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Abstract: The SeptaPose Assistive and Rehabilitative (SPAR) Glove has been developed to
assist individuals with upper extremity impairment arising from neuromuscular injury. The
glove detects user intent via the MYO wearable electromyography (EMG) device. In this
manuscript, pattern recognition tools infer the desired hand pose from EMG activity. The
ability of the measurement and classification methods to distinguish between hand poses was
evaluated with nine able-bodied participants and three participants with spinal cord injury (SCI)
in an offline experiment. The strong performance of the proposed intent detection method is
shown in the steady-state classification accuracy, presented as confusion matrices, as well as the
average confidence for each classification. Building upon the strong performance in detecting
pose, a pilot study with two participants with SCI presents the initial results of the real-time
implementation of the system, which suggests directions for future work in improving the steady-
state classification accuracy through expanded measurement and a refined taxonomy to enable
intuitive control.

Keywords: Assistive and Rehabilitation Robotics; Robotics; Machine Learning in modeling,
estimation, and control

1. INTRODUCTION

Each year approximately 17,000 people experience a spinal
cord injury (SCI) that impairs motor function (National
Spinal Cord Injury Statistical Center (2017)). Many of
these individuals retain some ability to move their up-
per extremities but lack the strength to produce enough
movement to complete tasks associated with activities of
daily living (ADL). Assistive devices have the potential
to help these individuals regain functional independence
by increasing the strength and dexterity of the hand.
Surveys of SCI participants confirm that such an increase
in dexterity would represent a significant increase in their
quality of life (QOL), as 71% of people with tetraplegia
require assistance with ADL (Collinger et al. (2013)). With
improved hand function and independence, people who
have suffered an SCI can seek employment, improving their
finances as well as their participation in their communities,
resulting in improved QOL (Dijkers (1997)).

Assistive devices may also contribute to improved reha-
bilitation outcomes for those with incomplete SCI, by
providing support for functional tasks that might in turn
result in increased use of the impaired limbs. Many indi-
viduals undergo physical therapy following SCI, and this
has proven effective at increasing neuro-plasticity reward
(Edgerton et al. (2004)). Evidence has shown that high-
intensity and repetitive practice can lead to recovery of
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some spinal cord, and therefore extremity, function (Dietz
et al. (2002)). Further, functional training has shown to
have beneficial effects in promoting spinal plasticity which
can help lead to recovery (Dietz and Fouad (2014)).

Assistive devices, particularly those compatible with at-
home use, may be uniquely suited to increase functional
training. Incorporating functional tasks has been shown to
be beneficial in the rehabilitation of stroke survivors, and
it is reasonable to expect that the same would hold true
for individuals with SCI (Kristensen et al. (2011)). This
expectation is supported by animal model studies (Cai
et al. (2006)). Performance of ADL with an assistive device
provides a useful platform for physical therapy and helps
the participant enhance skills that directly improve their
QOL. Frequent usage of therapeutic assistive devices has
the potential to create a feedback loop wherein frequent
use improves ability and increased ability results in more
frequent use (Winstein et al. (1999)). Despite evidence of
motor function improvement with the 120 devices surveyed
by Maciejasz et al. (2014), the ability to perform ADL
was not enhanced any more than conventional therapies.
This opens up a window for development of a device that
specifically addresses ADL movements.

1.1 Capabilities to Assist Hand Function

Devices for hand assistance should consider the poses
that most contribute ADL. For example, Dollar (2014)
catalogued a comprehensive set of grasps involved in ADL.
In related work, Dalley et al. (2011) identified a set of seven



poses, shown in Fig. 1, that are necessary to accomplish
most ADL, and used them for the control of a prosthesis.
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Fig. 1. The taxonomy proposed by Dalley et al. (2011)
consists of seven hand poses critical to accomplishing
the majority of ADL. This set of poses served as the
basis for a myoelectric prosthetic control scheme.

1.2 Detecting User Intent for Assistive Device Control

Intent detection, as defined by Losey et al. (2018), is the
passing of information about the human planned action
to a robot through a defined channel of communication.
Led by the prosthetic community, most commercial de-
vices opt for myoelectric or body-powered control (Fougner
et al. (2012)), with advanced brain machine interfaces
(BMI) largely remaining in the lab (Shanechi (2017)).
Common implementations of intent detection for orthoses
are coupling between less-impaired joints and electromyo-
graphy (EMG) control, similar to body-powered control
and myoelectric (EMG) prostheses, respectively (Chu and
Patterson (2018)). Typically, these control schemes use
dichotomous open/close architecture. Of the 44 devices
reviewed by Chu and Patterson (2018), only 13 presented
a form of intent detection broadly categorized into manual
selection, kinematic couplings, and EMG.

Manual selection, relying on the user to operate switches
or buttons, such as the system proposed for HES by
Conti et al. (2017), or voice commands (Triandafilou et al.
(2011)) trade unobtrusiveness for ease of operation and un-
equivocal intent detection. The Exo-Glove (In et al. (2015);
Jeong et al. (2013)) implemented bend sensors at the wrist
to control grasp aperture, following the kinematic coupling
between the wrist and fingers known as the tenodesis grasp
(Johanson and Murray (2002)). EMG control of wearables
is rapidly becoming standard, following developments in
the prosthetics community (Fougner et al. (2012)), partic-
ularly with strategies for overcoming underactuation and
taxonomy-based designs (Santello et al. (1998)). Designs
such as J-Glove (Ochoa et al. (2011)) use EMG to detect
intent and promote engagement, where a certain EMG
activation thresholds must be overcome before the motor
will move in 10% increments. Many devices detect EMG
activation across a predefined window, and return force
based on the the proportion of the current signal to max-
imum voluntary effort, as implemented on cable driven
(Delph et al. (2013)), and pneumatic devices (Polygerinos
et al. (2015)). The work of Kadowaki et al. (2011) sought
to discriminate between wrist and finger activity, but also
limited command to flexion and extension of a single DOF.
Dwivedi et al. (2019) commanded multiple poses to a
device, but the poses were predetermined with the EMG
serving only as a trigger for the selected pose.

However, EMG is capable of providing more granular
information beyond dichotomous open/close architectures,
down to digit and hand pose. McDonald et al. (2020)
incorporated EMG into a control scheme for an upper
arm device to detect wrist and forearm intent. To improve
intent detection in prosthetics, Mendez et al. (2017) sought
to evaluate the MYO EMG armband for its ability to
distinguish hand poses, and Gailey et al. (2017) used
an array of EMG electrodes, with some arbitrary and
some targeted muscle location placement. However, there
have been limited studies into the feasibility of using low-
cost EMG measurement arrays to detect residual muscle
activations in impaired individuals.

1.3 Contributions

In the work by Rose and O’Malley (2019), keystrokes
controlled the velocities of the motors acting in opposing
motions of flexion and extension to move individual fingers
as needed, which was sufficient for demonstrating basic
efficacy of the SPAR Glove. To further investigate the
glove’s potential for assisting with ADL, the ability to
command multiple desired poses in an intuitive manner
is necessary. It is the goal of this manuscript to validate
a proposed intent detection scheme that uses the com-
mercially available MYO armband as a low-cost wearable
intent detection device for the requisite poses of the SPAR
Glove. Whereas the use of EMG has been largely limited
to simple agonist/antagonist pairs, as in the works of Cao
and Zhang (2016) as well as Delph et al. (2013), this work
seeks to generalize the use of EMG to distinguish between
seven different poses which have been identified as useful
for ADL. The outstanding question surrounding use of
the SPAR Glove addressed by this manuscript is whether
intent detection of the proposed grasp taxonomy is feasible
using EMG with the SCI population.

To determine the feasibility of the proposed intent detec-
tion system introduced in Section 2, a validation experi-
ment, discussed in Section 3.2, was performed with both
able-bodied and SCI participants. Participants wore the
MYO EMG armband as they performed the goal poses
to evaluate the steady-state classification accuracy of the
intent detection algorithm operating in an offline mode.
Motivated by the results of the validation experiment, a
pilot study, discussed in 3.3, was conducted to evaluate
real-time classifier accuracy. The results of the validation
experiment and pilot study are presented in Section 4 and
discussed in Section 5, before the manuscript’s contribu-
tions are summarized in Section 6.

2. ELECTROMYOGRAPHIC INTENT DETECTION

The glove uses seven linear actuators (BLDC, Maxon
405794), planetary gear (4.4:1) and ball screw transmission
(2 mm pitch, Maxon 424222)), to retract tendons routed
through Bowden cable transmissions. The resulting mo-
tions of the actuated degrees of freedom (DOF) allow the
SPAR Glove, shown in Fig. 2, to achieve seven distinct
poses proposed by Dalley et al. (2011) and shown in Fig.
1 as those necessary to achieve a large portion of ADL.
To detect user intent, the SPAR Glove uses the MYO, a
commercial-off-the-shelf EMG devices with 8 electrodes.
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Fig. 2. The SeptaPose Assistive and Rehabilitative (SPAR)
Glove first proposed by Rose and O’Malley (2019)
assists the seven pose taxonomy identified by Dalley
et al. (2011). The intended pose of the wearer is
identified by classifying EMG signals captured by the
MYO Armband. Further intent detection is possible
through the use of bend sensors located at the wrist.

2.1 Low-Level Control of the SPAR Glove

The position of each actuator’s ball screw is governed by
a PD controller, which is enables straightforward tuning
of the response of the tendon not available with P control.
The setpoints are defined in terms of the carriage positions
along the lead screws and are commanded via a gearbox
ratio defined within custom software developed at Rice
University, the Mechatronics Engine & Library (Pezent
and McDonald (2019)). In the current implementation, the
commanded positions for each motor are selected from a
table of setpoints based on the desired pose. When the
command to move to a particular pose is sent, the setpoint
for each motor is changed to reflect the motor’s desired
position in the applicable pose.

2.2 User Interface for Control

To convert the EMG signals captured by the MYO arm-
band, the SPAR Glove uses a Linear Discriminant Analysis
method that is based on the work of McDonald et al.
(2020). In that work, researchers placed EMG sensors
placed directly over the muscle bellies to control a re-
habilitation robot. The MYO armband works on a dif-
ferent principle, relying on an array to capture activity,
without precise muscle placement. The proposed algorithm
computes a set of features from EMG data based on the
foundational work of Hudgins et al. (1993). Those features
are: the number of zero crossings (ZC), mean absolute
value (MAV), waveform length (WL), number of slope sign
changes, four coefficients (AR1, AR2, AR3, and AR4) of a
fourth-order autoregressive model, and root mean square
(RMS). The proposed algorithm computes these nine fea-
tures for each of the eight EMG channels of the MYO to
build a classifier unique to training data. Note that while
the features are unique to each trained set, the weightings
of these parameters were fixed for the experiments in this
manuscript. This general functionality was built into the
Mechatronics Engine & Library Pezent and McDonald
(2019). The algorithm is intended to be trained before
each use, to account for differences in placement of sensors
after donning the MYO. In the current implementation,
training takes approximately 7 minutes (for more details,
see Section 3.2).

The output of the classifier developed by McDonald can
be utilized to represent the poses the wearer is intending.
While the classifier can examine a moving window of data
and issue a prediction, to improve the performance of
the intent detection, the algorithm must cross a threshold
number of predictions that must be reached prior to the
device being actuated. The current implementation of the
intent detection algorithm has a 1 second (1000 predic-
tions) threshold that must be crossed prior to actuation.
This introduces delay, since an imperfect classifier will
always take longer than 1 second to generate enough cor-
rect predictions to cross the threshold, but the increased
reliability of the final movement is more important when
interacting with objects in the physical world.

3. VALIDATION OF INTENT DETECTION

An experiment, described in Section 3.2, sought to de-
termine whether the data generated by the MYO EMG
armband is of sufficient quality to be reliably classified
between the 7 goal poses. To separate any limitations
arising from real-time implementation, this experiment
classified data offline. A pilot study, described in Section
3.3, explored whether the performance with the carefully
segmented data from the validation experiment will trans-
late to accurate classifications of live data.

3.1 Participants

The validation experiment collected data from both able-
bodied participants and individuals with SCI, while the
pilot study was done with SCI participants only. The
able-bodied participants were all right handed and ranged
in age from 22 to 35 years old. Three SCI participants,
male, ranged in age between 42 and 65 years old, and
right-handed prior to injury performed the validation
experiment. Only the second and third SCI participants
participated in the pilot study. All data collection was
undertaken in compliance with the recommendations of
the Rice University IRB, protocol 882515-1, with written
informed consent obtained from all participants.

Initial testing showed that the task caused the MYO to
shift on some of the participants’ arms, particularly those
with muscle atrophy. Since the classifier is sensitive to
changes of electrode placement, the participants donned
a compression wrap over the MYO.

3.2 Offline Classifier Accuracy

To determine whether the classifier can be used to suc-
cessfully discriminate between the 7 goal poses, test par-
ticipants were recruited to cycle their hands through the
various goal poses and hold those poses for 4 seconds. The
data were then parsed to isolate segments of data to be
used to train the classifier. Each participant listened to
a recorded set of instructions directing them to hold a
particular goal pose for four seconds, then relax for two
seconds in a neutral position before being given the next
pose cue. Each participant performed each pose in this
manner for 10 repetitions.

The samples generated during data collection were parsed
so that the time-series data showing muscle activation were



separated from the data showing relaxation. To separate
the different pose-generation sequences, the root mean
square (RMS) of the raw time domain muscle activations
were segmented with crossing a 10% threshold of max
RMS identified as potential start points. All eight EMG
channels were segmented based on the channel that had
the most even segmentation, that is, the largest minimum
gap between these 10% threshold crossings. Once the
“best” channel was determined, the edge placements were
applied to all channels and data could be parsed into
segments for use in the classifier. The data were then
separated into a series of training and evaluation data
sets. These sets consisted of every unique combination of
seven sets of training data, with the remaining sequences
classified.

3.3 Pilot Study: Online Classifier Accuracy

To expand on the validation experiment, a pilot study was
conducted to explore the performance of the classifier in a
real time implementation. As in the validation experiment,
the classifier was provided with seven segmented samples
for training each pose. However, the training set was manu-
ally captured in real time prior to this experiment, and not
segmented in a post-processing stage in a similar manner
to the validation experiment. Instead of the four second
pose and two second rest periods from the validation
experiment, the pilot study participants stepped through
the seven goal poses, holding each pose for ten seconds
before resting and moving to the next pose. Participants
were not notified of the classifier’s output, to separate the
wearer’s ability to modulate in response to biofeedback
from the intent detection algorithm.

4. RESULTS

The results of the validation experiment and pilot study
show that the EMG signals captured by the MYO arm-
band possess enough information to classify the seven goal
poses, but there are still some limitations to the intent de-
tection algorithm, especially for real-time implementation.

4.1 Offline Classification results

First, the measurements from the MYO are sufficient to
classify the seven goal poses, as shown by the average
confusion matrix for able-bodied participants in Fig. 3.
The results for the three participants with SCI are shown
in Fig. 4. These results show similar performance to the
able-bodied participants, but with some decreased classi-
fication accuracy for poses which are mainly differentiated
by thumb position, such as the lateral pinch and hook.

An additional metric beyond the classification accuracy to
consider is the confidence rating presented by the intent
detection algorithm. This confidence represents the ‘dis-
tance’ between the classes, which increases the more sep-
arable the different classes are, normalized from 0-100%.
The classifier selects the class with the highest confidence,
and the accuracy of this selection is described in Fig.
3 and 4. The algorithm’s confidence in its classification
can further explain the quality of the classification. These
confidence values for able bodied subjects are presented
in Fig. 5, which shows the confidence ratings for each
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Fig. 3. Average confusion matrix for the offline classifi-
cation of able-bodied participants’ EMG activations,
with intended pose on the horizontal axis, and clas-
sifier’s output on the vertical. High values along the
diagonal show strong performance for nearly all poses.

classification averaged across able-bodied participants. Of
particular note is that the main diagonal’s average con-
fidences are typically near 90%, whereas the off-diagonal
(incorrect) classifications hover closer to 50%, indicating
that the classifier can indicate to the wearer and device
that the classification is likely to be incorrect.

The average confidence values for the SCI participants are
presented in Fig. 6. These results show high confidence
for the first SCI participant, but decreased confidence
values for the other two. Still, the diagonal (correct) classes
typically had the highest confidences, further supporting
the ability of our procedure to acquire data from the MYO
and rely on the classifier to separate the EMG data into
recognizable end goal poses.

4.2 Pilot Real-Time Results

The results of the real-time tests for SCI participant 2 and
3 are shown in Fig. 7. These values in the matrix reflect
the percentage of the ten second period during which the
classifier correctly identified the intended pose through the
previously described threshold method.

5. DISCUSSION

The results from the validation experiment and pilot
study suggest that the MYO and the proposed EMG
classification algorithm are capable of detecting user intent
and accurately selecting the goal pose.

5.1 Offline classification with able-bodied participants

From the results it is clear that the majority of classifica-
tions in able-bodied participants are unambiguous when
the data is carefully chosen, though not all poses are
equally clear. For example, the poses which are only differ-
entiated by thumb opposition, such as the cylindrical grasp
and the lateral pinch, are sometimes incorrectly classified
as the other. Note that in the confidence values shown
in Fig. 5, during the 5% of the trials where lateral pinch
was incorrectly classified were above 70%. The confidence
values for all poses, and these poses in particular, suggest a
few interpretations. While it is possible that the particular
training data used was insufficient to train the algorithm to
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Fig. 4. Confusion Matrices for the offline classification of SCI participants (1-3, from left to right), with intended pose
on the horizontal axis and classified pose on the vertical axis. The high values along the diagonal show similar
performance to the able-bodied participants. However, certain poses which are mainly differentiated by thumb
opposition, such as the hook, cylindrical grasp, and lateral pinch, had lower performance.
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Fig. 5. Average confidence values for each classification for
the offline classification of able-bodied participants’
EMG activations. The high values along the diagonal
are a representation of the separability of the trained
classes and the classified data, which supports the use
of the MYO and intent detection algorithm to classify
the seven goal poses using forearm EMG.

separate the different classes, the other, more successfully-
separated classes with high average confidences suggests
that this is not the case. Another interpretation is that
the muscle activations which control the thumb are not
well captured by the MYO. To improve the performance
of this intent detection method, there are a few options.
First, we could seek to increase the confidence with an
additional EMG sensor at the thenar eminence to capture
activations of the abductor pollicis brevis detect thumb
opposition activations. Second, the use of monopolar elec-
trodes (as opposed to the MYO’s bipolar electrodes (Xu
et al. (2020))), could improve measurement of the contri-
bution of deep muscles (Piovanelli et al. (2020)). Third, we
could expand the algorithm to include input from another
type of sensor, such as one of the bend sensors in the wrist,
or another modality such as IMU to better predict the
desired pose (Bennett and Goldfarb (2017)). Fourth, we
could reconsider the goal poses, and instead of trying exert
effort to discern the difference between similar poses, focus
on identifying other key aspects of the poses or different
poses all together. Perhaps these poses, which were used to
explore the DOF space are not well separable in the muscle
activation space, and it would be more reasonable to train
on a related, but slightly different taxonomy. The end goal
would be to create a more separable set of activations
which can control the glove. Such a set could consider

activations to classify the four DOF from the original use
of the taxonomy by Dalley et al. (2011), or even a more
reduced set, relying on more passive constructions to open
and close the fingers. Perhaps the easiest, and most robust
option would be to have the algorithm consider its confi-
dence when making decisions, and when the confidence is
below a specified threshold, request confirmation or some
other secondary ‘check’ on the intent detection.

5.2 Offline classification with SCI participants

The classifications in SCI participants were more ambigu-
ous than those of able-bodied participants. Some par-
ticipants were unable to command their hands into the
desired poses, but were still able to generate some muscle
activations. Even with the reduced magnitude and quality
of muscle activations, the confusion matrices generated by
the classifications of SCI participants’ activations demon-
strates that classification is possible using only the EMG
data from the MYO armband. Of note is the relatively
higher performance of certain poses, such as the Hook
pose, in the participants with SCI than in the unimpaired
participants, both in terms of the confusion (accuracy) ma-
trix and reported confidence values. Increased resolution
in the muscle activations associated with thumb movement
may explain this point of interest.

5.3 Real-time performance of intent detection algorithm

The reduced performance in the pilot study could be the
result of a few factors. First, while the training data was
of the same type as in the validation experiment, the
evaluated data was changed for the pilot study to a 10
second stream to allow the classifier to make a series
of predictions. While there is likely a difference between
activations generated while initiating a pose from rest from
those generated by holding a certain pose for able-bodied
individuals, it is not clear if the same is true for impaired
individuals who never reach the desired pose. It is also
possible that the ‘first-past-the-post’ interpretation of the
classifier output along with the lack of feedback provided
to participants contributed to some of the decrease in
performance. In addition to feedback, further training
with the MYO beyond the 15 minutes in this study
could have improved performance. Lastly, the manually-
captured training data, expected to be similar to a real-
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Fig. 6. Average confidence values for each classification for SCI participants show reduced performance as compared
to able-bodied participants. However, the performance of the first participant (left) as well as the relatively high
confidences for many of the diagonal (correct) values suggest that the proposed method still bears promise for use.
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Fig. 7. Confusion matrices for SCI02 (left) and SCI03
(right) from the real time pilot study. The reduced
performance likely arose from difficulties in real-time
EMG segmentation, and identifies future work.

time implementation of the algorithm, may have been too
coarsely segmented to provide a quality training set.

5.4 Future Work

Beyond the suggested improvements to the muscle acti-
vation measurement methods, additional sensors, or pose
taxonomy discussed in Section 5, future work should center
around studies using the SPAR Glove. First, these studies
will clarify the impact of wearing the device on EMG
patterns. While it is expected these patterns would change
for able-bodied individuals, for the SCI participants who
were unable to generate motion, the effects of wearing the
SPAR Glove are unclear. Second, it will be straightforward
to determine whether the low accuracies in the pilot study
could be rectified with feedback from the classifier in
the form of motion supported by the SPAR Glove, or if
there are any additional challenges that may arise due to
the movement of the hand. Finally, the combination of

the validated algorithm with the SPAR Glove supporting
motion could be validated through tasks aimed to evaluate
participants’ ability to perform ADL, with tests such as
the SHAP described by Light et al. (2002).

These results also suggest future work for the intent detec-
tion algorithm. Improvements to the RMS-based segmen-
tation strategy could avoid inadvertently captured periods
of activity where the wearer is not initiating a pose, but
instead maintaining a pose, or resetting to a neutral pose.
Additionally, the relative weights of the nine parameters
(Section 2.2) used by the classifier could be adjusted in
addition to the retraining for each participant, potentially
improving the performance over the standard set used for
all participants in the experiment and pilot study. The
IMU in the MYO may be leveraged here to provide addi-
tional input channels to act as either a triggering mecha-
nism or as a way to account for compensatory movements
which may be unique to each user.

6. CONCLUSION

This manuscript presented the details and experimental
validation of the intent detection subsystem of the SPAR
Glove, which uses a low-cost, wearable EMG system to
detect the muscle activation patterns associated with one
of seven goal poses. The accuracy rates for each able-
bodied participant demonstrate the classifier’s ability to
recognize goal poses. There is a clear difference in the
classifier’s ability to correctly identify poses in the able-
bodied versus the SCI population, but the data from the
SCI participants demonstrate that classification is possible
using only the data from the MYO armband. Future work
aims to improve the performance of the proposed intent
detection algorithm in a real-time implementation.
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