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The fractional Laplacian is an integro-differential operator that is currently widely used in 

nonlocal models, such as the anomalous diffusion, which arises when a particle moves 

randomly in the space involving a random process that allows long jumps. Determining the 

response of such dynamic systems is a daunting task, as general analytical solutions are not 

available. This thesis proposes approximate and numerical methods for determining the 

response of dynamic systems containing fractional Laplacian terms. Based on the Riesz-

Marchaud and Caputo-type representations of the fractional Laplacian, two Boundary 

Element Methods (BEM) are introduced to treat fractional dynamic systems. Further, a 

modal expansion is proposed as a novel expression of the fractional Laplacian. Furthermore, 

based on the proposed eigenfunctions, statistical linearization procedures are developed to 

approximate the response statistics. 

 

A BEM-based numerical algorithm is first introduced to estimate the solution of the 

fractional Poisson equation based on the Riesz-Marchaud definition of the fractional 

Laplacian. Further, the algorithm is applied to a fractional diffusion equation. The 

properties of the Caputo-type fractional Laplacian are next investigated. Then, a different 

BEM-based algorithm is developed for time domain simulation of the response of dynamic 

systems with Caputo-type fractional Laplacian terms. The analog equation is constructed 

with the unknown load, which is used in calculation of the fractional Laplacian of the 

response. A discretization and numerical integration scheme are then employed for 

estimating the response. 

 

It is shown that a frequency domain analysis of a nonlinear fractional diffusion equation 



with stochastic excitation can be conducted by a statistical linearization procedure. The 

approach is implemented by introducing non-orthogonal eigenfunctions of the fractional 

Laplacian of the response, which are transformed from the linear modes of the classical 

diffusion equation solution. Such a representation allows deriving an MDOF nonlinear 

ordinary differential equation, which is linearized in the mean square sense. Further, a 

simplified statistical linearization approximation method is proposed. The variance and the 

power spectral density of the response are then calculated by an iterative procedure. 

 

Numerical results pertaining to linear and nonlinear systems exposed to periodic and 

stochastic excitation are provided to demonstrate the effectiveness of the proposed methods. 
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Chapter 1 

Introduction 

1.1  Thesis Perspective 

Fractional calculus pertains to the theory of integrals and derivatives of arbitrary order. 

Although this theory is named fractional, the order could actually be any number: 

fractional, irrational, or complex. The idea of non-integer order derivatives was first 

discussed by Leibniz when the classical calculus theory was just established. For 

centuries, the theory of fractional calculus was treated merely as a pure mathematical 

topic, until recent decades when many authors have pointed out that the integrals and 

derivatives of non-integer order are suitable for the description of non-local properties of 

various real materials. 

 

Since the first comment by Leibniz, many mathematicians, including Euler, Laplace, 

Fourier, Liouville and Riemann made contributions to the theory about non-integer 

derivatives and integrals from different approaches. This fact led to different definitions 

of fractional derivatives and integrals (Kilbas, Srivastava and Trujillo, 2006. Miller and 

Ross, 1993). From the perspective of dynamics, in this thesis, the fractional derivatives 

are defined via the Fourier transform in the frequency domain. Nevertheless, the mostly 

used definitions, such as Riemann-Liouville derivative and Grunwald-Letnikov 

derivative, can be regarded as being defined in the time domain. 

 

Specifically, the Fourier transform of a function  is defined as 

( ) ( )  ( )ˆ , .i tf f t f t e dt  −= =                    (1.1) 

And the inverse Fourier transform is  

( ) ( )
1 ˆ .

2

i tf t f e d 


=                         (1.2) 
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It is well known that the Fourier transform of the n-th derivative of  is 

( ) ( ) ( )ˆ, .
n

n

n

d
f t i f

dt
  

 
= 

 
                   (1.3) 

Note that, the generalized fractional derivative is expected to satisfy similar property as 

Eq. (1.3). Thus, in this thesis, an implicit definition of the fractional derivative is adopted. 

 

The fractional derivative  with arbitrary order  is defined via the Fourier 

transform 

( )  ( ) ( )ˆ, , Re 0,D f t i f
    + =                 (1.4) 

where 

( ) ( ) ( )cos 2 sin 2 .i i
    = +                 (1.5) 

Eq. (1.4) is actually satisfied by different kinds of definition of the fractional derivative. 

 

A more common approach is to directly generalize the integer-order derivative with a 

fractional number. This is also a quite practical way, especially for a function in the 

bounded domain or interval. In this context, for a continuous function , 

the integer-order derivatives, if exist, are expressed as 

             ( )
( ) ( )

0
lim ,
h

f t f t h
f t

h→

− −
 =                       (1.6) 

( )
( ) ( ) ( ) ( ) ( )

20 0

2 2
lim lim ,
h h

f t f t h f t f t h f t h
f t

h h→ →

 − − − − + −
 = =     (1.7) 

and, by induction, for a positive integer n, 

 ( ) ( ) ( ) ( )
0

0

1
lim 1 ,

n
jn

nh
j

n
f t f t jh

jh

−

→
=

 
= − − 

 
                 (1.8) 

where 

( )( ) ( )1 2 1

!

n n n n n j

j j

− − − + 
= 

 
                    (1.9) 

is the binomial coefficient. 

 

Next, attempt to generalize the derivative in Eq. (1.8) for a positive real number , such 
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that . Take , so that when  Then, a formal 

generalization from Eq. (1.8) is attained. 

( ) ( ) ( ) ( ) ( )
0

0

1
lim 1 ,

t a

h
jGL

a
h

j

D f t f t f t jh
jh






− 

 
 

+
→ +

=

 
= = − − 

 
            (1.10) 

where 

( ) ( )

( ) ( )

1
1

.
1 1

j
j

j j

  



−
−  − 

= 
 −  + 

                      (1.11) 

is the generalized binomial coefficient. 

 

Such a derivative is named the Grunwald-Letnikov fractional derivative and is denoted 

by . The Grunwald-Letnikov derivative is quite useful in applications and 

numerical analysis as it can be calculated by finite difference scheme with proper 

truncation. That is, choose a small step-size h and remove the limit symbol in Eq. (1.10). 

( ) ( ) ( )
0

1
1 .

t a

h
jGL

a

j

D f t f t jh
jh






− 

 
 

+

=

 
= − − 

 
                (1.12) 

This is a finite difference algorithm that is widely used for the calculation of the 

fractional derivative. 

 

Note that other definitions and expressions of fractional derivatives and integrals (Monje, 

Chen, Vinagre, Xue and Feliu-Batlle, 2010) are also commonly used. For example, the 

Riemann-Liouville integral and derivative are widely used by mathematicians for 

theoretical analysis. They are defined as, 

( )
( )

( )

( )
1

1
, 0.

t

RL

a

a

f
I f t d

t






 

 
+ −

= 
 −





             (1.13) 

( ) ( )
( )

( )

( )
1 1

, 0 1,
1

t

RL RL

a a

a

fd d
D f t I f t d

dt dt t

 




 

 

−

+ += =  
 − −





   (1.14) 

and 
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( )
( )

( )

( )

1
,

1

b

RL

b

t

fd
D f t d

dt t








 
− = −

 − −





               (1.15) 

where  are called the left and right Riemann-Liouville 

fractional derivative respectively. 

 

Caputo derivative is widely used in engineering applications (Rossikhin and Shitikova, 

1997, 2000, 2001, 2006, 2010), as it allows the formulation of practical initial conditions 

for differential equations with a fractional derivative. Specifically, 

( )
( )

( ) ( )

( )
1

1
.

t
n

C

a n

a

f
D f t d

n t








 
+ − +

=
 − −





                 (1.16) 

Another quite convenient property of the Caputo definition is that the Caputo derivative 

of a constant is 0, whereas the Riemann-Liouville derivative and Grunwald-Letnikov 

derivative do not share this property. 

( )

( )
1 ,

1

GL

a

t a
D







−

+

−
=
 −

                         (1.17) 

( )

( )
1 ,

1

RL

a

t a
D







−

+

−
=
 −

                         (1.18) 

1 0.C

aD

+ =                               (1.19) 

Note that, the Grunwald-Letnikov, Riemann-Liouville and Caputo derivative all satisfy 

the Fourier transform property as in Eq. (1.4). More information about different 

expressions of the fractional derivatives and integrals can be seen in Samko (1993). 

 

In the multi-dimensional case, the theory of the fractional calculus becomes more 

complex, as there arise partial fractional derivative , and mixed fractional derivative 

, as well as the corresponding fractional integrals. Another approach is to 

introduce the fractional powers  of the Laplace operator that is 

. Such an operator, named the fractional Laplacian or Reisz derivative 

(Pozrikidis, 2016), is the main topic of this thesis. Same as one-dimensional fractional 
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derivative, there are different expressions of the fractional Laplacian. In this thesis, the 

fractional Laplacian of a scalar function  is defined also implicitly by 

Fourier transform. That is, 

( ) ( )  ( ) 
2

, , ,u u


− =x ω ω x ω                 (1.20) 

where  are the spatial frequencies, and the Fourier transform is defined as 

( )  ( ),
d

iu u e d− = 
x ω

x ω x x .                    (1.21) 

 

Besides the implicit definition of the fractional Laplacian in Eq. (1.20), a number of 

different representations and definitions of the fractional Laplacian have been introduced 

from different approaches (Caffarelli and Silvestre, 2007). Most of these definitions 

contain hyper-singular kernels in the integral representation and hence are difficult to 

deal with in numerical analysis. Among them, the Caputo-type definition is of great 

importance in this thesis, as it includes boundary information and eases the 

hyper-singularity. Thus, such a representation is very suitable for application. More 

information about the fractional Laplacian will be provided in Chapter 2. 

 

Despite the considerable development of the fractional calculus as mentioned above, this 

theory has not received much attention in science and engineering until recent decades. 

One of the reasons is that the fractional derivative is proved to be able to serve as a great 

instrument to describe the memory and nonlocal properties of various materials and 

processes (Petráš, 2011). While the integer-order derivatives demonstrate only the local 

state of the system, the fractional order derivatives depend on the information of a 

neighborhood. Such a property is called “fading-memory”.  

 

Recall the Grunwald-Letnikov derivative in Eq. (1.8). It is shown that the value of the 

fractional derivative  not only depends on the points in the neighbor of , 

but also on the whole interval . Such is called the nonlocal property. Further, the 

coefficients, by the properties of the generalized binomial coefficients, are 

( ) ( )
( )

( ) ( )

1
1 .

1

j

j

j j
GL

j j j

   



− −  −   
= − = =   

 −  +   
             (1.22) 
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These coefficients depend only on the order  and number j. As an example, for the 

order , the absolute values of  are plotted in Fig. 1.1. 
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Fig. 1.1. Absolute values of . 

 

It is seen that, independent by the step size h, the coefficient  always concentrates 

to 0 as j increases. Actually, for any , it can be proved that . 

This implies that for large value of t, the coefficients  corresponding to values of 

the function near the initial point have very little influence in the value of the derivate 

. This fact indicates that the value of the fractional derivative depends mainly 

on a “recent past”, i.e., the interval , where L is the length of “memory”. 

Hence, the fractional derivative neither shows a local nor a global information of the 

system, but a non-local information. Such property is called the “fading memory” of the 

fractional derivative. This is the reason that the fractional derivative is quite suitable for 

the description of nonlocal properties of various real materials and processes. 

 

Considering the nonlocal property of the fractional Laplacian, take a one-dimensional 

case as an example. On the interval , the fractional Laplacian can be defined in 

terms of the left and right Riemann-Liouville fractional derivatives (Huang and Oberman, 

2014, 2016), 



7 

 

( ) ( )
( ) ( )

( )
2

, 1.
2cos 2

RL RL

L LD u x D u x
u x

 





− − ++
− =             (1.23) 

Thus, the operator also emphasizes a nonlocal information of the system. 

 

New models involving the fractional integrals and derivatives have been developed and 

applied successfully in many fields of research, including viscoelasticity mechanics 

(Rossikhin, Shitikova, Chao and Persada, 2008. Rossikhin, Shitikova, and Ngenzi, 2015), 

electrical engineering and fractional control theory. A detailed survey of applications of 

the fractional calculus in various fields of science is given in references such as Podlubny 

(1998). Especially, the fractional Laplacian is widely used in the modelling of various 

dynamic systems, including nonlocal wave equations (D’Abbicco and Ebert, 2014), 

nonlocal heat equations, phase transitions, crystal dislocation, and finance problems. The 

fractional Laplace operator can be seen as the generator of Levy flights, or -stable 

processes, and hence is suitable to describe unusual diffusion process when a particle 

moves randomly in space subjecting to random processes that allow long jumps (Zoia, 

Rosso and Kardar, 2007). Such nonlocal diffusions, or called anomalous diffusions, 

which incorporate long range interactions, are phenomena that can be found in a turbulent 

fluid system (Chen 2006). Another example exhibiting anomalous diffusion is cell 

migration (Thurner, Wick, Hanel, Sedivy and Huber, 2003). Several experiments about 

anomalous diffusion can be found in Vlahos, Isliker, Kominis and Hizanidis (2008), 

where the Continuous Time Random Walk (CTRW) was discussed as a model for 

anomalous diffusion. The fractional diffusion equation was then derived from the CTRW 

equation. In this regard, note that Abe and Thurner (2005) have revisited Einstein’s theory 

of Brownian motion in the context of anomalous diffusion, and have shown how the 

fractional Laplacian can be introduced in the generalized theory. 

 

Corresponding to the application of the fractional calculus, many researches have been 

reported on the numerical analysis of the differential equation with the fractional 

derivative, i.e., the fractional differential equation. Nonlinear random vibration of a 

single-degree-of-freedom system with damping modeled by a fractional derivative was 

investigated by Huang and Jin (2009) via a stochastic averaging procedure. Spanos and 
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Malara (2014) proposed a statistical linearization method for analysis of the nonlinear 

random vibrations of beams with fractional derivative element. However, most of the 

recent works have focused on the time-fractional derivatives, while fewer reports have 

been provided on the space-fractional derivatives. Perhaps, one of the reasons for this 

trend is that many existing definitions and analysis theories are only feasible for 

one-dimensional case and will become quite complicated and time-consuming for the 

multi-dimensional problem. The space-fractional derivative, especially the fractional 

Laplacian, due to the multiple variables in the system and nonlocal property, are always 

much challenging for numerical analysis. 

 

Huang and Oberman (2014) derived a finite difference/quadrature evaluation for the 

fractional Laplacian. The method works for both bounded and unbounded domain, but 

only in one-dimension. Varlamov (1999) investigated the existence and uniqueness of the 

solution of a nonlinear fractional heat equation. Vazquez (2014) explained the general 

existence and uniqueness theory of the fractional porous medium equation. Chen and 

Pang (2016) introduced an implicit definition of the fractional Laplacian, and applied the 

Singular Boundary Method to a fractional Laplace equation. On a bounded domain, the 

study of the fractional Laplacian becomes more complicated. In contrast to the standard 

Laplace operator, the probabilistic and physical interpretation of the boundary condition 

of the system containing the fractional Laplacian has not been well established. This is 

especially true for the numerical methods, where truncation of the operator in a bounded 

domain is always required. Clearly different representations may lead to different results. 

Guan and Ma (2005) studied the boundary value problem for the Schrodinger type 

equation with a fractional Laplacian. Given that a general analytic solution, to the 

author’s knowledge, is not available, the need of numerical algorithm of dynamic system 

with the fractional Laplacian is clear. 

 

Following the directions of the existing methods for numerical analysis of time-fractional 

differential equation, the Boundary Element Method (Katsikadelis, 1990, 1991, 1994. 

Katsikadelis and Sapountzakis, 1991. Sapountzakis and Katsikadelis, 1999, 2000)) and 

the statistical linearization methods (Roberts and Spanos, 2003) are generalized for 
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dynamic systems endowed with the fractional Laplacian in this thesis. 

 

Developed by Bezine, Stern, Katsikadelis and many other authors, the Boundary Element 

Method (BEM) is one of the most popular computational method in engineering 

applications with considerable effectiveness and accuracy. It is a technique to analyze the 

behavior of the various systems subjected to external loads. The BEM requires the 

fundamental solution of the governing equation and uses an integral representation of the 

solution as a continuous mathematical expression. For certain problems, discretization in 

the BEM procedure involves only the boundary, which makes the numerical computation 

easier. Based on the BEM, the Analog Equation Method (AEM) is developed 

(Katsikadelis and Nerantzaki, 1994, 1996). According to this method, the actual problem, 

whose fundamental solution is not available, is converted into an equivalent linear 

problem with a simple fundamental solution. Then, the integral representation of the 

solution is conveniently established. In the equivalent problem, the geometry of the 

domain and the boundary conditions are conserved, whereas the unknown term to be 

evaluated numerically involves on algorithm. Recently, the BEM has been implemented 

in conjunction with Grunwald-Letnikov algorithm and Newmark numerical integration 

scheme for approximating the response of systems with time-fractional derivative, by 

Spanos and Malara (2014, 2017). In this thesis, a BEM-based approach is proposed to 

determine the response of a system governed by the fractional diffusion equation. 

 

In the classical partial differential equation theories, separation of variables is often 

considered as an effective way to solve the system. The same strategy is considered for 

analysis of partial differential equation with the fractional Laplacian. A spectral 

decomposition definition of the fractional Laplace operator was investigated and applied 

in a time-space fractional diffusion equation in two dimensions with Dirichlet boundary 

conditions by Yang, Liu and Turner (2011), and Yang, Turner, Liu and Ilic (2011). 

However, note that such a representation does not satisfies the Fourier transform property. 

Therefore, it is different from the implicit definition of the fractional Laplacian used in 

this thesis. If the separation of variables, namely modal expansion can be introduced in a 

nonlinear stochastic system, the method of statistical linearization can be proved to be a 
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quite useful approximate technique. As mentioned before, the statistical linearization 

method has already been applied to estimate the response statistics for fractional partial 

differential equations with time-fractional derivatives. The nonlinear response of a 

single-degree-of-freedom system was investigated by Spanos and Evangelatos (2010). 

Malara and Spanos (2017) considered the problem of determining the response of a plate 

endowed with fractional derivative element via a statistical linearization procedure. In 

this thesis, a modal expansion of the fractional Laplacian is first introduced. Then, based 

on this expression, a simplified approximation and complete statistical linearization 

method have been proposed, which allow calculating approximately the response 

statistics. 

1.2  Thesis Outline 

This thesis has 6 chapters related to numerical analysis of dynamic system endowed with 

fractional Laplacian. The main contributions are: Boundary Element methods for the 

dynamic systems endowed with the fractional Laplacian based on the Riesz-Marchaud 

definition and Caputo-type definition, a method to obtain modal expansion of the 

fractional Laplacian, and statistical linearization for frequency domain analysis of the 

dynamic systems with the fractional Laplacian. 

 

Chapter 1 provides a perspective and outline of the thesis. 

 

Chapter 2 introduces the mathematical background of the fractional Laplacian and the 

algorithms that can be generalized and implemented to dynamic systems endowed with 

the fractional Laplacian in the context. A brief review about the progress of fractional 

diffusion and application of the fractional Laplacian is provided first. Next, different 

representations of the fractional Laplacian and the examples are discussed. Different from 

the standard Laplace operator that involves the summation of all the second derivatives of 

the variables, and hence from certain directions, in this thesis, the fractional Laplacian is 

defined via the Fourier transform. While different representation of the operator in the 

space domain are presented and illustrated, the Caputo-type representation is significant 
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as it includes naturally the boundary conditions. Such properties make it useful in the 

application of a bounded domain problem. Calculation of the Riesz-Marchaud and 

Caputo-type representation of the fractional Laplacian is provided. Then, the BEM and 

the statistical linearization method are briefly illustrated, for the dynamic systems with 

time-fractional derivatives, as they will be further developed for the fractional Laplacian 

in the following chapters. 

 

In Chapter 3, a Boundary Element Method-based algorithm (BEMrm) is introduced to 

approximate the response of dynamic systems with the fractional Laplacian. The 

algorithm is constructed by utilizing the integral representation of the fractional Poisson 

equation solution, as the analog equation, in which the unknown constants are determined 

by the BEM. The value of the fractional Laplacian of the response can then be updated 

progressively. Different examples are presented to demonstrate the proposed algorithm. 

 

In Chapter 4, first the limitation of the Caputo-type fractional Laplacian when the order 

of the operator tends to 2 is considered. A proof is given to show that the limit of the 

fractional Laplacian is just the standard Laplace operator, which is a property that is 

expected as the fractional Laplacian is considered as generalization of the Laplace 

operator. Then, based on such kind of representation, a BEM-based algorithm (BEMc) is 

developed for the dynamic systems with the fractional Laplacian. The difference of 

BEMc from BEMrm is that, instead of the fractional Poisson equation, the standard 

Poisson equation is chosen as the analog equation. The algorithm itself emphasizes the 

nonlocal property of the fractional Laplacian.  

 

Chapter 5 proposes a method to obtain modal expansion of the fractional Laplacian. The 

expansion is established using the Caputo-type representation of the fractional Laplacian, 

and hence includes the information of the boundary conditions. The non-orthogonal 

eigenfunctions of the fractional Laplacian are transformed from the linear modes of 

classical diffusion equation solution. Based on the novel modal expansion, frequency 

domain analysis of fractional differential equation is available. Further, statistical 

linearization based approaches are proposed for determining the response statistics of a 
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nonlinear fractional diffusion/heat equation. The new representation allows deriving a 

system of nonlinear fractional ordinary differential equations, which is linearized in a 

stochastic mean square sense. Then, the response statistics and power spectral density are 

calculated by an iterative procedure. For a smaller order, to ensure the accuracy, the 

non-orthogonality must be considered. The methods proposed, even though it provides 

symbolic expressions, require discretization of the domain. It is also pointed out that, 

although the proposed eigenfunctions are not orthogonal to each other in theory, in the 

numerical implementation, they can be assumed to be orthogonal so that the numerical 

calculation would consume less time. Further, the proposed algorithms based on the 

Caputo-type fractional Laplacian are applied to linear and nonlinear fractional diffusion 

equation with different boundary conditions. Numerical results are presented to 

demonstrate the efficiency of the methods, as well as detail process of an example. 

Comparisons and parameter studies are provided for elucidating the influence of the order 

of the fractional Laplacian. 

 

Chapter 6 provides concluding remarks and concepts of future work. Based on the 

Caputo-type representation of the fractional Laplacian and on the non-orthogonal modal 

expansion, other numerical methods, such as deterministic linearization, may be available 

for the analysis of the dynamic systems with the fractional operator. It is noted that the 

proposed methods can also be implemented for different kinds of fractional partial 

differential equations, such as the fractional Porous Medium Equation and the fractional 

wave equation. 
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Chapter 2 

Mathematical Background 

2.1 Preliminary Remark 

This chapter introduces requisite mathematical background on the fractional Laplacian 

and the algorithm that can be further developed and generalized in the following chapters. 

One of the applications of the fractional Laplacian is to model the anomalous diffusion 

process. A brief progress of the theory about the fractional diffusion is first provided. 

Replacing the standard Laplace operator in the heat/diffusion equation with the fractional 

Laplacian, the fractional heat/diffusion recently has received attention both in mathematic 

theory and engineering. Such a system is a generalization of the classical diffusion 

equation (Luchko, 2015). Determining the response of a dynamic system with the 

fractional Laplacian is a daunting task, as analytical solutions, to the authors’ knowledge, 

are not available. Compared with the partial differential equation endowed with 

time-fractional derivative, the fractional diffusion equation is more challenging for the 

numerical analysis, due to the multiple spatial variables and nonlocal properties of the 

fractional Laplacian operator. 

 

Next, some widely used expressions on the fractional Laplacian are discussed, amongst 

which the Caputo-type operator receives particular attention. It simplifies the kernel 

function in the singular integral representation and includes the boundary conditions and 

hence is of great value in application. 

 

In Section 2.4 and 2.5, two techniques that have been proposed for determining the 

dynamic systems with fractional derivative operator are briefly discussed that involve the 

Boundary Element Method (BEM) based Monte Carlo simulation and statistical 

linearization. In the later chapters, these two techniques are further generalized for the 

dynamic system with the fractional Laplacian element. Katsikadelis and Tsiatas (2003, 
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2004), Spanos and Malara (2014) have made contributions to the BEM of the dynamic 

systems with time-fractional derivative. The key to such an algorithm is to find a proper 

analog equation (Katsikadelis and Babouskos, 2007, 2009, 2010) that will be convenient 

for numerical analysis by the BEM. The statistical linearization method is explained for 

one kind of fractional partial differential equations. Such method, developed by Spanos 

and Malara (2014, 2017), is to recast the governing equation, through a modal expansion, 

into a set of ordinary differential equations, where the statistical linearization method is 

applied to estimate the statistics of the response. The BEM and statistical linearization 

method are briefly described, and details can be seen in the reference. The time-fractional 

derivatives in this chapter are all defined on the positive real axis and is calculated by the 

Grunwald-Letnikov algorithm. 

2.2 Fractional Diffusion 

The mathematical models of heat conduction and diffusion play important roles not only 

in theory but also in physics and engineering (Bayazıtoğlu and Özışık, 1988). They also 

have made great progress in biology, economics and social sciences. Recently, in many 

natural systems, diffusion processes, which do not follow the classical theory have been 

observed. Such a phenomenon is referred as anomalous diffusion, where the space scale 

of the propagation of the distribution is not proportional to  as in the Brownian 

motion, because of the diffusion being either faster or slower. 

 

Anomalous diffusion is exhibited in the motion of tracer particles in turbulent flows, 

where particles may stay for a long time in a relatively small area, and there are particles 

that are carried over large distances very quickly. Such phenomenon can also be found in 

cell migration, chaotic dynamics and porous glasses (Stapf, Kimmich and Seitter, 1995). 

Solomon, Weeks and Swinney (1994) and Weeks, Urbach and Swinney (1996) used the 

experiment of a highly turbulent rotating annulus to illustrate the difference between 

normal and anomalous diffusion. Details of the experiment can be found in Vlahos, 

Isliker, Kominis and Hizanidis (2008). 
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In the last decade, there has been a number of works focusing on the use of the fractional 

Laplacian to replace the standard Laplace operator in order to model anomalous diffusion 

(D’Elia and Gunzburger, 2013). Abe and Thurner (2005) revisited Einstein’s theory of 

Brownian motion in the context of anomalous diffusion and showed how the fractional 

Laplacian is introduced in the generalized diffusion equation: 

( )
2

0.u u


+ − =                          (2.1) 

 

 

Fig. 2.1. The experiment of the rotating annulus to illustrate the anomalous diffusion. (From Vlahos, Isliker, 

Kominis and Hizanidis (2008)) 

 

In the work of Vlahos and Isliker, etc., it is also shown how fractional diffusion equations 

is derived starting from random walk models. Some researches indicate that the fractional 

Laplacian is actually the infinitesimal generator of Levy process that includes jumps and 

long-distances interactions. Therefore, the fractional diffusion equation is suitable to be 

used to model such unusual diffusion process where a particle can move randomly in the 

space subjecting to a random process that allows long jumps. 

 

Starting from the linear fractional diffusion equation, Vazquez (2012, 2014, 2017) 

contributes a lot to the combination of the anomalous and nonlinear diffusion equation. 
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The Fractional Porous Medium Equation (del Teso, 2014) is hence introduced, 

 ( ) ( )
2

0,mu u


+ − =                        (2.2) 

as well as the fractional reaction-diffusion equation 

( ) ( )
2

.u u f u


+ − =                        (2.3) 

 

Utilizing the nonlocal property of the operator, the fractional Laplacian is also applied in 

the wave model (Oh and Tzvetkov, 2017. Treeby and Cox, 2010), crystal dislocation and 

nonlocal phase transition. More notes about application of the fractional Laplacian can be 

found in Bucur and Valdinoci (2016). 

2.3 The Fractional Laplacian 

Denoted by , the fractional Laplacian is a spatial integro-differential operator 

that can describe the spatial nonlocality and power law behaviors of mathematics and 

engineering problems. It is a generalization of the standard Laplace operator 

. It is well known that the Laplace operator of a scalar function 

 satisfies the following Fourier transform: 

( )  ( )  ( )
2 2

ˆ, , ,u u u− = =x ω ω x ω ω ω             (2.4) 

where  are the spatial frequencies, and   denotes the norm of ω . The Fourier 

transform is defined as: 

( ) ( )  ( )ˆ , .
d

iu u u e d− = = 
x ω

ω x ω x x                    (2.5) 

To ensure the similar property of the generalized operator, the fractional Laplacian 

 is defined implicitly via Fourier transform. That is, 

( ) ( )  ( )
2

ˆ, .u u


− =x ω ω ω                  (2.6) 

 

Besides the implicit definition, there are many different explicit expressions of the 

fractional Laplacian listed below. One of the most used expression for the theoretical 

study is given by a singular integral, sometimes called the Riesz-Marchaud type 
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definition, 

( ) ( ) ( )
( ) ( )2

1 , , 0 2,
d

d

u u
u C d d




 

+

−
− =  

−





x y
x y

x y
           (2.7) 

where  is a constant dependent on the order  and dimension , and   

denotes the norm of ( )−x y . However, in the kernel function, the denominator is a 

power function with the power ( )d + greater than the dimension d, which makes it a 

“hypersingular” kernel. 

 

Another representation of the operation  can also be given by a hypersingular 

integral, as well as finite difference operator. Specifically, 

( ) ( ) ( )
( )2

2 , , 0 ,
d

l

d

u
u C d d l




 

+


− =  

y
x

x y
y

             (2.8) 

where  is a constant and .  

 

These versions are defined for the operator acts in . In a bounded domain, however, 

the so-called restricted fractional Laplacian is considered in this thesis, which acts on the 

functions defined in the bounded domain  and extended by zero to the complement. 

Thus, such operators are just the fractional Laplacian defined in the whole space and 

equal to 0 outside . 

 

As a special case, for one-dimensional function  in the interval [-L, L], a 

representation of the fractional Laplacian can be derived, 

( ) ( )
( ) ( )

( )
2

, 1.
2cos 2

L LD u x D u x
u x

 





− − ++
− =                 (2.9) 

Note that, through the Grunwald-Letnikov fractional derivative, a finite difference 

method (Huang and Oberman, 2014) can be established for the calculation of such an 

expression. Further, it is an expression that can be applied for real problems in a bounded 

domain. However, despite the convenience of the formula, this expression is restricted in 

one dimension. 
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It is worth noting that the spectral fractional Laplacian, also defined in a bounded domain, 

is not considered in this thesis, as it does not satisfy the implicit definition in the thesis. 

The spectral decomposition is to define the fractional Laplacian in a bounded domain 

. Let  be the eigenpairs of the negative Laplace operator: 

.k k k  − =                            (2.10) 

Subject to appropriate boundary condition, which ensure that all the  are non-negative 

and that  is a complete orthonormal basis. Then if , the 

fractional Laplacian is defined as 

( ) ( ) ( )
2 /2

1

.k k k

k

u C
  



=

− =x x                     (2.11) 

 

Note that, this decomposition does not satisfy the Fourier transform Eq. (2.3). In this 

regard, consider a simple counterexample. 

 

Let , i.e.  for all . Then, 

1 1 1.f  − = − =                           (2.12) 

Take the Fourier transform of the standard Laplace operator and the spectral 

decomposition expression of Eq. (2.8), 

( )  ( )  ( )
2 2 ˆ, ,f x f x f    − = = .            (2.13) 

Further, note that 

                   ( ) ( )   
/2 /2

1 1, ,f x
    − =  

                             ( ) /2 1 /2 1

1 1 1 1, ,f     − −= = −                                     

    ( )
2/2 1 /2 1

1 1
ˆ,f f     − −= − = ,             (2.14) 

which is different to the Eq. (2.3). Thus, this decomposition is not the fractional 

Laplacian discussed in this thesis. Instead, a new expansion will be derived in Chapter 5. 

 

In 2004, Chen and Holm introduced an operator as a composition of the Riesz potentials 

and Laplacian which is critical in this thesis. Specifically, the operator is defined as 
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( ) ( ) ( )( )
2 2 ,1 2.du I u

  −− = −  x x               (2.15) 

The Riesz potential on a bounded convex domain  in  is defined as 

( ) ( )
( )2

2
,d d

I c d




 −

+ −



=
−





ξ
x ξ

x ξ
                     (2.16) 

where  is the coordinate in the domain  and 

( )
( )

( )( )2 2

2 2
.

2 2 2d

d
c






 −

 − +  
=

 −
                   (2.17)           

Such a representation is called the Caputo-type fractional Laplacian. Note that the Riesz 

potential works as the inverse operator of the fractional Laplacian. In the case of 

sufficiently smooth functions  defined in  (if the function is defined on a bounded 

domain , set ), the Fourier transform of the Riesz potential is 

( )  ( )ˆ, .
ss

dI f f
−

=x ω ω ω                         (2.18) 

Then, based on the Fourier transform of the Riesz potential and of the standard Laplace 

operator one finds that 

( )  ( )  ( )
22 ˆ, ,dI u u u

  −− − = − =  x ω ω x ω ω            (2.19) 

which satisfies the implicit definition. Next an example are provided to demonstrate the 

computation of the Caputo-type fractional Laplacian. 

 

Example 2.1 The first example involves the function . The fractional 

Laplacian of u at x = 0 can be obtained directly from the inverse Fourier transform, since 

( ) 
2

4, .u x e


 
−

=                            (2.20) 

By the implicit definition Eq. (2.6), 
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                ( ) ( )
2

2
4

1
0

2
u e d




  


+
−

−

− = 


   

2

4

0

1 1
2 .

2
e d


  

  


+ − + 
= =  

 
              (2.21) 

And by the Caputo-type representation Eq. (2.15), same value can be obtained. 

             ( ) ( ) ( )( )
2 2

1
0

0
y

u I u y
 −

=
− = −  

                          ( )
( )

1
0

xxu x
c dx

x




+

−

−

−
=

−





 

                          ( )
2 22

1

2 4

0

x xe x e
c dx

x




+
− −

−

−

−
=

−





 

                          ( )
2 21 3

0 0
2 2 4x xc x e dx x e dx 

+ +
− − − − = −

     

                          ( )
1 2 1 4

2 2 4
2 2 2 2

c
 


 − −    

=  −     
    

 

                          
( )

( )( )
( )

1 2 2

1 2 2
2 1

22 2 2

 


 −

 −  −  
= −  

 −  
 

                          
2

1 2 2

2 1 1

2 2 2

 

 −

− −   
=    

   
 

1
2 ,

2

 


+ 
=  

 
                                    (2.22) 

which is the same solution as Eq. (2.21). 

 

As mentioned, different representations may give different results in a bounded domain, 

while they are equal in the infinite domain. Thus, a conjecture is that as the domain is 

enlarged, evaluations of the fractional Laplacian based on different representation may 

become closer. 
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Example 2.2 The second example involves computation of two different expressions for 

the fractional Laplacian of the function ( ) ( )
( )1 /2

21u x x
− −

= +  in the interval  ,L L− . In 

this regard the finite difference-quadrature approach proposed by Huang and Oberman 

(2014) is applied to calculate the Riesz-Marchaud type definition. The Caputo-type 

representation is calculated by adaptive quadrature (Shampine, 2008). For 1.5 = , the 

finite difference-quadrature results and Caputo-type representation results are presented 

in Fig. 2.2. 

 

 

Fig. 2.2. Evaluation of the fractional Laplacian based on Riesz-Marchaud and Caputo-type definition with 

L=4 (left) and L=8 (right). 

 

The exact fractional Laplacian of the function in the whole axis ( ),− + is 

( ) ( ) ( )
( )

1
1 /22 21 1

2 1 .
2 2

u x x
   

−
− ++ −   

− =   +   
   

         (2.23) 

 

It is shown that as L increase, the results calculated by the Riesz-Marchaud and 

Caputo-type definition become closer. Later in Chapter 4, it is shown that the limit of the 

Caputo-type fractional Laplacian is the classical Laplacian: 

( ) ( ) ( )
2

2
lim .u u



→ −
− = −x x                         (2.24) 
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Fig. 2.3. Evaluation of the fractional Laplacian based on Riesz-Marchaud and Caputo-type definition on the 

whole axis ( ),− + . 

 

 

Fig. 2.4. Relative difference of the evaluated fractional Laplacian at the point x=0. 

 

The Caputo-type representation of the fractional Laplacian is of importance in this thesis, 

as in Eq. (2.15), for multidimension , the denominator in the integrand is still 

singular, but not hypersingular, which makes it much more convenient for numerical 

treatment. Further, it includes the information of the boundary conditions, and thus it is 

suitable to be applied to the bounded problems. Such good properties lead to the modal 

expansion and the statistical linearization method that will be proposed in Chapter 5. 
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2.4 The Boundary Element Method 

The Boundary Element Method (BEM) is one of the most popular computational 

methods in engineering applications with good effectiveness and accuracy. The Analog 

Equation Method (Babouskos and Katsikadelis, 2010), a BEM-based algorithm, can be 

employed to the analysis nonlinear dynamic systems. Recently, in conjunction with the 

Grunwald-Letnikov algorithm, the BEM (Katsikadelis, 2002, 2006, 2008) has been 

implemented for determining the response of systems with time-fractional derivative. 

Linear fractional-order system was investigated by Agrawal (2001) and Di Paola, Failla, 

et al. (2012). Nonlinear fractional ordinary differential equation was investigated by 

Spanos and Evangelatos (2010), while nonlinear partial differential equation was 

discussed by Spanos and Malara (2014, 2017). 

 

A nonlinear continuous system can be described via a partial differential equations of the 

form 

  ,D u q=                           (2.25) 

where u is the unknown response of the system,  is a nonlinear differential operator, 

and q is the known load. 

 

The basic objective of the BEM is to select an appropriate linear partial differential 

equation 

  ,L u b=                           (2.26) 

with  being a linear differential operator, and b being the unknown load. Eq. (2.26) is 

called the analog equation. An integral representation of the solution of this system is 

then discretized to determine the response as 

,u = G b                           (2.27) 

where G is a known matrix and b is the unknown source vector. Finally, the unknown 

source term b is calculated by collocating Eq. (2.25) in each element of the continuum so 

that the equation 

  =B b q                           (2.28) 

is obtained. Eq. (2.25) is a system of nonlinear ordinary differential equations involving 
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fractional derivatives that can be solved in the time domain by a numerical integration 

scheme. Thus, the load b is obtained, and the system response can be computed via Eq. 

(2.24). This procedure is then repeated many times to derive Monte Carlo simulation for 

the response statistics. 

 

An example in Katsikadelis and Tsiatas (2003) , for a nonlinear fractional partial 

differential equation governing the vibration of a beam 

( )
( ) ( )

4

4

,
,t

u x t
Au EI cD u F u q x t

x




+ + + =


             (2.29) 

is considered. In this regard, the analog equation 

( )
( )

4

4

,
,

u x t
b x t

x


=


                       (2.30) 

is first established. The integral representation of the solution is written as 

( ) ( ) ( )2 3

0 1 2 3
0

, , , ,
L

u x t c c x c x c x G x b t d  = + + + +           (2.31) 

with  being time-dependent functions depending on the boundary 

conditions, and 

( ) ( )
21

, .
12

G x x x  = − −                         (2.32) 

Discretizing the beam into N elements and assuming that  is constant on each 

element, the discretized representation of Eq. (2.31) is 

( )0 1 1 2 2 3 3 ,c c c c t= + + + +u x x x Gb                    (2.33) 

where  are vectors containing the k-th power of the coordinates  of the nodal point in 

each element 

 

Substituting Eq. (2.33) into Eq. (2.29) 

( ) ( ) ( ) ( )( ) ( ),tA t c D t EI t t t + + + =Gb G b b F b G q ,       (2.34) 

the set of equations is obtained, where  is the nonlinear vector function and  
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is the vector containing the excitation value on each element. Eq. (2.34) is then solved via 

the numerical integration scheme and the Grunwald-Letnikov algorithm presented in 

Chapter 1. Details about this problem can be found in Katsikadelis, Tsiatas (2003) and 

Spanos, Malara (2014). 

 

 

Fig. 2.5. Discretization of the beam into N equal elements. (From Spanos and Malara, 2014) 

2.5 Statistical Linearization 

Statistical linearization is a method that has been applied to the time-fractional 

differential equation involving stochastic excitation. The nonlinear response of a 

single-degree-of-freedom system was investigated by Spanos and Evangelatos (2010). 

Further, Malara and Spanos (2014, 2017) considered the problem of determining the 

response of a beam or a plate endowed with fractional derivative element under 

stochastic excitation via a statistical linearization procedure. 

 

The method is to replace the nonlinear differential equation 

  ,D u q=                           (2.25’) 

by an equivalent linear system, in which the system parameters are determined by 

minimizing a mean square error between the two systems. Its application to a partial 

differential equation is based on an expansion of the system response. Such an expansion 

is used to rewrite the system as a system of nonlinear ordinary differential equations 

  .nlD w Q=                           (2.35) 

Such nonlinear system is then replaced by an equivalent linear system, 

  .eqD w Q=                           (2.36) 
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The parameters in Eq. (2.36) are determined by minimizing the mean square error 

   ( ) 2

.nl eqE D w D w = −                     (2.37) 

 

Specifically, as an example in Malara and Spanos (2017), consider the transverse 

displacement  of a rectangular plate of sides a and b, 

( )
2

4

2
,t

u
h c u D u F u q

t




+  +  + =


                (2.38) 

where  is the nonlinear function of , and ρ, h, c, α, D are 

parameters. The transverse load  is assumed to be separable. That is, 

( ) ( ) ( ), , , ,q x y t p x y f t=                      (2.39) 

where  is a deterministic spatial function, and  is a random process with a 

given power spectral density  and zero mean.  is the biharmonic operator 

4 4 4
4

4 4 2 2
2 .

x y x y

  
 = + +

   
                    (2.40) 

 

First, the response of the system is represented by expansion of spatial functions and 

time-dependent amplitudes. 

( ) ( ) ( )
, 1

, , , .mn mn

m n

u x y t w t U x y


=

=                   (2.41) 

Substituting Eq. (2.41) into Eq. (2.38) and taking into account of the orthogonal 

properties of the eigenfunctions, a set of ordinary differential equations can be derived. 

( ) ( )2 4
, for , 1,2, ,mn t mn mn mn mn

c
w w w g P f t m n

h ab h

 
 

+  + + = =w       (2.42) 

where w is the vector containing all , and 

( ), ,mn mnP p x y U d


=                        (2.43) 

with g  being the nonlinear function of all , which means that Eq. (2.42) is a 

coupled system. However, in the statistical linearization method, an approximate solution 

of Eq. (2.42) is sought by the decoupled equivalent linear system 

( )2

,

4
.mn t mn eq mn mn mn

c
w w w P f t

h ab h

 
 

+  + =             (2.44) 
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Note that the frequencies  are determined by minimizing the error between the 

nonlinear and linear equations in a mean square sense. That is, requiring 

( )
2

2

,

0,mn

eq mn





=


                       (2.45) 

with  being the error, 

( )2 2

, .mn mn mn eq mn mnw g w  = + −w                   (2.46) 

 

Once Eq. (2.45) is treated and  is obtained, the response statistics of the linear 

system Eq. (2.44) can be determined by input-output relations via the transfer function  

( )
( )2 2

,

1
,mn

eq mn

H i
c

i
h




  


=

− + +

                  (2.47) 

which is an estimation of the response statistics of the original system Eq. (2.38). 

Normally,  cannot be solved directly. An iterative method is always applied until 

 converges to a reasonable value. Details about this problem can be seen in 

Malara and Spanos (2017). 
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Chapter 3 

The Boundary Element Method (Riesz-Marchaud) 

for Dynamic Systems with the Fractional 

Laplacian 

3.1 Preliminary Remark 

In this chapter, a BEM-based algorithm (BEMrm) is proposed for the fractional 

differential equation. The algorithm is based on the Riesz-Marchaud definition of the 

fractional Laplacian. First, the algorithm is applied for approximation of the fractional 

Laplace/Poisson equation. Based on the fractional Poisson equation as the analog 

equation, the algorithm is generalized for the fractional diffusion equation. 

3.2 The Boundary Element Method Based Algorithm (BEMrm) for 

Static Problem 

Consider a two-dimensional differential equation with the fractional Laplacian 

( ) ( ) ( )
2

, , ,1 2u x y q x y


− =   .                (3.1) 

The boundary condition is 

1 2 3 on ,
u

u
n

  


+ = 


                      (3.2) 

where  are known values given on the boundary . When =2, it corresponds 

to the standard Laplace/Poisson equation. 

 

The fundamental solution of this problem is given by Bucur (2015), 

( )
( )( )

( ) 2

2 2 1
,

2 2
r P Q

P Q




  −

 −
 =

 −
,               (3.3) 
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where  and  are two points in the domain  or on the 

boundary , and 

( ) ( )
2 2

.P Q P QP Q x x y y− = − + −                   (3.4) 

Assume that the solution is represented by the integration. That is, 

           ( ) ( )
( )

( )
( )

( )
,

,
r

r

u Q P Q
u P P Q u Q dS Q

n n




  
= −  − 

  





 

  ( ) ( ) ( ), ,r P Q q Q d Q


+                 (3.5) 

where  = 1 or 1/2 depending on the position of point P, inside the domain  or on the 

boundary , respectively. q is the load in Eq. (3.1). 

 

Discretize the domain into elements, and the boundary into elements. Further, 

assume that the load is constant over each element. The values of the response u are 

supposed to be constant over each domain element and boundary element. Those values 

are calculated at fixed nodes in each element. The normal derivative  is also 

assumed to be constant over each boundary element and equals to its value at a fixed 

node in the element.  

 

 

Fig. 3.1. Discretization of the domain. 

 

Then, for a given point  on , the discretized form of Eq. (3.5) is expressed as 
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         ( ) ( ) ( ) ( )
1

1

1
,

2 j

N

i r i

j

u P P Q q Q d Q


=

=    

( )
( )

( ) ( )
( )

( )
2 2

1 1

,
, ,

j j

N N
r i

r i

j j

u Q P Q
P Q dS Q u Q dS Q

n n= = 

 
−  +

 

 
 
 

     (3.6) 

where  is the segment on which the j-th node is located and over which integration is 

carried out, and  is the nodal point of the i-th element. For constant elements, the 

boundary is smooth at the nodal points, hence  = 1/2. Denote by  and  the 

values of u and , respectively, on the j-th element. Eq. (3.6) can be written as 

        ( ) ( )
1

1

1
,

2 j

N
i j

r i

j

u q P Q d Q


=

=     

( ) ( )
( )

( )
2 2

1 1

,
,

j
j

N N
r ij j

n r i

j j

P Q
u P Q dS Q u dS Q

n
= = 


−  +







      (3.7) 

Define the coefficient matrices as 

 ( ) ( ) ( ), , , ,
j

b r i ii j P Q d Q P


=   G                (3.8) 

( ) ( ) ( ), , , ,
j

b r i ii j P Q dS Q P


=  L                 (3.9) 

and 

( )
( )

( )
,

, , ,
j

r i

b i

P Q
i j dS Q P

n


= 







H               (3.10) 

where the point  remains fixed point (reference point), while the point Q varies over 

the j-th boundary element (integration point). Introduce the notation (3.8), (3.9) and (3.10) 

into Eq. (3.7), 

( ) ( ) ( )
1 2 2

1 1 1

1
, , , .

2

N N N
i j j j

b b n b

j j j

u i j q i j u i j u
= = =

= − +  G L H        (3.11) 

Moreover, set 

( ) ( )
1ˆ , , ,
2

b b iji j i j = −H H                     (3.12) 

where  is the Kronecker delta function. Eq. (3.11) is then written as 

( ) ( ) ( )
1 2 2

1 1 1

ˆ, , , .
N N N

j j j

b b b n

j j j

i j q i j u i j u
= = =

+ =  G H L          (3.13) 
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Eq. (3.13) is applied consecutively for all the nodes , yielding a system 

of  linear algebraic equations which are arranged in matrix form 

|
ˆ ,b b b b n b+ =G q H u L u                       (3.14) 

where q is the vector containing the values of the load at nodes, and  are 

vectors containing the solution u and their directional derivative at the nodes on the 

boundary, respectively. Further,  is  matrix,  and  are  

square matrices, q is a vector of dimension , while  are vectors of 

dimension . 

 

Eq. (3.14) can be used to estimate the unknown boundary quantities by introducing the 

boundary condition. Assume mixed boundary conditions as in Eq. (3.2). Further, suppose 

that the part  of the boundary on which u is described and the part  on which  

is described, are discretized into  and  constant elements respectively 

( ). Furthermore, partition the matrices  and  by an 

appropriate rearrangement of columns. Thus Eq. (3.14) can be written as 

 
| 11

11 12 11 12

| 22

ˆ ˆ ,
n bb

b b b b b

n bb

  
  + =    

   

uu
H H G q L L

uu
         (3.15) 

where  and  denote the known quantities respectively, while   

denote the corresponding unknown ones. The unknown vectors can then be described by 

the vector of q, that is, 

1| 1

11 12 11 12

| 22

ˆ ˆ .
bn b

b b b b b

n bb

  
   − = − −      

   

uu
L H H L G q

uu
        (3.16) 

Therefore, all the boundary quantities are then obtained or represented by q. 

 

Upon obtaining the representation of , similar to Eq. (3.6) and (3.7), for a 

given point  in , the discretized form of Eq. (3.5) is expressed as 

        ( ) ( )
1

1

,
j

N
i j

r i

j

u q P Q d Q


=

=     

( ) ( )
( )

( )
2 2

1 1

,
, .

j
j

N N
r ij j

n r i

j j

P Q
u P Q dS Q u dS Q

n
= = 


−  +







      (3.17) 
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Define the similar coefficient matrices as 

( ) ( ) ( ), , , ,
j

d r i ii j P Q d Q P


=   G               (3.18) 

( ) ( ) ( ), , , ,
j

d r i ii j P Q dS Q P


=  L                (3.19) 

and 

( )
( )

( )
,

, , .
j

r i

d i

P Q
i j dS Q P

n


= 







H              (3.20) 

Introduce the notation (3.18), (3.19) and (3.20) into Eq. (3.17), 

( ) ( ) ( )
1 2 2

1 1 1

, , , .
N N N

i j j j

d d n d

j j j

u i j q i j u i j u
= = =

= − +  G L H        (3.21) 

 

Eq. (3.21) is applied consecutively for all the nodes , yielding a system 

of  linear algebraic equations, which are arranged in the matrix form 

| ,d d n b d b= − +u G q L u H u                    (3.22) 

where  is the -dimensional vector containing values of the response u in each 

domain,  is  square matrix, and  and  are  matrices. 

 

Note that all the values in vector  are known or represented by q as in Eq. 

(3.35), and ,  and  are all known matrices. Therefore, via Eq. (3.22), the 

vector  is also represented by q, that is, 

,= +u Mq e                          (3.23) 

where M and e are known matrix and vector that is calculated from , , ,d b dG G H  

,c dH L  and bL . 

 

Example 3.1 Consider the two-dimensional problem (Ros-Oton and Serra, 2014) 

( ) ( )
2

01, in ru B


− = x ,                     (3.24) 

where ( )  22

0 0|rB r=  − x x x x . The boundary condition is 

0, .u on=                           (3.25) 
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The explicit solution is given by Getoor (1961), 

( )
( )( )

( )
/2

22

02

1
.

2 1 / 2
u r



 
= − −

 +
x x x             (3.26) 

 

Apply BEMrm on this problem with  and different orders. The 

results are shown in Fig. 3.2. It shows that BEMrm gives good approximation of the 

solution. 

 

 

Fig. 3.2. The exact solution (dots) and BEMrm solution (circles) of Eq. (3.24) with order 1.9 =  (left) 

and 1.7 =  (right). 

 

Example 3.2 Consider the Dirichlet boundary problem of the fractional Laplace equation 

in a square domain 

( )
2

0, in ,

, on .b

u

u u

 − = 


= 

                          (3.27) 

The boundary conditions are specified by 

( ) ( ), 100 1 0.5 .bu x y x= + +                       (3.28) 

 

SBM introduced by Chen and Pang (2016) is also applied to the problem. Results from 

two methods for fractional order 1.9 and 1.5 are given in Table 3.1 and Table 3.2, using 

400 boundary elements. 
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Fig. 3.3. Square Domain and internal points of Example 3.2. 

 

Table 3.1. Internal values computed by SBM and BEMrm when 1.9 = . 

Node SBM BEMrm Error (%) 

1 125.5229 120.4276 4.0593 

2 125.5344 120.5218 3.9930 

3 125.5229 120.4276 4.0593 

4 149.5250 143.9508 3.7279 

5 149.4447 143.9475 3.6784 

6 149.5250 143.9508 3.7279 

7 173.6342 167.4782 3.5454 

8 173.5155 167.3797 3.5362 

9 173.6342 167.4782 3.5454 

 

 
Table 3.2. Internal values computed by SBM and BEMrm when 1.5 = . 

Node SBM BEMrm Error (%) 

1 115.1553 113.3835 1.5386 

2 114.1440 113.6093 0.4684 

3 115.1553 113.3835 1.5386 

4 131.4541 134.0266 1.9570 

5 129.5744 133.9520 3.3784 

6 131.4541 134.0266 1.9570 

7 150.3618 154.7713 2.9326 

8 148.7642 154.4439 3.8179 

9 150.3618 154.7713 2.9326 

3.3 BEMrm for Fractional Diffusion Equation 

In this section, BEMrm is applied to the fractional diffusion equation, leading to a set of 

ordinary diffusion equations. 
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Consider the two-dimensional diffusion equation with the fractional Laplacian: 

( ) ( ) ( )
2

, , ,1 2u u F u q x y t


+ − + =   .           (3.29) 

The boundary condition is 

1 2 3

u
u on

n
  


+ = 


,                     (3.30) 

and the initial condition is 

( ) ( )00 , ,u t u x y= =                       (3.31) 

where  are known functions defined on the boundary . When =2, it 

corresponds to the standard diffusion, while the case 1<  <2 corresponds to the 

anomalous diffusion. 

 

The standard Poisson equation is first chosen as the analog equation 

( )
2

,u b


− =                           (3.32) 

where  is to be constructed later. Apply the algorithm BEMrm as introduced in 

Section 3.2 to solve Eq. (3.32). The following matrix equations are derived. 

,d d n d b= − +u G b L u H u  in the domain            (3.33) 

and 

1

2
b b b n b b= − +u G b L u H u , on the boundary          (3.34) 

where  is the vector containing the values of the unknown load at nodes, u contains 

the values of the response u at the nodes in the domain, and  and  are response 

and its directional derivative at the nodes on the boundary. The matrices are defined as in 

Section 3.3. 

 

By Eq. (3.34), all the boundary quantities are represented by . Substituting the 

values of the known matrices and vectors to Eq. (3.33) yields 

,= +u Mb e                           (3.35) 

where M is a known matrix and e is a known vector. Substituting Eq. (3.32) and (3.35) to 

the original system Eq. (3.29), a matrix nonlinear ordinary differential equation is 

obtained 
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( )2 + + =1M b b F b,M q .                    (3.36) 

This ordinary differential equation can be solved numerically. After Eq. (3.36) is solved, 

substitute into Eq. (3.35) and the values of the unknown response u are obtained. 

 

Example 3.3 Consider a stochastic fractional diffusion equation on a rectangular plate 

( ), 

( ) ( ) ( )
2 3 , ,u u ku p x y f t


+ − + =                  (3.37) 

with Dirichlet boundary condition 

0 ,u on=                            (3.38) 

and initial condition 

( ), , 0 0.u x y t = =                         (3.39) 

 

x

y

u = 0

u = 0

u = 0

u = 0

5

10

Ω

 

Fig. 3.4. The rectangular domain with Dirichlet boundary condition. 

 

The time-dependent part  of the source term is white noise, while the determinant 

spatial part is a constant, . The algorithm proposed by Shinozuka and 

Deodatis (1991) is applied to generate excitation. Specifically, for a given power spectral 

density , the load  is represented by a truncated infinite series, 

( ) ( )
1

0

2 cos ,
N

n n n

n

f t A t 
−

=

= +                   (3.40) 

where 
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( ) ( )2 , 0,1,2 1 ,n nA S n N =  = −                (3.41) 

 

, ,c
n n

N


  =   =                        (3.42) 

and 

( )0 00 0 0.A or S = = =                       (3.43) 

In Eq. (3.40),  is uniformly distributed over the interval  and is the 

cut-off frequency of the target spectrum. It is worth mentioning that, as expressed in Eq. 

(3.43), the power spectral density of the generated random process  this method is 

always zero at 0 frequency. Therefore, in order to simulate white noise, a broad-band 

noise is generated with the spectral density . 

 

Apply BEMrm to this problem with different parameters for simulation. A broad-band 

noise is generated with the power spectral density of the white noise bing ( ) 1S  =  for 

0 10    and ( )0 0S  = = . The domain is meshed into 75 elements while the 

boundary into 200 elements. The results are shown in Fig. 3.5 and Fig. 3.6. 

 

  

Fig. 3.5. Standard deviation of the response u along the line y=0 and the power spectral density of u at the 

point (0,0) with white noise input and fractional order 1.9. The values of coefficient of the nonlinear term 

are: k=0 linear (continuous line); k=0.1 (circles); k=1 (dotted line). 
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Fig. 3.6. Standard deviation of the response u along the line y=0 with white noise input and coefficient of 

the nonlinear term k=0.1. The values of fractional orders are:  classical Laplacian (continuous line); 

 (dashed line);  (dotted line). 

 

Fig. 3.5 and Fig. 3.6 show the boundary element method-based simulation results with 

different nonlinear parameter and fractional Laplacian order. The left panel of Fig. 3.4 

shows values of response standard deviation calculated by the proposed algorithm and the 

right panel is the spectrum of the response. 

3.4 Synopsis 

In this Chapter, a BEM-based algorithm was developed for the fractional Poisson 

equation first. Different examples are provided to compare the results from BEMrm with 

the exact solution and SBM solution. Next, for the fractional diffusion equation, the 

analog equation was first established with the unknown load being calculated by the 

boundary element method. The value of the fractional Laplacian of the response was 

updated progressively. Numerical results pertaining to a system exposed to white noise 

input were presented to demonstrate the method. 
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Chapter 4 

The Caputo-type Fractional Laplacian and the 

Boundary Element Method (Caputo) 

4.1 Preliminary Remark 

In this chapter, the limit of the Caputo-type fractional Laplacian when the order  tends 

to 2 is first discussed. It is shown that the limit is just the standard Laplace operator, 

which is a complementation of the theory about the Caputo-type fractional Laplacian. 

Then, based on such representation, a BEM-based algorithm is proposed for the diffusion 

equation with the fractional Laplacian. Such a system is a generalization of the classical 

diffusion equation involving the fractional Laplacian of the unknown system response. 

Determining the response of a dynamic system with the fractional Laplacian is a daunting 

task, as analytical solutions, to the authors’ knowledge, are not available. Therefore, a 

new BEM-based numerical algorithm is developed for time domain simulation of the 

response. The algorithm is constructed by utilizing the integral representation of the 

classical Poisson equation solution, in which unknown constants are determined by the 

BEM. Then, based on the Caputo-type representation, the value of the fractional 

Laplacian of the response is updated progressively by matrix transformation of these 

constants 

4.2 Property of the Caputo-type Fractional Laplacian 

Recall the Caputo-type fractional Laplacian, which is represented as a composition of the 

Riesz potential and Laplace operator. Specifically, 

( ) ( ) ( )
2 2 ,1 2.du I u

  −− = −    x x                (4.1) 

The Riesz potential on a bounded convex domain  is defined as 
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( ) ( )
( )2 ,dI c d




 −



=




ξ
x ξ

x -ξ
                         (4.2) 

where  is the coordinate in the domain  and 

( )
( )

( )( )2 2

2 2
.

2 2 2d

d
c






 −

 − +  
=

 −
                         (4.3) 

 

Next seek to prove that in the bounded domain , the following equation holds 

( ) ( ) ( )
2

2
lim .u u



→ −
− = −x x                     (4.4) 

Clearly, Eq. (4.4) is equivalent to 

2

2 2
2 0

lim lim .I u u I u u 

 

−

→ − → +
=  =                    (4.5) 

 

The following given proof is given in two-dimension. Obviously, it can be readily 

generalized to the three-dimensional system. 

 

θ

Γ

y

x

ε > 0

r

R(θ)

P

Q

Ω

 

Fig. 4.1. The coordinates on the considered domain. 

 

Consider two points  and  in the domain  or on the 

boundary . The distance of the two points is  
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( ) ( )
2 2

.P Q P QP Q x x y y− = − + −                     (4.6) 

Set  and assume  for . Then, 

( ) 0, for ,u P P− =                           (4.7) 

and hence 

( )( )2

2 0, for .I u P P− − =                       (4.8) 

Use the polar coordinates as shown in Fig. 4.1, to express the vector from point P to Q, 

( )cos , sin ,P Q r r − =                        (4.9) 

where 

.P Q r− =                             (4.10) 

Denote . Then, the vector  can be expressed as 

, .P Q r Q P r − = = −                       (4.11) 

Hence, 

             ( ) ( )
( )

( )2 2
2

Q
I u P c d Q

P Q








−



= − 
−





 

              ( ) ( )
( )2

2

0 0
2

R

c r u P r rdrd
 

  −= − −   

( ) ( ) ( )
( )

2
1 1

0
0

2 ,
R

c r u P r dr r u P r dr d


 
 


   − − = − − + −

  



       (4.12) 

where the radius of the neighbor circle of the point P is a small value .  is the 

length of the line segment starting from point P to the boundary along the angle . The 

angular coordinate . 

 

Note that the constant in Eq. (3.12) is 

( )
( )

( )

2 2
2 .

2 2
c






 

 −  
− =


                      (4.13) 

As , , , and . Hence, . 

And in Eq. (4.12), the value of the non-singular integral ( )
( )

1
R

r u P r dr





− −  is always 

limited. Thus, 
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( ) ( )
( )2

1

00
lim 2 0.

R

c r u P r drd
 




  −

→ +
− − =               (4.14) 

 

Next consider the other integral in Eq. (3.12), which contains a singular integrand 

( )1

0
r u P r dr


 − − , when . Algebraic manipulations lead to 

              ( ) ( )
2

1

0 0
2c r u P r drd

 
  −− −   

                 ( ) ( )
2

0
0

1
2c d u P r dr




  


 
= − − 

 





  

                 
( )

( ) ( )
2

0 0
0

2c
d r u P r r du P r


 

  


−  = − − −
  


   

( )
( ) ( )

2

0
0

2
.

c
d u P r du P r




 
   



−  = − − −
  


          (4.15) 

Note that when 0+, , and 

                     
( ) ( )

( )

2 1 2

2 2

c


 

   

−  −
=


     

( )

( )1

1 2 1
.

2 1 2 2



  +

 −
= →

 +
                   (4.16) 

Thus,  

               ( ) ( ) ( )
2

2
0

0

1

2
I u P d u P du P r




   


 → − − −
  


   

                     ( ) ( ) ( )
2

0

1

2
d u P u P u P



  


= − − − +      

( ) ( )
1

2 .
2

u P u P


= =                             (4.17) 

Hence,  

2
0

lim .I u u

→ +
=                          (4.18) 

 

Therefore, 

( ) ( ) ( )
2

2
lim ,u u



→ −
− = −x x                   (4.4’) 
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and Eq. (4.4) is recovered. The limit of the Caputo-type fractional Laplacian is the 

standard Laplace operator when the order . An analogous proof holds in three 

dimensions. 

4.3 The Boundary Element Method Based Approach (BEMc) for 

Fractional Diffusion Equation 

In this section a BEM-based algorithm (BEMc) is developed for numerical treatment of a 

dynamic system endowed with the fractional Laplacian. A fractional diffusion/heat 

equation is considered for example. The key to the algorithm is to find a proper analog 

equation, which is the classical Poisson equation in the proposed method. The solution of 

the analog equation is constructed by utilizing the integral, in which unknown constants 

are determined by the BEM (Katsikadelis, 2009, 2011, 2014). Based on the Caputo-type 

representation of the fractional Laplacian operator, the value of the fractional Laplacian 

of the response can then be updated progressively (Jiao, Malara and Spanos, 2018). 

 

Consider the two-dimensional diffusion equation with the fractional Laplacian: 

( )
2

0,1 2,u u


+ − =                      (4.19) 

The boundary condition is 

1 2 3 ,
u

u on
n

  


+ = 


                     (4.20) 

and the initial condition is 

( ) ( )00 , ,u t u x y= =                       (4.21) 

where  are known functions defined on the boundary . When =2, it 

corresponds to the standard diffusion, while the case 1<  <2 corresponds to the 

anomalous diffusion. 

 

A BEM-based solution of the system is sought by considering the solution of the linear 

equation 

,u b =                             (4.22) 



44 

 

where  is a load to be constructed later. 

 

A singular particular solution of  

( )P Q = − ,                        (4.23) 

where ( )   is the delta function, is called the fundamental solution of the potential 

equation (4.22). The fundamental solution of Eq. (4.22) is 

( )
1

, log ,
2

c P Q P Q


 = −                     (4.24) 

where  and  are two points in the domain  or on the 

boundary , and 

( ) ( )
2 2

.P Q P QP Q x x y y− = − + −                 (4.25) 

 

Recall the Green’s identity 

( )
u v

v u u v d v u dS
n n



  
 −   = − 

  





 .              (4.26) 

Applying the Green’s identity with functions u and 
c , the solution of Eq. (4.22) can be 

represented by the integral equation 

           ( ) ( )
( )

( )
( )

( )
,

,
c

c

u Q P Q
u P P Q u Q dS Q

n n




  
= −  − 

  





 

  ( ) ( ) ( ), ,c P Q b Q d Q


+                 (4.27) 

where  = 1 or 1/2 depending on the position of point P, inside the domain  or on the 

boundary . 

 

Following the similar process in Chapter 3, discretize the domain into elements, and 

the boundary into elements. Further, assume that the load is constant over each 

element. The values of the response u and the normal derivative  is also assumed 

to be constant over each boundary element and equal to its value at a fixed node in the 

element. The integral representation of the solution can be recast in the matrix form 
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,d d n d b= − +u G b L u H u  in the domain               (4.28) 

and 

1

2
b b b n b b= − +u G b L u H u , in the boundary             (4.29) 

where  is the vector containing the values of the unknown load at nodes, u contains 

the values of the response u at the nodes in the domain, and  and  are response 

and its directional derivative at the nodes on the boundary. The matrices are defined as: 

( ) ( ) ( ), , ,
j

b c i ii j P Q d Q P


=   G ,              (4.30) 

( ) ( ) ( ), , ,
j

d c i ii j P Q d Q P


=   G ,             (4.31) 

( ) ( ) ( ), , ,
j

b c i ii j P Q dS Q P


=  L ,              (4.32) 

( ) ( ) ( ), , ,
j

d c i ii j P Q dS Q P


=  L ,              (4.33) 

( )
( )

( )
,

, ,
j

c i

b i

P Q
i j dS Q P

n


= 







H ,             (4.34) 

and 

( )
( )

( )
,

, ,
j

c i

d i

P Q
i j dS Q P

n


= 







H .            (4.35) 

 

Then Eq. (4.29) can be used to estimate the unknown boundary quantities by introducing 

the boundary condition Eq. (4.20). Therefore, all the boundary quantities are represented 

by . Substituting equations (4.30) - (4.35) into Eq. (4.28) yields 

,= +
1

u M b e                          (4.36) 

where  is a known matrix and e is a known vector. Differentiating Eq. (4.36) with 

respect to time and taking into account that the vector e is a constant vector, 

.=
1

u M b                            (4.37) 

 

The fractional Laplacian of u is estimated by the Caputo-type representation. Collocate 

the source vector  in each element. That is,  
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               ( ) ( ) ( )
( )2

2i d

i

u Q
u P c d

P Q






+ −



−
− = 

−





  

( )
1

2
1

1
.

j

N

j d
j i

c b d
P Q




+ −
= 

−
= 

−





               (4.38) 

Define 

( ) ( )2 2

1
, .

j

d

i

i j c d
P Q




+ −



= 
−





M                (4.39) 

Then, 

( )
2

2- .


 = −u M b                         (4.40) 

By substitute the proposed representations (4.37) and (4.40) into the original system Eq. 

(4.19), the ordinary differential equation 

0− =
1 2

M b M b                        (4.41) 

is obtained. Taking the boundary conditions Eq. (4.20) and initial condition Eq. (4.21) 

into consideration, Eq. (4.41) can be solved numerically. After Eq. (4.41) is solved, 

substitute into Eq. (4.36) and the values of the response u are obtained. 

 

In this BEM-based procedure,  is a large non-sparse matrix, while in the problem 

with a classical Laplace operator,  is merely an identity matrix. Thus, due to the 

existence of the fractional Laplacian,  is a linear combination of 

. It suggests that the load on the j-th ( ) elements will influence the 

i-th element, which represents the nonlocal property of the fractional Laplacian. 

 

Another influence of the nonlocal property is that, although the system is a homogenous 

equation (4.19), in order to calculate the value of a point in the domain, the whole domain 

need to be meshed and the response at each node is required. On the contrary, for a 

standard homogenous heat/diffusion equation, only the boundary needs to be meshed in 

the BEM. Such complication is introduced due to the nonlocality of the fractional 

Laplacian, as the response at different nodes contribute to each other. 
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Next consider a more general model, which is a nonhomogeneous nonlinear fractional 

diffusion equation, 

( ) ( )
2

,u u F u q


+ − + =                     (4.42) 

where  is a nonlinear function of , and  is the load, 

deterministic or stochastic. 

 

The proposed BEMc is applied in the same way to this system, leading to a nonlinear 

ordinary differential equation 

( ) ,− + =1 2 1M b M b F b,M ,e q                   (4.43) 

where  is a nonlinear vector function encapsulating the nonlinear terms of 

the original equation, and q is the vector containing the load at each node. After Eq. (4.43) 

is solved numerically, the values of the response u can be obtained by Eq. (4.36). 

 

Note that in Eq. (4.39) the calculation of  may involve singular integrals for the 

diagonal terms , i.e. when  is in the element . In this context, the method of 

Chen and Pang (2016) is applied for the evaluation of these entries. This will be 

discussed in the next section. 

4.4 Evaluation of the Singular Integrals in the BEM discretization 

The method in this section is given by Chen and Pang (2016) that can be used to calculate 

the singular integral entries in the contribution matrix  defined in Eq. (4.39). 

 

In the discretization step in the proposed BEM, assume a domain element that is 

quadrilateral with four vertices A, B, C and D, as in Fig. 4.2. The element can be 

partitioned into four triangles , ,  and . Then,  

                ( ) ( ) 2

1
,

j

f d

i

i i c d
P Q




+ −



= 
−





M       

( )( ) ( )
1

.
i i i iP AB PBC PCD PDA

i

c d Q
P Q


= + + + 

−
        (4.44) 
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Fig. 4.2. The element and local coordinate. 

 

Next consider the integral over the triangle  as an instance. Transform the 

Cartesian coordinates to the polar coordinates and rewrite the surface integral as 

( )
( )2

1
0

1 1

i

R

P AB i

d Q rdrd
rP Q

 

 



 =
−

  
 

,             (4.45) 

where  and  are the angular coordinates of the points A and B respectively. Further, 

 is the length of the line segment  that the integration point  lies in,  

( )
( )

.
sin

h
R 


=                          (4.46) 

Then, the integral in Eq. (4.45) can be computed as 

( ) ( )
2

1

2
21

sin .
2

iP AB i

h
d Q d

P Q


 

 
 



−
−

 =
−−





             (4.47) 

 

Note that , the integral in the right-hand side of Eq. (4.47) is regular 

and can be evaluated by numerical integration methods such as Gauss quadrature. After 

the integrals in the four triangles are solved,  can be evaluated by Eq. (4.44). 

4.5 Examples  

In this section, BEMc is applied to fractional diffusion equation with periodic and 
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stochastic excitations. 

 

Example 4.1 Consider a linear fractional diffusion equation on a rectangular plate 

( ) 

( ) ( ) ( )
2

, ,u u p x y f t


+ − =                  (4.48) 

with Dirichlet boundary condition 

0 ,u on=                            (4.49) 

and initial condition 

( ), , 0 0,u x y t = =                        (4.50) 

where , and . 

 

Apply BEMc and BEMrm to this problem with different fractional order and nonlinear 

coefficient. The results are shown in Fig. 4.3. It shows that BEMc and BEMrm give close 

results for a higher order. While for a lower order, there is a difference in the peak in each 

period. 

 

 

Fig. 4.3. Response calculated by BEMc and BEMrm with order 1.9 =  (left) and 1.7 =  (right) on a 

10 5  rectangular plate. 

 

Note that BEMc is derived from the Caputo-type representation, while BEMrm is based 

on the Riesz-Marchaud representation. As discussed in Chapter 2, a conjecture is that, as 

the domain is enlarged, numerical results calculated by BEMc and BEMrm may become 



50 

 

closer. 

 

 

Fig. 4.4. Response calculated by BEMc and BEMrm with 1.7 =  on a 100 50  rectangular plate (left) 

and a 1000 500  rectangular plate (right). 

 

It is shown that numerical results calculated by BEMc and BEMrm are closer as the 

domain size increases.  

 

Example 4.2 Consider a stochastic fractional diffusion equation on a rectangular plate 

with same boundary and initial condition, 

( ) ( ) ( )
2

,u u p x y f t


+ − = .                  (4.51) 

 

 

Fig. 4.5. Relative difference of the variance of the response calculated by BEMc and BEMrm with 

1.7 = . 
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 is a broad-band noise that is generated with the power spectral density ( ) 1S  =  

for 0 10   , , and ( ), 1p x y = . The domain is meshed into 75 

elements while the boundary into 200 elements. Compute the variance of the response at 

the point (0, 0) by BEMrm and BEMc with different area of the plate. The relative error 

of the results from two methods are in Fig. 4.5. 

4.6 Synopsis 

In this Chapter, first, a proof was given to show that the Caputo-type fractional Laplacian 

converges to the standard Laplace operator as the fractional order tends to 2. This part 

supplies the theory about the Caputo-type representation introduced by Chen and Holm in 

2004. Next, a BEM-based algorithms was developed for the fractional Poisson equation. 

In BEMc, the analog equation is first established with the unknown load being calculated 

by the boundary element method. The Caputo-type representation of the fractional 

Laplacian of the response was then calculated. Compared with the standard problem, 

there is an additional non-diagonal matrix to construct in the algorithm, which renders the 

nonlocal property of the fractional Laplacian operator. Although the theory and the 

numerical method were discussed in two-dimension, it was pointed out that it is can also 

be applied in three-dimensional cases.  
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Chapter 5 

Modal Expansion and Statistical Linearization 

Methods for Fractional Diffusion Equation 

5.1 Preliminary Remark 

A modal expansion of the fractional Laplacian and the statistical linearization method are 

developed in this chapter. These methods are applied to a fractional diffusion. They can 

be used for frequency-domain analysis of the dynamic systems with the fractional 

Laplacian. The proposed method allows calculating approximately, albeit iteratively, the 

response statistics. 

 

First, based on the Caputo-type representation, a new non-orthogonal mode expansion of 

the fractional Laplacian is proposed, which accounts the boundary conditions information. 

A domain mesh is required for the numerical evaluation of the eigenfunctions. The first 

method, in which the constructed matrix is assumed to be diagonal, leads to an uncoupled 

system of nonlinear fractional ordinary differential equations. Such a system is derived 

from the original problem by applying the proposed expansion and is then linearized in a 

stochastic mean square sense. Further, a more general and accurate method is considered 

without requiring the modal orthogonality assumption, leading to a matrix ordinary 

differentiation equation. In both methods, the response statistics and the power spectral 

density are determined by an iterative procedure. Numerical results are provided to 

demonstrate the proposed methods. All values and variables in the examples are 

dimensionless, and the programming software packages are MATLAB and Mathematica. 

5.2 The Non-Orthogonal Modal Expansion 

Consider the two-dimensional fractional diffusion equation, 
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( ) ( ) ( ) ( ) ( )
2

, , , , , ,u x y t u x y t p x y f t


+ − =                  (5.1) 

with proper boundary and initial conditions. When , it corresponds to the “standard 

diffusion”, while the case  corresponds the “anomalous diffusion”.  

This section seeks the proper eigenfunctions, or mode shapes, , such that the 

fractional Laplacian in Eq. (5.1) can be represented by the series 

( ) ( ) ( ) ( )
/2

1 1

, , , ,mn mn mn

m n

u x y t w t z x y



 

= =

− =               (5.2) 

where  are related to the boundary condition, and  are constants and wmn(t) 

are time-dependent amplitudes. 

To find the proper eigenfunctions, first consider a standard heat equation. That is, 

suppose  in Eq. (5.1). That is, 

0u u− = .                                 (5.3) 

The separation of variables method starts from assuming that the system response is 

represented as the product of two functions (Beck, Wright, Haji-Sheikh, Cole, and Amos, 

2008). That is, 

( ) ( ) ( ), , , .u x y t w t v x y=                         (5.4) 

Substitute Eq. (5.4) into Eq. (5.3) yielding 

.wv w v=                                   (5.5) 

Eq. (5.5) can then be recast as 

,
w v

w v



= = −                               (5.6) 

where  is a positive constant. From Eq. (5.6) it is seen that the eigenfunctions satisfy the 

equation 

( ) ( ), ,v x y v x y− = .                           (5.7) 
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Provided with proper boundary condition, Eq. (5.7) can be solved and the eigenfunctions 

can be determined. For example, consider the homogenous Dirichlet boundary condition 

for a rectangular plate. That is, 

( ) ( )

( ) ( )

, , , , 0
.

, , , , 0

u a y t u a y t

u x b t u x b t

− = =


− = =

                         (5.8) 

Then, from the expansion Eq. (5.4), 

( ) ( )

( ) ( )

, , 0
.

, , 0

v a y v a y

v x b v x b

− = =


− = =

                           (5.9) 

From the governing equation (5.7) and the boundary condition (5.9), a set of solution is 

found. That is, 

( )
( ) ( )

, sin sin ,
2 2

mn

m x a n y b
v x y

a b

 + +   
=    

   

              (5.10) 

with 

( )
2 2

, ,
2 2

mn

m n
x y

a b

 


   
= +   
   

                       (5.11) 

where  Further, it is noted that the eigenfunctions are orthogonal. Without 

loss of generality, such orthogonality can be expressed by the equation 

b a

sl mn ms nl
b a

v v dxdy C 
− −

=  ,                         (5.12) 

with  denoting the Kronecker delta, and C being a constant. For the homogenous 

Dirichlet boundary condition, . 

 

Thus, the solution of Eq. (5.3) can be expanded as 

( ) ( ) ( )
1 1

, , ,mn mn

m n

u x y t w t v x y
 

= =

= ,                   (5.13)  
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with the functions ( )mnw t  to be determined. Further the expansion of the negative 

standard Laplace operator is simply derived as 

( ) ( ) ( )
1 1

, , , .mn mn mn

m n

u x y t w t v x y
 

= =

− =                  (5.14) 

Starting from the eigenfunctions of the standard homogenous heat equation, next consider 

the fractional diffusion equation (5.1). Recall the two-dimensional Caputo-type fractional 

Laplacian with the order ,  

( ) ( ) ( )
2 2

2, , ,u x y I u x y
 −− = −                      (5.15) 

where 

( ) ( )
( )

( ) ( )

2

2
2 2

,
, .I x y c d d

x y





  
   

 

−



=

− + −






          (5.16) 

Introduce next the function  as 

( ) ( )( )2

2, , .mn mnz x y I v x y−=                        (5.17) 

Then, from Eq. (5.7) and (5.15), it is clear that 

                    ( ) ( ) ( )( )
2 2

2, ,mn mnv x y I v x y
 −− = −    

                                     ( )( )2

2 ,mn mnI v x y −=  

                                     ( )( )2

2 ,mn mnI v x y −=  

( ), .mn mnz x y=                               (5.18) 

Thus, the fractional Laplacian is represented by the expansion 

( ) ( ) ( )
2

1 1

,mn mn mn

m n

u w t z x y



 

= =

− = .                  (5.19) 
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Note the difference between Eq. (5.14) and (5.19). The mode functions of the standard 

Laplace operator  only depend on the position of the point , while the modes 

of the fractional Laplacian  are defined in the integral form, which means that their 

values depend on the entire domain. This demonstrates the nonlocality of the fractional 

Laplacian. Further, the proposed eigenfunctions  are not orthogonal. 

5.3 Simplified Statistical Linearization Approximation 

In this section the proposed expansion of the fractional Laplacian is applied to a 

stochastic nonlinear fractional diffusion equation. The simplified statistical linearization 

approximation (SL-1) is then introduced for determining the response statistics of such a 

system. The new representation of the fractional Laplacian allows deriving a system of 

nonlinear fractional ordinary differential equations which is linearized in a stochastic 

mean square sense. Then, the response statistics and the power spectral density are 

calculated by an iterative procedure. 

Consider a two-dimensional fractional nonlinear diffusion equation on a rectangular plate 

( ). That is, 

( ) ( )
2 3 , , ,1 2.u u ku q x y t


+ − + =                     (5.20) 

The source term  is assumed to have the separable form 

( ) ( ) ( ), , , ,q x y t p x y f t=                          (5.21) 

where  is deterministic and  is a stationary Gaussian process with given 

power spectral density and zero mean. The boundary condition is 

1 2 3 ,
u

u on
n

  


+ = 


                            (5.22) 

and the initial condition is 

( ) ( )00 , ,u t u x y= =                             (5.23) 
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where  are known functions defined on the boundary . The nonlinear term is 

merely an example, and the proposed method is suitable for several nonlinear systems. 

 

The eigenfunctions  of the fractional Laplacian are defined by Eq. (5.17), which 

depend on the eigenfunction  of the solution of the linear standard heat equation. 

Assume that approximately the orthogonality holds. That is, 

,mn sl mn ms nlv z d   


 =                           (5.24) 

where  are constants. Then, the values of these constants are estimated numerically 

by discretizing the domain, as in the proposed BEM in Chapter 3, and assuming that  

is constant in each element. Denote by  and  two points in the 

domain . Further, the norm is 

( ) ( )
2 2

.P Q P QP Q x x y y− = − + −                    (5.25) 

Given the boundary condition (5.22), the value of  at nodes  in i-th 

element can be determined by the procedure described in Section 5.2. Then the vector 

 mn mnz=z  can be calculated from the vector  mn mnv=v . That is, 

,mn mn=z Mv                                   (5.26) 

where the matrix  is defined as the introduced matrix in the proposed BEM in Chapter 3. 

Specifically, 

( ) ( )
1

, ,

j i

i j c d
P Q






= 
−





M                      (5.27) 

where  is kept constant and Q varies over the j-th element in the domain. Hence, a 

domain mesh is required for the evaluation of the matrix. Further, the value of  in 

Eq. (5.24) is estimated by numerical integration. That is, 
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.mn mn mnv z d


=                               (5.28) 

 

Next, based on Eq. (5.13) and the propose expansion one derives 

( ) ( ) ( )
2 2

1 1

, ,mn mn mn

m n

u w t z x y



 

= =

− =               (5.29) 

and the original equation (5.20) is recast as 

2 3

, ,

,mn mn mn mn mn

m n m n

w v w z ku pf+ + =                   (5.30) 

where 

 
1 1 1 1 2 2 2 2 3 3 3 3

1 1 2 2 3 3

3

, , ,

k l k l k l k l k l k l

k l k l k l

u w v w v w v
   

=    
   
   ,            (5.31) 

and  in Eq. (5.2). 

 

Introduce the constants 

,mn mnp v pd


=                          (5.32) 

and 

( )
1 1 2 2 3 31 1 2 2 3 3, , , , , , , ,mn k l k l k lI m n k l k l k l v v v v d


=             (5.33) 

so that 

           
1 1 1 1 2 2 2 2 3 3 3 3

1 1 2 2 3 3

3

, , ,

mn mn k l k l k l k l k l k l

k l k l k l

v u d v w v w v w v d




   
 =    

   





    

( )
1 1 2 2 3 3

1 1 2 2 3 3

1 1 2 2 3 3

, , ,

, , , , , , , .k l k l k l

k l k l k l

I m n k l k l k l w w w=         (5.34) 

 

Integrate both sides of Eq. (5.30) by function . Then, based on the assumption of 

orthogonality (Eq. (5.12) and (5.24)), the equation 

  ( )
1 1 2 2 3 3

1 1 2 2 3 3

2

1 1 2 2 3 3

, , ,

, , , , , , , mn
mn mn mn k l k l k l

k l k l k l

pk
w w I m n k l k l k l w w w f

ab ab
+ + =  (5.35) 

is obtained, where the constants are 
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2
2 .mn mn
mn

ab

 
 =                          (5.36) 

 

Apply the statistical linearization method, where the equivalent linearized equation is 

expected to be 

2

, .mn
mn eq mn mn

p
w w f

ab
+ =                      (5.37) 

The quantity  is determined by minimizing the error between the nonlinear and 

linear equations in mean square sense. That is, 

( )
2

2

,

0,mn

eq mn

d

d



=                      (5.38) 

with  being the error, 

         2 2

,mn eq mn mn mn mnw w  = −  

( )
1 1 2 2 3 3

1 1 2 2 3 3

1 1 2 2 3 3

, , ,

, , , , , , , .k l k l k l

k l k l k l

k
I m n k l k l k l w w w

ab
+        (5.39) 

Note that Eq. (5.35) is a coupled system, while Eq. (5.37) is decoupled. This theory is 

given by Elishakoff and Fang in 1995. 

 

Substituting Eq. (5.39) into Eq. (5.38), and after some algebra manipulation, the equation  

         
( )

2 2 2 2 2

,2

,

2 2mn eq mn mn mn mn

eq mn

d
w w

d
  


= −  

                     ( )
1 1 2 2 3 3

1 1 2 2 3 3

1 1 2 2 3 3

, , ,

2
, , , , , , , mn k l k l k l

k l k l k l

k
I m n k l k l k l w w w w

ab
−      

0=                                           (5.40) 

is obtained. Thus, 

( )
1 1 2 2 3 3

1 1 2 2 3 3

2 2

, 1 1 2 2 3 32
, , ,

1
, , , , , , , .eq mn mn mn k l k l k l

k l k l k lmn

k
I m n k l k l k l w w w w

ab w
 = +    (5.41) 

 

From Eq. (5.41), the quantity  cannot be calculated explicitly. Hence an iterative 

method is applied. Define 
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( ) ( ) ( ) ,mnsl mn f slS H i S H i d   


−
= −               (5.42) 

where  is the given power spectral density of f(t) with the transfer function represented 

as 

( ) 2

,

1
.mn

eq mn

H i
i


 

=
+

                       (5.43) 

Then, based on the property of normal distribution, the following equality is given by 

Seide (1976). 

           ( ) ( ) ( ) ( )1 2 3 4f t f t f t f t   − − − −  

                      ( ) ( ) ( ) ( )1 2 3 4f t f t f t f t   = − − − −  

                       ( ) ( ) ( ) ( )1 3 2 4f t f t f t f t   + − − − −  

( ) ( ) ( ) ( )1 4 2 3 .f t f t f t f t   + − − − −          (5.44) 

Thus, the related expected values in Eq. (5.41) are determined by the following 

equations: 

2

2 ,mn
mn mnmn

p
w S

ab

 
=  
 

                      (5.45) 

and 

            
1 1 2 2 3 3mn k l k l k lw w w w  

( )
( )1 1 2 2 3 3

1 1 2 2 3 3 2 2 1 1 3 3 3 3 1 1 2 24
.

mn k l k l k l

mnk l k l k l mnk l k l k l mnk l k l k l

p p p p
S S S S S S

ab
= + +         (5.46) 

Hence, 

  2 2

,eq mn mn =  

    
( )

( )
1 1 2 2 3 3 1 1 2 2 3 3

1 1 2 2 3 3

1 1 2 2 3 33
, , ,

1
, , , , , , , (k l k l k l mnk l k l k l

k l k l k lmn mnmn

k
I m n k l k l k l p p p S S

p Sab
+   

     
2 2 1 1 3 3 3 3 1 1 2 2

).mnk l k l k l mnk l k l k lS S S S+ +   (5.47) 

 

Then from Eq. (5.47), (5.42) and (5.43), the value of  can be determined by the 

iterative method. The algorithm involves, starting from an initial value of , 
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calculating  and , and obtaining a new value of  from Eq. (5.47). 

Clearly, iterations are required until convergence to a reasonable value is reached. 

 

The second-order statistic of the response is estimated via the equivalent linear system Eq. 

(5.37), that is, 

         ( ) ( )2 2, , ,u x y u x y t =  

            
( )

( ) ( ) ( )2
, ,

1
.mn sl mn sl mn f sl

m n s l

p p v v H i S H i d
ab

   


−
= −       (5.48) 

Further, the spectral density of the response is evaluated by 

( )
( )

( ) ( ) ( )2
, ,

1
, , .u f mn sl mn sl mn sl

m n s l

S x y S p p v v H i H i
ab

   = −      (5.49) 

 

Note that the matrix  in Eq. (5.30) may involve singular integrals for the diagonal 

terms, i.e. when  is in the element . For their evaluation, the method of Chen and 

Pang (2016) is applied, which is shown in Chapter 3.  

5.4 Complete Statistical Linearization Method 

Compared with SL-1, the complete statistical linearization method (SL-2) proposed in 

this section requires more computations and numerical integrations but is strictly derived 

from the non-orthogonal eigenfunctions. Next the idea to remove the orthogonality 

assumption of the eigenfunctions of the fractional Laplacian is pursued (Malara, Jiao and 

Spanos, 2018). 

 

Consider the same system as in Eq. (5.20). The eigenfunctions  and  are 

calculated by discretization of the domain as in Section 5.3, as well as the constants . 

In this regard, introduce the quantities 

,mn sl mn slv z d


=  ,                      (5.50) 

and 
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2

,

, .
sl mn sl

mn sl
ab

 
 =                        (5.51) 

Note that the difference between Eq. (5.50) and Eq. (5.25), for the orthogonality does not 

exist and there are more constants to be calculated. Similarly,  is calculated 

numerically based on the discretization of the domain.  

 

Substituting the proposed expansion of Eq. (5.26) into Eq. (5.20) and integrating both 

sides with , the nonlinear ordinary differential equations 

( )
3

,

, ,

,mn
mn mn sl sl mn sl sl

s l s l

pk
w w v w v d f t

ab ab




 
+ +  = 

 
        (5.52) 

are obtained for m, n = 1, 2, …, ∞, which describes the time variation of . 

 

Note that Eq. (5.52) is different from Eq. (5.34) because of the existence of summation 

. Thus, Eq. (5.52) constitutes a system of nonlinear fractional differential 

equations. In matrix form, they can be written as 

( ) ,+ + =Iw Kw g w q                     (5.53) 

where w is the vector containing  and I is the identity matrix and 

, ,( , ) ,i j mn sli j  = =K                    (5.54) 

To simplify the algebraic expression, denote the index by . Further, 

in Eq. (5.53), the vector functions are defined as  

,

i mn sl sl

s l

k
g v w v d

ab


 
=  

 





 ,                  (5.55) 

and 

( ).i
i

p
q f t

ab
=                          (5.56) 

 

An approximate solution of Eq. (5.53) can then be sought by statistical linearization, 

involving replacing it with the equivalent linear system 

( ) .+ + =
eq

Iw K K w q                       (5.57) 
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The optimal equivalent matrix  is determined by minimizing the difference between 

the nonlinear and linear system 

minimum,=T
ε ε                         (5.58) 

where the difference is defined as 

( )  .e

ij j i

j

K w 
 

= − = − = 
 

eq i
ε g w K w g             (5.59) 

The necessary conditions for this minimization problem are 

0,
e

ijK


=



T
ε ε                          (5.60) 

where  is the (i, j) element of . 

 

Note that the excitation q in Eq. (5.53) and (5.57) is a Gaussian random vector. Thus, 

combining Gaussian approximation of the response and Eq. (5.60) yields 

.e i
ij

j

g
K

w


=


                          (5.61) 

Substituting Eq. (5.55) into Eq. (5.61),  can be determined by the equation 

1 2 1 2

1 2

2

, , , , , , , , ,

3 6 3
,e

ij i j j j j i j j l j l i j l l l l

l j l j l j

k k k
K I w I w w I w w

ab ab ab  

= + +     (5.62) 

where 

1 2 3 1 2 3, , , .i l l l i l l lI v v v v d


=                       (5.63) 

 

Since f(t) is a stationary Gaussian process with given spectrum, if the first n modes are 

considered, the spectral density matrix of q can be represented by 

( )

( ) ( )

( ) ( )

1 1 1

1

.

n

n n n

q q q q

q

q q q q

S S

S S

 



 

 
 

=  
 
 

S                  (5.64) 

Then, the spectral density matrix of the response w in Eq. (5.57) is 
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                     ( )

( ) ( )

( ) ( )

1 1 1

1

n

n n n

w w w w

w

w w w w

S S

S S

 



 

 
 

=  
 
 

S    

( ) ( ) ( )* ,T

qi i  = H S H                    (5.65) 

where  is the of frequency response matrix 

( ) ( )
1

.i i 
−

 = + +
 eq

H I K K                 (5.66) 

 

Thus, from Eq. (5.62) and input-output relationship,  is computed as 

1 2 1 2

1 2

, , , , , , , , ,

3 6 3
.

j j j l l l

e

ij i j j j w w i j j l w w i j l l w w

l j l j l j

k k k
K I S I S I S

ab ab ab  

= + +       (5.67) 

The numerical calculation of the equivalent matrix  can be pursued by an iterative 

method based on Eq. (5.65), (5.66) and (5.67). Then, via the equivalent linear system, the 

variance of the response in the original system Eq. (5.20) is estimated by the equation 

( ) ( )2

1 1

, ,
i ju i j w w

i j

x y v v S d  


−
= =

=                 (5.68) 

and the power spectral density of the response at a certain point is 

( ) ( )
1 1

, , .
i ju i j w w

i j

S x y v v S 
= =

=                  (5.69) 

5.5 Examples 

Example 5.1 Consider a linear stochastic fractional diffusion equation on a rectangular 

plate ( ), 

( ) ( ) ( )
2

, ,u u p x y f t


+ − =                  (5.70) 

with Dirichlet boundary condition 

0 ,u on=                            (5.71) 

and initial condition 

( ), , 0 0.u x y t = =                        (5.72) 

The time-dependent part  of the load is white noise, while the determinant spatial 

part is a constant, . 
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The BEMc and modal expansion are applied to compute the variance and spectral density 

of the response. In the simulation, based on the algorithm in Chapter 3, a broad-band 

noise is generated with the power spectral density of the white noise is ( ) 0.5S  =  for 

0 20    and . The domain is meshed into 75 elements while the 

boundary into 200 elements. For this Dirichlet boundary condition, the eigenfunctions 

and eigenvalues in the expansion of the response are given in Eq. (5.10) and (5.11). In 

this example, the first 81 eigenfunctions are used in calculation. 

 

 

Fig. 5.1. Power spectral density of the response when 1.9 =  (left) and 1.7 =  (right). 

 

Fig. 5.1 shows the spectrum of the response at the point (0,0), calculated by 

non-orthogonal expansion and BEMc, with fractional order 1.9 and 1.7 of the fractional 

Laplacian. As shown, the numerical results match well. It can be seen that the power 

spectral densities calculated by the proposed expansion and Monte Carlo simulation 

based on the BEMc are very close. 

 

Example 5.2 Consider a stochastic nonlinear fractional diffusion equation with same 

boundary and initial conditions, 

( ) ( ) ( )
2 3 , .u u ku p x y f t


+ − + =                  (5.73) 

The time-dependent part of the input is white noise . The proposed method SL-1 and 

SL-2 are applied to the system. 
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Fig. 5.2. Power spectral density of the response calculated by SL-1 and SL-2 (36 mode shapes) with 

0, 1.95k = =  (left) and 1, 1.9k = =  (right). 

 

It is seen that two statistical linearization algorithms give close results. In SL-1, there is 

less numerical calculation, while in SL-2, the non-orthogonality of the eigenfunctions are 

taken into consideration. 

 

Next, apply BEMc to this problem with different parameters. The results are shown in 

Fig. 5.3 and Fig. 5.4. 

 

 

Fig. 5.3. Standard deviation of the response u along the line y=0 and the power spectral density of u at the 

point (0,0) with white noise input and fractional order 1.9. The values of coefficient of the nonlinear term 

are: k=0 linear (continuous line); k=0.1 (dashed line); k=1 (circles). 
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Fig. 5.4. Standard deviation of the response u along the line y=0 and the power spectral density of u at the 

point (0,0) with white noise input and coefficient of the nonlinear term k=0.1. The values of fractional 

orders are: 2 =  classical Laplacian (continuous line); 1.7 =  (dashed line); 1.5 =  (circles). 

 

Fig. 5.3 and Fig. 5.4 show the BEMc-based simulation results with different nonlinear 

parameter and fractional Laplacian order. The left panel of each figure shows values of 

response standard deviation calculated by the proposed algorithm and the right panel is 

the spectrum of the response. The statistics of the response is well captured with different 

nonlinear coefficient and fractional Laplacian order. 

 

 

Fig. 5.5. Power spectrum of u at the point (0,0) calculated by BEMc simulation and SL-2 (with 81 mode 

shapes) when =1.9. Nonlinear parameter k = 0.1 (left) and k =0.5 (right). 
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Fig. 5.6. Power spectrum calculated of u at the point (0,0) by BEMc simulation and SL-2 (with 121 mode 

shapes) when =1.5. Nonlinear parameter k = 0.1 (left) and k =0.5 (right). 

 

Fig. 5.5 and Fig. 5.6 show a comparison of the power spectral densities calculated by 

SL-2 and BEMc simulation. It is seen that, for weak nonlinearity, the statistical 

linearization is in agreement with the numerical solution, while for a relatively strong 

nonlinear system (k=0.5), there is a small difference in the maximum value of the spectral 

density. 

 

  

Fig. 5.7. Variance of u at the point (0,0) by BEMc simulation and SL-2 (with 81 mode shapes) when 1.9 =  

(left) and relative error (right). 
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Fig. 5.8. Variance of u at the point (0,0) by BEMc simulation and SL-2 (with 121 mode shapes) when 

1.5 =  (left) and relative error (right). 

 

Fig. 5.7 and Fig. 5.8 show the variance computed by the BEMc simulation and statistical 

linearization-2, and the relative error of the results. 
2

0  is the variance of the linear 

response calculated by the simulation. As shown in the figures, the relative error is less 

than 9% for  and less than 11% for , when the coefficient of nonlinear 

term k=3. 

 

Example 5.3 Consider a stochastic linear fractional diffusion equation with same 

Dirichlet boundary condition, zero initial conditions and colored noise as part of the 

source term 

( ) ( ) ( )
2 3 , .u u ku p x y f t


+ − + =                  (5.74) 

The spectrum of  is 

( )
( ) ( ) ( ) ( )

4

2 22 22 2

1 1 2 2

ˆ .
Cw

S w
w k c w w k c w

=
   − + − +
      

            (5.75) 

The parameters are set as , and 

 (  is the peak frequency of the spectrum). The standard deviation is 0.8 and 

the peak period  is 5. 
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Fig. 5.9. Standard deviation of the response u along the line y=0 and the power spectral density of u at the 

point (0,0) with fractional order 1.9. The values of coefficient of the nonlinear term are: k=0 linear 

(continuous line); k=0.1 (dashed line); k=1 (circles). 

 

 

Fig. 5.10. Standard deviation of the response u along the line y=0 and the power spectral density of u at the 

point (0,0) with coefficient of the nonlinear term k=0.1. The values of fractional orders are: =2 classical 

Laplacian (continuous line);  =1.9 (dashed line);  =1.7 (circles). 

 

The BEMc-based Monte Carlo simulation result of the response spectra of the nonlinear 

system (5.73) given different nonlinear parameters and fractional orders are shown in Fig. 

5.9 and 5.10. 
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Fig. 5.11. Power spectrum of u at the point (0,0) calculated by BEMc and SL-2 (with 81 mode shapes) when 

=1.9. Nonlinear parameter k = 0.1 (left) and k =0.5 (right). 

 

 

Fig. 5.12. Power spectrum calculated of u at the point (0,0) by BEMc and SL-2 (with 121 mode shapes) when 

=1.5. Nonlinear parameter k = 0.1 (left) and k =0.5 (right). 

 

Fig. 5.11 and 5.12 show the comparison of the power spectral density of the nonlinear 

response calculated by the BEMc simulation and statistical linearization-2. The results are 

very close. 
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Fig. 5.13. Variance of u at the point (0,0) by BEMc simulation and SL-2 (with 81 mode shapes) when =1.9 

(left) and relative error (right). 

 

 

Fig. 5.14. Variance of u at the point (0,0) by BEMc simulation and SL-2 (with 121 mode shapes) when 

=1.5 (left) and relative error (right). 

 

Fig. 5.13 and Fig. 5.14 show the variance computed by BEMc simulation and statistical 

linearization-2, and the relative error of the results. As shown in the figures, the relative 

error is less than 11% for  and less than 10% for , when the coefficient of 

nonlinear term k=3. As the examples showed, the proposed numerical methods work well 

for both linear and nonlinear systems with white or colored noise. 
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Example 5.4 Consider the stochastic nonlinear fractional diffusion equation 

( ) ( ) ( )
2 3 , .u u ku p x y f t


+ − + =                  (5.76) 

with mixed boundary condition: 

                        ( ) ( ), , 0 , , ,
u u

a y t a y t
n n

 
− = =

 
                  (5.77) 

( ) ( ), , 0 , ,u x b t u x b t− = = ,                     (5.78) 

and initial condition 

( ), , 0 0.u x y t = =                         (5.79) 

The time-dependent part  of the load is white noise, while the determinant spatial 

part is a constant, . An illustration of the domain and mixed boundary 

conditions is provided in Fig. 5.15. 

 

Fig. 5.15. Rectangular domain with mixed boundary condition. 

 

The eigenfunctions of the response and fractional Laplacian are obtained by the same 

way introduced in Section 5.2. That is, assume 

( ) ( ) ( ), , , .u x y t w t v x y=                      (5.80) 

Substitute Eq. (5.79) into 

 0u u− = ,                                 (5.81) 

to obtain the following equation 

,
w v

w v



= = −                                (5.82) 
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where  is a positive eigenvalue. Eq. (5.81) can be recast as 

( ) ( ), , .v x y v x y− =                            (5.83) 

 

The boundary condition (5.76), (5.77) and Eq. (5.82) lead to the equations 

( ) ( )

( ) ( )

, , 0
.

, , 0

x xv a y v a y

v x b v x b

− = =


− = =

                        (5.84) 

From the governing equation (5.76) and the boundary condition (5.77), (5.78), a set of 

solution is obtained, 

( )
( ) ( )

, cos sin ,
2 2

mn

m x a n y b
v x y

a b

 + +   
=    

   
              (5.85) 

and 

( )
2 2

, ,
2 2

mn

m n
x y

a b

 


   
= +   
   

                      (5.86) 

where 0,1, 2,m = , 1,2,3,n =  

 

The eigenfunctions  satisfy the orthogonality property 

0 0 2 ,
b a

l l
b a

v v dxdy ab
− −

=                            (5.87) 

, 1
b a

mn mn
b a

v v dxdy ab m
− −

=   ,                       (5.88) 

and 

0,
b a

sl mn
b a

v v dxdy
− −

=   if                 (5.89) 

Next, from the eigenfunctions , the non-orthogonal expansion of the fractional 

Laplacian is obtained, 
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( ) ( ) ( ) ( )
2

1 1

, , , ,mn mn mn

m n

u x y t w t z x y



 

= =

− =              (5.90) 

where 

( ) ( )( )2

2, , .mn mnz x y I v x y−=                          (5.91) 

To evaluate the eigenfunctions , discretization of the domain is required. 

 

If the eigenfunctions  are incorporated in the calculation, 

following the second statistical linearization method, the matrix equation is obtained 

( ) ,+ + =Cw Kw g w q                           (5.92) 

where the matrices K and vector g are defined in Eq. (5.53) and (5.54), respectively.  

2

2
,

 
=  
 

1I 0
C

0 I
                               (5.93) 

where  and  are the n-dimensional and -dimensional identity matrices, 

respectively. 

 

From Eq. (5.92), the equivalent linearized equation is obtained from the statistical 

linearization procedure. That is, 

( ) ,+ + =
eq

Cw K K w q                      (5.94) 

from where the response statistics of the response can be calculated. 

 

In the BEM, the matrix representation of the unknown boundary value by the vector to be 

constructed is a little complicated than the above problems with Dirichlet boundary 

conditions which is based on the equation. 

|
ˆ

b b b b n b+ =G b H u L u .                     (5.95) 
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Denote the four boundaries as  and  as shown in Fig. 5.15. On the boundary 

, the value u is provided as 0, while on , . Denote the vectors 

, ,  and , which contain the known quantities at the nodes on the four 

boundaries respectively, while vectors , ,  and  containing the 

unknown quantities. Partitioning the matrices  and , Eq. (5.95) is recast 

 

| 11

| 22

1 2 3 4 1 2 3 4

| 33

| 44

ˆ ˆ ˆ ˆ .

n bb

n bb

b b b b b b b b b

n bb

n bb

  
  

   
  + =    

   
      

uu

uu
H H H H G b L L L L

uu

uu

   (5.96) 

Carry out the multiplications and move unknown boundary values to the left-hand side of 

the equation. That is, 

1| 1

| 22

1 2 3 4 1 2 3 4

3| 3

| 44

ˆ ˆ ˆ ˆ .

bn b

n bb

b b b b b b b b b

bn b

n bb

  
  

   
   − − = − − −      

   
      

uu

uu
L H L H H L H L G b

uu

uu

(5.97) 

 

Due to the homogenous boundary condition, and the introducing matrix, 

1 2 3 4
ˆ ˆ ,b

b b b b
 = − −
 

H L H L H                  (5.98) 

and the vector 

| 1

2

| 3

4

,

n b

bb

n b

b

 
 
 

=  
 
  

u

u
u

u

u

                           (5.99) 

all the unknown boundary values are represented by the vector b, 

( )
1

.b b

b

−

=u H G b                         (5.100) 

 

Next, recall the equation 

( ) |d d n b d bt= − +u G b L u H u                    (5.101) 

of the response at the domain. Partition the matrices  and  in the same way, 
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 1 2 3 4 ,d d d d d=H H H H H                  (5.102) 

and 

 1 2 3 4 .d d d d d=L L L L L                   (5.103) 

 

Denote the matrix with the corresponding columns of the known matrices, 

 1 2 3 4 .d

d b b d= − − −H L H L H               (5.104) 

Substituting the boundary conditions and Eq. (5.32) into Eq. (3.44), the vector u is 

represented by b, 

1 ,=u M b                            (5.105) 

where 

( )
1

1 .d b

d b

−

= +M G H H G                    (5.106) 

 

 

Fig. 5.16. Standard deviation of the response u along the line x=0 and the power spectral density of u at the 

point (0,0) with white noise input and fractional order 1.9. The values of coefficient of the nonlinear term 

are: k=0 linear (continuous line); k=0.1 (dashed line); k=1 (circles). 

 

Combining Eq. (5.105) with Eq. (5.108) yields, 

( )
2

- ,


 = − 2u M b                         (5.107) 

where 
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( ) ( )
1

,

j i

i j c d
P Q






= 
−





2
M .                (5.108) 

Further, substituting them into Eq. (5.76) yields, 

1

2 1 3 ,k−− + =u M M u u q                     (5.109) 

where  is the vector containing the values of  at each node and q is the vector of 

source terms. Eq. (5.109) is solved by the Runge-Kutta scheme. 

 

 

Fig. 5.17. Standard deviation of the response u along the line x=0 and the power spectral density of u at the 

point (0,0) with white noise input and coefficient of the nonlinear term k=0.1. The values of fractional 

orders are: =2 classical Laplacian (continuous line);  =1.7 (dashed line);  =1.5 (circles). 

 

 

Fig. 5.18. Power spectrum of u at the point (0,0) calculated by BEMc simulation and SL-2 (with 25 mode 

shapes) when =1.9. Nonlinear parameter k = 0.1 (left) and k =0.5 (right). 
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Fig. 5.16 and Fig. 5.17 show standard deviation on the line x=0 and the power spectral 

density at the point (0,0) calculated by the BEMc-based simulation results with different 

nonlinear parameter and fractional Laplacian order. 

 

Fig. 5.19. Power spectrum calculated of u at the point (0,0) by BEMc simulation and SL-2 (with 81 mode 

shapes) when =1.5. Nonlinear parameter k = 0.1 (left) and k =0.5 (right). 

 

Fig. 5.18 and Fig. 5.19 show the comparison of power spectral density calculated by 

statistical linearization method-2 and simulation based on BEMc. The left panel of each 

figure shows the calculated spectrum with nonlinear coefficient 0.1, while the right panel 

show shows the result with nonlinear coefficient 0.5. 

 

Fig. 5.20. Variance of u at the point (0,0) by BEMc simulation and SL-2 (with 25 mode shapes) when =1.9 

(left) and relative error (right). 
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Fig. 5.21. Variance of u at the point (0,0) by BEMc simulation and SL-2 (with 81 mode shapes) when =1.5 

(left) and relative error (right). 

 

Fig. 5.20 and Fig. 5.21 show the comparison of the variance computed by the BEMc 

simulation and statistical linearization-2. The relative error of the results is provided, 

where  is the variance of the linear response calculated by the simulation. As shown in 

the figures, the relative error is less than 12% for  and about 13% for , 

when the coefficient of nonlinear term k=3. 

5.6 Synopsis 

In this Chapter, first a method to obtain the expansion of the fractional Laplacian was 

proposed. The eigenfunctions were constructed via the Reisz potential of the linear modes 

of response in the classical diffusion equation with same boundary conditions. Evaluation 

of the proposed eigenfunctions and relating constants required discretization of the 

domain. The introduced eigenfunctions were defined in integration representation and 

hence is not orthogonal. Such property also pointed out the nonlocality of the fractional 

Laplacian. 

 

Based on the novel eigenfunctions, frequency domain analysis of the fractional diffusion 

equation became feasible. Further, for the nonlinear diffusion equation endowed with a 
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fractional Laplacian, statistical linearization-based approaches were introduced for 

estimating the response of system. The first algorithm proposed in Section 5.3 is meant 

for a system where the order of the fractional Laplacian is close to 2. A system of 

nonlinear fractional ordinary differential equations describing the time-variation of the 

modes amplitudes was derived. Due to the assumption of orthogonality, a decoupled 

system was obtained. 

 

In Section 5.4, another algorithm was introduced without orthogonality assumption, 

leading to a matrix differential equation. Numerical implementation of both methods 

requires truncation of the summation. In this context, the statistical linearization approach 

was implemented by minimizing a certain error in a mean square sense. The proposed 

methods were applied to numerical examples with different parameters to demonstrate 

the effectiveness.  
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Chapter 6 

Concluding Remarks  

The fractional Laplacian is the operator that is defined by a generalization of the classical 

Laplace operator. It can work as an interesting tool for mathematical modeling of the 

nonlocal behavior, such as anomalous diffusion, and nonlocal phase transitions (Bates 

and Chmaj, 1999). The work in this thesis focuses on the numerical analysis of diffusion 

equation with the fractional Laplacian. In brief, it contains three main parts: two 

Boundary Element Method based approaches for estimating the response a fractional 

diffusion equation; a modal expansion of the fractional Laplacian and frequency domain 

analysis of the fractional diffusion equation; two statistical linearization methods for the 

stochastic nonlinear dynamic system containing the fractional Laplacian. 

 

Chapter 1 provides useful background and an outline of the thesis. The nonlocal property 

of the fractional derivative makes it a useful tool in engineering applications. However, 

most works of numerical analysis of the fractional differential equation focus on the 

time-derivative or one-dimensional space-derivative, while the analytical solution is not 

always available. Among different numerical methods, the Boundary Element Method 

and statistical linearization have been successfully implemented to the time-fractional 

partial differential equation. These two methods are further developed for the partial 

differential equation with the fractional Laplacian in the thesis. 

 

Chapter 2 provides the mathematical background of the fractional Laplacian and the 

algorithms that can be generalized in the context. The anomalous diffusion is briefly 

introduced. Due to the nonlocal property of the operator, the fractional Laplacian is often 

defined via integration, which makes it difficult to deal with in the numerical analysis. To 

capture different representations of the fractional Laplacian, an implicit definition based 

on the Fourier transform is adopted. The Caputo-type representation is of more 

importance as it naturally includes the boundary conditions. Such properties make it quite 

useful in the application in a bounded domain. Then, the BEM and statistical linearization 
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method are briefly illustrated for the dynamic systems with time-fractional derivatives. 

 

In Chapter 3, an approximate algorithm is proposed for fractional differential equation 

endowed with the fractional Laplacian. The algorithm BEMrm is based on the 

Riesz-Marchaud definition. Different examples are presented to demonstrate the 

algorithm. 

 

In Chapter 4, first, it is proved that Caputo-type fractional Laplacian converges to the 

standard Laplace operator, which is the desirable property that is expected as a 

generalized operator. Then, based on such representation, a BEM-based algorithm (BEMc) 

is developed for the fractional diffusion equation. An analog equation is established at 

first, which is the classical Poisson equation with load to be determined by the BEM. The 

solution of the analog equation is represented as an integral equation about the 

fundamental solution of the Laplace equation. The fractional Laplacian is then evaluated 

by matrix transformation, where the matrix is determined by numerical integration. 

Through the proposed algorithm, a matrix differential equation is constructed, where the 

response in each element can be obtained. 

 

Chapter 5 proposes a way to separate the variables of the fractional Laplacian in the 

diffusion equation. The expansion is developed on the Caputo-type representation and 

includes the information of the boundary conditions. The non-orthogonal eigenfunctions 

of the fractional Laplacian are developed from the linear modes of classical diffusion 

equation solution. Based on such expansion, statistical linearization is then applied to the 

nonlinear fractional diffusion equation. When the order of the operator is close to 2, i.e. 

the fractional Laplacian is close to the standard Laplace operator, the mode shape 

functions are also close to be orthogonal and hence a set of decoupled 

single-degree-of-freedom ordinary differential equations is developed. For the smaller 

order though, the non-orthogonality must be considered and via the statistical 

linearization method, a multi-degree-of-freedom ordinary differential equation is 

established. In both cases, the response statistics and power spectral density are 

calculated by an iterative procedure. In this thesis, the statistical linearization is in the 
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mean square sense. Numerical results are presented to demonstrate the efficiency of the 

methods. Comparison and parameter studies are provided for elucidating the influence of 

the order of the fractional Laplacian. 

 

In this work, the methods are applied to fractional diffusion equation as illustration. But 

these algorithms could also be used to other differential equations with the fractional 

Laplacian for numerical analysis, such as a fractional wave equation. 

 

There are several related works on the fractional calculus that need investigation. First, 

note that the implementation of the BEMs and statistical linearization requires the 

numerical integration of singular integral. It is possible to improve the performance of the 

proposed methods with better numerical algorithms. Different numerical method may be 

derived through other representation. Next, it is important to further understand the 

physical meaning of the boundary condition of the fractional diffusion equation, as it 

allows long-range interaction and long jump of the particles. In this context, it is 

worthwhile to investigate which representation is better for application in engineering 

problems. 

 

There is another kind of fractional diffusion equation, which contains the time-fractional 

derivatives. The methods proposed in the thesis can be directly applied to the fractional 

diffusion equation with both time-fractional derivative and the fractional Laplacian. That 

is, 

( ) ( )
s/2

, , .tD u u f u x t + − =                     (6.1) 

The Grunwald-Letnikov algorithm is implemented for such problems. Also, it is 

interesting to try the proposed BEM and statistical linearization on the Fractional Porous 

Medium Equation 

( ) ( )
/2

0.mu u


+ − =                        (6.2) 

For the application of the fractional Laplacian, nonlocal diffusion in inhomogeneous 

media is also an interesting topic that is worth being further investigated. 
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There are also many different numerical analysis methods that could be generalized for 

the problems containing the fractional Laplacian. The deterministic linearization method 

has already been introduced to the time-fractional differential equation by Spanos and 

Evangelatos (2010). It is worth trying to see if it can be generalized for the fractional 

Laplacian system. Further, a different statistical linearization introduced by Fang and 

Elishakoff (1995) is possible to be applied to different systems including fractional 

Laplacian, where an equivalent system is constructed to minimize the error in the energy 

sense. Another theme can be the application of the Singular Boundary Method, which is 

considered by Chen and Pang (2016) for a different implication definition of the 

fractional Laplacian, as well as other techniques such as stochastic averaging method. 

Furthermore, as another tool to describe nonlocal behavior of a system (Weckner and 

Abeyaratne, 2005), it is worth investigating if there is some correlation between 

stochastic Peridynamics and the fractional calculus (Evangelatos & Spanos, 2011). 
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