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ABSTRACT

Optimization of GN&C Performance Requirements for Cislunar Applications

by

Damon O. Kirkpatrick

For cislunar applications, the performance requirements for a guidance, naviga-

tion, and control (GN&C) system can be derived optimally using a systematic ap-

proach. GN&C space systems continue to increase in complexity and support a variety

of demanding mission objectives. The multifaceted interactions inherent in a GN&C

system make deriving performance requirements a challenging and laborious task. For

decades allocating these GN&C specific requirements has been a time-consuming, ad

hoc, and iterative process that relies on engineering heuristics, flight experience, and

judgment. This thesis demonstrates an alternate approach that determines GN&C

performance requirements in a systematic, optimal, and consistent manner. The

versatility of this approach is demonstrated by calculating the GN&C performance

requirements for two cislunar trajectories given multiple mission requirements and

performance constraints, different optimization criteria, and varying phases in the

design process.
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Chapter 1

Introduction

This thesis applies a novel and systematic approach for deriving optimal guidance,

navigation, and control (GN&C) subsystem performance requirements for both a lu-

nar outbound and a lunar return flight segment. The primary objective is to establish

the versatility of this new requirement generation process for a cislunar application.

More specifically, this research shows that the same approach for deriving optimal

performance requirements can be applied 1) to different flight phases, 2) with mul-

tiple top-level requirements and multiple performance constraints, 3) using different

optimization criteria, and 4) throughout the entire design process from concept gen-

eration to flight.

The capabilities that a GN&C system provide are of increasing interest in modern

vehicles. Whether on the land, on the sea, or in the air, vehicles typically require and

rely upon a GN&C system to fully function. Currently there exists a growing effort

to make vehicles capable of navigating autonomously. This is particularly true with

regards to space travel and deep space exploration. As missions continue to expand in

scope and capability, both the spacecraft GN&C system and autonomous navigation

will play a critical role in their success.

The complexity of a GN&C system makes the process of defining navigation and

other GN&C subsystem performance requirements rather challenging and abstract.

Each mission has top-level requirements to help ensure mission success, but break-

ing down top-level mission requirements into system performance requirements is not

straightforward. Larson et al. observe that “[t]his translation [from customer expec-

tations to technical system requirements] is often the weakest link in the implementa-
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tion of systems engineering principles.”1 Although the heritage of the space program

has laid a foundation for allocating navigation and GN&C subsystem performance

requirements, this process is usually customized for each mission and typically relies

on engineering judgment, empirical data, and experience gleaned from past missions.

While programs often resort to using “engineering heuristics, intuition, experi-

ence, and rough calculations”2 to initially derive GN&C subsystem requirements,

recently more methodological approaches are being formulated that use Monte Carlo

methods and linear covariance (LinCov) analysis. This research expands upon these

emerging techniques and outlines a novel approach to systematically and optimally

derive navigation and other GN&C performance requirements. These concepts are

demonstrated by deriving these requirements for the first exploration mission of the

National Aeronautics and Space Administration’s (NASA’s) Orion Crew Exploration

Vehicle (CEV) and highlights the potential to use these techniques from the prelimi-

nary design phase through day-of-flight mission planning.

It is important to understand where allocating the GN&C performance require-

ments takes place in the process of creating and executing a mission. With this

understanding, a deeper appreciation of the essential role they play is gained, and the

shareholder’s desire for optimizing them becomes apparent. Ultimately, a program

is interested in purchasing sensors for a GN&C system that will perform sufficiently

so that the vehicle meets mission requirements. In general, there are two approaches

for choosing a set of sensors that will yield the desired system performance. One

method uses the derived performance requirements. First, customers define mission

requirements and objectives. Second, engineers determine and allocate performance

requirements. Third, system designers use the performance requirements to choose an

appropriate collection of sensors that provides the desired performance. An alterna-

tive, bottom-up approach to ensure a GN&C system can meet mission requirements

uses simulations to analyze the performance of different sensor suite configurations.

Their performance is directly compared to top-level mission requirements to ensure
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mission requirements can be met. The remainder of this chapter details each ap-

proach.

1.1 Background

Deep space exploration encompasses a breadth of mission scenarios such as inter-

stellar, interplanetary, rendezvous, asteroid, descent and landing, as well as cislunar

missions. Defining GN&C subsystem performance requirements, especially navigation

requirements, becomes an essential component to adequately support these discovery

missions. Deriving these lower-level requirements also plays a key role in the systems

engineering process following the initial conceptual formulation of a mission.3 The

process for deriving these performance constraints depends on the mission, the es-

tablished practices of a particular organization, the experience of the engineers, or

the available pertinent information and resources from heritage flights. The goal of

this thesis is to demonstrate that a consistent, well-defined method to derive GN&C

subsystem performance requirements is available for a variety of general applications,

and in particular deep space exploration.

1.1.1 Top-Level Mission Requirements

Before deriving performance requirements, customers and shareholders must define

the top-level mission requirements. In NASA’s Systems Engineering Handbook, this

is the first step in the process of planning a mission and is depicted in Fig 1.1.

In the systems engineering process, these requirements are usually well-defined,

quantitatively.4 Top-level requirements answer the question: What does success look

like for this mission? In the context of GN&C space travel, mission requirements

are as diverse as the missions themselves. Generally, they describe critical flight

phases where the position, velocity, attitude, and other performance parameters of

the spacecraft will largely determine the successful completion of the mission.

In conjunction with requirements, constraints limit the realm of possible outcomes
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Figure 1.1 : Systems Engineering Process1

for mission planning. Constraints typically fit in the categories of cost, schedule, and

performance.3 Each program has an allocated budget with limitations in time for

planning, preparing, and executing the mission, and must operate within the scope

of current technology and other resources at the program’s disposal. A program also

encounters political, economic, and physical constraints.3

For many space applications, failure to accomplish top-level mission requirements

leads to significant and sometimes catastrophic losses personally, financially, and po-

litically. The space systems often cost several million dollars to build, launch, and

operate in addition to the time and manpower invested in the development, construc-

tion, and execution of these systems. Mission requirements provide boundaries to

ensure mission success by constraining deviations so that the spacecraft adequately

follows the desired trajectory profile or does not exceed its structural limitations.

While losing a vehicle is devastating to a program because of its great financial cost,

a space system with people onboard cannot be assigned a price. For this reason, mis-

sion requirements play a vital role and receive significant attention. Therefore, the

next question shareholders and engineers ask is: How can the system design ensure
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that the planned trajectory will meet and not violate top-level requirements?

1.1.2 GN&C System Requirements

Defining GN&C system performance requirements helps the system meet mission

requirements. This is the second step in the systems engineering process according

to Fig 1.1. Generally, engineers allocate navigation and other GN&C subsystem

performance requirements in space mission planning. The process for breaking down

customers’ needs, goals, and objectives into executable technical requirements is often

a time-consuming, iterative process, that frequently looks back at the shareholders’

requirements and mission constraints.1

For GN&C systems, one of the main deliverables from deriving performance re-

quirements are the navigation requirements. They describe how accurately the nav-

igation system must perform in estimating the state of the vehicle (i.e. position,

velocity, attitude, angular rate) at different flight phases or navigation regions to ul-

timately meet mission requirements. Engineers also derive other GN&C subsystem

performance requirements to determine the requisite system performance. Should any

of the vehicle states or other subsystem parameters exceed the specified requirements,

the vehicle may be placed in jeopardy or the intended purpose of the mission could

ultimately be frustrated. For this reason, deriving and understanding the GN&C

performance requirements in context of the closed-loop system that will achieve the

top-level mission requirements are essential.

1.1.3 GN&C System Requirement Generation

Historically and especially at NASA, engineers have allocated these requirements by

looking at past missions and using their intuition and best judgment to translate data

collected from heritage flights to the current mission. NASA’s Apollo, Shuttle, and

Orion missions have relied heavily on this heuristic approach for initially allocating

lower-level requirements.
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Heritage and Heuristics

In the 1960s, the U.S. government was determined to send Americans to the Moon

and return them safely to Earth.5 The Apollo missions were designed to accomplish

this goal. Due to the novelty of human space travel, there were many unknowns in

determining how to adequately accomplish what the Apollo missions had set out to do.

NASA therefore designed a series of missions to test the capabilities and limitations

of human space flight. The Gemini program was the precursor to the Apollo missions.

According to Goodman et al., the Gemini missions “established an experience base of

operational techniques and mission planning for Apollo.”6 The lessons learned from

Project Gemini translated directly to Apollo mission planning and even applied to

Space Shuttle missions after Apollo.6 The experience gained from the Apollo missions

were just as useful to the Shuttle program as the Gemini missions were to Apollo, as

each mission improved upon the last.

Engineers have generally allocated GN&C subsystem performance requirements

to specific flight profiles using basic systems engineering practices. Typical practices

are outlined by Larson et al.1 and involve modeling, simulation, prototyping, and

optimization; all of which count on creativity, engineering judgment, and domain

knowledge, supported by tradeoffs and analyses.

NASA is working to expand human spaceflight missions beyond the Moon in the

coming decades. NASA’s Orion CEV is one example of a spacecraft that will depend

heavily on autonomous GN&C,7 especially for its eventual deep space mission to

Mars.8 Though in the early stages of development and flight test, the Orion spacecraft

promises to be on the cutting edge of GN&C capabilities, with its need for navigation

extending outside Low Earth Orbit (LEO) and cislunar space. Keeping with common

practice, the Orion program looked to the Apollo and Shuttle programs for initial

mission planning, especially with regards to navigation.7 As opposed to the more

focused and relatively specialized Apollo and Shuttle missions, the Orion vehicle has

to be able to perform in a variety of flight phases and missions. According to NASA
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engineers, these include “pre-launch, powered ascent, including aborts, automatic

and piloted rendezvous and docking with multiple vehicles in lunar or low Earth

orbit, trans-lunar, lunar orbit, and trans-Earth coast, and direct or skip reentry ...

culminating in a parachute landing.”7 These mission phases also must account for

cargo and crewed missions.7

Systematic Approach

The recent development of a general, systematic approach for deriving optimal navi-

gation requirements has the potential to supplement traditional heuristic approaches

for deriving and allocating these requirements during mission planning. Woffinden

and Breger2 and Mand18 use this systematic approach in their respective works. The

process involves using Monte Carlo and LinCov techniques to derive performance re-

quirements. The method is limited to analyzing one top-level mission requirement at a

time and can only derive navigation requirements. Additionally, this process relies on

an iterative, bi-sectional search method to derive optimal navigation requirements.18

These navigation requirements are subsequently used to select a set of sensors that

yield the desired GN&C system performance.

1.1.4 Navigation Sensor Suite Selection

Determining the specific combination of sensors or a system’s sensor suite for a given

vehicle and mission has historically been an ad hoc process, relying largely on engi-

neering judgment, even for modern day missions.2 Space programs strive to balance

the sensor performance and the corresponding cost. The sensor suite chosen for a

mission must provide the requisite precision in navigation to ensure top-level mission

requirements are met, however, different navigation sensor suites have different costs

associated with them, both financially, in availability, risk, mass, power, and volume.

First, there is a financial cost to be considered. More precise and accurate instru-

ments tend to be more expensive. Sensors that use new technology can also increase
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the cost of a program. The payload cost associated with adding mass to the space-

craft must also be considered. A heavier system requires more propellant to send

it out of Earth’s atmosphere and can quickly increase the cost of the mission. This

consideration is so important that the Orion program decided to forgo a two fault

tolerance requirement for system navigation in order to decrease the weight of the

vehicle, for example.7 Therefore, every mission must determine the optimal combina-

tion of sensors for a vehicle that will meet the requirements within cost constraints. If

the mission requirements are very lenient and allow relatively large dispersions, errors,

and overall uncertainty, then it may not be necessary to include certain instruments,

take specific measurements, or use the most advanced equipment, often saving costs.

1.1.5 Navigation Sensor Selection

Once the GN&C system performance requirements are derived that ensure mission

objectives can be met, the next step is to identify the navigation sensors that provide

the required accuracy in state estimation. Although it is not a focus of this thesis, a

brief discussion on sensor selection is included to provide context for trade studies to

support autonomous navigation for deep space exploration.

Sensors provide both continuous and discrete measurements to a navigation filter

to estimate a spacecraft’s translational and rotational state. With current technology,

sensors for determining the translational state for deep space exploration generally

fall within one of three categories; ground based tracking, visual navigation, and

inertial navigation. Derived navigation system requirements are valid regardless of

what navigation method is used.

Ground Based Tracking

For deep space exploration, a common and robust method for navigation currently

depends on the external infrastructure of the Deep Space Network (DSN). It has been

in use for over fifty years and consists of a network of three antennas located at specific



9

locations around the globe (Canberra, Australia; Madrid, Spain; and Goldstone, Cal-

ifornia, USA).9 The antennas are strategically placed to receive and transmit signals,

providing global coverage. The disadvantages of the DSN are that it is costly to use

and is constrained in the number of missions it can support at a given time. Many

space operations from minor missions like CubeSats10 to more prominent missions

use the DSN, and therefore it is in high demand for its limited capacity.

Visual Navigation

With the advent and ever increasing capabilities of cameras, computers, and sensors,

visual navigation has developed from hand-held sextants like those operated by as-

tronauts during the Apollo missions, to fully autonomous navigation with onboard

cameras linked to ephemeris data. Instruments like startrackers, sun sensors, and fea-

ture tracking cameras11 have been used for deep space navigation in the past. Despite

the different designs for visual navigation instruments, the basic mathematics behind

the state determination is the same. The camera captures images of the spacecraft’s

surroundings, and the computer identifies known constellations of stars or other ce-

lestial bodies in the image. A variety of methods and many different combinations of

measurements use the camera to accurately estimate the vehicle’s state. For example,

measuring the angle between the lines of sight of a known, reference constellation and

a second identifiable celestial body or constellation can help calculate the spacecraft’s

relative position, velocity, and orientation.12 Multiple sensors and multiple measure-

ments, such as including a measurement of the apparent angular diameter of a nearby

celestial body, generally will increase the accuracy of the estimate12

Inertial Navigation

Inertial navigation generally uses sensors to measure the accelerations of a vehicle.

This navigation method receives continuous measurement inputs from an onboard

Inertial Measurement Unit (IMU) using gyros and accelerometers to measure accel-
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erations.14 The accelerations are integrated to derive spacecraft velocity, and the

spacecraft velocity is integrated to calculate its position.13 The orientation of the

vehicle can also be determined by measuring and integrating angular accelerations.13

Often a navigation filter is used in this process to update the vehicle state by incor-

porating the estimated state from knowledge of the state dynamics of the vehicle and

its environment.16 This method does not rely on external infrastructure to estimate

the vehicle state.

Alternative Approach

Instead of using derived GN&C subsystem performance requirements, a common, al-

ternative approach derives sensor suites directly from top-level mission requirements.

This approach to sensor suite selection often involves trade studies. Kremer,17 Velez,10

Mand,18 and D’Souza et al.19 used this method to identify appropriate sensor suites

for the missions of their respective studies. They ran simulations, modeling an ex-

haustive list of possible sensor combinations and reported the resultant systems’ per-

formances. A mission planner could then use that information to choose a sensor

suite that yields the desired performance. This method allows the mission planner

to determine if a system equipped with certain sensors can meet top-level mission

requirements. The disadvantage of this trade study approach is that it is an ad hoc,

iterative, and time-consuming process. Currently, there is no systematic way to op-

timally derive the sensor requirements or an optimal sensor suite from the mission

requirements.

The systematic approach to deriving navigation and other GN&C subsystem per-

formance requirements used in this research in effect reverses this process by providing

the optimal performance requirements for the mission planner who then decides which

sensor suite can perform within the requirements. An optimal sensor suite for a mis-

sion can be derived using this new approach. Additionally, this new process improves

upon the current method for deriving optimal navigation requirements. It can take
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into consideration multiple top-level mission requirements and multiple performance

constraints and optimally derive other GN&C subsystem performance requirements

in addition to navigation requirements.

1.2 Thesis Outline

This research covers the details behind the methods used to derive optimal navigation

and other GN&C subsystem performance requirements. The optimal performance

requirements for two cislunar trajectories are presented. These GN&C subsystem

performance requirements set a performance boundary for the onboard navigation

system to estimate the vehicle’s state at points along a defined trajectory.

Chapter 2 outlines GN&C performance and requirements modeling used for this

research. It details the key processes for navigation performance modeling including

a discussion on the implementation of stochastic navigation within LinCov. The

details for deriving optimal GN&C lower-level technical requirements are provided in

Chapter 3. A description of the selected mission profiles and the database of selected

data are presented in Chapter 4 accompanied by a discussion of the results. Chapter

5 contains the conclusions and considerations for future work. Although this thesis

is centered on only two cislunar cases, the applications for the method described are

widespread. The pattern established in this research can be applied to a variety of

missions where the vehicle incorporates a closed-loop GN&C system.
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Chapter 2

GN&C Performance Modeling

To ensure that a GN&C system can meet top-level mission requirements, it is neces-

sary to have the capability to analyze its performance. Two approaches are currently

used to analyze the performance of a GN&C system. First, Monte Carlo methods are

a common way to detemine the statistical performance of physical events that account

for random processes. For a Monte Carlo simulation, the algorithm commonly uses

a set of pseudo-random numbers sampled from a Gaussian probability density func-

tion20 to account for the effects of random physical phenomena that are not otherwise

accounted for in the mathematical models. By evaluating the performance results for

hundreds or thousands of simulation runs, each perturbing the various random pa-

rameters, the statistical information, namely the mean and standard deviation can

be obtained.21 For a GN&C system, the process calculates the statistical information

that characterizes its performance as it follows a reference trajectory. The drawback

of Monte Carlo analysis is that it can be computationally demanding to run the

required number of simulations to reduce uncertainty22 and obtain significant statis-

tical information. Sometimes hundreds, thousands, or even tens of thousands of runs

may be necessary, depending on the application. Therefore a faster, more economic

method is desirable for preliminary analysis.

A second approach for analyzing GN&C system performance uses linear covariance

analysis, or LinCov. A LinCov analysis can derive similar statistical information for a

system in a single run.23 The main assumption to be made is that the system can be

linearized about a known reference trajectory.15 The user must ensure the assumption

of linearization is valid for the particular application. For many space applications,
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this has proven to be a valid assumption.2,11,15,18 Therefore, LinCov is used in this

work to provide the statistical analysis data needed for optimizing GN&C subsystem

performance requirements.

2.1 GN&C System Modeling

It is important to understand the workings of a GN&C system and how each segment

of GN&C operates jointly along a planned trajectory to reach a destination. An

understanding of the interactions of the guidance, navigation, and controls systems

provides the needed perspective to analyze the GN&C system as a whole.

2.1.1 Guidance/Targeting

Guidance

The guidance system uses physical models of the vehicle and how it reacts in its

environment and to external forces to follow a nominal trajectory. A diagram of how

guidance interplays with navigation and control is provided in Fig 2.1. Knowing the

vehicle’s dynamics and the dynamics of environmental factors and forces, gives a clear

idea of how the vehicle is to follow its trajectory. Using the estimated state from the

navigation system, the guidance system computes the desired vehicle states. Often

the roles played by the path planning/guidance and the controllers, shown in Fig 2.1

as separate functions, are executed together, in practice. Therefore, the guidance

system often outputs actuator commands as well.
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Figure 2.1 : Closed-loop GN&C System Diagram24

Targeting

An important, supplemental function of guidance is targeting. Marchand et al. state

that targeting “refers to the numerical process of identifying feasible solutions to a

problem that is subject to both path and control input constraints.”25 A vehicle’s

targeting algorithm typically computes the necessary instantaneous velocity change

(∆V) required to transfer a spacecraft from its current state to a desired location given

a specified transfer time. There are multiple, commonly used targeting routines. The

targeting algorithm utilized for this research investigating the lunar outbound and

lunar return scenarios uses a technique called two-level targeting. This aptly-named

method consists of two steps or levels to increase accuracy. This method optimizes

the current trajectory to hit specific points or patch points.25

The level-I process is fairly straightforward. It involves breaking up the trajectory

into segments with targeted points called patch states at the end of each segment.

The algorithm then places instantaneous maneuver corrections at these patch states

to ensure the continuity of the position vectors from one segment to the next.25 The

level-II process ensures the continuity of the velocity at the patch states. As the

algorithm works to zero out the velocity discontinuities, the location of the patch

states will change slightly, which consequently alters the shape of the trajectory.26

The level-I process is iterative as it determines the optimal patch states. The two-
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level targeting algorithm as a whole is iterative. Therefore, the process returns to

level-I after the level-II process is complete until an optimal solution is found.27

2.1.2 Control

With reference to Fig 2.1, the control system executes the actuator command from the

guidance system.3 In the context of space travel the actuators may include thrusters,

momentum wheels, and control surfaces. In short, control is the system’s ability to re-

spond to correction inputs and make adjustments to maintain the nominal trajectory

via actuation.

2.1.3 Navigation

As the vehicle moves along the desired path, it is necessary to determine its state.

The process of estimating the vehicle’s state is called navigation. Most commonly,

it is estimated with the help of a navigation filter which combines estimation inputs

from the process of predicting the vehicle state based on the system dynamics and

simultaneously incorporating both continuous and discrete sensor measurements.18

Navigation is key to effectually implementing guidance and adequately executing

control. It closes the loop for a GN&C system (see Fig 2.1). For preliminary analysis,

rather than implementing a navigation filter and modeling an assortment of potential

sensors that are either unknown or not developed early in the design process, it is

helpful to have another way of representing the navigation performance. Stochastic

navigation provides this capability and models the effects of a navigation system on

the overall performance of the GN&C system.18 To familiarize the reader with the

process of implementing stochastic navigation in a linear covariance analysis, a brief

explanation is also developed.
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2.2 GN&C Performance Metrics

In the same way that top speed, acceleration, and handling describe the performance

of an automobile, there are parameters that measure the performance of a GN&C

system. Fig 2.2 introduces key terms that describe the deviations from the nominal

and navigation state; dispersions and errors. These deviations are used to calculate

the GN&C performance metrics. This section formally defines the GN&C perfor-

mance metrics and how they are obtained using LinCov analysis techniques. The

discussion that follows is regenerated using papers written by Woffinden and Breger2

and Mand.18

Figure 2.2 : Defining Navigation Uncertainty2

The environment dispersions, δx, describe how much the vehicle has deviated from

the desired, nominal state or trajectory. This relationship is outlined by

δx
∆
= x− x̄. (2.1)

Note that variables related to the true state, x, do not have any additional markings

over the variable while all variables related to the nominal state, x̄, are designated as

such with a horizontal bar overhead.

The environment dispersions are used to calculate the covariance matrix of the
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environment dispersions, D,

D = E[δxδxT ]. (2.2)

This covariance matrix is one of the performance metrics for a GN&C system and

represents how well the system follows the desired trajectory.

The difference between the navigation state and the nominal state, in Fig 2.2

constitutes the navigation dispersions, δx̂,described by the equation

δx̂
∆
= x̂−Nx̄. (2.3)

The matrix, N, is merely an (n̂×n) mapping matrix that is used to allow the nominal

and navigation states to be compared in the case that the number of navigation states

that make up the x̂ vector does not equal the number of nominal states in the x̄

vector, n̂ 6= n̄. The navigation state, x̂, is the estimated state output by the onboard

navigation system, and x̄ represents where the vehicle should be if it had followed the

nominal trajectory. Therefore the covariance matrix of the navigation dispersions,

D̂ = E[δx̂δx̂T ], (2.4)

reflects how well the onboard navigation system thinks it has followed the reference

trajectory.

With reference to Fig 2.2, the navigation error, δe, is

δe
∆
= Nx− x̂ = Nδx− δx̂. (2.5)

The navigation system will rarely, if ever, determine the state of the spacecraft per-

fectly. There is therefore a difference between where the vehicle is (x) and where the

navigation system thinks it is (x̂). Eqn 2.5 also reveals that the navigation error can

be and is most practically derived by taking the difference between the environment
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and navigation dispersions. The navigation error covariance matrix, P, is expressed

as

P = E[δeδeT ] (2.6)

and defines how well the navigation system can estimate the vehicle’s true state.

The final GN&C performance metric is the onboard navigation error covariance

matrix, P̂. This metric, calculated as

P̂ = E[δêδêT ], (2.7)

essentially describes how well the navigation system thinks it is following the nominal

trajectory. It is re-calculated at each time step by the onboard navigation filter18 and

is derived from the onboard navigation error, defined in the equation

δê
∆
= x− x̂, (2.8)

where x is the design state.

The augmented state vector, δX, and the augmented state covariance matrix, C

are introduced by the equations

δX =

δx
δx̂

 (2.9)

and

C = E[δXδXT ]. (2.10)

The augmented state covariance matrix is of critical importance in a LinCov analysis.

This covariance matrix stores the majority of the relevant statistical information re-

garding the vehicle states. Three out of the four GN&C system performance metrics

can be derived from the augmented state covariance matrix. Note how the environ-
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ment dispersion covariance matrix, D, the navigation dispersion covariance matrix,

D̂, and the navigation error covariance matrix, P, are related to the augmented state

covariance matrix, C, as the appropriate terms are turned on or canceled by pre- and

post-multiplying the augmented state covariance matrix, C, by coordinated zero and

identity matrices,

D = [In×n,0n×n̂]C[In×n,0n×n̂]T , (2.11)

D̂ = [0n̂×n, In̂×n̂]C[0n̂×n, In̂×n̂]T , (2.12)

P = [In̂×n,−In̂×n̂]C[In̂×n,−In̂×n̂]T . (2.13)

This unique relationship means that only the augmented state covariance matrix

and the onboard navigation error covariance matrix, P̂, are initialized, propagated,

updated, and corrected. Although the LinCov tool used for this analysis only takes

these two covariance matrices as inputs, the expressions for initializing, propagating,

updating, and correcting the states are also included in the explanation of applying

stochastic navigation within LinCov for completeness.

2.3 GN&C Requirements Modeling

In addition to modeling the performance of the GN&C system, the GN&C require-

ments that will be optimized are also modeled to determine their impacts on the

performance of the GN&C system.29 The GN&C subsystem performance require-

ments consist of navigation, initial trajectory dispersion, system process noise, and

maneuver execution error requirements. The description of GN&C subsystem re-

quirements in this section follows the same topic outlined in a paper by Woffinden et

al.29
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2.3.1 Navigation Requirements

Stochastic navigation is essential to modeling navigation requirements. The perfor-

mance of the navigation system is represented by

x̂ = Nx + δē, (2.14)

where the navigation state is given by the true state perturbed by the navigation

error, δē.29 The navigation error covariance matrix,

P = E[δeδeT ], (2.15)

is an important metric for GN&C systems, and is also used to derive navigation re-

quirements. Navigation requirements describe how accurately the navigation system

must perform at any given point on the trajectory to meet mission requirements.

2.3.2 Initial Trajectory Dispersion Requirements

The allowable initial trajectory dispersions, δx̄0, assumed for a particular flight regime

are used to define the initial state (x0)

x0 = x̄0 + δx̄0, (2.16)

as it deviates from the initial nominal trajectory, x̄0. The initial trajectory dispersion

requirements are described by the covariance matrix

Pδx̄ = E[δx̄0δx̄
T
0 ]. (2.17)

2.3.3 System Process Noise Requirements

The system process noise term accounts for magnetic field disturbances, solar ra-

diation pressure, and gravity gradient among other unmodeled accelerations and
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torques.3 It can even account for the motion of astronauts onboard the vehicle,

or other random events that are not modeled otherwise. The expression for the true

state as it changes over time,

ẋ = f(x,u) + δη̄, (2.18)

uses the process noise, δη̄, to capture the errors that are not modeled explicitly. The

process noise requirement is modeled by the covariance matrix

Pδη̄ = E[δη̄δη̄T ]. (2.19)

This requirement indicates to what degree the disturbance accelerations can be tol-

erated in the system.

2.3.4 Maneuver Execution Error Requirements

A simple model for the maneuver execution error requirements for a preliminary

analysis of a GN&C system can be characterized by the covariance matrix

Pδū = E[δūδūT ], (2.20)

where δū represents the combined maneuver execution errors caused by the guid-

ance and control algorithm and the actuators.29 This same error is added to the

commanded control input, û, to yield the actual control input, u:

u = û + δū. (2.21)

These requirements essentially describe how precisely the maneuvers must be per-

formed for the system to ultimately meet top-level mission requirements.
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2.4 Navigation Performance Modeling

Stochastic navigation is a useful error model in a preliminary analysis of a GN&C

system, because it simply, yet effectively models the performance of a navigation

system without modeling sensors or navigation filters.18 It is implemented within

the LinCov analysis as the statistical information stored in the augmented state and

onboard navigation error covariance matrices that characterizes the GN&C system

performance is initialized, propagated, updated, and corrected. A full explanation and

derivation of LinCov can be found in the works written by Maybeck23 or Geller.15

2.4.1 Initializing

The first step in the analysis is to initialize the augmented state covariance matrix, C0.

To do this, the initial covariance matrix of the environment dispersions, represented

by

D0 = E[δx0δx
T
0 ], (2.22)

is determined by the user, based on empirical data or engineering judgment.

The covariance matrix of the desired navigation error is also chosen by the user

and is represented by the expression

P̄0 = E[δē0δē
T
0 ], (2.23)

with the initial navigation error defined as

δē0 = Nδx0 − δx̂0. (2.24)

The initialized augmented state vector

δX0 =

δx0

δx̂0

 =

 δx0

(Nδx0 − δē0)

 , (2.25)
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contains the initial environment and navigation dispersions and is used to create the

initialized augmented state covariance matrix, C0

C0 =

 E[δx0δx
T
0 ] E[δx0δx

T
0 ]NT

NE[δx0δx
T
0 ] NE[δx0δx

T
0 ]NT + E[δē0δē

T
0 ]

 , (2.26)

which can be expressed in terms of the matrices D0 and P̄0 as shown by

C0 =

 D0 D0N
T

ND0 ND0N
T + P̄0

 . (2.27)

The initial onboard navigation error covariance matrix (P̂0) is simply set equal to

the initial covariance matrix of the desired navigation error

P̂0 = P̄0. (2.28)

2.4.2 Propagating

The covariance matrices are then propagated through time. Generally, the change of

the navigation error of the states over time, δ ˙̄e, is captured by the equation

δ ˙̄e = (I−H)δė, (2.29)

where H is a selector matrix which selects the states affected by stochastic navigation.

For example, if all the states were to be modeled by stochastic navigation, H would

become the identity matrix, I. Thus δ ˙̄e = 0, which indicates that the navigation

error would not change as the system is propagated through time and is a defining

characteristic of stochastic navigation.18 With stochastic navigation, the navigation

error remains constant over time, and will only potentially change to a different

constant value at different segments of the trajectory called navigation regions. The

augmented state matrix is therefore propagated (as indicated by the dot above the
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variable) according to the equation

δẊ =

δẋ
δ ˙̂x

 =

 δẋ

Nδẋ− (I−H)δė

 . (2.30)

The augmented state and navigation error dynamics of a system during propaga-

tion are described by the equations

δẊ = AδẊ (2.31)

and

δ ˙̂e = Âδ ˙̂e. (2.32)

The A matrix,

A =

 I 0

HN (I−H)

 , (2.33)

is referred to as the augmented navigation reset matrix. Further, the matrix

Â = (I−H), (2.34)

is called the onboard navigation reset matrix. They use the selector matrix, H, to set

the derivative of the navigation states that are to be modeled by stochastic navigation

to zero (i.e. they do not change and are not propagated), while allowing the other

states to be propagated.

These matrices are therefore also used to properly propagate the augmented state

covariance and onboard state covariance matrices through time according to the equa-

tions

Ċ = AĊAT , (2.35)
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and

˙̂P = Â ˙̂PÂT . (2.36)

2.4.3 Updating

The update step of the stochastic navigation process is only realized if there is an

instantaneous change in the navigation requirements or navigation performance from

one time step to another as the covariances are propagated along the trajectory.2

This change most commonly occurs when the spacecraft enters a different navigation

region of the trajectory. Therefore, the navigation error is updated to a new value,

indicated by the superscript + as

δē+ = δē, (2.37)

where δē is a prescribed navigation error associated with the new navigation region

and is determined a priori. This new term is then used to derive the covariance

matrix,

P̄ = E[δē+δē+T ], (2.38)

and is subsequently incorporated with the existing augmented state covariance and

onboard navigation error matrices.

The state covariance matrix and onboard navigation error are updated using the

equations

δX+ =

δx+

δx̂+

 =

 δx−

(δx̂−Hδx̂−) + (HNδx− −Hδē)

 (2.39)

and

δê+ = (δê− −Hδê−) + Hδē, (2.40)
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respectively. The environment dispersions are unchanged and therefore take on the

value at the previous time step, and the selector matrix, H, makes it so that only the

states affected by stochastic navigation are updated with the new navigation error.

The augmented navigation reset and onboard navigation reset matrices (A and

Â) are used again to reset the previous states

δX+ = AδX− + Bδē, (2.41)

δê+ = Âδê− + B̂δē. (2.42)

Two matrices, the augmented navigation inclusion matrix

B =

 0

−H

 (2.43)

and the onboard navigation inclusion matrix

B̂ = H, (2.44)

are introduced in this step to incorporate the updated errors into the previous states.

Finally, the augmented state and onboard navigation covariance matrices are up-

dated using the equations

C+ = AC−AT + BP̄BT (2.45)

and

P̂+ = ÂP̂−ÂT + B̂P̄B̂T , (2.46)

ensuring the correct values of the state from the previous time step (C− and P̂−)

appropriately combine with the updated navigation error values stored in P̄.
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2.4.4 Correcting

The correction step is needed whenever a maneuver is performed. A trajectory cor-

rection burn, for example, will generally alter the dispersions and navigation errors.

While the true dispersions do change, the navigation errors do not change using

stochastic navigation and must be corrected to their values at the previous time step.

The augmented state matrix is therefore corrected by

δX+c =

δx+c

δx̂+c

 =

 δx+c

(δx̂+c −Hδx̂+c) + (HNδx+c −Hδe−c)

 . (2.47)

The superscripts + or − indicate the values at the next or previous time steps, and

the superscript c indicates a corrected value. The equation,

δê+c = δê−c, (2.48)

reveals that the navigation error at the new time step, δê+c, is reset to adopt the

same value as the previous time step, and the navigation error at the previous time

step, δê−c, in turn, is given by the expression

δê−c = Nδx−c − δx̂−c. (2.49)

In Eqn 2.49, δx−c is the environment dispersions, and δx̂−c is the navigation disper-

sion; both before the maneuver. This redefined value of navigation error is substituted

into Eqn 2.47 to yield

δX+c = AδX+c + FδX−c, (2.50)

where F is given by

F =

 0 0NT

−HN H

 . (2.51)
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This augmented covariance maneuver nulling matrix (F) effectively leaves the naviga-

tion error untouched by the effects of the maneuver on the system. The expressions for

the corrected augmented state covariance matrix and onboard navigation covariance

matrix are given by

C+c = AC−cAT + FC−cFT (2.52)

and

P̂+c = P̂−c. (2.53)

The LinCov tool uses this process of initializing, propagating, updating, and cor-

recting the augmented state covariance matrix from C0 to C+c and the onboard

navigation covariance matrix from P̂0 to P̂+c to simulate via stochastic navigation

how the navigation system would perform as it follows the nominal trajectory. This

process is essential to deriving the performance requirements for this research.

2.4.5 Overview

Table 2.1 provides an abbreviated review of the LinCov analysis. It focuses on the

augmented state covariance matrix, C, and the onboard navigation error covariance

matrix, P̂, because they are the two matrices that are initialized, propagated, up-

dated, and corrected in the LinCov tool.

Step C P̂

Initialize C0 =

[
D0 D0N

T

ND0 ND0N
T + P̄0

]
P̂0 = P̄0

Propagate Ċ = AĊAT ˙̂P = Â ˙̂PÂT

Update C+ = AC−AT + BP̄BT P̂+ = ÂP̂−ÂT + B̂P̄B̂T

Correct C+c = AC−cAT + FC−cFT P̂+c = P̂−c

Table 2.1 : Summary of Implementing Stochastic Navigation within a
LinCov Analysis



29

First, C0 and P̂0 are initialized using the covariance matrices of the initial environ-

ment dispersions and navigation errors which are determined by the user beforehand.

Both matrices are then propagated to the next time step, and the A and Â matrices

only allow the states affected by stochastic navigation to be propagated. When the

system arrives at a time step that indicates a different navigation region, the states

are updated with the new navigation error associated with the new navigation region.

Finally, when the system executes a maneuver, the matrices are corrected so that the

navigation error remains unchanged by the maneuver.
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Chapter 3

Optimal GN&C Requirement Generation

3.1 Performance Requirement Representation

There are several methods for optimizing GN&C subsystem performance require-

ments. The focus of this thesis is to derive an optimal set of performance require-

ments for the cislunar missions that allow the GN&C system to meet top-level mis-

sion requirements. The method for deriving the optimal performance requirements

accounting for multiple top-level mission requirements is outlined in this chapter. The

optimization involves multiple, often correlated, variables represented by ellipses.

GN&C subsystem performance requirements characterize the level of uncertainty

that can be tolerated in the estimation of the vehicle states and other GN&C per-

formance parameters. The constraints on these performance requirements ultimately

are the top-level mission requirements. In most cases, the mission requirements are

determined a priori, as is the case for the scenarios analyzed in this research. Multi-

variate or correlated performance requirements that form the bi-variate case can be

represented geometrically as an ellipse. Two-dimensional (2-D) ellipses, defined with

two performance parameters that are often correlated, may also be described by 2×2

matrices, and correspondingly, n-dimensional ellipsoids, defined with n performance

parameters, can be described by n× n matrices.

It is noted for clarity that the terms ellipse and matrix are used interchangeably,

because in this context, the ellipses are represented by matrices and vice versa. In the

case that more than two correlated variables are being analyzed at a time, the terms

n-dimensional ellipsoid and n × n matrix best describe the data, however the terms

ellipse and matrix are used throughout for simplicity and consistency. Additionally,
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multiple terms are used to refer to the total performance uncertainty ellipse. These

terms include: the performance ellipse, the total error ellipse, and the RSS ellipse of

all error sources. As the results of the current analysis are presented as 2-D ellipses,

this form is developed further.

A 2-D requirement ellipse in matrix form is generalized by

 σ2
p̄1

ρσp̄1σp̄2

ρσp̄2σp̄1 σ2
p̄2

 , (3.1)

where σ2
p̄1

and σ2
p̄2

represent the total variances of the two performance parameter that

define the specific requirement, and ρ is the correlation coefficient of the parameters.

A 2-D error source ellipse is shown in matrix form by

 σ2
δi1

ρσδi1σδi2

ρσδi2σδi1 σ2
δi2

 , (3.2)

where σ2
δi1

and σ2
δi2

are the variances of the contribution of the individual error source

(δi) to the two performance parameters of interest, and ρ is the corresponding cor-

relation coefficient. It is important to note the physical or geometric meaning of the

information that is stored in the matrices. Primordially, the square root of the eigen-

values of the requirement or error source matrices are the lengths of the semi-major

and semi-minor axes. For example, in the case of the 2× 2 error source matrix from

Eqn 3.2, if the variables are not correlated (ρ = 0), then the variances σ2
δi1

and σ2
δi2

are the eigenvalues of the matrix, and σδi1 and σδi2 represent the semi-major and

semi-minor axes of the 1-σ ellipse.30 Typically the requirement and error source el-

lipses are represented using three standard deviation (3-σ) statistics to capture the

performance of the system with 99.7% confidence.28 The eigenvectors of the matrix

describe the orientation of the ellipse as it is rotated from the principal axes.
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3.2 Scaling GN&C Performance Metrics

The total performance ellipse is made up of multiple error source ellipses. The er-

ror source ellipses represent the contributions of navigation error, initial trajectory

dispersions, system process noise, and maneuver execution error to the total perfor-

mance uncertainty. Because of the linearity of the error variables, the individual error

ellipses can be added together to form an ellipse of all the error components. The per-

formance metric can be expanded or reduced until it meets the mission requirements.

This process may not be completely intuitive considering the potential differences

in orientation and shape of the requirement and performance ellipses, therefore the

method for scaling is outlined in this section, beginning with a brief discussion on the

fundamental concept of sensitivity analysis.

3.2.1 Sensitivity Analysis Scaling

Sensitivity analysis takes advantage of the fact that in a linear process, where the

error sources are independent, the sum of each individual error source equals the

total error

σ2
p =

∑
σ2
p|δi . (3.3)

In other words, the total variance of a specific GN&C requirement parameter

such as downtrack position, flight path angle, or crosstrack velocity, represented by

σ2
p, equals the sum total of each individual error source’s contribution, i, to the

variance of the parameter of interest, p, represented by σ2
p|δi .

29 A sensitivity study

determines the individual contributions of each error source to the GN&C system

top-level requirement parameters. One by one, each error source is evaluated as if it

were the only source contributing to the overall uncertainty. To calculate the total

uncertainty, the individual components are linearly combined. As a result of analyzing

each error source individually, they can be plotted separately, which allows the user
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to quickly determine visually how each error source contributes to overall uncertainty.

Sensitivity studies are essential for deriving navigation and other GN&C sub-

system performance requirements. Consider first a scalar case, looking at the total

uncertainty for a given performance parameter, σ2
p. Expanding Eqn 3.3 to

σ2
p = σ2

p|δ1 + σ2
p|δ2 + · · ·+ σ2

p|δn , (3.4)

a scaling factor, α2, is then applied to each error source contribution that will yield an

increased (α2 > 1) or reduced (α2 < 1) total variance of the performance parameter

(σ2
p∗)

σ2
p∗ = α2(σ2

p|δ1 + σ2
p|δ2 + · · ·+ σ2

p|δn). (3.5)

Distributing the scaling factor to each error source term yields the expression

σ2
p∗ = α2σ2

p|δ1 + α2σ2
p|δ2 + · · ·+ α2σ2

p|δn . (3.6)

Scaling all the error sources by a single scaling factor can be useful, however, each

error source contribution is linearly independent, therefore each error source can be

scaled by a unique value or weight, w2
k. Individual weights are applied to each error

source term in Eqn 3.5 as expressed in the equation

σ2
p∗ = α2(w2

1σ
2

p|δ1 + w2
2σ

2
p|δ2 + · · ·+ w2

nσ
2
p|δn). (3.7)

The scaling factor, α2, is distributed to each error source term. A new weighting

term, w2
k∗ , is defined as

w2
k∗ = α2w2

k, (3.8)

and Eqn 3.7 becomes

σ2
p∗ = w2

1∗σ
2

p|δ1 + w2
2∗σ

2
p|δ2 + · · ·+ w2

n∗σ2
p|δn . (3.9)



34

Ultimately, the goal is to ensure the total variance of a given performance parameter is

less than or equal to the maximum allowable dispersions of the performance parameter

that constitutes the top-level mission requirement

σ2
p ≤ σ2

p̄. (3.10)

Weighting the individual error sources to yield a new total variance for a performance

parameter, σ2
p∗ , that can optimally meet the mission requirements, σ2

p̄, is possible.

With the scalar case developed, the case for optimally scaling and weighting ellipses

via linear manipulation of 2× 2 matrix manipulation is considered.

3.2.2 Single Scaling Factor Derivation

The optimal weighting method that forms the crux of this investigation branches from

the derivation for a single scaling factor for uncorrelated scalar requirements. The

full derivation has been completed previously by Woffinden et al.29

The mission requirement (n × n) ellipse is represented by the covariance matrix,

Σp̄, defined in Eqn 3.11 with δxp̄ representing the maximum dispersions and errors

allowed by the mission requirement

Σp̄ = E[δxp̄δx
T
p̄ ]. (3.11)

Σp̄ can be decomposed to the diagonal matrix of its eigenvalues, D̄, then pre- and

post-multiplied by its rotation matrix, consisting of its eigenvector, V̄, as detailed in

the equation

Σp̄ = V̄D̄V̄T . (3.12)

The requirement ellipse is then transformed32 to a new, unit circle coordinate

space by pre- and post-multiplying by a transformation matrix, T̄. This transfor-

mation is an affine transformation32 and is linear, therefore the effects and results
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of the processes accomplished in this coordinate space also affect the ellipses in the

original coordinate space.33 Generally, for an affine coordinate transformation, the

two coordinate systems can be defined by translation of the axes’ origins, a rotation

of the axes, and a scale factor.31 The transformation matrix is formed by taking

the inverse square root of the diagonal eigenvalue matrix of the mission requirement

ellipse, D̄−
1
2 , and multiplying it by the rotation matrix, V̄

T̄ = D̄−
1
2 V̄. (3.13)

This transformation, which makes the requirement ellipse a unit circle in the

transformed space, Σū, (see Eqn 3.16) is visualized step-wise following the solid yellow

line from Figs 3.1a - 3.1b.
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(a) Mission Requirement and Performance Ellipses

(b) Transformed Ellipses in Unit Circle Space

(c) Transformed Ellipses Rotated to Principal Axes

Figure 3.1 : Performance Ellipse Scaling to Meet Mission Requirements29
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The transformation of the requirement ellipse is also described step by step by

Σū = T̄P̄T̄
T
, (3.14)

Σū = D̄−
1
2 V̄(V̄D̄V̄T )V̄T D̄T− 1

2 , (3.15)

and

Σū = I. (3.16)

The next step in deriving the optimal navigation requirements is transforming the

performance ellipse, Σp. This ellipse consists of the RSS of all the error sources,

Σp = E[δxpδx
T
p ], (3.17)

and can be expressed in matrix decomposed form in the expression,

Σp = VDVT . (3.18)

This ellipse will be scaled to hit the requirements, but first, it is also transformed

to the new coordinate space by pre- and post-multiplying by the same transformation

matrix derived from the requirement ellipse, T̄. Unlike the requirement ellipse-turned

unit circle, the total error ellipse remains an ellipse; now with a different orientation

and/or shape (see the red ellipse from Figs 3.1a - 3.1b), and the resultant transfor-

mation yields a new performance ellipse, Σu, defined by Eqns 3.19 and 3.20, often

located within the unit circle (Σū),

Σu = T̄PT̄T , (3.19)

Σu = D̄−
1
2 V̄(VDVT )V̄T D̄−

1
2
T . (3.20)
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Comparing the solid red ellipse to the solid yellow ellipse in Fig 3.1b, the trans-

formed performance ellipse does not yet meet the requirement unit circle and can be

scaled until it hits the requirement.

The final step in the process is to rotate all the terms of interest so that the semi-

major and semi-minor axes are aligned with the principal axes (see Figs 3.1b-3.1c).

To do this, the matrices of the ellipses of interest (the transformed requirement and

performance matrices) are pre- and post-multiplied by the transpose of the rotation

matrix of the performance ellipse, VT
u expressed in the equations

Σd̄ = VT
uΣūVu (3.21)

and

Σd = VT
uΣuVu. (3.22)

The rotation of the transformed requirement ellipse is trivial, because it is a unit

circle.

Finally, at this point the scaling problem — solving for α2 — is straightforward

and the optimal weighting problem becomes feasible. The scaling factor, α2, is the

ratio between the semi-major axis of the transformed requirement ellipse, which is

1 because the transformed ellipse is a unit circle, and the semi-major axis of the

transformed total error ellipse,

α2 =
1

(eig [Σd])max
. (3.23)

The semi-major axis of the transformed performance ellipse is determined by cal-

culating the maximum eigenvalue of its corresponding n × n matrix. Unity, derived

from the unit circle, is divided by the largest eigenvalue to calculate the scaling term,

α2. The downside to this method is that because the performance ellipse, which con-

sists of the RSS of all the error sources, is scaled all together, the same scale factor,

α2, is applied to each error source ellipse of which the performance ellipse is made.
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This result is not very practical in almost all applications and therefore is not very

useful. For example, the scaling term could be 2.0 which indicates that all the disper-

sions and errors can increase by a factor of 2.0, and the mission requirements are still

met. However, it is possible that increasing an individual error source contribution

by a factor of 2.0 is not desirable.

The current investigation uses a method detailed in a text by Woffinden et al.29

and regenerated here, which builds on the foundation of this method of scaling by

calculating optimal weights for individual error sources, thus allowing for optimiza-

tion and realistic scaling, ultimately deriving optimal GN&C subsystem performance

requirements.

3.3 Optimizing GN&C Performance Metrics

3.3.1 Lower and Upper Bounds

Every scenario requires the user to determine the initial value of a given error source

and the upper and lower bounds of the scaling terms, now referred to as weights,

for each error source variable unique to the mission. Currently no automated way is

available for choosing the initial value nor appropriate upper and lower bounds, de-

pending on the scenario. Therefore, the user is wont to use best practices, engineering

judgment, and previous empirical data to make these decisions. A straightforward

approach is to analyze each of the dispersions and errors individually, determine a

realistic minimum and maximum value for that variable given the current trajectory

and mission, then divide the minimum and maximum values individually by the ini-

tialized value for that error source to yield the lower and upper bounds for the weights,

respectively. This procedure is detailed in Eqns 3.24 - 3.27, where σδk represents the

initial value of the error source of interest (the subscript k indicating which individ-

ual error source is currently under consideration), w2
k represents the lower bound (lb)

and upper bound (ub) values of the weights for which the equations solve, and
[
σ2
δk

]
represents the minimum (min) and maximum (max) values the given error source can
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realistically take on in the scenario with

σ2
δk
w2
klb

=
[
σ2
δk

]
min

, (3.24)

w2
klb

=

[
σ2
δk

]
min

σδk
, (3.25)

σδkw
2
kub

=
[
σ2
δk

]
max

, (3.26)

and

w2
kub

=

[
σ2
δk

]
max

σδk
. (3.27)

3.3.2 Optimal Weights Generation

The optimal weights can be solved simply through linear programming. The following

steps are taken previous to optimizing the weights.29 The procedure for transforma-

tion and rotation of the requirement ellipse is the same, and will not be repeated

here.

The total error matrix,

Σp =
∑

(Σp|δj), (3.28)

is formed by adding together the contributions of each individual error source. This

is the ellipse that is to be weighted and scaled in such a manner that it hits the

mission requirements. The mission planner may not want to weight or scale every

error source for every scenario. For example, it may already be determined which

thrusters will be used for the mission, and therefore the maneuver execution error

will already be known and should not change. To account for these quantities that

will not be weighted, Eqn 3.29 breaks the summation into variables that will be scaled,

annotated with the subscript k, and variables that will not be scaled, annotated with

the subscript j
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Σp∗ =
∑

(w2
kΣp|δk) +

∑
(Σp|δj). (3.29)

Transformation

Mirroring the same procedure outlined previously, the performance ellipse is mapped

to the unit circle space. The ellipse is now transformed and is designated as Σu∗ ,

Σu∗ = T̄Σp∗T̄
T . (3.30)

Rotation

The next step involves aligning the semi-major and semi-minor axes with the principal

axes of the unitized space. This step is accomplished by decomposing the total

performance matrix and pre- and post-multiplying it by the transpose of its rotation

matrix, VT
u . The rotated, transformed performance matrix becomes Σd∗ ,

Σd∗ = VT
uΣu∗Vu. (3.31)

An expanded view detailing all the processes involved in transforming and rotating

the ellipse is given by

Σd∗ =
∑

(w2
kV

T
uTΣp|δkT

TVu) +
∑

(VT
uTΣp|δjT

TVu). (3.32)

Substituting Σd|δk = VT
uTΣp|δkT

TVu and Σd|δj = VT
uTΣp|δjT

TVu, Eqn 3.32

becomes

Σd∗ =
∑

(w2
kΣd|δk) +

∑
(Σd|δj). (3.33)
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Setting Up a Linear Problem

Ideally this approach for optimizing the weights of the contributions of individual

error sources would use the eigenvalues of Σd∗ ,

σ2
d∗ = eig

[∑
(w2

kΣu|δk) +
∑

(Σu|δj)

]
, (3.34)

however, doing so introduces non-linearities to the problem, and consequently, linear

programming is no longer a viable resource for solving for the optimal weights. This

study therefore uses the main diagonals of the rotated matrix, Σd∗ , to make a close

approximation

σ2
d∗ = diag

[
Σd∗
]
. (3.35)

These values stored in the vector, σ2
d∗ , represent the magnitude of the individual

error sources in the direction of the principal axes. Although the total performance

ellipse has its semi-major and semi-minor axes aligned with the principal axes, each

individual error source ellipse does not necessarily line up with the principal axes;

although more often than not, the rotation very nearly aligns the ellipses along them.

In the rare event that this is not the case, the correction process will account for the

minor deviations that occasion this problem. The main diagonals therefore fit the

equality

σ2
d∗ =

∑
(w2

kσ
2
d|δk) +

∑
(σ2

d|δj), (3.36)

which brings the equation to a point where the weights can be isolated and each one

can be solved for via optimization/linear programming,

The constraint is the top-level requirements. It is desirable for the performance

ellipse to hit, but never exceed, the requirement ellipse. This is expressed mathemat-
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ically with ∑
(w2

kσ
2
d|δk) +

∑
(σ2

d|δj) ≤ (1−m)21, (3.37)

where the right hand side of the equation represents the requirement ellipse still

in transformed space, the diagonals of which constitute a vector of ones, 1. The

expression, (1 − m)2, preceeding the 1 vector accounts for a margin, m, that the

mission planner may include, effectively putting in place a factor of safety with the

requirement. The left hand side of the equation, the total, weighted error ellipse must,

in all n−directions, be less than or equal to the requirement, including the associated

margin.

Finally, the scaling terms are isolated by bringing the non-scaling terms to the

right hand side of the equation expressed by

∑
(w2

kσ
2
d|δk) ≤ (1−m)21−

∑
(σ2

d|δj). (3.38)

With the equation in this format, the weights can be solved for. Eqns 3.25 and 3.27

can combine to become

w2
klb
≤ w2

k ≤ w2
kub
, (3.39)

which ensures the optimal weights are within the bounds specified by the user. Eqn

3.39 can be rewritten as

[
σ2
δ̄k

]
min

σ2
δk

≤ w2
k ≤

[
σ2
δ̄k

]
max

σ2
δk

. (3.40)

Optimization - Linear Programming

To solve for the optimal weights, which must fall within the user-specified bounds

displayed in Eqn 3.40, an A matrix and a b vector must be created. Each construct

stores key information needed to optimize a given variable. In this case, the variables

to be optimized are the weights applied to the individual error source contributions.
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For example, the A matrix usually stores the given or initial values of a variable as

well as the parameters of a specific cost function. The b vector stores the limits or

requirements of the optimization. The relationship between the two is an inequality

used commonly in general linear programming problems34 and is described by

Ax ≤ b, (3.41)

where the variable, x, is a vector of variables for which the optimization is to solve.

For the current investigation, these matrices store the necessary information such

as the initial values of the error sources and the cost function parameters in the case

of the A matrix and the top-level mission requirements and upper and lower bounds

for the weights in the b vector. A better sense for the contents of each construct can

be gleaned from a quick study of the following equations

A =



σ2
d|δ1 σ2

d|δ2 · · · σ2
d|δk

−1 0 · · · 0

0 −1 · · · 0
... · · · · · · ...

0 0 0 −1

1 0 · · · 0

0 1 · · · 0
... · · · · · · ...

0 0 0 1



,b =



(1−m)21−
∑

(σ2
d|δj)

−
[
σ2
δ̄1

]
min

/
σ2
δ1

−
[
σ2
δ̄2

]
min

/
σ2
δ2

...

−
[
σ2
δ̄k

]
min

/
σ2
δk[

σ2
δ̄1

]
max

/
σ2
δ1[

σ2
δ̄2

]
max

/
σ2
δ2

...[
σ2
δ̄k

]
max

/
σ2
δk



. (3.42)

A cost function is used in optimization to determine in what way the variables

of interest ought to be optimized, or in other words specific to this application, how

the weights should be weighted. The three canonical equations34 that constrain the

optimization are
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max cTx, (3.43)

Ax ≤ b, (3.44)

and

x ≥ 0, (3.45)

where x is the vector of optimal weights, and c is the vector of cost function param-

eters. The vector,

c = [−1− 1 · · · − 1], (3.46)

is simply a vector of -1s of length k. This individual cost function maximizes the sum

of the weights,

max
∑

w2
k. (3.47)

Maximizing the sum of the weights is one way to allow the dispersions and errors

to be as big as possible before hitting the requirement. Typically, these parameters

cause the optimizer to increase the scale of error sources that initially contribute

very little to the overall error, and decrease the scale of error sources that initially

contribute a lot to the performance error to allow all error sources to scale together

in an optimal way.

A second parameter set that is useful in the scenarios of interest is

ci = − 1

max(Ai)
. (3.48)

This parameter set takes the inverse of the maximum value of each column, i, of the

A matrix. As the linear programming algorithm seeks to maximize cTx, the effect is
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to de-weight the error sources that initially contribute very little to the overall error

compared to those that have a significant contribution.

The final equation for the weighted performance ellipse is

Σdo =
∑

(w2
kΣd|δk) +

∑
(Σd|δj), (3.49)

where the calculated weights from the linear programming optimization are applied,

and the ellipse looks more like the dashed blue ellipse, Σp∗ , in Fig 3.1a in the sense

that it closely approaches the requirement ellipse.

Correction

Ideally, the edge of the performance ellipse intersects the requirement ellipse at two

points directly opposite each other on the ellipse. However, some of the transformed,

rotated individual error ellipses will not align exactly with the principal axes after the

rotation. Therefore, when the optimized weights are applied to the individual error

source ellipses, the total performance ellipse (no longer transformed nor rotated) may

come just short of the requirement or slightly exceed it. Some additional steps should

be taken to bring the performance ellipse back within the requirements and ensure it

approaches the requirement as closely as possible.

One solution is to iterate the optimization process, using Σdo from Eqn 3.49 after

applying the derived weights as the new performance matrix to be scaled. This

solution is ideal if the initial weighting leads the weighted performance matrix to

exceed or undershoot the requirement by a large amount (i.e. outside of a 5-10%

tolerance).

There is a second, more rudimentary way to deal with this issue that works best

with even smaller tolerances. Eqn 3.50 introduces the variable α2
a, which is used to

slightly scale the weighted performance ellipse, Σdo ,

α2
aσ

2
do ≤ (1−m)21. (3.50)
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In words, the term α2
a is the ratio between the requirement including a margin

and the maximum value of the diagonal of the weighted performance ellipse. This

ratio is solved for in the equations

α2
amax(σ2

do) ≤ (1−m)2, (3.51)

and

α2
a ≤

(1−m)2

max(σ2
do)
. (3.52)

The weights are then multiplied by α2
a

w2
k∗ = α2

aw
2
k. (3.53)

The updated weights, w2
k∗ , are applied to their corresponding error source ellipses

and summed as in Eqn 3.49, and when the weights are multiplied by the initial error

source values, the optimal performance requirements (σδk̄) are derived.

σδk̄ = w2
k∗σδk (3.54)

The whole process of deriving the vector of optimal weights culminates in applying

them to the original error source contributions to derive the optimal navigation and

other GN&C subsystem performance requirements.
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Chapter 4

Optimal Cislunar GN&C Requirement

4.1 Cisunar Trajectories

The trajectories for the lunar outbound and lunar return segments utilize NASA’s

Orion Exploration Mission 1 (EM1) profile, shown in Fig 4.1. Specifically, the out-

bound leg from the Earth to the Moon and the return leg from the Moon to the

Earth are adopted to demonstrate the capability of generating optimal GN&C sys-

tem requirements in a systematic approach. This chapter describes each trajectory

and defines the top-level mission and GN&C subsystem performance requirements

pertinent to the mission profiles. The results of the optimal requirement generation

are then presented.

4.1.1 Lunar Outbound Trajectory

The analyzed trajectory for the lunar outbound scenario begins an hour before the

first translational correction burn, Outbound Trajectory Correction 1 (OTC-1), and

ends prior to the Outbound Powered Flyby (OPF) burn. During this simulated

portion of flight, there are four trajectory correction burns, OTC-1, OTC-2, OTC-3,

and OTC-4,35 which are marked and labeled in Fig 4.1 by green dots along the white

nominal trajectory. OTC-1 takes place 6.8 hours after launch.19 The second and third

maneuvers (OTC-2 and OTC-3) occur 19.0 and 74.8 hours after OTC-1.19 OTC-4 is

the final correction burn before the spacecraft performs the lunar flyby. It occurs 6.0

hours before the critical OPF, near the lunar closest approach.35
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Figure 4.1 : EM1 Trajectory29

4.1.2 Lunar Return Trajectory

The lunar return trajectory executes three correction burns as the vehicle transitions

from cislunar activities to reentering the Earth’s atmosphere at Entry Interface (EI).

Figure 4.1 illustrates the return trajectory with the simulated portion highlighted in

red. EI is located at approximately 400 kft altitude and is the designated point at

which the vehicle begins to reenter the Earth’s atmosphere.29 The return trajectory

correction (RTC) burns take place 18.0, 107.4, and 123.4 hours following the Return

Powered Flyby (RPF) maneuver.19 The first burn is referred to as Return Trajectory

Correction 4 (RTC-4) with each subsequent burn incrementing sequentially as RTC-5

and RTC-6. The simulation ends at EI. The mission requirements are defined at EI

for this flight phase.
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4.2 Cislunar Mission Performance Requirements

The GN&C system top-level mission requirements for the Orion EM1 flight profile

vary from continuous, time dependent requirements such as ∆V dispersions along

the trajectory, to requirements specified at certain time epochs such as the moment

Orion crosses the B-Plane or at EI.

4.2.1 B-Plane Requirements

The B-Plane is used for targeting when a vehicle is approaching a planet or other

celestial body and is defined relative to the celestial body. The unit vectors, T̂ and

R̂, define what is referred to as the B-Plane, which is the plane perpendicular to the

incoming hyperbolic trajectory’s asymptote (see Figs 4.2a - 4.2b).36 As shown in Fig

4.2b, T̂ and R̂ constitute an inertial axis system attached to the celestial body of

interest with the origin located at its center of gravity (CG).

(a) B-Plane Geometry37 (b) B-Plane Coordinate System37

Figure 4.2 : B-Plane Visualization
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The unit vector, T̂ , is orthogonal to the incoming asymptote of the vehicle’s

hyperbolic path, Ŝ, and the designated north pole of the celestial body, N̂ ,36

T̂ =
Ŝ × N̂
|| Ŝ × N̂ ||

. (4.1)

The unit vector, R̂, is orthogonal to the incoming asymptote, Ŝ, and the unit vector,

T̂ ,36

R̂ = Ŝ × T̂ . (4.2)

The ~B vector is in the B-Plane and originates at the celestial body’s CG and termi-

nates at the intersection of the incoming hyperbolic trajectory and the B-Plane.36

Typically, mission requirements specify the accuracy at which the spacecraft inter-

sects the B-Plane which constrains targeting and navigation performance. The end of

the ~B vector indicates at what point the vehicle nominally crosses the B-Plane, there-

fore the ~B vector dispersions often define the mission requirement. The components

of the maximum allowable ~B vector dispersions in the T̂

BT = ~B · T̂ , (4.3)

and R̂ directions

BR = ~B · R̂, (4.4)

constitute a physical corridor in the form of an ellipse projected onto the B-Plane to

specify the maximium B-Plane dispersions.38

4.2.2 Entry Interface Requirements

The five performance parameters that constitute the top-level mission requirements

for EI are the downtrack position, inertial velocity magnitude, inertial flight path

angle, crosstrack position, and crosstrack velocity dispersions.39 These performance
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metrics are of particular interest in specifying EI corridor requirements because large

deviations in these variables can translate to catastrophic mission failure when the

vehicle reenters Earth’s atmosphere.

Downtrack Position Dispersion

Using Fig 4.3 as a visual reference for the local vertical, local horizontal (LVLH)

coordinate system, the spacecraft’s downtrack position dispersion is located along

the î-direction of a three-dimensional axis system attached to the vehicle with its

origin fixed at its CG. The î-direction points along a line tangent to the spacecraft’s

nominal trajectory, which is nearly aligned with the velocity vector of the spacecraft.

The k̂-direction is pointed in the direction of a position vector from the CG of the

nearest celestial body to the CG of the spacecraft, the radial direction or altitude,

and ĵ completes the triad, pointing out-of-plane or along the orbital angular velocity

vector.

Figure 4.3 : LVLH Coordinate System

Fig 4.4 further develops this inertial reference frame and introduces the crosstrack

component, which is orthogonal to the downtrack direction.
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(a) Top View of Orbit (b) Side View of Orbit

Figure 4.4 : Downtrack versus Crosstrack Position Relative in Space17

Inertial Velocity Magnitude Dispersion

The inertial velocity magnitude dispersion is the dispersion of the vehicle’s velocity

magnitude or speed relative to an inertial reference frame, fixed to the spacecraft’s

CG.

Inertial Flight Path Angle Dispersion

The inertial flight path angle is the angle between the local horizontal and the inertial

velocity vector of the vehicle.3 Most vehicles are designed for reentry at a specified

flight path angle to present the appropriate area of the heat shield to the relative

wind.3 Exceeding the allowable inertial flight path angle dispersions could jeopardize

the vehicle, the crew, or the mission. If the flight path angle is too steep, the vehicle

could burn up during reentry as a result of excessive exposure. If the flight path angle

is too shallow, however, the vehicle could skip off of the atmosphere.
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Crosstrack Position Dispersion

Crosstrack position dispersion is orthogonal to downtrack position dispersion and is

projected along the ĵ direction, as illustrated in Figs 4.3 and 4.4. It describes the

out-of-plane dispersions of the vehicle.

Crosstrack Velocity Dispersions

Crosstrack velocity dispersion is the final performance metric for defining EI corridor

requirements and is simply the dispersion of the velocity of the spacecraft in the k̂ or

crosstrack direction.

4.2.3 |∆V| Dispersion

The propellant used represents a key performance parameter to mission planners. A

spacecraft has limited capacity, and any additional mass onboard the vehicle increases

the launch cost. There is a delicate balance to include sufficient fuel onboard to

provide maneuverability and to minimize the overall weight of the spacecraft, to

reduce cost. Because propellant usage is directly related to the spacecraft’s ability

to perform translational maneuvers, ∆V is an important performance metric for a

GN&C system.

A GN&C system performance requirement for propellant usage is the magnitude

of ∆V dispersions, or |∆V| dispersions. Unlike the B-Plane and EI mission re-

quirements, which are defined at a particular time epoch, the |∆V| dispersions are

monitored over a specified time interval. A |∆V| requirement is imposed on the lunar

outbound and return trajectories.

4.3 Cislunar Analysis Assumptions

The optimal GN&C subsystem performance requirements generated from stochastic

navigation implemented in the linear covariance analysis and subsequent optimization
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process are presented. The navigation requirements are defined at the correction

burns for each scenario. The thesis presents a wide variety of data for the missions

to provide a comprehensive database for reference. A sample of the data is presented

in this chapter for a brief, yet insightful look at how the data are used in practice.

First, a baseline case for each scenario is presented. Then, three other cases varying in

survivability requirements, flight readiness, or cost function are shown in comparison

to the baseline. The presentation of the data highlights the effects and sensitivity

that each alteration has on the optimal requirements generation.

The baseline case evaluates each trajectory at the Preliminary Design Review

(PDR) stage of flight readiness in mission planning. In essence, this means that the

weights on the performance requirements are given a wide range so they can fluctuate

greatly. Specifically, the lower bounds on the weights for all the error variables is

0.5. The upper bounds on the weights for each error variable is 10.0, except for

the navigation error for attitude uncertainty, which is 3.0. These bounds were chosen

using engineering judgment and taking into consideration empirical data for the values

of the various error sources. It was determined that this range of bounds, standardized

from 0.5 to 10.0 for all error sources, provides a wide range of realistic values for the

derived optimal performance requirements. As the PDR stage represents the earliest

design review, factors such as the expected initial conditions, environmental factors,

and actuator options are most likely unknown. Using a wide range for the weights,

the expected error source values can vary significantly. The baseline case uses the

cost function for optimizing the sum of the weights and uses the mission requirements

with a 10% margin, giving a tight tolerance.

The second case likewise simulates values at PDR and uses the cost function for

optimizing the sum of the weights as well. The one alteration is the survivability

requirement. For this case, the top-level requirements reflect a relaxed requirement

of 2.5 times the given mission requirement without a margin.

The third case for consideration maintains the same cost function as the base-
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line, as well as the baseline mission requirements and margin. The bounds for the

weights for IC uncertainty, system process noise, and maneuver execution error are

restricted to within 5% (0.95 lower bound and 1.05 upper bound) of the initialized

value. This models the Flight Readiness Review (FRR) stage of mission planning

where the modeling of the system and environment is well-defined, and the thrusters

and other actuators for the mission are chosen. The bounds for the weights for the

navigation errors remain the same as the baseline case.

The last case will only differ from the baseline in the cost function. Instead

of maximizing the sum of the weights, the cost function parameters will, in effect,

de-weight the error sources that initially contribute very little to the overall error

compared to those that have a significant contribution.

The remaining cases accounting for all combinations of survivability (Surv), flight

readiness (FR), and cost function (CF) are included in Appendix A for reference.

4.4 Lunar Outbound Scenario

The simulated outbound trajectory is illustrated in Fig 4.5a. The four trajectory

correction burns are marked by red circles, and the timeline beneath the plot displays

the relative timing of each maneuver.

Figure 4.5 : Outbound Maneuvers
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The 3-σ B-Plane dispersion mission requirements assumed for the optimal require-

ment generation are given in Table 4.1. The B-Plane dispersion corridor is depicted

in Figs 4.6a and 4.6b, and Fig 4.7a shows the results of the sensitivity analysis of

the error variables with Fig 4.7b providing the legend to interpret the individual

contributions.

Rqmnt Variable Mission
Rqmnt (3σ)

B· T (km) 20.0

B· R (km) 10.0

Table 4.1 : B-Plane Top-Level Mission Requirements

The B-Plane dispersion corridor’s location relative to the Moon is shown in Fig 4.6a.

In comparison to the Moon, the corridor appears small, therefore Fig 4.6b provides

a closer view of the corridor. The B-Plane dispersions represented by the total per-

formance dispersion ellipse in blue in Fig 4.6b are less than the mission requirements

represented by the requirement ellipse in black.
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(a) Relative Location of B-Plane Corridor

(b) B-Plane Dispersions

Figure 4.6 : Lunar B-Plane
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The results of the sensitivity analysis in Fig 4.7a show the contributions of each

error source to the total error. For example, the contribution of the navigation errors

in position and velocity at OTC-2 ar given in the vertically-oriented, auburn colored

ellipse. The largest contributions are the navigation error of the position and velocity

at OTC-2 and OTC-4 and the maneuver execution error.

(a) Initial GN&C Subsystem Performance Sensitivity at the B-Plane (b) Legend

Figure 4.7 : Outbound Sensitivity Analysis Results

The contribution of the navigation error of the position and velocity at OTC-4 is

large, because it is the last correction burn before the B-Plane. Therefore, significant

deviations from the nominal trajectory at OTC-4 have a significant impact on the

dispersions at the B-Plane, six hours later. The results of the sensitivity analysis

provide the foundation upon which the optimal requirement generation is built.

4.4.1 Lunar Outbound - Baseline

Table 4.2 indicates the error contributions of each GN&C subsystem performance

variable, their associated, derived optimal weight, and the GN&C subsystem perfor-
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mance requirement. These derived requirements help determine how accurately the

navigation system must perform, what level of process noise can be tolerated, how

accurately the thrusters and other actuators must perform, and how dispersed from

the nominal trajectory the Orion vehicle can initially be, all without exceeding the

∆V allocated for the mission.29

Error Variable Init Value (3σ) Weight Rqmnt (3σ)

OTC1 Nav Err, Pos (km) 2.50 4.10 10.20

OTC1 Nav Err, Vel (m/s) 0.25 4.10 1.02

OTC1 Nav Err, Att (deg) 0.50 3.00 1.50

OTC2 Nav Err, Pos (km) 1.00 0.50 0.50

OTC2 Nav Err, Vel (m/s) 0.10 0.50 0.05

OTC2 Nav Err, Att (deg) 0.50 3.00 1.50

OTC3 Nav Err, Pos (km) 0.50 2.60 1.30

OTC3 Nav Err, Vel (m/s) 0.05 2.60 0.13

OTC3 Nav Err, Att (deg) 0.50 3.00 1.50

OTC4 Nav Err, Pos (km) 0.38 0.50 0.19

OTC4 Nav Err, Vel (m/s) 0.04 0.50 0.02

OTC4 Nav Err, Att (deg) 0.50 3.00 1.50

IC Uncertainty, Pos (km) 50.00 0.50 25.00

IC Uncertainty, Vel (m/s) 1.00 0.50 0.50

Process Noise (m/s/
√
s) 1.50e-4 3.81 5.72e-4

Manuever Exec Err (m/s) 0.10 0.50 0.05

Table 4.2 : Baseline GN&C Subsystem Requirements - Outbound

For example, the derived, optimal 3-σ navigation requirements for the baseline

case are 10.20 km in position, 1.02 m/s in velocity, and 1.50 deg in attitude. It is

easier to understand the effects of the optimal weights, by looking at the plots of the

error source contributions to the B-Plane dispersions.

The qualitative results for the optimal GN&C subsystem performance requirement

generation given the baseline criteria constitute Figs 4.8a - 4.8b. The legend, Fig 4.8c,
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describes the error source contributions, both before and after weighting. The original

contributions of each error source from the sensitivity analysis are plotted with solid

lines. The ellipses scaled by optimal weights are plotted in the corresponding color

but with dashed lines. The original and weighted ellipses are plotted together to

qualitatively show the effects of the optimal weighting. The solid black line defines

the mission requirement and the solid red line represents the mission requirement

with a 10% margin. The solid cyan line now represents the RSS, total error ellipse

prior to applying the optimal weights. The dashed cyan line is the weighted, total

error ellipse, i.e. the RSS of the individual error ellipses after they are scaled by their

corresponding optimal weights. The solid cyan line approaches, but does not touch

the requirement margin, however, the dashed cyan line does meet the requirements.

Fig 4.8b displays the time history requirement, |∆V| dispersions. A top-level

mission requirement is imposed at each of the four navigation regions that are defined

between the correction burns and after OTC-4 to the end of the simulation. The

|∆V| dispersions are constrained to 3-σ values of 3.3 m/s, 3.75 m/s, 3.3 m/s, and 6

m/s, respectively with a 10% margin. Note that in addition to meeting the B-Plane

dispersion requirement, the optimization also weights the error source contributions

to the |∆V| dispersions in such a manner as to hit the mission requirement in the

first and fourth navigation regions.
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(a) B-Plane Dispersions

(b) Time History of |∆V| Dispersions (c) Legend

Figure 4.8 : Outbound Trajectory - Baseline
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4.4.2 Lunar Outbound - Survivability Altered

The survivability requirement is the same as the mission requirements multiplied

by 2.5. It represents a relaxed requirement that models a requirement that solely

ensures the crew’s survival, disregarding any mission objectives and the condition of

the spacecraft. As a result, the RSS ellipse can expand significantly. In contrast to

the baseline case where error sources that initially contribute a lot to overall error

are scaled down, in order to hit mission requirements, the largest contributor (the

navigation error of position and velocity at OTC-4) is expanded a lot. The navigation

requirement at OTC-4 for the survivability altered case is 8.03 times greater than the

baseline case requirement. Once again, the |∆V| dispersion mission requirements of

the first and last navigation region are met.

Error Variable Init Value (3σ) Weight Rqmnt (3σ)

OTC1 Nav Err, Pos (km) 2.50 4.18 10.50

OTC1 Nav Err, Vel (m/s) 0.25 4.18 1.05

OTC1 Nav Err, Att (deg) 0.50 3.00 1.50

OTC2 Nav Err, Pos (km) 1.00 0.50 0.50

OTC2 Nav Err, Vel (m/s) 0.10 0.50 0.05

OTC2 Nav Err, Att (deg) 0.50 3.00 1.50

OTC3 Nav Err, Pos (km) 0.50 6.39 3.20

OTC3 Nav Err, Vel (m/s) 0.05 6.39 0.32

OTC3 Nav Err, Att (deg) 0.50 3.00 1.50

OTC4 Nav Err, Pos (km) 0.38 4.50 1.69

OTC4 Nav Err, Vel (m/s) 0.04 4.50 0.17

OTC4 Nav Err, Att (deg) 0.50 3.00 1.50

IC Uncertainty, Pos (km) 50.00 0.50 25.00

IC Uncertainty, Vel (m/s) 1.00 0.50 0.50

Process Noise (m/s/
√
s) 1.50e-4 0.50 7.50e-5

Manuever Exec Err (m/s) 0.10 0.50 0.05

Table 4.3 : Surv Altered GN&C Subsystem Requirements - Outbound
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(a) B-Plane Dispersions

(b) Time History of |∆V| Dispersions (c) Legend

Figure 4.9 : Outbound Trajectory - Survivability Requirements Altered
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4.4.3 Lunar Outbound - Flight Readiness Altered

The variation in flight readiness tightens the bounds on the weights for the IC uncer-

tainty for position and velocity, system process noise, and maneuver execution error

to a lower bound of 0.95 and an upper bound of 1.05. Table 4.4 summarizes the

derived performance requirements for this case. Decreasing the range on the bounds

of the weights for these error variables yields a 90% increase from the baseline in the

derived requirements for three of these four variables. Only the performance require-

ment for system process noise decreases. These differences can be accounted for in

the fact that in the baseline case, all four of these error sources are weighted with

the lower bound weight of 0.5. The IC uncertainty for position and velocity also

tends to the lower bound for this case, however, the lower bound is increased from

the baseline 90%. The navigation requirements vary only slightly from the baseline,

with a small decrease in the navigation requirement at OTC-1 and a small increase

in the navigation requirement at OTC-3. These results show that even when the IC

uncertainty, process noise, and maneuver execution error are well-known during the

FRR phase, the mission planner can expect small deviations in the optimal navigation

requirements for the lunar outbound trajectory.
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Error Variable Init Value (3σ) Weight Rqmnt (3σ)

OTC1 Nav Err, Pos (km) 2.50 3.14 7.86

OTC1 Nav Err, Vel (m/s) 0.25 3.14 0.79

OTC1 Nav Err, Att (deg) 0.50 3.00 1.50

OTC2 Nav Err, Pos (km) 1.00 0.50 0.50

OTC2 Nav Err, Vel (m/s) 0.10 0.50 0.050

OTC2 Nav Err, Att (deg) 0.50 3.00 1.50

OTC3 Nav Err, Pos (km) 0.50 2.94 1.47

OTC3 Nav Err, Vel (m/s) 0.05 2.94 0.15

OTC3 Nav Err, Att (deg) 0.50 3.00 1.50

OTC4 Nav Err, Pos (km) 0.38 0.50 0.19

OTC4 Nav Err, Vel (m/s) 0.04 0.50 0.02

OTC4 Nav Err, Att (deg) 0.50 3.00 1.50

IC Uncertainty, Pos (km) 50.00 0.95 47.50

IC Uncertainty, Vel (m/s) 1.00 0.95 0.95

Process Noise (m/s/
√
s) 1.50e-4 1.05 1.57e-4

Manuever Exec Err (m/s) 0.10 0.95 0.10

Table 4.4 : FR Altered GN&C Subsystem Requirements - Outbound
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(a) B-Plane Dispersions

(b) Time History of |∆V| Dispersions (c) Legend

Figure 4.10 : Outbound Trajectory - Flight Readiness Altered
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4.4.4 Lunar Outbound - Cost Function Altered

Table 4.5 provides the derived navigation and other GN&C system performance re-

quirements with a different cost function. The optimization de-weights the error

sources that initially contribute a relatively small amount to the uncertainty. In this

case, the different cost function yields identical results to the baseline case. Tables 4.6

and 4.7 are summary tables of all of the results, including those included in Appendix

A (Table 4.7). Although only altering the cost function for this scenario yields results

equivalent to the baseline, the results summarized in Table 4.7 show that the stud-

ies altering the survivability requirements and/or the flight readiness with the second

cost function yield different results than altering the survivability requirements and/or

flight readiness with the first cost function. For example, the navigation requirement

at OTC-1 with survivability requirements and the first cost function are 10.50 km

and 1.05 m/s. In contrast, the navigation requirement at OTC-1 with survivability

requirements and the second cost function are 1.25 km and 0.13 m/s. Therefore, the

second cost function does affect the results for equivalent outbound cases other than

the baseline.
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Error Variable Init Value (3σ) Weight Rqmnt (3σ)

OTC1 Nav Err, Pos (km) 2.50 4.10 10.20

OTC1 Nav Err, Vel (m/s) 0.25 4.10 1.02

OTC1 Nav Err, Att (deg) 0.50 3.00 1.50

OTC2 Nav Err, Pos (km) 1.00 0.50 0.50

OTC2 Nav Err, Vel (m/s) 0.10 0.50 0.05

OTC2 Nav Err, Att (deg) 0.50 3.00 1.50

OTC3 Nav Err, Pos (km) 0.50 2.60 1.30

OTC3 Nav Err, Vel (m/s) 0.05 2.60 0.13

OTC3 Nav Err, Att (deg) 0.50 3.00 1.50

OTC4 Nav Err, Pos (km) 0.38 0.50 0.19

OTC4 Nav Err, Vel (m/s) 0.04 0.50 0.02

OTC4 Nav Err, Att (deg) 0.50 3.00 1.50

IC Uncertainty, Pos (km) 50.00 0.50 25.00

IC Uncertainty, Vel (m/s) 1.00 0.50 0.50

Process Noise (m/s/
√
s) 1.50e-4 3.81 5.72e-4

Manuever Exec Err (m/s) 0.10 0.50 0.05

Table 4.5 : CF Altered GN&C Subsystem Requirements - Outbound
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(a) B-Plane Dispersions

(b) Time History of |∆V| Dispersions (c) Legend

Figure 4.11 : Outbound Trajectory - Cost Function Altered
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4.4.5 Lunar Outbound - Summary

Error Variable Baseline Survivability
Altered

Flight Readiness
Altered

Cost Function
Altered

OTC1 Nav Err, Pos (km) 10.20 10.50 (+2.94%) 7.86 (-22.94%) 10.20 (+0.00%)

OTC1 Nav Err, Vel (m/s) 1.02 1.05 (+2.94%) 0.79 (-22.94%) 1.02 (+0.00%)

OTC1 Nav Err, Att (deg) 1.50 1.50 (+0.00%) 1.50 (+0.00%) 1.50 (+0.00%)

OTC2 Nav Err, Pos (km) 0.50 0.50 (+0.00%) 0.50 (+0.00%) 0.50 (+0.00%)

OTC2 Nav Err, Vel (m/s) 0.05 0.05 (+0.00&) 0.05 (+0.00%) 0.05 (+0.00%)

OTC2 Nav Err, Att (deg) 1.50 1.50 (+0.00%) 1.50 (+0.00) 1.50 (+0.00%)

OTC3 Nav Err, Pos (km) 1.30 3.20 (+146.15%) 1.47 (+13.08%) 1.30 (+0.00%)

OTC3 Nav Err, Vel (m/s) 0.13 0.32 (+146..15%) 0.15 (+13.08%) 0.13 (+0.00%)

OTC3 Nav Err, Att (deg) 1.50 1.50 (+0.00%) 1.50 (+0.00%) 1.50 (+0.00%)

OTC4 Nav Err, Pos (km) 0.19 1.69 (+803.74%) 0.19 (+0.00%) 0.19 (+0.00%)

OTC4 Nav Err, Vel (m/s) 0.02 0.17 (+803.74) 0.02 (+0.00%) 0.02 (+0.00%)

OTC4 Nav Err, Att (deg) 1.50 1.50 (+0.00%) 1.50 (+0.00%) 1.50 (+0.00%)

IC Uncertainty, Pos (km) 25.00 25.00 (+0.00%) 47.50 (+90.00%) 25.00 (+0.00%)

IC Uncertainty, Vel (m/s) 0.50 0.50 (+0.00%) 0.95 (+90.00%) 0.50 (+0.00%)

Process Noise (m/s/
√
s) 5.72e-4 7.50e-5 (-86.89%) 1.57e-4 (-72.55%) 5.72e-4 (+0.00%)

Manuever Exec Err (m/s) 0.05 0.05 (+0.00%) 0.10 (+90.00) 0.05 (+0.00%)

Table 4.6 : Outbound Trajectory Summary Table 1 of 2
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Error Variable Baseline Surv & FR
Altered

Surv & CF
Altered

FR & CF
Altered

Surv, FR, and
CF Altered

OTC1 Nav Err, Pos (km) 10.20 7.86 (-22.94%) 1.25 (-87.75%) 7.86 (-22.94%) 1.25 (-87.75%)

OTC1 Nav Err, Vel (m/s) 1.02 0.79 (-22.94%) 0.13 (-87.75%) 0.79 (-22.94%) 0.13 (-87.75%)

OTC1 Nav Err, Att (deg) 1.50 1.50 (+0.00%) 1.50 (+0.00%) 1.50 (+0.00%) 1.50 (+0.00%)

OTC2 Nav Err, Pos (km) 0.50 0.50 (+0.00%) 0.50 (+0.00%) 0.50 (+0.00%) 0.50 (+0.00%)

OTC2 Nav Err, Vel (m/s) 0.05 0.05 (+0.00%) 0.05 (+0.00%) 0.05 (+0.00%) 0.05 (+0.00%)

OTC2 Nav Err, Att (deg) 1.50 1.50 (+0.00%) 1.50 (+0.00%) 1.50 (+0.00%) 1.50 (+00.0%)

OTC3 Nav Err, Pos (km) 1.30 2.39 (+83.85%) 3.66 (+181.54%) 1.47 (+13.08%) 2.74 (+110.77%)

OTC3 Nav Err, Vel (m/s) 0.13 0.24 (+83.85%) 0.37 (+181.54%) 0.15 (+13.08%) 0.27 (+110.77%)

OTC3 Nav Err, Att (deg) 1.50 1.50 (+0.00%) 1.50 (+0.00%) 1.50 (+0.00%) 1.50 (+0.00%)

OTC4 Nav Err, Pos (km) 0.19 1.78 (+851.87%) 1.61 (+760.96%) 0.19 (+0.0%) 1.74 (+830.48%)

OTC4 Nav Err, Vel (m/s) 0.02 0.18 (+851.87%) 0.16 (+760.96%) 0.02 (+0.0%) 0.17 (+830.48%)

OTC4 Nav Err, Att (deg) 1.50 1.50 (+0.00%) 1.50 (+0.00%) 1.50 (+0.00%) 1.50 (+0.00%)

IC Uncertainty, Pos (km) 25.00 47.50 (+90.00%) 25.00 (+0.00%) 47.50 (+90.00%) 47.50 (+90.00%)

IC Uncertainty, Vel (m/s) 0.50 0.95 (+90.00%) 0.50 (+0.00%) 0.95 (+90.00%) 0.95 (+90.00%)

Process Noise (m/s/
√
s) 5.72e-4 1.42e-4 (-75.17%) 7.50e-5 (-86.89%) 1.57e-4 (-72.55%) 1.42e-4 (-75.17%)

Manuever Exec Err (m/s) 0.05 0.10 (+90.00%) 0.05 (+0.00%) 0.10 (+90.00%) 0.10 (+90.00%)

Table 4.7 : Outbound Trajectory Summary Table 2 of 2



73

4.5 Lunar Return Scenario

After the lunar flyby for EM1, Orion returns to the Earth by following the trajectory

illustrated in Fig 4.12a. The three return trajectory correction burns are labeled by

the red circles along the nominal path. The three navigation regions include the two

regions between RTC-4 and RTC-5 and RTC-5 and RTC-6 and the segment after

RTC-6 until EI.

Figure 4.12 : Return Trajectory

The lunar return trajectory increases in complexity with five mission requirement

parameters that must be met. They are shown in Table 4.5 with their 3-σ require-

ment values.39 The EI mission requirement parameters are also correlated, and their

correlation coefficients are given in Table 4.9.39
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Rqmnt Variables Mission
Rqmnt (3σ)

Downtrack Position (km) 25.66

Velocity Magnitude (m/s) 5.33

Flight Path Angle (deg) 0.12

Crosstrack Position (km) 7.04

Crosstrack Velocity (m/s) 8.23

Table 4.8 : EI Top-Level Mission Requirements

Performance Constraints Corr Coeff

Downtrack Position and Velocity Magnitude -0.60

Downtrack Position and Flight Path Angle -0.50

Crosstrack Position and Crosstrack Velocity 0.29

Velocity Magnitude and Flight Path Angle 0.55

Table 4.9 : Correlation Coefficients for Performance Constraints

Figs 4.13a - 4.14c display the sensitivity analysis information used for the optimal

GN&C performance requirement generation at EI. The multiple mission requirements

and multiple constraints would increase the difficulty of deriving the performance

requirements with a traditional engineering heuristics approach. However, with the

systematic approach demonstrated in this research, the performance requirements are

derived in the same way regardless of the complexity of the problem. Each error source

contributes uniquely to each of the mission requirement ellipses, however maneuver

execution error and the position and velocity navigation error at RTC-6 consistently

contribute significantly to the dispersions of the mission requirement parameters.
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(a) Initial GN&C Subsystem Performance Sensitivity at EI:
Downtrack Position v. Velocity Magnitude

(b) Initial GN&C Subsystem Performance Sensitivity at EI:
Downtrack Position v. Flight Path Angle

(c) Legend

Figure 4.13 : Return Sensitivity Analysis Results 1 of 2
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(a) Initial GN&C Subsystem Performance Sensitivity at EI:
Crosstrack Position v. Crosstrack Velocity

(b) Initial GN&C Subsystem Performance Sensitivity at EI:
Velocity Magnitude v. Flight Path Angle

(c) Legend

Figure 4.14 : Return Sensitivity Analysis Results 2 of 2
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4.5.1 Lunar Return - Baseline

Referencing Table 4.10, in a similar manner to the lunar outbound baseline case, the

return baseline case scales down the error variables that initially contribute a lot to

overall error in the sensitivity study. The position and velocity navigation error at

RTC-6 are scaled down by a factor of 0.59, approaching the lower bound. The derived

navigation requirement at RTC-6 is 0.29 km, 0.03 m/s, with an attitude uncertainty of

1.50 degrees. Analyzing Figs 4.15a - 4.15e, the optimization allows the requirements

for downtrack position and velocity magnitude dispersions and crosstrack position

and crosstrack velocity dispersions to be met in addition to the |∆V| dispersions in

the first navigation region.

Error Variable Init Value (3σ) Weight Rqmnt (3σ)

RTC4 Nav Err, Pos (km) 2.50 0.50 1.25

RTC4 Nav Err, Vel (m/s) 0.25 0.50 0.13

RTC4 Nav Err, Att (deg) 0.50 3.00 1.50

RTC5 Nav Err, Pos (km) 1.00 1.91 1.91

RTC5 Nav Err, Vel (m/s) 0.10 1.91 0.19

RTC5 Nav Err, Att (deg) 0.50 3.00 1.50

RTC6 Nav Err, Pos (km) 0.50 0.59 0.29

RTC6 Nav Err, Vel (m/s) 0.05 0.59 0.03

RTC6 Nav Err, Att (deg) 0.50 3.00 1.50

IC Uncertainty, Pos (km) 50.00 9.55 477.00

IC Uncertainty, Vel (m/s) 1.00 0.50 0.50

Process Noise (m/s/
√
s) 1.50e-4 10.00 1.50e-3

Manuever Exec Err (m/s) 0.10 0.50 0.05

Table 4.10 : Baseline GN&C Subsystem Requirements - Return
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(a) Downtrack Position v. Velocity Magnitude (b) Downtrack Position v. Flight Path Angle

(c) Crosstrack Position v. Crosstrack Velocity (d) Velocity Magnitude v. Flight Path Angle

(e) Time History of |∆V| Dispersions

Figure 4.15 : Return Trajectory - Baseline
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4.5.2 Lunar Return - Survivability Altered

The relaxed mission requirements for the survivability altered case allows the opti-

mization to weight the contribution of the position and velocity navigation error at

RTC-6 resulting in a derived navigation requirement at RTC-6 over 8 times the base-

line value. All of the other error variables are weighted the same as in the baseline

case except the position and velocity navigation error at RTC-5. Figs 4.16a, 4.16c,

and 4.16e show that the correlated performance parameter dispersions of downtrack

position and inertial velocity magnitude and crosstrack position and crosstrack veloc-

ity, as well as |∆V| dispersions in the first navigation region limit the GN&C system

performance.

Error Variable Init Value (3σ) Weight Rqmnt (3σ)

RTC4 Nav Err, Pos (km) 2.50 0.50 1.25

RTC4 Nav Err, Vel (m/s) 0.25 0.50 0.13

RTC4 Nav Err, Att (deg) 0.50 3.00 1.50

RTC5 Nav Err, Pos (km) 1.00 5.40 5.40

RTC5 Nav Err, Vel (m/s) 0.10 5.40 0.54

RTC5 Nav Err, Att (deg) 0.50 3.00 1.50

RTC6 Nav Err, Pos (km) 0.50 5.35 2.67

RTC6 Nav Err, Vel (m/s) 0.05 5.35 0.27

RTC6 Nav Err, Att (deg) 0.50 3.00 1.50

IC Uncertainty, Pos (km) 50.00 9.55 477.00

IC Uncertainty, Vel (m/s) 1.00 0.50 0.50

Process Noise (m/s/
√
s) 1.50e-4 10.00 1.50e-3

Manuever Exec Err (m/s) 0.10 0.50 0.05

Table 4.11 : Survivability Altered GN&C Subsystem Requirements - Re-
turn
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(a) Downtrack Position v. Velocity Magnitude (b) Downtrack Position v. Flight Path Angle

(c) Crosstrack Position v. Crosstrack Velocity (d) Velocity Magnitude v. Flight Path Angle

(e) Time History of |∆V| Dispersions

Figure 4.16 : Return Trajectory - Survivability Altered
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4.5.3 Lunar Return - Flight Readiness Altered

In the variation for FRR, all of the error sources that are not navigation errors are

scaled by the upper bound of the weights, as the cost function maximizes the sum of

the weights. Another notable difference from the baseline, and the other variations

is that contributions of all the error sources are not capped by the |∆V| dispersion

requirements. In fact, the weighted RSS contributions are less than or equal to the

original sensitivity study values. This is likely caused by the decreased value of the IC

uncertainty for position. The optimal performance requirement for this error variable

is 88.99% less than the baseline and the other primary variations.

Error Variable Init Value (3σ) Weight Rqmnt (3σ)

RTC4 Nav Err, Pos (km) 2.50 0.50 1.25

RTC4 Nav Err, Vel (m/s) 0.25 0.50 0.125

RTC4 Nav Err, Att (deg) 0.50 3.00 1.50

RTC5 Nav Err, Pos (km) 1.00 1.50 1.50

RTC5 Nav Err, Vel (m/s) 0.10 1.50 0.15

RTC5 Nav Err, Att (deg) 0.50 3.00 1.50

RTC6 Nav Err, Pos (km) 0.50 1.69 0.85

RTC6 Nav Err, Vel (m/s) 0.05 1.69 0.09

RTC6 Nav Err, Att (deg) 0.50 3.0 1.50

IC Uncertainty, Pos (km) 50.00 1.05 52.50

IC Uncertainty, Vel (m/s) 1.00 1.05 1.05

Process Noise (m/s/
√
s) 1.50e-4 1.05 1.57e-4

Manuever Exec Err (m/s) 0.10 1.05 0.11

Table 4.12 : Flight Readiness Altered GN&C Subsystem Requirements -
Return
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(a) Downtrack Position v. Velocity Magnitude (b) Downtrack Position v. Flight Path Angle

(c) Crosstrack Position v. Crosstrack Velocity (d) Velocity Magnitude v. Flight Path Angle

(e) Time History of |∆V| Dispersions

Figure 4.17 : Return Trajectory - Flight Readiness Altered
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4.5.4 Lunar Return - Cost Function Altered

The same trends for the optimal GN&C subsystem performance requirements exist

between the baseline and cost function altered cases for the lunar return trajectory

as for the lunar outbound case. Principally, there is no difference between the de-

rived requirements for the baseline and cost function altered cases. Additionally the

survivability altered and flight readiness altered cases for both cost functions yield

the same GN&C performance requirements. The only indication that the second cost

function has a unique affect on the derivation of optimal performance requirements is

observed when survivability and flight readiness conditions are altered simultaneously.

The differences are minimal and only affect the maneuver execution error requirement

and the position and velocity navigation requirements at RTC-5.

Error Variable Init Value (3σ) Weight Rqmnt (3σ)

RTC4 Nav Err, Pos (km) 2.50 0.50 1.25

RTC4 Nav Err, Vel (m/s) 0.25 0.50 0.13

RTC4 Nav Err, Att (deg) 0.50 3.00 1.50

RTC5 Nav Err, Pos (km) 1.00 1.91 1.91

RTC5 Nav Err, Vel (m/s) 0.10 1.91 0.19

RTC5 Nav Err, Att (deg) 0.50 3.00 1.50

RTC6 Nav Err, Pos (km) 0.50 0.59 0.29

RTC6 Nav Err, Vel (m/s) 0.05 0.59 0.03

RTC6 Nav Err, Att (deg) 0.50 3.00 1.50

IC Uncertainty, Pos (km) 50.00 9.55 477.00

IC Uncertainty, Vel (m/s) 1.00 0.50 0.50

Process Noise (m/s/
√
s) 1.50e-4 10 1.50e-3

Manuever Exec Err (m/s) 0.10 0.50 0.05

Table 4.13 : Cost Function Altered GN&C Subsystem Requirements -
Return



84

(a) Downtrack Position v. Velocity Magnitude (b) Downtrack Position v. Flight Path Angle

(c) Crosstrack Position v. Crosstrack Velocity (d) Velocity Magnitude v. Flight Path Angle

(e) Time History of |∆V| Dispersions

Figure 4.18 : Return Trajectory - Cost Function Altered
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4.5.5 Lunar Return - Summary

The summary Tables 4.14 and 4.15 provide a quick reference to compare the derived requirements from one case to

another. They give an idea of the sensitivity that each alteration has in the process of optimizing the GN&C subsystem

performance requirements.

Error Variable Baseline Survivability
Altered

Flight Readiness
Altered

Cost Function
Altered

RTC4 Nav Err, Pos (km) 1.25 1.25 (+0.00%) 1.25 (+0.00%) 1.25 (+0.00%)

RTC4 Nav Err, Vel (m/s) 0.13 0.13 (+0.00%) 0.13 (+0.00%) 0.13 (+0.00%)

RTC4 Nav Err, Att (deg) 1.50 1.50 (+0.00%) 1.50 (+0.00%) 1.50 (+0.00%)

RTC5 Nav Err, Pos (km) 1.91 5.40 (+182.72%) 1.94 (+1.57%) 1.91 (+0.00%)

RTC5 Nav Err, Vel (m/s) 0.19 0.54 (+182.72%) 0.19 (+1.57%) 0.19 (+0.00%)

RTC5 Nav Err, Att (deg) 1.50 1.50 (+0.00%) 1.50 (+0.0%) 1.50 (+0.00%)

RTC6 Nav Err, Pos (km) 0.29 2.67 (+808.16%) 0.85 (+187.41%) 0.29 (+0.00%)

RTC6 Nav Err, Vel (m/s) 0.03 0.27 (+808.16%) 0.09 (+187.41%) 0.03 (+0.00%)

RTC6 Nav Err, Att (deg) 1.50 1.50 (+0.00%) 1.50 (+0.00%) 1.50 (+0.00%)

IC Uncertainty, Pos (km) 477.00 477.00 (+0.00%) 52.50 (-88.99%) 477.00 (+0.00%)

IC Uncertainty, Vel (m/s) 0.50 0.50 (+0.00%) 1.05 (+110.00%) 0.50 (+0.00%)

Process Noise (m/s/
√
s) 1.50e-3 1.50e-3 (+0.00%) 1.57e-4 (-89.53%) 1.50e-3 (+0.00%)

Manuever Exec Err (m/s) 0.05 0.05 (+0.00%) 0.11 (+110.00%) 0.05 (+0.00%)

Table 4.14 : Return Trajectory Summary Table 1 of 2
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Error Variable Baseline Surv & FR
Altered

Surv & CF
Altered

FR & CF
Altered

Surv, FR, and
CF Altered

RTC4 Nav Err, Pos (km) 1.25 1.25 (+0.00%) 1.25 (+0.00%) 1.25 (+0.00%) 1.25 (+0.00%)

RTC4 Nav Err, Vel (m/s) 0.13 0.13 (+0.00%) 0.13 (+0.00%) 0.13 (+0.00%) 0.13 (+0.00%)

RTC4 Nav Err, Att (deg) 1.50 1.50 (+0.00%) 1.50 (+0.00%) 1.50 (+0.00%) 1.50 (+0.00%)

RTC5 Nav Err, Pos (km) 1.91 5.41 (+183.25%) 5.40 (+182.72%) 1.94 (+1.57%) 5.42 (+183.77%)

RTC5 Nav Err, Vel (m/s) 0.19 0.54 (+183.25%) 0.54 (+182.72%) 0.19 (+1.57%) 0.54 (+183.77%)

RTC5 Nav Err, Att (deg) 1.50 1.50 (+0.00%) 1.50 (+0.00%) 1.50 (+0.00%) 1.50 (+0.00%)

RTC6 Nav Err, Pos (km) 0.29 2.79 (+848.98%) 2.67 (+808.16%) 0.85 (+187.41%) 2.79 (+848.98%)

RTC6 Nav Err, Vel (m/s) 0.03 0.28 (+848.98%) 0.27 (+808.16%) 0.09 (+187.41%) 0.28 (+848.98%)

RTC6 Nav Err, Att (deg) 1.50 1.50 (+0.00%) 1.50 (+0.00%) 1.50 (+0.00%) 1.50 (+0.00%)

IC Uncertainty, Pos (km) 477.00 52.50 (-88.99%) 477.00 (+0.00%) 52.50 (-88.99%) 52.50 (-88.99%)

IC Uncertainty, Vel (m/s) 0.50 1.05 (+110.00%) 0.50 (+0.00%) 1.05 (+110.00%) 1.05 (+110.00%)

Process Noise (m/s/
√
s) 1.50e-3 1.57e-4 (-89.53%) 1.5-0e-3 (+0.00%) 1.57e-4 (-89.53%) 1.57e-4 (-89.53%)

Manuever Exec Err (m/s) 0.05 0.11 (+110.00%) 0.05 (+0.00%) 0.11 (+110.00%) 0.10 (+90.00%)

Table 4.15 : Return Trajectory Summary Table 2 of 2
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Chapter 5

Concluding Remarks

5.1 Overview

This thesis has demonstrated the versatility of a novel, systematic approach for deriv-

ing optimal GN&C subsystem performance requirements for both a lunar outbound

and a lunar return flight segment. These performance requirements have been gen-

erated given multiple mission requirements and performance constraints, different

optimization criteria, and varying phases in the design process. Specifically, eight

different combinations of altering the survivability requirements, the flight readiness

of the simulated system, and the optimization cost function have been analyzed and

compared. The database of optimal GN&C performance requirements that have been

created provides an in-depth analysis of the effect and sensitivity of tweaking various

parameters for the optimal derivation.

5.2 Potential for Future Work

The next step in the discussed work may be to use the optimally derived GN&C

performance requirements to choose an optimal sensor suite for the mission profiles.

These performance requirements indicate how accurately the GN&C system must

perform to ultimately meet mission requirements. Therefore, the user can match the

expected performance of a given sensor suite to the derived requirement.

To further increase the versatility of this approach, it can be applied to mission re-

quirements other than ellipses and time histories. Specifically, the capability of using

polygon requirements for square, rectangular, or other shaped corridors is desired.
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A third consideration for future study of this concept is to optimize the design

space. Ideally, the error source ellipse fills the entire mission requirement ellipse. This

can be done through linearizing the problem introduced in Chapter 3 of using the

eigenvalues of the transformed, rotated performance ellipse in the optimization A

matrix. Other methods, including exploring different cost functions, can be pursued

to increase the area of the RSS, performance ellipse within the mission requirements,

optimizing the design space.
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Appendix A

5.3 Additional Cases Run for Reference

5.3.1 Lunar Outbound Scenario

Survivability and Flight Readiness Altered

Error Variable Init Value (3σ) Weight Rqmnt (3σ)

OTC1 Nav Err, Pos (km) 2.50 3.15 7.86

OTC1 Nav Err, Vel (m/s) 0.25 3.15 0.79

OTC1 Nav Err, Att (deg) 0.50 3.00 1.50

OTC2 Nav Err, Pos (km) 1.00 0.50 0.50

OTC2 Nav Err, Vel (m/s) 0.10 0.50 0.05

OTC2 Nav Err, Att (deg) 0.50 3.00 1.50

OTC3 Nav Err, Pos (km) 0.50 4.77 2.39

OTC3 Nav Err, Vel (m/s) 0.05 4.77 0.24

OTC3 Nav Err, Att (deg) 0.50 3.00 1.50

OTC4 Nav Err, Pos (km) 0.38 4.74 1.78

OTC4 Nav Err, Vel (m/s) 0.04 4.74 0.18

OTC4 Nav Err, Att (deg) 0.50 3.00 1.50

IC Uncertainty, Pos (km) 50.00 0.95 47.50

IC Uncertainty, Vel (m/s) 1.00 0.95 0.95

Process Noise (m/s/
√
s) 1.50e-4 0.95 1.42e-4

Manuever Exec Err (m/s) 0.10 0.95 0.10

Table 5.1 : Surv and FR Altered GN&C Subsystem Requirements - Out-
bound



90

(a) B-Plane Dispersions

(b) Time History of |∆V| Dispersions (c) Legend

Figure 5.1 : Outbound Trajectory - Surv and FR Altered
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Survivability and Cost Function Altered

Error Variable Init Value (3σ) Weight Rqmnt (3σ)

OTC1 Nav Err, Pos (km) 2.50 0.50 1.25

OTC1 Nav Err, Vel (m/s) 0.25 0.50 0.13

OTC1 Nav Err, Att (deg) 0.50 3.00 1.50

OTC2 Nav Err, Pos (km) 1.00 0.50 0.50

OTC2 Nav Err, Vel (m/s) 0.10 0.50 0.05

OTC2 Nav Err, Att (deg) 0.50 3.00 1.50

OTC3 Nav Err, Pos (km) 0.50 7.33 3.66

OTC3 Nav Err, Vel (m/s) 0.05 7.33 0.37

OTC3 Nav Err, Att (deg) 0.50 3.00 1.50

OTC4 Nav Err, Pos (km) 0.38 4.29 1.61

OTC4 Nav Err, Vel (m/s) 0.04 4.29 0.16

OTC4 Nav Err, Att (deg) 0.50 3.00 1.50

IC Uncertainty, Pos (km) 50.00 0.50 25.00

IC Uncertainty, Vel (m/s) 1.00 0.50 0.50

Process Noise (m/s/
√
s) 1.50e-4 0.50 7.50e-5

Manuever Exec Err (m/s) 0.10 0.50 0.05

Table 5.2 : Surv and CF Altered GN&C Subsystem Requirements - Out-
bound
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(a) B-Plane Dispersions

(b) Time History of |∆V| Dispersions (c) Legend

Figure 5.2 : Outbound Trajectory - Surv and CF Altered
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Flight Readiness and Cost Function Altered

Error Variable Init Value (3σ) Weight Rqmnt (3σ)

OTC1 Nav Err, Pos (km) 2.50 3.14 7.86

OTC1 Nav Err, Vel (m/s) 0.25 3.14 0.79

OTC1 Nav Err, Att (deg) 0.50 3.00 1.50

OTC2 Nav Err, Pos (km) 1.00 0.50 0.50

OTC2 Nav Err, Vel (m/s) 0.10 0.50 0.05

OTC2 Nav Err, Att (deg) 0.50 3.00 1.50

OTC3 Nav Err, Pos (km) 0.50 2.94 1.47

OTC3 Nav Err, Vel (m/s) 0.05 2.94 0.14

OTC3 Nav Err, Att (deg) 0.50 3.00 1.50

OTC4 Nav Err, Pos (km) 0.38 0.50 0.19

OTC4 Nav Err, Vel (m/s) 0.04 0.50 0.02

OTC4 Nav Err, Att (deg) 0.50 3.00 1.50

IC Uncertainty, Pos (km) 50.00 0.95 47.50

IC Uncertainty, Vel (m/s) 1.00 0.95 0.95

Process Noise (m/s/
√
s) 1.50e-4 1.05 1.57e-4

Manuever Exec Err (m/s) 0.10 0.95 0.10

Table 5.3 : FR and CF Altered GN&C Subsystem Requirements - Out-
bound
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(a) B-Plane Dispersions

(b) Time History of |∆V| Dispersions (c) Legend

Figure 5.3 : Outbound Trajectory - FR and CF Altered
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Survivability, Flight Readiness, and Cost Function Altered

Error Variable Init Value (3σ) Weight Rqmnt (3σ)

OTC1 Nav Err, Pos (km) 2.50 0.50 1.25

OTC1 Nav Err, Vel (m/s) 0.25 0.50 0.13

OTC1 Nav Err, Att (deg) 0.50 3.00 1.50

OTC2 Nav Err, Pos (km) 1.00 0.50 0.50

OTC2 Nav Err, Vel (m/s) 0.10 0.50 0.05

OTC2 Nav Err, Att (deg) 0.50 3.00 1.50

OTC3 Nav Err, Pos (km) 0.50 5.47 2.74

OTC3 Nav Err, Vel (m/s) 0.05 5.47 0.27

OTC3 Nav Err, Att (deg) 0.50 3.00 1.50

OTC4 Nav Err, Pos (km) 0.38 4.63 1.74

OTC4 Nav Err, Vel (m/s) 0.04 4.63 0.17

OTC4 Nav Err, Att (deg) 0.50 3.00 1.50

IC Uncertainty, Pos (km) 50.00 0.95 47.50

IC Uncertainty, Vel (m/s) 1.00 0.95 0.95

Process Noise (m/s/
√
s) 1.50e-4 0.95 1.42e-4

Manuever Exec Err (m/s) 0.10 0.95 0.10

Table 5.4 : Surv, FR, and CF Altered GN&C Subsystem Requirements -
Outbound
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(a) B-Plane Dispersions

(b) Time History of |∆V| Dispersions (c) Legend

Figure 5.4 : Outbound Trajectory - Surv, FR, and CF Altered
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5.3.2 Lunar Return Scenario

Survivability and Flight Readiness Altered

Error Variable Init Value (3σ) Weight Rqmnt (3σ)

RTC4 Nav Err, Pos (km) 2.50 0.50 1.25

RTC4 Nav Err, Vel (m/s) 0.25 0.50 0.13

RTC4 Nav Err, Att (deg) 0.50 3.00 1.50

RTC5 Nav Err, Pos (km) 1.00 5.41 5.41

RTC5 Nav Err, Vel (m/s) 0.10 5.41 0.54

RTC5 Nav Err, Att (deg) 0.50 3.00 1.50

RTC6 Nav Err, Pos (km) 0.50 5.58 2.79

RTC6 Nav Err, Vel (m/s) 0.05 5.58 0.28

RTC6 Nav Err, Att (deg) 0.50 3.00 1.50

IC Uncertainty, Pos (km) 50.00 1.05 52.50

IC Uncertainty, Vel (m/s) 1.00 1.05 1.05

Process Noise (m/s/
√
s) 1.50e-4 1.05 1.57e-4

Manuever Exec Err (m/s) 0.10 1.05 0.11

Table 5.5 : Surv and FR Altered GN&C Subsystem Requirements - Return
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(a) Downtrack Position v. Velocity Magnitude (b) Downtrack Position v. Flight Path Angle

(c) Crosstrack Position v. Crosstrack Velocity (d) Velocity Magnitude v. Flight Path Angle

(e) Time History of |∆V| Dispersions (f) Legend

Figure 5.5 : Return Trajectory - Surv and FR Altered
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Survivability and Cost Function Altered

Error Variable Init Value (3σ) Weight Rqmnt (3σ)

RTC4 Nav Err, Pos (km) 2.50 0.50 1.25

RTC4 Nav Err, Vel (m/s) 0.25 0.50 0.13

RTC4 Nav Err, Att (deg) 0.50 3.00 1.50

RTC5 Nav Err, Pos (km) 1.00 5.40 5.40

RTC5 Nav Err, Vel (m/s) 0.10 5.40 0.54

RTC5 Nav Err, Att (deg) 0.50 3.00 1.50

RTC6 Nav Err, Pos (km) 0.50 5.35 2.67

RTC6 Nav Err, Vel (m/s) 0.05 5.35 0.27

RTC6 Nav Err, Att (deg) 0.50 3.00 1.50

IC Uncertainty, Pos (km) 50.00 9.55 477.00

IC Uncertainty, Vel (m/s) 1.00 0.50 0.50

Process Noise (m/s/
√
s) 1.50e-4 10.00 1.50e-3

Manuever Exec Err (m/s) 0.10 0.50 0.05

Table 5.6 : Surv and CF Altered GN&C Subsystem Requirements - Return
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(a) Downtrack Position v. Velocity Magnitude (b) Downtrack Position v. Flight Path Angle

(c) Crosstrack Position v. Crosstrack Velocity (d) Velocity Magnitude v. Flight Path Angle

(e) Time History of |∆V| Dispersions (f) Legend

Figure 5.6 : Return Trajectory - Surv and CF Altered
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Flight Readiness and Cost Function Altered

Error Variable Init Value (3σ) Weight Rqmnt (3σ)

RTC4 Nav Err, Pos (km) 2.50 0.50 1.25

RTC4 Nav Err, Vel (m/s) 0.25 0.50 0.13

RTC4 Nav Err, Att (deg) 0.50 3.00 1.50

RTC5 Nav Err, Pos (km) 1.00 1.94 1.94

RTC5 Nav Err, Vel (m/s) 0.10 1.94 0.19

RTC5 Nav Err, Att (deg) 0.50 3.00 1.50

RTC6 Nav Err, Pos (km) 0.50 1.69 0.85

RTC6 Nav Err, Vel (m/s) 0.05 1.69 0.09

RTC6 Nav Err, Att (deg) 0.50 3.00 1.50

IC Uncertainty, Pos (km) 50.00 1.05 52.50

IC Uncertainty, Vel (m/s) 1.00 1.05 1.05

Process Noise (m/s/
√
s) 1.50e-4 1.05 1.57e-4

Manuever Exec Err (m/s) 0.10 1.05 0.11

Table 5.7 : FR and CF Altered GN&C Subsystem Requirements - Return
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(a) Downtrack Position v. Velocity Magnitude (b) Downtrack Position v. Flight Path Angle

(c) Crosstrack Position v. Crosstrack Velocity (d) Velocity Magnitude v. Flight Path Angle

(e) Time History of |∆V| Dispersions (f) Legend

Figure 5.7 : Return Trajectory - FR and CF Altered
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Survivability, Flight Readiness, and Cost Function Altered

Error Variable Init Value (3σ) Weight Rqmnt (3σ)

RTC4 Nav Err, Pos (km) 2.50 0.50 1.25

RTC4 Nav Err, Vel (m/s) 0.25 0.50 0.13

RTC4 Nav Err, Att (deg) 0.50 3.00 1.05

RTC5 Nav Err, Pos (km) 1.00 5.42 5.42

RTC5 Nav Err, Vel (m/s) 0.10 5.42 0.54

RTC5 Nav Err, Att (deg) 0.50 3.00 1.50

RTC6 Nav Err, Pos (km) 0.50 5.59 2.79

RTC6 Nav Err, Vel (m/s) 0.05 5.59 0.28

RTC6 Nav Err, Att (deg) 0.50 3.00 1.50

IC Uncertainty, Pos (km) 50.00 1.05 52.50

IC Uncertainty, Vel (m/s) 1.00 1.05 1.05

Process Noise (m/s/
√
s) 1.50e-4 1.05 1.57e-4

Manuever Exec Err (m/s) 0.10 0.95 0.10

Table 5.8 : Surv, FR, and CF Altered GN&C Subsystem Requirements -
Return
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(a) Downtrack Position v. Velocity Mag-
nitude

(b) Downtrack Position v. Flight Path
Angle

(c) Crosstrack Position v. Crosstrack Ve-
locity

(d) Velocity Magnitude v. Flight
Path Angle

(e) Time History of |∆V| Dispersions (f) Legend

Figure 5.8 : Return Trajectory - Surv, FR, and CF Altered
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