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The use of a programming model which extends
naturally from the underlying hardware, greatly
eases the design and implementation of
simulators, especially for those systems that
resemble the hardware in the paradigm of
computation. Given the characteristics of systolic
arrays, SIMD computers which employ the data
parallel programming model provide an ideal
environment. In this paper, we present a systolic
array simulator, a simulation tool written for the
Connection Machine *(model CM2), a SIMD
machine with powerful interprocessor
communication capabilities. Especially as recent
advances have automated the design, there is a
need for a verification environment to prototype
systolic arrays. Primarily a simulation tool, the
systolic array simulator also helps identify
inefficiencies and motivates optimal design prior
to implementation in either custom VLSI or DSP
systems. Currently, we are updating the tool to
allow the simulation of dynamic array
reconfiguration algorithms under transient and
permanent fault conditions. The simulator is also
being ported to the CM5.

Key words Systolic Arrays, Algorithm
Verification, Design Optimization,
Connection Machine.

*Unless otherwise specified, all future references to the
Connection Machine pertain to model CM2.

1. Introduction

Many definitions of systolic arrays exist in the litera-
ture (Gentleman and Kung, 1981;Ullman, 1984). In their
paper on systolic arrays, Kung and Leiserson (Kung and
Leiserson, 1980) define a systolic system as a “network
of processors which rhythmically compute and pass
data through the system.” Systolic arrays as a class of
pipelined array architectures display regular modular
structures locally interconnected to allow a high degree
of pipelining and synchronized multiprocessing
capability (Kung, 1987). The primary reasons for the use
of systolic arrays in special-purpose processing are
simple and regular design, concurrency and communi-
cation, with balanced computation and I/O (Kung,
1982).

Due to the massive parallelism and data flow possible
with locally interconnected computing networks, such
as systolic and wavefront processor arrays, a large
number of algorithms of practical significance in the
area of signal processing and other engineering applica-
tions can be efficiently implemented. These architectures
are capable of real-time solutions to a wide variety of
advanced computational problems. The computations
in systolic arrays are spread over the entire index set of
pracessor elements (PEs).

Recent work has automated the design of systolic
arrays (Moldovan, 1987; Rajopadhye and Fujimoto,
1990). The transformation of algorithms for paraliel
processing on processor arrays (Fortes and Moldovan,
1985; Rao, 1986) has further advanced the theory. In the
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Figure 1. SIMD Architecture

previous decade, considerable research effort has been
devoted to the realization of processor arrays and their
optimal design. Between the realization of a systolic
algorithm from a high-level problem description and its
implementation using custom VLSI/WSI (Wafer Scale
Integration) or DSP (Digital Signal Processing) chips,
there is a need for a verification environment to proto-
type these arrays.

In this paper, we present a systolic array simulator
written for the Connection Machine (Thinking Ma-
chines, 1990b) to allow a systolic array design to be
tested for functionality. The systolic array simulator
may also help in identifying performance bottlenecks
and inefficiencies to motivate optimal design and
implementation. Once the algorithm has been verified
and optimized, a general simulation environment like
the Rice Parallel Processing Testbed (Covington et al.,
1991) may be employed to simulate arrays of simple
instruction set processors (Dawkins, 1989).

2. The array model on the Connection Machine

The distinguishing features of systolic arrays map
well onto the SIMD (Single Instruction Multiple Data)
(Flynn, 1966) paradigm of computation. Although there
are significant differences between systolic arrays and
SIMD computers (Dew and Manning, 1986), the SIMD
architecture (Figure 1) provides excellent hardware
support for the simulation of systolic arrays. The
Connection Machine, a SIMD computer with 64K
processors and powerful inter-processor communica-
tion capabilities, was chosen for the simulation of these
arrays.
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The Connection Machine employs the data parallel
model of computation. Each instruction is executed by
all processors in parallel. However, each processor may
be selectively activated or deactivated to allow varia-
tions in computations. Each processor on the Connec-
tion Machine has private memory. The Connection
Machine communication primitives allow the transfer of
data from one processor’s memory to another. Parallel
transfer of data in a regular manner is a very useful
feature of the Connection Machine hardware.

The logical unit of simulation is the PE. Each PE is
represented in hardware by a physical processor
(equivalent to the PU of a generic SIMD machine) on the
Connection Machine in a one-to-one mapping (Figure
2). All PEs in a systolic array are virtually identical
though some systolic arrays have boundary PEs which
are different. They perform similar computations with
minor variations depending on their location in the
index set of processors. In our simulation of the PE, each
is modeled as a set of registers. The library routines in
the simulation tool allow the designer to specify the
array configuration, registers and the type of data stored
(Table 1).

Registers may store fixed or floating point data of user
defined bit precision. This is possible due to the special
bit-addressable memory and bit-serial math capability
of each Connection Machine processor. Interaction of
PEs is through the exchange of data stored in these
registers. In most systolic designs local interconnections
and local communication are predominant. Random
and global communication patterns are rare. However,
both forms of communication are supported in the
simulation model.

There are several advantages to implementing a
simulator for systolic arrays on a SIMD machine. Since
each PE is associated with a physical processor on the
Connection Machine, the scalability is only constrained
by the number of physical processors available and the
performance deteriorates when array dimensions are
larger than what can be directly mapped onto the
hardware. On a typical SISD machine, a TE or a cluster
of PEs needs to be associated with a process. The
fracturing of an array within or across processes implies
that scalability is available at the cost of performance.
Also, synchronized processing, which is a central
characteristic of systolic arrays, necessitates cumber-
some synchronization requirements in the form of
barriers etc., further constraining scalability. Thus,
instruction level synchronization on the hardware is
critical. On the other hand, if the simulated systolic
systems have significantly diverse index dependent
computations, the SIMD model may severely hamper
performance. Such arrays are rare and indeed antithetic
to the systolic paradigm.



3. Using the systolic array simulator

The systolic array simulator is essentially a set of
routines to assist the designer/implementor of systolic
arrays to set up, simulate, examine the behavior and
verify the results/correctness of the code executed by
each PE. The simulator provides the user with a model
of the array and the PE as described in the previous
section. The principal simulation primitives available
and their functions are tabulated in Table 1.

The user specifies the physical layout of the array in
terms of the number of processors (PEs) and the organi-
zation of data storage within each PE. The data to be
input or loaded into the array at specific times during
the simulation is then initialized. Before simulation can
begin, the user needs to specify the computations that
occur at each PE along with the synchronous communi-
cation of data between PEs. Finally, an activation sequence
of the PEs/systolic array is necessary.

The setup routines listed in Table 1 allow the user to
specify the layout of the array and the I’E organization.
The load_reg and dump_reg routines permit data /O to
and from the array into and out of the host. The data for
the input is determined prior to the simulation and
stored in data files with a specialized naming conven-
tion which includes a timestamp corresponding to the
time in simulation at which the data is utilized. The data
captured by the output routines is stored in files with a
naming convention similar to that used for input. The
data files reside on the front-end to the Connection
Machine and this interaction mimics the interaction
between systolic arrays and their host processors (see
following section).

The state of a processor (PE) at any time during
computation is characterized by the data in its registers.
A snapshot is the cumulative state of all the processors in
the array at any time during simulation. Snapshots
capture significant details of array activity and are
extremely useful in the verification of designs and the
correctness of algorithms. The dump_reg routine may be
used to obtain snapshots of the array’s activity when
suitably inserted at different times during the simula-
tion.

Systolic arrays are synchronized by a global clock.
Also, the times at which the different PEs become active
follow a cyclic pattem that is mostly independent of the
size of the array and a property of the problem being
solved. An activation sequence is the periodic time
sequence of activity /inactivity of the PEs of a systolic
array. Each step in the activation sequence is termed an
activation pattern and may be specified as a bitmap laid
out in the shape of the array. The activation_scq routine is
the simulation primitive that helps specify the activation
sequience for the array being simulated.

The computations that are performed by the PEs of a
systolic array are similar with minor variations depend-
ing upon the location of the PE in the index set of
processors. It is therefore possible to specify the compu-
tation of all PEs in a single subroutine with conditional
branches to handle the variations. However, in view of
the fact that multirate systolic arrays do exist, i.e. PE
computations vary significantly with the activation
pattern, itis preferable to index the computations at PEs
by the corresponding step/activation pattern in the
activation sequence. The pe_computation simulation
primitive shown in Table 1 relates activation patterns and
PE computations.

Table 1. Primitives for Simulation

Primitive

Function

setup.array(rm, n)

Set up an array of dimensions m x n

setup regs(r, type)

Set up r registers of specified type (float, fixed etc.)

load_reg(reg,type)

Data input to register reg of specified type

dump_reg(reg, type)

Data output from register reg of specified type

send _reg( type, src,dst, dir,wrap_mode) | Data Lransfer from register src of specified type of all

active PEs to register dst of neighboring PEs in the
direction dir with exchange across edges determined
by the wrap_mode

Data transfer to register dst of specified type of all
aclive PEs from register src of neighboring PEs in the
direction dir with exchange across edges determined
by the wrap_mode

Loop of length i of diferent activation patterns stored
at_*activefiJfm]/n]

Code to be exccuted by active processors during acti-
vation pattern i

recv_reg(lype, src,dst,dir, wrap_mode)

activation seq(i, *activefi)fsnj[n])

pe_computation(s)
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Figure 2. Mapping of a Systolic Array onto the Connection Machine

Communication between PEs is an essential character-
istic of systolic arrays. The type of synchronous commu-
nication that is seen in these processor arrays is pre-
dominantly near-neighbor. The simulation primitives
support an eight-way near-neighbor type of intercon-
nection. The communication primitives send_reg and
recu_reg provide the basic support for near-neighbor
data exchange. The physical processors on the Connec-
tion Machine are placed on the nodes of a hypercube. It
is therefore possible to have toroidal interconnections
across the edges/boundaries of the array, if indeed
desired. General communication among PEs is also
possible. However, it is advisable to cast regular non-
near-neighbor communication as combinations of near-
neighbor communication steps for performance reasons.
It is important to note that interconnections between PEs
are modeled implicitly through the data communication
specified as part of the PEs’ computation.

With a view to extending the capabilities of the
simulator, it has been designed with two principal
operational modes during simulation. In the fault-free
(FF) mode, there are no faults in the array, and normal
PE and array behavior are observed. In the fault-tolerant
(FT) mode, the array is modified to reflect the effect of
the specific fault-reconfiguration algorithm being
invoked. The modification is performed at two levels. It
may be architectural to reflect physical reconfiguration,
or it may be behavioral to reflect the change in PE
activity under fault conditions. The primitives for the FT
mode are under development.
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4. Simulation method and implementation

As mentioned in the previous section, the user
provides the description of the array configuration and
PE organization. Information on the computations at
PEs and how they differ across the index set of proces-
sors is also necessary. In the current implementation, the
user description of the array and PE behavior is in the
form of a high-level language program aided by a
library of simulation primitives. Once the array architec-
ture and PE behavior are specified, the simulation
library manages the simulation. An event-driven
simulation environment simulates array behavior. The
algorithm followed in the simulation of systolic arrays is
shown in Table 2.

The synchronous computation and communication
characteristic of systolic arrays precludes hardware/
software conflict resolution. A SIMD programming
paradigm, where implicit instruction-level synchroniza-

Table 2. Systolic Array Simulation Algorithm

begin
while TRUE do
for i = 1 to length(activation_sequence)
activate_processors( sctivation_sequence (1))
processor_element_computation(7)
if termination condition() == TRUE then exit
end
end
end




tion is available on the hardware, is therefore ideal for
the simulation of systolic arrays and there is no need to
enforce any kind of synchronization. The core loop in
the execution of the simulation is the enforcing of the
activation pattern followed by the execution of the PE
computation corresponding to the index of the current
activation pattern in the overall activation sequence (Table
2).

The programming environment of the Connection
Machine supports parallel versions of several common
high-level languages. The operations on the Connection
Machine hardware may also be specified using Paris
(PARallel Instruction Set). The Connection Machine
hardware essentially operates as a co-processor to a host
or front-end computer. Most of the simulation library
routines are written in C/Paris (Thinking Machines,
1990a), a front-end C compiler with a Paris interface to
control the Connection Machine hardware. The use of
C /Paris for most of the simulation library improved
code efficiency and performance due to the low level
control of the Connection Machine hardware possible
through Paris. The source code for the simulator can be
easily ported across the different front-end architectures
that can support the Connection Machine hardware.

The user code is written using C* (Thinking Machines,
1990c), a parallel C language compiler. The syntax of C*
is quite powerful while preserving ease of notation. The
C* language provides a variety of parallel programming
primitives for user specified control of computation. The
organization of the various software modules that make
up the simulator is shown in Figure 3.

4.1 Porting the Simulator to the CM5

With the arrival of the CM5 (Thinking Machines,
1992), a MIMD machine which is designed to support
C* code written for the earlier Connection Machine
models, the C/Paris interface module is being modified
to allow portability. Paris is a macro interface for the
microcode of the CM2 hardware and is incompatible
with the CMS5 architecture which derives its processing
power from SPARC processors.

Porting the simulator to the CM5 considerably
increases the speed of the simulator since the CM2 is bit-
serial and is clocked at speeds an order of magnitude
slower than the CM5. However, some of the features of
the simulator that were made possible by the flexibility
afforded by the bit-serial nature of the CM2 are no
longer possible to accommodate without a considerable
loss in performance. User-specified bit-precision in the
definition of storage on the PEs is a major feature that is
made infeasible by the port.

The Connection Machine models support a software
abstraction called virtual processor (Thinking Machines,

1990b), which facilitates the mapping of a virtual array
with more processors than are physically available. This
is done by mapping many-to-one virtual processors
onto a single physical processor and sharing the re-
sources. This necessarily affects performance if more
virtual processors are needed than the number of physical
processors available. Often CM2 installations have more
physical processors available than CMS5, but this does
not always translate to better performance since the
CMS5 is capable of computation at a much faster rate.

5. Case study - complex SVD array

We have used the simulator in verifying an algorithm
for a systolic array to compute the Singular Value
Decomposition (SVD) of complex matrices (Hemkumar
and Cavallaro, 1992). The array is based upon the Brent-
Luk-VanLoan array for computing the SVD of real
matrices (Brent et al., 1985). A singular value decompo-
sition of a matrix M € C™ is a factorization given by

M = UZVH,
where Ue C™ and V € C™ are unitary matrices and
T e R™ isa real non-negative “diagonal” matrix of
singular values. As an example case study, it illustrates
the benefits from the use of such a simulator.

The complex SVD array is a square array of proces-
sors. Each PE stores a 2 x 2 sub-matrix of the problem.
As an atomic step in the iterative algorithm based on the
Jacobi method, the PEs on the main diagonal compute
the SVD of the 2 x 2 sub-matrices stored in them. These
PEs then transmit the required parameters to the off-
diagonal PEs so that they can update the 2 x 2 matrices

User Level Interface (C*) I

Hardware Level Interface (C/Paris) I

Connection Machine Hardware l

Figure 3. Organization of the Simulation Tools
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Figure 4. Complex SVD Array: Activation Sequence

stored in them to reflect changes made along the main
diagonal. The algorithm also requires a complicated
data exchange among the PEs between each successive
computation along the main diagonal. The data ex-
change achieves a permutation of the elements of the
matrix so that eventually, only the diagonal elements
remain non-zero, thus computing the SVD. The complex
SVD array algorithm is outlined in Table 3. The routines
are shown only as shells to mask the complexity and to
detail the essential steps. The activation sequence of the
complex SVD array for an arbitrarily chosen dimension
of 5x 5 processors (10 x 10 matrix) is shown in Figure 4,
where the dots represent active processors. The se-
quence is of length 4 (same for arrays of any dimension)
and each PE is active twice every four time steps.

Not only was the simulation useful in the verification
of the data exchange algorithm, it was instrumental in
validating the conjecture regarding the number of
permutations needed for convergence and the compari-
son of the convergence behavior for real and complex
data matrices. Figure 5 shows a series of snapshots of
data that was captured at different times (t = number of
instantiations of activation patterns) during a simulation
of the SVD array (16 x 16 processors or 32 x 32 matrix). It
is rendered as a surface plot where the x and y dimen-
sions are defined by the shape of the array and the z
dimension is a measure of the absolute value of the data
at the processors. From the snapshots, it is readily
observable that the data in the array is converging to a
diagonal matrix.

Table 3. Complex SVD Array : Algorithm

begin
while TRUE do
fori=1to4

processor_element_computation()
{

wherem == n
compute 2x2_svd.step()
transmit_parameters()
exchange_data()

else
receive_parameters()
apply -2x2 transformation()
exchange.data()

end
end
end

activate_processors(activalion_sequence(i))

if off_norm() <= min.value then exit

/* diagonal processor */

/* off-diagonal processor */
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6. Future Work

Fault-tolerance is of significant importance in the
arrays used for real-time computations, especially when
used as dedicated processors with little or no accessibil-
ity. Failure of PEs that make up the array is highly
probable in large-scale implementations. The goal of any
fault-tolerant hardware or software array reconfigura-
tion scheme is to realize a logical configuration of PEs
capable of meeting the algorithmic needs. Several
approaches to fault-tolerance reported in the literature
include: spatial redundancy (or hardware redundancy),
temporal redundancy and algorithm-based fault-
tolerance schemes (Huang and Abraham, 1984;Kung
and Lam, 1984). We are extending the capabilities of the
simulator to simulate random faults in the array and to
observe the performance of dynamic fault-
reconfiguration algorithms that have been designed into
the PEs of a given processor array.

7. Conclusions

Systolic architectures and algorithms have received
significant attention in the last decade. There are a
variety of formal methods available for the realization of
systolic algorithms from a high-level problem specifica-
tion. The translation of a systolic algorithm to hardware
and its implementation on custom VLSI or DSP arrays is
aided by the use of a simulator for systolic arrays. In this
paper, we presented a systolic array simulator. It is a set
of library routines which use the Connection Machine
for the efficient simulation of systolic arrays. The model
of the array used in simulation maps each processor of
the array to a physical processor on the Connection
Machine. The simulator is a valuable tool in the verifica-
tion and testing of systolic array designs. Current work
on the simulator is aimed at extending its capabilities to
aid in design for fault-tolerance and optimal strategies
for fault-reconfiguration.
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