly establishing perceptual 

grouping of the control objects. Objects that were not used for input, namely the elapsed 

time and the feedback display, appeared in their own boxes. Interface display background 

not occluded by some interface element was colored medium-gray. See figures 7a and 7b 

for the semantically-similar groups and semantic control versions of the Phaser interface.
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Figure 7a. Phaser interface, semantically-similar control object groups.
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Except in the semantic control condition, all controls for each subtask, such as 

charging the battery, carried names in the manuals and in interface labels that were 

semantically similar to each other but not similar to control names for other subtasks. 

Latent Semantic Analysis (LSA) established semantic relatedness. LSA is is a general 

theory and method for extracting and representing the contextual-usage meaning of 

words by statistical computations applied to a large corpus of text (Landauer & Dumais, 

1997; Landauer, Foltz & Laham, 1998). It operates on the principle that the aggregate of 

all the word contexts in which a given word does and does not appear provides a set of 

mutual constraints that largely determines the global similarity of meaning of words and 

sets of words to each other. 

Figure 7b. Phaser interface, semantic control condition.
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LSA uses singular value decomposition (SVD) to distill a corpus of text into the 

optimal number of dimensions used to assess similarity ratings. SVD takes as its input a 

matrix of words and the contexts in which those words appear. Cells represent the 

transformed raw frequencies with which a given word appeared in a given context, as per 

Equation 1. The log of the object’s frequency + 1 is divided by the object’s measured 

information entropy. The effect of this transformation is to weight each word occurrence 

directly by an estimate of its importance in the passage and inversely with the degree to 

which knowing that a word occurs provides information about which passage it appeared 

in (Landauer, Foltz, & Laham, 1998).

The output from SVD can be used to calculate similarity measures between any 

combination of two words and/or contexts (paragraphs) compared, which take the form 

of cosines between the vectors of the factors incorporating those words or contexts. 

Highly-similar terms might share a cosine of 0.6, while unrelated terms would have a 

cosine near 0 and dissimilar terms would have a negative cosine. 

Tables A1 and A2 in Appendix A list the within-subtasks and between-subtasks 

cosines for labels used in the semantically-related labels conditions, respectively. Tables 

A3 and A4 in Appendix A list those values for the semantic control conditions. The 

within-subtasks cosines measure the semantic similarity of individual labels against other 

labels in the same subtask while the between-subtasks cosines measure semantic 
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similarity of all of the terms in one subtask taken as one text against all of the terms in 

another subtask taken as one text. It is evident from the cosine values in Tables A1 – A4 

that in the semantically-related conditions the control labels are indeed similar to each 

other within subtasks but not between subtasks and that in the semantic control condition 

the control labels are not semantically similar to each other within- or between-subtasks.

2.1.2.4. Procedure

As in Byrne and Bovair (1997), Chung (2006), and Chung and Byrne (2008), the 

Phaser task was a sequence of 12 actions performed using an interactive computer 

interface. Each step consisted of an action such as clicking a button or moving a target 

onto a crosshairs. The basic Phaser step order followed that used in previous studies 

except with names changed to manipulate semantic relatedness within and between 

subtasks. Table 2 lists the steps and subtasks of the basic Phaser task.

Table 2
Phaser Subtasks and Steps

Subtask Step

Charge Batteries 1. Click “Electrical” checkbox

2. Click “Generator” button

3. Wait for power meter to fill to within a pre-determined range, then 
click “Kilowatts” button

4. Click “Electrical” checkbox

Set Focus 5. Click “Lens” radio button

6. Click on the horizontal slider

7. Check “Focus” checkbox
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Table 2
Phaser Subtasks and Steps

Track the Target 8. Click “Cannon” radio button

9. Click “Shot” button

Fire the Phaser 10.  Move target to crosshairs, press spacebar to shoot. If the 
Romulan vessel was destroyed, then proceed to step 11. If the 
Romlan vessel was not destroyed, then return to step 1.

11.  Click “Shot” button

12.  Click “Main” button

In the Phaser, the subtasks are to Generator the battery, set the focus, track the target, 

and shoot. For the version of the Phaser that paused the battery charging subtask, 

participants clicked the “Generator” button, then performed all steps of the set focus 

subtask. Only when subjects successfully completed the set focus subtask did the power 

meter begin to fill. Subjects then waited for the power meter to fill and then clicked “Stop 

Charging” and then clicked “Electrical.” The trained subtask pausing condition used this 

Phaser throughout the training and testing sessions. Subjects in the untrained subtask 

pausing condition trained with the basic Phaser procedure and used it for the first half of 

their Phaser trials during the test phase. However, halfway through their test session 

instructions appeared notifying subjects in this condition of the onset and nature of the 

procedure change. From that point forward they used the paused charging subtask Phaser 

procedure. The semantic control version of the Phaser used the basic Phaser procedure. 

The only difference between the basic Phaser and the semantic control Phaser was the set 

of labels that appeared next to the control objects.
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To recap, the basic Phaser procedure followed the steps in Table 2. The semantic 

control version of the Phaser used the same procedure, but used a different set of labels to 

provide a control condition where semantic similarity of labels could not be used to group 

steps into subtasks. The trained intervening subtask version of the Phaser used, 

throughout the experiment, a Phaser procedure in which subjects completed the first two 

steps of the Generator batteries subtask, then completed the set focus subtask, then 

completed the remaining two steps of the Generator batteries subtask. Subjects in the 

untrained intervening subtask version of the Phaser used the basic Phaser procedure in 

training and in the first seven trials of the experiment. Before the onset of the eighth 

Phaser test trial, the experiment displayed a message indicating that the Phaser procedure 

was to change and what the new Phaser procedure would be – the intervening subtask 

procedure. Subjects then used the intervening subtask procedure for the remaining seven 

Phaser trials. A detailed experimenter script provided explicit instructions for the three 

experimenters to follow when running Experiment 1 and Experiment 2. The experimenter 

script is included in Appendix B.

2.1.2.4.1. Training Session

When beginning the experiment’s training session, participants received instructions 

aurally from the experimenter (Appendix A). They each also received a packet of 

manuals: one which described how points are earned during the testing phase, and what 

the cash prizes were for the top three performers in their experiment group; one which 

described the “Main Control” interface and provided an overview of the experiment; one 

for each of the tasks they were to train on in the experiment (e.g., Phaser, Transporter, 

etc.). After receiving verbal instructions and their training packets, subjects read 
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instructions from the computer (Appendix A). The written instructions reiterated the 

experimenter’s verbal instructions. When they had finished reading the written 

instructions, subjects clicked continue to go to Main Control.

Before attempting a task for the first time, subjects read the manual for that task. 

During the first attempt, subjects kept the manual out for reference while they performed 

the task. Once they had completed one trial successfully, they returned the manual to the 

experimenter so that it was no longer available for reference. Participants then continued 

training as Main Control directed them until they had reached training criterion for that 

task. Training trials were blocked by trial type so that subjects trained intensively on one 

task until they had correctly completed four trials. These four correct training trials could 

be non-consecutive. Upon completion of training, an appointment was set for each 

subject to return and complete the testing phase four to ten days hence.

2.1.2.4.2. Testing Session

As with the training sessions, testing sessions began with oral and written instruction 

(Appendix A). After instruction, participants began performing the Star Trek tasks 

immediately. Once again, Main Control gave trial-by-trial instruction on which task to 

perform next. Trial types appeared in random order during the testing phase, all in one 

block. Subjects performed 12 trials of the Phaser task and 8 trials of the Navigation task. 

Main Control gave non-specific error feedback at the conclusion of each trial, only 

indicating how many errors had been made during the previous trial. When subjects erred 

the computer emitted a buzzer sound and the state of the interface did not progress until 

they performed the correct action.
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Subjects also performed a concurrent working memory letter task during the testing 

session. As in previous studies (Chung, 2006; Chung & Byrne, 2008), its function was to 

increase working memory load during task performance and thereby elicit a sufficient 

number of errors to study. Throughout the testing session participants heard randomly 

ordered letters spoken through the headphones at a rate of one letter every three seconds. 

A tone presented randomly at intervals ranging from 9 to 45 seconds, accompanied with a 

response dialog window that popped up on top of the primary Star Trek task window. 

That is, the letter recall task interrupted the Phaser, Navigation, Main Control, or 

whatever else it was that the subject was doing at the time. Participants then recalled the 

last three letters in presentation order and typed them into the response dialog window. 

Subjects heard a warning buzzer as feedback in the event of incorrect letter string recall.

The instructions displayed on-screen before the beginning of the experiment warned 

participants in the untrained intervening subtask condition that some of the interface they 

were to use might change during the experiment. The instructions only stated that a 

change would take place during the course of the experiment, it did not specify the nature 

of the change. Before the onset of the eighth trial in the untrained intervening subtask 

group, a message popped up on screen. The message warned that the Phaser procedure 

was about to change and it specified the new order of steps to be performed. 

As extra incentive for performing to the best of their abilities, all subjects were 

eligible for cash prizes based on a competitive scoring system. The experiment’s test 

session awarded points based on correct performance, with bonuses for fast performance. 

Participants earned 25 points for each correct step performed, and a penalty of 50 points 

for each incorrect action performed. A bonus of 100 additional points was awarded for 
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each Phaser trial completed in less than 20 seconds. The Navigation task had a 100-point 

bonus for trials completed in under 10 seconds. Finally, 200 points were deducted from 

the participant’s score for every letter recall trial performed incorrectly. The subject’s 

current score was visible at all times during the testing session in the lower-right corner 

of the screen. All points counted toward a final score and the three participants with the 

highest scores received cash prizes of $25 for top score, $15 for second-highest score, or 

$10 for third-highest score.
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2.1.3. Experiment 1 Results

Two dependent measures of interest are error frequencies and step completion times. 

Error frequencies measured the number of times that a subject made any error at all on a 

given step divided by the number of presentations of that step. It is important to note that 

this definition excludes repeated or compound errors. In other words, if on the 

“Generator” step the subject makes multiple errant clicks before clicking the “Generator” 

button, the error count for that step would be one. The error count was then divided by 

the number of times the experiment had the subject perform that step. Furthermore, not 

all steps furnished meaningful or interesting data. For instance, error frequencies for the 

“shoot” step were ignored because it was actually composed of a sequence of actions that 

resulted in one data event, namely multiple key presses to move the target onto the 

crosshairs and then hitting the space bar to shoot. Step completion times for some steps 

likewise were not analyzed.

For the procedure-change Phaser, subjects committed 15% more errors on the second 

“Electrical” step following the change in procedure (Figure 8), interaction contrast of the 

second “Electrical” step versus all other steps of interest t(17) = -2.26, p = 0.04. For the 

three no-change Phasers, the same step induced subjects to produce a step completion 

time that was 400 ms longer in the intervening subtask Phaser condition relative to the 

two non-intervening subtask conditions, simple main effect ANOVA with contrast 

(intervening subtask Phaser versus non-intervening subtask Phaser and semantic control 

Phaser) F(2, 62) = 4.45, p = 0.02  (Figure 9).  No other effects were reliable, including 

effects of semantic grouping by label.
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Figure 8. Error frequency in procedure-change Phaser task.
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Figure 9. Step completion times for the three no-change Phasers.

Some consideration of error effects that include repeated errors is in order. By 

considering not only error frequency, but also error severity, some sense of how many 

attempts it took subjects to recover from errors can be had. The next several analyses 

consider total error rates per trial type, per condition. The total error rate is equal to the 

total number of errors committed divided by presentations of task steps. Subsequently 

this error measure will form the basis of evaluation for an ACT-R model of Experiments 

1 and 2.

Figure 10 shows the per-condition trial type error rate obtained from Experiment 1. 

The no-procedure change conditions did not differ reliably from each other, F(2, 62) = 
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0.40, p = 0.68, but the pre-procedure change Phaser did have a higher error rate than the 

post-procedure change Phaser, t(17) = 2.21, p = 0.04. As Figure 11 shows, most of the 

decrease in error rate came in the postcompletion steps, the second “Electrical” and the 

second “Shot” steps. 

Figure 10. Error rates from each condition of Experiment 1.

B

B

B

B

B

s
ta

ti
c
, 

in
te

rv
e

n
in

g
 s

u
b

ta
s
k

p
ro

c
e

d
u

re
 c

h
a

n
g

e
, 

p
re

-c
h

a
n

g
e

p
ro

c
e

d
u

re
 c

h
a

n
g

e
, 

p
o

s
t-

c
h

a
n

g
e

n
o

n
-i
n

te
rv

e
n

in
g

s
e

m
a

n
ti
c
 c

o
n

tr
o

l

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

50



Figure 11. Error rates by step for the Phaser task before procedure change and after procedure change. Error bars 
represent standard error of the mean.

2.1.4. Experiment 1 Discussion

For the Phaser, in both static and procedure change conditions, intervening the focus 

subtask in the middle of the Generator subtask seemed to disrupt subjects' ability to 

perform the second “Electrical” step of the Phaser Generator subtask. It is likely that this 

step is vulnerable to increased error because it is a postcompletion step for the Generator 

subtask. The second “Electrical” step is a postcompletion step because once subjects have 
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stopped charging the battery, the appropriate course of action for participants is to 

proceed to “Lens” in the non-intervening subtask procedure or “Cannon”, in the case of 

the intervening subtask procedure. 

It may be the case that when the time comes to remember to click “Electrical”, 

subjects instead mistakenly recall that the next step is “Lens” (or “Cannon”). This is 

because the two steps are similar in that they follow closely the completion of the main 

goal of the charging subtask, that is, to complete charging of the battery as signified by 

clicking “Kilowatts.” In fact, a modeling effort by Chung and Byrne (2008) found that 

just such a declarative memory similarity combined with a high working memory load 

can explain the relatively high error rates of postcompletion steps. 

It may be that a pronounced postcompletion effect appeared at the second “Electrical”  

step because of additional memory load requirements imposed by the intervening 

subtask. Chung and Byrne (2008) found that they could simulate observed 

postcompletion effects in an ACT-R model by making the similarity between the two 

chunks that encoded the postcompletion step and its subsequent step relatively high. 

Because of a combination of that and the high working memory load demands of the task, 

the chunk encoding the subsequent step would sometimes be retrieved in place of the 

chunk encoding the postcompletion step, and the model would generate a postcompletion 

error. 

The same mechanism could be at work in the second “Electrical” step. If in the case 

of this second “Electrical” step, during the non-intervening procedure the memory load 

may be below a critical threshold. But when the procedure changes, the subject has to use 

some additional working memory capacity in maintaining an instruction to perform a 
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different procedure. The extra working memory consumed may be enough to push the 

subject past the critical threshold and induce postcompletion error. 

This pattern of results is problematic for the SRN account because it has no notion of 

a limited-capacity working memory. Error performance in the SRN stems from 

degradation of its contextual representation, but the model provides no source for the 

degradation. Neither does the SRN provide a way to model step similarity and 

consequently step confusability. Also, because it predicts very rigid task representation 

the SRN would likely not be able to cope with the procedure change version of the Phaser 

task. Clearly performance suffered in terms of error frequency for the second “Electrical”  

step after the Phaser procedure change, yet also the total error rate decreased after the 

procedure change. The SRN would not have predicted this differential effect.

The complete lack of an effect due to semantic associations in the labels is perhaps 

not so surprising in light of Tamborello, Chung, & Byrne’s (2008) finding that people 

seem to not actually use labels once they have acquired skill in this type of task. When 

examined from the perspective of the Soft Constraints Hypothesis (Gray et al., 2006), 

people are likely not using labels at the skilled stage of performance because reading is 

relatively slow compared to other retrieval cues available in the Phaser task. These cues 

include global spatial layout, shape of local button clusters, and relative position within 

the cluster.

2.2. Experiment 2

2.2.1 Introduction

If subtasks can be delineated by means other than statistical co-occurrence of steps, 

such as spatial grouping and semantic similarity as manipulated in Experiment 1, then 
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rearranging the order of steps within a statistically-delineated subtask should not 

catastrophically impair task performance. To test this second hypothesis, Experiment 2 

used the Star Trek Transporter interface. Experiment 2 delineated subtasks by statistical 

co-occurrence, as per Botvinick and Plaut’s (2004) claim. However, the ordering of steps 

within one of those subtasks will change for one group of subjects half-way through the 

testing phase. Another condition imposed different orders of subtasks between the 

Transporter and Jammer tasks.

The purpose of having a second task, the Jammer, on the Transporter interface was to 

make human performance on the two tasks susceptible to a class of human error termed 

mode errors. A mode is a common architecture for grouping several machine 

configurations under one label. The set of modes in a control system corresponds to a set 

of unique machine behaviors and the operator can engage those distinct behaviors by 

switching between modes (Degani, Shafto, & Kirlik, 1999). Action slips can occur when 

a machine configuration is incorrectly perceived as being in one mode when it is in fact in 

another mode. In these instances, operators form incorrect intentions and acting upon 

those incorrect intentions produces a mode error. This is in effect the mechanism by 

which Cooper and Shallice’s CSM generates capture errors – activation from 

environmental cues to incorrect schemas overwhelms activation from the correct action’s 

schema and the wrong action is selected. Mode errors, then, are a particular case of 

capture errors induced by a machine’s interface when that interface provides the wrong or 

ambiguous perceptual cues.

When subjects performed the Transporter and Jammer tasks, there were no cues in the 

environment to remind them which task they were engaged in; they had only the 
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instruction from Main Control, which disappeared from view once they clicked Main 

Control’s “Transporter” or “Jammer” button to begin that task. In such a task context, it is 

likely that mode errors may occur when state information about the task falls out of 

working memory because of working memory demands imposed by the Transporter/

Jammer task and the letter update recall task.

Working memory effects, such as task demands on working memory that contribute 

to mode errors, could potentially be simulated by the SRN by degrading its contextual 

representation. But there are other patterns of results that could be problematic for the 

SRN account. The SRN is very rigid in the action sequences that it outputs. It has no way 

to reorder steps within a subtask. Any error rate short of total impairment in the procedure 

change condition would therefore pose a problem to the SRN. 

Also, any elevated error rate in the no-procedure change, different-scanner Jammer 

without similar error increases in that same condition’s Transporter task would be 

difficult for the SRN. All error in the SRN stems from degradation of its contextual 

representation, which should affect both tasks equally. But a high error rate in one task 

accompanied by low error rate in another task would indicate another source for error.

Turning to the CSM, results that would be hard for it to explain include catastrophic 

error rates for the procedure-change Jammer task. CSM posits that the hierarchical 

structure of task representation combined with the dynamic nature of action selection 

should allow for some degree of adaptation to the new procedure. Very high error rates in 

the post-procedure change Jammer would counter-indicate that kind of account of human 

task representation and action selection. 

2.2.2. Method
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2.2.2.1. Design 

Experiment 2 used the Transporter task as well as an additional task, the Jammer, 

which was performed on the Transporter’s interface. The Jammer is exactly the same task 

as the Transporter, except in name and as described for the different conditions. All 

subjects performed both the Transporter and the Jammer tasks. 

Experiment 2 incorporated a four-level between-subjects design. Experiment 2 

manipulated whether subjects received a Jammer task that was identical to the 

Transporter task, a Jammer task that had a different sequence of buttons to click in the 

scanner subtask, a Jammer that changed during the test session from same-Jammer to 

different-scanner-Jammer, or a Jammer that had its frequency subtask come before the 

scanner subtask. 

The Transporter task was the same for all conditions, but the Jammer changed on a 

between-subjects’ condition basis. The four conditions of Experiment 2 were control, 

trained step reordering, and untrained step reordering, and subtask reordering. Subjects in 

the control condition had one scanner subtask to perform, with the ordering of steps the 

same for both Transporter and Jammer. Subjects in the trained step reordering condition 

performed the scanner subtask steps in one order for the Transporter and in another order 

for the Jammer. Subjects in the untrained step reordering condition, like in the Phaser’s 

untrained intervening subtask condition, performed the first half of their test trials using 

the control scanner ordering for both tasks, then using the changed scanner step ordering 

for the second half of their Jammer test trials.  Subjects in the subtask reordering 

condition had a fixed order for performing subtasks in both the Jammer and the 
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Transporter, but in the Jammer, they used a subtask order which differed from that in the 

Transporter.

2.2.2.2. Materials

Experiment 2 used largely the same materials as Experiment 1, except of course it had 

its own set of manuals and its own interactive computer interfaces for the Transporter and 

Jammer tasks. Like the Phaser, the Transporter had a single-screen interactive interface 

composed of GUI control elements arranged into clusters. The GUI control elements used 

in the Transporter interface consisted of buttons, radio buttons, check boxes, a scanner 

bull’s eye, two small text fields, a tracking area, a time elapsed display, and a status 

feedback display. The Jammer task used the same interface device as the Transporter. 

Figure 12 presents the Transporter/Jammer interface used in Experiment 2.
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2.2.2.2.1. Transporter Task

As in previous studies using the Star Trek tasks, the Transporter task was structurally 

isomorphic with the Phaser task (Byrne, Maurier, Fick, & Chung, 2004; Chung, 2006), 

but not visually isomorphic. Table 3 lists the steps and subtasks for the Transporter.

Figure 12. Transporter/Jammer interface.
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Table 3
Transporter Subtasks and Steps

Subtask Step

Scan for the 
Homing Signal

1. Click “Scanner On” radio button

2. Click “Active Scan” radio button

3. Wait until the scanner homes in on a valid signal, indicated by 
four scanner dots gradually disappearing, one by one, until only one 
scanner dot remained. Then click “Lock Signal” radio button

4. Click “Scanner Off” radio button

Set the 
Transporter 
Frequency

5. Click “Enter Frequency” button

6. Type a two-digit frequency integer into the text field

7. Check “Accept Fequency” checkbox

Synchronize 8. Check “Transporter Power” checkbox

9. Click “Synchronous Mode” button

Energize 10. Track the mouse cursor onto the moving target within the 
tracking area, then click on the target. The task did not advance 
unless the mouse click fell within the area occupied by the moving 
target.

11.  Click “Synchronous Mode” button

12.  Click “Main Control” button

In the Transporter, the subgoals were to scan for the homing signal, set the 

Transporter frequency, synchronize the Transporter with the homing signal, and energize 

the Transporter. Each time participants performed the Transporter or Jammer during the 

training session, the experiment first displayed a message indicating in which order to 

perform the subtasks. For the first three between-subjects conditions, the scanning 

subtask was always first, followed by either the frequency or synchronization subtasks, 
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then the remainder of those two subtasks, then the energization subtask. Subjects trained 

on the Transporter for three trials in each subtask ordering. The training manual for the 

first thee conditions of the Transporter and Jammer stated that the task could be 

performed in either subtask order and explained how to do so. During the testing session, 

subjects were free to perform the Transporter subtasks in whichever order they preferred 

each time they did a trial.

For the fourth between-subjects condition, the static reordered subtask condition, the 

experiment did not specify a subtask order for the trial because Transporter and Jammer 

subtasks were always performed in the same order for each trial, for both Transporter and 

Jammer. In this condition subjects trained to a criterion of four correct trials, as for the 

Phaser and the Navigation tasks.

Like the Phaser, the Transporter task also used a probabilistic function to determine 

whether or not to re-start the trial for the subject. Transporter trials repeated for the same 

reasons and with the same consequences as the Phaser. 

2.2.2.2.2. Jammer Task

The Jammer task was an exact duplicate of the Transporter task with the following 

exceptions: The first between-subjects group trained and tested using a Jammer that had a 

different step order for the scanning subtask, “Active Scan,” “Scanner Off,” “Lock 

Signal,” and “Scanner On.” The second condition used a Jammer that actually was an 

exact duplicate of the Transporter as a control group. The third condition trained with the 

Transporter-duplicate Jammer and also used that for the first half of the experiment trials, 

then switched to the reordered scanner steps Jammer. The Jammer procedure switch used 

the same method as the Phaser that changed half-way through the experiment. 
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The fourth condition used a Transporter and Jammer that had only one subtask order. 

That is, unlike the other versions of the Transporter and Jammer tasks, subjects in this 

condition were not free to choose whether to perform the frequency subtask before the 

synchronization subtask or vice versa. The Jammer in this condition had subtasks occur 

in a different order than the Transporter: Set the Transporter Frequency, Scan for the 

Homing Signal, Synchronize, and Energize.

2.2.2.3. Procedure

2.2.2.3.1. Training Session

Subjects trained for six trials each on the variable subtask versions of the Jammer and 

Transporter tasks, three times in each subtask order of each task. The order in which the 

experiment had subjects perform each subtask order was randomized. Before the training 

trial started the experiment software displayed a message indicating which subtask order 

to use during that trial. Subjects thus became familiar with performing the Transporter 

and Jammer tasks in both possible subtask orders. Subjects in the fourth, static subtask 

order condition trained to four correct trials each on the Transporter and Jammer.

2.2.2.3.2. Testing Session

The testing procedure for Experiment 2 proceeded as for Experiment 1 but with the 

following exceptions. Subjects performed 12 trials each of the Transporter and Jammer 

tasks. As for Experiment 1, instructions displayed on-screen before the beginning of the 

experiment warned participants in the untrained reordering condition of the change in the 

procedure they were to perform. The instructions only stated that a change in the 

procedure would take place, they did not specify the nature of the change. Before the 

onset of the seventh trial in the untrained reordering group, a message popped-up on 
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screen. The message warned that the Jammer procedure was to change, and it specified 

the new order of steps to be performed in the scanning subtask. Scoring remained the 

same for Experiment 2 except that the 100-point bonus cut-off occurred after 13 seconds 

for both the Transporter and Jammer. The instructions for the variable subtask order 

conditions of the Transporter/Jammer reiterated that subjects were free to use whichever 

subtask order they preferred on each Transporter or Jammer trial. 

Since Experiment 1 and Experiment 2 ran concurrently, using the same subjects, 

every subject in Experiment 1’s trained intervening subtask Phaser condition also ran in 

Experiment 2’s Jammer trained reordering Transporter condition. Likewise, Experiment 

1’s untrained intervening subtask Phaser condition ran with Experiment 2’s Transporter 

and identical Jammer condition; Experiment 1’s basic Phaser condition ran with 

Experiment 2’s Jammer untrained reordering Transporter condition; Experiment 1’s 

semantic control Phaser condition ran with Experiment 2’s Jammer subtask reordered 

Transporter condition. Based on prior experience with the Star Trek task paradigm 

(Chung, 2006; Chung & Byrne, 2008; Byrne, Maurier, Fick, & Chung, 2004) it seemed 

unlikely that there would be any confounding effects from pairing certain versions of the 

Phaser with certain versions of the Transporter-Jammer, except perhaps from having a 

relatively difficult Phaser paired with a relatively difficult Transporter-Jammer. Therefore 

the experiment conditions were paired so as to prevent any one group of subjects from 

receiving a relatively more difficult set of tasks.

All subjects participated in a brief post-experiment survey. The survey asked 

questions about demographics, general computer and internet usage, questions specific to 
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the experiment, and questions specific to the between-subjects conditions. A copy of the 

survey is available at http://chil.rice.edu/tambo/dissertation/.

2.2.3. Experiment 2 Results

The same dependent measures were used for Experiment 2 as for Experiment 1. 

Likewise, some steps were excluded from analysis. Furthermore, any analysis involving 

the step factor incurred moderate to very large sphericity violations, all Greenhouse-

Geisser ε < 0.65. Howell (2002, p. 523) says the literature generally supports the use of 

Pillai's Trace, so those analyses used the Pillai's Trace MANOVA.

A condition by task by step MANOVA revealed effects of the different-scanner 

subtask Jammer (Figure 13). For the static different-scanner Jammer task, subjects 

committed 18% more errors on the second step, “Scanner Off”, than they did for the 

second step, “Active Scan”, on the same-scanner Jammer task (Figure 14). There was an 

interaction effect of condition by step Pillai’s Trace = 0.55, F(8, 29) = 4.47, p < 0.01 and 

of task by step Pillai’s Trace = 0.57, F(8, 29) = 4.77, p < 0.01. The condition by task 

interaction was also reliable, F(1, 36) = 6.96, p = 0.01. Furthermore, the condition by task 

by step interaction was reliable, Pillai’s Trace = 0.54, F(8, 29) = 4.26, p < 0.01 with the 

effect obviously being driven by the different-scanner Jammer, as further analyses show.
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Figure 13. Error frequencies for no-procedure change, different Jammer condition.

Figure 14. Error frequencies for no-procedure change, same Jammer condition. 

S
c
a
n
n
e
r 

O
n

A
c
ti
v
e
 S

c
a
n

L
o
c
k
 S

ig
n
a
l

S
c
a
n
n
e
r 

O
ff

E
n
te

r 
F

re
q
u
e
n
c
y

ty
p
e
 f
re

q
u
e
n
c
y

A
c
c
e
p
t 
F

re
q
u
e
n
c
y

T
ra

n
s
p
o
rt

e
r 

P
o
w

e
r

S
y
n
c
h
ro

n
o
u
s
 M

o
d
e

s
h
o
o
t

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.350.35

E
rr

o
r 

F
re

q
u

e
n

c
y

Step

Transporter

Jammer

S
c
a
n
n
e
r 

O
n

A
c
ti
v
e
 S

c
a
n

L
o
c
k
 S

ig
n
a
l

S
c
a
n
n
e
r 

O
ff

E
n
te

r 
F

re
q
u
e
n
c
y

ty
p
e
 f
re

q
u
e
n
c
y

A
c
c
e
p
t 
F

re
q
u
e
n
c
y

T
ra

n
s
p
o
rt

e
r 

P
o
w

e
r

S
y
n
c
h
ro

n
o
u
s
 M

o
d
e

s
h
o
o
t

0

0.05

0.1

E
rr

o
r 

F
re

q
u

e
n

c
y

Step

Transporter

Jammer

64



Examining only the Jammer task, the simple main effect of condition on error was 

reliable, F(1, 36) = 6.52, p = 0.02, and there was an interaction with step, Pillai’s Trace = 

0.52, F(8, 29) = 4.00, p < 0.01. A contrast revealed the source of the difference in error 

rates between the two Jammers to be the second step of the different-Jammer, “Scanner 

Off,” versus the second step of the same-Jammer, “Active Scan,” F(2, 36), = 37.66, p < 

0.01. Examining the effect of task at the different-Jammer level of condition, a reliable 

effect was apparent, F(1, 19) = 9.60, p < 0.01, and that effect was different for at least 

one step, Pillai’s Trace = 0.74 F(8, 12) = 4.24, p = 0.01. The step that differed was again 

the second one for each task, Transporter’s “Active Scan” versus Jammer’s “Scanner 

Off”, contrast t(19) = -6.07, p < 0.01. There were no reliable effects of the static different-

Jammer and same-Jammer on step response times.

For the procedure change Jammer, there was a main effect of procedure change both 

on error rate and step completion times for the Jammer task, but no effects on the 

Transporter task (Figure 15). Change by task by step ANOVAs examined effects on both 

dependent measures. For error, there was a main effect of procedure change, F(1, 20) = 

11.67, p < 0.01, and an interaction of procedure change with task, F(1, 20) = 6.16, p = 

0.02, such that error rates were worse in the post-change Jammer relative to pre-change 

Jammer and the Transporter. The effect of task was reliable in the post-change trials, F(1, 

20) = 5.20, p = 0.03, such that after the procedure change, the Jammer had higher rates of 

error than the Transporter. Furthermore the effect of procedure change on the Jammer 

task was reliable, F(1, 20) = 10.17, p < 0.01. A contrast on the step variable revealed that 

it was the all steps of the scanner subtask together driving the effect of change, t (20) = 
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-3.03, p < 0.01. There was no simple main effect of change on error rates in the 

Transporter task.

Figure 15. Error frequencies for procedure change Jammer and its accompanying Transporter task.

As regards the Jammer procedure change’s effects on step completion times, there 

was a main effect of task, F(1, 20) = 24.08, p < 0.01, and an interaction of procedure 

change and task, F(1, 20) = 23.73, p < 0.01 (Figure 16). The effect on step completion 

time of the procedure change was different for some steps, Pillai’s Trace = 0.62, F(7, 14) 

= 3.24, p = 0.03, as was the effect of task, Pillai’s Trace = 0.51, F(5, 16) = 3.29, p = 0.03. 
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The task by procedure change by step interaction was also reliable, Pillai’s Trace = 0.61, 

F(5, 16) = 5.07, p < 0.01. The simple main effect of change for the Jammer task was 

reliable, F(1, 20) = 9.48, p < 0.01, the change by step interaction was reliable, Pillai’s 

Trace = 0.58, F(5, 16) = 4.36, p = 0.01, and that interaction effect was driven by a pre-/

post-change difference in step completion times for the steps in the Jammer’s scanner 

subtask, contrast t(20) = -6.06, p < 0.01. Furthermore, the simple main effect of task in 

the post-change trials was reliable, indicating higher error rates, post-change, for the 

Jammer task, F(1, 20) = 45.20, p < 0.01, and the simple interaction of task by step, post-

change, was also reliable, Pillai’s Trace = 0.66, F(5, 16) = 6.10, p < 0.01. There was no 

simple main effect of change on step completion times in the Transporter task. No effects 

on error rate or RT were observed for the different subtask order Jammer and its 

accompanying Transporter task.
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Figure 16. Step completion times for procedure change Jammer and its accompanying Transporter task. 

Turning to total error rate, the no-procedure change different-scanner subtask Jammer 

task elicited a higher error rate from subjects than did the other no-procedure change 

Jammer conditions, contrast F(1, 59) = 9.28, p < 0.01. Neither the procedure change 

Jammer nor any condition of the Transporter task produced effects of error rate. Figure 

17 plots Jammer error rates while Figure 18 plots Transporter error rates.
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Figure 17. Error rates from the Jammer task of Experiment 2. 
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Figure 18. Error rates from the Transporter task of Experiment 2.
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instructions for the frequency and power subtasks in the training manuals. The 

Transporter interface was laid out such that the frequency controls were always closer to 

the previously performed subtask’s controls, the scanner. Thus subjects may simply have 

been reaching for the thing closest at hand at the time, a prediction of the Soft Constraints 

Hypothesis (Gray et al., 2006).  

A subsequent experiment tested the two hypotheses by manipulating the Transporter 

layout such that either the frequency or the power control cluster was closer to the 

scanner cluster and subjects received training manuals that either presented the frequency 

subtask before the power subtask or the power subtask before the frequency subtask. The 

results match the prediction of the Soft Constraints Hypothesis – that is, subjects tended 

to simply reach for the closest control cluster (Table 4). The Soft Constraints Hypothesis 

would predict this proximity effect because given the choice of moving the cursor to the 

near cluster or to the far cluster, the user saves time by going from neighboring cluster to 

neighboring cluster rather than crisscrossing across the entire screen.
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Table 4
Transporter and Jammer Subtask Order Execution Frequencies

Groupings Frequency, then 
Power

Power, then 
Frequency

Expected

The two frequency-closer 
groups

309 162 235.5

The two power-closer 
groups

97 288 192.5

The two frequency-first 
manual groups

185 242 213.5

The two power-first 
manual groups

221 208 214.5

Note. Frequencies by between-subjects conditions are as follows: frequency-closer layout with frequency-first manual =  
216, frequency-closer layout with power-first manual = 255, power-closer layout with frequency-first manual = 211, 
power-closer layout with power-first manual = 174, expected = 214.

2.2.4. Experiment 2 Discussion

That the error rate was reliably higher in the different Jammer than in the same 

Jammer is not surprising, but it is surprising that the error rate was not also high in the 

Transporter task that accompanied the different Jammer. Participants trained with both 

procedures and performed both procedures on the same interface. Yet somehow 

Transporter performance did not suffer even though cues indicating the identity of the 

current task were scant: A brief message and a button label indicated Transporter or 

Jammer in main control, the sound effect of the shoot action differed between the two 

tasks, and status messages differed between the two tasks. There was no cue available 

during the completion of the scanner subtask to remind subjects which of the two tasks 

they were to perform. So if the effect of change on error rates and RT is evident for the 

Jammer and not for the Transporter then it seems to imply a relationship between a global 
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task representation (e.g., “do Transporter”) and a representation of the local action or 

subtask if subjects are able to keep straight the scanner subtask of the Transporter but not 

the scanner subtask of the Jammer.

Additionally, because the two tasks share so much information, namely interface 

objects, the locations of those objects, and procedures aside from the scanner subtask, 

then it may be that encoding of the two tasks can be accomplished more efficiently by 

using one representation for both tasks in the places where they overlap. The task 

representations then will only differ where the tasks differ. For example, it may be that 

subjects have declarative representations that say in effect, “The Jammer scanner is 

different from the Transporter scanner. If my goal is to do the Transporter, then start with 

“Scanner On.” If my goal is to do the Jammer, then start with “Active Scan.” And so 

perhaps sometimes the task representation structure does in some way mirror the task 

structure.

Why, then, should the error rates have been higher in the Jammer’s scanner steps than 

the Transporter’s if the two procedures each have their own differentiated representations 

for those steps? The worse performance in the Jammer’s scanner could have been due to 

a semantic confound in the labels. The scanner labels, originally written for the 

Transporter procedure, were “Scanner On,” “Active Scan,” “Lock Signal,” and “Scanner 

Off,” in order for the Transporter. The Jammer’s order was “Active Scan,” “Scanner Off,”  

“Lock Signal,” and “Scanner On.” It may possibly have been confusing having a step 

indicating an “off” action as the second of four steps in the scanner subtask and having a 

step indicating an “on” action as the last step. Thus it could be that a differentiated task 
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representation combined with a confusing order for step names yielded relatively poorer 

performance for the Jammer.

This combination of differentiated procedure representation and semantic confusion 

may explain why the subtask-reordered Jammer did not incur any performance hit. In this 

case, step ordering within subtasks remained the same for the Transporter and Jammer so 

this Transporter-Jammer pair of tasks would not have been susceptible to confusing 

confounds like performing an “off” action second in a series of four actions. Yet there 

was little in the nature of the frequency and scanner subtasks to imply that one should 

inherently come before the other. This implies that using order-neutral step names within 

a subtask might extinguish the confusion effect within a subtask, and vice-versa for 

between-subtasks.

The Phaser interface had no distractor objects while the Transporter interface had 14 

of them, and the Transporter task always had the lowest error rates, 0.03 – 0.05 compared 

to the Phaser's 0.07 – 0.13. So having distractor objects certainly was not sufficient to 

induce error on its own, though anecdotally it seems that once an error was committed on 

the Transporter interface, subjects often clicked the distractor objects within a long 

sequence of clicking wrong things before finally getting back on track. This is likely 

simply because there were more possible buttons to click at a time when subjects were 

apparently just clicking randomly until they stumbled upon the right button. Although 

data from our own lab indicated that adding extraneous buttons does adversely impact 

performance (Table 1), the distinction appears to be in whether the extraneous buttons 

were there to begin with or were added halfway through the testing phase. So far it seems 
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that distractor objects do play a role in action selection, but it is not immediately clear 

exactly what that role may be.

Experiment 2’s results are compatible with the CSM account, but not with the SRN’s. 

The higher error frequencies of the different scanner subtask Jammer relative to the 

Transporter task or the same scanner subtask Jammer is explainable in terms of schema 

activations. Top-down activation from the Supervisory Attention System can provide 

enough activation to the right schemas at the right times to differentiate performance in 

the Transporter and Jammer. But because the Jammer’s scanner steps have semantically 

order-incongruous names, in order, “Active Scan,” “Scanner Off,” “Lock Signal,” and 

“Scanner On,” the Supervisory Attention System directs some top-down activation to the 

wrong Jammer step because of semantic confusion from the step labels. 

The CSM should be able to account for the procedure change condition of 

Experiment 2 because of its ability to direct top-down activation to schemas. When the 

Jammer procedure changes, the CSM’s Supervisory Attention System can set goals to 

perform the steps of the scanner subtask in the new order according to the procedure 

change instructions. As the time comes to perform each scanner step in the new order, the 

SAS can transmit enough top-down activation via the vertical threads (see Figure 2) to 

select the appropriate schema. 

While the SRN can also explain the lack of error effects in the Transporter task, it 

cannot explain the pattern of effects observed in the Jammer. The SRN’s context 

representation should provide enough top-down differentiation of action selection in the 

two tasks so that Transporter error frequencies would not increase even in the no 

procedure change different scanner subtask Jammer condition. But again, as in the case of 
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the procedure change Phaser, the SRN has no way to cope with procedure change in the 

Jammer. 

Additionally, because it is so narrow in scope the SRN would have failed to predict 

the difference in error frequencies between the no procedure change different scanner 

subtask Jammer and the no procedure change same scanner subtask Jammer. As far as the 

SRN is concerned an action is an action and there are no other factors involved in their 

selection besides the co-occurrence associations that it learned during training.

2.3. Behavioral Studies Discussion

What do the behavioral data have to say about the nature of routine procedure 

representation and action selection? The lack of error increase for any Phaser step except 

for the second Electrical – the power subtask’s postcompletion step – casts a doubtful 

shadow on a type of an account that is inflexible, holistic, and purely associative since 

one discrete step was affected. The results from the static, different subtask order 

Transporter and Jammer also pose a problem for the SRN account of routine procedure 

representation. An SRN-type model could perform the two tasks with a low error rate by 

choosing the first step based on activation from an instruction node, “do Transporter” or 

“do Jammer.” Then when the first subtask is complete, the second subtask is chosen 

based on the contextual representation. But then those instruction input nodes and the 

contextual representation together effectively are goals in the CSM sense of the term: 

they are globally task-relevant representations that direct action selection, particularly in 

the absence of environmental cues.

For the procedure change Phaser and Jammer, clearly performance suffered, but 

clearly not to catastrophic extents. True, such changes to procedure are beyond the scope 

76



of SRN, but that is part of the SRN's problem. Procedure change is important. If you 

drive the same route to work every day, but one day find it blocked by construction, 

calling in "construction" is not going to appease your boss. People can and do adjust their 

routine procedures all the time. How those adjustments are made is an important 

component of the larger question of "How do people represent routine procedural 

memory?" 

How do people adapt representations of routine procedures to the changing 

circumstances of the world? The SRN is simply too restrictive in scope to be useful. The 

CSM at least hints at how activation from higher-order motivational and attentional 

processes can reorder schemas within what usually constitutes one routine behavior and 

call on schemas from outside that behavior to assist in adjusting to changing 

circumstances.

An ACT-R model of the behavioral data will need to account for the Phaser’s second 

“Electrical” postcompletion error and account for the scanner steps’ error rate in the 

Jammer and not in the Transporter. The Phaser charging subtask postcompletion error 

will likely be due to a mechanism like the one modeled by Chung and Byrne (2008), 

wherein a combination of thinly-spread activation and chunk similarity results in the 

retrieval of the subsequent step’s chunk instead of the correct one. Modeling of the 

Transporter and Jammer data is likely to be more of a challenge as a solution to the one 

interface, two tasks, error effect in only one task phenomenon is not readily at hand. But a 

solution involving one shared basic  representation with lower-level representations 

denoting task divergences would be a good starting point.
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3. AN ACT-R MODEL INSPIRED BY THE CONTENTION SCHEDULING MODEL

The ACT-R model operated in a behavioral loop that retrieved an action 

representation from declarative memory, performed the specified action, and then verified 

that the action it performed was the correct one. If the action performed was correct, then 

the model retrieved the next action representation. In the case of an incorrect action, the 

model entered an error recovery mode. 

Procedural memory indicated which action representation to retrieve at any given 

time. Action representations encoded the visual location and features of the object with 

which the action was performed as well as the nature of the action (e.g., click, read). The 

split in what part of the task was represented in declarative memory versus procedural 

memory was a design decision informed by the Contention Scheduling Model (Cooper & 

Shallice, 2000). Errors generated by the model were due to misretrievals, which occurred 

for a variety of reasons. Once an error had been committed, the model had two strategies 

that it could apply in its attempt to resume correct performance of the current task. 

3.1. ACT-R

A brief introduction to ACT-R is in order. ACT-R is a hybrid cognitive architecture. A 

cognitive architecture is a framework used for creating models of human behavior. The 

cognitive architecture specifies the resources and constraints that are invariant in human 

cognition as established by the general consensus of the relevant literature. ACT-R is 

hybrid in the sense that it combines features of two very different approaches to modeling 

human cognition: the production system and the association network. Production systems 

match patterns of conditions to actions to be performed. Knowledge is represented as if-

then rules, productions, with each production specifying a set of conditions to which it 
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will match and one or more actions the system will perform when that production is 

performed, or fires. Processing proceeds in a serial fashion with one production firing at 

any given time. 

Association networks arrange knowledge representation structures into nodes that 

each refer to one or many other nodes. Given an activation source, the association 

network propagates the activation through the nodes’ associations and outputs the node 

with the highest activation. Processing occurs in parallel with activation spreading 

through all nodes of the network simultaneously.

ACT-R apportions different types of cognitive processing into modules. Procedural 

knowledge and actions are effected in the procedural module, which operates as a 

production system. Declarative knowledge is housed in the declarative module, which 

operates as an association network. The declarative module’s association network is a 

theory of human declarative memory. A production may specify a retrieval request, that 

is, a command to the declarative module to retrieve a fact. 

Other cognitive and perceptual/motor faculties, such as vision and hearing, are 

implemented in other modules. Each module has a buffer with which it may make a small 

amount of information, a chunk, available to the rest of the system at any one time. Each 

chunk has one or more slots, or places to store references to other chunks or specific 

values. The procedural module acts as the central coordinator of all of the modules, 

reading (or sometimes writing) the contents of their buffers and instructing them to 

perform actions such as to retrieve a declarative memory or to move visual attention.

Two other modules bear mentioning. The goal module holds a special chunk, the goal 

chunk, which keeps track of one’s current intentions (Anderson, 2007, pp. 20, 53). The 
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goal module is particularly important because its slots encode control state information 

that matches to productions. That way different productions can match to internal states 

of the model independently of external stimuli. The goal chunk also acts as an activation 

source for the declarative module.

The other module worth mentioning is the imaginal module. The imaginal module is 

typically used to store and perform transformations on problem state information 

(Anderson, 2007, pp. 20, 53). An example of its use is when solving an equation such as 

3x - 7 = 5, it might hold a representation of an intermediate equation such as 3x = 12.

ACT-R is both a computational psychological theory and a software package which 

instantiates the theory in a computer program. The program takes as its inputs 

productions and declarative chunks relevant to a task, a simulated environment in which 

to perform that task (such as a software GUI), and parameters which adjust computational 

processes. ACT-R outputs a time-stamped behavior sequence.

ACT-R is important because it brings together accounts of many psychological 

phenomena into one unifying account that can explain a wide variety behaviors in a wide 

variety of contexts. ACT-R is computational, meaning that its processes are formally 

specified and produce qualitative and quantitative characterizations of behavior. Because 

ACT-R encompasses what is generally agreed to be invariant about human cognition, a 

model which produces output that resembles human behavior can be used to make 

inferences about psychological processes responsible for those behaviors.

3.2. Overview of an ACT-R Model of the Star Trek Tasks

The interplay of the procedural and declarative modules, giving ACT-R its hybrid 

nature, was particularly important in the model that I constructed of the two Star Trek 
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task experiments. The procedural module performed the actual selection of each action. 

As task context changed with completion of each step, a production matched to that 

context and fired, selecting an action to perform. Information necessary for the 

performance of that action, such as the action type and object to use (e.g., click a button, 

read a status message) was represented in the declarative module. The interplay came in 

the procedural module selecting an action and requesting the retrieval of information 

about that action from the declarative module. Then the procedural module acted 

according to the action representation retrieved by the declarative module.

Ideally the model would have accounted for quantities at all levels examined in the 

behavioral data, but modeling human error in 14 separate variations of an experiment 

paradigm was a significant undertaking. Working top-down worked well for a project 

where there were many variations on a theme to cover, particularly because people do 

seem to be cognitive misers and were thus likely to employ the same strategies in all the 

cases where they could (Gray et al., 2006). Therefore it was important to first address and 

constrain the basic behavior in the Star Trek task paradigm. 

First and at the highest level came issues that were common to all variations on the 

experiment paradigm: How did people perform the basic task? And more specifically, 

how were their memory representations of the basic task structured to allow them to 

perform it? Next came consideration of issues specific to each trial type within each 

condition, such as: What mechanism generated the postcompletion error on the second 

“Electrical” step in the Phaser? Why were subjects producing more errors in the 

Jammer’s scanner subtask than the Transporter’s? Once the basic model was built, 
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variations of that model could address the variations of the experiment paradigm that 

produced these specific error patterns.

Since the CSM’s basic structure was modular and hierarchical, it seemed as though a 

schema network might be built to tackle the Star Trek task. The schema network was 

programmed in an ACT-R model as productions and declarative chunks. The CSM’s 

approach focused on how familiar action sequences arose out of hierarchical knowledge 

structures, schemas. It was an approach predicated on the assumption that knowledge 

structures mirror the structures that they represent, at least as far as action sequences are 

concerned. These structures were given to ACT-R as productions and declarative chunks 

representing acquired knowledge of a task and the objects used for that task. 

The ACT-R model ran on the same experiment software program used to test human 

subjects. Since CSM did make allowances for interactions with other cognitive systems, 

it was in a much better position to take this sort of integrated cognitive modeling 

approach than the SRN model. Although Cooper and Shallice's system specified how it 

may interact with other cognitive and perceptual-motor processes, it did not specify how 

those things operate. However, ACT-R does. The knowledge structures that CSM 

proposed were given to ACT-R as its acquired knowledge input in the form of declarative 

memory chunks (including goal chunks) and productions. Goal chunks are simply 

declarative memory chunks that have a special context: When held in the goal module 

and made available to the other ACT-R modules via its buffer, it can act as a source of 

spreading activation to other declarative chunks and productions can match to it. 

For the two procedure-change conditions, the ACT-R model needed a way to acquire 

knowledge of the new procedure as the human subjects did. In the human experiments, 
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subjects read instructions that appeared on screen before the procedure change took 

place. How ACT-R can do this, and thus potentially how people can do this, has been 

addressed by Taatgen, Huss, and Anderson (2008). In brief, their model stored 

instructions as declarative memory, retrieved them step by step according to the model’s 

productions, and interpreted them and carried them out using other productions. 

Furthermore, whenever the model failed to retrieve an instruction specifying what action 

to take it had a body of operators from which it could randomly choose. Taatgen, Huss, 

and Anderson’s model fit data from an experiment examining two types of instructions in 

a complex aviation task and successfully predicted results from a second experiment. The 

problem of how to acquire and act upon instructions is non-trivial and has been addressed 

by such efforts as Taatgen, Huss, and Anderson. Therefore that process was abstracted in 

the model as explained in the model’s methods section.

Two other issues remained outside the scope of the model, semantic manipulation of 

control labels in Experiment 1 and flexible subtask execution order in Experiment 2. 

Since there was no effect of semantic manipulation of control labels in the human data, 

no modeling effort was made to address such experimental manipulations. Also, the issue 

of flexible execution of the frequency and power subtasks of the Transporter and Jammer 

tasks was ignored in the model since all effects of subtask order execution seemed to be 

explainable in terms of Gray et al.’s (2006) Soft Constraints Hypothesis. 

The focus of the modeling effort was on human task memory mechanisms that give 

rise to error. More particularly, why did error rates differ to the degrees that they did 

between conditions and trial types? Finally, although the ACT-R model generated step 

completion times as it ran the experiment, those step completion times remained outside 
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the scope of the modeling project. This was because most of the effects obtained in the 

behavioral studies were in errors rather than step completion times. This restriction also 

served to keep the size of the modeling project within tractable limits. 

I examined total errors, rather than only non-repeat errors. By examining total errors 

committed the model was constrained not only in the frequency of non-repeat errors 

committed, but also constrained in the degree to which the model continued to commit 

errors before it resumed the correct procedure. Thus it was important that the model 

incorporated error recovery behavior. The error rates studied therefor came from the total 

errors committed divided by the number of presentations of that trial type, by condition. 

Those rates were also be computed for the human participants for the sake of comparison 

of the model’s output to human data, as discussed in the results sections of the two 

experiments. 

3.3. ACT-R Model Methods

3.3.1. Introduction

At its most basic level, the model worked using a behavioral loop inspired by the 

CSM theory. The model used a goal hierarchy to maintain a contextual representation 

both of which step within the task it was currently performing and the status of its 

progress through that step. For each step performed, the model used activation spreading 

from its goal representation to retrieve from declarative memory information necessary to 

perform that step. This declarative memory representation included such descriptors of 

the action as where it was to occur, the action type (e.g., click or read), and visual 

information about any object that the action required. The model then shifted attention to 

the visual location specified by the declarative memory representation and performed the 
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specified action. Finally, the model verified that the action just performed was the correct 

action and incremented its goal representation to the next step. The model generated 

errors using the subsymbolic processes of ACT-R’s declarative module to occasionally 

retrieve incorrect action representation chunks from declarative memory. The model 

recovered from errors by a simple mechanism that either tried to retrieve the originally 

requested action representation again or tried to retrieve an action representation pertinent 

to another step.

3.3.2. Influences of the Contention Scheduling Model

The ACT-R model used an explicit, hierarchical goal structure meant to keep track of 

its progress through the Star Trek Tasks at multiple levels, as in the CSM. Together 

pattern-matching, schema-like productions and the hierarchical goal representations held 

in the goal and imaginal buffer chunks formed the basis for the model’s structure and 

behaviors. 

Both the goal and imaginal chunks each contained two slots assigned to maintain goal 

and task context information. The two slots in each chunk simultaneously represented 

different levels of the model’s performance through the task space. For instance, the 

state-global slot of the goal chunk represented the current task step. The state-local slot 

encoded the current phase of the basic behavioral loop. The model cycled through the 

basic behavioral loop each time it accomplished one of the task steps, with the two goal 

representations controlling behavior at each level. The imaginal chunks slots represented 

the top-level context, such as “Do Jammer,” and also the current step. The imaginal 

chunk also had a third slot which encoded the current task interface.
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The top-level context representation stored in the imaginal buffer encoded the current 

task’s goal, such as to perform the Transporter or Jammer task. Transporter and Jammer 

productions matched to the contents of the top-level context slot of the imaginal chunk at 

steps in the two tasks where they differed from each other (where applicable). For 

example, the productions that enabled the model to perform the procedure change for the 

Jammer checked the top-level context slot of the imaginal chunk. When that value 

indicated the post-procedure change Jammer task, then the model requested the retrieval 

of the change instruction chunk which specified which action should be performed at that 

point. 

The value of the current step slot of the imaginal chunk was set by the productions 

that verified correct action performance, and only by the those productions. Since the 

verify productions only fired in the case of a correctly performed step, the current step 

slot provided a reliable representation of the model’s place in the task – the last correct 

step performed triggered goal representation of the next step to perform.  

The current interface was a reference to the interface type that the model was 

currently working with, Phaser or Transporter. The current interface had implications for 

action affordances and therefore what action representation chunks may have applied. 

Action representation chunks had corresponding interface slots to indicate to which 

interface they could apply. The interface slot was specified in retrieval requests made for 

action representation chunks, and the interface value was taken from the chunk in the 

imaginal buffer. This prevented the model from retrieving action representation chunks 

that were inappropriate to its current context.

3.3.3. Implementation of a Cognitive Miser and Handling Procedure Change
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The model incorporated an economy of task representation that enabled it not only to 

use one representation for steps shared by tasks, as in the Transporter and Jammer, but 

also enabled it to adapt old procedure representations to post-change procedures. Because 

the model used a hierarchical arrangement of discrete goals, as in the CSM account, 

subgoals and their actions were modular. Thus one subgoal could be a component of 

more than one supergoal. This meant that for the Jammer task that was identical to the 

Transporter task, the model’s top-level goal for the Jammer task referenced the subgoals 

for the Transporter task. In other words, the same-Jammer task was composed of 

Transporter subgoals and action representations.

Discrete, hierarchical goals also enabled the model to cope with procedure changes. 

When the experiment instructed the model to change procedures, such as going from the 

non-intervening subtask Phaser to the intervening subtask Phaser, the model simply 

altered the order in which it executed the relevant subgoals. More detail regarding the 

model’s shared task representations and handling of task procedure changes is included in 

Appendix E.

3.3.4. Error Generation and Recovery

It was necessary to enable an error recovery mechanism in the model because trials 

did not end for subjects when they erred, and thus they might commit multiple errors 

(repeats aside) during the course of one trial. Furthermore, because subjects committed 

errors in the tasks – indeed, that was the point of the experiments – and because they 

were not allowed to continue with the task until they had recovered from their errors, 

error recovery was thus an important part of the Star Trek tasks and a behavior that must 

have been addressed by the model.
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3.3.4.1 Error Generation

ACT-R can model error that is both systematic and stochastic because it is a hybrid 

cognitive architecture that combines a production system with an associative network 

system, its declarative module (Anderson et al., 2004). Error can therefore arise as a 

consequence of either system. Error in the current model was caused by noisy declarative 

retrieval processes that can sometimes return the wrong representation. 

ACT-R’s declarative module retrieves the chunk with the highest activation. The fact 

that several components contribute to a chunk’s activation means that the chunk with the 

highest activation is not necessarily the one referenced in the retrieval request 

specification. Equation 2 describes how activation is computed for any given chunk i at 

the time that it is being evaluated for retrieval. Activation is the sum of a base level 

activation term, a spreading activation term, a partial-matching term, and noise. 

Spreading activation is essentially the total amount of activation source available 

divided by the number of occupied slots in the source chunk (here, the goal chunk) times, 

for each slot value that refers to the target chunk, the strength of association to the target 

chunk. Chung and Byrne (2008) simulated high working memory loads by occupying 

three slots of the goal chunk with dummy chunks that “stole” activation available for the 

retrieval request since they were in the goal chunk but did not refer to the target 

declarative chunk. Those three slots acted like the state information used for the working 

memory letter recall task. Chung and Byrne’s technique was adopted for this ACT-R 

model.

iiiii PSBA ε+++=  
(2)
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The model ran with partial matching enabled. This means that when ACT-R 

attempted a retrieval, if a chunk in a slot specified in the retrieval request did not match 

the chunk in the corresponding slot of the chunk under consideration, then ACT-R 

calculated a mismatch penalty. The idea is that chunks not matching the retrieval 

specification get penalized by some amount of activation proportional to how dissimilar 

they are to the retrieval specification. That mismatch penalty is equal to the similarity 

between the two chunks times the match scale parameter. The match scale parameter was 

set to 1.8 as an empirical fit. 

Retrieval transient noise is a feature of the ACT-R theory based on decades of 

cognitive psychological research and as such is meant to embody a basic property of 

human declarative memory. ACT-R can be configured to run with some user-specified 

amount of noise added to the computation of chunk activation in the retrieval process. 

Noise is a transient component which is computed each time a retrieval request is made 

and it is generated from a logistic distribution with a mean of 0 and a standard deviation 

as specified by the activation noise parameter. The activation noise parameter of this 

project’s model was set to 0.23, which is in a fairly conventional range for ACT-R models 

(Chung & Byrne, 2008).

Other global parameters set for this model controlled aspects of chunk retrieval. 

Maximum associative strength, the maximum strength of association between two 

chunks, was set to 2. Retrieval threshold was set to -2 which meant that virtually all 

retrieval requests would result in something being retrieved. Appendix F contains several 

tables detailing global and chunk parameters, their values, and reasons for setting them to 

their values.
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Parameters for many individual chunks were fit empirically. For example, some 

action representation chunk base levels, B in Equation 2, were set manually. While base 

levels defaulted to 0, the two postcompletion steps of the Phaser had lower base levels. 

The relatively lower base levels of these and other chunks decreased the likelihood that 

these action representation chunks would be retrieved upon request, thereby increasing 

the likelihood of error at these steps to rates that approximated those found in the human 

data. The action representation chunk for the second instance of “Electrical” was set to 

-1.2 and the action representation chunk encoding the second “Shot” step was set to -1.1. 

The base levels for three of the Transporter interface’s action representation chunks, 

“Scanner On”, “Scanner Off”, and the second instance of “Synchronous Mode”, were all 

set to -0.4. 

Chunk similarity defaulted to the maximum difference, which was set to -10. This 

was useful as a way to prevent chunks appropriate to one task interface from being 

retrieved while the model was performing a task with another interface. That is, like 

having the “interface” slots in the imaginal chunk and the action representation chunks, it 

prevented chunks encoding Transporter steps from being retrieved during a Phaser trial. 

Typically, chunks within a subtask had similarities set to -0.95 while chunks in different 

subtasks within the same task had similarities of -1. Certain chunks encoding steps that 

seemed to be confused with each other by the subjects, such as in a postcompletion step, 

had higher similarity. For example, because clicking “Main” is appropriate when the task 

is complete and the participants know that the target was destroyed (therefore completing 

the main task), the second “Shot” and the “Main”  chunks are given a higher-than default 

similarity, meaning that when one is requested, the other can sometimes be retrieved in its 
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place. This was even more likely when working memory load is high (Chung & Byrne, 

2008). High chunk similarities can also encode things like a semantic confusion effect of 

doing "Scanner Off" second, after “Active Scan” and before “Scanner On” in the scanner 

subtask. These chunk similarities had values as high as -0.7. 

For the particular change instruction chunk that was supposed to be retrieved by 

association with a particular action representation chunk, the strength of association 

ranged from 1 to 2. For change instruction chunks not to be retrieved by a particular 

action representation chunk, that value ranged from -0.5 to 0.5. Again, all non-default 

chunk parameters were fit empirically. 

Probability of generating an error became higher when two chunks must be retrieved 

for the completion of one step, as in the different-scanner Jammer task. The model could 

retrieve the wrong change instruction chunk, in which case it would have an instruction 

indicating the performance of a wrong step. Of course, if the model had retrieved the 

correct change instruction in the first place it could still misretrieve the action 

representation chunk indicated by the change instruction chunk.

3.3.4.2. Error Recovery

Neither Cooper and Shallice (2000) nor Botvinick and Plaut (2004) discussed error 

recovery. But recovery from errors is an important component behavior of executing 

routine procedures because life does not stop when you reach for the cream having meant 

to reach for the sugar as it did in these two models of coffee making. A model 

implemented in the CSM theory could possess schemas that encode error recovery 

procedures. Botvinick and Plaut, however, restricted the scope of their modeling effort so 

much that they left out any consideration of error recovery in routine procedures. Their 
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model only generated the initial selection of the routine actions. Furthermore, in order for 

the SRN to be effective at error recovery it would have had to learn correct action outputs 

for every possible error state context. 

The experiment emitted a buzzer sound whenever subjects erred in the Star Trek 

tasks. The model used this feedback to trigger initiation of an error recovery procedure. 

There were two error recovery strategies that it could perform: One was to simply try 

again to retrieve the action representation chunk indicated by the step state information in 

the goal chunk. Another strategy was to instead try to retrieve some other action 

representation chunk that was not the one indicated by the step state information in the 

goal chunk (James McClelland, personal communication, October 20, 2008). In either 

case, once the model had retrieved an action representation chunk it resumed the basic 

behavioral loop. 

Additional failures could result from other circumstances. If the model simply failed 

to retrieve any action representation chunk it could likewise opt to make the same 

retrieval request again or try to retrieve some other action representation chunk. If the 

model committed an error while acting on a change instruction, it could try again to 

retrieve a change instruction chunk using problem state information encoded in the 

current step slot of the imaginal chunk. The model could use the value of that slot to 

attempt again to retrieve the appropriate change instruction. Additionally, if the model 

was trying to recover from an error it could try to retrieve an applicable action 

representation chunk at random. 

The ubiquity of the “if error, try retrieval” procedure, in one form or another, acted as 

a sort of catch-all mechanism to ensure that the model did not stop running until it had 
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finished its task. Additionally, having the model retrieve random, unspecified (within the 

constraints of being appropriate to the current task interface) action representation chunks 

served to generate a sort of “lost” behavior wherein the model simulated a long chain of 

errant and seemingly random clicks until it had hit upon the correct action. This type of 

random clicking behavior has often been informally observed in the human data from the 

Star Trek tasks. 

3.3.4.3. Error Recovery Strategy Choice

Both Experiments 1 and 2 induced time pressure to perform as the experiment 

awarded significant bonus points for finishing trials of each task within certain time 

limits. ACT-R’s utility learning mechanism already takes into account the passage of 

time, but not time pressures induced by the task such as in Experiments 1 and 2. Time 

pressure mattered for deciding whether to try again to retrieve an action representation 

chunk indicated by goal information within the goal chunk or to abandon that goal 

information and try instead to retrieve a random action representation chunk and perform 

its indicated action. Fundamentally the model tried to pick the error recovery strategy 

with the shortest expected time to lead to a correct step execution. Both error recovery 

strategies were encoded by productions that competed with each other, with the higher-

utility production usually winning selection. ACT-R learns the utility of each production 

according to Equation 3.

Production utility learning occurs when a reward is triggered, and all productions that 

have fired since the last reward are updated. The effective reward of a production i is the 

( ) ( ) ( ) ( )[ ]11 −−+−= nUnRnUnU iiii α
 

(3)
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reward value received at time n minus the time since the selection of production i 

(Anderson, 2007, pp. 160 – 1). The learning rate, α, was left at ACT-R’s default, 0.2. 

Experiment reward points for subjects were directly translated into reward units for ACT-

R such that the model received 25 units of reward for every step that the model 

completed correctly and -50 units of reward for every error that it committed. Constant 

time pressure worked by triggering a reward of -5 reward units for every second that 

elapsed during a trial. Thus the model’s choice of error recovery strategy should have 

been sensitive to the passage of time and to reward signals emanating from the task 

interface in the form of the presence or absence of the warning buzzer as a consequence 

of each action performed by the model. However, it should be noted that this particular 

model has not been evaluated against another similar model that did not implement a 

constant time pressure mechanism.

3.4. ACT-R Model Results

Examination  of results of the present model will focus on the per-condition trial type 

error rate measure developed from the behavioral studies. This measure will be used to 

assess what the experiment and model results have to say about how people structure task 

representations and how those representations contribute to human error. Most of the 

effects observed in the two behavioral studies were in some measure of error and not in 

step completion times, and therefore the most meaningful pattern of results between per-

condition trial types of the model would be measured by relative error rates. 

Model development focused on per-condition trial type error rates, rather than only 

non-repeat error frequencies. This measure of error ensured that the model’s error 

recovery procedures allowed the model to recover within a range of number of mistakes 
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comparable to humans because it included the degree to which the model selected 

random, wrong actions while trying to recover from the initial error. It is an easy way to 

compare the degree of random action selecting in the model’s output to the subjects’. 

Error recovery is an important component of the task and will be captured implicitly by 

setting total error rate, rather than non-repeat error, as the modeling criterion dependent 

measure.  

One separate model ran for each condition of the two experiments. All models were 

identical to each other to the extent that their experimental conditions were identical. The 

models differed from each other only as a function of their differing tasks. For example, 

in simulating the postcompletion step of the Phaser’s charging subtask, chunk similarities 

were high for the second “Electrical” chunk and whatever chunk encoded the step that 

came after it. That step was “Lens” in the non-intervening subtask version of the Phaser 

and it was “Cannon” in the intervening subtask Phaser. 

All four models used the same values for global parameters. Declarative memory 

consisted of 48 chunks of 7 chunk types, not including chunks that encoded change 

instructions because they were not applicable to all experiment conditions. Except as 

noted previously, chunk parameters remained identical across the four models, and for 

every chunk in every model this included parameters controlling base levels, chunk 

similarities, and strengths of association. 

Productions remained identical across the four models to the extent that procedures 

remained identical across the four experiment conditions. All four models had identical 

productions encoding the basic behavioral loop, error recovery procedures, and 

procedures for acting on change instructions, where applicable. The only productions to 
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vary between the models were the productions that selected the next actions to perform. 

Although, notably, these productions were identical for the Transporter and Jammer tasks 

to the extent that the Transporter and Jammer tasks were identical. 

Each model ran 400 times on its version of the experiment, though data from some 

model runs was discarded because of software crashes. Since the ACT-R models were 

stochastic processes, 400 runs should be a more than sufficient size to obtain stable 

means for error quantities. Table 5 enumerates experiment conditions and how many 

model runs in each condition contributed data to analyses. Finally, it seems like a 

reasonable target criteria for assessing a model that spans all 14 per-condition trial types 

of two experiments would be to generate error rates that fall between the 25th and 75th 

percentiles of the human error rates. 
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Table 5
Experiment Conditions and Model Runs

Experiment 1 Condition Experiment 2 Condition Runs N

No procedure change, intervening 
subtask Phaser

No procedure change, different 
scanner subtask Jammer

400

Procedure change Phaser Identical Jammer 386

No procedure change, non-
intervening subtask Phaser

Procedure change Jammer 392

Semantic control Phaser Jammer, different subtask order 397

Figures 19 – 21 compare mean error rates between human data and the model’s 

results. The error rate for any given trial type in a condition was equal to the sum of all 

errors, including repeats, across all twelve steps divided by the sum of all step 

presentations, or instances of opportunity for error. The model deviated from the subject 

means by a maximum per-condition trial type error proportion of 0.033 and by a 

minimum of 0.0007, with a median deviation of 0.0166.
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Figure 19. Phaser error rate, by condition of Experiment 1. Box plots represent human data distributions with means 
depicted as dots within boxes. Model means are depicted as adjacent, lone dots. R2 for model prediction of human data 
= 0.755.
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Figure 20. Jammer error rate, by condition of Experiment 2. Box plots represent human data distributions with means 
depicted as dots within boxes. Model means are depicted as adjacent, lone dots. R2 for model prediction of human data 
= 0.989.
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Figure 21. Transporter error rate, by condition of Experiment 2. Box plots represent human data distributions with 
means depicted as dots within boxes. Model means are depicted as adjacent, lone dots. R2 for model prediction of 
human data = 0.278.
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3.5. ACT-R Model Discussion

3.5.1 Summary

What aspects of the model were important for its ability to vary between error 

proportions of roughly 0.02 to 0.12 in a wide variety of experimental conditions? What 

do each of those aspects have to say about human task representations and how they give 

rise to the qualities and quantities of error observed? Most of all, how was it that 

essentially the same model was able to match error performance in 14 trial types across 4 

between-subjects conditions?

That models that were identical to each other to the extent that their tasks were 

identical to each other were able to match all human error rates from the Star Trek tasks 

says something significant both about the nature of human action selection and modeling 

of human error. The ACT-R model’s inheritance of hierarchical goal representations from 

the Contention Scheduling Model of Cooper and Shallice (2000) contributed much to its 

ability to capture a wide range of behaviors in the Star Trek tasks. Productions functioned 

much like the schemas of the CSM account. The productions responded most often to 

representations about the internal state of the model, rather than representations of the 

state of the external worlds, within both the task at the global level and within the 

individual step at the local level. 

Schemas matching to internal task representations at more than one level of behavior 

created a hierarchical goal representation. This hierarchy of goals was important to model 

functioning because it enabled behavior that was both efficient for routine tasks and 

adaptable when situations changed. The adapted behavior was fairly robust, enabling 

performance that selected the correct action more often than not.
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Reflecting this multi-level reality of Star Trek task completion, the model 

implemented an explicit, hierarchical goal structure meant to keep track of its progress 

through the task at both levels. Together the hierarchical goal representations held in the 

goal and imaginal chunks and the pattern-matching, schema-like productions formed the 

basis for the model’s structure and behaviors. Consequently, the model was able to match 

not just the correct behavior, but the errors generated in the right proportions in 14 

separate trial types, including conditions with changing procedures and confusing tasks 

that shared steps and interfaces, and it was able to recover from errors to finish trials. 

Clearly the model has captured something important not only to the representation of 

routine behaviors, but also error in routine procedural behavior, recovery from those 

errors, and adaptation of routine behaviors to changing circumstances.

The cognitive mechanisms that produced correct performance in all of the trial types, 

practiced, automatic procedural memory selecting the action to perform and then 

requesting retrieval of declarative knowledge describing parameters of the action, were 

flawed. The nature of the flaws produced error rates that matched humans’. The flaws lied 

in the performance of the declarative memory system. The declarative memory system 

has a difficult task to perform for us, which is essentially to store all facts that we come 

across and at some unknown future time reproduce those facts on-demand. 

Our minds simply cannot contain unlimited storage and so the declarative system 

makes the problem tractable by performing a triage on facts (Anderson, 2007, chap. 3). 

Those facts that are associated to more other facts and that get used relatively more often 

stay. Those facts that do not have associations with many other facts and that do not get 

used often go. And often facts that are similar to each other can sometimes be 
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interchanged. These features of the human declarative memory sometimes become 

hinderances to human performance when a needed fact is triaged out of our memory and 

becomes inaccessible just when we need it for performing a step in a task.

Setting certain chunk parameters to just the right values tuned the misretrieval 

probabilities so that the model would generate error in the right proportions. Ideally these 

chunk parameters that were fit to the data should reflect some micro-phenomena 

occurring with those particular steps, such as the confusability of a postcompletion step 

with its subsequent step as Chung and Byrne (2008) had found.

Meanwhile, the high strength of association between step names that triggered 

retrieval of change instructions ensured a high likelihood of retrieval of the right change 

instruction chunk, contributing to total error in appropriate proportions. The steps 

affected by procedure change, and especially by procedure change and susceptibility to 

mode errors, did not elicit catastrophic failure of subjects to perform them. Quite the 

contrary, subjects were able to perform these steps under very difficult circumstances the 

majority of the times they were presented with them. The combination of productions that 

requested the retrieval of the change instruction chunks and acted on them and the 

strength of association between the chunk encoding the flagged step and the chunk 

encoding the procedure change instruction enabled the model to perform the procedure 

change tasks and operate the dual-mode Transporter and Jammer task interface with 

nearly the same proportions of errors generated as humans.

The change instruction procedure enabled the model to adapt an extant routine 

procedural task representation to an instructed procedure change with only limited 

increase in error proportion. The model’s procedure assumed that subjects entered the 
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experiment testing session with the procedural knowledge necessary to hold a reference 

to a future step in working memory, to compare it to a goal representation, and then to 

use that reference to retrieve a declarative memory representation encoding an instruction 

indicating a different step to perform instead and then to do that new step. 

This is not so far-fetched an assumption. Things happen all the time in daily life that 

disrupt the routine procedures we engage in. The telephone may ring just as you are about 

to pour a spoonful of sugar into your coffee. People cope. The model used just two 

productions plus a small amount of declarative knowledge to cope with procedural 

change and it did so with similar error proportion consequences as subjects. It therefore 

seems likely that humans may adapt to changing or otherwise difficult circumstances with 

simple, pre-packaged sub-routines that attempt to match task states to declarative 

knowledge. This is a very important feature of the ACT-R model because it allowed the 

model to match human error rates across the wide range of conditions and trial types 

present in the behavioral studies. Furthermore this is a very important feature of human 

procedural behavior because it allowed subjects in the behavioral studies to cope with the 

wide range of conditions and trial types present in the behavioral studies, including the 

procedure changes. Even with procedure changes, mean error rates for subjects never 

exceeded 0.13 for any trial type.

3.5.2. Comparison with the SRN Model

Botvinick and Plaut’s (2004) SRN model, on its own, provides a parsimonious 

explanation of the very narrowly-defined behavior it is asked to explain – but its fault lies 

in its very narrowly-defined scope to begin with. It cannot even provide a complete 

account of human action in routine procedures because it does not account for error 
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correcting behavior. Nor does it generate meaningful quantitative measures of error in a 

wide variety of contexts. The ACT-R model had only two isomorphs of one task, but it 

was able to handle five distinct versions of those (Phaser non-intervening, Phaser 

intervening, Transporter & same-Jammer, different-scanner Jammer, rearranged subtasks 

Jammer) effectively and can easily be expanded to handle many different and non-

isomorphic tasks using the same approaches used here. 

The SRN could never have adapted to novel changing circumstances because it only 

outputs behavioral patterns that it has acquired in training. One issue is the holistic nature 

of its contextual representation. Because it can only use one, indivisible representation of 

its context, it cannot form novel combinations of context representation at one level, such 

as task, with context representation at another level, such as step. Because CSM and 

ACT-R use separate, discrete representations for each level of behavior, they can perform 

old steps in new task contexts.

Another problem for the SRN type of account of routine procedural behavior is the 

postcompletion error observed for the second “Electrical” step of the charging subtask of 

the Phaser tasks. While working memory effects on error might be explainable by the 

SRN in terms of contextual representation degradation in general, the postcompletion 

effect particular to that step would not be explainable by such a mechanism. This is 

because the postcompletion effect depends on two discrete action representations being 

similar to each other and the SRN lacks discrete action representations.

4. GENERAL DISCUSSION

It was important that each ACT-R model handle all the same between-subjects 

conditions as each of the subjects because it was only by constraining the models in that 
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way that they were able to address effectively the issues of task representation, error 

generation, error recovery, and procedure change. The results of the behavioral and 

modeling studies showed that hierarchical goal information does matter for cognitive 

control across contexts within a task. Also, perceptual-motor considerations weigh on 

action selection, as the Soft Constraints Hypothesis (Gray, Sims, Fu, & Schoelles, 2006) 

predicts and as we saw in Experiment 2 with regard to subtask order execution in the 

Transporter and the Jammer. 

The interface displays used in the studies are fairly typical of GUIs in that they 

feature clusters of interactive buttons of a variety of styles (e.g., checkboxes and radio 

buttons). Previous work with the Star Trek paradigm (e.g., Chung & Byrne, 2008; Byrne 

& Bovair, 1997; Byrne, Maurier, Fick, & Chung, 2004) has explored various 

manipulations of the interface (see Table 1) and has found similar patterns of error and 

response slow-down. Therefore it is likely that the results observed are not idiosyncratic 

to the particular task environment used in Experiments 1 and 2.

Most of the effects observed in the behavioral data seemed to have roots in memory 

mechanisms, such as might be explained by spreading activation combined with high 

similarity between certain steps. The ACT-R model, using memory structures inspired by 

CSM, generated per-condition trial type error rates similar to subjects' by just such 

mechanisms. The model also suggested methods for dealing with tasks that have shared 

or even duplicated procedures, procedure changes, and recovery from errors. 

It is important that the representations supporting human behavior remain flexible 

enough to adapt to changing circumstances. Having multiple, discrete, hierarchically-

organized goal and context representations enables behavior that is both routine – in the 
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sense of being practiced, skilled and to some degree automatic – and flexible to some 

degree by placing contextual representations into several pieces that are each coherent 

and discrete.

A connectionist approach like the SRN, with its holistic task context representation, 

cannot represent its place within its task independently from representing an arising need 

to activate error correcting behaviors on the occasion of an error commission. The SRN 

can only output behaviors that it has learned to associate with the input states to which it 

has been exposed during its training. So it would have to learn error correction behaviors 

separably for every step in the task. It cannot generalize behaviors and thus it cannot 

produce old behaviors in new contexts. Similarly connectionist approaches cannot call 

upon previously-known mini-procedures to harvest new knowledge and apply them to 

transform old procedures into new procedures that adapt to a changing task environment. 

Though isolated cognitive theories may make some contribution to the body of 

knowledge, theories that integrate across a wider range of behaviors and conditions are 

likely to make better contributions to our advancement of human behavior and 

performance. In the real world, routine procedural memory, working memory, visual 

perception, and motor systems – to name just a few examples – all work in concert within 

the context of at least the given task and artifact. By constraining theories to account for a 

wide range of phenomena we can speak to how those cognitive subsystems interact to 

give the full range of human behavior. As mentioned in the ACT-R model’s discussion 

section, the SRN model fails to provide accounts of postcompletion error generation, 

error recovery behavior, and adaptation to procedure change. I opted not to build the 
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connectionist model that I had originally proposed on the basis of the SRN’s inability to 

address these important phenomena. 

The work performed in the behavioral and modeling studies is important for what it 

says about the nature of human task representation and predicting human error. Human 

task performance seems to rely on discrete goal representation at more than one level. 

One goal represents micro-level activities like retrieving action representations and 

making movements while another goal level represents progress through steps of the task 

space. Error occurs regularly, mostly as a consequence of recalling the wrong action 

representation. Fortunately, people have a few pre-packaged strategies that they can rely 

upon to recover from the errors that they commit. Finally, the multi-level discrete goal 

representations allow for efficient and flexible action execution that can adapt to changing 

circumstances. 

The ACT-R model that addresses those phenomena is a first step toward developing 

cognitive engineering tools that can predict not only human error probabilities but also 

the behavior of humans immediately post-error as well as in reaction to changing 

circumstances. Cognitive engineering models that can account for these phenomena can 

be used to evaluate new procedures and tools for high-performance, high-risk domains 

like aviation, air traffic control, and medicine well before they are put into operation. That 

way the models can find procedure and tool designs and implementations that pose high 

risk for inducing error in human operator performance. Cognitive engineering models 

lacking accounts of task representation structure, error generation, error recovery, and 

adaptation to change will not be able to perform these important design evaluation tasks 

for us.
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The results gleaned from the human and modeling studies have important practical 

implications for designers of human-machine interfaces. Human subjects produced the 

lowest error rates in the Transporter task, the same-scanner Jammer and the reordered 

subtask Jammer while error rates were relatively high in all versions of the Phaser. Closer 

analysis revealed that the Phaser’s relatively high error rate was due to the presence of 

two postcompletion steps in that procedure. The model replicated Chung and Byrne’s 

(2008) postcompletion error mechanism wherein working memory constraints on 

spreading activation to declarative memory coupled with similarity between the 

postcompletion action representation and the representation of the subsequent action 

increased probability of error commission at the postcompletion step. Interface and task 

designers therefore should avoid the inclusion of postcompletion steps (or any other 

closely-related neighboring steps) in their procedures. Should that be unavoidable, 

designers should make minimization of demand on working memory at that point in the 

procedure their top priority. 

All error commission by the models were caused by misretrieval of action 

representations. Misretrievals stemmed from the failure of sufficient activation to spread 

from references to the correct action representation in the models’ goal chunk to the 

correct action representation chunk in declarative memory. More source activation would 

have been available to propagate to declarative memory had it not been divided over so 

many task goals, including representations of current letters for the letter recall task. Here 

the goal chunk was analogous to human working memory. The models’ explanation for 

error in the Star Trek tasks suggests that working memory should be viewed as one of the 
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most scarce resources available to the operator. As such, a relatively very high premium 

should be placed on demand for its use in task environments.

4.1. Unresolved Issues

Though the ACT-R models made an important advance in our understanding of 

human procedural representation, they were a first attempt at this domain. Refinements 

remain to be made in order to explain all of the behaviors observed in the two 

experiments.

First, the model committed no distractor object errors such as was observed in human 

data during long chains of errors on some single steps. However, this issue could be fairly 

easily remedied by instantiating a loop that looks for a button and clicks it without having 

first tried to request the retrieval of a chunk encoding that button. 

Another issue regards shared task representations. Why did the structure of all 

Transporter interface tasks derive from the Transporter task? That is, why was the 

Jammer task represented in terms of departures from the Transporter task and not vice 

versa? It is more cognitive miserly to think of two tasks in terms of one task and how the 

other is different. Probably it could just as easily have been the Transporter task 

represented in terms of departures from the Jammer. 

There is room for improvement in control of retrieval for task-appropriate action 

representations. The model used two methods to prevent the retrieval of inappropriate 

action representation chunks: interface slots in the action representation chunks and in the 

imaginal chunk and large chunk dissimilarity between chunks appropriate to different 

interfaces. Having two methods to prevent inappropriate chunk retrieval is redundant. 

Probably one of those methods would have sufficed. Future work might examine whether 
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both methods are really necessary or whether it might be more parsimonious to use one 

or the other.

The ACT-R model examined error at a very shallow level compared to its 

examination in the human data. Since error at the trial type level is composed of error at 

each of the steps, it would have been preferable to tune the model’s performance down to 

the step level. Analysis of the step completion time data also would be helpful for 

providing some explanation for the human effects of step time completion. Finally, many 

chunk parameters were set empirically. It would have been better if they had instead been 

set a priori based on theoretical motivations. 

These things were not made first priority for the modeling effort for two reasons. 

First, establishing one goal, to match error rates of the 14 per-condition trial types, made 

the modeling problem tractable. Secondly, by starting with the high-level, quantitative 

characterization of human performance and error in the experiments, a common 

description for human representation of routine procedures could be made across all trial 

types in all four conditions of the two experiments. 

Another issue of project scope involved the notion of error in the Star Trek task 

paradigm. It is important to point out that the Star Trek task environment is a very 

simplistic one in terms of error commission and error feedback. The most complicated 

deviation from correct procedure possible is the clicking of a single button since the 

experiment simply does not allow further action until the correct action is performed. 

Seldom do people have such a check on the growth of error severity or get immediate 

feedback informing them that they have committed an error in the task that they were 

trying to perform. This is a real limitation of the task paradigm. However despite that 
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limitation subjects still made a significant number of errors and in meaningful patterns, 

such as the postcompletion errors in the Phaser task. Even more complex error recovery 

scenarios like real fault diagnosis are important areas, but they lie beyond the scope of the 

current effort. 

4.2. Future Work

The most obvious goal for a future modeling effort would be to extend the current 

project’s model down to the same level of analysis used for the behavioral data – down to 

the per-step error frequencies and step completion times measured in the behavioral 

studies. Then the model could provide both the wide-ranging account of the current 

project’s model and the detailed per-step explanation of Chung and Byrne’s (2008) 

model. 

Not very many global parameters were fitted, and that is good because using non-

default parameter values often bring with them assumptions about cognitive mechanisms. 

But many chunk parameters were fitted and these parameters were important to model fit. 

This may present an obstacle to being able to generalize the model to other tasks because 

of the number of chunk parameters that were empirically fit to the behavioral data after 

the fact. 

On the other hand, the psychological phenomena embodied in many of those 

parameters would have originated from the training session and the subsequent week 

intervening between it and the test session. A better model should be able to eliminate 

fitting those parameters by also modeling the training session and the intervening week. 

Hopefully a refined model could generalize to other tasks to explain error generation, 

error recovery, and coping with the not-so-routine. Although Card, Moran, and Newell 
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(1983) discussed how to extend GOMS to model some erroneous behaviors and simple 

error correction behavior, they did not discuss why the errors arose in the first place. 

Hopefully, eventually, findings from this model about the causes of human error in 

routine procedures can feedback into cognitive engineering models like GOMS to say 

something useful about human error probabilities given a task, an interface, and the pre-

existing user knowledge brought to bear on the task. Then such engineering models can 

be put to use designing safer and more economical human-machine systems and 

procedures.

Finally, future modeling efforts should explore fit metrics that are not dependent on 

the number of subjects run in each condition. Such a future model might be intended to 

fall within the average intra-individual deviation, thus passing a sort of Turing test for 

model fit.
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6. APPENDIX A: LSA COSINES FOR PHASER CONTROL LABELS

Table A1
Control Label LSA Cosines for the Semantically-Related Conditions, Within-Subtasks

Subtask 1

“Generator” “Electrical” “Kilowatts”

“Generator” 0.69 0.3

“Electrical” 0.69 0.21

“Kilowatts” 0.3 0.21

Mean LSA Cosine 0.4 0.45 0.26

Subtask 2

“Focus”

“Lens” 0.71

Subtask 3

“Shot”

“Cannon” 0.47
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Table A2
Control Label LSA Cosines for the Semantically-Related Conditions, Between-Subtasks

“Generator 
Electrical 

Kilowatts”

“Lens Focus” “Cannon Shot” “Main”

“Generator 
Electrical 
Kilowatts”

-0.02 -0.03 0.03

“Lens Focus” -0.02 0.02 -0.02

“Cannon Shot” -0.03 0.02 0.03

“Main” 0.03 -0.02 0.03

Mean LSA 
Cosine

-0.01 -0.01 0.01 0.01
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Table A3
Control Label LSA Cosines for the Semantic Control Condition, Within-Subtasks

Subtask 1

 “Smokey”  “Entomologist”  “Filmmaker”

“Smokey” 0.05 -0.01

“Entomologist” 0.05 0.07

“Filmmaker” -0.01 0.07

Mean LSA Cosine 0.02 0.06 0.03

Subtask 2

“Reflecting”

“Solenoid” -0.06

Subtask 3

“Headings”

“Redcoats” 0.01
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Table A4
Control Label LSA Cosines for the Semantic Control Condition, Between-Subtasks.

“Entomologist 
Smokey 

Filmmaker”

“Solenoid 
Reflecting”

“Redcoats 
Headings”

“Drafty”

“Entomologist 
Smokey 
Filmmaker”

0.01 0.01 -0.02

“Solenoid 
Reflecting”

0.01 0.02 0.01

“Redcoats 
Headings”

0.01 0.02 0.02

“Drafty” -0.02 0.01 0.02

Mean LSA 
Cosine

0 0.01 0.02 0
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7. APPENDIX B: SUBJECT INSTRUCTIONS

7.1. Aural Instructions, Day 1

Welcome to Star Fleet Academy. Today you will train on several procedures, and 

before you leave today we will set an appointment for you to return next week 

and test on those procedures. Main Control is on-screen, and it will direct your 

training today. On your left is a set of manuals. There is a manual for Main 

Control, as well as another manual that tells you how you will earn points during 

the testing session next week and what the cash prizes are for the top three 

performers in your training group. Please read both manuals before you begin. 

There is also a manual for each task you will train on. As you come to each task 

for the first time, please read its manual in its entirety. Then keep the manual as 

reference while you attempt to do a trial of the task. After you’ve completed one 

trial without committing any errors, the computer will ask you to return that 

manual to me. At that time, please do so and then continue training as Main 

Control instructs you. Do you have any questions?

7.2. Aural Instructions, Day 2

Today we will test you on the procedures you learned last week, but in addition 

there will be a letter recall task for you to perform while you are performing those 

other tasks. Doing both at the same time is fairly difficult, but please just do the 

best that you can. Go as fast as you can while committing as few errors as you 

can. At the end there will be a brief questionnaire.

7.3. Written Instructions, Day 2

PLEASE READ THESE INSTRUCTIONS CAREFULLY
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In order to ensure that our pilots are able to operate all systems in any field 

situation, we will be testing your on-the-fly thinking and ability to adapt. Being 

able to operate Starfleet systems under any external circumstance is imperative, 

particularly in emergency situations. Some of the interfaces you will be using may 

change halfway through the examination, and the system will warn you of this 

change. Please do your best to continue with the tasks and complete them as you 

did previous to the change. 

Additionally, your ability to monitor and recall information will be tested. Please 

be sure to wear the headphones during the experiment. While you are doing the 

tasks that you trained on during the last session, please pay attention to the 

alphabet letters recited. Be ready at any time to recall the last three letters that you 

have heard, in the order in which you heard them. A “recall” window will pop up 

when it is time for you to recall those three letters. A warning tone will be played 

to notify you of an incorrect recall.

After completing the experiment you will be asked to complete a brief 

questionnaire.

7.4. Written Instructions, Day 2, Change Onset Instructions

As explained previously, system controls in the next task will now be changed in 

the following trials to simulate an emergency situation in which console damage 

has been sustained. Please do your best to complete the tasks as before.
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Your next task is the Phaser. Now, instead of clicking “Electrical”, “Generator”, 

“Kilowatts”, and “Electrical” as before, you will now click “Electrical”, 

“Generator”, then “Lens”, the focus slider, and “Lens”. Then battery Generator 

meter will begin to fill, indicating that the battery is charging. As before, wait for 

the meter to reach an appropriate level, then click “Kilowatts” and finally 

“Electrical”.
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8. APPENDIX C: ADDITIONAL METHODS DETAIL FOR THE BEHAVIORAL 

STUDY

8.1. Main Control

The Main Control interface of the experiment functioned as a coordinator of training 

and of testing. During the training phase of the experiment, Main Control displayed a 

message indicating to the subject which task to train on. When subjects erred in the 

procedures they were training on, the task window returned them to Main Control. At this 

point Main Control displayed a message indicating which step in the procedure should 

have been performed. For example, if a subject was training on the Phaser task and 

clicked “lens” when “focus” should have been clicked, the Phaser task would abort, Main 

Control would come back on-screen, and Main Control would display the message, 

“Click the ‘focus’ button.” When subjects correctly finished a trial, Main Control 

displayed how many trials they had completed successfully and what task to train on for 

the next trial. Figure 22 shows Main Control during training.
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During the testing session, Main Control again indicated which task to perform for 

each trial. At the conclusion of each trial, Main Control indicated how many seconds it 

took to complete that trial and how many times the subject had erred. During the testing 

session Main Control never displayed messages indicating which action should have been 

performed at a given step in a task as it did during the training session. Additionally, if 

the subject completed the trial fast enough to earn bonus points, Main Control displayed a 

message stating such. See the Testing Session subsection for an explanation of the 

rationale and mechanics of the scoring system. Figure 23 shows Main Control during 

testing.

Figure 22. Main Control, training.
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8.2. Additional Phaser Detail

For all Phaser versions, there was some chance that the experiment would require the 

subject to repeat much of the trial. After subjects shot the Phaser, the experiment software 

displayed an outcome message in the status box on the lower-left of the screen, “Romulan 

vessel destroyed,” “Romulan vessel hit but not destroyed,” or “Phaser missed Romulan 

vessel.” In the first case, subjects had only to click “Shot” and “Main” to finish the Phaser 

task. The latter two cases were equivalent and meant that subjects had to perform the 

Phaser task all over again. This resulted in another trial’s worth of data, but it did not 

count toward trial count for the sake of procedure change in the untrained intervening 

subtask condition.

Figure 23. Main Control, testing.
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The Phaser hit or miss was an independent event governed by the following rules 

presented in decreasing order of priority. There was a 1% chance of scoring a hit 

regardless of the distance from the crosshairs to the target. Firing the Phaser when the 

target was more than 70 pixels from the crosshairs resulted in a miss. Otherwise the 

Phaser hit the target when a randomly chosen integer from the set {0, 99} was less than 

or equal to the lesser of 85 or 95 minus the crosshairs-to-target distance times one plus 

the focus value of the Phaser divided by 20, where the focus value of the Phaser was the 

distance from the nearest point on the left edge of the interface to the position clicked on 

the focus slider.

8.3. The Navigation Task

The Star Trek set of tasks uses a “Navigation” task as a filler. The Navigation task is a 

simple arithmetic task wherein the subjects were to compare a “Programmed Heading” to 

a “Current Heading” and compute the difference for the X-, Y-, and Z-coordinates. 

Subjects first clicked the “Confirm Course” button, then subtracted the current heading 

from the programmed heading, entering the difference for each coordinate into the three 

“Course Correction” fields. A three-axis graph plotted the programmed and current 

headings mostly to add an engaging, interactive component to the task. However, when 

the differences between both sets of X, Y, and Z values were zero a quick glance at the 

graph, showing overlapping headings, could tell the user that the courses are the same 

faster than subjects could read all six values and make three comparisons. Figure 24 

displays the Navigation task’s interface.
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8.4 Additional Transporter Task Detail

Transporter and Jammer trials re-started for the same reasons and with the same 

consequences as the Phaser. That is, re-starting the trial resulted in more data being 

collected from subjects and subjects had to start the Transporter task over again after 

clicking the target and then clicking “Synchronous Mode”. Upon clicking “Synchronous 

Mode” after having clicked the Transporter target, the Transporter displayed one of these 

three status messages: “Beam successful--return to main control,” “Beam failed--jammed 

by hostile signal,” or “Beam failed--beam too weak.” The last two messages both 

indicated a miss and that it would be necessary to repeat the trial. For the conditions in 

which subjects were free to choose which order to perform the frequency and 

Figure 24. The Navigation interface.
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synchronization subtasks, they were also free to choose which order to perform these 

subtasks when the trial repeated.

The Transporter determined hits and misses according to the following rules, in order 

of decreasing priority. If the subject had clicked “Lock Signal” before all but one of the 

scanning dots had disappeared from the scanner display, then the Transporter missed. If 

the absolute value of the difference between the number entered for the frequency minus 

a randomly chosen integer from the set {0, 99} was less than 41, then the Transporter hit. 

If that difference was less than 90, then the Transporter missed. If that difference was 90 

or greater, then the probability of a hit was 0.5.
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9. APPENDIX D: EXPERIMENTER SCRIPT

X84 Experimenter Script

Starting the Day

• Login to the eMacs
• Load X84.lisp
• Get out the subject registry and folders for consent and debriefing forms.

Subject Arrival

Greet and ask whether today is their first day or second day of participation. 

Day 1

• Credit or pay?
• Give two copies of appropriate consent form:

• “Please read it over and ask me any questions you may have. If you agree to 
participate, please fill out one copy, give that to me and keep the other for your 
records. Then please fill out the next available line on this form”

• Indicate the X84 registration form
• Retrieve the appropriate manual set, place it next to a station’s keyboard. 
• Begin the experiment program: type “(begin-experiment)” and hit return.
• Give instructions:

• “Welcome to Star Fleet Academy. Today you will train on several procedures, and 
before you leave today we will set an appointment for you to return next week to 
test on those procedures. Main Control is on-screen, and it will direct your training 
today. On your left is a set of manuals. There is a manual for Main Control, as well 
as another manual that tells you how you will earn points during the testing session 
next week and what the cash prizes are for the top three performers in your training 
group. Please read both manuals before you begin. There is also a manual for each 
task you will train on. As you come to each task for the first time, please read its 
manual in its entirety. Then keep the manual as reference while you attempt to do a 
trial of the task. After you’ve completed one trial without committing any errors, the 
computer will ask you to return that manual to me. At that time, please do so and 
then continue training as Main Control instructs you. Do you have any questions? 
… Please begin when you are ready.

• Let them run, collecting manuals as needed
• Subject finishes: 

• Set appointment for next week
• If subject participates for pay, pay for day one ($10)

• Upload the day’s data files to the server, /Public/X Support/X84 Frank Trek Semantic 
Space/X84 Data/. Please be sure to put data from each eMac into its appropriate sub-
folder.
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Day 2

• Name?
• Find his name on the subject assignment sheet for condition & subject numbers.

• Start the experiment program.
• Give instructions:

• “Today we will test you on the procedures you learned last week, but in addition 
there will be a letter recall task for you to perform while you are performing those 
other tasks. Doing both at the same time is fairly difficult, but please just do the best 
that you can. Go as fast as you can while committing as few errors as you can. At 
the end there will be a brief questionnaire. When you are ready to begin, please read 
the instructions on-screen and begin.” 

• Subject finishes:
• Thank for participation, give debriefing sheet.
• If subject participates for pay, pay for day two ($15)

Finishing up the Day

• Put away all paper work
• Count the cash left, contact Frank if there is $50 or less
• Copy all data from today to the appropriate folder on the server
• Logout from eMacs

Other Things to Know

• Be prepared for an experiment crash: Use command-. on the error window or 
command-w on the errant task window to get back to Main Control. Then have the 
subject click the button for the task he was performing when the experiment crashed. 
Once the task resumes, X84 should be fine. If not, try to contact Frank (http://
chil.rice.edu/labonly/contact.html has lab members’ contact information). If no luck, 
then apologize and reschedule. Try to copy the text of the error message and get that to 
Frank, as well as any information you can gather about what was going on at the time 
of the crash.

• If the subject asks a question to which you don’t know the answer, and Frank’s not 
around, tell him he can email Frank or Dr. Byrne (contact information on Experimetrix) 
or the debriefing form, but only give him the debriefing form if he’s finished day 2.
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10. APPENDIX E: ADDITIONAL DETAIL REGARDING SHARED TASK 

REPRESENTATIONS AND HANDLING OF TASK PROCEDURE CHANGE

The same mechanism handled the shared representation of the Transporter and 

Jammer tasks as well as procedure change in the Jammer and Phaser tasks. For the static 

different-Jammer, the model had three productions specific to the Jammer and five 

“change instruction” chunks, named for the role that they played in handling procedure 

change. These change instruction chunks specified a Transporter step to be interrupted, 

the Jammer step to perform instead, and the next step of the basic Transporter procedure 

to be interrupted. Since the different-Jammer task was identical to the Transporter task 

but with some steps rearranged, the goal chunk for the different-Jammer flagged a 

Transporter action that occurred in a different order in the different-Jammer by placing 

another copy of a reference to that action in a third state slot. When the model got to that 

flagged step at the retrieve phase of the RFMAV loop, as indicated by a coinciding of the 

“retrieve” local state and an equality of the global state value and the flagged step value, 

the “flagged-step-Jammer” production matched. 

Instead of requesting the retrieval of a action representation chunk, the flagged-step-

Jammer production requested the retrieval of a change instruction chunk with a current-

flag slot value equal to the value of the flagged step. Once that change instruction chunk 

had been retrieved, the “got-change instruction-Jammer” production fired. This 

production set the global state value to the Jammer step to be performed instead and 

directed the model back to the retrieve phase of the RFMAV loop. Assuming the change 

instruction retrieval request resulted in the retrieval of the correct change instruction 

chunk, the model then continued through the RFMAV loop with the correct Jammer step. 
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That step’s corresponding verify production would set the global state slot to the next step 

appropriate for the Transporter task. 

For example, if the model was beginning the different-scanner version of the Jammer 

task the correct first step would be “active scan,” whereas the correct first step of the 

Transporter task was “scanner on.” The flagged-step-Jammer production would match to 

the condition wherein both the global state and flagged-step slots of the goal chunk are 

set to “scanner on.” The flagged-step-Jammer production then would request the retrieval 

of the change instruction chunk that had “scanner on” in its flagged-step slot. That chunk 

would have another slot, do-step, specifying the action that the model should perform 

instead, “active scan,” as well as the identity of the next Transporter step to flag – the 

Transporter step that would follow “active scan,” “lock signal.” The model would then 

continue its way around the RFMAV loop until it got to the retrieval phase with the 

global state and flagged-step slots of the goal chunk set to “lock signal.”

When the model came back around to the retrieve phase with the global state of “lock 

signal,” the global state would be equal to the flagged step indicated by the last retrieved 

change instruction chunk, and so the flagged-step-Jammer production fired and the model 

progressed again through its change instruction side loop. Once the model had completed 

the scanner subtask, it would have advanced to a portion of the Jammer task that was 

identical to the Transporter task, and so effectively it just performed the Transporter task. 

Because of the model’s reliance on this change instruction mechanism, it performed two 

retrievals for every Jammer step that is different from the Transporter step, instead of one 

retrieval per step that is the norm for the other tasks. Retrieving chunks from declarative 

memory was a noisy process fraught with error, and this was the genesis for the different-
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Jammer’s relatively high error rate in its scanner subtask. Finally, there was a third 

change instruction production that handled error recovery in the case of the model 

committing an error while operating on a change instruction. It will be discussed in the 

section regarding error recovery.

For the procedure-change tasks, the model operated as above except that it started the 

experiment run with only the productions and not the declarative chunks encoding the 

procedure change knowledge. When the procedure change occurred, the experiment 

software performed an abstracted version of the change instruction presentation – it 

simply added the change instruction chunks to the model’s declarative module. The 

experiment also changed the goal chunk to reflect the changed context of the task. With 

those three components in place, the productions, the change instruction chunks, and the 

procedure-change goal context, the model could then perform the new version of the 

Jammer or Phaser task.
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11. APPENDIX F: MODEL PARAMETER VALUES

Table A5
Model Global Parameter Values

Parameter Value Reason

egs (expected gain s) 2 empirical fit

mp (mismatch penalty) 1.8 empirical fit

ans (activation noise 
standard deviation)

0.23 empirical fit

mas (maximum associative 
strength)

2 empirical fit

rt (retrieval threshold) -2 ensured that most retrieval 
requests would return 
some chunk

ol (optimized learning) 4 used by declarative 
module to implement a 
computationally simple 
form of the base level 
learning equation

md (maximum difference) -10 ensured that action 
representation chunks for 
the wrong interface would 
not be retrieved
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Table A6
Model Chunk Parameter Values: Base Levels.

Chunk Value Reason

second instance of the 
“Electrical” step

-1.2 empirical fit

second instance of the 
“Shot” step

-1.1 empirical fit

scanner on -0.4 empirical fit

scanner off -0.4 empirical fit

second instance of the 
“Synchronous Mode” step

-0.4 empirical fit
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Table A7
Model Chunk Parameter Values: Strengths of Association.

Condition & Task Chunk A Chunk B Value Reason

No procedure change, different 
scanner subtask Jammer

scanner on 
change 
instruction

scanner on 1.6 empirical fit

No procedure change, different 
scanner subtask Jammer

lock signal 
change 
instruction

lock signal 1.6 empirical fit

No procedure change, different 
scanner subtask Jammer

enter frequency 
change 
instruction

enter 
frequency

1.6 empirical fit

No procedure change, different 
scanner subtask Jammer

scanner off 
change 
instruction

scanner off 1.6 empirical fit

No procedure change, different 
scanner subtask Jammer

active scan 
change 
instruction

active scan 1.6 empirical fit

No procedure change, different 
scanner subtask Jammer

scanner on scanner on 
change 
instruction

1.6 empirical fit

No procedure change, different 
scanner subtask Jammer

lock signal lock signal 
change 
instruction

1.6 empirical fit

No procedure change, different 
scanner subtask Jammer

enter frequency enter 
frequency 
change 
instruction

1.6 empirical fit

No procedure change, different 
scanner subtask Jammer

scanner off scanner off 
change 
instruction

1.6 empirical fit

No procedure change, different 
scanner subtask Jammer

active scan active scan 
change 
instruction

1.6 empirical fit
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Condition & Task Chunk A Chunk B Value Reason

No procedure change, different 
scanner subtask Jammer

scanner on 
change 
instruction

lock signal 0.4 empirical fit

No procedure change, different 
scanner subtask Jammer

scanner on 
change 
instruction

enter 
frequency

0.4 empirical fit

No procedure change, different 
scanner subtask Jammer

scanner on 
change 
instruction

scanner off 0.4 empirical fit

No procedure change, different 
scanner subtask Jammer

scanner on 
change 
instruction

active scan 0.4 empirical fit

No procedure change, different 
scanner subtask Jammer

lock signal 
change 
instruction

scanner on 0.4 empirical fit

No procedure change, different 
scanner subtask Jammer

lock signal 
change 
instruction

enter 
frequency

0.4 empirical fit

No procedure change, different 
scanner subtask Jammer

lock signal 
change 
instruction

scanner off 0.4 empirical fit

No procedure change, different 
scanner subtask Jammer

lock signal 
change 
instruction

active scan 0.4 empirical fit

No procedure change, different 
scanner subtask Jammer

enter frequency 
change 
instruction

scanner on 0.4 empirical fit

No procedure change, different 
scanner subtask Jammer

enter frequency 
change 
instruction

lock signal 0.4 empirical fit

No procedure change, different 
scanner subtask Jammer

enter frequency 
change 
instruction

scanner off 0.4 empirical fit
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Condition & Task Chunk A Chunk B Value Reason

No procedure change, different 
scanner subtask Jammer

enter frequency 
change 
instruction

active scan 0.4 empirical fit

No procedure change, different 
scanner subtask Jammer

scanner off 
change 
instruction

scanner on 0.4 empirical fit

No procedure change, different 
scanner subtask Jammer

scanner off 
change 
instruction

lock signal 0.4 empirical fit

No procedure change, different 
scanner subtask Jammer

scanner off 
change 
instruction

enter 
frequency

0.4 empirical fit

No procedure change, different 
scanner subtask Jammer

scanner off 
change 
instruction

active scan 0.4 empirical fit

No procedure change, different 
scanner subtask Jammer

active scan 
change 
instruction

scanner on 0.4 empirical fit

No procedure change, different 
scanner subtask Jammer

active scan 
change 
instruction

lock signal 0.4 empirical fit

No procedure change, different 
scanner subtask Jammer

active scan 
change 
instruction

enter 
frequency

0.4 empirical fit

No procedure change, different 
scanner subtask Jammer

active scan 
change 
instruction

scanner off 0.4 empirical fit

No procedure change, different 
scanner subtask Jammer

lock signal scanner on 
change 
instruction

0.4 empirical fit

No procedure change, different 
scanner subtask Jammer

enter frequency scanner on 
change 
instruction

0.4 empirical fit
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Condition & Task Chunk A Chunk B Value Reason

No procedure change, different 
scanner subtask Jammer

scanner off scanner on 
change 
instruction

0.4 empirical fit

No procedure change, different 
scanner subtask Jammer

active scan scanner on 
change 
instruction

0.4 empirical fit

No procedure change, different 
scanner subtask Jammer

scanner on lock signal 
change 
instruction

0.4 empirical fit

No procedure change, different 
scanner subtask Jammer

enter frequency lock signal 
change 
instruction

0.4 empirical fit

No procedure change, different 
scanner subtask Jammer

scanner off lock signal 
change 
instruction

0.4 empirical fit

No procedure change, different 
scanner subtask Jammer

active scan lock signal 
change 
instruction

0.4 empirical fit

No procedure change, different 
scanner subtask Jammer

scanner on enter 
frequency 
change 
instruction

0.4 empirical fit

No procedure change, different 
scanner subtask Jammer

lock signal enter 
frequency 
change 
instruction

0.4 empirical fit

No procedure change, different 
scanner subtask Jammer

scanner off enter 
frequency 
change 
instruction

0.4 empirical fit

No procedure change, different 
scanner subtask Jammer

active scan enter 
frequency 
change 
instruction

0.4 empirical fit
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Condition & Task Chunk A Chunk B Value Reason

No procedure change, different 
scanner subtask Jammer

scanner on scanner off 
change 
instruction

0.4 empirical fit

No procedure change, different 
scanner subtask Jammer

lock signal scanner off 
change 
instruction

0.4 empirical fit

No procedure change, different 
scanner subtask Jammer

enter frequency scanner off 
change 
instruction

0.4 empirical fit

No procedure change, different 
scanner subtask Jammer

active scan scanner off 
change 
instruction

0.4 empirical fit

No procedure change, different 
scanner subtask Jammer

scanner on active scan 
change 
instruction

0.4 empirical fit

No procedure change, different 
scanner subtask Jammer

lock signal active scan 
change 
instruction

0.4 empirical fit

No procedure change, different 
scanner subtask Jammer

enter frequency active scan 
change 
instruction

0.4 empirical fit

No procedure change, different 
scanner subtask Jammer

scanner off active scan 
change 
instruction

0.4 empirical fit

Procedure change Phaser, post-
change

kilowatts kilowatts 
change 
instruction

2.5 empirical fit

Procedure change Phaser, post-
change

cannon cannon 
change 
instruction

2.5 empirical fit

Procedure change Phaser, post-
change

lens lens change 
instruction

2.5 empirical fit
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Condition & Task Chunk A Chunk B Value Reason

Procedure change Phaser, post-
change

kilowatts 
change 
instruction

kilowatts 2.5 empirical fit

Procedure change Phaser, post-
change

cannon change 
instruction

cannon 2.5 empirical fit

Procedure change Phaser, post-
change

lens change 
instruction

lens 2.5 empirical fit

Procedure change Phaser, post-
change

kilowatts cannon 
change 
instruction

-0.5 empirical fit

Procedure change Phaser, post-
change

kilowatts lens change 
instruction

-0.5 empirical fit

Procedure change Phaser, post-
change

cannon kilowatts 
change 
instruction

-0.5 empirical fit

Procedure change Phaser, post-
change

cannon lens change 
instruction

-0.5 empirical fit

Procedure change Phaser, post-
change

lens kilowatts -0.5 empirical fit

Procedure change Phaser, post-
change

lens cannon -0.5 empirical fit

Procedure change Phaser, post-
change

cannon change 
instruction

kilowatts -0.5 empirical fit

Procedure change Phaser, post-
change

lens change 
instruction

kilowatts -0.5 empirical fit

Procedure change Phaser, post-
change

kilowatts 
change 
instruction

cannon -0.5 empirical fit

144



Condition & Task Chunk A Chunk B Value Reason

Procedure change Phaser, post-
change

lens change 
instruction

cannon -0.5 empirical fit

Procedure change Phaser, post-
change

kilowatts lens -0.5 empirical fit

Procedure change Phaser, post-
change

cannon lens -0.5 empirical fit

Procedure change Jammer, post-
change

scanner on 
change 
instruction

scanner on 1 empirical fit

Procedure change Jammer, post-
change

lock signal 
change 
instruction

lock signal 2 empirical fit

Procedure change Jammer, post-
change

enter frequency 
change 
instruction

enter 
frequency

1.3 empirical fit

Procedure change Jammer, post-
change

scanner off 
change 
instruction

scanner off 2 empirical fit

Procedure change Jammer, post-
change

active scan 
change 
instruction

active scan 1.6 empirical fit

Procedure change Jammer, post-
change

scanner on scanner on 
change 
instruction

1 empirical fit

Procedure change Jammer, post-
change

lock signal lock signal 
change 
instruction

2 empirical fit

Procedure change Jammer, post-
change

enter frequency enter 
frequency 
change 
instruction

1.3 empirical fit
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Condition & Task Chunk A Chunk B Value Reason

Procedure change Jammer, post-
change

scanner off scanner off 
change 
instruction

2 empirical fit

Procedure change Jammer, post-
change

active scan active scan 
change 
instruction

1.6 empirical fit

Procedure change Jammer, post-
change

scanner on 
change 
instruction

lock signal 0.2 empirical fit

Procedure change Jammer, post-
change

scanner on 
change 
instruction

enter 
frequency

0.5 empirical fit

Procedure change Jammer, post-
change

scanner on 
change 
instruction

scanner off 0.2 empirical fit

Procedure change Jammer, post-
change

scanner on 
change 
instruction

active scan 0.4 empirical fit

Procedure change Jammer, post-
change

lock signal 
change 
instruction

scanner on 0.6 empirical fit

Procedure change Jammer, post-
change

lock signal 
change 
instruction

enter 
frequency

0.5 empirical fit

Procedure change Jammer, post-
change

lock signal 
change 
instruction

scanner off 0.2 empirical fit

Procedure change Jammer, post-
change

lock signal 
change 
instruction

active scan 0.4 empirical fit

Procedure change Jammer, post-
change

enter frequency 
change 
instruction

scanner on 0.6 empirical fit
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Condition & Task Chunk A Chunk B Value Reason

Procedure change Jammer, post-
change

enter frequency 
change 
instruction

lock signal 0.2 empirical fit

Procedure change Jammer, post-
change

enter frequency 
change 
instruction

scanner off 0.2 empirical fit

Procedure change Jammer, post-
change

enter frequency 
change 
instruction

active scan 0.4 empirical fit

Procedure change Jammer, post-
change

scanner off 
change 
instruction

scanner on 0.6 empirical fit

Procedure change Jammer, post-
change

scanner off 
change 
instruction

lock signal 0.2 empirical fit

Procedure change Jammer, post-
change

scanner off 
change 
instruction

enter 
frequency

0.5 empirical fit

Procedure change Jammer, post-
change

scanner off 
change 
instruction

active scan 0.4 empirical fit

Procedure change Jammer, post-
change

active scan 
change 
instruction

scanner on 0.2 empirical fit

Procedure change Jammer, post-
change

active scan 
change 
instruction

lock signal 0.2 empirical fit

Procedure change Jammer, post-
change

active scan 
change 
instruction

enter 
frequency

0.5 empirical fit

Procedure change Jammer, post-
change

active scan 
change 
instruction

scanner off 0.2 empirical fit
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Condition & Task Chunk A Chunk B Value Reason

Procedure change Jammer, post-
change

lock signal scanner on 
change 
instruction

0.2 empirical fit

Procedure change Jammer, post-
change

enter frequency scanner on 
change 
instruction

0.5 empirical fit

Procedure change Jammer, post-
change

scanner off scanner on 
change 
instruction

0.2 empirical fit

Procedure change Jammer, post-
change

active scan scanner on 
change 
instruction

0.4 empirical fit

Procedure change Jammer, post-
change

scanner on lock signal 
change 
instruction

0.6 empirical fit

Procedure change Jammer, post-
change

enter frequency lock signal 
change 
instruction

0.5 empirical fit

Procedure change Jammer, post-
change

scanner off lock signal 
change 
instruction

0.2 empirical fit

Procedure change Jammer, post-
change

active scan lock signal 
change 
instruction

0.4 empirical fit

Procedure change Jammer, post-
change

scanner on enter 
frequency 
change 
instruction

0.6 empirical fit

Procedure change Jammer, post-
change

lock signal enter 
frequency 
change 
instruction

0.2 empirical fit
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Condition & Task Chunk A Chunk B Value Reason

Procedure change Jammer, post-
change

scanner off enter 
frequency 
change 
instruction

0.2 empirical fit

Procedure change Jammer, post-
change

active scan enter 
frequency 
change 
instruction

0.4 empirical fit

Procedure change Jammer, post-
change

scanner on scanner off 
change 
instruction

0.6 empirical fit

Procedure change Jammer, post-
change

lock signal scanner off 
change 
instruction

0.2 empirical fit

Procedure change Jammer, post-
change

enter frequency scanner off 
change 
instruction

0.5 empirical fit

Procedure change Jammer, post-
change

active scan scanner off 
change 
instruction

0.4 empirical fit

Procedure change Jammer, post-
change

scanner on active scan 
change 
instruction

0.2 empirical fit

Procedure change Jammer, post-
change

lock signal active scan 
change 
instruction

0.2 empirical fit

Procedure change Jammer, post-
change

enter frequency active scan 
change 
instruction

0.5 empirical fit

Procedure change Jammer, post-
change

scanner off active scan 
change 
instruction

0.2 empirical fit
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Table A8
Model Chunk Parameter Values: Similarities

Condition & Task Chunk Pair Value Reason

No procedure change, 
intervening subtask 
Phaser

second instance of 
shot, main control

-0.7 empirical fit, 
simulation of post 
completion error

No procedure change, 
intervening subtask 
Phaser

second instance of 
electrical, cannon

-0.7 empirical fit, 
simulation of post 
completion error

No procedure change, 
different scanner 
subtask Jammer

scanner on, active 
scan

-0.75 empirical fit

No procedure change, 
different scanner 
subtask Jammer

scanner on, lock 
signal

-0.85 empirical fit

No procedure change, 
different scanner 
subtask Jammer

scanner on, 
scanner off

-0.85 empirical fit

No procedure change, 
different scanner 
subtask Jammer

active scan, lock 
signal

-0.9 empirical fit

No procedure change, 
different scanner 
subtask Jammer

active scan, 
scanner off

-0.9 empirical fit

No procedure change, 
different scanner 
subtask Jammer

lock signal, 
scanner off

-0.72 empirical fit

No procedure change, 
different scanner 
subtask Jammer

second instance of 
synchronous 
mode, main 
control

-0.9 empirical fit

No procedure change, 
different scanner 
subtask Jammer

scanner on, enter 
frequency

-0.9 empirical fit
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Condition & Task Chunk Pair Value Reason

No procedure change, 
different scanner 
subtask Jammer

active scan, enter 
frequency

-0.9 empirical fit

No procedure change, 
different scanner 
subtask Jammer

lock signal, enter 
frequency

-0.9 empirical fit

No procedure change, 
different scanner 
subtask Jammer

scanner off, enter 
frequency

-0.7 empirical fit

Procedure change, 
intervening subtask 
Phaser, pre-change

second instance of 
shot, main control

-0.7 empirical fit, 
simulation of post 
completion error

Procedure change, 
intervening subtask 
Phaser, pre-change

second instance of 
electrical, lens

-0.7 empirical fit, 
simulation of post 
completion error

Procedure change, 
intervening subtask 
Phaser, post-change

second instance of 
electrical, lens

-1 empirical fit

No procedure change, 
same scanner subtask 
Jammer

scanner on, active 
scan

-0.75 empirical fit

No procedure change, 
same scanner subtask 
Jammer

scanner on, lock 
signal

-0.85 empirical fit

No procedure change, 
same scanner subtask 
Jammer

scanner on, 
scanner off

-0.85 empirical fit

No procedure change, 
same scanner subtask 
Jammer

active scan, lock 
signal

-0.9 empirical fit

No procedure change, 
same scanner subtask 
Jammer

active scan, 
scanner off

-0.9 empirical fit
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Condition & Task Chunk Pair Value Reason

No procedure change, 
same scanner subtask 
Jammer

lock signal, 
scanner off

-0.72 empirical fit

No procedure change, 
same scanner subtask 
Jammer

Transporter power, 
first instance of 
synchronous mode

-0.75 empirical fit

No procedure change, 
same scanner subtask 
Jammer

second instance of 
synchronous 
mode, main 
control

-0.9 empirical fit

No procedure change, 
same scanner subtask 
Jammer

scanner off, enter 
frequency

-0.7 empirical fit

No procedure change, 
no intervening 
subtask Phaser

second instance of 
shot, main control

-0.7 empirical fit, 
simulation of post 
completion error

No procedure change, 
no intervening 
subtask Phaser

second instance of 
electrical, lens

-0.7 empirical fit, 
simulation of post 
completion error

Procedure change 
Jammer, pre-change

scanner on, active 
scan

-0.75 empirical fit

Procedure change 
Jammer, pre-change

scanner on, lock 
signal

-0.85 empirical fit

Procedure change 
Jammer, pre-change

scanner on, 
scanner off

-0.85 empirical fit

Procedure change 
Jammer, pre-change

active scan, lock 
signal

-0.9 empirical fit

Procedure change 
Jammer, pre-change

active scan, 
scanner off

-0.9 empirical fit

Procedure change 
Jammer, pre-change

lock signal, 
scanner off

-0.72 empirical fit

Procedure change 
Jammer, pre-change

second instance of 
synchronous 
mode, main 
control

-0.9 empirical fit
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Condition & Task Chunk Pair Value Reason

Procedure change 
Jammer, pre-change

scanner on, enter 
frequency

-0.9 empirical fit

Procedure change 
Jammer, pre-change

active scan, enter 
frequency

-0.9 empirical fit

Procedure change 
Jammer, pre-change

lock signal, enter 
frequency

-0.9 empirical fit

Procedure change 
Jammer, pre-change

scanner off, enter 
frequency

-0.7 empirical fit

Semantic control 
Phaser

second instance of 
shot, main control

-0.7 empirical fit, 
simulation of post 
completion error

Semantic control 
Phaser

second instance of 
electrical, lens

-0.8 empirical fit, 
simulation of post 
completion error

Jammer, different 
subtask order

scanner on, active 
scan

-0.75 empirical fit

Jammer, different 
subtask order

scanner on, lock 
signal

-0.85 empirical fit

Jammer, different 
subtask order

scanner on, 
scanner off

-0.85 empirical fit

Jammer, different 
subtask order

active scan, lock 
signal

-0.9 empirical fit

Jammer, different 
subtask order

active scan, 
scanner off

-0.9 empirical fit

Jammer, different 
subtask order

lock signal, 
scanner off

-0.72 empirical fit

Jammer, different 
subtask order

second instance of 
synchronous 
mode, main 
control

-0.9 empirical fit

Jammer, different 
subtask order

scanner on, enter 
frequency

-0.9 empirical fit
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Condition & Task Chunk Pair Value Reason

Jammer, different 
subtask order

active scan, enter 
frequency

-0.9 empirical fit

Jammer, different 
subtask order

lock signal, enter 
frequency

-0.9 empirical fit

Jammer, different 
subtask order

scanner off, enter 
frequency

-0.7 empirical fit

Note: Unless otherwise listed in this table, action representation chunks appearing 
within the same subtask had a similarity value of -0.95 and action representation 
chunks appearing in different subtasks within the same task had a similarity value of -1. 
Action representation chunks not appearing in this table or this note defaulted to the 
maximum different global parameter value, -10. These were action representation 
chunk pairs that were not applicable to tasks using the same interface, such as 
“electrical” and “scanner on.”
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