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SUMMARY

This abstract presents a computationally efficient method to
approximate the inverse of the Hessian or normal operator aris-
ing in a linearized inverse problem for constant density acous-
tics model of reflection seismology. Solution of the linearized
inverse problem problem involves construction of an image via
prestack depth migration, then correction of the image ampli-
tudes via application of the inverse of the normal operator. The
normal operator acts by dip-dependent scaling of the ampli-
tudes of its input vector. This property permits us to efficiently
approximate the normal operator, and its inverse, from the re-
sult of its application to a single input vector, for example the
image, and thereby approximately solve the linearized inverse
scattering problem.

We validate the method on a 2D section of the Marmousi
model to correct the amplitudes of the migrated image.

INTRODUCTION

The linearized inverse scattering problem assumes a known
background velocity field. The background velocity field con-
trols the kinematics of the problem: it governs the relationship
between the travel times of acoustic signals and the positions
of reflectors. In the case of constant density acoustics the lin-
earized inverse problem aims at calculating the velocity per-
turbation. The linearized scattering operator F' approximately
maps the true model m (velocity perturbation) to the measured
data d (perturbation of the pressure field measured at the sur-
face),

Fm=~d. D
Note that ' depends on the background velocity field, but this

dependence is suppressed for brevity. Interpreting (1) in a least
squares sense yields the normal equations,

F*Fm=F*d, 2)

F* is a migration operator, it is adjoint to F. The migration
operator maps the data back to the model space; m;q = F*d
is the migrated image. N := F*F is the normal operator.

Both linearized modeling and migration require the solution
of a large scale PDE problems. The scale of these problems
prohibits explicitly storing the normal operator as a matrix, and
the use of direct matrix methods to invert it. Moreover, the
expensive application of the normal operator limits the number
of affordable iterations of iterative methods, as they require the
application of the normal operator at each step.

The main result of this paper is a numerically efficient ap-
proximate inversion of the normal operator, based on its most
important theoretical property: the normal operator preserves
the discontinuities (events) in the model m to which it is ap-
plied, provided that the background velocity is smooth and un-
der some additional conditions (Beylkin, 1985; Rakesh, 1988;

Stolk, 2000). The migrated image thus contains the same events
as the model and serves as a first approximation to the real
model. The disagreement between the model and migrated
image is due to amplitude differences. We shall show how to
correct these.
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Figure 1: Comparison between the true model (a), and the mi-
grated image (b).

Example

Figure 1 the differences between the migrated image and the
true model on the Marmousi benchmark model (Versteeg and
Grau, 1991). The background velocity is obtained by smooth-
ing the velocity field, and the model (velocity perturbation) is
obtained as the difference between the velocity field and its
smooth part (Figure 1(a)). The model is input to a finite dif-
ference time domain Born modeling code to obtain the data.
Sources and receivers positions and the recording times were
similar to those used in the original synthetic model (Versteeg
and Grau, 1991). The data is then migrated using a reverse
time migration finite difference code, resulting in the migrated
image (Figure 1(b)). Figure 1 illustrates the preservation of
reflector locations between the two images. The differences
between the amplitudes the of two images are also apparent.
The amplitudes differ by an order of magnitude and the ampli-
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tudes of the migrated image tend to be attenuated as a function
of increasing depth.

Dip-Dependent Scaling

Previous work has established that the normal operator acts
on its input vector (spatial field) by dip, frequency, and po-
sition dependent scaling (Beylkin, 1985; Rakesh, 1988; Stolk,
2000; Symes, 2008; Herrmann et al., 2008b). In view of (2) the
true image differs from the migrated image by a dip and posi-
tion dependent amplitude correction. The action of the normal
operator on seismic images is thus approximately diagonal in
phase space, the space of position, dip, and frequency. Such
operators are called pseudodifferential operators. A diagonal
operator can be inferred from its application to a single input
vector. The choice of the migrated image as an input vector is
natural as the migrated image already contains the phase space
events of the true model, and we are only interested in how the
normal operator scales these particular events.

We refer to the methods that estimate the inverse of the nor-
mal operator from its effect on a single input vector as scal-
ing methods, and we refer to the approximation of the normal
operator and its inverse as scaling factors. The relationship
between the real model and the migrated image, is the same
as the relationship between the migrated image and the remi-
grated image Myemig = Nimypig:

m= NTmmiga Mpig = NTmremig7

where N is a regularized inverse of the normal operator. While
the real model is not available to make use of the first relation,
scaling methods use the second to estimate a scaling factor
C ~ N¥, and use it to approximate the solution:

Mypig = Cmremig > m= Cmmig~

Claerbout and Nichols (1994) and Rickett (2003) propose a
scaling factor independent of dip and frequency, thus approx-
imating the inverse of the normal operator as a multiplication
by a smooth function of position.

Symes (2008) specifies the dependence on frequency as a power
of the Laplacian by referring to the underlying theory (Beylkin,
1985; Stolk, 2000). The scaling method of Symes (2008) is a
correction to the Claerbout and Nichols method: the normal
operator is a multiplication by a smooth function only after
application of a specific power of the Laplacian. However,
the method suffers from one limitation: it cannot correct the
amplitudes of multiple dip events, and is only successful in
resolving images where dip is uniquely defined everywhere
(Symes, 2008). A dip independent scaling factor acts like a
dip dependent scaling factor only if the dip is unique at each
point.

Guitton (2004) proposes a near diagonal approximation of the
inverse of the normal operator which he calls matching fil-
ters. Matching filters amount to a phase-space scaling factor,
as scaling in momentum variables is filtering. Guitton does not
constrain the structure of these filters however.

Multiple dip events constitute an important class of events in
seismic images; faults and point reflectors provide examples of

such events. Herrmann et al. (2008b) derive a scaling method
capable of resolving multiple dip events. They diagonalize
the normal operator in an approximate eigen-basis, a curvelet
frame. Diagonalizing the normal operator in the curvelet ba-
sis, where seismic images are sparse, renders its application
efficient.

This manuscript proposes to bypass the explicit approximation
of eigenvectors. The efficient application of a pseudodifteren-
tial operator is achieved by an algorithm presented by Bao and
Symes (1996); we refer to this as the WDO algorithm. We
use the ¥DO algorithm to formulate a rapidly converging op-
timization scheme for the scale factor. The scale factor is ap-
proximated using one application of the normal operator to the
migrated image and corrects the amplitudes of the migrated
image.

METHOD

Recall that the aim of this manuscript is to solve the normal
equations:

Nm =b, 3)
where b = F*d € Range(N). We seek a pseudodifferential
(WDO) scaling factor, and formulate its recovery as an opti-
mization problem. Given the migrated image » and the remi-
grated image Nb,

C = argmin||b — CNb||? 4)
Ce¥DO

The scaling factor C is chosen from a class of pseudodifferen-
tial operators described later. In this setting the scaling factor
approximates the the action of the inverse of the normal oper-
ator on the migrated image b. We restate this result,

m=N'b~NTCNb~CN'Nb=Cb :=my,,. )

The first of these equations expresses the true solution m, the
second approximate equality follows from because pseudodif-
ferential operators approximately commute. Defining m;, :=
Cb thus yields an approximation to the true model m. Equation
(5) shows that the scaling factor approximates the action of the
inverse on the normal operator on the migrated image, and it is
only in that sense that C approximates N

The optimization problem described in (4) is numerically fea-
sible if we can apply the pseudodifferential scaling factor to the
input vector Nb efficiently. An iterative optimization method
will require at least one application of the scaling factor per
iteration. The missing piece that makes the entire scheme pos-
sible is an algorithm that applies pseudodifferential operators
to data efficiently.

Bao and Symes (1996) propose an algorithm for application of
pseudoditferential operators efficiently in 2D. Their algorithm
also extends to 3D. The class of pseudodifferential operators
of interest are those defined by

Culx,2) = / / g(x.2. & ma(E e dg . (6)

Here u(x,z) is the input vector (spatial field), 4(&,n) is its
Fourier transform. The smooth scalar function g of the spatial
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and Fourier variables, is homogeneous of degree n, the degree
of homogeneity is the order of C; g is known as the symbol of
the pseudodifferential operator C. It is obvious that from (6)
that pseudodifferential operators are uniquely defined by their
symbol.

The DO expands the symbol ¢ in the Fourier variables:

K/2

grzém= > alnae”,

[=—K/2

where a; are the first K coefficients of the Fourier expansion
of the symbol g. To derive the following expression for the
approximation of the action of a pseudodifferential operator:

K/2

Cutv)~ Y alx)F " [0 E+m)aEm)]. @)
I=—K/2

Where ® = /&2 + 1? is the symbol of the pseudodifferential
operator v/—V. .# ! is the inverse Fourier transform. All of
these expressions are discretized in a sensible sense.

The algorithm (7) uses FFT (fast Fourier transform) and thus
inherits a complexity of O(KN?(log(N) +1log(K))). This com-
plexity may be contrasted with the obvious discretization of
the integral in (6) which leads to a complexity of O(N*log(N).
To put things in context we may note that for the examples of
interest N &~ 103. The number of Fourier coefficients K de-
pends on the smoothness of ¢, and is independent of N. The
underlying theory predicts that the symbol of the normal oper-
ator is smooth and slowly varying in its arguments, and a few
Fourier coefficients suffice to resolve it.

With the representation (7), the scaling factor C is

o like NT:
— pseudodifferential,

— in particular, dip dependent (scales different dips
differently)

e unlike NT:

— efficient to represent explicitly

— efficient to apply to data

The order n of the scaling factor is specified by the underlying
theory and is the negative of to the order of the normal opera-
tor. It is interesting how the n'” power of the square root of the
Laplacian filter emerges again. In fact, keeping one Fourier co-
efficient, the scaling factor reduces to a power of the Laplacian
filer followed by multiplication by a smooth function of posi-
tion. The method thus reduces to the scaling method derived
by Symes (2008) for K = 1. The additional degrees of free-
dom in the Fourier coefficient of the symbol allow the method
to resolve multiple dip events, capturing the dependence of the
symbol on the Fourier variables.

We summarize the method as follows:

1. compute the migrated image b, and the remigrated im-
age Nb

2. represent the scaling factor by ¥DO algorithm
3. optimize for the scaling factor, C = argmin||b—CNb)|?
Cce¥YDO

4. approximate an inverse m;,, =Cb~N'b=m

See Nammour (2009) for details.

EXAMPLE (CONTINUED)

We validate the method on the 2D section of the synthetic Mar-
mousi model shown in Figure 1(a). The migrated image (Fig-
ure 1(b)) shows the distorted amplitudes. Given the migrated
and remigrated image, we optimize for a scaling factor to cor-
rect the amplitudes of the migrated image. We display the im-
ages on the region of interest and on the same scale, we cor-
rect the amplitudes with a scaling factor keeping one Fourier
coefficient (K = 1) in and five Fourier coefficients (K = 5) in
Figures 2(b) and 2(c) respectively.

It is obvious that the inverted images exhibit amplitudes in the
same order of magnitude as the real model. Moreover, the
amplitude is uniform as a function of depth, the events in the
deeper part of the image are restored. Amplitude correction in
both cases is thus successful.

The intrinsic difference between K = 1 and K > 1 allows the
method to resolve multiple dip events for K > 1 and not for
K = 1. The results look similar for the inverted image in both
cases (Figures 2(b) and 2(c)). We therefore plot the difference
between the two inverted images in Figure 3. The differences
between the two images is maximal at the points of the model
that exhibit multiple dip events, especially faults and intersec-
tions between two reflectors. This difference shows as either
very bright spots or very dark spots. The difference of the two
images picks exactly the regions of the image that exhibit mul-
tiple dips.

CONCLUSIONS

The normal operator preserves the events between the true model
and the migrated image, a direct consequence of its pseudod-
ifferential nature. It suffices to derive a scaling factor that
corrects the amplitudes of the migrated image to those of the
real model to achieve inversion. This manuscript describes a
pseudodifferential scaling factor, a faithful representation of
the inverse of the normal operator. The scaling factor thus de-
rived is efficient to compute and to apply to data. The scaling
method succeeds in correcting the amplitudes of the migrated
image for a 2D section of the Marmousi synthetic model. At
the places where the image exhibits multiple dip events, addi-
tional degrees of freedom in the estimated symbol allow the
algorithm to correct amplitudes according to dip.

The method relies on the accuracy of the background refer-
ence velocity field, the basis for any successful linearization
process to begin with. When the background velocity field is
accurate, the method yields a fast and reliable approximate so-
lution of the inverse problem. Depending on the application,
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Figure 2: Comparison between the true model (a), inverse im-
age for K = 1 (b), and inverse image for K = 5 (c).
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Figure 3: Difference between the inverted image for K = 1 and
K=5

the approximation could be used as is, or as a preconditioner
to accelerate iterative refinement. Herrmann et al. (2008a) pre-
condition a least squares linearized inverse scheme with the
solution obtained with the scaling method they derive in Her-
rmann et al. (2008b). The approximate inverse succeeds in
speeding up convergence. When the background velocity field
is not accurate, the method may be used to precondition itera-
tive methods for a Newton step in a nonlinear inversion.

The first generalization of the method deals with the 3D prob-
lem. Application of pseudodifferential operators in 3D may
be achieved efficiently using spherical harmonics expansion
of their symbol in analogy to the Fourier expansion in 2D. The
formulation of the method translates to 3D without modifica-
tion.

Another research direction, one we are currently involved in,
deals with generalizing the method to multi-parameter recov-
ery. One example is variable density acoustics to recover the
density and compressional impedance simultaneously. With
model m representing a collection of two models, one for the
density and one for the impedance, we seek pseudodifferential
scaling factors Cy and C; for which a generalization of equa-
tion (4) holds:

{C1,C2} = argmin ||b—CiNb—C,N?b|>.  (8)
C,,C,e¥YDO

Where b, Nb, and N2b are given. Then,
m=N'b~Cib+C,Nb

Because of the similarity of equation (8) with the definition
of Krylov subspace methods in linear algebra, we term this
algorithm the Operator Krylov method. This approach shows
promise.



Dip-Dependent Scaling

REFERENCES

Bao, G. and W. Symes, 1996, Computation of pseudo-
differential operators: SIAM J. Sci. Comput., 17, 416-429.

Beylkin, G., 1985, Imaging of discontinuities in the inverse
scattering problem by inversion of a causal generalized
Radon transform: Journal of Mathematical Physics, 26, 99—
108.

Claerbout, J. and D. Nichols, 1994, Spectral preconditioning:
Technical Report 82, Stanford Exploration Project, Stan-
ford University, Stanford, California, USA.

Guitton, A., 2004, Amplitude and kinematic corrections of
migrated images for nonunitary imaging operators: Geo-
physics, 69, 1017-1024.

Herrmann, F.,, C. Brown, Y. Erlangga, and P. Moghaddam,
2008a, Curvelet-based migration preconditioning: Techni-
cal Report 7, The University of British Columbia.

Herrmann, F., P. Moghaddam, and C. Stolk, 2008b, Sparsity-
and continuity-promoting seismic image recovery with
curvelet frames: Applied and Computational Harmonic
Analysis, 24, 150-173.

Nammour, R., 2009, Approximate inverse scattering using
pseudodifferential scaling: Technical Report TR09-09,
Rice University.

Rakesh, 1988, A linearized inverse problem for the wave equa-
tion: Communications on Partial Differential Equations,
13, 573-601.

Rickett, J. E., 2003, Illumination-based normalization for
wave-equation depth migration: Geophysics, 68, 1371-
1379.

Stolk, C., 2000, On the modeling and inversion of seismic data:
PhD thesis, Universiteit Utrecht.

Symes, W. W., 2008, Approximate linearized inversion by op-
timal scaling of prestack depth migration: Geophysics, 73,
R23-R35.

Versteeg, R. and G. Grau, 1991, Practical aspects of inversion:
The Marmousi experience: Proceedings of the EAEG, The
Hague.



