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Solutions to the diamagnetic Hamiltonian for Rydberg states of hydrogen are studied in the
low-magnetic-field regime where term mixing can be ignored. Several recently proposed ap-
proximate bases are compared by calculating the overlap integrals with an accurate numerically

generated basis.

I. INTRODUCTION

The problem of hydrogen in a strong magnetic field
has received a great deal of attention, but general
solutions are still lacking. The investigations of the
highly excited states has been stimulated by recent
experimental advances."”? Evidence of an approxi-
mate symmetry® has led to at least a partial theoreti-
cal understanding of the origin of this symmetry.*#

In the course of our own study we have investigat-
ed a number of analytic basis sets which are approxi-
mations to the true zero-field eigenstates of the di-
amagnetic Hamiltonian when » mixing (» being the
principal quantum number) is neglected (i.e., in the
limit of low magnetic field). The goal is twofold:
First is the hope that identification of approximate
eigenstates will give insight into the nature of the
symmetry; beyond this is the need to obtain better
analytic representations for numerical attacks on
problems of current interest. We present here a
comparison of the precise numerically generated
eigenfunctions with three sets of approximate eigen-
functions: a set identified by Clark,* one proposed by
Labarthe,’ and a set which we discovered during our
own investigation. We should point out that the
work by Clark was devoted to understanding the na-
ture of the general solution, rather than to achieving
numerical accuracy, so that the comparison we make
below is not in the spirit with which the basis was
presented. However, we feel that the comparison can

give some insight into the different regions of validity.

II. METHOD

Comparing wave functions by examining expecta-
tion values of particular operators gives different

weights to different regions in wave-function space.
Energy eigenvalues, for instance, can be unreliable
for discriminating between bases, since states with
the same energy can have completely different wave
functions. The most direct comparison involves ex-
amining matrix elements of the unitary operator, that
is, evaluating their overlap. Therefore we have opted
to compare the approximate bases by projecting them
onto a precise set of numerically generated eigen-
states. The results of this procedure are conveniently
represented as a matrix of dot products. The states
are arranged in order according to their energies in
low magnetic field. An accurate basis will have diag-
onal elements which are close to unity and off-
diagonal elements which are near zero.

III. BASES

The diamagnetic Hamiltonian for spinless, non-
relativistic hydrogen in a uniform magnetic field is
(in atomic units)

1

H=+p'—~+5a?B¥sin’ . (1
r

We have suppressed the linear Zeeman term. An ac-
curate set of basis states was numerically generated
by diagonalizing this Hamiltonian in a spherical basis
with a given principal quantum number n.° The
results are valid in the limit of vanishing magnetic
field where » mixing is negligible, that is, fields in
which the diamagnetic energy is small compared to
the energy separation between levels with different
principal quantum numbers. (In the case of electric
fields, the analogous basis is the familiar parabolic
basis.) We label these states |n,K,m )oi, where m is
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the magnetic quantum number. The index K has in- can express the basis |n,K,m) Ct in a spherical repre-
tegral values from 0 to n —|m|—1; it labels the states sentation:
within an n,m manifold in order of decreasing energy. +

’ . . . . ;= Vi, A, .
Because the Hamiltonian is symmetric under inver- nKm)¢ V2 Z(K' ko, vlbm)lnlm) @)

sion about the origin, parity is a good quantum The sum is over / even or odd, according to the parity.
number. The parity of each eigenstate is denoted by The second basis we investigate was identified by
_the superscript + or —, aqd K is even or odd acc'ord- Labarthe.® He approximates the diamagnetic term of
ing to whether the parity is even or odd, respectively. the Hamiltonian, Eq. (1), by components of the
Clark* has generated the matrix elements of the Runge-Lenz vector A. Within a given n manifold, T

Hamiltonian, Eq. (1), in the parabolic basis. Because
parabolic states lack inversion symmetry they must
be transformed into a parity-conserving basis. Clark
defines the following set of definite parity states:

L
V2

and A are related by T=-— %n A. The approximation

is made that r’sin’ — 4,2+ 4,2. The eigenfunctions
of this Hamiltonian are

Inam)E= 3 (=D *(k, k, w,vINm) nny,nym)

InK.m)&= [nny,nym) (=)™ nnyn,m)] . v )

@ where the approximate quantum number A = |m]|,
|[m|+1,...,n—1is associated with the angular
momentum A = (4,,4,,L;). The parity of the

[m, A,m)Fis (= 1)"™'"***m The values of \ are relat-
edto K: A=n—K —1 for m even and both parities;
A=n—K —2 for m odd and even parity; A\=n — K

for m odd and odd parity. Using Eq. (3) we can rewrite
the states |n, A,m) E in terms of spherical states:

The kets |n,n1,n;,m) represent parabolic states.'”
There are only three independent quantum numbers
since the parabolic numbers are constrained by
n=ni+n+|m|+1.

In order to compare the states |n,K,m) ci with our
numerical results, it is necessary to transform them
to a spherical basis. The transformﬁtion from para-
bolic to spherical representations is In, )\,m)Li= 2 (= 1% * (e, w, o, v |Am)

n-1

Lu,v
In.nl,nz,m)=’-m|(K,x,u,vll,m)ln,l,m) , (3 x (k, 5, o v |Lm) Imbm) . (6)
where k=(n—1)/2, u=(m+n1—n3)/2, and v In the course of our investigations we found that
=(m —ni+n,)/2. The factors (ji.jams,myljsmys) a phase rotation of the basis |n,K,m )& produced a
are Clebsch-Gordan coefficients. Using this result, we useful approximate basis, the*“M’’ basis |n,K,m) ﬁ, by

J

[n,K,m)f=~2 3 (=1)"(k, k, p, vllbm) | n,,m) (Ieven) ,
1

@)
InK,m)y=~2 3 (=1) "2, k, w, vlbm) I n,m) (I odd) .
]

TABLE 1. The matrix &{n,K,m|n,K',m){ for the basis from Ref. 4 and the numerically generated eigenstates of the diamag-
netic Hamiltonian. The states are n =20, m =0, even parity. See text for explanation of the quantum number K.

[20,k°,0)¢
p K 0 2 4 6 8 10 12 14 16 18
0 0.71 0.46 0.35 0.28 -0.22 0.16 -0.10 —0.04 0 0
2 0.57 —-0.02 -0.27 —0.40 0.43 —0.40 0.29 0.12 0.02 0
4 0.36 —0.49 —0.44 0.14 -0.19 0.40 —0.42 -0.21 —0.04 0
6 -0.18 0.59 -0.09 —0.45 0.29 0.14 —0.44 -0.32 -0.07 0
:} 8 0.07 —0.41 0.54 0.12 0.42 —-0.26 -0.30 —-0.42 -0.13 -0.01
& 10 0.02 -0.18 0.50 —0.48 0.12 0.44 -0.02 0.47 0.23 0.02
1 0 —0.06 0.24 -0.50 —0.50 —0.06 0.37 -0.39 -0.38 —0.06
14 0 0.01 —0.06 0.21 0.43 0.54 0.37 —-0.03 —0.56 -0.15
16 0 0 -0.01 0.04 0.13 0.28 0.41 -0.52 0.58 0.37
18 0 0 0 0 -0.01 -0.04 -0.09 0.16 -0.36 0.91
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TABLE II. The matrix Z’(n, A,m ln,K',m)J for the basis from Ref. 5 and the numerically generated eigenstates of the diamag-

netic Hamiltonian.

The states are n =20, m =0, even parity.

See text for the relationship between A\ and K.

120,K’,0)¢

N K’ 2 4 6 8 12 14 16 18

0 -1.0 0.04 0 0 0 0 0 0 0

2 0.04 0.99 -0.11 0.01 0 0 0 0 0

4 0 -0.11 -0.98 0.18 0 0 0 0 0
6 0 0.01 0.18 0.95 0.26 0.05 0.01 0 0 0
3 8 0 0 -0.02 —0.26 0.89 0.35 0.10 -0.03 0.01 0
8’ 10 0 0 0 0.05 —0.36 0.79 0.45 -0.20 0.07 -0.01
- 12 0 0 0 —0.01 0.09 0.47 0.61 —0.56 0.30 ~0.07

14 0 0 0 0 —-0.02 0.16 —0.58 —-0.37 0.66 0.26

16 0 0 0 0 —-0.04 0.27 0.63 0.38 0.61

18 0 0 0 0 0.01 -0.10 —0.34 -0.57 ~0.74

This basis is related to the basis |n,K,m )& by a sim-
ple phase rotation.

IV. OBSERVATIONS

We have examined manifolds of states with n
between 6 and 40, m =0 and 1, and both parities.
We display in Tables I-III matrices of dot products
for Clark’s , Labarthe’s, and the ‘M’ bases, respec-
tively, for the n =20, m =0, even-parity manifold. If
there were an exact correspondence between the
magnetic and the approximate bases, the diagonal
matrix elements would be unity and the off-diagonal
elements would vanish. A random correlation would
give average values of 0.33, since there are ten states

in this manifold. The tables reveal that Clark’s basis
best approximates the highest-K state in this manifold
while the other bases better approximate the lower-K
states. The basis |20, A, 0) / is especially good for the
lowest-K state (which is localized in the x-y plane).
We have investigated more than 20 other mani-
folds of states with different values of n, m, and pari-
ty. In Table IV we summarize the results by display-
ing the absolute value of the mean, and the max-
imum and the minimum diagonal elements for the
manifolds with n =6, 20, and 40, m =0 and 1, and
both parities. The data of Table IV are generally con-
sistent with our observations of the n = 20 matrices.
The Labarthe and ‘M’ bases provide, on the aver-
age, better representations of the spatial behavior of

TABLE IIl. The matrix ,f,(n,K,m In,l(',m)o+ for the ““M” basis defined by Eq. (7) and the numerically generated eigenstates

of the diamagnetic Hamiltonian.

The states are n =20, m =0, even parity.

120,K',0)¢
AN 2 4 6 8 10 12 14 16 18
0 0.94 0.27 -0.16 0.10 0.07 0.05 0.04 —0.04 0.04 —0.04
2 -0.20 0.93 0.19 -0.16 -0.10 -0.07 -0.05 0.05 —0.05 0.04
4 -0.15 0.11 -0.95 -0.11 -0.16 -0.11 —0.08 0.05 -0.06 0.05
6 0.12 -0.12 0.04 —-0.96 0 0.14 0.11 —0.09 0.08 -0.07
E 8 0.10 -0.09 0.11 0.04 -0.95 -0.13 0.09 -0.12 0.11 -0.09
10 0.09 -0.08 0.08 -0.12 0.14 -091 —-0.29 -0.01 0.13 -0.13
= -0.08 0.07 —0.07 0.07 0.14 -0.27 0.79 —0.48 0.07 0.15
14 0.08 -0.06 0.06 -0.07 —0.06 -0.20 0.41 0.63 —0.61 —0.04
16 0.08 -0.06 0.06 —0.06 -0.07 -0.04 —0.30 -0.50 -0.70 0.38
18 0.08 -0.06 0.06 -0.06 ~0.06 -0.07 -0.01 0.30 0.31 0.89
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TABLE IV. Absolute value of the mean, maximum, and mininum dot products of diagonal elements of the magnetic basis
with the three analytic bases, for several manifolds. Note that the n =6, m =1, even-parity manifold has only two states for

which the Labarthe and ‘““M’’ bases are exact.

In,K,m) ¢ [n, A,m) [n,K,m) p

n m Parity Mean Max. Min. Mean Max. Min. Mean Max. Min.
40 0 e 0.27 0.92 0.02 0.59 1.0 0.04 0.63 0.96 0.05
40 0 0 0.28 0.92 0.04 0.55 1.0 0.07 0.44 0.95 0.02
40 1 e 0.24 0.84 0.02 0.58 1.0 0.07 0.63 0.99 0.06
40 1 0 0.28 0.84 0.02 0.56 1.0 0.04 0.54 0.78 0.08
20 0 e 0.44 0.91 0.02 0.77 1.0 0.37 0.87 0.96 0.63
20 0 0 0.35 0.91 0 0.65 1.0 0.10 0.57 0.95 0.14
20 1 e 0.43 0.83 0.20 0.78 1.0 0.36 0.84 0.99 0.43
20 1 0 0.35 0.83 0.11 0.69 1.0 0.14 0.69 0.82 0.55

6 0 e 0.89 0.92 0.83 0.99 1.0 0.96 0.97 0.95
6 0 0 0.62 0.84 0.43 0.95 1.0 0.92 0.88 0.96 0.82
6 1 e 0.89 1.0 1.0

6 1 0 0.59 0.71 0.40 0.99 1.0 0.98 0.85 0.92 0.80

the exact eigenstates than the Clark basis. It is in-
teresting to note, however, that the functions
|n,K,m, )Ci provide the best approximation of the
highest-K states. Such states which are localized
along the z axis are least understood theoretically and
experimentally. Thus any approximation method for
them is particularly valuable.

The differences in overlap of the bases |n, A,m ) Li
and |n,K,m) ,;7" with the magnetic basis are not pro-
nounced. In general, |n,K,m)Li provides slightly
better approximations of the odd-parity states, while
|n,K,m) Mt provides a better representation of the
even-parity eigenstates. There is little difference in
accuracy for different n’s or m’s; both bases approxi-
mate even-parity states better than odd. Consistent
with the results of Tables II and III, both bases are
most accurate for the highest-energy (i.e., low-K )
states.

Herrick® has recently obtained a solution to the di-
amagnetic Hamiltonian which is valid in the limit that
n mixing can be neglected. Herrick’s results are
represented in momentum space, and to our
knowledge the spatial wave functions have not yet
been obtained. Herrick does make an approximate

transformation to spatial wave functions in the limit
of low K, however, and our results suggest that both
Herrick’s and Labarthe’s approximate bases give ac-
curate wave functions for the lowest-K state. It is in-
teresting to note that this state, which has the
minimum extension along the z axis and the max-
imum extension in the x -y plane, gives rise to the
quasi-Landau resonances. Its energy can be accurate-
ly calculated by the WKB approximation and related
approximations based on a two-dimensional treat-
ment of the system.*!? This observation, however,
should be regarded as cautionary: Success in predict-
ing the energy or eigenfunctions for these states pro-
vides little insight into the general solution.

The method of direct comparison of approximate
bases with numerically exact bases can provide a
quick test of other bases yet to be proposed. It is
disappointing, though perhaps not unexpected, that
none of the bases tested here are accurate over the
whole range of states in a manifold. However, for
many calculational tasks they can be adequate.

We thank Michael M. Kash for helpful discussions.
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