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Abstract - We establish existence, derive necessary conditions, and construct and test 
an algorithm for the maximization of a column's Euler buckling load under a variety 
of boundary conditions over a general class of admissible designs. We prove that sym­
metric clamped-clamped columns possess a positive first eigenfunction and introduce a 
symmetric rearrangement that does not decrease the column's buckling load. Our neces­
sary conditions, expressed in the language of Clarke's generalized gradient [10], subsume 
those proposed by Olhoff and Rasmussen [25], Masur [22], and Seiranian [32]. The work 
of [25], [22], and [32] sought to correct the necessary conditions of Tadjbakhsh and Keller 
[35] who had not foreseen the presence of a multiple least eigenvalue. This remedy has 
been hampered by Tadjbakhsh and Keller's miscalculation of the buckling loads of their 
clamped-clamped and clamped-hinged columns. We resolve this issue in the appendix. 

In our numerical treatment of the associated finite dimensional optimization problem 
we build on the work of-Overton [26] in devising an efficient means of extracting an ascent 
direction from the column's least eigenvalue. Owing to its possible multiplicity this is 
indeed a nonsmooth problem and again the ideas of Clarke [10] are exploited. 

1. Introduction 

We recall Todhunter's formulation [36, p. 66] of the following problem of Lagrange, 

"To find the curve which by its revolution about an axis in 
its plane determines the column of greatest efficiency." 

For columns of unit length and volume, efficiency here denotes the structure's resistance 
to buckling under axial compression. When,\ is the magnitude of the axial load and u the 
resulting transverse displacement we postulate the potential energy 

11 

Eilu"l 2 
dx - ..\ 11 

lu'l2 
dx 

with the two terms measuring bending and elongation respectively. Here I is the second 
moment of area of the column's cross section and Eis its Young's modulus. For sufficiently 
small ,\ the minimum of this potential energy, over all admissible displacements, is zero. 
The (Euler) buckling load of the column is the greatest ..\, call it ..\1, for which this minimum 
is zero. That is, 

. J/ EJlu"l2 dx 
..\1 _:_ mf - 0-,------

u EV fol ju'l2 dx 
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(1.1) 



where V is a closed subspace of H 2 , the space of L2 functions on the interval (0, 1) with 
first and second distributional derivatives in L2

, distinguished by the choice of boundary 
conditions. The choice that has generated the greatest interest is the clamped-clamped 
condition u(0) = u!(O) = u(l) = u'(l) = 0. With the corresponding V denoted by HJ it 
is not difficult to show that the infimum in (1.1) is attained at some U1 E Hr First order 
necessary conditions then require that u1 satisfy 

Vv E HJ_ (1.2) 

When I and E are smooth it follows from (1.2) that 

(EI ")" \ II - U1 = /\1 U1' u1(0) = u~(O) = u1(l) = u~(l) = 0. (1.3) 

With this we recognize (1.1) as Rayleigh's principle for the least eigenvalue of (1.3) and u1 
as an associated first eigenfunction. For the problem of Lagrange the Young's modulus is 
assumed constant and, as the column is a solid of revolution, each cross section's second 
moment of area is simply a constant multiple of the square of its area, A, i.e., J( x) = cA2

( x ). 
Fixing our attention on columns of unit volume, we require 

(1.4) 

We have reduced the problem of Lagrange to the search for that A which, subject to (1.4), 
maximizes the .\1 of (1.1). This problem, with clamped-clamped boundary conditions, was 
first attacked in 1962 by Tadjbakhsh and Keller [35) in the continuation of work Keller [20) 
had begun at the suggestion of Clifford Truesdell. The work of [35) hinges on the necessary 
condition that the best A, and its corresponding eigenfunction u, satisfy 

(1.5) 

along the entire column. This was obtained on formally differentiating a second order 
analog (see equation (2.5)) of (1.3) with respect to A subject to the integral constraint. 
Upon reconciling (1.3) and (1.5), Tadjbakhsh and Keller arrived at the representation 

A(x) = !sin2 0(x), -1r/2:::;; 0:::;; 31r/2, (1.6) 

B( x) - ½ sin 28( x) + 7r /2 = 21rx, 0 :::;; x :::;; 1. 

The most striking aspect of this claim is that it requires the cross sectional area to vanish 
at 1/4 and 3/4. This result should however come as no surprise, for implicit in (1.5) is 
the assumption that the optimal buckling load is simple, i.e., that the corresponding space 
of buckled configurations is one dimensional. This requires the optimal column to buckle 
in much the same way as the uniform column (A = 1), the first eigenfunction of which 
is U( x) = 1 - cos(21rx ). The fact that A vanishes at the inflection points of U agrees 
then with the heuristic (suggested by (1.1)) that the optimal column need be thick only in 
regions where it bends, i.e., where the magnitude of the linearized curvature lu"I is large. 
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Tadjbakhsh and Keller claimed 167r2 /3 as the buckling load of the resulting column. 
It was not until 1977 that Olhoff and Rasmussen [25], observing that (1.3) does not exclude 
multiple eigenvalues, noted that as the least eigenvalue does not vary smoothly with A at 
points where its multiplicity exceeds one, the formal differentiation in [35] would be hard 
to justify. As evidence that Tadjbakhsh and Keller had indeed taken the wrong course, 
Olhoff and Rasmussen claimed, on the basis of numerical work, 30.51 for the buckling load 
of the column constructed according to (1.6). Unfortunately, they neglected to describe 
the means by which this value was arrived at. Indeed the fact that A vanishes at 1/4 and 
3/4 introduces computational difficulties. Although they did go on to suggest how l61r2 /3 
was incorrectly obtained, a number of workers have remained unconvinced, e.g., Myers 
and Spillers [24] and Barnes [4]. Upon fleshing out the relevant remarks of Olhoff and 
Rasmussen we shall see, in work relegated to an appendix, that the buckling load for the 
column proposed by Tadjbakhsh and Keller does not exceed 1r2 /3. These same arguments 
will serve to demonstrate that Tadjbakhsh and Keller's best clamped-hinged column also 
has a much lower buckling load than thought previously. 

Having concluded that differentiating (1.3) would lead to less than optimal columns, 
Olhoff and Rasmussen presented a 'bimodal formulation' of the problem of Lagrange, i.e., 
one which would accommodate double eigenvalues. Their subsequent necessary condition 
paired the best A with two corresponding linearly independent eigenfunctions u, v and a 
scalar t E [O, 1] so that 

A (tlu"l 2 + (l - t)lv"l 2
) = 1, (1.7) 

along the entire column. On implementing an algorithm that enforced this optimality con­
dition, Olhoff and Rasmussen arrived at a column whose cross sectional area was positive 
throughout and which could withstand loads up to 52.3563. Their methods were however 
no more rigorous than those of Tadjbakhsh and Keller, and moreover, solely on the basis 
of claims, the latter still had the stronger column, for 52.3563 < l61r2 /3. Those persuaded 
by Olhoff and Rasmussen's criticism of the work of Tadjbakhsh and Keller then set out to 
put (1.7) on a solid foundation. Actually, they joined the discussion of the more general 
problem: What conditions are necessary for a multiple eigenvalue to attain its extremum? 
The greatest advances on this question have come in finite dimensions and lie in the ap­
parently little known work of Bratus and Seiranian [6]. These conditions, later discovered 
independently in a more general form by Overton [26], will be discussed in detail in §5. For 
now, we note that Bratus and Seiranian, upon applying their finite dimensional arguments 
to the problem of Lagrange arrived at the conclusion that the best A, must, with two 
corresponding orthogonal eigenfunctions u, v, satisfy 

(1.8) 

This condition was also proposed by Masur [22] who, like Seiranian [32], went on to rep­
resent the best A via a system of transcendental equations. Their approximate solutions 
to these systems are in good agreement, with respective buckling loads of 52.3564 and 
52.3565, with that proposed by Olhoff and Rasmussen [25]. Note that (1.7) and (1.8), 
with the introduction of a second buckling mode, possess mechanisms which, at least in 
principle, rule out the possibility of columns with vanishing cross sectional area. 
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Our main contribution to the problem of Lagrange is essentially twofold. We employ 
the generalized gradient of Clarke in (i) a rigorous derivation of the necessary conditions 
(1.8) and (ii) the construction of an efficient algorithm to solve the associated finite di­
mensional optimization problem. Our initial focus on the clamped-clamped case will be 
extended in §5 to each of the boundary conditions considered by Tadjbakhsh and Keller. 

In our discussion of the various optimality criteria something has been conspicuously 
lacking: the literature contains no proof of the existence of a best A for the problem of 
Lagrange. Before filling this gap we establish a number of preliminary results and look to 
a more general problem formulation. 

2. The Optimal Design Problem 

The moment I is more precisely the second moment of area of the cross section about 
a line through its centroid normal to the plane of buckling. That is, denoting the cross 
section by n( x) with centroid at the origin, if 7J is a unit normal to the plane of buckling 
then 

J(x) = f i1JTYl2dy. 
Jn(x) 

(2.1) 

When n is a circle, in fact when n is a regular polygon, this integral does not depend on 
1J, and one finds that I varies as the square of the cross-sectional area, A. On considering 
so-called thin-walled columns we shall now see that I varies as an affine function of A. 
On the lateral surface of a cylinder with circular cross section of constant radius R we 
add a layer of variable thickness p(x) with p(x) :S: cR, c ~ 1. Neglecting powers of 
p greater than one we find I( x) = 1r R3 p( x) + 1r R4 and A( x) = 21r Rp( x) + 1r R2

. Taking 
A(x) = A(x)-1rR2 /2 for our design variable we find I(x) = (R2 /2)A(x). The effect of this 
choice on the integral constraint is trivial. Of greater interest is that A, by construction, 
must satisfy the pointwise bounds 

(2.2) 

It is not difficult to continue this line of reasoning and collect a number of examples where 
I varies as some power of A. We proceed then to consider the case where EI = aP for 
some p > 0. Compelled by our examination of the previous special cases we admit those 
a Ill 

ad= {a E L00
: 0 < a :S: a(x) :S: /3, fo

1 

a(x)dx = l}. 

The weak formulation of the buckled column equation for a E ad is 

Vv E H5- (2.3) 

As a E L 00 and a > 0, (2.3) possesses the sequence of eigenvalues 

repeated according to their finite multiplicities and a corresponding sequence of eigenfunc­
tions { u k( a)} k=l C H5, orthonormal in terms of the bilinear form associated with the right 
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side of (2.3). As HJ(0,1) C C1([0, 1]) we find Uk E C1([0, 1]). Upon integrating by parts 
on the right side of (2.3) we find that aPui differs from ->.k·(a)uk by an affine function of 
x. Hence, aPui E C1 ([0, 1]), and, in fact 

(2.4) 

We collect those eigenfunctions corresponding to >.1 (a) in 

a subspace of HJ with dimension equal to the multiplicity of >.1 (a). Implicit in Olhoff and 
Rasmussen's bimodal formulation is the assumption that this multiplicity is at most two. 
Seiranian [32], has confirmed this through Kamke's analysis of the second order problem 
with nonseparated boundary conditions 

w" + >.a-Pw = 0, w(l) = w(0) + w'(0), w'(l) = w'(0). (2.5) 

This is the strong version of (2.3) with w = aPu" and was first considered in our context by 
Tadjbakhsh and Keller. Kamke, in [19, §4], proves that the multiplicity of each eigenvalue 
of (2.5) is no greater than two. Equation (2.4) however, suggests an approach that applies 
directly to the weak formulation. 

If corresponding to >.k( a) there existed three linearly independent eigenfunctions 
u 1 , u2, u3 then one could choose scalars a, b, c not all zero such that v = au1 + bu2 + cu3 
satisfies, in addition to v(0) = v'(0) = v(l) = v'(l) = 0, the two conditions (aPv")'(0) = 0 
and (aPv")(0) = 0. From (2.4) we conclude that v satisfies the homogeneous linear second 
order equation with zero initial conditions 

aP(x)v"(x) + >.k(a)v(x) = 0, v(0) = v'(0) = 0. 

As the only solution to this equation is the identically zero function we have established 

Lemma 2.1. Ha E ad then the multiplicity of >.k(a) is at most two. 

As the least eigenvalue of the uniform column is 41r2 we find, as a consequence of the 
monotonicity of the Rayleigh quotient, that 

Va E ad. (2.6) 

Corresponding to the least eigenvalue >.1 (a) one expects a positive eigenfunction. 
Indeed, this is the only type that Tadjbakhsh and Keller expected. To our knowledge 
however, there is no proof that a positive first eigenfunction need exist. We remark that 
on this point the oscillation theory of Kamke is insufficient, for it concludes only that 
eigenfunctions corresponding to the least nonzero eigenvalue of (2.5) possess either three 
or two zeros. This translates into either one or no zero(s) for eigenfunctions corresponding 
to >.1(a). We now improve on this situation in the case where a is even (about 1/2), i.e., 
a(x) = a(l - x). 
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Theorem 2.2. If a E L00 is even and admits a positive lower bound then there exists a 
positive even eigenfunction corresponding to >.1 (a). 

Proof: We exploit the essential idea in inverse iteration, a popular technique for comput­
ing the least eigenvalue and eigenvector of a symmetric matrix. In our context this idea 
amounts to approximating the least eigenfunction by the solution of a related nonhomoge­
neous boundary value problem. Given v0 E HJ we consider its expansion in the complete 
set of eigenfunctions { uk( a)}, 

00 

v0 (x) = v(x) + L akuk(x), 
k=m+l 

where >.m(17) < Am+i(17) and vis an eigenfunction corresponding to >.m(17). From Vo we 
construct the sequence { v j} C H5 according to 

11

17Pv'j</>'' dx = >.m(17) fo 1 

vi_1 </>' dx, 

On expanding v j in { u k (a)} one finds 

_ 

00 

(,\m(17))j 
Vj(x) = v(x) + L ak >.k(a) uk(x). 

k=m+l 

As >.m(a) < >.k(a) for all k > m we find that v; converges pointwise to v as j --+ oo. 
We shall now produce a v0 whose corresponding vis even and positive. The earlier work 
of Kamke will then inform us that m = 1. Strictly speaking, Kamke requires that 17 be 
continuous. Atkinson [1] demonstrates that 17 need only be integrable. 

Our choice for v0 is the first eigenfunction of the uniform column, i.e., 1 - cos(21rx ), 
a positive even function with exactly two inflection points. 

Lemma 2.3. Let J be an even member of L 00 with a positive lower bound and v be a 
positive, even member of HJ with precisely two inflection points. If u E HJ satisfies 

11 

Ju"</>" dx = 11 

v' </>' dx, (2.7) 

then u is positive, even, and possesses precisely two inflection points. 

Proof of Lemma 2.3: Upon integrating by parts on the right of (2.7) we find that Ju" 
differs from v by an affine function. Dividing by J and integrating twice gives 

u( x) = ix ( x - y )( ay + b - v(y) )g(y) dy (2.8) 

where g = l/ Janda and bare determined by u(l) = 0 and u'(l) = 0, i.e., by 

a 11 

xg(x) dx + b 11 

g(x) dx = 11 

v(x)g(x) dx (2.9) 

a J.' x2
g(x) dx + b J.' xg(x) dx = J.' xv(x)g(x) dx (2.10) 
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That these equations uniquely determine a and b follows from Holder's inequality 

( 
1 )2 1 1 1 xg(x) dx < 1 g(x) dx 1 x2g(x) dx. 

Our hypotheses in fact allow us to conclude that 

a= 0, 
f0

1 
v(x)g(x)dx 

b - ---'------- fol g(x) dx 

This obviously satisfies (2.9). Regarding (2.10), recall that every even function satisfies 

f0
1 

</>( x) dx = 2 f0
1 

x ¢>( x) dx. Consequently, 

f0
1 v( x )g( x) dx 2 f0

1 
xv( x )g( x) dx J; xv( x )g( x) dx 

b = ~J;-
0
1-g-(x-)-dx- = ------'2-J;-

0
1-x-g(_x_)-dx- - f

0
1 xg(x)dx 

satisfies (2.10) as well. Labeling s(x) 
u' (1) = 0 take the form 

(b - v(x))g(x), equation (2.8), u(l) 

u(x) = ix (x - y)s(y) dy, 11 

s(y) dy = 0, 11 

ys(y) = 0. 

With this and the fact that s is even we find 

u(l-x)= 1I-x(l-x-y)s(y)dy 

= f\1-x-y)s(y)dy-J
1 

(l-x-y)s(y)dy Jo 1-x 

= lx(x-y)s(y)dy=u(x). 

0, and 

Regarding the convexity/concavity of u we observe that f(x)u"(x) = b - v(x). That 
b - v(x) has at least two zeros follows from b > 0, v(0) = v(l) = 0, and 0 < b < JJvlloo· 
For b - v(x) to possess more than two zeros v must admit a local minimum, a condition 
that requires of v no less then four inflection points. These zeros, say x 0 and 1 - x 0 , are 
the inflection points of u. As u vanishes at O and is convex on (0, x0 ) it must be positive 
there, and, by symmetry, positive on (1 - x 0 , l) as well. As u is positive at x 0 and 1 - x 0 

while concave between these points it must be positive on this interval as well. I 

It now follows that { Vj} is a sequence of positive even functions. The convergence of 
Vj to v being pointwise we conclude that vis itself a positive even function. From Kamke 
[19, §4] we recall that the mth eigenfunction possesses either m or m - 1 zeros. Hence 
m = 1, i.e., vis a positive even eigenfunction corresponding to ,\1 ( a-). I 
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When <7 is even and ,\1(<7) is simple we now have, up to a scalar multiple, a unique 
positive even first eigenfunction, call it u1. When ,\1 ( <7) is double, in addition to u1, 
we deduce from Kamke the existence of a first eigenfunction that changes sign, call it u 2 • 

These two functions comprise a basis for £( <7) and, as u 2 changes sign, we see that au 1 + bu 2 

can not be even unless b = 0. Hence, when <7 is even, there exists, up to a scalar multiple, 
a unique positive even first eigenfunction. 

Though Theorem 2.2 applies only to even functions we shall see in the next re­
sult that this suffices for our purposes. Note that Lemma 2.3 states that the operator 
(d2 /dx 2(f d2 /dx2 ))-1(-d2 /dx 2 ) leaves a subcone of the positive HJ functions invariant 
when f is even. This cone is however too 'thin' to allow one to invoke Krein-Rutman 
arguments. Regarding possible improvements of Lemma 2.3 we note that even the con­
stant coefficient operator (d4 /dx 4 )-1(-d2 /dx 2 ) does not leave the positive HJ functions 
invariant. To see this we solve for bin (2.9-10) with g = l, 

b = 411 

v dx - 611 

xv dx. 

Taking for v any smooth positive function supported in (2/3, 1) produces b < 0. As 
u(0) = u'(0) = 0 and u"(0) = b we conclude that u is not positive. 

Theorem 2.4. Given <7 E ad there exists an even <7* E ad for which ,\1(<7) ::; ,\1(<7.). 

Proof: There is a very simple argument when O < p ::; 1. Given a function </> on (0, 1) 
we denote its even part by ¢> 8 ( x) = ½ ( </>( x) + </>( 1 - x)). Consider the even function 
5- = ((<7P)s) 1IP and its corresponding even first eigenfunction u. With the normalization 
llu'II = 1 we find 

(2.11) 

As t i---+ t 1IP is convex we observe that 

_( ) (qP(x) aP(l - x))l/p a(x) a(l - x) ( ) <7 X = -- + ___ ...;_. < -- + --'---.;... = <7 X 
2 2 -2 2 s. 

(2.12) 

Now <78 E ad and (2.11-12) imply that ,\1(a)::; ,\1(a8 ). Our attempts to argue in a similar 
fashion for p > l with 5- _ ((a-P)s)-l/p and (2.5) have been thwarted by the fact that 
,\1(<7) corresponds to the third eigenvalue of (2.5). What is needed is a rearrangement of 
<7 that echoes the curvature of its corresponding first eigenfunction. To make this precise 
we first need the following extension of Lemma 2.3. 

Recall that a function ¢> is said to be odd about the point ( x0 , </>( xo)) on some interval 
containing x 0 when 

</>(xo) - </>(xo - x) = </>(xo - x) - </>(xo) 

for each x on the given interval. If, in addition to the original hypotheses of Lemma 2.3, 
we assume that f and v when restricted to (0, 1/2) are even about 1/4 and odd about 
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(1/4, v(l/4)) respectively, we conclude that u, when restricted to (0, 1/2), is odd about 
(1/4, u(l/4)). 

To see this we recall that J0
1 

u" dx = 0 and u" is even about 1/2, hence f
0
112 u" dx = 0. 

For the remainder-of this paragraph all functions will be restricted to (0, 1/2). Recall as 
well that u" = (b - v)/ f, the quotient of a function odd about (1/4, b - v(l/4)) and 
a function even about 1/4. Hence u" is odd about (1/4, b - v(l/4)). The condition that 

J; 12 u" dx = 0 now forces b = v(l/4). As u" is now odd about (1/4, 0) and u(0) = u'(0) = 0 
we easily conclude that u is indeed odd about (1/4, u(l/4)). 

If a. is now even about 1/2 and even about 1/4 when restricted to (0, 1/2) then 
beginning the iteration of Theorem 2.2 with a v0 that is even about 1/2 and odd about 
(1/4, vo(l/4)), e.g., 1 - cos(21rx ), will produce u., a positive eigenfunction corresponding 
to ..\ 1 (a.) that is even about 1/2 and odd about (1/4, u.(1/4)) on (0, 1/2). We immediately 
note that a! and lu~l 2 are similarly ordered, i.e., 

(2.13) 

Given a E ad we now define its rearrangement a •. 

Re= {x E (0,1): a(x) ~ c} 

r = { {x ER: Ix - 1/21 ~ 1/4IRel} if Re "I 0 
e 0 otherwise 

{ 

<7 * ( 1 / 2 - X), if O ::::; X ::::; 1 / 4 
a.(x) = sup{c ER: x E f~}, if 1/4::::; x::::; 3/4 

<7 * ( 1 - X), if 3 j 4 ::::; X ::::; 1. 

In essence, this distributes half of a's mass in a symmetrically decreasing fashion about 
1/2 on (1/4, 3/4), completing the rest via symmetry. By construction these two functions 
are equimeasurable, i.e., 

l{x E (0, 1): a(x) ~ c}I = l{x E (0, 1): a.(x) ~ c}I, VcE R, 

and consequently, a* E ad. We are now in position to apply the following result of Hardy, 
Littlewood and P6lya, see P6lya and Szego (29, p. 153]. 

If f and J1 are equimeasurable, 9 and 91 are equimeasurable, f E Lq, 9 E Lq', and Ji 
and 91 are similarly ordered, then 

(2.14) 

Given a E ad we now rearrange it as above into a. and consider its corresponding u. E 
£(a.). Upon normalizing llu~II = 1 we find 
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The first inequality is a consequence of Rayleigh's principle, the second, of (2.13-14). I 

The stage now set, we address, in the next two sections, existence and necessary 
conditions for the generalized problem of Lagrange 

(2.15) 

3. Existence 

We adopt the direct method of the calculus of variations and neglect to relabel sub­
sequences. Denote by ,\1 the value of (2.15) and by {an} Cad an associated maximizing 
sequence, i.e., ,\1(an) j -\1. Without loss we may assume that each an is even about 1/2. 
We abbreviate ,\1(an) to ,\1,n and denote by u 1,n a corresponding positive eigenfunction 

for which llu~,nll = 1 and f0
1 

ahlu~,nl 2 dx = ,\I,n where II· II denotes the L2 norm. These 
normalizations, in light of (2.6), impose a uniform H 2 bound on the sequence { u1,n}- As 
a result, there exists a subsequence with weak H 2 limit u E HJ. The imbedding of H 2 

in H 1 being compact, we find llu'II = 1, and sou is not identically zero. The natural 
question is whether ,\1 and u are indeed an eigenvalue and eigenfunction for some column 
with corresponding a E ad. If so, then a is necessarily the desired optimal design. This 
question was first addressed by Senatorov [33] in the context of a second order problem. He 
discovered that one must consider weak convergence of the reciprocals of the coefficients 
of the highest order term. This observation continues to hold for fourth order problems, 
the details of which we now sketch. 

Consider the weak formulation 

(3.1) 

Our previous remarks reveal that the right hand side converges to -\1 f0
1 

u'v' dx for each 
such v. Regarding the left side we define en= ahu~ n, and, as in (2.4), deduce from (3.1) 

' 

(3.2) 

for some an, bn E R. As {ln} and {u1,n} are uniformly bounded in L2 so to must be 
{anx + bn}. From the simple inequality (a!+ b!) ~ 16l!anx + bnll 2 we find {an} and {bn} 
to be uniformly bounded, with the result that ln converges strongly in L2 to a function 
f The left side of (3.1) therefore converges to f0

1 
(v" dx. It remains to characterize this 

r Recalling the pointwise bounds on the an we may assume that a;;P converges in the 
weak* topology of L= to some function µ. Thus, ena-;;P converges weakly in L2 to µ"e. 
But lna-;;P = u~ n, whose weak L2 limit is u". Hence, ( = u'' µ- 1 . Defining a= µ-I/p we 
may pass to the.limit in (3.1) and_obtain 

- -II II A _, I 11 11 
0 

aPu v dx = ,\1 
0 

u v dx 
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As a result, >-1 = -\j{u). Now u, being the strong L2 limit of a sequence of positive 
functions is itself positive, and, as a consequence, j = 1. We need only determine whether 
u E ad. One may verify the pointwise bounds without trouble. With respect to the 
integral constraint.. we consider the convex function f : R --+ R, f(t) = r 1!P. The 

integral functional c.p 1-+ f0
1 f( c.p(x )) dx is then weak* lower semicontinuous on £ 00

, see e.g., 
Dacorogna [12, Theorem 1.1]. As 1/0'~ converges weak* to 1/7fP, this allows us to conclude 
ili~ . 

11 

udx = 11 

f(l/uP)dx::; liminf 11 

f(l/O'!)dx = lim 11 

O'ndx = l. (3.3) 

If indeed equality does not hold in (3.3) then there exists a a- E ad such that a-( x) 2: u( x) 
for almost every x E (0, 1). From Rayleigh's principle we then easily deduce .X 1 (a-) 2: .X 1 (u). 
Finally, from Theorem 2.4 we confirm that a-= cr8 • We have now proven 

Theorem 3.1. There exists an even a- E ad for which .X 1 (0')::; .X 1 (l,) for every O' E ad. 

Our choice of ad was motivated by our interest in the "shape" of the strongest column. 
Theorem 3.1 however, may also be applied in the search for the "composition" of the 
strongest column. For example, consider the design problem where one must combine two 
materials in fixed proportion so as to maximize the buckling load of the resulting column. 
The set of admissible designs is then 

adE = { ax(x) + ,8(1 - x(x )) : x is the characteristic 

function of a subset of ( 0, 1) with measure 1 }, 

where a and ,8 are the Youngs moduli of the respective materials with I the volume fraction 
of the first. In this context, Theorem 3.1 states that .X 1 attains its maximum on the weak* 
closure of adE, i.e., on 

ad'e = {aB(x) + ,8(1- B(x)): 0::; B(x)::; 1, 11 

Bdx = 1 }. 

4. Necessary Conditions 

We search now for a characterization of our optimal design, er. Typical of many 
such problems, two distinct approaches are possible. Taking advantage of the variational 
structure, the so-called direct approach attempts to swap the order of the limits in 

inferring necessary conditions from the resulting saddle point. The indirect approach 
strives to determine a- through knowledge of the tangents to the graph of O' 1-+ .X 1 ( O') and the 
normals to ad. Our implementation of these two approaches intersect in their reliance on 
(i) recent work of Auchmuty [2] on dual variational principles and (ii) a lopsided minimax 
principle. 
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Proposition 4.1. X11 (o-) = sup A(o-,u), 
uEHi 

u 1--+ A(o-,u) attains its maximum only on those u E £(0-) for which !lu'II = y'2>.11 (o-). 
-

Proof: In addition to being bounded above by 2>.11 
( O' ), the map u 1--+ A( o-, u) is coercive and 

weakly upper semicontinuous on HJ and therefore attains its maximum at some u E HJ. 
Necessarily, V 2 A(o-,u), the Gateaux derivative of u 1--+ A(o-,u) at u, must vanish. That is, 

As a result, u is an eigenfunction corresponding to the eigenvalue v'2!!u'l!-1
. As u maxi­

mizes u 1--+ A( o-, u ), this must be the least eigenvalue, >. 1 ( o-). I 

Proposition 4.2. For F: Xx Y-+ R with x 1--+ F(x, y) concave and upper semicontinu­
ous and y 1--+ F( x, y) convex and lower semicontinuous, if there exists a y0 E Y and Co E R 
such that {x EX; F(x, Yo)~ c0 } is compact and c0 < infyEY supxEX F(x, y) then 

sup inf F(x, y) = inf sup F(x, y). 
xEX yEY yEY xEX 

Proof: This is a weakening of Theorem 3.7, Chapter 2, in Barbu and Precupanu [3]. I 

It is with the indirect approach that we shall meet with the greatest success. For 
prior attempts in this context see Haug and Rousselet [18] and Choi and Haug [7]. Our 
principal tool is the generalized gradient of Clarke [10]. 

For a real valued Lipschitz function Fon a Banach space X we consider the generalized 
directional derivative of F at x in the direction v, 

F o( . ) _ 1. F(y + tv) - F(y) 
x, v = 1m sup . 

y-+ X t 
t ! 0 

Denoting the dual of X by X* and x*(x) by (x*,x) when x* EX* and x EX, Clarke's 
generalized gradient of F at x is the nonempty, convex, weak* compact set 

8F(x) = {e EX*; F 0 (x; v) ~ (e, v) Vv EX}. 

We demonstrate that o- 1--+ >.11(o-) is Lipschitz on ~ = {o- E £=; IIB- - o-11= < a/2}. 
Choose 0-1, 0-2 E ~ such that >.11 ( 0-1) > >.11 ( 0-2) and note that for u1 E Argmax A( a1, · ), 
the set on which u 1--+ A( a 1 , u) attains its maximum, 

l>-11(0-1)- >-11(0-2)1 ~ IA(a1,u1)-A(a2,u1)I 

~ fo 1 

lo-f - a~llu~l2 
dx 

:S llu~ll2llaf - a~II= :S a-2Ppl2,6lp-lllo-1 - 0-211=· 
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Without loss we assume that .A1 ( B-) is a double eigenvalue. Then £( B-) is two dimen­
sional and ArgmaxA(o-,·) is the intersection of £(8-) with the sphere llu'II = y'2~11 . It 
will be convenient to choose a basis { u1, u2} for £( B-) for which J01 u~uj dx = 28ij ~12. For 
then, 

ArgmaxA(B-, ·) = {au 1 + bu2 ; a2 + b2 = l}. (4.1) 

Regarding the Gateaux derivative of u 1--+ A( u, u) at a- in the direction T/ we have 

(4.2) 

Denoting convex hull by 'co', the sense in which the gradient of a maximum is the maximum 
of the gradients is 

Theorem 4.3. 8,\11(8-) = co {-~a-P-1(au~ + bu~)2; a2 + b2 = 1}. 

Proof: From ( 4.1) and ( 4.2) this set is precisely 

co {D1 A(B-, u); u E ArgmaxA(B-, ·)}. (4.3) 

Our claim does not fit neatly into Clarke's result (10, Theorem 2.8.2] on the generalized 
gradient of a pointwise maximum. The contortions involved in fitting our problem to 
Clarke's hypotheses are no less difficult, and far less instructive, than an independent 
proof. 

Let us denote the set in ( 4.3) by 3. We show that 3 C 8.-\11( a). For e E 3 and 
r, E L00 

n 

(e,r,) = Lµi(D1A(o-,ui),r,) 
i=l 

hence e E 8.-\11 (8-). 
Regarding the reverse inclusion we define 

and prove 

g(u; rt)= max (e, r,), 
ee:::: 

u E E, T/ E L 00 

(,\11)o(u;r,) ~ g(u;r,). 

Select un -+ u in L00 and tn l O in R such that 
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converges to (X11)0 (a;77). Select Un E ArgmaxA(an +tn11,·) and note that 

with the right side equal to ('D1A(an + ln1J, un), rJ), for some tn E (0, tn), by the Mean 
Value Theorem. As an+ tn'T/--+ a in L00 and Un E ArgmaxA(an + tn'T/, ·) we recall from 
our work in Theorem 3.1 that Un _., u E Argmax A( a,·) in H 2 and ( an + tn'T/ )Pu~ --+ aPu" 
in L 2, and hence u~ --+ u" in L 2, i.e., Un --+ u in H 2. Recalling ( 4.2) this establishes 

with u E ArgmaxA(a, ·). As a result, 

If ( is now an element of 8>.11(&) then g(o-;rJ) ~ ((,rJ) for each 'T/ E L00
• Consequently, 

0 = min max (l - (, rJ). 
11EL00 ee:::: 

Noting that 3 is closed and bounded in L1 and finite dimensional (it lies in the span of 
{lu~l 2 ,u~u~, lu~l 2

}) we find it compact in (L00 )*. Invoking Proposition 4.2 yields a e E 3 
for which 

(l-(,rJ)=O 

It follows that ( = t and so o>.11 ( o-) C 3. I 

This proof, though identical in outline to Clarke [10, Theorem 2.8.2], has exploited 
additional properties of >.1 and A to make up for the missing hypotheses. Observe that 
when >.1 (a) is simple the generalized gradient reduces to the singleton 

As zero is not a tangent direction to >.11 at a-, i.e., 0 =I=- 8..\11 (&), we are compelled to 
investigate the constraint set ad. Separating the equality from the inequality constraints 
brings 

C = {a E L00
; a~ a(x) ~ ,8} and V(a) = fo1 

adx. 

As a- minimizes a~ >.11(a) subject to a EC and V(a) = 1 we deduce from the Lagrange 
Multiplier Rule, (10, Theorem 6.1.1], that a nontrivial linear combination of elements in 
o>.11 (&) and oV(o-) is normal to Cat a-. In particular, 
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where Vt ~ 0, Vi + Vi > 0, and 

.iYc(&) = {( E (L 00 )*; fo\a- - a)((dx)?. 0, Va EC} 

is the cone of normals to C at 8-. In light of our previous calculations, and the fact that 
8V(a) = 1 E L 1 , there exists al E 8.\11(8-) for which 

11 

(8- - a)(vd + v2)dx?. 0, Va EC. ( 4.4) 

Observing that vd > 0 we find that v2 ?. 0 requires, through ( 4.4), that a = /3, an 
impossibility. Likewise, should v 1 = 0, (4.4) would require 8- = a (since v2 < 0). Taking 
£2 = v2/v1 we arrive at 

Va EC. 

The subsequent reduction to pointwise optimality conditions follows a well known course, 
see e.g., Cea and Malanowski [8]. In particular, 

a(x) =a=> -{(x) ~ £2 

a< 8-(x) < /3 => -€(x) = £2 

o-( X) = /3 => -t( X) '?_ f 2 

(4.5) 

(4.6) 

(4.7) 

for almost every x E (0, 1). To appreciate this result we must recall that [ E 8.\11 (8-) 
means 

n 

-[(x) = f Ltia-P-1(x)(aiu~(x) + biu~(x))2, where 
i=l 

n 

ti ?. 0, L ti = l, and a; + b; = 1. 
i=l 

On expanding this sum of squares, ( 4.6) becomes 

~p-l(c 1~1112+c l~1112+c ~11~11)-l a 01 U1 02 U2 03U1 U2 - , where (4.8) 
n n n 

81 = f Ltia;/f2, 82 = f Ltib;/f2, 83 =p Ltiaibi/f2. 
i=l i=l i=l 

Observing that 8182 indeed dominates 8if 4, we have recovered (1.8), the necessary con­
dition of Bratus and Seiranian [6] and Masur [22]. With Seiranian [32] we remark that 
one may chose a basis for £( 8-) that renders 83 zero. Ignoring any bound constraints, 
Masur [22] and Seiranian [32] found a a and two orthogonal elements of £(a) for which 
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( 4.8) holds with p = 2. This appears to be the design obtained by Olho:ff and Rasmussen 
(25] and, by all indications, the one preferred by our algorithm as well (see §7 Fig. 1). 
It appears likely that in this case the bound constraints are inactive due to the fact that 
where f, is less than one, f,2 is much less than one. As f,2 is the quantity that appears 
in the Rayleigh quotient we expect it to be as large as possible. This suggests that f, is 
bounded away from zero, independent of a. This lower bound with the integral constraint 
together support the conjecture that f, is in fact bounded above as well. Hence, when a 
and /3 are respectively chosen below and above these 'natural' bounds, condition ( 4.8) is 
free to stand on its own. Clearly these natural bounds must depend on p. In fact, we shall 
provide numerical evidence in §7 in favor of the argument that the natural lower (upper) 
bound is an increasing ( decreasing) function of p for p > l. 

Unfortunately, it is not known whether ( 4.8) is a sufficient condition for optimality. 
The proof of sufficiency offered by Tadjbakhsh and Keller (35] is incorrect. They proceed as 
if ..\ 1 (a) corresponds to the least eigenvalue of (2.5) and accordingly admit all functions that 
satisfy the boundary conditions as test functions in a Rayleigh principle argument. In fact, 
(2.5) possesses a double zero eigenvalue, hence only those functions that are orthogonal 
to the first two eigenfunctions can be admitted. We remark that Ramm's claim (30], that 
Tadjbakhsh and Keller mistakenly applied Holders inequality in their sufficiency proof, is 
incorrect, though (35, §6 (25)] is only valid for n < 0. 

Though ( 4.8) need not hold over the entire length of the column, we now show that 
where it does hold it requires that a be smooth. 

Theorem 4.4. If a< a(x) < (3 for eacb x E (a, b) C (0, 1) tben a E C 00 (a, b). 

Proof: We observed in (2.4) that 

where li is an affine function of x. Now multiply ( 4.8) by 3-p+I, 

b1(&Pu~)2 + b2(&Pu~)2 + b3(aPu~)(aPu~) = a-p+i. 

(4.9) 

(4.10) 

From ( 4.9) we find, on recalling HJ C C 1 , that each term on the left of ( 4.10) is C1, and 
hence that a- E C 1 . Writing ( 4.9) in the form 

~11 li - ~1 ui 
Ui = __ f,_P __ 

we conclude ui' E C 1
, that is Ui E C3

. Repeating this exact argument leads to a E C3 and 
Ui E C 5

• The result then follows from continued repetitions. I 

Having succeeded in pursuing the indirect approach we now look to the possibility 
( and the implications) of exchanging the limits in the characterization 

~11 = A(o-,u) = inf sup A(a,u). 
uEad uEH2 

0 

Recalling Proposition 4.2, this will require convexity and lower semicontinuity of a i--+ 

A( a, u ), and concavity and upper semicontinuity of u i--+ A( a, u) as well as compactness of 
one of its upper level sets. · 
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Remark 4.5. We noted the weak H 2 upper semicontinuity of u 1--+ A( a, u) in Proposition 
4.1. As { u E HJ; A( a, u) 2:: c} is bounded it is also weakly compact (independent of c E R 
and a E ad). Convexity of a 1--+ A( a, u) follows on restricting p :S 1. 

The two remaining properties will require more work. Note that u E Argmax A( a,·) implies 
A(a, u) = A(a, -u) = ,\11(a) while A(a, 0) = 0. Hence, u 1--+ A(a, u) is not concave on any 
set that contains Argmax A( a,·). This suggests that we examine the half-spaces exterior 
to {u E HJ; llu'II :S y'2,\11(a)}. Unfortunately this ball, and hence its support planes, 
depend on a. Consequently, if we expect these half-spaces to vary continuously with a 
we must be careful in our choosing. This choice is greatly facilitated by the assumption 
that a lies in ad*, those functions in ad that are even about 1/2. For in this case one may 
speak unambiguously of u*, the positive even eigenfunction corresponding to ,\1(a*). We 
normalize llu~II = y'2,\11(a*), and consider the associated half-space 

Iler.= {v E H5; ,\i(a*) 11 

u~v' dx > 2}. 

Proposition 4.6. For a* E ad*, u 1--+ A( a*, u) is concave on Iler •. 

Proof: The quadratic form associated with the second Gateaux derivative of u 1--+ A( a*, u) 
at u E Iler. satisfies 

(ViA(u., U)v, v) = v'2ilu'll-1 
[ lv'l2 dx - [ u!lv"l2 dx - v'2-1 llu'II-' ([ u'v' dx) 

2 

:S (v'211u'll-1 - ,\1(a*)) 11 
lv'l2 dx 

:S 0, Vv E H5. 1 

This suggests that we penalize A with the indicator function of Iler., 

( ) { 
0, if u E Iler.; 

1r a* u = . ' oo, otherwise. 

This not only guarantees concavity but also respects lower semicontinuity. 

Proposition 4.7. a* 1--+ A(a*,u) - 1r(a*,u) is lower semicontinuous for the strong L 00 

topology on ad*. 

Proof: Now a;:-+ a* in£= clearly implies A(a;:,u)-+ A(a*,u) for each u E Hg. Regard­
ing lim sup 1r( a;:, u) :S 1r( a*, u ), it suffices to show that 

1r(a:,u)-+O, 

From the proof of Theorem 3.1 it is clear that ,\1(a:)-+ ,\1(a*) and u*(a:) __. u*(a*) in 
HJ. Hence 

Ai(a:) 11 

u~(a:)u' dx-+ Ai(a*) 11 

u*(a*)u' dx > 2. 

From this we conclude that u is eventually in each Iler:, i.e., 1r( a;:, u) = 0. I 

One may now modify Proposition 4.2 (see Cox and McLaughlin [11, §7]), and conclude 
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Theorem 4.8. Hp:::; 1 tben (a, u.(a)) is a saddle point for A over ad. x HJ. Tbat is, 
denoting u.(a) by u, 

A( a-, u) :::; A( a, u) :::; A( o-* , u) Y ( o-*, u) E ad. x H~. 

The latter inequality yields the following maximum principle 

Ya-. E ad •. 

The subsequent pointwise conditions call for an £2 > 0 such that 

&(x) = 0::::} a-p-l(x)lu"(x)l2 :::; p_2 

0: < a(x) < f3 =} a-p-l(x)lu"(x)l2 = £2 

a(x) = (3 =} a-P-1(x)lu"(x)l2 ~ £2 

(4.11) 

(4.12) 

(4.13) 

for almost every x E (0, 1 ). As o- ~ -\11 
( o-) is convex when p :::; 1 these conditions 

are also sufficient. Hence, we see that where the direct method applies it gives more 
information. In particular, the necessary conditions ( 4.11-13) involve only a single buckling 
mode. Comparing these to the more general conditions in ( 4.5-7) suggests that -\1 ( & ) is 
indeed a simple eigenvalue when p:::; 1. We shall see numerical evidence of this in §7. The 
critical case, p = 1, where the optimal buckling load changes multiplicity, has received 
considerable attention. In this case, the right side of ( 4.11-13) is independent of a. In 
particular, a number of workers have claimed that 

lu"(x)I =£. ( 4.14) 

We remark however that in the absence of a second buckling mode the bound constraints 
must become active near the inflection points of u, making ( 4.11) and ( 4.13) indeed neces­
sary. Nonetheless, Seiranian (32], who deduced (4.14) from (1.8), proceeded to solve (4.14) 
in conjunction with (2.3), yielding 

{ 

3/2(1 - 16x2
), 

u(x) = 3/2(16x - l6x2 -3), 
3/2(32x - l6x2 

- 15), 

if O:::; X :::; 1/4 
if 1 / 4 :::; x :::; 3 / 4 
if 3 / 4 :::; X :'.S 1. 

(4.15) 

On evaluating the Rayleigh quotient with this u and a specific C 1 test function Seiranian 
arrived at a buckling load of 48. This design, like that of Tadjbakhsh and Keller for p = 2, 
vanishes at 1 / 4 and 3 / 4. Unlike the design of Tadjbakhsh and Keller however, we are 
not able to show it to be suboptimal. We can only stress that lacking an existence proof 
for o: = 0, p = 1, there is no reason to believe that ( 4.14) is a necessary condition for 
optimality. 
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5. Other Boundary Conditions 

Intent on a clean exposition we have to this point concentrated solely on the clamped­
clamped boundary conditions u(0) = u'(0) = u(l) = u'(l) = 0. We now apply the work 
of the previous sections to the other standard sets of boundary conditions, in particular, 
hinged and free. A column is said to be free at a point when no conditions are prescribed, 
while it is hinged, or simply supported, when one requires its displacement to vanish there. 
As a matter of notation, the weak formulation of the buckled column equation will read 

11 11 II II I I 

0 

aP u v dx = µ 
0 

u v dx, Vv EV.·· i,J (5.1) 

where ½,j is a subspace of H 2
, with i and j chosen from {0, 1, 2} according to whether the 

respective end is either free, hinged, or clamped. For example, 

V1,2 = {u E H 2
; u(0) = 0, u(l) = u'(l) = 0} 

specifies the hinged-clamped column. We denote the least eigenvalue of ( 5.1) by µi,j (a), 
and the corresponding space of eigenfunctions by £i,j(a). As before, u E £i,j(a) implies 
that both u and aPu11 are elements of C1 ([0, 1]). In addition, such functions satisfy so 
called natural boundary conditions. In particular, if i = 1 then, in addition to u(0) = 0 
we find 

aPu 11 (0) = 0, 

while if i = 0 we have, in addition to (5.2), 

(aPu 11 )'(0) + µ0 ,j(a)u'(0) = 0. 

(5.2) 

(5.3) 

We shall consider only those µi,j(a) for which i + j 2:: 2, as otherwise µi,j(a) = 0. For 
comparison purposes we record these eigenvalues in the case of the uniform column. 

Clearly, µ;,j(l) = µj,i(l). Analogous to (2.5), for i + j 2'.: 2, (5.4) gives the uniform bounds 

7r2 aP /4 < µ. . (a) < 41r2 f3P 
- i,J - ' Va E ad. (5.5) 

As in §2 we address the multiplicity of µi,j(a) and the presence of positive eigenfunctions. 

Lemma 5.1. For a E ad, 
(a) If2 ~ i +j < 4, then µi,j(a) is simple and there exists a corresponding positive 

eigenfunction. 
(b) µo,2(a) < µ1,2(a) and µ1,1(a) < µ1,2(a) < µ2,2(a). 

Proof: (a) Seiranian noted for these boundary conditions that (5.1) is equivalent, except 
for the presence of a simple zero eigenvalue when ij = 2, to a second order problem with 
separated boundary conditions. It now follows from the oscillation theory of Sturm, see, 
e.g., Atkinson [1], that each µi,j(a) is simple and that for ij #- 2, aPu 11 is of one sign for 
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each u E £i,j(u). In case ij equals O or 1 this yields respectively a positive convex or 
concave element of £i,j(u). When ij = 2 we find that uPu" vanishes exactly once on (0, 1) 
for each u E £i,j(u). Here we find an eigenfunction that is convex on (O,x0) and concave 
on (x0 , 1) for some_x0 • As this function must vanish at O and 1 we conclude that it must 
be positive on (0, 1 ). 
(b) As ½+i,j C ½,j we find µi,j(u) ~ µi+I,j· Should equality hold, we conclude £i+1,j(u) C 
£i,j(u). As in (2.4), for u E £i,j(u) we deduce from (5.1) that 

(uPu")(x) = ((uPu")'(0) + µi,j(u)u'(0)) x + aPu"(0) + µi,j(u)u(O) - µi,j(u)u(x). (5.6) 

If µ 0,2(u) = µ 1,2(u) then for each u E £1,2(u) C £0,2(u) equation (5.6), in view of 
(5.3), reads 

( uPu")(x) = -µi,ju(x ). (5.7) 

On recalling that u(l) = u'(l) = 0 we see that u satisfies a linear homogeneous equation 
with zero terminal data, and hence, u = 0. 

If µ1,1(u) = µ1,2(u) then for each u E £1,2(u) C £1,1(u) (5.6), in view of (5.2), reads 

(uPu")(x) = ((uPu")'(0) + µi,j(u)u'(0)) x - µi,j(u)u(x). (5.8) 

So (uPu")(l) = (uPu")'(0) + µi,j(u)u'(0). But (o-Pu")(l) = 0 so (5.8) reduces to (5.7) and 
again the clamped conditions at 1 imply that u = 0. 

If µ 1,2(u) = µ 2,2(u) then for each u E £2,2(u) C £1,2(0-) equation (5.6), in view of 
(5.2), reads 

(uPu")(x) = (uPu")'(0)x - µi,j(u)u(x). 

Hence (o-Pu")(l) = (aPu")'(0), from which we conclude that u is either identically zero or 
not of one sign. This excludes the positive element of £1 ,2 (a) established in part (a). I 

Thanks to the presence of positive first eigenfunctions, the existence theory of §3 
applies directly to the problem of Lagrange 

sup µi,j(u), 2 ~ i + j ~ 4. (5.9) 
crEad 

We note that only for symmetric boundary conditions, i.e., i = j, should one expect an 
even optimal design. As µi,j(u) is simple when i + j < 4 we deduce from Theorem 4.3 and 
conditions ( 4.5-7) that 

&i,i(x) =a:::} &f,:;1(x)lu"(x)l2 ~ £2 

a< O"i,j(x) < (3 =} &f,71(x)lu"(x)J 2 = £2 

O"i,j(x) = (3 =} &f,;1(x)Ju"(x)l 2 2:: £2
, 

(5.10) 

(5.11) 

(5.12) 

for almost every x E (0, 1), where u E £i,j(o-i,j), As before, O-i,j is smooth where (5.11) 
holds. · 

The right side of (5.11) is the sole necessary condition offered by Keller [20] and 
Tadjbakhsh and Keller [35]. We now investigate the extent to which their claim is valid. 
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Recall that their analysis of the clamped-clamped column erred in neglecting (a) double 
eigenvalues, and (b) bounds on a. As the previous lemma precludes the former phenomenon 
we need only consider the latter. The observation to be made is that (5.10) and (5.12) 
are only needed near the zeros of u". As noted above, members of t'i,1(o-) and £2,0 (a) 
have second derivatives of one sign. As such, in these cases, (5.11) stands on its own (with 
the minor adjustment that a be allowed to vanish at 0 and/or 1). In addition, as the 
related second order problems are fully equivalent, i.e:, there are no spurious eigenvalues, 
Tadjbakhsh and Keller's sufficiency proof is correct. In summary, Keller [20] has the correct 
necessary condition for the hinged-hinged column, Tadjbakhsh and Keller [35] have the 
correct necessary condition for the clamped-free column, and the proof of sufficiency in 
[35] holds for both. We now recall their analytical solutions to these problems. 

Keller, in [20], with p = 2 and i = j = 1 reconciled (5.11) and (5.1) and found 

&1,1(x) = ½ sin2 0(x), 0::; 0:::; 1C", 
0( x) - ½ sin 20( x) = 1C" x, 0 :::; x :::; 1. 

We have observed that this is a shortened cycloid with parametrization 

x ( t) = 4
3

71" ( } ( t - sin t)) 

y(t) = }(1 - cost) 
0 ::; t :::; 21C". 

(5.13) 

This column buckles under an axial load of 41C"2 /3. In [35], Tadjbakhsh and Keller with 
p = 2 and i = 2, j = 0 reconciled (5.11) and (5.1) and found 

0-2,o(x) = ! sin2 0(x), -1C"/2::; 0:::; 0, 

0(x) - ½ sin20(x) + 1C"/2 = 1C"x/2, 0:::; x:::; 1, 

our parametrization being, 

x(t) = 2
3
,r (¾(t - sint)) + 1 

y(t) = ~(1- cost) 
- 1C" ::; t :::; 0. 

(5.14) 

This column buckles under an axial load of 1C"2 /3. Having argued in favor of the existing 
solutions to the clamped-free and hinged-hinged problems we now turn to the clamped­
hinged problem. 

We saw in Lemma 5.1 that the second derivative of each function in £2,1(a) must 
change sign. The effect of this is that (5.11) forces 8-2,1 to vanish at an interior point. In 
particular, when Tadjbakhsh and Keller reconciled (5.1) and (5.11) they found 

~ 4sin2 0(x) 
a2,1(x) = 

3
sin2 0(0), 0(0)::; 0:::; 1C", (5.15) 

0( x) - ½ sin 20( x) + ½ sin 20( 0) - 0( 0) = x( 1C" + ½ sin 20( 0) - 0( 0)), 0 :::; x :::; 1, 

½ sin 20(0) - 0(0) = -f sin3 0(0) cos-1 0(0) - 1r. 
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Taking a=½ sin20(0)-0(0) note that this o-2,1(x) vanishes at a/(1r + a). Tadjbakhsh and 
Keller assert that the column built according to (5.15) will not buckle under loads less than 
approximately 27.22 in magnitude. We show in the appendix that this column can not 
withstand loads exceeding 1r2 /3 - and so, in fact, is much weaker than the uniform column. 
In addition, as µ2,1 (a) corresponds to the second eigenvalue of its associated second order 
problem, the sufficiency proof of [35] is invalid. Hence, (5.15) is not an optimal design. In 
summary, (5.11) can not stand alone in the clamped-hinged case, a(x) 2:'.: a is is indeed an 
active constraint, so rendering (5.10) absolutely necessary. We suspect that there exists 
no solution to (5.9) when ij = 2 and a = 0. 

6. The Finite Dimensional Problem 

We discretize the interval [O, h, 2h, ... , ( N - l )h = 1] and approximate ¼,1 by the finite 
dimensional space ½~1, the subspace of ¼,1 whose elements, when restricted to [kh, (k+l)h], 
are cubic polynomials (see Strang and Fix [34]). As each member of ½~ is completely 
determined by the value of it and its derivative at each of the N mesh points, we identify 
½~j with R 2N-i-j. We next approximate ad with the class of piecewise constant functions 

N-l 

adh _ {a E RN-l: a~ O'k ~ /3, L O'k = N - 1}. 
k=l 

We have refrained from labeling elements of adh by ah to avoid confusion with powers of a. 
In this context, the infi_nite dimensional eigenvalue problem of (5.1) is now approximated 
by 

(6.1) 

Bh(a) and I<h, the so-called bending and stiffness matrices, are each real, (2N - i -j) x 
(2N - i - j), symmetric, positive definite, and banded with half bandwidth of four. Our 
interest is, of course, in µf)a), the least eigenvalue of (6.1). For, ash---+ 0, one finds e.g., 
in [34], that µf.i(a)---+ µi,j(a). The connection between the finite and infinite dimensional 
problems now understood, we concentrate solely on (6.1). It should cause no confusion 
if, in our presentation of the finite dimensional optimization problem, we suppress most 
dependence on h, i, and j. With this, (6.1) becomes 

(6.2) 

and we denote its least eigenvalue by ,\ 1 (a). Our finite dimensional problem of Lagrange 
1s now 

(6.3) 

The care that was taken in differentiating a 1-+ ,\1 (a) in §4 must also be exercised here. The 
occurrence of multiple eigenvalues is still possible. Clarke [10, Proposition 2.8.8] specifies 
the generalized gradient of the largest eigenvalue of a symmetric positive definite matrix 
in terms of a convex hull. Though such a characterization may suffice for an analytical 
description, as in §4, for computational purposes we have found it more useful to specify 
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first order conditions in terms of, less well known, "dual matrices". We state the result 
in general terms. We shall need sn, the class of n x n real symmetric matrices, and the 
Frobenius matrix inner product, ( A, B) = tr AT B. 

Theorem 6.1. Let B: RN-I-+ sn be (Frechet) differentiable with Bk(a) = 8B(a)/8ak 
and let K be a fi.xed symmetric positive semidefinite matrix of the same order n. Assume 
a E adh is such that ,\1 (a) has multiplicity t, with corresponding eigenvectors given by 
the columns of a matrix Q1 E Rnxt, normalized so that Qf KQ1 = I. Then a necessary 
condition for a to solve (6.3) is that there exist a symmetric positive semidefinite matrix 
U of order t, with trace equal to one, and Lagrange multipliers v and 'Yk, k = l, ... , N - l, 
such that 

ak = a ::::} 'Yk :::; 0 

a < ak < /3 ::::} 'Yk = 0 

ak = /3 ::::} 'Yk 2: 0 

(6.4) 

(6.5) 

(6.6) 

(6.7) 

for each k. Furthermore, this condition is also sufficient for optimality in the case that 
a 1--t B( a) is affine. 

Proof: In the following we use the notation U 2: 0 to mean that a symmetric matrix U is 
positive semidefinite. Regarding ..\1 : sn -+ R, we invoke Rayleigh's principle in 

..\1 = min { (q, Bq); q E Rn, (q, Kq) = 1} 

= min{(qqr,B); q E Rn, (q,Kq) = 1} 

Let Q E Rn x n be any matrix satisfying 

It is easily shown that 

(6.8) 

by using the spectral decomposition of(;, which by assumption has nonnegative eigenvalues 
adding to one, to obtain the requisite convex combination showing that the second set is 
contained in the first. It follows that 

..\1 = min{(QfJQT,B); (; E Sn, trU = 1, (; 2: O}. (6.9) 

Now take Q to be a matrix whose columns are eigenvectors of (6.2), normalized so that 
(6.8) holds. The first t columns of Q are the columns of Qi and 
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where ,\1 :s; .A2 :s; ... are the eigenvalues of (6.2), repeated according to multiplicity. 
Therefore, the matrices achieving the minimization in (6.9) are those defined by 

where U E St, with tr U = 1 and U 2: 0. Consequently, the generalized gradient of 
Bi--+ -,\1 (B) is the set of such matrices U (see Rockafellar [31, pages 29 and 35] or Clarke 
[10, §2.8]), no convex hull operation being required since the set of such U is convex. 

With ,\ 1 (a) = (,\ 1 o B)(a), the desired necessary conditions now follow from (i) the 
chain rule for generalized gradients (10, Theorem 2.3.10], (ii) the standard Lagrange mul­
tiplier rule [10, Theorem 6.1.1], and (iii) properties of the inner product. In particular, 

(6.10) 

These necessary conditions are also sufficient in the case that a i--+ B( a) is affine because 
the composition of a concave function with an affine function is concave. I 

Our attention to 8(-,\1) in (6.10) and 8,\:11 in Theorem 4.3 rather than simply 8.-\1 is 
merely an artifact of Clarke's concern with functions defined as pointwise maxima rather 
minima. Here, it was convenient to characterize -,\1 as the maximum of a Rayleigh quo­
tient where, in §4, we found it more advantageous to maximize a functional of Auchmuty, 
and hence to consider ,\_11

. 

A different proof of the unconstrained version of this theorem was given ( when K = I) 
by Overton (26], following work of Fletcher (14]. Then x n matrix (J is known as a "dual 
matrix" by analogy with "dual variables" (Lagrange multipliers) familiar from mathemat­
ical programming. The t x t matrix U may be called a "reduced dual matrix", but since 
it is the one we shall need as a computational tool we shall also refer to it as simply the 
dual matrix. The distinction between U and U is analogous to the notational question 
of whether inactive constraints in a nonlinear program should be assigned zero Lagrange 
multipliers. 

In the case that t = 1 and the bound constraints are inactive, the necessary condition 
reduces to the requirement that the gradient of >. 1 (a), whose elements are qf Bk(a)q1 , has 
the constant value v. (Here q1 is the only column in Q1 , and U is the scalar one.) In the 
case that t = 2, let 

(6.11) 

let the two columns of Q1 be q1 and q2 and again assume that all bound constraints are 
inactive. The necessary condition then becomes 

together with the trace and positive semidefinite constraints on U. Without loss of gener­
ality, 61 and 62 may be taken to have nonnegative sign, and the normalizing trace condition 

24 



may be replaced by the assumption that v = l. The positive semidefinite constraint is 
then simply 

8182~8i/4. 

This is the same necessary condition given by Bratus and Seiranian [6) and Masur [22). We 
note that the derivation given here not only applies fort > 2, but is much simpler than that 
given by [6) and [22) for the case t = 2. In a footnote, Masur conjectured that the positive 
semidefinite condition on U would also be the correct necessary condition fort > 2. Bratus 
[7) gave a discussion of necessary and sufficient conditions for general multiplicity t, but 
the given necessary condition concerns the necessary sign of the directional derivative of 
,\1 for all feasible directions; the positive semidefinite condition on U was apparently not 
obtained. 

Before discussing the algorithm that springs from Theorem 6.1 we investigate the 
extent to which it suggests a new tack on the infinite dimensional problem. Regarding 
the variational principle of (6.9) we consider J(+(X), the space of positive compact linear 
operators on a real separable Hilbert space X. Each T E J<+(X) possesses a countable 
sequence of eigenvalues ,\1 (T) ~ ..\ 2 (T) ~ · · · 1 0 repeated according to multiplicity and 
a (possibly infinite) trace tr T = I::1 ,\i, In this context it is not difficult to show for 
symmetric TE J<+(X) that 

..\1(T) = max{trTU; U E J<+(X), trU = l}. 

Recall that u i---+ ( crPu")" and u i---+ -u" are positive symmetric isomorphisms of HJ onto 
H-2 and HJ onto H-1 respectively. We denote these maps by A and B, remark that B 1l2 

is a positive isomorphism of HJ onto L2 , and denote by I the compact imbedding of HJ 
in HJ. With <p = B1l 2 Ju, and * denoting adjoint, the buckled column equation receives 
the formulation 

(1/..\)rp = B1/2JA-1(B1/2J)*<j). 

By construction, B 1l2 JA- 1(B 1l 2 I)* is a symmetric member of K+(L 2 ). Although we 
may now proceed to compute 8..\11 as in the previous theorem, this representation suffers 
from its dependence on the unknown A-1 and B 1l 2 in contrast to Theorem 4.3 that works 
directly with A and B. 

We now turn to the question of how to solve the finite dimensional optimization 
problem (6.3). Few papers in the literature have attempted to do this in any way that 
respects the nonsmoothness of the objective function. Polak and Wardi [28) describe an 
algorithm for maximizing the least eigenvalue, of a variety of important structures, that 
accounts for the presence of multiple eigenvalues. They focus however on the clamped 
vibrating column, (crPu")" = .Xu, u E HJ, a problem which has long been known to admit 
only simple eigenvalues (see e.g., Leighton and Nehari [21, Lemma 4.1)). Our algorithm 
differs from that of [28] in our attention to the added structure of the generalized gradient 
of .A1 as revealed in the theorem above. We use an algorithm specifically designed to exploit 
this structure, which is based on Overton [26), but modified to be far more efficient for 
moderate to large mesh size N. ·· 

Given a E adh with ..\1(a) and ..\2(a) the two least eigenvalues of (6.2) we normalize the 
corresponding eigenvectors q1 and q2 so that Qi = [q1 q2] satisfies Qf KQ1 = I, the 2 x 2 
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identity matrix. These eigenvalues and eigenvectors are computed by subspace iteration 
with a block size of two, with the requisite linear systems solved directly in terms of the 
Cholesky factors of B(cr) (see Bathe and Wilson [5] for details). 

Define the approximate multiplicity t of ,\1 by t = 2 if 

and t = 1 otherwise. Here T is a tolerance which may be adjusted during the optimization 
process. A multiplicity higher than two is excluded (for sufficiently small h) by Lemmas 
2.1 and 5.1. Now consider the following linear program (LP): 

subject to 

where 

max dN 
dERN 

Ed= e 

Fd~ f 

dk = 0, k E J 

a - CTk ~ dk ~ /3 - CTk, k = l, ... N - l 

(LPO) 

(LPl) 

(LP2) 

(LP3) 

(LP4) 

(LP5) 

(i) The first N - l components of d represent proposed changes to cr, while the last 
component approximates the corresponding change in ,\1 (cr). Let us write d = [77Tw]T, 
with 77 E RN- 1 , w ER; 
(ii) p is a scalar, whose purpose is to ensure lldll is not too large; 
(iii) J is an index set, which effectively removes the corresponding variables from the linear 
program; 
(iv) The first row of the matrix Eis [1, ... , 1, O], and the first element of the right-hand 
side vector e is 0. This ensures that the changes to cr respect the integral constraint; 
( v) The second row of E is 

and the corresponding element of e is 0. If t = 2, then E contains an additional two rows, 

[-q[B1(cr)q2, ... ,-qf BN-1(cr)q2, 1] and [-q[B1(cr)q2, ... , -q[BN-1(cr)q2,0] 

with corresponding elements of e set to >.2 ( cr) - ,\ 1 ( cr) and O respectively; 
(vi) If t = 1, F contains the single row 

[-qf B1(cr)q2, ... , -qf BN-1(0")q2, 1] 

and f is the scalar .A2 ( O") - .A1 (a). If t = 2, F and f are empty,· i.e. (LP2) may be removed. 
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We note that the given rows may be computed very efficiently, since the derivative 
matrices Bk( O') are extremely sparse. 

The justification for (v) and (vi) is as follows. If t = l, the second row of E imposes 
a linearization of the nonlinear equation ..\1(0- + 77) = ..\1(o-) +w, while the only row in F 
imposes a linearization of the inequality ..\2(0-+77) ~ ..\1(o-)+w. Since w is being maximized, 
the solution to the linear program yields the steepest ascent direction for ..\ 1 (o-), projected 
to satisfy the integral and bound constraints, with steplength required to be short enough 
that the linearized value for ..\2( a + 77) does not drop below that for ..\1 ( a + 77 ), and that 
the various bounds are satisfied. If t = 2, the second through fourth rows of E give a 
linearization of the appropriate set of three nonlinear equations imposing the coalescence 
of ..\ 1(0-+77) and ..\2(0-+77), see [16]. The common linearized value, ..\1(0-)+w, is maximized, 
subject to the given constraints. 

Theorem 6.2. Suppose that r = 0 so that the multiplicity estimate t is exact, and 
suppose that p > 0 and J is the empty set. Then d = 0 is a (nonunique) solution to the 
linear program given above if and only if (6.4) holds for some U Est with tr U = l, some 
v ER and some "YE RN-I satisfying (6.5-7). 

Proof: By the usual Lagrange multiplier rule, the linear program admits the solution d = 0 
if and only if there exist multipliers v ER, 8 E Rt(t+I)/2 and "YE RN-I satisfying 

with "Y subject to the standard sign condition. Setting U = 81 ( = 1) if t = l and defining U 
by (6.11) if t = 2, we have (6.4-7) with trU = 1. The same argument holds in the reverse 
direction. 1 

Note two points: there is no positive semidefinite condition obtained on U, and the 
solution d = 0 is generally not at a vertex of the feasible region, so is not unique. 

Our algorithm for solving (6.3) generates a sequence in adh. Each successive approxi­
mation is obtained from the previous one by consideration of a linear program (LP) of the 
form given above. We first define a simple version of the algorithm, but one which is too 
costly for practical use. In this version, we obtain a+ 77, a candidate replacement for a, 
by solving the LP ford= [77Tw?. If ..\1(a + 77) > ..\1(a), a is replaced by a+ 77 and the 
process repeated. Otherwise, o- remains unchanged, the trust region radius p is decreased 
by a factor of two, and the revised LP is considered. This kind of trust region approach 
can be made very effective by modifying the size of p according to how well the actual 
increase in ..\ 1 (a) agrees with the linear prediction w, as discussed in Fletcher [14] in the 
context of general nonlinear programming. As recommended by Fletcher, we double p if 
the ratio of actual to predicted increase exceeds 0. 75 and halve p if the ratio is less than 
0.25. The process is terminated when lldll ~ e, a convergence tolerance. 

However, the expense of obtaining the optimal solution of each linear program is not 
justified. Although the "limit" LP defined by a equal to a solution of (6.2-4) has an 
optimal solution which is not a vertex, generically, any LP solved during the successive 
approximation process can be expected to have a unique solution which must be at a vertex. 

27 



Since only a few constraints involve all the variables, most of the constraints defining a 
vertex are simple bounds, and most of these may be trust radius bounds of the form (LP5). 
Since the only purpose of the trust radius bounds is to avoid taking steps too large for 
the linearizations to be accurate, there is little to be gained by finding the exact set of 
active bounds. We therefore partially solve the LP as follows. We first attempt to obtain a 
feasible point for the LP by setting d to the least norm solution of (LP1,LP3), contracting 
this step if necessary to satisfy the various inequalities. This contraction effectively scales 
the right-hand side of the only possible inhomogeneous equality constraint in the LP, that 
corresponding to the third row of E in the case t = 2. The rationale here is that if the least 
norm step satisfying the equality constraints is not feasible, the underlying approximations 
are probably not good enough to justify the solution of the unmodified LP. We then start 
the LP solution process as in a projected gradient method, augmenting d by projected 
gradient steps with steplengths determined by the inequality constraints and bounds. The 
gradient being projected is that of the LP objective, i.e. the vector [O, ... , 0, 1], while 
the constraints determining the projection are the equality constraints and any inequality 
constraint and bounds encountered during the process. This continues until either (a) 
a trust radius bound of the form (LP5) is encountered, or (b) the norm of the current 
projected gradient increment drops below the tolerance € ( unlikely to happen first). At 
this point the process of partially solving the LP is terminated. Anywhere from zero to 
many active bounds of the form (LP4) may be encountered by this process, as well as, 
possibly, the inequality (LP2) (in the case t = l ). By adding any active bounds encountered 
to the set J, we avoid having to process these bounds again during the (partial) solution of 
subsequent LP's. However, the signs of the associated bound multipliers must be checked 
after the partial LP solution and bounds with the wrong sign removed from J if necessary. 
The entire process is very efficient, requiring QR factorizations of matrices with only two 
to four columns, with rows removed corresponding to active bounds. For complete details 
of the process, see [27]. 

In the case t = 2, the LP partial solution process generates four multipliers corre­
sponding to the rows of E, namely v, 81 , 82 , and 83 . If the corresponding dual matrix U, 
defined by ( 6.11 ), is not positive semidefinite, this is a clear indication that the multiplicity 
estimate t is incorrect, and so r is reduced by a factor of ten. In principle, it might be 
necessary to use a more sophisticated technique to recover from a multiplicity estimate 
which is too large. For example, if the algorithm was started at a point where all the op­
timality conditions except U 2: 0 were satisfied, it would be necessary to split the multiple 
eigenvalue to obtain an ascent direction; this is explained further in [26] and [27]. However, 
this technique has not been required in our computational experiments for the Lagrange 
problem. 

This completes our outline of the algorithm used to generate the numerical results 
given in the next section. For more algorithmic details, see [27]. We do not have any proof 
that the given algorithm will converge to a solution of (6.3), but given any approximate 
solution we may verify the required signs of I and the eigenvalues of the dual matrix U, 
and compute the residual of the approximate equation (6.4). We have found the algorithm 
to be very effective in practice as the numerical results attest. 
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7. Computational Results 

The algorithm outlined in the previous section has been implemented in Fortran 77 and 
tested extensively. Subroutines from the Linpack [13] and Eispack [17) libraries were used 
to (a) perform the-QR factorizations required during the partial LP solution process (for 
matrices with at most four columns), (b) obtain the Cholesky factorizations of B( a) needed 
for subspace iteration ( these matrices have only seven nonzero diagonals) and ( c) solve 
the reduced generalized eigenvalue problems required for subspace iteration, producing 
eigenvectors which are orthogonal with respect to I{ (these matrices have order two). 
Parameters were set as follows: T, the relative multiplicity tolerance, was initialized to 
0.1; p, the trust radius, was initialized to 5.0; E, the convergence tolerance, was set to 
.001. The initial a was set to the constant one, corresponding to the uniform column. 
Runs were made for various values of N, the number of mesh points; p, the power of a 
in the differential equation; a and /3, the lower and upper bounds on a, and the various 
homogeneous boundary conditions: clamped-clamped, clamped-hinged, clamped-free and 
hinged-hinged. 

The algorithm was found to be very efficient, typically invoking subspace iteration, in 
the computation of the two least eigenvalues of (6.2), about 50 times prior to reaching the 
convergence tolerance. At the final iterate the residual of the approximate equation ( 6.4) 
was typically found to have norm about 10-3_ There was usually no difficulty in determin­
ing the correct final multiplicity t, with corresponding positive semidefinite dual matrix U. 
In the cases where the final multiplicity t was two the gap between >. 1 and >. 2 was typically 
reduced to 10-6 • The subspace iteration was itself very efficient, requiring only one or two 
steps on all but the first few steps of the optimization, reflecting the good separation of >. 2 

from >. 3 and the availability of an excellent initial two-dimensional subspace, namely the 
span of the eigenvectors q1 and q2 computed at the previous optimization step. (The first 
subspace iteration was initialized using the first two columns of the identity matrix.) The 
initial a in each case was that of the uniform column, a = l. Symmetry was not imposed 
on the algorithm's subsequent choices of a. A typical run for N = 513 required 1.5 hours 
on a Spare station. 

We begin our summary of the results with p = 2. Under the assumption that each 
transverse cross-section of the column is circular we recall that a is proportional to the 
square of the cross-section's radius. Plotting both ±fo then gives a lengthwise cross­
section of the associated column. With this representation one may then view the corre­
sponding buckling mode( s) simultaneously. Our figures, generated by Matlab [23), portray 
the column in the piecewise fashion produced by the algorithm of §6 while using dashed 
curves(s) to indicate the buckling mode(s). We remark that for those optimal designs with 
double buckling loads the corresponding buckling modes depend on our initial choice of 
subspace, in subspace iteration, and a. 

Figure 1 gives our strongest clamped-clamped column and its first two buckling modes. 
Here p = 2, a = 0, /3 = 10, with a double buckling load of 52.3533. This value agrees to 
four figures with that obtained by Olhoff and Rasmussen [25), Masur [22), and Seiranian 
[32). 

On increasing a or decreasing /3 these bound( s) will eventually become active. Figure 
2 gives our strongest clamped-clamped column and its first two buckling modes when 
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p = 2, a = 0.25, and /3 = 10. The least eigenvalue is still double, though now reduced to 
52.3467. 

As the uniform column has a simple first eigenvalue one expects that a sufficient 
increase in a would produce an optimal design with a simple first eigenvalue. Figure 
3 gives our best strongest clamped-clamped column and its first buckling mode when 
p = 2, a = 0.5, and /3 = 10. In this case the first two eigenvalues are 51.07086 and 
62.3479. 

Clearly there must exist (at least) one value of a between 1/4 and 1/2 at which the 
optimal buckling load switches multiplicity. Olhoff and Rasmussen (25] declare 0.28 to be 
the only such value. Our algorithm also indicates the presence of such a critical a in the 
vicinity of 0.28. We note that in addition to being able to approach 0.28 from above - pro­
ceeding until the gap between the least two eigenvalues vanishes, we have also approached 
from below, in this case proceeding until the least eigenvalue of the corresponding dual 
matrix vanishes. 

Figure 4 gives our strongest clamped-hinged column and its first buckling mode when 
p = 2, a = 0.25, and /3 = 10. The buckling load of 27.0762 is, as expected, simple. 
Although decreasing a increases the buckling load, our designs converge, as a --+ 0, to the 
Tadjbakhsh and Keller solution, (5.13). As shown in the appendix, this column buckles at 
1r

2 /3, and so can not possibly be optimal. The convergence of our algorithm to (5.13) only 
strengthens our belief that the problem, as stated by Tadjbakhsh and Keller, is without 
a solution. That is, a 1-+ µ 2 ,1 (a) with p = 2, does not attain its maximum on ad when 
a =0. 

Our numerical results also agree with Tadjbakhsh and Keller in the cases for which we 
have argued that they are correct. In particular, Figure 5 gives our strongest clamped-free 
column and first buckling mode when p = 2, a = 0, /3 = 10. The buckling load, again 
simple, is 3.2897. Figure 6 gives our strongest hinged-hinged column and first buckling 
mode when p = 2, a = 0, /3 = 10. Its simple buckling load is 13.1579. 

We return to the clamped-clamped case and consider its dependence on p. Our 
analysis of ( 4.5-7) led us to believe that, for p > l, the minimum (maximum) of the 
optimal design increases (decreases) with p. This is reinforced by Figure 7, whose lower 
(upper) curve traces the minimum (maximum) of the optimal design as a function of p. 
As the buckling load is double for each of these designs there must exist a curve, between 
the lower one and the curve that is constantly one, across which the optimal buckling load 
changes multiplicity. We have seen that (2, 0.28) lies near such a curve. With respect to 
the range of p considered in Figure 7 we have found that both the optimal buckling load 
and the least eigenvalue of its corresponding dual matrix increase with p. Regarding the 
behavior as p tends to 1 from above we have found that the minimum of the optimal design 
tends to zero, and, though the optimal buckling load remains double, the least eigenvalue 
of the corresponding dual matrix tends to zero. Below p = l we found optimal designs 
with simple buckling loads regardless of our choice of a. Figure 8 gives our strongest 
clamped-clamped column when p = l, a= 0, and /3 = 10. The buckling load of 47.9898 
and the design itself are very close to the analytical result of ( 4.15). Refining the mesh in 
neighborhoods of 1/4 and 3/4, and perhaps using piecewise linear elements for a, would 
presumably bring us even closer to ( 4.15). We have not pursued this for two reasons. First, 
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we argued in §4 that in the absence of an existence proof one can not fully trust ( 4.15), and 
second, in both of the physical contexts that p = l has arisen there is an a priori strictly 
positive lower bound on the admissible CT. Regarding the latter, we present in Figure 9 
our strongest clamped-clamped column when p = l, a = 0.8, and /3 = 1.2. Its simple 
buckling load is 43.4921. 

Having addressed dependence on p and a at a particular level of discretization we now 
fix p = 2, a = 0, {3 = 10 and with clamped-clamped boundary conditions demonstrate 
the convergence of several relevant parameters as N, the number of mesh points, becomes 
large. In particular, Table 1 lists µ2 ,2 (the optimal buckling load), the least eigenvalue 
of the associated dual matrix U, and II a- N - a102s II 00 ( the greatest difference between the 
optimal design on a mesh of N points and the optimal design on a mesh of 1025 points) 
for values of N from 65 to 1025. 

N µ2,2 min ev(U) IIB-N - B-102s lloo 
65 52.14944 0.023859 0.1066 
129 52.31027 0.043317 0.0415 
257 52.33615 0.047034 0.0424 
513 52.35332 0.046435 0.0059 
1025 52.35548 0.046607 0.0000 

We close our study with a glance at the numerical range of the buckling load over ad. 
To this point we have concentrated on its maximization, and, though we may compare 
this value to that of the associated uniform column, it would be of interest to weigh it 
against the minimum buckling load. Clearly, a must now be strictly positive, for one 
could produce a buckling load of zero by prescribing that CT vanish on some interval. 
Regarding the existence of a minimizer for CT ~ µi,j(CT) over ad we note that Theorem 
3.1 is insufficient. Recall in (3.3) that the limit of the maximizing sequence integrated to 
less than one. This was not an obstacle, for adding mass could only increase the buckling 
load. As our goal now is to minimize this load it appears that one must either relax the 
cost functional or construct the so-called G-closure of ad to obtain a minimizing design. 
Instead of embarking on this we modified the strongest column algorithm to minimize 
instead of maximize CT~ µi,j(CT). 

The modification to the algorithm is very simple, namely changing the sign of (LP0) 
and requiring a decrease instead of an increase in the smallest eigenvalue. The modified 
algorithm generated plausible weakest designs in ad, and, though we lack a proof of opti­
mality, we shall content ourselves with a discussion of these numerical results. In all cases 
(independent of p and a) the minimum buckling load was simple; this is to be expected 
since the minimization should tend to separate the least eigenvalue from the remainder 
of the spectrum. In addition, we find that the generated designs have their mass concen­
trated near the inflection points of their associated positive buckling mode. This too is to 
be expected, making the opposite argument to that made in §2. 

Figure 10 gives our weakest clamped-clamped column with p = 2, a = 0.25, and 
{3 = 10. This column buckles under a simple axial load of 2.5658. The buckling load of 
our strongest column in this class (see Fig. 2) is 52.3467. 
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Figure 11 gives our weakest clamped-clamped column with p = 1, a = 0.8, and 
f3 = 1.2. This column buckles under the simple axial load of 33.5631. The buckling load 
of our strongest column in this class (see Fig. 9) is 43.4921. 

8. Concluding Remarks 

Having thoroughly discussed the work of Tadjbakhsh and Keller [35] we now take 
up two additional issues, first broached by Keller [20], that, though very important, have 
received little attention in the literature. 

The first involves the optimal design of cylindrical columns. Here, given again a fixed 
amount of material to be distributed over a column of fixed length, we seek the shape of the 
cross-section that when used to generate a cylinder produces a column with the greatest 
buckling load. One is not allowed to "taper" the column as we have in past sections. 
Keller quickly reduced this problem to the search for that planar domain of fixed area with 
the greatest least second moment of area. Recall that the second moment of area of the 
domain n with centroid at the origin in the direction r, (with lr,I = 1) is 

Denoting the unit circle by S, Keller's problem takes the form 

sup inf I(n, r, ). 
IOl=A 11ES 

(8.1) 

Keller noted the existence of n for which this value is infinite. To exclude such n he 
restricted himself to convex domains. Within this smaller class he then argued, without 
proof, that the equilateral triangle possesses the greatest least second moment of area. 

This reduction to convex domains is too severe. It is not the lack of convexity that 
allows (8.1) to grow without bound but the possibility that n itself may be unbounded, 
though of finite area. To exclude this behavior one may simply bound 18f!I, the length 
of f!'s boundary. That this does indeed bound I(f!, T/) follows from the isoperimetric 
inequality 

2Ip(f!)/1r::; (j8f!j/21r)4 

of P6lya and Szego [29, §1.5], where Ip(f!) is the polar moment of inertia. As the second 
moment of area will be independent of r, for the best n, its value will be one half that of 
its polar moment of inertia. We must now consider, 

sup inf I(f!,r,). 
IOl=A 11ES 
j&Ol!,L 

(8.2) 

For fixed A the value of (8.2) will grow as one increases L, suggesting that for sufficiently 
large L one may produce a domain whose second moment of area exceeds that of the 
equilateral triangle of the same area. We shall accomplish this with A = 1 and L = 16. 
To produce large values in (8.2) one need only consider domains that are symmetric about 
the coordinate axes as well as the two diagonals and that stretch out towards infinity. The 
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symmetry will render 7J 1--+ I(n, 7J) constant, while the latter condition will ensure us that 
J(n, TJ) is large. The domain of Fig. 12 has an area of one, a boundary whose length does 
not exceed 16, and a second moment of area of 16/45 + 71/83 90. This value is more than 
three times greater than 1/6\1'3, the second moment of area of the equilateral triangle of 
the same area. Though we have not solved (8.2), this example demonstrates that (8.2) 
produces, through the designer's choice of L, columns with arbitrarily large buckling load. 

The other issue that we wish to resurrect from Keller [20] is consideration of the 
nonlinear problem underlying (5.1). When i = j = 1 this problem is 

-(EI0')' = .\sin 0, 0'(0) = 0'(1) = 0, (8.3) 

where 0 measures the angle between the column and a fixed axis in its plane of buckling. 
Equation (5.1) arises from linearizing sin0 to 0, identifying u' = 0, and differentiating 
(8.3). Keller shows that the least eigenvalue of (5.1) (with i = j = 1) is indeed the least 
bifurcation point of (8.3). A number of questions now suggest themselves. Assuming the 
least eigenvalue of ( 5.1) for the remaining boundary conditions to be the first bifurcation 
point of the associated nonlinear problem could the optimal designs have been found 
without recourse to the linearized problem, i.e., can our tools be extended to deal directly 
with the likes of (8.3)? More generally, can one find optimal designs for the quasilinear 
problems that come with nonlinear constituitive laws - for recall that (8.3) is essentially 
Euler's elastica, a column that can suffer neither compression nor shear? 

Appendix 

We have argued throughout that the necessary and sufficient conditions proposed by 
Tadjbakhsh and Keller are incorrect. This does not in itself however, invalidate their 
designs. Indeed, we argued that their solutions to the hinged-hinged and clamped-free 
problems are correct. This appendix serves to demonstrate that these are their only correct 
designs. 

In particular, we show that Tadjbakhsh and Keller incorrectly calculated the buckling 
loads of their proposed solutions to the clamped-clamped and clamped-hinged problems. 
Recall their solution of the former, 

A(x) = ½ sin2 0(x), -1r/2:::; 0:::; 31r/2, 

0(x) - ½ sin20(x) + rr/2 = 21rx, 0:::; x:::; 1. 

(A.l) 

To compute the corresponding buckling load we minimize the Rayleigh quotient over all 
those elements in the closure of CJ with respect to the norm u 1--+ f

0

1 A2 lu"l2 dx. Denoting 
this space by 1-l, Tadjbakhsh and Keller's claim amounts to 

16rr2 . .C A2lu"l2 dx -- = mf - 0
"-------

3 uE1i fol lu'l2 dx 

We now produce an element of 1-l for which the Rayleigh quotient is rr2 /3. As Olhoff and 
Rasmussen (25] observed in their numerical work, the column constructed according to 
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(A.1) tends to deform (under axial compression) on (0, 1/4) and (3/4, 1), with the center 
of the column experiencing only a rigid motion. To make this precise we recall from [35) 
that this A, when restricted to (0, 1/4), is actually the optimal design of the clamped-free 
problem there, with a corresponding buckling load of 1r2 /3 ( as the volume of this piece is 
also 1/4) and first eigenfunction u2,0. We normalize u2,0 so that 

and consider 

[114 
Jo lu~,o 12 dx = 1, 

{ 

u2,o(x), 
u(x) = U2,0(1/4), 

U2,o(l - X ), 

if O ~ X ~ 1/4 
if 1 / 4 ~ x ~ 3 / 4 
if 3/4 ~ X ~ 1. 

Evaluating the Rayleigh quotient of u we find 

r1 A2lu"l2 dx 2 rl/4 A2lu" 12 dx 
Jo = Jo 2,0 = 1r2 ; 3. 

fo1 lu'l2 dx 2 fol/4 lu~,ol2 dx 

It remains to show that u E H. As u is well behaved away from 1/4 and 3/4, where it is 
not even C1, we must rely on the vanishing of A there. From (A.1) we find that 

0(x) = O(lx -1/41113 ) and A(x) = O(lx -1/412/3). 

It will suffice to smooth the corners of u with a quintic. In particular, we use 

5 

Pn(x) =ax+ bx2 + Lci(n)xi, 
i=3 

(A.2) 

where a= u;,0(1/4), b = ½u~,0(1/4), and the ci(n) are determined by Pn(O) = Pn(l/n) = 
p~(l/n) = p~(l/n) = 0. Defining 

{ 

u(x), 
'Pn(l - x) = 'Pn(x) = u(l/4) + Pn(x -1/4), 

u(l/4), 

produces a sequence in H. With (A.2) we now find 

if O ~ X ~ 1/4 
if 1/4 ~ X ~ 1/4 + 1/n 
if 1/4 + 1/n ~ X ~ 1/2 

11 11/4+1/n 
A2( u" - <.p~)2 dx = 2 A2 l'P~l2 

dx 
0 1/4 

1
1/4+1/n 

~ cn8 (x - 1/4)413(x - 1/4)6 dx 
1/4 

< cn-1/3 
- ' 
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i.e., the 'Pn converge in H to ii as n ~ oo. To recap, we have produced an admissible 
displacement with a Rayleigh quotient of 1r

2 /3. By Rayleigh's principle, the buckling load 
of the clamped-clamped column with cross sectional area (A.1) can not exceed 1r

2 /3. 
Now recall Tadjbakhsh and Keller's solution to the clamped-hinged problem, 

~ 4 sin2 0(x) 
a2,1(x) = 

3
sin2 0

(0), 0(0):::; 0:::; 1r, (A.3) 

0(x) - ½ sin20(x) + ½ sin20(0) - 0(0) = x(1r + ½ sin20(0) - 0(0)), 0:::; x:::; 1, 

½ sin 20(0) - 0(0) = -¾ sin3 0(0) cos-1 0(0) - 1r, 

and the fact that it vanishes at x 0 = y/(1r + y) where y = ½ sin20(0) - 0(0). Analogous to 
the above, this design is optimal for the clamped-free column on (0, xo ). The volume of this 
piece being x0 as well, we find that it buckles at 1r2 /3. Denoting by u2,o the corresponding 
clamped-free eigenfunction on (0, xo) we define, 

_ {u2,o(x), 
u(x) = u2,o(xo)(l -x) 

l-xo ' 

if O :::; X :::; Xo 

if Xo :::; X :::; 1. 

As above, on substituting ii into the Rayleigh quotient with the o-2,1 of (A.3) one finds 
1r

2 /3. To verify that it is indeed an admissible displacement we argue exactly as before. 
The deciding factor above was the fact that A 2 ( x) vanished at 1 / 4 to an order strictly 
greater than one. Here we find 

0(x) = O(lx - xol 113 ) and a2,1(x) = O(lx - xol213 ), 

so it is indeed the limit of a sequence of admissible displacements. 
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