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Chapter |

Introduction

Consider the two point boundary value problem given by

1) Lusu” +alx)u’ +b(x)u=f, x€Il=[0,1]
' u(0) =u(1) =0.

Assume that (1.1) has a unique solution for every f& C(l) and assume a, a’, b, b’ to

bein L*(I).
We shell be concerned with the numerical solution of (1.1) by a method of collocation

for the particular case in which the approximate solution is a piecewise continuous eth _

degree polynomial. More precisely, let A = {xi}iQO be a partition of | where

0=X0<X1 < °-'<xn<xn+1 =1, I = [0,1]

hi=xi+1 = X}, ]i= [Xi, Xi+1], i=0,°,n,

Throughout this work we assume that the partition A is quasiuniform. i.e., there
exists a constant ¢ = 1 such that

(1.2) max hhi1<o , where h= max b
o<i<n 0<i<n

Let the “hat” function V; at x; be the continuous piecewise-linear function that
satisfies
1 i=j
V:x:) =
9= Yo i
The linear span of these functions Sp{V;} is denoted by M&{A). In general, let
M'|'<(A) ={V GCk(I) | V| I €Pl;); i=0,r;V(0)=V(1) =0} where 0<k<r and
Pr(E) denotes the class of all polynomials of degree at most r on'theset E, Also we let
25 = ZB(A) ={VeE ME)(A) | VIx;)=0;i=1,-+,n}. Thissubspace can be characterized by

the following property

MH=MplA) = MY(A) @ 2§(4),
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which can be easily seen by a dimensional argument, and the fact that the M 6—interpolant
of a function in 26 is identically zero, where the nodes x = x; are taken as interpolation
points.

We shall employ as collocation points the r — 1 points {xij} ]r_;_-11 on each subinterval
I; that are the affine images of the roots of a Jacobi polynomial of degree r — 1.

Although, the collocation conditions at r — 1 points are not enough to completely
define an element of MB one cannot impose more than r — 1 collocation-like conditions per
subinterval because it would result in an overdetermined system of equations. However,
dimensionality requires that we impose only one and exactly one condition per interior node,
when imposing r — 1 collocation-like conditions per subinterval.

The condition we choose to impose here is a condition on the jump of the first
derivative of the function. It resembles the relation satisfied by the Galerkin procedure,.

WedefineUEM 6 the hybrid collocation-Galerkin approximation to (1.1) as a

solution to the following equations.

(1.3) Lu(xij)=f(xij)l i=0,"',n; j=1l...lr-1l
and
(1.4) (LUNV) = (EV)) i=1,7++n.

Where V; is the hat function at x; and (+, *) denotes the scalar product between
H=1(1) = H§() and HY().

Equations (1.3) are the collocation equations and (1.4) are the Galerkin equations.
Equations (1.4) are equivalent to imposé a condition on the jumps of the first derivative of |
the approximation as we will show in Chapter |l.

This procedure has the advantages that it requires much less quadrature than its
counterpart the c0—Galerkin procedure, replacing most of the integrals by evaluation at
points, The quadratures that are left to be evaluated are the simplest. That is, equations
(1.4).

In Chapter |1, a summary of the results for the cO—Galerkin procedure is presented
for reference. Also presented is a description of the jumps, at the nodes, of the first
derivative of the Galerkin approximation,

In Chapter |11, we introduce a semi-discrete innerproduct and quadrature method based

on the Jacobi polynomials, similar to the quadrature method introduced by Douglas and



and Dupont [3] for the Legendre polynomials. In this chapter, we also prove several

technical lemmas that will be used later.
In Chapter IV, using the semi-discrete innerproduct a related variational formulation of

the hybrid procedure is given similar to that introduced by Douglas and Dupont [3] for
parabolic equations. An Existence and Uniqueness theorem is derived. Optimal rates of
convergence are obtained by showing that the hybrid approximation is close to the c0-
Galerkin approximation.

In Chapter V, 0(h2r) order of superconvergence at the nodes for the function are
established. The proof involves similar techniques to those used by de Boor and Swartz [1]

to prove O(h2" “2) order of superconvergence at the nodes for the C1—collocation procedure,



Chapter ||
The Galerkin Procedure

§2.1 Some notation and preliminaries
For an interval J we let HS(J) and W5(J) denote the closure of C*(J) in the norms

If

sy = (5 1102

L2(J)

and

S
= (i)
¥ hysgy =21 oy

respectively, where||f| o =/ f2(x)dx and [[f, oo, ,, = SUP | f(x) |, and s is a positive
L<J) °J L) xey
integer. For simplicity we shall suppress the dependence on J whenever J = |,

The following lemma summarizes some well known properties of the spaces M{) .

Lemma 2.1.
There exist constants Cq and C, independent of h, such that for any § € M(') and

i=0,°°+,n

(2.1) |6 L2(Ii) <Cy hi“1 181 201 (Inverse property)

(2.2) 180 Loy < C2 T o0 2y 1=0.1-
I

i
For a given partition A, the L2-innei’product on the subinterval I; is denoted by

(f9); =1, fix) alx) dx
[

where both f and g belong to L2(Ii). If f and g belong to L2(Ii) foreachi=0,* -, n, we

denote

n
(fg)=Z (fg);.

i=0

|
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Observe that if ¢ € H"‘1(l) andy € U L2(li) ; then,
i=0

n
(6,0)=(y,9)+ 2 y9) (), 0 € L20)

where ¢ is continuous at each point in A, Furthermore, if Y and ¢ belong to L2(I), then

(W, 0)=(y, 0.

With this notation we obtain the following Green'’s function representation formulas.
Let ¢ be a continuous function on | that is c? except perhaps at a finite number of points
where jump discontinuities can occur on &', i.e., for some partition A, ¢ € Cz(li) for each
i=0,°:°,n. LetG be the Green's function for the problem (1.1). For x € | we obtain

: n
(2-3) £(X) = (LEI G(X, ')) = (LEI G(xl .)> "'.21 J1(Elxi) G(X,Xi)
i=

where Jj(y,p) = ym(p+) - y(j)(p—) denotes the jump of the jth derivative of the function y.

For the derivative £’, we obtain
n
(2-4) E(X) = (Lel Gx(x: .)) = (LEI Gx(xl .» +.z1 J‘l (s;xi) Gx(xlxi)
‘:

aslongasx €A,

§2.2 Tha c9—Galerkin procedure
Most of the material of this paragraph was presented in Douglas and Dupont [2] and

Wheeler [5]. It is included here for later reference.
_ From the definition of the Galerkin procedure we describe the jumps on the derivative.

Letx €EM 6 be the Galerkin approximation to the solution u of (1.1), determined by the

relation \

(2.5) —(X, V') + (ax’ +bx, V) = (£V), YV eEM] .
Integrating (2.5) by parts we obtain for V € M{)

n
“-X:V) = (X" + aX' + bX'V) = (LXIV> +Z J1 ‘x'xi) V(Xi)
i=1

=(f,V)=({LuV).

Thus,




n
Z i VVix) =lu—-Lx,V) VVE MG -
i=1

Recall now that M§ = Ma ® Zfj, and that the hat functions {V; }Lq form a basis for
Ma. Thin, we obtain

J‘l(x,Xi) =<Lu— LXI Vi>' i= 1'. . .' n'

where V; is the hat function at x;. This expression gives the jump on the first derivative of
the Galerkin approximation at the point x;. Similarly we can find the jump for the hybrid

approximation by looking at equations (1.4) as follows,i=1,***, n

n
(LU,V|) =(LU, Vl> + 2 J1 (U,Xj) Vi(x])
=

= (LU, V) + Jq(Ux) = Lo,V ;
therefore,
(2.6) JpUx) =Cu~LU,Vp, i=1-"n,
which says that equations (1.4) are conditions on the jump of the first derivative of the hybrid
approximation at the nodes x = x;, as we have already claimed.

Going back to the Galerkin procedure, it is known, [2], that for h sufficiently small

(2.5) has a unique solution x so that

7 - +h| u- <Chk +1;
(2.7) Ju-xli 2+hfu=x] ,1<Ch "“"Hk(l)' 1S k<r+1;
furthermore,

(2.8) fu=x] ,4<C inf [u=T] ,q.

Wheeler [5] obtained the following L® — estimate
4
(2.9) Ju=x] o SCH™*Tfu] i1

By means of a slight modification of her proof, we can show that the Galerkin

approximation x satisfies the following estimate



)
(2.10) Ju=x] oo S CH™¥fu] e,

result that will prove useful later to obtain the right £ 2—estimate for the simple problem

u’'=f,
In order to prove (2.10) it is enough to prove the following lemma which proof follows

almost verbatim that of Wheeler [6] but with slight modification.

Lemma 2.2.
Let J = (a,b) be an interval of length u=b —a, ify € Hr+1 (J) and Y € P,(J) satisfy

y(a) = Y(a), y(b) = Y(b)

(2.11)
Syly =YY (x) p'(x)dx =0, Vp € P,(J), p{a) = p(b) = 0.

Then,there exist a constant C independent of 1 such that

_ r+% ,(r+1) .
||V Y"LW(J)<C“ "Y ||L2(J)

Proof.
By Peano kernel theorem,
(y=Y)ix) = £ D0 v 0t
where for each t, D(x,t) is the difference between

AL (x—t), x>t

Kt(x) = r
0 , x<t,

and its projection into P (J) given by (2.11). Hence,
~Y < 2. %) (r+1) .
|y=Y| ETh :térj (f, 1 ol | “at = |y 2

Since p(0,t) = 0 for all t,




=X _0 X
| Dixt)|= | S -g’Tv(x,t)defal-a@; D(x,t) | dx

< fyl 2 obxt) | dx < (] L ot | 2 ae)s

g,j/z(f” K(x)|2dx)%<y_/’_uiuf’_ =cu.

(r—1)| (r—2)!

Therefore

1
Y=Y | ooy <Cu | ylrtt)]

L) < L2()




Chapter il

Semi--jiscrete Quadrature and Innerproduct

§3.1 Jacobi poiynomials
In this Chapter a semi-discrete quadrature method and innerproduct are defined. They

are based on the roots of Jacobi polynomials. Douglas and Dupont [3] defined a similar
quadrature and innerproduct for Mﬁ using the Gaussian points and they used it to study the

¢! - collocation method for certain parabolic equations, Here we prove similar theorems to

those proved in [3].
The Jacobi polynomials are the polynomials on [0,1] given by Rodrigues’ formula, for

r=2,3,

(3.1) IX) = dp g 5000 = I (L= (ealx) (x(1-x))"T)

cw(x)
where w(x) = x*(1—x)B ; &, 8> —1, and ¢ is a constant chosen so the coefficient of x™1 in

(3.1) is 1. See [4]. For each pair («,8),the Jacobi polynomials form a set that satisfies

(3.2) f:) w(x) Jp(x) xKdx =0, 0< k<r-3,

We shall consider henceforth the choices &= = 1. In this case the Jacobi polynomial

J, can equivalently be interpreted as follows, see [4].
Let 0< p1< v <pp_1<1and wy> 0, k=1, ", r—1 be the uniqun selection such

that
1 r—1
(3.3) fo w(x)p(x)dx = k2_71 w; Pleg),  PEPy._3ll)
r—1
and Jp(x) = I (x —pk), XE |
k=1

§3.2 Semi—discrete innerproduct
Based on (3.3) we will develop an innerproduct as follows, Let v and z be two functions

on | with z{0) = z(1) = 0. We define
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- r-1 ) z(0:
(3.9) Dlva) = £ w, Vipy) 2lp)
=1 pi(1 —p;)
Observe that if v « z€P._4(l); then, B(V,Z) = (v,z), Since z(0) = z(1) =0, w divides
z; therefore, v * (z/w) € Py,_4(l) and by (3.3)

(3.5) Biv,z) = f:) wix) (vix) + z(xVelx)) dx = f:) vix) z(x)dx

Given a partition A of the interval |, let the collocation points {"ij };':11 be ther — 1
points on each subinterval I; that are the affine images of the roots {pj}}':11 of the Jacobi
polynomial J,. We now give the corresponding formula for D on each I; .

For ¢ a function on | with $(0) = ¢(1) = 0, let ¢o(x) = 21 dlx;) Vi(x), 9o € Ma , also
let 4 = ¢ — ¢9. Observe that ¢4(x;) =0 foreachi=0,- -, n+1. We define

T o nd i s o

D; Q1= % v
(¥, ¢) =1 7T g b=

‘e
Ny

where Y is a function defined on each I;. Let D(y, ¢)= i%O D;(y, ¢).
Now we define the semi-discrete innerproduct { , ) as follows

(3.6) KW, N=D(Y,8q) + (¥, d9) .

n
Observe that (3.6) is defined for ¢ € H~1 nnNn(u L2(Ii)). This innerproduct is
=0
called semi-discrete because it has two parts one discréte and one continuous. In Chapter IV
we will use the innerproduct (3.6) to provide us with a variational formulation for (1.3)—

(1.4) which itself has two parts one discrete and one continuous. In the next paragraph

several quadrature relationships are proved.

§3.3 Quadrature relationships
There are several relationships between the semi-discrete innerproduct in (3.6) and the

usual L2—innerproduct. They are contained in the Lemmas to follow., We begin by making

the observation that if & € M{y and 8 € Z[), by (3.5) we obtain
(3.7) D{a”, B) = —(a',8')

and



1

(3.8) D(o/, B) = (o, B).

Lemma 3.1
IfueH(1) and B My, then

(3.9) [Ku, BN —(u,B)|<ch|v| L2||B||L2,
where the constant c is independent of h.

Proof.
It is enough to prove it for § € 2. Then

n
| D(urﬁ) - (UIB) I < l .20 Di(urﬂ) - (urﬁ)i I
|=
n
< E l Di(urﬁ) - (u'ﬁ)il .
i=0

Now, by (3.5) Di(u,ﬁ) = (u, B); whenever u isa constanton I;. Foru€ H1, the
fundamental theorem of calculus implies that for x € I;
X
ulx) = ulx;) + fx u’(x)dx.
i
Therefore,
xij ,
LS Blx;;) Jy; v (tdt  Xp4q

r—
X
. —_ A= .t - '
| Dj{u,B) — (u,B);| Ij=1 wjh; s o fxi Bix) j'Xiu(t)dtdxl

< OO0l oy 141 20 * OO 200 W1 2

<Ch|B], 2, v, 2
where we have used (2.2). The constant C clearly can be chosen independent of i; therefore,

Cauchy's inequality implies

n
Z | Diu, B) = {u, Bli| <C ], 2161, 2

which concludes the proof, We have the following two corollaries.



Corollary 3.1.
Let a be a continuous function on | and letu € H1 (1). Ifa’€ L™, then

(3.10) | Cau, @< Cluf,,116] 2. VBE M.
Corollary 3.2

Let a be as in corollary 3.1. Leta € My, then
(3.11) | €ac, 82— (acy, B)| < Cher| 1 |B] 2. VBE Mp -
Lemma 3.2

Let a be a continuous functionon I. Leta,BEMf. Ifa' €L, then

(3.12) | €ac!, B0 — (act, f) | < Ch ||oz||H1 18] 12

Proof.

This proof is due to Douglas and Dupont [3] for the case of Legrendre polynomials.

However, their idea generalizes here and the details are included for completeness.

As in Lemma 3.1 we can assume that § € Z'c'). Let a; = hi"1 (a,1);, then

Djlac’, B) = a; D', B) + Djl(a - aj)et', B)
= aj(e, B); + Djfla — a;)er, B)

= (ad!, B); + {D;({a — ai)Ol', g) — ({a— ai)a'. B)} .

By definition
r—1 N — e )
Di{{a —aj)e’, B) = 2 h3 j(iz(x.,) aj) o'(x;:) Blx;;)
=1 Xij = Xi) (Xjq = xj5)

where the constant C is independent of i. Using (2.2) and the definition of a;, we obtain

| Dlact, f) — (act, ﬂ)|<cn(z Jo Ile(,,Ilﬁll,_z(,,

12
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Cauchy’s inequality completes the proof. We obtain the following important result.
Corollary 3.3

Fora,B € MB , we have
(3.13) | € Lee,8» — (L) | < Ch || "H1 I8 "L2

Proof.
It follows by (3.7), Corollary 3.2 and Lemma 3.2, The following lemma is a technical

result we need to use later,

Lemma 3.3
Let a be a continuous functionon |, u € H1 and BEM 6 . Then, there is a constant C

independent of h such that
(3.14) [ Kau', BN|<C|u'| L°°"ﬁ" L2

Proof.
As in Lemma 3.1 it is enough to prove it for § € 26 . Fori=0,"*,n

Di(aul, B) - 51 wj hi3 a‘xii) U'(Xii) ﬁ(xii)

=1 xjj = %i} g = xj5)
<Cht v

L=y 1B 2y,

where we use (2,2). The constant C can be chosen independent of i and h., We can bound
"u’"L°°(I ) by [u'| L) Therefore, summing over i and using Cauchy’s inequality, we obtain
i

(3.14).
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Chapter IV

Variational Procedure, L2—estimates

§4.1 The Variational Procedure.
Douglas and Dupant [3] succeeded in defining a variational formulation for the cl-

collocation using a discrete innerproduct based on the Gaussian points and use it to study
collocation procedures for certain parabolic equations. Here by giving a similar formulation
we are able to prove existence and uniqueness as well as obtain optimal rates of convergence
of the hybrid collocation—Galerkin procedure defined by (1.3)~(1.4).

The variational formulation should not be used to compute. (1.3)—(1.4) is a more
simple system and it should be used for practical computations.

The variational procedure can be described as follows, let W € MB be the solution to

(4.1) CLW,VH=KfVY, VVeus.

It is clear by the definition of the semi—discrete innerproduct of §3.2 that any
solution of (1.3)—(1.4) is a solution of (4.1), Therefore, to show existence of the hybrid

collocation—Galerkin approximation it suffices to show it for (4.1), and this is guaranteed

by the following

Theorem 4.1

For h small enough, there exist a unique U € M6 satisfying (4.1).
i

Proof. 5

This proof is basicly an adaptation of the proof of existence and uniqueness of the

Galerkin solution. It |§ due to Schatz and reported in [2].
Assume f =0, THen, the problem becomes that of showing Z =0 where Z € M 6 satisfies

the following equation

(4.2) «LZV»=0, VVEM.

Letv € HJ (1) N H2(1) be such that
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(4.3) L*v=Z onl
v(0) = v(1) =0,

then, elliptic regularity for (4.3) which follows from our hypotheses on L, implies that

<ClZ .
Thus,

212 = (z2)=(L2)

‘= —(v"2Z') + (v,aZ’ + b2)
=—(Z2'V') +(aZ' + bZv) = (LZv).
=(LZyv) - (LZ, ¢y »

fory € M(1) , thus
| 2"32 =(LZv) - (LZ,¥) = (LZv — )

<C|z inf v—y
1y, ot Y=Y

Then
Z12, <

by approximation theory. Hence
2, <cCh|Z| 1|2
12122 <ch|z] 112l 2 -
Therefore,
4.4 Z < 4 .
(4.4) 12l 2<chfz],,

Now

(LZ,Z) = —(2',2') + (aZ’ + bZ,2),

hence
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[2]22< | (L2,2)] +| (a2’ +b2,2)|
Lz,2)| +C|2Z|. .12

<|€Lz2Z)|+chl2], 1121, 2+ C 1211121 2,

where we have use Corollary 2.3. Using (4.2) and (4.4), we conclude that for h small

enough

2 < 2
12121 <chjzi2s

which concludes the proof. _
Following the same outline as in the proof of (4.4) in the proof of Theorem 4.1, we

can conclude the following
Lemma 4.1
Let e = u — U, where u is the soluticn to (1.1) , ifu € H1(l). Then, for h small

enough, we have

lel 2<Chlef,1-

§4.2 Global Convergence
In this paragraph we dealt with the question of L2—convergence of the hybrid procedure

defined by (1.3)—(1.4), (or equivalently by (4.1)). To obtain estimates we use the known
properties of the Galerkin procedure presented in Chapter Il. The main result of this

paragraph is the following

Theorem 4.2
Let u be the solution to (1.1), let U € M} be the solution to (4.1). Ifu€W™1(),
then
+
(4.5) Ju=Uf 2+ hu=U 1 <Ch™Tjulreq -

Before we go into the proof of the theorem we shall examine in detail the case u’’ =f,

Let x be the Galerkin solution and U the hybrid solution. That is x and U satisfy

~-(x',V) = (fV), VVEMp
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and
UV N=LfV», VVEMB.

Recall that J4(W,x;) = (Llu—W),V;),i=1,,n, forbothW=x and W= U; then,

n n
z J1(W,Xi) G(X,Xj) = (L(U—W), z Vi G(Xi,Xj»
=1 =1

where G is the Greens function for u’’ = f. Since G(x,z) as a function of z, for fixed x = X;, is

inM 6, we obtain

n
z J1 (W,Xj) G(xi,xj) = (L(U—W), G(Xi, ') ),
=1

Then by the Green's function representation formula (2.3)

n
(u=W)(x;) = {L{u—-W), G(x;,*) >+_21J1((u-W).xj) G(x;,x;)
j:

n
= (L(U-—W), G(Xi, ') ) =2 J1(W,Xj) G(Xi,Xj)
=1

=(L(u—-W), G(x;,*) > — (L{u=W), G(x;,*)} = 0.

therefore, u(x;) = x{x;) = U(x;).

Now by Lemma 2.2 we know that the Galerkin solution x satisfies

=071 om ) < CHIS2Jul e

therefore,
” —3 2
| 6= 0" b | < CAE=32 g
Letd =x— U, then0" € Pr-—2('i) which implies by{2.2)
" l"""1
(4.6) 101 20 < O~ Ralrvn

Forx € 'i

0lx) = 0(x)) + 1 0*(x)dx =1 0"(x}d,
| |
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since 0(x;) = 0; therefore,
Xj2-1
0(xi4q) = fx- 0'(x)dx = 0,
i

but
x-

i+1 Xj+1 Xi+1 x
’ d - 0! N + " .
fxi 0'(x)dx fxi (x;)dx fxi fxie (y)dy dx

Thus,

| 0'0x) | <u¥2 0] g,

however,
= x [ N x y ”n
| 6(x)| |in 0 (xl)dx+fXi in 6" (z)dz dy |
<hy] 0'0x) |+ 02107 g,

<20f2)0] 3, -

Hence, by (2.2)

1 I
C161 20y <HE 1l om) <00

L2(1;) L20;)°

Which together with (4.6) implies
101, 2, < ChF* ul yee1, -
1201 <O Phgeerggy

Thus

n
|w“2(z|whq”4<mﬁN5Jw§H“yb

H
¥
t

= +
=Ch™ fu]re1 -
We have just given a proof of the following

Lemma 4.2
If U is the hybrid approximation, and x the Galerkin approximation to the problem

u’=f, onl
u(0)=u(1)=0
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Then .
+
| x=U ] 2 <Ch™T|u] paq .

Furthermore

+
Ju=U 2 <Ch™ fu] g -

We are now ready 'to prove Theorem 4.2,

Proof of Theorem 4.2
The idea employed in this proof of comparing the approximate solution of (1.1) with

that of the more simple problem u’’ = f, was originated by Wheeler, See (5],

Because of Lemma 4.1 all we have to estimate is | u—U || ML Lete=u—U,e=u-—y
ande = x — U, whereU € ME, is the solution to (4.1) and x € M'C', is the solution to (2.5).
Note thate=e+&,& € M§ and (Le,@) =0. Thus

(Le,e) = — (e’,e’) + (ae' + be,e),

then
lel22<C]ef, 1 le] 2+ (Lee].

Therefore, by Lemma 4.1 for h small enough
(4.7) ||e"f'1 <C|(Lee)|=C|(Lee) + (L8, + (LT, &) |
<Clef,1 13,1+ | L&)
<Clefy1 1811+ € €L, &0 [+ CHE ] 1] 5.
where we have use Corollary 3.3. However,

(4.8) ~(LEE N =K LeE N
=(e”, EN+(ae’, &N+ be,g )
<| €& EN|+C{| & wlE], 2+ ClEl 112l 2},

by Lemma 3.3 and Corollary 3.1.
Let U* € M be the solution to

(U V)=((f—au' —bu), V), VVE MB .
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Letn=u—U*" by Lemma 4.2]n] 1< Ch"||u] yrete Thus

(4.9) «e"@n=n", e = lx—U*",&»
= ((x-U*)"g")
= (&'¢") + (n",&")
<1El,1 10,1+l 170 1
=[#1,1 (UBl1 +lal, 1)
Because of (2.8)
3,1 <Clel 1.
therefore, by the triangle inequality
IEl 1 <Clel -

By inequalities (4.8) and (4.9), we obtain from (4.7) that for h small enough
lel21<Clel 1 Tl 1+ oo *Inl 1)

thus
lel 1 <C (81,1 + ¥ oo *lnl 1}

Estimates (2.7) and (2.9) and lemma 4.2 complete the proof of the theorem.
We have obtained optimal rates of convergence for the hybrid procedure defined by
(1.3) — (1.4). The next task is to observe that at some special points this rate of

convergence is actually improved. For this we shall need the following

Lemma 4.3
There exist a constant C that depends only on oJ2x h hi—1 and ||u|| Wr1 such that

for h small enough

jule for all > 0.,

" Lm(li) <¢C

Proof.
Equation (4.4), quasiuniformity and the triangular inequality implies, fora=0, -, r



-4
JUSI 2, < O™ R uf g +]ul)]

L2(1;) L2(1;)
SOy g + % uled

L>(1:)
1 ]
<Ch*{u] req
therefore, by (2.2)
uld <chi % |yl < .
LU0 oy SOHTHI U ) <Clul

For a> r, U'® = 0 which concludes the proof,

21
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Chapter V

Superconvergence Estimates at the Nodes

§5.1 Estimates at the nodes.

The global convergence rate of Theorem 4.2 is of optimal order. We cannot expect
faster rates of global convergence to hold. However, de Boor and Swartz [1] have shown
that the error at the nodes x = x; for ¢—collocation method for the problem (1.1), using
the Gaussian poi'nts as collocation points, yields a O(h2r—2) rate of convergence in the uniform
interval case. Furthermore, Douglas and Dupont [2] have shown that the Galerkin procedure
for the problem (1.1) using MB yields a O(hz") rate of convergence at the nodes, The obiect
of this chapter is to obtain O(hzr) rate of convergence at the nodes for the hybrid
collocation—Galerkin procedure.

Let u be the solution of (1.1), U be the collocation solution of (4.1) and G be the
Green's function for (1.1). Alsolete=u— U. We write el) = (d/dx)le and Gj(x,t) =
(9/3x)l G(x,t) for j=0,1. By the Green’s function representation formula (2.3) — (2.4) we

obtain that fork=1,-+, n,j=0,1.
elilxit) = (Le,Gjlxyct, )
n
= Le,Gj(xk+,-) )+ 51 J1(9,Xi) Gj(xk+,xi)
n
= Le,Gj(xk+,-) )—i§1J1 (U,Xi) Gj(xk+,xi)

n
= Le,Gj‘(xk+,-) ) —‘§1 ( LE,Vi )Gi(xk+,xi)
because of (2.6). Thus

n n
51 (LeV;) Gj(xk+,xi) = Le'i§1 Gj(xk+,xi)Vi), k=1,",n, j=0,1.

Therefore, we obtain

(5.1) eliliet) =CLegl), k=1,--+,n;j=0,1.
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. n o
where g‘k(E) = Gjlxy+, &) = Z Gjlxytx;)Vilé), €15, k=1, j=0,1. Now we are ready

. = . . .
to estimate the rate of convergence at the nodes x = x; for the function and its derivate.

§6.2 Estimates for the function
To obtain estimates at the nodes we will use {(5.1). We observe that since G is a

continuous function on | x |, the function g, = gg is a continuous function on | with

gk(xi) =0,i=0," -, n’ On each subinterval I, we let Jj be the function that satisfies the
equation
Al = (& — x;)xjaq — B G (B), EE1;.

We also observe that Le(xij) =0,i=0,,nj=1,,r—1. AndweletT bethe

function that on each subinterval |; satisfies the equation

r—1
Le= I (£ —xi) (&), £€1;.
|
Thus, multiplying Le by g and integrating over I;, we obtain
r-1
(5.2) (Leigli =1, (6 = xi)xpug —E)IT (& —xi) TUEIT I,
i =

Now we take a Taylor series on the subinterval 'i of the function g * I" about the
point x = x; for convenience. We obtain
(& - xi)s+1

(08t (g, ) E)
(s+ 1)

(5.3) (@, D) E) = Pgle) +

where Ps is @ polynomial on |; of degree at most s, E=E (&)e i and -1<s< r-2,

Combining (5.2) and (5.3), we obtain

r—1
(6.4)  (Legi=/, (€= X (Xju1 —»z)_n1 (£ — x;j) Pl £ )t
| j=
+ [ (g = xx; —s)’ﬁ1( —x )—‘—;"ﬂij (05 (g, r)E)d
I i1 = 8 0, 8= oy Ty HeldE.

By the way the cojlocation points {xij} were selected —(3.2). We find that the first
term in the right hand side of (5.4) is Zero, for —1< s<r—2. Now note that if the

coefficients a and b in (1.1) are elements of C22(1), then

Glxy, *) € w2r—1 [0x,] N w2r=1 (X, 11,
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thus,

(5.5) | D5*3-%G (x,- C, £=0," s, ~1< s< -2,

By lemma 4.3, and the assumptions on a and b,
(5.6) 10" =e| o  SClu, rrs1’8=0, 541, 1< s r—2.
. L “i) w
and by the definitions of g and I , arid the mean value theorem,we find

ps*l(g,rg) = —J—”T > (531 (05*2-%G(x %)) - (DM-TLe(E)),

where E= £(£) and £ = £ (¢) both belong to | i+ Therefore, combining (5.5) and (5.6) we

obtain

|05 VGTN] ooy S Clulyrostar —1< s<r-2,

L)
which in turn implies

| (Le,gi);| < ChFHs*3 )y lyyrest2 —1<s<r=2.
Collecting and summing on i, we obtain

max | (u=U)x;) | S ChF¥*yy o —1< s< 12
1<Kk<n I "Wrs2

§5.3 Estimates for the derivative

The argument we will use here to estimate the rate of convergence for the derivative is
similar to that one used for the function in the previous paragraph. However,some

difficulties arise mainly because of the jump discontinuity of the derivative of the Green's

funcition G.
We let I' be as in §5.2 and observe that for i # k, 9l1<("i+) = 9l1<"‘i+1 -)=0. Asin §5.2

we obtain for i # k

| (Le,gl);| < Chts*3y) st 1S s<r=2

But for i = k, the argument breaks down as gﬂ(xkﬂ-) # 0. However, since g,l(xkﬂ =

we let §'|1< on I, be the solution to the equation
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al(e) = (£ — x,) a}(8), £€1,,
therefore
| (Le.gli | < lf,kus - %) ;{—111 (£ = xi;) T (£) T () |,

where the term in the right of the inequality can be bounded by chr+1 Jul W Therefore,
collecting terms and su'mming over i, we obtain

max | (u=U)(xt) [<Ch™Tu) rho
1orn wr

which is an order of superconvergence more than the global order.

§5.4 Conclusion
We can summarize the result of this chapter in the following theorem,

Theorem 5.1
Let u be a solution of (1.1). Leta,b € CQ—2“) forsome > r+1. LetUE MB be the

solution to (1.3) — (1.4). Then, there exists a constant C independent of h such that

max | (u=U){x;)| <Ch®|u| g, §=min(2r, 2)
| mox |-Vt | <Ol

further, if £ 2 r+2,
~U)'(x:+) | < Chr*1
(x| VOgH | < ChTH fuf e
and

max | (u—U)'(x;i—) | < Ch"|ju
1<l<l|"| | | ” "Wr+1.
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