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ABSTRACT

Theoretical Investigation of Charge Transfer Process in
Atom-Surface Scattering

by

Murat O. Berk

We present calculations of the lifetime broadening and the shifts of hydrogen
atomic levels (both ground and excited levels) near impurity covered jellium metal
surfaces using complex scaling technique. The impurities which are used in the calcu-
lations are Na, Cl and Cs. It has long been known, that the presence of the impurities
on metal surfaces can both shift position and change the widths of the electronic lev-
els. It is shown that for an accurate description of the system it is important to use
support basis functions centered on the impurity.

We also investigate the accuracy of a classical treatment of electron transfer in
atom metal collisions and compare it to Monte Carlo based quantum mechanical
calculations. It is shown that for slow particles the treatments deviate from each

other, thus giving different predictions for the sticking effects on the surface.
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Chapter 1

Introduction

The energies and lifetimes of excited states of atoms and molecules near metal surfaces
are controlling factors in many dynamical phenomena at surfaces. Photochemistry
at surfaces depends on the enhanced reactivity of electronically excited species and
on the lifetime of the excitation.[1] Distributions of spatial position, velocity, charge
and electronic states of sputtered particles depend strongly on the lifetimes of the
electronic states.[2, 3] In the spectroscopy of adsorbed species, the lifetimes of excited
states contribute to the broadening of adsorption peaks.[4] Lifetimes and energies of
the excited states also determine survival probabilities of excited species in atom or
molecule-surface scattering experiments. [5]

Most theoretical calculations of tunneling probabilities have so far ignored ef-
fects of coadsorbed impurities and assumed infinite planar surfaces. In a series of
chemisorption calculations [6, 7], it has been shown that the electron potential out-
side a metal surface can be strongly influenced by electropositive or electronegative
impurities. Such an influence will modify the shifts and broadenings of the electronic
states of atoms, incident onto the surface.

The first calculation of energy level shifts and lifetime broadenings of the electronic
levels of a hydrogen atom taking into account a realistic model of the impurity-

induced fields was done by Nordlander and Lang [8]. In this calculation, a limited



basis centered only on the H was used. This approach failed to describe the shifts
and broadenings of atoms like K and Cs, systems of fundamental importance in
experiments.

In this thesis, an accurate multi-centered basis-function technique for the descrip-
tion of strong impurities is developed. We will present this technique and compare
the lifetimes and energy shifts of the H levels with the previous calculations with the
present calculations for the impurities Na and Cl. In addition to this, the shifts and
broadenings of the excited H levels for Cs covered aluminium surfaces and the shifts
and broadenings of the H ground state for Na covered aluminium surfaces are given.

These energy shifts and lifetimes can be used in dynamical calculations to describe
the charge transfer process between the surface and atomic energy levels. These
probabilities are first calculated by the time dependent Anderson model by Blandin.
Later, other methods are suggested to describe single- or multi-level charge transfer
processes.

In all of the classical models of charge transfer, fractional charges are allowed to
exist on the atomic levels. The existence of fractional charges is not a truly quantum
mechanical description of the electronic states of the atoms. Therefore, we develop a
Monte Carlo based method for the calculation of the charge transfer rates. We then

compare the classical treatment of the charge transfer to the Monte Carlo based one.



Chapter 2

Theoretical description of the metal surface

2.1 Theory of self consistent surface potentials

In order to calculate the electronic structure of metal surfaces we need a procedure
that describes large and strongly inhomogeneous systems of electrons. Methods which
have been used in the past are Thomas-Fermi [9] and Hartree methods. The most ac-
curate theories for the inhomogenecus gases are based on Density Functional Theory.
This method was introduced first by Hohenberg, Kohn and Sham [10] [11]. The basis
of this theory is the density distribution of the electrons. The basic theorem in the
density functional formalism states that the properties of the system, in particular
the ground state of the energy, are functionals of this quantity. The energy of the
system can be obtained from the variational principle where the electron density is

the varied function.

2.1.1 Density Functional Formalism

In this section we describe the Hohenberg and Kohn formalism . We consider a
system of electrons moving in a static potential v(7). If we denote the kinetic energy

with T, the electron-electron interaction with U and the electron external potential



interaction with V, we can write the second quantized Hamiltonian as
H=T+U+V (2.1)

The ground state wavefunction for the electrons is ¥ , the related electron density is

n(7) and the number of the particles are given by
N= / n(F)dr. (2.2)

The ground state energy is Ex . The variational theorem states that < W'|H|¥' > is
a minimum when ¥ is equal to ¥ if ¥’ corresponds to the same number of particles
N.

v(F) is a unique functional of n(7) except for an additive constant. The uniqueness
can be proven very easily by assuming the existence of another another v’(¥) which
gives rise to the same charge density n(7). Calculating the Hamiltonian and inter-
changing the primed and unprimed variables leads to the inconsistency in the energy
as [Ex + Ey < Ej+ En.] Hence the potential v(F) can be uniquely determined from
the charge density functional. Thus v(7) effectively modifies H and H determines a
new VU ( n(7) = |¥|?). Therefore the charge density can be calculated by iteration.
A new potential can be calculated from this charge distribution, which in turn gives
another charge distribution. This procedure can be repeated until self consistency is
reached.

If we define a general energy functional in the form
Eufn]= [ o(An()dr + Fn (23)
where we can write F[n] as

Fln]=<9|T+U|¥ > (2.4)



then the correct n(7) with its well defined v(F) is the one which gives spatial integral

N and has E,[n] equal to the ground state energy Ex.

Separation of Electronic Terms

Since the Coulomb interactions are long-ranged we can separate them from F[n], thus
our energy functional takes the form

n

= 1 a(@n(), .,
E,n] = / o(Fn(dr + / D drdr’ + Gln) (2.5)
where G[n] is universal functional. The electrostatic potential can be written as
&(F) = v(F) + / n{r) g (2.6)
r—r )

If we think of v(7) as being due to distribution of positive charge density n4(7) our

potential becomes

n(r') —ny(r') ,,
&(F) = / %_rji(—)dr (2.7)
which can expressed in a different form as
V28(7) = —4x[n(7) — s (7)] (28)

We can also use a Lagrange multiplier form of the energy with multiplier u, which

is going to be our definition for chemical potential.

5 {E,,[n] —uf n(r'-')dr'-‘} (2.9)

where 4 is determined by 2.2, implies with the above equation that for correct charge

density
6. [n]/6n(7) = (2.10)



2.1.2 Two regimes of approximation

The problem of determining the ground-state energy and density for a many electron-
system can be reduced to minimization of a functional of the density. The full com-
plexity of the problem lies in determination of the form of G[n]. For the homogeneous
system the solution for the Density Functional Theory is exact. In the perturbed sys-
tems, there are two regimes of interest. In the first case, the density is nearly constant
but it may have rapid oscillations in space of small magnitude. In this case it is con-
venient to expand the charge density in a series in the deviation from constancy. In
the second case the charge density exhibits slow variations from the constancy and
these variations can be large. In this case we can expand the charge density in its

gradients.

Gas near constant density

The density of the electrons can be written as a constant plus a varying disturbance

which has zero spatial average
n(7) = 7 + a(7) (2.11)

If the charge density is almost constant (although it may have rapid oscillations), the

() term is small and G[n] can be expanded as
Glnl = GlAl + [ K(F - F)A(FA(F)drar + O() (212)

The zeroth order term is known from studies of the uniform electron gas. The first

order term is zero because the spatial average of (f) is zero. Hohenberg and Kohn



analyzed the second term and found that K(7) is the inverse Fourier transform of

K(q), where K(q) is given by
K(q) = (27/q")[e(g) - 1] (2-13)

and where €(q) is the static dielectric constant of the electron gas with a density 7.
K(q) has singularities (in the form (g — 2kr)log(q — 2kr) ) because of the sharpness
of Fermi surface near ¢ = 2kr. The inverse Fourier transform of K(q) shows long

range oscillatory behavior where

lim K(7) =~ cos(2kpr)/r3 (2.14)

700

which are the Friedel oscillations in the charge screening a disturbance in the electron
gas. These oscillations occur in the vicinity of the impurities in the electron gas and
near the metal surfaces which are our primary interest. For a proper description of
the surface electronic structure it is crucial to include these Friedel oscillations. For
the case in which n(7) is not only small but slowly varying, K(q) can be expanded
around q=0

K(g) = a(R) + b(a)q" + - - (2.15)
In this expansion K(q) is a function of ¢ alone because of the isotropy of the electron
gas. Up to this point, our analysis is exact. If we take only the first term in 2.15 we

get the Thomas-Fermi method and if we take more terms we get extensions of this

method. None of these solutions give rise to Friedel oscillations.



Gas of slowly varying density

For the case of slowly varying density we can express G[n] as a function of a series
of density gradients. Since the first gradient of n(r) disappears we need only two

coefficients until third order. G[n] can be written as:
Gln) = [ dlgo(n() + g2(n(F)r (PP +--- (2.16)

The zeroth order term is just the energy density without electrostatic terms (Eqn.2.5).

We can define explicitly what is included in go(n(7)).
9o(n) = [t(n) + &(n) + e(n)]n (2.17)

where #(n) and ¢.(n) are defined in Hartree-Fock theory ( ¢(r) = 1.105/r,(n)? and

€z(n) = —0.458/r,(n)). The correlation term is studied in literature and the simplest

form is from Wigner and Pines [12],
€(n) = —0.44/[rs(n) + 7.§] (2.18)
The more appropriate form for high densities is
€.(n) = 0.031log ry(n) — 0.048 (2.19)
For the g, term there exist many different approaches and Sham and Ortenburger
[13] gives it as
g2(n) = (72n)7! 4 0.00167n~*/3114. (2.20)
Work function

One of the important properties of the ground state charge distribution at the metal

surfaces is the work function. It is defined as the minimum work required to remove



one electron from the metal to the infinity,
® = [¢(c0) + En-1] — E. (2.21)

where E_; is the ground state energy of the N-1 electrons, one being taken to infinity.

Using the definition of the chemical potential, the work function can be rewritten as
b=Ad-p, (2.22)

where

Ad = ¢(c0) — 4. (2.23)
This can be thought of as dividing ® into bulk (—z) and surface (A®) components.
All many-body effects are contained in the exchange and correlation contribution to
the fi and in their effect on the barrier potential A¢. The image force effect on ¢
may be regarded as contained in the disappearance of the correlation energy when

the electron is moved away from the metal surface.

2.1.3 Replacing an ionic lattice with uniform background

It is known that, the interplanar spacing between layers is approximately the same,
both in the interior of the bulk and at the surfaces (particularly for the densely packed
crystal faces). Therefore the theory described above can be extended to approximate
the behavior of the charge density near the metal surfaces. In the following discussions
n(F) is taken as conduction electron density and »(7) is taken as contribution of nuclei
and core electrons.

The self consistent calculations for n(7) at the metal surface employs the model

in which all the ions and the core electrons are replaced by a positive background of
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a constant charge density. This is the so called jellium model. In an infinite crystal,
the wavefunctions are plane-waves, which give rise to a uniform charge density. This
model is appropriate for the so called simple metals , where the conduction band of the
metal is composed of s- and p-orbitals. In most metal structures electronic density is
almost constant at every place except at the core sites, which is approximate 10 % of
the total volume. So, taking the background charge density as constant is satisfactory
for our purposes, which is to find the charge distribution and potential at the outside

of metal surfaces.

Electronic charge density

We may write the background charge density in the simplest form as
ne(z)=nifx <0 (2.24)

and since background charge density is a function of only x , we expect that n(x) only

depends on x with the boundary conditions

n ifx— -0
n(z) = (2.25)
0 ifx—>o

where n(x) also satisfies the condition that total charge should be zero for a neutral
crystal. The charge distribution makes no abrupt changes, but spreads out into
vacuurn. Qutside of surfaces, it goes exponentially to zero, whereas it is oscillatory

inside the bulk, reaching equilibrium value. These are the Friedel oscillations.
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/\ n{rs=2) ——
n(rs=5) — |

background -

Charge density
o
[+)]

-1 -0.5 0 0.5 1
Distance from surface in scaled units

Figure 2.1: Charge density in scaled units for background charge density
and for electronic charge density for cases r, is equal 2 and 5

Effective surface potential and relation to image potential

If we integrate equation 2.8 we can get the following result with an arbitrary constant
b(oc0) .

®(z) = —4= ‘Loo dz’ /;o dz"[n(z") — ny(z")] + ®(c0) (2.26)
Since charge density n(x) decays exponentially outside the surface, also ®(z) decays
exponentially *owards ®(oo) . The spreading out of the electron density means we get
®(00) > ®(—00), which leads to an electrostatic potential for the electrons trying to

escape from the surface. The barrier can calculated by integrating the above equation
A% = 8(00) - &(—o0) = 4= [ ” 2n(z) — ny(2))dz (2.27)

Note that this A® is the same one as defined in Eq. 2.23, since the mean interior

potential ¢ in the present case is just equal to ®(—o0).
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There is also another contribution to the potential energy of the electrons. This is
the exchange-correlation energy. In the metal interior each electron lowers its energy
by pushing other electrons away to form an exchange correlation hole. This effect
also contributes to the effective potential. Since the gradients of n(7) vanish in the
interior of bulk, the effective potential takes a very simple analytical form inside the
bulk.

If the electron is far away from the surface, the Coulomb forces are relatively
weak and cannot push other electrons inside the bulk. Thus the chance having one
electron close to the first one is very small. It has been shown by Rudnick [14]that
in this limit, the interaction between the electron and the gas approaches the image

potential. The effective potential is thus given by
vesf[n; z] = ®(c0) — (1/42) (2.28)

at intermediate distances from the surface, both exchange-correlation and electro-
static interactions contribute to the effective potential. A linear response or a weighted

density approach can be used to describe the potential in this region.

2.2 Theoretical description of the interaction between atom
and surfaces

A detailed derivation of a force formula describing the physisorption interaction be-
tween an atom and metal surfaces was performed by Zaremba and Kohn [15]. It

was shown that the interaction potential can be written as a sum of two types of
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potentials, a van der Waals potential and a repulsive potential.
V(z) = Vr(2) + Ww(z2) (2.29)

This approach will be used for calculation of the trajectories of atoms near surfaces.
The repulsive part is due to scattering of the individual Bloch electrons against the
incoming atom.

Vr(z) = ;&k(z) (2.30)
where 6¢;(z) are band energy shifts caused by scattering of the band electrons from
the adsorbate atoms.

The van der Waals term arises from the polarization interaction with the surface.

At large distances from the surface, the van der Waals potential can be written as

[15]
Cy 5
VVW(Z) = (z——Z:’;-)E + O(Z - ZVW) (2.31)

Cvw and Zyvw depend on the dielectric properties of the metal and polarizability of
the atom .

A more detailed study of the van der Waals and repulsive potential was performed
by Nordlander and Harris [16]. These authors derived an expression for the Van der

Waals potential valid at small separations from metal surfaces.

C
Vow(2) = ~ =g fklz = Zvw)) (232)
where
f(z)=1-[2z(1 + z) + l]ezp(—2z) (2.33)

These expressions for the van der Waals potential behave regularly at z = Zyw,
and approach for the finite value V@, = 1.33Cywk3. In the limit k. >> 1, the
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Van der Waals potential defined in 2.32 approaches its asymptotic value which is
defined in equation 2.31. k. is the cut-off wavelength and its value is approximately

(size of atom)™?
The next step is the approximation of the repulsive potential. It can be given in

a very simple form to within a few percent error as
Vaz = Vpe™o (2.34)

This formula overestimates the exact repulsive potential at very small distances. This
does not affect the present trajectory calculations, since the velocities will be low.
The forces can be obtained directly from these expressions ( Appendix A). From

the definition of force, F = —VV,,,.The repulsive force takes the form
Frep = =V (Voe™%%) = Voae™** (2.35)

and the van Waals force takes the form

3 1 df(k.(z — ZyW
FVW = CVW (_mf(kc(z — ZVW)) + (Z _ va)3 f( ( dz - )))

(2.36)

In the case of ions outside the surface, the effective potential of the surface should

be included in the force equation. This effective potential was defined in the previous
section for the jellium model.

In the figure 2.2 we plot the approximate potentials for the atom surface interac-

tions. The figure shows all the potentials which affect the atom including the image

potential, which requires the incoming atom to be an ion. In this figure two total

potential lines are drawn, one is the sum of the repulsive and the Van der Waals
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0.8 1 i l 1 1 T 1
1 Repulsive P. —
0.6 f Al van der Waals P. — -
Pl Effective P. -~
0.4 F oA Total P. for N=1 —
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Figure 2.2: Image, repulsive, van der Waals and total potential for a clean
Aluminium surface. The potentials are given in a.u. The dotted line is the total
potential, the dashed line is the surface and image potential, the long-dashed lines is
the Van der Waals potential and the solid line is the repulsive potential. The dot-
dashed line is the potential seen by a neutral atom,sum of the Van der Waals and the
repulsive part. (The minimum of this potential occurs at the distance of 5-7 atomic
units and cannot be seen in this graph)
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potentials, whereas the other one includes the image potentials which are applicable

to the ions or charged particles near surfaces.




Chapter 3
Tunneling rates near surfaces

Charge transfer process at surfaces are usually described using dynamical theories
based on the Anderson Hamiltonian. The energy shifts and the lifetimes of the
atomic levels are crucial parameters in these models. The final state of an atom can
be strongly influenced by the transitions that occur near surfaces, where the atomic
state becomes resonant with the Fermi energy of the metal. These kind of transitions
can also happen at large distances from the surface. It is therefore important to
know the energy shifts and the lifetimes of the levels for a broad range of atom
surface separations.

The theoretical calculations of the energy shifts and the lifetimes of the excited
atomic orbitals are difficult. The density functional theories are very difficult to use
for excited state calculations and LDA is valid only for small adsorbate-surface sepa-
rations. Moreover, the excited states of the atoms near surfaces become resonances,
which are not square integrable. The standard techniques used for the bound states
are therefore not applicable in this case.

Numerous attempts have been made to calculate atomic level shifts and lifetimes
near surfaces with idealized surface functions or with perturbation theory [17][18].
None of these techniques have employed an accurate surface potential nor included

the hybridization of the adsorbate levels in the presence of the surface potential.

17



18

These effects turn out to be essential for obtaining the correct widths of the excited
states.

If we add impurities to the surface, the accurate treatment of the surface potentials
and the impurity induced potentials are much more important for the calculation of
the lifetimes. The fields generated by the impurities are non-isotropic and they can
effect the hybridization of the adsorbate levels at larger distances compared to the
clean surfaces. Previous calculations which depend on the perturbation techniques
and idealized potentials cannot represent these interactions accurately.

Tully and Nordlander [19] developed a method for the calculation of these energy
shifts and lifetimes with the Complex Scaling method. In this section we review the
Complex Scaling technique. We will show how this method has been used to calculate
the lifetimes and the energy shifts of the atomic levels. We will show the limitations
of the present approach and suggest an alternative solution for the problem. In the
last section the results from both approaches are compared and new results are given,

which can not be obtained with the present technique.

3.1 Calculation of Resonance States of Atoms near Metal
Surfzces in the presence of Impurities

There are two main steps in calculating the tunneling rates. The first step is to
calculate the electron potential in the surface region. The second step is to solve the

Hamiltonian imposing resonant boundary conditions.
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3.1.1 Calculation of the potential

Although the basic features of the surface potential can be understood from a sim-
ple image model, such an approximation will be a crude model for our purposes.
Especially the lifetimes of the atomic levels are influenced from the details of the
surface potential. The reason for the broadening of the levels is the existence of the
continuum of the metal states, into and out of which the electrons can tunnel. The
jellium model is used to describe the surface. The impurity-induced potential also has
large effects on the tunneling rates and the shifts of the atomic levels. The presence
of the impurity atoms on the surface creates anisotropic fields around them which
effect the hybridization of the atomic levels.

The electron potential at a given position outside the surface is the superposition
of different components. The first component is the bare surface potential. The
next component is the proton-induced image potential. The third component is the
impurity induced potential on the surface if there are impurities on the surface. If
we denote electron coordinates with (p,z) in cylindrical coordinates, the position of
the impurity with Z; and the position of the proton with Z , then we get the total

potential as
VEID = Vi (2) + AV}(p, 23 Z2) + AV} (p, 2; Z1) + AVar(r, Z, Ry) (3.1)

The last term AV4y(r,Z, R;) describes the change in the surface potential due to
interaction between the Hydrogen atom and the impurity. This term will be neglected
due to large hydrogen-surface separations. And estimate of the influence of this term
on the resonant energies can be found by comparing the transfer matrix element

| < u|l/r|¥; > [*/(ex —er) with the width of the hydrogen resonances. It is shown
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that for the relevant H and impurity states, AVy/(r, Z, Rr) term can be neglected at

the distances larger than 10 a.u. [§] .

Metal surface potential without impurity

There are different methods for the calculation of the surface potential V{(z) for
a clean metal surface. We use the density functional electron-surface potential com-
puted by Ossicini [20] for the potential at small distances from the surface. We invoke
the weighted density approximation [21] to get a smooth transition from the bulk po-
tential to the image like behavior at large distances as described in the first chapter.
This is particularly important since at large distances from the surface the broaden-
ings of the levels depends on the image effects. This many body approach describes
the potential in the bulk and the potential at the small surface separations. At large
distances from surface the asymptotic limit of the image potential is valid and our
potential approach to the theoretical image potential V, — —1/4(z — z;, ), where zim,
is the image plane defined as the first moment of charge distribution induced by an

external electric field.

Proton induced potential

This potential term has two parts. The first one is the electron proton interaction.
The second one is the electron and proton-image interaction. The electron proton
interaction is easy to calculate for the H case. It is simply —1 /r for Hydrogen. For
any other adsorbate a pseudopotential is used to represent the nucleus and the core

electrons.
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The interaction between electron and the image of the proton does not follow

the simple image potential 1/ \/ p? + (2 + Z — 22;,)? close to the surface. The proton
induces a negative charge distribution on the surface centered at z;,, which gives rise to
both an image like electrostatic potential and changes the total exchange-correlation
potential close to the surface.

For the intermediate distances we use a linear response approach. Since the ex-
change correlation effects are local, they do not have any influence at the large dis-
tances from the surface and electron-proton image interaction approaches its image
potential value. Therefore for the small distances from the surface, we use LDA
to calculate the effects of the positive jon core to the total potential, since it gives
effectively the same results as DF theory.

The charge induced on the surface is contained within a region of thickness A
centered around z;;. A and zi, depend on the r, of the metal [22]. The charge

distribution can be approximated by a model charge distribution of the form

o(p,2',Z) = _(:K') ocL(p's Z — zp) (3.2)

1
ﬁe
where z'is the distance from the image plane, p' is the distance from the surface normal
and pcy is classical charge density for an infinite plane. Using this approximation for
the charge distribution induced on the surface we can solve the Poisson’s equation

and calculate exchange-correlation correction for the potential. The parameters for

this potential are taken from Lang and Kohn paper[22].
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Impurity induced surface potential

When impurities are chemisorbed on the surface, they can create strong bonds with
the surface. These bonds creates strong anisotropic fields around the impurity because
of the rearrangement of the charge distribution. The impurity potential is effectively
screened inside the metal, because of the high electron density at metal surfaces in
the range of the chemi-absorption distances. This is an anisotropic effect because the
electron density is decreasing exponentially in our uniform background jellium model
of the metals as we go towards the vacuum direction. The calculations of the impurity
induced potential are non-trivial and are not the subject of this thesis. This potential
is used as an input in our program, therefore we are going to discuss it without going
into details.

The potentials are calculated self consistently using the local-density approxima-
tion and a jellium model for the surface [7]. The calculations of the impurity induced
potential are limited to a sphere of radius 6-8 a.u.. The widths of the atomic reso-
nance states are sensitive to the details of the surface potential in a relatively extended
region of the space. Therefore this potential should be extrapolated over all space.

The impurity potential inside the surface has electrostatic, exchange and corre-
lations parts. The induced exchange and correlation potential follows the Friedel
oscillations around the impurity. At large distances these oscillations are small and
therefore their contribution to the total potential can be neglected. The induced
electrostatic part of the potential outside the self-consistent calculated sphere should
satisfy Poisson’s equation.

VIV () = 4rpy(7) (3-3)
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In the linearized Thomas Fermi approximation [23], the screening charge density

for the induced potential can be calculated by the formula

1
o) = g e() - V) (34)
where ¢7.-(7) is a function of both local surface charge density and local Fermi energy.

() = £ 0 9

Now using the self-consistent calculation as a boundary value at the sphere, we
can calculate V() outside the sphere using the relaxation method.(The algorithms

are given in Numerical Recipes [24])

3.1.2 Calculation of the shifts of atomic levels near surfaces using complex

scaling

When an atom comes close to the surface atomic levels shift and becomes resonant
levels. In order to calculate these shifts we have to solve the Schroedinger equation

under the resonance boundary conditions, whichk can be described as
U(7) — —eHE (7, Q) (36)

where kr is positive. The total energy is equal to 3(kr + ik;)? . The real part of
the complex energy is the energy of the level and the imaginary part is lifetime or
half-width of the resonance. The Schroedinger equation to be solved is quite general

and can be written as

[-%v2 + VI (p, 2 Z)]¥ = eW (3.7)
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Veli(p,z; Z) is the potential seen by the electron, so that in our case it is the sum
of all the potentials we defined in the previous section (Eqn. 3.1 ). It is obvious
that these boundary conditions are diverge at infinite distances. This is an expected
behavior because total number of particles in the system should be conserved. The

time evaluation of the resonance states can be written as
|¥(r,t)]* = e'ze’tI\Il(r, 0)[? (3.8)

At infinite time the integral of this expression over all space has to be finite. A method
for the solution of this Schrodinger equation under resonant boundary conditions is
the complez scaling method. A review for the complex scaling method was given by
Reinhard and Junker [25]. In this method,the radial coordinate in the Hamiltonian

3.7 1s scaled with a complex number as
r — re' (3.9)

Under this scaling our boundary condition becomes

‘I’(T‘) - ei(chos9+k1 sin8)r+(ky cos §—kg sin )r (310)

It can be seen immediately that this wave function goes to zero in the limit where r —
oo, provided that the condition §, > arctan fﬁ is satisfied. We can thus diagonalize
our Hamiltonian using a normalizable basis. The advantage of this method is that it
has simpler boundary conditions, however we have to invert and find the eigenvalues
of the complex nonhermitian Hamiltonian matrix. In all calculations integrals are
taken in two dimensions since we reduce complexity by aligning the impurity and

hydrogen atom along the same surface normal. The basis set for hydrogen is primarily
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generalized Laguerre polynomials,
&(nim) = e~ F r*1 [3¥2(\r)Y; (Q) (3.11)

where ¥ () is a spherical harmonic and L2+2 is a generalized Laguerre polynomial.
The matrix elements are calculated on a two centered grid using Gauss Quadrature
whenever possible for efficient integration.

The accuracy of the calculations can be checked by investigating the dependence of
the calculated eigenvalues on the parameter 6,. For a complete set of basis functions,
there should be no 8, dependence provided 6, > arctan(k;/ kgr). For a limited number
of basis functions, this condition can only be satisfied for the clean surfaces. Both
the real and the imaginary part of the resonance energies will slightly vary with 6,
in the presence of the impurity induced potential. The eigenvalues will, therefore,
form trajectories in complex coordinate space. It has been shown that under certain
conditions the complex energies satisfy a generalized variational principle, such that
with a limited basis, the resonance energy will be stationary with respect to 6, [26].

Thus we are varying 6, and looking the particular angle which satisfies

0 i)
6_0:6R = 6_0361 =0 (3.12)

The complex energy which satisfies the equation 3.12 is the eigenvalue of the Hamiltonian

under the resonant boundary conditions.

Limitations of the present approach

The most important limitation of the current approach is the inability to describe

impurities with very large electropositivity. As we can see from the figure 3.1, the
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Cs-induced potential is much more extended outside the surface and its magnitude
is 3-4 times larger than the Na-induced potential. Therefore, it is very difficult to
describe the problem with such a small basis set as for the Na-covered surfaces.
Calculations using this basis set for hydrogen outside a Cs impurity failed and very
slow convergence was obtained for the K impurity. The reason for this is that the
H centered basis functions distribute themselves around the impurity rather than
around the hydrogen.

Another limitation of the one-center approach is the description of the ground
state (1s) of the hydrogen. Since this state is localized very close to the hydrogen
center, the basis functions suited for this state can not describe the affects of the
impurity on the lifetimes of the ground state.

By significantly extending the number of basis-functions around the H, the results
should converge. In this case the extension to off-axis geometries will be impossible
and numerical problems arise because of the size of matrices used in the calculations.

By extending the basis set to a two-center basis, it will be shown that the number
of the basis-functions can be drastically reduced. This extension will enable both the
calculation of the off-axis geometries and the calculation of the lifetimes of the ground
states of the adsorbates. It will be also shown that, this extension will increase the
accuracy of the previous results and will incorporates the affects of the impurity-
induced states on the excited states of the adsorbate.

Our main aim with this project is calculating resonant states of simple molecules
like H; and O; near the surfaces. This approach clearly requires two-center basis-

functions.
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Figure 3.1: Contour plot of the Na and Cs potentials on the Al surface. The contours
are at the values -.1,-.3, -.5, -1,-2 €V from outside towards inside. The vertical line is
the jellium edge. It can be seen easily that the Cs potential is extended much more
compared to the Na potential and its magnitude is larger
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3.2 Two-centered basis functions and complex scaling

There are several difficulties involved with introducing a two-center basis. Since the
wave functions are not orthonormal, the overlap matrix elements between two centers
must be calculated. Another difficulty is that no accurate algorithm for solutions of
generalized eigenvalue problems for complex matrices exists. Coordinate transforma-
tions are trivial in real coordinates, however after scaling with a complex number,
singularities and branch points appear in the region of integration.

The geometry for the present calculations is chosen to be especially simple in order
to make use of the symmetry and to reduce the number of dimensions of the problem.
The details of the geometry of the problem are given in appendix B with proper
coordinate transformations. In this section it will be described how the complex
scaling is applied to the second center.

There are different approaches for this problem in the literature, and a general
discussion is given by Reinhardt [25]. We implement the method called Complez
Coordinate Born-Oppenheimer Approzimation. In this approach, every radial dis-
tance from the Hydrogen center is scaled with a given complex angle fs. The sub-
script S stands for scaling and helps distinguishing the complex scaling angle from
the angles used in two or three dimensional coordinate systems.

When the radial distance between the hydrogen center and the impurity center is

scaled, a complex distance between two atoms is obtained .

ri = \/d%(8s) + r*(6s) — 2d(6s)r(6s) cos(6) (3.13)

= \/ (de=15)2 + (re=%s)2 — 2de=—¥sre=is cos(f)
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e"'g-"'\/d2 + 72 — 2dr cos(6) (3.14)

This has two essential consequences. First, since our impurity radial distance is
scaled like the counterparts on the hydrogen, they preserve their normality under
the complex transformation around the H atom. For this reason, calculation of the
kinetic energy elements and overlap matrix elements for the complete set of the wave
functions on any center can be done for the real case and later all the results can be
scaled. However , the overlap and the kinetic energy matrix elements between the
basis-functions around the hydrogen center and around the impurity center are no
longer scaled by a simple factor. Therefore, all the kinetic energy and overlap matrix
elements together with the potential matrix elements must be calculated for each
different scaling angle 6,, instead of only calculating the potential matrix elements at
each 6,. Furthermore, the radial and the angular integrations can not be separated
anymore for the cross matrix elements between different centers. This will increase

the computational time approximately by the number of angular points on the mesh.

3.2.1 Geometry of the problem

The system is composed of three components. The impurity, the adsorbate and
metal surface. The center of the impurity and the center of the adsorbate are on the
same surface normal. This geometry is cylindrically symmetric , since the surface
induced potential depends only on the distance from the surface and the impurity
and adsorbate centered potentials are cylindrically symmetric. The distance from
the center of the impurity to the surface is denoted as Z;, and the distance of the

adsorbate from the surface is Zg. The position of the electron w.r.t. the impurity
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and the adsorbate center are labeled as r; and r respectively. The integrations are
performed around the centers in cylindrical coordinates.

The relevant transformations between the coordinate systems to evaluate wave-

functions are given in appendix B.

3.2.2 Calculation of the matrix elements of the Hamiltonian

First, the calculation of the matrix elements between basis-functions centered on
the same center will be explained, then the multi center approach will be discussed.

Details of the the derivations are given in the appendix. The matrix element of the

Hamiltonian has the form,
H;(0,) = / dF,(F) H (e, Q)U;(7) (3.15)

If all the terms in the Hamiltonian were analytic functions of the radius r, it

is a straight forward procedure to construct the complex Hamiltonian and find its

Z;

Zy

Figure 3.2: Geometry of the problem
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eigenvalues. The effective potential on the surface and the impurity-induced potential
are only known in numerical form. Therefore a change of variables has to be made in

the integration by scaling r as r — re~*®* to get a real Hamiltonian.

H;(0,) = [ d(r) () Hir, 0)%(7) (3.16)

where 7; = (re™*®,Q) . 7; is used whenever transformation of the position vector is
needed and it is written in the vector form.

The expectation value of this real Hamiltonian between complex basis-functions
can be evaluated numerically. Since our wavefurctions are analytic, the KE term can
be calculated analytically for one-center expansion.

The potential term is the total potential of the electron at any point in space.
The integration grid must be chosen so that the strong variation of the potential near
the impurity and the hydrogen atoms are accounted for.

The electron-proton interaction has no numerical singularities, because the 1/r
term is canceled with the volume element r?dr. The impurity-induced potential is
partitioned into two components. The first component is the smoothly varying part of
the impurity-induced potential and the other one is the fast varying component. The
latter part is confined into a sphere radius r,. The first part of the impurity-induced
potential with the rest of the potentials is defined as V(). The latter part is labeled
as V® and integrated on the impurity center, such that the volume element r2dr
cancels the singular behavior in the second part of the impurity-induced potential.

The construction of the matrix elements for these potentials are explained below.
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Calculation of V,-gl) (©)

This matrix element can be written, after the same coordinate transformation as in
3.16, as an integral over all space of a real potential between the complex wavefunc-

tions.

V@) = [dru7)V(r, Q) u,() (3.17)

This integral can be written after rearranging the terms and using the Gauss theorem

for the integration in this simple form
) 0 S G (e \ G i
V;7(0) = e 3 Wilri)¥;(ri) i T) (3.18)
k=1 R

where pseudo-basis-functions are defined as

-' _ ] & t-m-erk ) Tk —i0
Ui(re) = Ci(X) /\Re 2 X'(cosee ) (3.19)

and Sp,,(3%) is the result of the angular integration for a given radius.

The details of these steps are in appendix D.

Calculation of V,~§-2)( 0)

Here, the calculation of the matrix elements of the Hamiltonian for the V(?) potential
will be discussed. Since this potential is centered around the impurity and is very
deep, the integrations are performed around the impurity center. This enables us to
cancel the large potential at the small radius from the impurity center with the volume
element r?dr, in such a way that the singularities vanish. These calculations are very
time consuming and difficult because the integrations can no longer be performed from

the center of the basis set. The radius of integration around the impurity center was
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chosen such that, at that radius (r..) the average impurity potential is comparable
to the sum of other potentials so that a smooth connection from the potential V()
to V@ can be made. The details of the definition of the matrix elements V,-g-z) are in

the Appendix D and the final result is
. cut 1 - —~
V@) = e [T [ dedi(r VO e)Ei(rnt)  (320)

where U; are the pseudo-basis-functions.

3.2.3 Addition of the impurity-based basis set
Definition of the basis set

An orthonormal basis set is created around the impurity such that there is no need to
take into account the effects of overlap matrix elements except the ones between two
different centers. Since they are exponentially proportional to the distance between
two centers, they are smaller compared to the diagonal elements. This guarantees us
the the invertibility of the the overlap matrix S with an accuracy of 11-12 digits.

The basis set around the impurity center is defined similarly to the basis set
around the hydrogen atom. The only difference between these two basis sets is the
parameter A used in the exponential factor. For the impurity-centered basis functions
A7 = 4 — 5 whereas Ay =~ 1 for n=2 states.

The basis-functions have the form:
¥, = Ce—’\’r’LiH'z(/\ﬂ'I) (A]T[)‘Pg,m (cos(8)) (3.21)

and as a consequence

< ‘I’[.-]‘I’]_- >=0 (3.22)



This type of basis sets, expanded around both impurity and H, create an overlap
matrix which has four blocks; the diagonal blocks are unit matrices, and the elements
of non-diagonal blocks have a magnitude which is < 1.

The different matrix elements which are not computed for the one-center calcu-
lations are overlap matrix elements for kinetic energy and the total potential. The
remaining matrix elements are technically the same as the adsorbate centered matrix
elements.

Thus, the required matrix elements are < ¥;,|V2|¥; > and < ¥y, |Vigar| ¥; >

It is clear that, the basis functions are not an orthonormal set of wavefunctions
anymore. Therefore finding of the eigenvalues of the total Hamiltonian is not sufficient
and the generalized complex eigenvalue systems should be solved. If we begin with

the Schroedinger equation 3.7
[-%v2 4V (o, Z)|W = ¥ (3.23)
and construct the matrix elements we get

<\I’5|H]\I’j> = <‘I’;I65I\I’j>
(<H>-<8>e)¥% =0

detj]<H>-<S8>¢| =0 (3.24)

The coefficient of the ¢ is transferred to the identity matrix by multiplying the equa-
tion from the left with S~1, the inverse of the S matrix. Thus the solutions depend
on how well the S matrix can be inverted, and also on the sensitivity of the inversion
to small changes in the S matrix. If the sensitivity is too large, all the elements have

to be calculated on a very fine grid, which is not desired . If we define S~ as the
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inverse of the overlap matrix S, we will get

det|S5' Hj — S5'eSix| = 0

detnglij—L'jEl = 0 (3.25)

In the next sections, it is shown how to compute the necessary matrix elements

under complex scaling.

Calculation of kinetic energy matrix elements

As mentioned earlier, the calculation of matrix elements for the impurity centered
wavefunctions are the same as the adsorbate centered ones. The extra kinetic energy

elements which are needed are of the form
KE yertiap =< ¥r,(rr, QI)IVz(reia,Q)l\Il,-(r, Q) > (3.26)

where Uy, (r7,8s) are basis-functions around the impurity center and, W;(r,Q) are
basis-functions around the adsorbate center. The kinetic energy operator is invariant
in spatial translation, therefore the same KE matrix elements are obtained between
two basis-functions independently from the origin of the coordinate system. If 3.26

is written in its integral representation with real coordinates, it will take the form
KEertay = ] dri(r, Q) (V*(re®, Q) ¥ (rr, ) (3.27)

where kinetic energy matrix elements are defined from the adsorbate center and the
integral is over all space. In the one-center expansion of the wavefunctions, the
complex part can be taken out of the kinetic energy operator outside the integral and

the result will be a complex constant premultiplying the real kinetic energy matrix
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elements, which are trivial to calculate. Because of the oscillatory behavior of the
wavefunctions, it is not possible to do this for the multi-center expansion of the basis
and coordinate transformations should be performed to convert the complex kinetic
energy operator to a real one. This makes the basis-functions complex, and the real
derivatives of the complex variables should be taken, instead of complex derivatives
of the real functions. These steps are in appendix D, and the final form of the matrix

elements can be written as

KEovcrla.p = e—3i9. /dmi(re_w" Q) (V2 (7‘, Q)\I’Ii (rIe—iely QI)) (3’28)

Calculation of potential and overlap matrix elements

Potential and overlap matrix elements follow the same procedure as the kinetic energy
matrix elements. The same transformations are used to obtain the complex basis-
functions and to analytically continue the complex potential to the real axis. The
relevant matrix elements are then calculated from the effective potential of the system.

The general form of the matrix elements can be written as

V:'j =< ‘I’Ijlv;otallq’i > (3.29)

where V(7, Z, Zr) is given in the equation 3.1

3.3 Results of the two centered complex scaling method

In this section, we will first show that the two-center expansion of the basis-functions

is much more accurate and requires much fewer basis-functions to solve the problem.



37

First the concept of convergence of the results are defined, which will be very
helpful in further discussions. There exist two types of convergence. First, the solution
obtained with a given basis set converges to a value satisfying the general variational
principle defined in equation 3.12. Second those results coming from different basis
sets converge to a unique value. This means that adding more basis-functions won’t
change the results significantly. In this case five percents is an acceptable value,
because this has higher accuracy than the methods used to construct the surface and
impurity potentials.

In figure 3.3, the basis-functions are expanded only around the hydrogen atom
which are converged in the sense that the results satisfy the generalized variational
principle. The results are plotted from three different basis sets, the smallest con-
sisting of 100 basis-functions with /.., = 10, the biggest of 288 basis-functions with
lmaz = 18. As seen from the figure, each of the basis set satisfies the variational
principle,and the set of 288 basis-functions has a very small deviation when changing
the complex scaling angle. None of them approach the same value.

There are two solutions for a better convergence. One is increasing the size of
the basis set, and making it more complete. However, this is not possible in a nu-
merical calculation with a total 15 digits of accuracy. The invert a matrix and find
its eigenvalues requires approximately N°® operations, which reduces the significant
digits in the final result. Also, using higher numbers of basis functions requires using
bigger angular quantum number / and principal quantum number n. This increases
the effective range of the basis-functions. Therefore, for an accurate calculation of the

proper matrix elements with the existence of the surface and the impurity potential,
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Figure 3.3: The convergence of different basis-function sets at adsorbate center
with the existence of s basis-functions on the impurity center. Dashed lines are from
the one-center expansion of the basis set (0:100, 0:192 and A:288 basis-functions)
and the solid lines are from two-center expansion (*:100 H-centered + s-type impurity
centered basis-functions, x:192 H-centered + s-type impurity centered basis-functions
and +:40 H-centered + s-type impurity centered basis functions). The dashed lines
do not converge to one point. The solid lines converge to the same point for 100
and 192 basis-function sets and give a reasonable result with only 40 basis-functions
around the H. The rectangle at the right corner is the zoomed view of the graphs in

the left-up corner.
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we need a much higher number of grid points, and all of these extra calculations
reduce the significant digits in the Hamiltonian matrix even further before we begin
to find the eigenvalues of the Hamiltonian.

The second solution is to add some basis-functions where they are needed most.
A much better convergence is obtained in this case, due to the fact that, the represen-
tation of the impurity-induced potential with the impurity-centered basis-functions
is more accurate compared to the adsorbate based basis functions. Figure 3.3 shows
the results of addition of the basis-functions of s-symmetry around the impurity . It
is clear that, all the basis sets approach to the same value regardless of the size of
the basis-function set around the Hydrogen center. Therefore, we can conclude that
addition of the basis-functions on the impurity center makes the basis-sets much more
complete than the basis sets we can get from one-center expansion of the basis sets.

Adding p-states to the impurity basis change the results again significantly. The
reason for this is that the two main potentials which affect the lifetimes of the
Hydrogen states are the surface potential on a clean surface and surface potential
and impurity potential on the impurity covered surface. It can be seen from the
figure 3.1 that the surface potential around the impurity center, which is 3-4 a.u. at
a distance from the surface, is composed mainly of s- and p,-states, which are I = 1
and m = 0 states (Figure 3.4). In addition to this, the impurity potential has also the
- dependence. Because of the screening of the bulk electrons, the impurity potential
is a one sided potential expanded away from the surface. This type of potential can

be expressed by hybridization of the s- and p-orbitals. Therefore the information
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in p-states is important and at least s- and p-type basis-functions are needed in the
impurity-centered basis set.

Since tunneling between the surface and the adsorbate is due to the overlap be-
tween the extensions of the surface states perpendicular to the surface and adsorbate
levels as discussed in the previous chapter, the correct representation of these states
is important. The addition of only s-type basis functions on the impurity covers most
of the singularity of the potential, but the long range effects are described mainly by

=1 states.

The effects of the addition of p-states on the impurity center is shown in the figure
3.5. The real parts of the complex energy increase. The addition of the { = 1 states
also increases the imaginary parts of the complex energy. Since the resonance band
widths are proportional to the imaginary part of the energy, this results in an increase
in the tunneling rates between these levels and the surface.

All the graphs show the calculations for the adsorbate distance of 16 a.u. . This
is the distance where the best convergence for the one-centered expansion of the
basis-functions is obtained. At distances 20 a.u. and larger it is difficult to span the
whole space with a one-center approximation and at closer distances the overlap of
the impurity and surface potential with the proton potential is too large, so that it is
difficult to find a good convergence. Another point is that, in the cases like Cs, the

basis-functions try to span Cs states instead of the aimed adsorbate states.

3.3.1 Results for the excited states of H on Na/Al
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is shown with the existence of s- and p-type basis-functions on the impurity center.
The solid lines are for these states (0:100 H-centered basis-functions + s- and p-type
basis functions on impurity center, 0:192 H-centered basis-functions + s- and p-type
basis functions on impurity center), the dashed lines in the upper left corner have
only s-type basis-functions and the dot-dashed lines are for the one-center expansion

as explained in the figure 3.3.
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Figure 3.6: The left graph shows energy levels for the n=2 and m=0 states (ori-
ented towards the surface) and the right one shows the lifetimes for the same states
calculated with different basis-sets. Dashed lines are for the one center expansion and
solid lines are for the two-center expansion of the basis sets. The basis functions on
the impurity center have ! = 0,1,2 and 3 states. The solid lines show the effects of

Na levels on the Hydrogen levels as the upshift of the energy levels.



In figure 3.6, the atomic levels and lifetimes are compared for H on the Na cov-
ered Al surface from the calculations with one one- and two-centered expansion of
the basis-sets. The one-center expansion of the basis-functions has been made with
three different sets , namely 100, 192 and 288 basis-functions around the adsorbate.
Calculations using less than 100 basis functions do not converge. Even in the 100
basis-function set, the lifetimes are oscillating around the lifetimes of the 288 basis-
function set. The energy level of the states can be determined with smaller basis sets
if the adsorbate is far from the surface, because the H levels are not coupled with any
of the surface or impurity states. The energy levels begin to deviate from each other
for different sets when the adsorbate is brought closer to the surface. This shows that
in the presence of the impurities, a complete basis set cannot be formed by expanding
the basis-functions only around the adsorbate center.

When the above results are compared with the two-center basis, it can be seen
that even 40 wavefunctions will produce a fairly good approximation both for the
lifetimes and energy levels close to the surface. The energy levels in all cases come
out the same if the adsorbates are outside 16 or 18 a.u. from the surface. Initially,
they follow the same trend and later the two center results begin to curve up and the
levels begin to shift up instead of down. This can be explained from the fact that
the missing impurity states in the one-center expansion pushes the levels up again
because of the exclusion principle. This physical effect was not described accurately
in the previous approach.

The lifetime graphs from both methods look very similar. The only difference is

the shifts in the graphs, which actually corresponds to a factor of two or three times
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difference in the lifetimes, which can not be seen easily from the graph because of the
logarithmic scale. At closer distances, this ratio increases further, up-to a factor of 10
or more. The lifetimes in general are increased by a factor of two to three, which is
understandable because the overlap elements are expressed in a more accurate way.
The reason that they do not have so much effect on the energy levels is that for
the energy shifts due to overlap matrix elements are first order perturbation to the
actual value whereas for the lifetime contributions from the overlap matrix elements

are directly proportional to the results.

3.3.2 Results for the ground state(1s) of H on Na/Al

The shift and broadening of 1s-states could not be calculated using a one-center
expansion of the basis-functions. Hydrogen 1s states on clean surfaces could be cal-
culated and it is shown that it follows the lifetimes of the n=2 m=0 state which is
oriented away from the surface on the clean metal surfaces. With the present tech-
nique,, it is possible to calculate the lifetimes of the 1s state of H on impurity covered
metal surfaces.

Figure 3.7 shows the shifts of the 1s level of the H atom in vicinity of the Na
covered aluminum surface. The real parts of the complex energy, which are energy
level shifts of the ground state of H, shifts down as we approach to the surface. The
results are obtained for the H-surface separations up to 8 a.u. . Since Na is at 3 a.u.
from the surface, we are 5 atomic units away from the Nat center.

The lifetimes have the same order of magnitude as the lifetimes of the n=2 states

which are oriented away from the surface. This is similar to what was found previously
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Figure 3.7: H/Na/Al results for n=1 state. The left graph shows the energy level
shifts for Hydrogen 1s state in the vicinity of Na covered Al surface. The right graph
shows the lifetimes of the 1s state on the H. Solid lines are calculations for Ay = 2
and the dashed lines are for Ay = 1 (Calculated at the same time with n=2 states)
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Figure 3.8: The energy shifts and lifetimes of the Hydrogen n=2 m=0 states near
the Cl covered Al surface. The lines with o are oriented away from the surface and
the lines with O are oriented towards the surface. Each group contains 7 different
basis set but individual lines can not be distinguished from each other.
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for H on clean surfaces. The dotted lines on the figure correspond to the values
obtained from the calculations with a basis set having the correct exponential factor
for the 1s state, A = 2. The data for the solid lines comes from the calculations for

n=2 state.

3.3.3 Results for Cl states

The results for Cl-covered surface are very different from those of alkali covered sur-
faces. The Cl potential is repulsive and does not support any bound states. Therefore
the lifetimes are much longer than the alkali states.

In figure 3.8 it can be seen that the lifetimes have exponential form and the energy
shifts are in the opposite direction. Therefore, when the adsorbate comes towards the
surface, the levels shift up and the ionization energies will decrease. Although it is
difficult to distinguish the various plots, the graph contains the results from both one-
and two-center expansion of the basis-functions for different basis sets. The results
are independent of the basis sets and the one- or the two-center expansion of the
basis functions have very little effect on the results. Only at very small atom-surface
separations,a small difference can be detected. (The one which is oriented away from
the surface has almost the same results for all different basis sets.)

These results are expected and confirm the accuracy of both approaches for the
cases where there is no strong potential depth near the surface. The new and the
old approach begin to deviate from each other at small adsorbate-surface separations,
but for the charge transfer purposes both methods gave the same results. Another

important point is that, at small distances, it will become more difficult to find the
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eigenvalues as a function of the scaling angle, for the approach where we used one-
center based expansion of the basis-functions. The deviation of the eigenvalues are,
with respect to scaling angle, much smaller in the two-center expansion of the basis-

functions.

3.3.4 Results for Cs states

Results for the n=2 states of the H near the Cs-covered aluminium surface is given
in figure 3.9.

The solid lines are taken from the calculations with only adsorbate centered basis
sets. The state which is oriented towards the surface is affected from the Cs impurity
and is difficult to calculate. For distances less than 14, we cannot calculate the energy
shift of this state and the lifetime curve on the right shows a broken curve shape.

The dashed lines are taken from the calculations with a two-center basis set. The
basis set around the impurity contains [ = 0,1,2 and 3 states each having Laguerre
polynomials of order 20.

The state which is oriented away from the surface is easily described using either
one-center or two-center expansion. The results for the shifts in the energy levels
agree with each other. The lifetimes almost follow the same trend in both cases,
but the curves for the lifetimes of these states begin to deviate at close atom-surface
separations.

The second state is oriented towards the surface. The results for the energy shifts
are the same at the adsorbate-surface separations, which are larger than 18-19 a.u. .

For closer separations different results are obtained. To explain these results, another
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Figure 3.9: The energy shifts and lifetimes of the Hydrogen n=2 m=0 states near
the Cs covered Al surface. The solid lines are from one center expansion of the basis
functions, dashed lines are from 2 center expansion of the basis functions. The long
dashed curve is probably a Cs state or another Cs-H hybrid state, which interacts with
one of the n=2, m=1 states of the H. (Lines labeled as 2 and 4 are the states oriented
away from the surface. Lines labeled 3 and 5 are oriented towards the surface, 5 is
two-center expansion and 3 is one-center expansion of the basis set. Line number 4

is a Cs state).
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Figure 3.10: The probability distributions of the n=2 levels of H on Cs/Al are
plotted. The top one is the most electro-negative state and the bottom one is the
least electro-negative. The horizantal axis is the distance from the surface and the
vertical axis is the distance from the surface normal. The contour lines show the
probability distribition in cylindrical coordiantes.
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state is drawn in the figure. This dot-dashed line corresponds most probably to a Cs-
induced state, which was poorly described using one-center basis expansion. These
curves are the best representation of the eigenvalues calculated at different adsorbate-
surface separations.

To make this point clearer, we plot the probability of the electron for these three
states in figure 3.10. In this figure, atom-surface separation is 14a.u. Only the upper
p-half-plane is plotted. The first figure shows the position probability of the electron
for the most electronegative level. The second figure shows the same probability
distributions for the intermediate eigenvalue, and it is clear that it is the hybridized
n=2 state that is oriented away from the surface. The third graph shows the least
electronegative state.

The task remaining is to determine which of the figures corresponds to the H state
and which to Cs state. The first figure is much more localized around the Cs atom,
whereas the third figure is localized around the H and is extended into the surface
region. Therefore we conclude that the deepest lying state is not the n=2 state of the
H, which is oriented towards the surface. In making this decision, the plots of these
three eigenstates at the distances 20,18,17,16,14,13,12,10 were used, but only one of
them is given here as an example.

When the atom approaches the surface, the two n=2 states of H levels cross
each other. The lifetimes of the two states are exponentially decreasing far outside
the metal surface. However, the lifetimes of the state which is oriented towards the

surface do not have a simple exponential decay at the separations between 10-18a.u..



52

The results for the lifetimes from one-center expansion of the basis shows a broken
line behavior, which is not a natural behavior for a physical system.

All these evidences show that, when we are dealing with strong electro-positive
impurities on the surface, we have to be careful and use all the potentials which can

be calculated with various techniques instead of idealizing or neglecting them.

3.4 Discussion of the results

In previous sections, the results for different impurities were given and they were
compared to the results from the old method.

For electronegative impurities, which do not have bound states for an electron,
one-center expansion of the basis functions are sufficient to determine the lifetimes
and the energy shifts of the adsorbate levels.

Addition of electro-positive impurities to the surface results in strong hybridization
between the adsorbate levels and impurity or surface levels. For weakly electro-
positive systems, we can perform our calculations with a one-center based approach
and obtain very close results to the ones from the two-center based approach, for
adsorbate-surface separations larger than 12.a.u. Inside this region, the shifts can be
affected by the presence of the impurity levels. In these cases, using the new method
utilizes a much smaller basis set, and calculations for different geometries other than
the one used here can be performed. These off-axis geometries are important in the
sense that in the experiments, most of the flight time for the ions passes at off-axis

geometries.
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For strong electro-positive impurities, we have shown that the results can change
drastically with the addition of the impurity-based basis set. Without these support
bases, the eigenvalues are not stationary and very slow convergence is obtained at the
atom-surface separations between 12-18a.u.. Therefore we strongly recommend using
two-center approach at close surface-atom separations and/or in the presence of the

strong electro-negative impurities, like Cs and K.



Chapter 4
Dynamics of Charge Transfer

When an atom is sent towards the surface, due to the shifts of the atomic levels, the
atom has a probability of gaining or loosing an electron when it comes back from the
surface. The probability of the charge transfer in an atom-surface collision depends
both on the energy shift and broadening of the atomic levels and on the trajectory of
the atom with respect to the surface.

A common approximation when calculating the charge transfer probabilities is
the method called Trajectory Approzimation or TA. In this method the trajectory
of the atom is prescribed and not influenced by any charge-transfer events along the
trajectory.

A dynamical theory for charge transfer was first developed using time-dependent
Anderson model by Blandin. However, these treatments neglected the spin effects
and the effects of the intra-atomic Coulomb interactions.

Recently, another method was suggested for the description of the charge trans-
fer process between metal surfaces and atomic levels, which can be single or multi-
leveled. Using Kadanoff-Baym formalism with Coleman’s slave boson method, the
time-dependent populations of the atomic levels can be calculated [§]. It was shown

that for low velocities and finite temperatures the population of the atomic states
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can be described by using simple master equations with rates equal to the tunneling
rates of the electrons between the atomic levels and the surface.

In the following sections, we will investigate the accuracy of the TA. Two different
methods will be considered. In the Semi Classical Approzimation (SCA), the popula-
tion of the atomic levels will be determined by integrating the master equation along
the trajectory. The atomic potentials depend on the charge state of the atom, which
can be fractional. In the Monte Carlo based approach only the transfer of a whole

electron is allowed and atomic potentials also depend on the charge state of the atom.

4.1 Dynamics of the charge transfer in Atom surface colli-
sions in classical treatment

Dynamics of charge transfer can be examined by integrating two coupled differential
equations of the charge transfer rate and the force equation for the atom moving
toward the metal surface.

When going beyond the trajectory approximation, the velocity is not taken as
constant. The force on the particle, as a function of time, strongly depends on its
position and charge. There is a big difference in forces applied to a neutral or charged
ion because of the image force, particularly at close distances. The charge transfer
rate at any moment depends on the charge of the incoming or outgoing atom, on the
width of the band (lifetimes of the states), which determines the probability of charge

tunneling process, and on the Fermi level of the surface.
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We can write our coupled equations in the simplest form as

d*z

m—z = Fiop(2) + Fyw(2) + Fegslz, N(t)) (4.1)
g# = T(2)(1 - N)f(e(2)) ~-TENE(1 ~ flea(2)))  (42)

Here N(t) is the charge on the atom, f is the Fermi-Dirac distribution and z is the
distance from the surface.

There are three different terms in the force equation. The origin of these terms
was explained in the previous chapters. The image force depends on the charge of the
atom. This is one of the main reasons for atom trapping in atom surface collisions.

The second equation, (Eqn. 4.2) describes the electron tunneling process between
the metal levels and the atomic level. This is the so called master equation of the
charge transfer process [8]. The equation consists of two parts. The first part rep-
resents charge transfer from the surface to the atom and the second one represents
charge transfer from atom to the surface.

Gamma is the probability for the charge transfer rate and was calculated in the
previous chapter and in article [27] for various surface-atom pairs. The calculated
lifetimes (the imaginary part of the complex energy) of the atomic levels are the half
widths of the broadenings of the levels. Therefore, the correct treatment, especially
outside the impurity covered metal surfaces, requires the use of these accurate values.

If we examine the master equation more closely, some simple limits can be ob-
served. If the atom has a unit charge, there can not be a charge transfer toward the
atom. Hence in our discussions only one unit of charge can be gained or lost. The
Fermi-Dirac distribution dictates that charge transfer can be accomplished only when

the Fermi level of the surface is higher than the electronic levels of the atom to which



57

Inside this distance, charge can
be transfered from surface to atom

Initial Atomic level

Inside this distance, charpe can
be transfered from atom to surface

Figure 4.1: Charge transfer from the metal surface to the atom. The
top figure shows the charge transfer process for the affinity levels and the
bottom figure shows the charge transfer process for the inonization levels.
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charge transfer will occur (Fig 4.1). The second term is the charge transfer from the
atom to the surface. The condition which is necessary for this process is that there
must be a charge on the atom which can be transferred, and there must be a hole in
the Fermi level of the surface at the energy level of the atom. That means the atomic
level should be at a higher potential than the Fermi level of the surface.

The other variables of the set of equations 4.2 and 4.1 are Fermi-Dirac distribu-
tion functions of the surface and the coefficients for the force terms, which describe
different materials. The Fermi-Dirac function depends both on the work-function of
the metal surface and on the temperature. The coefficients for the force terms are
chosen such that the results are applicable to a large class of H-metal scattering cases.
These coefficients depend on the properties of the surface material.

In the program, the Fermi level of the metals changes such that it covers the energy
range which is below and above the initial atomic level. This approach allows us a
qualitative investigation of the charge transfer rates for different kinds of processes,
which includes different incoming atoms or molecules having different atomic energy
levels. This approach also allows the description of impurity effects on clean surfaces.
The charge transfer process depends entirely on the difference between the Fermi level
of the metal and the atomic level of the incoming adsorbate; therefore keeping one
fixed and changing the other one satisfies our goal. The results of the programs can
be interpreted as having different particles coming towards the surface or scattering
the same particle against surfaces with different work-functions.

Two different types of atomic levels will be investigated. Neutral levels shift

upwards, as shown in figure 4.1b and the affinity levels shift downwards, as shown
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Figure 4.3: Charge transfer probabilities for the affinity levels.
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in figure 4.1a. The cases of most interest are the Fermi level crossing of the atomic
levels. The shift of the atomic levels near surfaces are treated in general, as if they
are shifting up or down, whether they are crossing Fermi levels or not.

The affinity levels are examined in figure 4.3. In this figure, the z-axis shows the
total probability for the charge transfer. The x-axis shows the initial velocity of the
atom and the y-axis shows the Fermi level of the surface. The initial atomic level is
0.11 a.u. . The shifts of the affinity levels near clean metals are downwards.

If the atomic levels shift down and the initial atomic levels are below the Fermi
level, we usually have a complete charge transfer. In this process, the electrons can
always tunnel towards the atomic levels but not back towards the surface, since the
empty surface levels into which electrons can tunnel are above the Fermi level of the
surface. This process is shown in the graph with the flat surface at N=1 between the
Fermi levels 0 and .11 a.u.

If the atomic levels shift down and the initial atomic levels are higher than the
Fermi-level, there are two possibilities. In the first case, the levels will not shift
down enough so they do not cross the Fermi level, and therefore no charge transfer is
expected toward the atom. In the other case, the atomic levels shift down, such that
they go below Fermi level as they approach the surface. In the latter case, we have a
charge transfer toward the atom when the atom is inside the distance of the crossing
of the Fermi-level and atomic level.In the return path the charge is transferred back to
the surface when the atomic levels shift up again. The details of this process and the
percentage of atoms carrying a charge out depend heavily on the velocity, tunneling

rates,and surface and atomic levels. If the atom is moving slowly, there is enough
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time for the transfer of the charge back to the surface and thus we see neutral atoms
coming from the surface. For the faster particles this time is relatively short, and
negative ions are seen coming from the surface.

The ionization levels are examined in the figure 4.2. In the figure the z-axis shows
the total probability for the charge transfer. The x-axis shows the velocity change
and the y-axis shows the Fermi level of the surface. The initial atomic level is 0.2
a.u.. The shifts of the ionization levels near a clean metal are upwards.

If the atomic levels shift up and the initial atomic levels are higher than the Fermi
level, the atom cannot receive an electron from the surface. If it comes with an
electron there is a big probability that it is going to loose its charge to the surface.
This region is the flat part of the surface with a Fermi level greater than 0.2 a.u.

If the atomic levels shift up and the initial levels are below the Fermi level, the
atom has a tendency to receive a charge at larger distances from the surface. But
since this process can happen only outside of the crossing distance of the atomic level
and the Fermi level, the probability of the charge transfer depends on the broadening
of the levels and on the speed of the electron. If the atom turns before reaching the
crossing, there is a small probability of charge transfer. If the particle goes beyond the
crossing point it looses all memory of its initial state. The total probability depends
on the return leg of the trajectory after the crossing point. In the figure this region
is described with a Fermi level less than 0.2 a.u. . For fast moving particles, the
time that the particle spends near the crossing distance is much smaller; therefore
the probability for the charge transfer is small. As the velocity decreases, the chance

of the charge transfer increases. The final electronic state of the atom also depends on
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the Fermi level of the surface. As the Fermi level increases (becomes more negative),
the crossing distance of the Fermi level and atomic level moves further away from the
surface. Since the tunneling rates drop exponentially with increasing distance from
surfaces, the probability of the charge transfer decreases as expected. This is easily

seen in the figure.

4.2 Dynamics of the charge transfer in atom surface colli-

sions in the Quantum Mechanical picture

The main drawback of the SCA approach is that fractional charges are allowed on the
atom. We therefore modify our approach to allow only integer numbers of electron
transfers between the atom and the surface.

In order to accomplish this, Monte Carlo simulations were used in which the
incoming atom travels from one grid point to the other and the charge transfer prob-
ability is calculated between two grid points. When the atom reaches the next grid
point ( which can be achieved by one or more Runge-Kutta steps), the charge trans-
fer probability is compared to a random number, normalized for the interval [0-1].
This determines the transfer of the charge from the surface to the atom or the other
way around. In the limit where the size of the grid separation is decreased to zero,
the exact Quantum Mechanical description is obtained. The charge is transferred
according to the tunneling properties and at any time the charge on the atom is O
or a positive integer.

This approach gives results very similar to those obtained by the SCA for velocities

greater than 0.01 a.u.. For smaller velocities, different results are seen. The parame-
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ters of these calculations do not represent any particular experiment. All parameters,
including the cocflicients for the force and petential equations, can be varied. The
velocity of the atom can be described as slow or fast w.r.t the potentials used. A
particle is referred as slow if its kinetic energy is comparable to the image potential
where the charge transfer occurs. The reason is that a neutral particle does not feel
the image force until it loses its electron when its ionization level passes the Fermi
level of the surface, or when it gains an electron when it affinity level passes the Fermi
level. If a sudden change of the potential affects the total energy of the incoming atom
sufficiently, the total energy becomes negative, and the atom cannot escape from the
surface and begins to oscillate back and forth with a decreasing energy until it stops
at the middle of the potential well. The reason for the energy loss is in elastic events
such as electron-hole pair interaction or multi-phonon process.

This effect is not significant in the SCA, because of the existence of the fractional
charges. Thus the atom does not feel a sudden change in potential when it looses or
gains a charge. In both approaches, the atom has the same total energy when it is at
the closest distance from the surface. In the SCA, it gains charge slowly, such that
the potential seen by the atom changes at the same time. As soon as a small charge
is transferred to the atom, the atom has a different total energy than the Quantum
Mechanical case, where the potential changes suddenly. This smooth variation allows
the atom to escape from the surface.

Table 4.1 shows the charge transfer rates for the ionization level of the H atom.
SCA is the Semi Classical treatment and MC 1000 is the Monte Carlo simulation with

1000 trajectories. Both cases, where the particle comes with a H atom or with a H+
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| Velocity [In. N|| SCA |  MC1000 | MC 25000 |

0.1 0 0.048638 0.056056 0.049962

1 0.04897 0.05905906 0.048242
0.01 0 0385219 | 0.37337 0.3859(1/0)

1 0.45165 0.48748 0.455494(13/2)
0.006 0 || 0.5453 | 0.5637(23/11) | 0.5629832(527/178)

1 | 0.7255 | 0.84845(157/62) | 0.849763(4243/1567)
0.003 0 || 0.75846 | 0.80132(166/93) | 0.79853(3931/2199)

1 | Stick |0.9805(508/382) | 0.9704(12721/7248)

Table 4.1: The comparison of the charge transfer for SCA and MC simulations for
100K

[Velocity [Tn. N SCA | __ MC 1000 | MC 25000 |
0.1 0 | 0.0488774 0.058058 0.05028201
1 | 0.04921026 0.05805806 0.04724189
0.01 0 || 0.385348 0.380380 0.38773(1/0)
1 | 0451304 0.442442 0.447965(15/6)
0.006 0 || 0.5440524 | 0.5715726(14/7) | 0.5667339(568/199)
1 ] 0.7222765 | 0.859743(162/65) | 0.869204(4443/1642)
0.003 0 || 0.7546057 | 0.7738854(145/57) | 0.7908991(3914/182¢)
1 Stick | 0.9736457(506/316) | 0.97635(12703/7127)

Table 4.2: The comparison of the charge transfer for SCA and MC simulations for
300K
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ion, are examined. For the H ion N is zero, which is equivalent to empty ionization
levels. The numbers inside parenthesis correspond to the total number of particles
which oscillate and escape or stick to the surface respectively. The initial KE of the
H atom is approximately 0.55H(a.u.). The calculations are done at 100K.

If we look to the velocities of 0.006 and 0.003 a.u. which are comparable to the
image potential around that region, quite different results were obtained for SCA and
MC. If we neutral particles as neutral to the surface (in this case N=1), the difference
in the final charge is quite large. The force on a neutral particle is very small and
therefore does not affect the velocity of the atom significantly. If the atom comes
with a KE such that our total energy is positive even when we include the image
potential, it does not stick to the surface. In the MC simulations we see that almost
1/20 of the incoming particles stick to the surface. The average charge transfer for
the escaping trajectories is bigger for MC.

Another important case is that when the incoming particle is neutral and the XE
is almost half of the image potential. In the SCA, the particle cannot escape from
the surface, whereas in the MC simulations only 2/5 of the incoming particles stick
to the surface and the rest escape.

Table 4.2 shows the same calculations done for 300K. There is no significant
change in the final charge transfer rate or in the comparison between SCA and the

MC simulations.
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Figure 4.4: The comparison for charge transfer characteristics of SCA and MC
simulations for the ionization levels. The top graph is the simulation where the
incoming particle is an ion. (Ionization level is empty). The bottom graph shows the
same for the case where the incoming particle is a neutral one. Solid lines refer to
the SCA. The circles refer to for MC simulations with 1000 trajectories, the triangles
are for MC with 25000 trajectories.



Appendix A

Derivation of force equations from potentials

_ —Cvw
Fyyw ==V (mf(kc(z - ZVW))) (A‘l)
_ 3 _ 1 f(ke(z = Zvw))
Fyw = Cvw ( GC=Zow) va)“f(kc(z Zvw)) + e= Zow)? o )
(A.2)
where
flz) = 1-[2z(i+z)+1ije™
% = —[2(1+z)+2z]e* —[1 +22(1 + 2)](~2)e~*
= -2+ 4x]e‘2’ + [4z + 4z + 2]6‘2"'
= [z +422+2-2-4z]e®
= 472 % (A3)
and
df(k(z — Zvw)) _ Ei = kAzle2 (A4)

dz T dzdz
But as we can easily see, there are singular points in the above equation at z =

Zvw. If we expand above equation around z — Zyw, we get the following expansion.

O VE) = - B+ + 1
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-C
= #[I —[2y(1 +y) + 1][1 — 2y + 2y° — 85°/6]
_ =Cvw s, 85, ..
= W/ [fracd3d —2y* + =Y +
= —Cowk(5 -2+ 29) (45)

If y is small( z — Zyw ) , our potential goes to
4 3
Ww = -—§CVwkc (A.6)

and if we substitute y back into the equation and take the derivative we find the force

equation in small y (2 — Zyw) limit

4
Www = —vakf(§ —2k.(z — Zvw))
dz dz

Fyw = —2Cywk (A.7)



Appendix B
Geometry of the problem

In this appendix, the relation between two coordinate systems centered around the
impurity and adsorbate is given. Both coordinate systems are cylindrically symmetric.

Derivition of the expressions for r(r;,6;) and 6(r;, 6;)

r(r:,6;) = \/(ZH — Z1 + 1 cos 6;)? + r?sin? §; (B.1)

T sin 0,'
0(r:,0;) = arctan 7 Fra——) (B.2)

where 6 € [0, 7] .

ri(r,8) = \/(ZH — Z; — rcosf)? + r2sin? § (B.3)

7 siné
0:(r,0) = arctan 7 — (B.4)

where 8 € [0, 7] .

The matrix elements we need to evaluate are in the form
V2(O) =e® / r2dr; / d6; sin; / d; - - (B.5)

Using & = cosf; and £ = cosd in above equations, we obtain

M(rin8s) = \(Zn - Z;+r:&)? + r2(1 - €2)
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= \(Zn — Z1)2 + 22y — Zy)riki + r2€7) + 1% — r2€?

= V(2Zu - Z1)? + 2Zu — Zi)riki + 12

rcos = Zyg—zI+r;cosh;

Zy -1 = Zr—-&r;
&(ri6;) = Zn = Z1 % Girs

r

r(r;,0;) = ‘v@H —Z1P +2(Zy - Zy)ri&i + rF
Zy — Zr+&r;

r

E(ria 0:) =
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(B.6)

(B.7)



Appendix C

Impurity basis-function set

C.1 Definition of the basis set

The basis-functions on the impurity consist of the radial part and the angular part.
The angular part is the spherical harmonic for various m values, and the radial part
is a generalized Laguerre polynomial with an exponential weight factor. We make
our polynomials functions of r}; instead of culy radial distance to make our normal-

izations easier. Qur normalization coefficient is a function of .

Ui = CON)(rrAr) e FTL2H3(\rp) Py m(cos(6) (C1)

By defining £ = A7y, we can write our basis-functions as
Vnm = C(Ar)z’e™3L242(2) Py (cos(6)) (C.2)

We calculate < U;|W; > in order to find the coefficients as follows,

1=C(n)? [ dry,, Uy, (C3)

1 = C(\)? / r2dr j deos(8)¥r,, . . ¥, .

COur)?
A3

2
/ T dx‘pfa.z,,n, lI’IR.,lz,nzallvb&m]ym!

71



72

A3
C(AII)z = / z2dz‘p1&ll ny ‘IIIR,Q ny 511 A2 67711 m2

A

C(Ary

__A:} 20427 2¢6+2 20+2

C(,\I)z = /dzc-rz + Ln1 (z)an (z)5lx.lz5m1.m2
A3

a(,\;,)z = (n+1)(n+2)---(n+20+2)

-z, L+la+27 264042 2042
= /dxe Tghtlt Ln11+ (E)Ln:"' (3)511'125"&1,7"2

A3
C(A) = J(n+1)(n+2)-1~(n+2€+2)

(C.4)

where ¥r,,  is the radial part of the basis-function and we use the orthonor-

mality condition of spherical basis-functions for different £ and m values.

C.2 Derivative of the radial part of the impurity basis-

functions
lI,IR.lx.vu = CR'n.lxle-_;.Lil +2($)
0

_ 4. 0 £ 272042
3 = M [Cras'e ILYH(2)]
= CrmI [ﬁx"le'";'Li“’z(x) - %z‘e‘gLi‘”(z) +zle% %Li‘*z(z)]

_ -5 (€ _ 1\ 2 9 1a42
= C'R,'n,l’\lz € [(2 9 Ln (‘T’) + aan (.’E)

£ 1 = d
= /\I I:‘I’I&tz ny (; - E) + CR.n,lz[e_igerf.n(z)] (C‘s)

C.3 Derivatives of the Impurity basis-functions w.r.t. Hydrogen

center

7 = 1 +d* —2rdcos(6) (C.6)



o0
or

6

a6

100
r 06

__dcos(f)—r
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21'1—(,-97 = 2r —2dcos(9)
or r — dcos(6
5 = ©
_ r—dz
= —
orr .
2r1?7 = 2rd smgﬁ)
r rdsin
2 _T() (C.8)
19r; _ dsin(f)
rof rI
10r; _ d(1—2%)3
rae rI (€9)
—y —rsin()
tan T roos(d) (C.10)

1 9 ( —rsin(f) )
1+ w’_z—r‘i':.((g?ar d — r cos(6)
—(d —rcos())? —sin(6) [d — r cos(8) + r cos(8)]
d? + r? — 2dr cos(6) (d — r cos(8))?
—dsin(9)

(C.11)

1 [r cos(0)(d — r cos(8)) — rsin(6)(r sin(ﬂ))]

=T On (@ cos(B))

_ _rdcos() — r*(sin?(0) + cos?())

rf
_rdcos(f) — r?

77

(C.12)

(C.13)

rf



Appendix D
Calculation of Hamiltonian

Calculation of V,-.S-l)(G)

We can write this matrix element as follows.

Vie) = [arumv(re®, 0@ (D.1)

= eOC(NC;(N) / dre=>" x;(Are™®)x;(Are=*®)

X /dﬂ sin 6 P;(cos 8) P;(cos 6)V (r, 6) (D.2)

= PG [ dre ey (Are~®)

xx_,-(/\re"‘e)Slilj(r) (D.3)

where

Si,(r) = / d8 sin 6Py (cos 8) P,; (cos )V (r, 6) (D.4)

—i0 . iA
V;'g'l)(e) = & C’ii)CJ(/\) / dre~Te3n"

(A i@y, (A ey (T
Xre (e )8 () (0.3

4



Using Gauss Theorem we obtain

(1)(9) _ ®C; (A )C; () &

>

.'311- A - -t Tk
[C‘R "Xi(xrke e)Xj(Erke e)SI;Ij(A—R)

We define pseudo basis-functions

B = e (e )

- C(A) Wk 'tane
V R

Tk e~ )

X’(cose

and

vide) = -'ez Gi(re) @ (ri) St ( R)

k=1
Calculation of V,-.Sz) (©)

We can write this matrix element as follows.

ViE©) = [drumve e, ),

= e 2OC;(N)C; () / drir3 / df; sin e~ (rée™®

Xi(Ar(rr, 0r)e~*®)x;i(Ar(r1, 61)e~*®)
[r(r1,61)e~"°]?

XP;,'(COS 0(7‘1, 01))P[j (COS 0(7‘[, 0[))V(2) (7‘1, 01)
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(D.7)

(D-8)

(D.9)

(D.10)

(D.11)
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Lets define pseudo basis-functions as follows

\I—’,'(TI, 01) = TI&C_%T("’GI)C_‘SX,'(AT(TI, 01)e'ie)R;(cos 0(7‘1, 01)) (D.12)
(r1,6r)

and if we make change of variables in the angular integration &; = cosf; we obtain

V(@) = e / dry [ 148i(rr, &)V (rr, &) F(r1, 1) (D-13)
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